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Onsager-like theories are commonly used to describe the phase behavior of nematic (only orientation-
ally ordered) liquid crystals. A key ingredient in such theories is the orientation-dependent excluded
volume of two molecules. Although for hard convex molecular models this is generally known in
analytical form, for more realistic molecular models that incorporate intramolecular flexibility, one
has to rely on approximations or on computationally expensive Monte Carlo techniques. In this work,
we provide a general correlation for the excluded volume of tangent hard-sphere chains of arbitrary
chain length and flexibility. The flexibility is introduced by means of the rod-coil model. The result-
ing correlation is of simple analytical form and accurately covers a wide range of pure component
excluded volume data obtained from Monte Carlo simulations of two-chain molecules. The exten-
sion to mixtures follows naturally by applying simple combining rules for the parameters involved.
The results for mixtures are also in good agreement with data from Monte Carlo simulations. We
have expressed the excluded volume as a second order power series in sin (γ ), where γ is the angle
between the molecular axes. Such a representation is appealing since the solution of the Onsager
Helmholtz energy functional usually involves an expansion of the excluded volume in Legendre co-
efficients. Both for pure components and mixtures, the correlation reduces to an exact expression in
the limit of completely linear chains. The expression for mixtures, as derived in this work, is thereby
an exact extension of the pure component result of Williamson and Jackson [Mol. Phys. 86, 819–836
(1995)]. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737663]

I. INTRODUCTION

It is well recognized that theoretical descriptions of
molecules that form liquid crystalline phases should go be-
yond the simple rigid models such as rods, disks, spherocylin-
ders or ellipsoids.1–3, 5, 6 Although these simple models play an
important role in gaining understanding in the rich phase be-
havior of liquid crystals,7–11 Flory already suggested in 1956
that a certain degree of intramolecular flexibility, a charac-
teristic of most “real” liquid crystal molecules, would have a
considerable effect on the liquid crystalline phase behavior.2

Now, several molecular simulation studies3–6 have confirmed
this hypothesis. For the isotropic-nematic phase transition in
particular, one finds that introducing flexibility into the molec-
ular model destabilizes the nematic phase (due to a loss in
anisotropy of the molecules) and thereby shifts the phase tran-
sition to higher density and pressure.

Inspired by the seminal work of Flory and these more
recent observations, several authors have attempted to incor-
porate the effects of molecular flexibility in a theoretical de-
scription of the isotropic-nematic phase transition.12–19 The
starting point for all of these studies is Onsager’s theory.20, 21

For a system of infinitely thin hard rods, Onsager showed
that the isotropic-nematic phase transition can be understood

a)Author to whom correspondence should be addressed. Electronic mail:
gross@itt.uni-stuttgart.de.

from a competition between an orientational entropy, which
is maximized by an isotropic distribution of molecular ori-
entations, and a configurational entropy (free volume), which
is maximized by aligning the molecules to minimize the ex-
cluded volume. In the case of flexible molecules however, an
additional conformational entropy has to be taken into ac-
count. The first to do this were Khoklov and Semenov.12–14

In their analysis on worm-like chains, a correction to the
orientational entropy term of the Onsager Helmholtz energy
functional was introduced to account for the additional con-
formational degrees of freedom. The effect of those confor-
mational degrees of freedom on the excluded volume were
thereby neglected. More recent theoretical efforts due to, for
example, Fynewever and Yethiraj15 have shown that treating
the conformational entropy in the excluded volume instead,
leads to a better description of the isotropic-nematic phase
transition. Despite its improved performance and its com-
patibility with other molecular models than the worm-like
chain,18 the method of Fynewever and Yethiraj involves the
exact calculation of the orientation-dependent excluded vol-
ume via a computationally expensive two-chain Monte Carlo
simulation, thereby strongly limiting its field of application.
At this point, it is important to note that some density func-
tional theories related to the Khoklov and Semenov theory are
available that perform comparable to the method of Fynew-
ever and Yethiraj in predicting the isotropic-nematic phase
equilibrium of semi-flexible molecules.16, 17 However, these
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methods are even more computationally expensive due to the
required Monte Carlo simulations for evaluating ensemble av-
erages of the single-chain conformational distribution func-
tion.

In the present work, we develop a correlation for the
orientation-dependent excluded volume of two tangent hard-
sphere chains of arbitrary chain length and flexibility. Instead
of introducing a uniform flexibility along the chains backbone
(as for example in the worm-like chain model), we adopt the
rod-coil model, in which the tangent sphere chain consists of
a rigid, linear block (referred to as “rod”) and fully flexible
tail (referred to as “coil”). Such a molecular model is known
to be closer to the structure of “real” liquid crystal molecules.
The use of this correlation in Onsager-like theories for the
isotropic-nematic phase transition eliminates the need to per-
form individual Monte Carlo simulations for evaluating the
excluded volume (see for example Refs. 15 and 18) while ac-
curately, though in an average way, covering the effects of
intramolecular flexibility.

This paper is organized as follows. In Sec. II, the molec-
ular model is presented. In Sec. III, some theoretical back-
ground is given and the algorithm for calculating the ex-
cluded volume from Monte Carlo simulations is presented. In
Sec. IV, the correlation for the excluded volume of rod-coils
is developed and tested against two-chain Monte Carlo data.
Our findings are summarized in Sec. V.

II. MOLECULAR MODEL

The molecular model we employ is a chain of m tangent
hard spheres of diameter σ with one part of mR spheres fixed
in a rigid, linear conformation (referred to as “rod”) and one
part of m − mR spheres completely flexible (referred to as
“coil”). In the remainder of the text, we will refer to this model
as rod-coil fluid. In Fig. 1 we show a schematic of a rod-coil.
In the remainder of this paper, a general m − mR notation is
used, e.g., the rod-coil in this figure is a 7-3 rod-coil.

Since mR is not a suitable measure of the rigidity of a
molecule, we introduce a dimensionless rigidity parameter χR

defined as the number of rigid bond angles divided by the total
number of bond angles,

χR =
⎧⎨
⎩

mR − 2

m − 2
for m > 2

1 for m ≤ 2
. (1)

This parameter is convenient since it varies from zero to unity
between, respectively, the completely flexible and completely
stiff chain limits.

In principle, the flexibility of “real” molecules is temper-
ature dependent. The fact that this temperature dependence

FIG. 1. Schematic representation of a 7-3 rod-coil molecule. The 4 gray seg-
ments are fixed in a linear conformation while the 3 white segments in the
tail are completely flexible.

is not included in the molecular model outlined above con-
stitutes some degree of approximation. However, many accu-
rate theories for the isotropic state of “real” molecules (e.g.,
SAFT,22, 23 PC-SAFT,24 etc.) have been developed based on
similar molecular models. In these theories, it is generally as-
sumed that the intramolecular conformation is not affected by
the density of the fluid. The temperature dependence of the in-
tramolecular interactions can then be considered in the ideal
gas term. The same reasoning could be applied to liquid crys-
tal fluids. In doing this, the increase in the end-to-end distance
of a chain molecule that is observed in simulation studies of
the isotropic-nematic phase transition4, 5 is neglected. This as-
sumption is analogous to that underlying theories for isotropic
fluids, where a comparable increase in end-to-end distance for
vapor-liquid transitions25 is neglected.

III. THEORY

A. General

We define the conformation ω̃ωω of a molecule as the ori-
entation vector of the first bond ωωω12 together with the internal
conformation ωωω′, defined as the total set of m − 2 bond and m
− 4 torsion angles, i.e., ω̃ωω = (ωωω12,ωωω

′). Considering a homo-
geneous canonical system of N rod-coil molecules with num-
ber density ρ at temperature T, a general Onsager Helmholtz
energy functional can be introduced as the sum of an ideal
part and a residual part as16

A[f (ω̃ωω)]

NkT
= ln (ρ�3)−1+

∫
f (ω̃ωω)

(
ln[f (ω̃ωω)]+�intra(ωωω′)

kT

)
dω̃ωω

+Ares[f (ω̃ωω)]

NkT
. (2)

Here, k is Boltzmann’s constant, � is a thermal de Broglie
wavelength, �intra(ωωω′) is the intramolecular potential energy
and f (ω̃ωω) is the normalized single molecule conformational
distribution function. For the molecular model employed in
this work, �intra(ωωω′) only contains intramolecular excluded
volume effects. The residual part can be written as a virial
expansion in density as

Ares[f (ω̃ωω)]

NkT
= B2[f (ω̃ωω)]ρ + 1

2
B3[f (ω̃ωω)]ρ2 + . . . . (3)

Onsager suggested to cut off this expansion after the first term,
resulting in a second virial theory that is only exact in the low
density limit. To extend Onsager’s treatment to higher den-
sities, it is common to use decoupling approximations26–29

or scaled particle theory30, 31 where the effect of higher or-
der virial coefficients Bn (n > 3) is approximately considered
in a non-linear dependence on density as

Ares[f (ω̃ωω)]

NkT
= Ares(B2[f (ω̃ωω)], ρ)

NkT
. (4)

Only the conformation dependence of the second virial coef-
ficient then has to be evaluated explicitly. For some examples
of how decoupling approximations or scaled particle theory
can be applied to obtain the density dependence of Eq. (4),
the reader is referred to, respectively, Refs. 29, 32, and 33
(decoupling approximations) and Refs. 16–19 (scaled parti-
cle theory). Since the focus of this study lies on the excluded
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volume, which is directly related to the second virial coeffi-
cient, the exact density dependence of Eq. (4), however, is not
a particular concern of this work. For hard flexible molecules,
the second virial coefficient is related to a conformational av-
erage of the excluded volume as16, 25, 34

B2[f (ω̃ωω)] = 1

2

∫ ∫
Vex(ω̃ωω1, ω̃ωω2)f (ω̃ωω1)f (ω̃ωω2)dω̃ωω1dω̃ωω2, (5)

where the excluded volume of molecules 1 and 2 with confor-
mations ω̃ωω1 and ω̃ωω2 is given by

Vex(ω̃ωω1, ω̃ωω2) =
∫ [

1 − exp

(−φ(ω̃ωω1, ω̃ωω2, rrr12)

kT

)]
drrr12. (6)

Here, φ(ω̃ωω1, ω̃ωω2, rrr12) is the intermolecular potential of the two
molecules at distance rrr12 between their centers of mass. For
the molecules with hard-core interactions considered here, the
factor between the squared brackets is unity for overlap and
zero otherwise. Therefore, the integral of this factor over the
separation rrr12 is equal to the volume inaccessible to the center
of mass of molecule 2 due to the presence of molecule 1, i.e.,
the excluded volume.

Since solving the combined set of Eqs. (2) and (4)–(6) for
the conformational distribution function is numerically very
difficult, we follow Fynewever and Yethiraj15 and assume a
molecule’s conformational distribution function can be de-
coupled in a part depending only on the internal conformation
ωωω′ of the molecule and a part depending only on the overall
molecular axis ωωω, defined as the eigenvector corresponding to
the smallest eigenvalue of the molecule’s moment of inertia
tensor, as

f (ω̃ωω) ≈ f (ωωω′)f (ωωω). (7)

Here, f (ωωω) is the orientational distribution function. With
this approximation one actually assumes a molecule’s inter-
nal conformation is unaffected by its surroundings and there-
fore any ωωω′-dependency of Eqs. (2) and (5) can be averaged
out. Substituting Eq. (7) in Eqs. (2), (4) and (5) and using the
normalization conditions

∫
f (ωωω′)dωωω′ = 1 and

∫
f (ωωω)dωωω = 1

we obtain,

A[f (ωωω)]

NkT
= ln

(
ρ�′3




)
− 1 +

∫
f (ωωω) ln[
f (ωωω)]dωωω

+ Ares(B2[f (ωωω)], ρ)

NkT
, (8)

B2[f (ωωω)] = 1

2

∫ ∫
〈Vex(ω̃ωω1, ω̃ωω2)〉ωωω′

1,ωωω
′
2
f (ωωω1)f (ωωω2)dωωω1dωωω2,

(9)

where 
 = ∫
dωωω is a normalization constant. The de Broglie

wavelength �′ now also contains a contribution due to the in-
ternal conformational degrees of freedom of the molecules.
However, this contribution has no density nor temperature de-
pendence and thus is of no importance for the location of the
phase equilibrium.

The great virtue of this approach is that the excluded
volume is now expressed as an ensemble average 〈· · ·〉 over
all internal conformations of molecules 1 and 2 and there-
fore depends only on the orientation of the overall molecular

axes. Consequently, the molecules can be treated as if they
are cylindrically symmetric and the ensemble average reduces
to a function solely depending on the angle γ between the
molecular axes as

〈Vex(ω̃ωω1, ω̃ωω2)〉ωωω′
1,ωωω

′
2
= Vex(γ ). (10)

In the present work, we calculate Vex(γ ) by means of Monte
Carlo simulations of two-chain molecules and fit a general
correlation to the results.

B. Calculating the excluded volume

To calculate the orientation-dependent excluded volume
of two molecules, a slightly altered version of the Monte
Carlo algorithm introduced by Fynewever and Yethiraj15 is
used,

1. Generate two isolated chain molecules independently
using the Rosenbluth method.35–38 This method is
known to produce much better statistics compared to a
random generation of chains. In this method, a molecule
is grown by choosing the orientation of each new bead
from a predefined number of trial directions. To remove
the bias introduced by this and to recover correct Boltz-
mann sampling, each molecule is assigned a statistical
weight equal to its Rosenbluth weight. The statistical
weight W1,2 of the pair of molecules is then the prod-
uct of the two Rosenbluth weights.

2. Calculate the orientation of each molecule as the eigen-
vector corresponding to the smallest eigenvalue of its
moment of inertia tensor. Rotate chain 2 to the desired
angle γ .

3. Put the first bead of chain 1 at the center of a cubical
simulation box with volume Vbox and box length equal
to the sum of the chain lengths of molecule 1 and 2, i.e.,
m1 + m2.

4. Move chain 2 to Nstep random positions and count the
number of overlaps Noverlap. Typically Nstep = 105 is suf-
ficient for accurate sampling.

5. Repeat Steps 1–4 for Npair different chain pairs and cal-
culate the excluded volume as

Vex(γ ) = Vbox

Nstep

∑Npair

i=1 (NoverlapW1,2)i∑Npair

i=1 (W1,2)i
. (11)

Note that in this step all internal conformational depen-
dencies of the excluded volume are averaged out. Ad-
ditionally, we average out any up-down asymmetry, i.e.,
Vex(γ ) = Vex(π − γ ). Typically, Npair = 2500 leads to
sufficiently accurate sampling.

6. Repeat Steps 1–5 Nexp different times and average the
excluded volume over the independent calculations. The
value of Nexp is chosen such that the standard devia-
tion calculated from the independent calculations is suf-
ficiently small (∼0.5%).

7. Repeat Steps 1–6 for a number of different angles γ uni-
formly distributed between 0 and π /2. For small chains
(m < 20) we typically use 19 different angles, for longer
chains we reduce this to 7 different angles to reduce the
computational effort.
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It is important to note that due to the forced cylindrical
and up-down symmetry at Step 5 we can eventually represent
the excluded volume by a series in sin (γ ). Such a representa-
tion will be helpful for solving the Onsager Helmholtz energy
functional since this usually involves the expansion of the ex-
cluded volume in Legendre coefficients.39

IV. CORRELATION OF THE EXCLUDED VOLUME

A. Pure components

The natural starting point to find a suitable functional
form for the excluded volume of rod-coil molecules is the
work of Williamson and Jackson.40 Based on the work of
Kihara41 on the excluded volume of hard homonuclear tan-
gent dimers, Williamson and Jackson derived an exact ex-
pression for the dimensionless excluded volume of hard linear
homonuclear tangent sphere chains of arbitrary chain length
m. Since this expression cannot be solved analytically, a linear
function in sin (γ ) was fitted to the numerical results to obtain

V ∗
ex(γ ) = Vex(γ )

Vm

= 11m − 3

m
+ 3.5339

(m − 1)2

m
sin(γ ).

(12)
Here, Vm is the molecular volume of a chain of m tangent
hard spheres. It is important to note that the first term, i.e.,
the excluded volume for the parallel orientation, and the fac-
tor (m − 1)2/m of the second term are exact. Only the factor
3.5339 sin (γ ) results from the fitting. This expression is very
accurate and when used in Eq. (5) to calculate the (isotropic)
second virial coefficient of hard linear tangent sphere chains
of chain length ranging from 2 to 10, one finds a near ex-
act agreement (deviation at worst 0.02%) with Monte Carlo
data.40, 42

To extend Eq. (12) to rod-coil molecules, it is instructive
to examine the behavior of the excluded volume as a func-
tion of the rigidity parameter χR. As an example, we show
the excluded volume as computed using the scheme outlined
in Sec. III B of a set of rod-coils with m = 12 and mR = 2,
4, 6, 8, 10, 12 in Fig. 2. In this figure, the symbols represent
Monte Carlo data and the lines are a guide for the eye. In
the limit of completely linear molecules, i.e., χR = 1, the ex-
cluded volume can perfectly be represented by a function of
sin (γ ). However, when the rigidity is decreased the excluded
volume requires a higher order term, such as a sin 2(γ ) term,
suggesting the following general functional form for the ex-
cluded volume of rod-coils

V ∗
ex(γ ) = C1(m,χR) + C2(m,χR) sin(γ )

+C3(m,χR) sin2(γ ). (13)

Independent fits of Eq. (13) to the excluded volume of differ-
ent rod-coils (not included for the sake of brevity) suggested
a linear dependence of the C1, C2, and C3 parameters on the
chain length m and a χR-dependence that can be well cap-
tured by a power law. Taking this into account, we find the
best representation of our pure component two-chain Monte
Carlo data using the following functional forms for C1, C2,

0 0.5 1 1.5
10

20

30

40

50

γ / [rad]

V
* ex

(γ
)

χ
R

FIG. 2. The orientational dependence of the dimensionless excluded volume
of a pure rod-coil fluid of m = 12 and mR = 2,4,6,8,10,12. Symbols are Monte
Carlo data; lines are a guide for the eye.

and C3:

C1(m,χR) = 11m − 3

m
+ (m − 1)2

m

3∑
k=1

ak(1 − χR)k, (14)

C2(m,χR) = 3.5339 (m−1)2

m
χ2

R, (15)

C3(m,χR) = (m−1)2

m

∑2
k=1 bk(1 − χR)k, (16)

where we have introduced an additional m-dependence in the
a2, a3, and b2 parameters as

a2 = a21 + a22

m
, (17)

a3 = a31 + a32

m
, (18)

b2 = b21 + b22

m
. (19)

Here, a1, a21, a22, a31, a32, b1, b21, and b22 are adjusted con-
stants. Note that for the case of linear chains (which by defi-
nition also includes hard spheres and dimers) Eqs. (13)–(19)
simply reduce to the linear chain limit from Eq. (12). The
linear dependence on m is introduced by the factor (m −
1)2/m; this is based on analogy to Eq. (12) and, as shown in
Sec. IV B, it allows for a simple extension to mixtures.

A total of 8 dimensionless adjustable constants were
determined by minimizing deviations of Eqs. (13)–(19)
to simulation data of the following rod-coils: 3-2, 4-
(2,3), 5-(2,3,4), 6-(2,3,4,5), 7-(2,3,4,5,6), 8-(2,3,4,5,6,7), 12-
(2,3,4,6,8,10), 18-(2,3,4,6,8,10,12,14,16), 24-(2,4,8,15,22),
and 30-(2,4,10,15,20,25). The regression gives an excellent
result with an average relative error per data point of ∼1.5%.
The values of the 8 adjustable constants a1-b22 are shown in
Table I. To test the adequacy of the correlation for molecule
types not included in the regression, we show the excluded
volume of a rod-coil of, respectively, 16 segments and 40
segments, for different degrees of flexibility (as defined by
Eq. (1)), in Figs. 3 and 4. The symbols are Monte Carlo data
and the lines are calculated using Eqs. (13)–(19). Clearly, the
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TABLE I. The 8 model constants obtained by minimizing deviations of
Eqs. (13)–(19) to Monte Carlo data of the excluded volume of pure rod-coil
fluids.

i a1 a2i a3i b1 b2i

1 4.63 − 4.71 1.31 0.305 − 0.171
2 7.84 − 6.18 3.32

correlation can well be extrapolated to chain lengths not in-
cluded in the fitting. However, we do observe that the average
relative error per data point tends to increase with increasing
chain length, e.g., for m = 16 the error is 1.2%, for m = 30
the error is 3.0%, and for m = 40 the error is 4.5%. Because
of this we recommend to use the correlation from Eqs. (13)–
(19) for chain lengths no longer than, say 30. For the rigidity
parameter, as defined in Eq. (1), Eqs. (13)–(19) give an ac-
curate representation of the Monte Carlo data over the entire
range of χR = [0, 1]. Therefore, our model can be used for
any degree of flexibility.

B. Mixtures

To extend the above approach to mixtures, i.e., two
rod-coils of different chain length and rigidity, we start by
considering the limit of two completely linear chains of dif-
ferent chain length m1 and m2. For this case, we show in the
Appendix that one can reformulate Eq. (12) as

V ∗
ex(γ ) = 11m̄ − 3

m̄
+ 3.5339

(m1 − 1)(m2 − 1)

m̄
sin(γ ),

(20)
where we have introduced an average chain length m̄ defined
as

m̄ = m1 + m2

2
. (21)

Here, the excluded volume is made dimensionless by divid-
ing through Vm̄, i.e., the molecular volume of a chain of m̄

tangent hard spheres. It is important to note that no addi-
tional approximations were introduced to extend Eq. (12) to
Eq. (20). Therefore, Eq. (12) can be considered as a special
case of this general result for mixtures. Clearly, for a given m̄,
the accuracy of the above expression is at a maximum when

0 0.5 1 1.5
10

30

50

70

γ / [rad]

V
* ex

(γ
)

m
R

FIG. 3. Excluded volume of a pure rod-coil fluid with m = 16 and
mR = 2,4,8,12,16. Comparison between Eqs. (13)–(19) (lines) and Monte
Carlo data (symbols) not included in the regression.

0 0.5 1 1.5
20

60

100

140

γ / [rad]

V
* ex

(γ
)

m
R

FIG. 4. Excluded volume of a pure rod-coil fluid with m = 40 and
mR = 2,15,25,35. Comparison between Eqs. (13)–(19) (lines) and Monte
Carlo data (symbols) not included in the regression.

(m1 − 1)(m2 − 1) is at a minimum (since any inaccuracies
enter the theory through the factor 3.5339 sin (γ )). There-
fore, the accuracy of Eq. (20) for calculating the excluded
volume and (isotropic) second virial coefficient of a pair of
non-identical linear chains of average chain length m̄ is some-
what higher than that for a pair of identical chains of chain
length m (where m̄ = m).

As for pure components, the excluded volume of a mix-
ture of two rod-coils can be well represented by a second or-
der series in sin (γ ) and we find an excellent agreement with
Monte Carlo data by introducing a combining rule for the
rigidity parameter as

χ̄R = χR,1 + χR,2

2
. (22)

In analogy to our extension of Eq. (12) to mixtures (Eq. (20)),
we now define the excluded volume of the rod-coil mixture,
as

V ∗
ex(γ ) = C1(m̄, χ̄R) + C2(m̄, χ̄R) sin(γ ) + C3(m̄, χ̄R) sin2(γ ),

(23)

where

C1(m̄, χ̄R) = 11m̄ − 3

m̄
+ (m1 − 1)(m2 − 1)

m̄

3∑
k=1

ak(1 − χ̄R)k,

(24)

C2(m̄, χ̄R) = 3.5339 (m1−1)(m2−1)
m̄

χ̄2
R, (25)

C3(m̄, χ̄R) = (m1−1)(m2−1)
m̄

∑2
k=1 bk(1 − χ̄R)k. (26)

For the case of a pair of linear chains of different chain length
Eqs. (23)–(26) reduce to the quasi-exact linear chain limit
of Eq. (20). For the case of two rod-coils of the same chain
length and rigidity one simply obtains the pure component re-
sult from Eqs. (13)–(16).

In Fig. 5 we compare predictions of Eqs. (23)–(26) (lines)
with Monte Carlo data (symbols) for a mixture of an 18-10
and 8-6 rod-coil and a mixture of a 12-4 and 8-6 rod-coil. The
overall agreement is very good except for a small underesti-
mation of the excluded volume at small angles γ . Since the 8
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FIG. 5. Excluded volume for a mixture of an 18-10 and 8-6 rod-coil (trian-
gles) as well as for a mixture of a 12-4 and 8-6 rod-coil (circles). Compar-
ison between predictions from Eqs. (23)–(26) (lines) and Monte Carlo data
(symbols).

constants a1-b22 (see Table I) were fitted to excluded volume
data for identical chains only, it is expected that predictions
based on Eqs. (23)–(26) become less accurate when the two
molecules become less similar; a more stringent test is there-
fore the case of a linear chain and a fully flexible chain. In
Fig. 6 we show the excluded volume of a linear chain of 12
segments and a rod-coil of 8 segments with variable degree of
flexibility (as defined by Eq. (22)). Indeed we see that predic-
tions become less accurate when the flexibility of the rod-coil
is increased (and thus the two molecules become less similar),
however even for the case of a linear chain and a fully flexible
chain the overall agreement between Monte Carlo data and
predictions are very satisfying.

A clear limitation of Eqs. (23)–(26) is the case of a hard
sphere and a rod-coil. The functional form of C1(m̄, χ̄R) is
such that for this case the second term equals zero and thus the
calculated excluded volume is the same as for a hard sphere
and a linear chain. In this, any next-nearest (and higher or-
der) neighbor effects are neglected (as illustrated in Fig. 7),
leading to a systematic overestimation of the excluded volume
(marked gray in Fig. 7). This limiting case is relevant, for ex-
ample, for mixtures of liquid crystals with small solutes, and
therefore we add a scaling 1 − D(m̄, χ̄R) to the first term of
the C1 parameter from Eq. (24) to correct for this overestima-

0 0.5 1 1.5
10

20

30

40

γ / [rad]

V
* ex

(γ
)

m
R

FIG. 6. Excluded volume for a mixture of a linear chain of 12 segments and
a rod-coil of m = 8 and mR = 2,4,6,8. Comparison between predictions from
Eqs. (23)–(26) (lines) and Monte Carlo data (symbols).

(a)

(b)

FIG. 7. The excluded volume (large spheres of diameter 2σ ) of (a) a hard
sphere and a linear trimer and (b) a hard sphere and a fully flexible trimer.
For case (b), the first and last segment of the excluded volume have an addi-
tional overlap (marked gray) resulting in a smaller excluded volume than for
case (a).

tion as

C1(m̄, χ̄R) =
(

11m̄ − 3

m̄

)
[1 − D(m̄, χ̄R)]

+ (m1 − 1)(m2 − 1)

m̄

3∑
k=1

ak(1 − χ̄R)k. (27)

In general, each flexible bond-angle of the chain molecule
will result in an overlap volume (similar to that in Fig. 7) that
needs to be corrected for. The overlap volume for the first
bond-angle in the chain only contains next-nearest neighbor
effects, the second will additionally contain next-next-nearest
neighbor effects, and so on. Because of this, the flexible bond-
angles at the beginning of a chain will result in a somewhat
smaller overlap volume than those further in the chains back-
bone and, consequentially, require a smaller correction. For a
very long chain, this effect averages out and all overlap vol-
umes can be considered as identical. For this case, the cor-
rection to the excluded volume Vcorr = −(11m̄ − 3)D(m̄, χ̄R)
should scale linearly with the number of flexible bond-
angles, suggesting a functional form as D(m̄, χ̄R) = d1(1 −
χ̄R). To obtain a smaller correction for shorter chain lengths, a

3 5 10 15 20 25 30 35 40
9

9.5

10

10.5

11

m

V
* ex

(γ
)

 

 

FIG. 8. The excluded volume of a hard sphere and a fully flexible chain of
m segments. The dashed line is the result from Eqs. (23)–(26) without the
correction from Eq. (28); the solid line is the correlation from Eqs. (23)–(26)
with the correction from Eq. (28) included. The symbols represent Monte
Carlo data.
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FIG. 9. The excluded volume of a hard sphere and, respectively, a 6-mR rod-
coil (solid line), an 8-mR rod-coil (dashed line) and a 30-mR rod-coil (dash-
dotted line). Comparison between the correlation from Eqs. (23)–(26) with
the correction from Eq. (28) included (lines) and Monte Carlo data (symbols).

hyperbolic term in the chain length m̄ is included as

D(m̄, χ̄R) =
(

d1 − d2

m̄

)
(1 − χ̄R)(1/mS)10. (28)

The factor (1/mS)10, where mS is the number of segments
of the shortest chain in the mixture, has no physical signif-
icance and is included solely to ensure that the scaling only
affects the excluded volume of hard sphere-rod-coil mixtures.
The d1 and d2 parameters were fitted to Monte Carlo data
of the excluded volume of several hard sphere-rod-coil mix-
tures; the values are, respectively, d1 = 0.125 and d2 = 0.206.
As shown in Figs. 8 and 9 the scaling is excellent and both
the dependence of D on m̄ and on χ̄R is very well correlated
for a wide range of chain lengths (at least up to m̄ = 20.5) and
rigidities. It is important to note that the functional form of the
C2(m̄, χ̄R) and C3(m̄, χ̄R) parameters from Eqs. (25) and (26)
remains unchanged.

V. CONCLUSION

In this work, we have developed an analytical approxi-
mation for the orientation-dependent pair excluded volume of
rod-coil molecules. The expression has a total of 8 adjustable
constants that were regressed to a wide range of pure com-
ponent excluded volume data (with chain length up to 30 seg-
ments) obtained from two-chain Monte Carlo simulations. We
find an excellent representation of the simulation data with an
average relative deviation of ∼1.5% per data point. The cor-
relation accurately covers the effects of intramolecular flex-
ibility and can be extrapolated to (larger) chain lengths not
included in the regression with reasonable accuracy. Since we
observe a small decrease in accuracy with increasing chain
length we suggest to use the correlation up to chain lengths
of 30. An accurate extension to mixtures of different chains
of equal-sized segments is possible by introducing combining
rules for the chain length and rigidity parameter. Both for pure
components and mixtures, the correlation reduces to an exact
expression in the limit of linear chains.

The use of the correlation in Onsager-like theories for
the nematic state allows for a theoretical description of the
isotropic-nematic phase transition of rod-coil molecules with-
out the need to perform computationally intensive Monte
Carlo simulations for calculating the excluded volume. There-

fore, when coupled to a suitable framework for describing the
residual Helmholtz energy, such as a Vega-Lago rescaling29

in combination with the TPT2 equation of state43 for the
isotropic state, this may result in an analytical equation of
state for the isotropic-nematic phase transition of tangent
hard-sphere chains of arbitrary degree of flexibility. The de-
veloped expression for the excluded volume is also defined for
non-integer values of the chain length and is therefore fully
compatible with a SAFT-like treatment of chain molecules.
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APPENDIX: THE EXCLUDED VOLUME OF TWO
LINEAR TANGENT HARD SPHERE CHAINS OF
ARBITRARY CHAIN LENGTH

In this appendix we derive an equation for the excluded
volume of two linear homonuclear tangent hard-sphere chains
of arbitrary chain length m1 and m2 and segment size σ . The
starting point is the result of Williamson and Jackson40 for the
excluded volume of linear chains of equal chain length m from
Eq. (12). Central in their analysis is a decomposition of the
excluded volume of two chains with perpendicular orientation
(i.e., γ = π /2) into a central part and the excluded volume of
the chains in a parallel orientation (i.e., γ = 0), where the
latter is available in analytical form. For values of γ between
the parallel and perpendicular limits the decomposition is still
valid, however for this case the volume of the central part is a
function of γ , i.e.,

Vex(γ,m) = V ||
ex(m) + Vc(γ,m). (A1)

From a graphical representation of the excluded volume (see
Figs. 4(a), 4(b) and 5 of Ref. 40 for details) Williamson and
Jackson show that the volume of the central region is equal
to (m − 1)2 times the central region of the corresponding ex-
cluded volume of two dimers Vc(γ ; m = 2).40 Since the exact
expression of Vc(γ ; m = 2) involves some lengthy integrals,
a simple linear function of sin (γ ) was fitted to the numerical
results to obtain

Vc(γ,m) = 3.5339(m − 1)2 sin(γ ). (A2)

For chains of arbitrary chain length m1 and m2, one can easily
see from Fig. 5 of Ref. 40 that the central region should cor-
respond to (m1 − 1)(m2 − 1) times the central region of the
dimers, leading to

Vc(γ,m) = 3.5339(m1 − 1)(m2 − 1) sin(γ ), (A3)

Eq. (A2) is a special case of this general result for mixtures.
For the parallel orientation, the excluded volume (large

overlapping spheres of diameter 2σ ) of several pairs of linear
chains (small spheres of diameter σ ) is shown in Fig. 10 . The
volume of the overlap region of the large spheres, marked in
gray, is identical for all cases and, as derived by Williamson
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FIG. 10. The excluded volume of linear homonuclear tangent hard-sphere
chains (of segments size σ ) in a parallel orientation for different average
chain lengths m̄ (Eq. (21)). The large overlapping spheres with diameter 2σ

(overlap region marked gray) make up the excluded volume.

and Jackson, is given by

Voverlap = 5

2
Vs. (A4)

Here, Vs is the volume of a sphere of diameter σ .
Figure 10 shows that the excluded volume of two linear chains
in a parallel orientation depends on the average chain length
m̄ (Eq. (21)) rather than on m1 and m2 separately, and we find
a general m̄-dependence as

V ||
ex(m̄) = (2m̄ − 1)VS − 2(m̄ − 1)Voverlap. (A5)

Here, VS = 8Vs is the volume of the large spheres that make
up the excluded volume. Using Eq. (A4) we obtain the exact
result

V
||

ex(m̄)

Vm̄

= 11m̄ − 3

m̄
, (A6)

where Vm̄ is the molecular volume of a chain of m̄ spheres of
diameter σ . The final result for the excluded volume of two
chains of arbitrary chain length m1 and m2 is then

Vex(γ )

Vm̄
= 11m̄ − 3

m̄
+ 3.5339

(m1 − 1)(m2 − 1)

m̄
sin(γ ).

(A7)
It is important to note that we have not introduced any ap-
proximations in extending Eq. (12) to this general result for
mixtures.
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