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ABSTRACT

The growing number of software vulnerabilities being disclosed is posing a chal-
lenge to many organisations. With limited patching resources and only a fraction
of the vulnerabilities posing a real threat, prioritization is key. Current prioritiza-
tion methods, such as CVSS, are failing and are sometimes no better than random
guessing. Exploit Prediction Systems (EPS) try to fill this gap leveraging a data-
driven approach. Related works in the exploit prediction domain make EPS design
decisions based on different methodological assumptions. Some of these assump-
tions are unrealistic or faulty, yielding models that fail to represent a real world
situation. The first contribution of this thesis is the identification of critical method-
ological assumptions in EPS design and the magnitude of their effects. Then, as
second contribution, EPS performance is optimized under restricting yet realistic
circumstances, by exploring different techniques to handle class-imbalance, creat-
ing richer textual features and/or leveraging different prediction algorithms. The
third contribution of this thesis is the implementation of an open-source framework
that enables easy experimentation with different machine learning techniques for
exploit prediction.

Six critical methodological assumptions have been identified in the area of realistic
data collection, correct processing of data, and proper model evaluation. Experi-
ments show that when adhering to the most realistic assumptions, only a fraction
of the predictive power of the evaluated EPS is sustained. Almost all prior works fall
victim to at least one faulty or unrealistic assumption, and thereby report overopti-
mistic results.

Substantial improvements are achieved in the optimization step of this thesis. With
an optimized EPS with a Fi-score of 0.366, performance is insufficient to justify its
deployment in a production environment. With the current level of maturity, exploit
prediction could have value as a complementary measure to existing vulnerability
prioritization systems. Further improvements and more transparent systems are
essential for EPS to be suitable for practical usage.
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INTRODUCTION

Timely patching —the updating of vulnerable software— of software pieces run-
ning on the infrastructure of organizations is of critical importance. Exploitation of
vulnerable software can cause major losses and might in some cases even endanger
business continuity. An example of the devastating impact a vulnerability can have
was seen in 2017, when ransomware malware named Wannacry hit thousands of
institutions across the globe paralysing their computer systems. Among the victims
where hospitals, critical infrastructure and commercial companies. The financial
loss as a result of this cyber-attack is estimated at 4 billion USD [Jonathan, 2017].
This malware took advantage of a vulnerability in Microsoft Windows. Microsoft
had released a security patch fixing this vulnerability two months before Wannacry
hit, which means that all this could have been prevented by timely deployment of
patches [Microsoft, 2017]. This does not only hold for the big, well known, breaches;
research reports that more than half of the data breaches are the result of exploited
vulnerabilities for which a patch has already been released [Ponemon, 2020]. This
shows how great the impact of a(n) (im-)proper patching strategy can be.

1.1 BACKGROUND

The number of disclosed vulnerabilities has been growing vastly and consistently
over the past few years, which makes patching management increasingly challeng-
ing [MITRE, 2022b]. Organisations typically have more exposed vulnerabilities than
resources to fix them. Because the process of patching is resource intensive, patch-
ing everything straight away is highly inefficient. This means that organisations
have to make decisions about what to patch, and what not to patch. This decision is
a trade-off between coverage (how much of all vulnerabilities are remediated) and
efficiency (of the remediated vulnerabilities how much of this effort was in vain).

Risk based prioritization of patches can help facilitating this decision, by choosing
a patching strategy which starts with the remediation of vulnerabilities with the
highest risk. Currently the most widely adopted technique to asses this risk is the
Common Vulnerability Scoring System (CVSS) Base score, even though it is not
meant to reflect the overall risk and fails to measure the threat of a vulnerability
or if it will be exploited [Allodi and Massacci, 2014]. A common approach is to
remediate all vulnerabilities which have a CVSS Base score higher than a certain
threshold. Even security standards adopt this approach. For example the payment
card industry data security standard (PCI-DSS) requires vulnerabilities with a CVSS
Base score higher than 4.0 to be remediated by organizations storing or processing
credit card data [PCI, 2018].

CVSS has long been criticized for being unable to indicate the exploitability of
vulnerabilities. Patching prioritization based on the CVSS Base score is often a sub
optimal strategy, and in some cases even no better than the random choice [Dey
et al., 2015; Beattie et al., 2002; Allodi and Massacci, 2014]. So this score is not an
effective measure of risk, but is often interpreted and used as such, resulting in a
distorted view of risk and inefficient resource allocation in patching management.
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1.2 PROBLEM

The main reason the established approaches are ineffective is that organisations
can’t effectively assess whether a given vulnerability poses a meaningful threat.
Only a fraction of all disclosed vulnerabilities ever have exploit code written to ex-
ploit them, and only a fraction thereof ever gets exploited in the wild. The fraction
of vulnerabilities exploited in the wild varies per research, but is ranging between
1.4% and 5.5% of all disclosed vulnerabilities [Bozorgi et al., 2010; Jacobs et al., 2020].
Patching effort could be drastically reduced if these exploitable vulnerabilities can
be identified. Exploit Prediction Systems (EPS) try to leverage this and find these
exploitable vulnerabilities.

Predicting which vulnerabilities will be exploited in the wild is not trivial. Be-
cause the scarcity of (high-quality) data and the imbalanced nature of the problem,
the conditions for exploit prediction are more challenging compared to other ma-
chine learning applications. Obtaining data about a vulnerability being exploited
in the wild is very difficult. Exploit data is not broadly collected and (mostly com-
mercial) owners are often not keen on sharing it, also because of its sensitive nature
[CISA, 2015]. This is one of the reasons that data used for exploit prediction is often
severely imbalanced, i.e. containing only a very small fraction of positive samples.
The other reason is that simply the most vulnerabilities never get exploited in the
wild [Nayak et al., 2014]. Regardless of the cause, exploit prediction is a problem
which is heavily imbalanced. Most classification algorithms don’t perform well if
classes are not roughly equally distributed. This can be made explicit if one consid-
ers a binary classification task with 95 negative samples and 5 positive sample. A
machine learning classifier might learn to classify all samples as negative, resulting
in a classification accuracy of 95% without ever correctly classifying a positive sam-

ple.

The first exploit prediction system has been developed about a decade ago, and
after that many followed. They vary in what data they use as ground truth for
their models, what data is used to create features, what kind of machine learn-
ing techniques are being used, how the data is (pre-)processed and even how the
performance of the model is evaluated. These design decisions are based on sev-
eral methodological assumptions about the context of the prediction task. These
assumptions differ greatly among different existing exploit prediction system, rang-
ing from fairly realistic to simply faulty.

1.3 CONTRIBUTIONS

Researchers in the field tend to make concessions in the methodological assump-
tions they base their work on, often boosting the performance of the exploit pre-
diction systems they develop [Bullough et al., 2017]. Several of these assumptions
critically affect the evaluation of their predictive models, possibly undermining the
performance results altogether. The focus of this thesis is to bring these method-
ological concessions to light, and to propose how the harsh conditions in exploit
prediction can be overcome while complying to more realistic methodological as-
sumptions. This leads to the following contributions:

e Related works will be analysed to identify critical methodological assump-
tions on which EPS are based and how often they are observed (Chapter 3).
The effects of the identified methodological assumptions on EPS performance
will be evaluated by conducting experiments (Chapter 5). Several existing ex-
periments from Reinthal et al. [2018] and Bullough et al. [2017] are reproduced
to investigate conflicting results.

2
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e An exploit prediction system will be developed and optimized based on re-
strictive yet realistic assumptions, improving on earlier work where such a sys-
tem is built under similar methodological constraints. Optimization is done
by focusing on the handling of class-imbalance (Section 5.2.2), the design of
more advanced textual features (Section 5.2.3), and by exploring and tuning
of different machine learning algorithms (Section 5.2.4).

* A framework is implemented with the goal of enabling easy, automated ex-
perimentation with different machine learning and optimization techniques.
The source-code of this framework will be open-sourced to facilitate future
research in this domain (Section 4.1.3).

Invalid or unrealistic methodological assumptions lead to models which are over-
optimistic about their ability to predict exploits [Bullough et al., 2017]. Not only will
this lead to an unequal playing field for academia, it also results in a false sense of
security when such systems are deployed in production. Setting a mutual standard
for methodological assumptions in exploit prediction, is a first step in overcoming
these issues.

1.4 COMPANY PERSPECTIVE

This thesis research is conducted in cooperation with industry partner Adyen. Adyen
is one of the world’s largest payment service providers, with an annual processed
volume of over 300 billion euros [Adyen, 2020]. They offer end-to-end solutions to
enable businesses to accept payments using over 250 payments methods in more
than a 150 countries. Adyen operates in a strictly regulated banking industry and
handles highly sensitive payment data, leaving little to no room for error. Therefore,
they take patching management very seriously. Adyen has expressed its interest in
the exploration of opportunities lying in risk based patch prioritization by exploit
prediction, to further improve their patching process. It goes without saying that
the performance evaluation of such a system should aspire to be representative of
the performance in a real-world environment.

1.5 THESIS STRUCTURE

The rest of the thesis is organized as follows. In Chapter 2, the background of
the problem is outlined. Chapter 3 contains an extensive analysis of related works
in the exploit prediction field, with the goal of identifying critical methodological
assumptions. Next, the method for the proposed work of this thesis is laid out
in Chapter 4, where the experimental setup and EPS optimization strategies are
presented. Following on this, Chapter 5 contains the results of these analyses. Lastly,
the conclusion, limitations and recommendations about future work, can be found
in Chapter 6.

3



z BACKGROUND

The world of patching, vulnerabilities and exploits is complex. This complexity can
cloud effective decision making on how to avoid loss due to (data-)breaches. In this
background chapter it is attempted to provide a high level and complete picture of
the vulnerability landscape (Section 2.1) and the place patch prioritization has in
this context (sections 2.2 and 2.3).

2.1 VULNERABILITY LANDSCAPE

To get a feel for the vulnerability landscape the important players active in it are
introduced in Section 2.1.1. After this, the different phases a vulnerability typically
goes through are analysed in Section 2.1.2. And lastly, in Section 2.1.3, attention is
being paid to the challenges organisations face with respect to vulnerability man-
agement.

2.1.1  Players

The backbone of the vulnerability landscape is the Common Vulnerabilities and
Exposures (CVE) system. This system, maintained by MITRE, is a public database
in which all known vulnerabilities are documented. A unique CVE-ID is issued for
each new vulnerability. This identifier is used widely in the vulnerability domain
to aggregate and share information about the vulnerability.

The National Vulnerability Database (NVD) is a database fully synchronized with
the CVE database. The NVD, maintained by NIST, provides additional information
about the vulnerabilities assigned with a CVE-ID. Entries contain information about
the affected products, references to additional information sources and probably
the most important, a severity score. This score is called the Common Vulnerability
Scoring System (CVSS) and will be explained in more detail in Section 2.2.1.

Another important organisation is ExploitDB. The ExploitDB (EDB) is one of the
most extensive databases containing Proof-of-Concept exploit code (exploits). This
database is crowd sourced and has largely adopted CVE-IDs to identify the exploits
on it.

2.1.2 Vulnerability life-cycle

A software vulnerability is defined as a flaw or error in the source code of software,
which enables an attacker who exploits this vulnerability, to gain control over the
system the software runs on. This flaw can be introduced by a human coding or
design mistake, but also for example through the use of third party libraries. An
attacker generally makes use of certain code to exploit a vulnerability, this code is
called exploit code, or simply an exploit. The last term to complete the circle is a
patch. A patch is a new "fixed" version of a software piece that previously contained
a vulnerability, generally provided by the vendor of the software. The deployment
of this patch is called patching.

Most software vulnerabilities follow a time-line with the same events. This time-
line is essential to be able to understand what the risks are following from a vulner-
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ability, and to what extend this can be avoided. Figure 2.1 illustrates this life-cycle
including the following events:

e Creation - This is the moment a vulnerability is introduced in the software,
typically by accident as a result of a coding mistake. With the existence of this
flaw the software now contains a vulnerability.

e Discovery - A vulnerability gets discovered. The entity discovering the vulner-
ability has a large influence on the further order of events within this life-cycle.
If the vulnerability gets discovered by the vendor itself it can start mitigating
the possible effects and it will keep the discovery private. When a hacker
discovers a vulnerability things can take a different course. The hacker can
inform the vendor, which would then be able to fix things, but an other narra-
tive could be that it sells the exploit online to actors with bad intend. When
a vendor is not informed and no public disclosure has taken place, software
can be vulnerable for a very long time before action is taken.

o Exploit availability - Exploit code becomes available somewhere on the in-
ternet, for example on a exploit code database such as the ExploitDB. The
publishing of exploit code does not necessarily take place at this point on the
timeline, but can occur at any moment after the discovery of the vulnerability.
When exploit code is available, this increases the risk for a vulnerability to
be exploited in the wild. One of the reasons for this is that now less skilled
attackers can also strike using the published code.

e Disclosure - The event of public disclosure is a pivotal point in the vulnera-
bility life-cycle. The software vendor can disclose a vulnerability by means of
a security advisory, if it is discovered internally. If this is the case normally
a patch has already been published before that, so users of the vulnerable
software have had the chance to deploy the patch before the vulnerability is
made public. In another scenario a hacker could disclose a vulnerability, or
it can be disclosed by a vulnerability database such as the NVD. After public
disclosure the risk of exploitation is increased dramatically.

o Patch release - This is the moment that a patch is released by the vendor of the
vulnerable software. As described earlier, if the vulnerability is discovered by
the vendor this patch will probably become available at the time of disclosure
or before that. If a vendor is surprised by another entity disclosing a vulner-
ability in their software, the patch release can be delayed since the patch still
has to be developed.

e Patch deployment - Patch deployment is the moment a vulnerability is miti-
gated. By installing the patched software, the vulnerability can no longer be

exploited.
\ \ . l ‘ > time T8
Zero-day exploit risk Post-disclosure exploit risk

Figure 2.1: Vulnerability lifecycle

The order of events as described in this section is not fully static. Especially the
moment an exploit becomes available and the moment a patch gets released can
vary. From the moment a vulnerability is discovered until the patch fixing it is
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deployed, the user of the software is vulnerable (represented by the red arrow in
Figure 2.1). The earlier a user is aware of the vulnerability, the better, but generally
the public disclosure is the moment a user is made aware. Before the disclosure of
the vulnerability, there is a risk for zero-day exploitation. A zero-day is an exploit
that targets a vulnerability that is not yet known. It is very difficult to protect
against this, since you don’t know what you are looking for. After disclosure, there
is a post-disclosure exploit risk. This risk can be addressed, also if there is not yet
a patch available. Sometimes there are temporary fixes (workarounds) available,
and in the most extreme situation an organisation could stop using the vulnerable
software. So, after disclosure an organisation is in some form in control over the
situation. That is why the focus of vulnerability management lies in addressing the
post-disclosure exploit risk.

2.1.3 Challenges for organisations

The main challenge for organisations is that lots of newly disclosed vulnerabilities
come to light on a daily basis, especially when operating a large company infrastruc-
ture. Every year increasing numbers of vulnerabilities are disclosed by CVE (and
NVD), making it more and more difficult for organisations and security experts to
keep up. Especially if you consider that patching is a resource intensive task, in-
volving man-hours of specialized personnel, downtime and the risk of disruption
to production systems. The deployment of those resources is more often than not
in vain, because only a fraction of all vulnerabilities are ever exploited in the wild
[Bozorgi et al., 2010; Jacobs et al., 2020].

The combination of the overwhelming stream of new vulnerabilities, the limited
resources companies have available, and the fact that only a fraction of all vulner-
abilities ever get exploited, makes that it is critical to apply an efficient patching
strategy. To efficiently deploy patching resources it is key to separate those vulner-
abilities that pose a serious threat from those that don’t. Effective prioritization of
patches is challenging and remains an open problem. The next section will cover
some techniques.

2.2 PATCH PRIORIZATION

The previous section highlighted the importance of patch prioritization. In this sec-
tion two methods for patch prioritization will be covered. CVSS is the most widely
adopted method which almost all organisations, at least partly, rely on. CVSS has
long been criticized for not being very predictive of actual exploitation of a vulner-
ability, more on this in 2.2.1. An alternative method, gaining ground over the last
years, is exploit prediction. This method will be covered in Section 2.2.2.

2.2.1  Common Vulnerability Scoring System (CVSS)

CVSS captures the principle characteristics of a vulnerability and produces a nu-
merical score to reflect its severity. Several metrics are combined to calculate the
score, which is ranging from o to 10, with 10 being the most severe. The goal of
this score is to help organisations properly asses and prioritize vulnerability man-
agement processes. The CVSS score is a combination of 3 main components:

e Base Metrics for qualities intrinsic to a vulnerability. These metrics depend on
the exploitability of a vulnerability and the potential impact it has.

e Temporal Metrics for characteristics that evolve over the lifetime of vulnerabil-
ity. The metrics change, as exploits are developed, disclosed and automated
and as mitigations and fixes are made available.

6
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e Environmental Metrics for vulnerabilities that depend on a particular imple-
mentation or environment. These metrics use the Base and Temporal scores,
to assess the severity of a vulnerability considering the context the vulnerable
software is deployed in.

The combination of these three metrics is designed to give a score which repre-
sents the risk an organisation is facing from a certain vulnerability. The Base score is
calculated and published by the NVD but the Temporal and Environmental metrics
are left for the user to calculate. The problem is that the calculation of these scores
cannot be automated, which leads to organisation ignoring them, and interpreting
the Base score as a measure of risk instead. This is not what it is designed for and
it fails to represent the risk accurately.

CVSS has long been criticized for being unable to indicate the exploitability of
vulnerabilities. Patching prioritization based on the CVSS Base score is often a sub-
optimal strategy, and in some cases even no better than the random choice [Dey
et al.,, 2015; Beattie et al., 2002; Allodi and Massacci, 2014]. Using only the CVSS
Base score, is leading to a very inefficiend allocation of patching resources. An
alternative method, gaining ground over the last years is patch prioritization by
exploit prediction.

2.2.2 Exploit prediction

Exploit prediction is a response to the failing of current patch prioritization meth-
ods such as CVSS. The first exploit prediction system has been developed in 2010
by Bozorgi et al. [2010]. After this, multiple have followed. Different approaches
will be analysed in detail in Chapter 3, but the general goal of exploit prediction
is to be able to assign a probability to a vulnerability, reflecting the chance it will
get exploited. This is done by leveraging data from different sources and a variety
of machine learning techniques. Since only a small fraction of all vulnerabilities is
exploited, doing this successfully could dramatically reduce patching efforts. How-
ever, it is a challenging problem, as will become clear later in this thesis in chapters
3 and 4. For this chapters to be comprehensible the basics of designing a machine
learning model and the application to the exploit prediction domain, will be elabo-
rated in Section 2.3.

2.3 EXPLOIT PREDICTION PIPELINE

In the design of exploit prediction systems generally a typical machine learning
pipeline is followed. Figure 2.2 illustrates this pipeline which starts with the collec-
tion of raw data and yields predictions at the end. These steps in the design and
implementation of machine learning models are high level processes that are part
of most prediction projects. The exact techniques used in this steps are not set in
stone. Machine learning is a dynamic and innovative field, where new techniques
are put to the test regularly. Besides the choice of what techniques to use, different
methodological assumptions have to be made about how to represent the real world
in a model realistically . Unfortunately, "realistic" is not an objective term and thus
susceptible to interpretation. In this thesis those assumptions are identified and
their effect is evaluated.

Figure 2.2: General machine learning pipeline

7
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By inspecting the steps of this machine learning pipeline, certain general de-
sign decisions can be identified, which are the starting point for the analysis of
methodological assumptions in exploit prediction systems in Chapter 3. In the
data-collection phase for example, important assumptions are made about how to
model a problem. What input data is used? Would this information be available in
a realistic setting, or only retrospectively? What is considered ground truth? These
fundamental questions all impact the final result of the prediction model, but an-
swers can differ when asked to different researchers. The structure of this machine
learning pipeline is considered through the other chapters of this thesis.

8



IDENTIFICATION OF CRITICAL
3 ASSUMPTIONS FROM
STATE-OF-THE-ART

Along the steps of the machine learning pipeline related works make different de-
sign decisions. These decisions are often based on certain assumptions on how to
represent the real world in a model. These assumptions affect the reliability, robust-
ness and performance of the proposed systems. In this chapter related works in
exploit prediction are reviewed with the goal of identifying these assumptions, and
the ones critical for the performance of EPS.

In Section 3.1 the importance of the gathering of realistic data for EPS is outlined.
After this attention will be paid to how this data is correctly handled and how EPS
can be evaluated, in sections 3.2 and 3.3. Then in Section 3.4 prior works recognizing
some of these assumptions are introduced. Finally, a recap of the main findings of
this chapter can be found in the chapter summary in Section 3.5.

3.1 COLLECTION OF REALISTIC DATA

The foundation of any machine learning problem is the collection of realistic data of
the best possible quality. Input data is used to create predictive features to predict
the class-label of a sample. To obtain these class-labels, ground truth data needs to
be collected. What all works have in common, is that the CVE-ID as provided by
MITRE'’s CVE system is used to identify vulnerabilities and aggregate data about
them.

3.1.1 Input data

Input data for EPS is collected from a wide range of open and closed sources. Al-
most all works use data, such as CVSS-scores, text description, vendor informa-
tion, and reference information from NIST’s National Vulnerability Database (NVD).
Some collect additional data that is collected from other vulnerability databases
such as Open Source Vulnerability Database (OSVDB, depreciated), SecurityFocus,
IBM X-force Exchange and/or Vulners [Bozorgi et al., 2010; Suciu et al., 2021; Zhang
and Li, 2020]. Other sources are leveraged by methods using data from social media
such as Twitter [Allodi and Massacci, 2012; Sabottke et al., 2015; Mittal et al., 2016],
vulnerability discussions on the dark web [Marin et al., 2016; Allodi et al., 2013;
Samtani et al., 2016].

Input sources vary in coverage, timeliness, and quality of data [Miranda et al.,
2021; Rodriguez et al., 2018]. While the assumption of what input data to use for
EPS certainly affects prediction performance, it falls out of the scope of this work.

3.1.2 Ground truth data

Ground truth data is collected to label vulnerabilities as exploited or not exploited.
In other words the ground truth of a vulnerability is the proof that it is exploited or
not. This data is hard to come by because exploit events are rare, and information
about an exploit is often not shared. Some related works use commercially owned
data which is unavailable for the public, making it impossible to reproduce their
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work and verify their reported performance [Edkrantz, 2015; Jacobs et al., 2019,
2020]. Others attempting to obtain an adequate ground truth dataset, typically
follow one of two paradigms; existence of proof of concept (PoC) exploit code or
proof of exploit in the wild. These two paradigms are explained below.

PoC exploit code

Since proof of exploitation in the wild is hard to obtain, a lot of related works in
exploit prediction choose availability of PoC exploit code as characteristic to predict.
This means that if exploit code is publicly available, the vulnerability is labeled as
exploited. In most methods the presence of a CVE-ID in an exploit database such as
ExploitDB (www.exploit-db.com) or OSVDB (depreciated) is used as ground truth
[Alperin et al., 2019; Bhatt et al., 2021; Bozorgi et al., 2010; Bullough et al., 2017; Chen
et al.,, 2019; Edkrantz, 2015; Fang et al., 2020; Reinthal et al., 2018; Sabottke et al.,
2015; Yang et al., 2020; Yin et al., 2021]. Others use information from Metasploit (a
framework for pentesting) or rumor on security forums, social media, or in security
advisories [Tavabi et al., 2018; Fang et al., 2020; Sabottke et al., 2015]. While this form
of ground truth data is widely used, it can be misleading because the availability
of exploit code somewhere on the internet doesn’t necessarily mean that it is also
used in the wild. Some exploits require a lot of skills to use or are not feasible for
an attacker to exploit [Reinthal et al., 2018].

Exploit in the wild

Another view on ground truth is exploitation in the wild, which means that a vul-
nerability gets labeled as exploited, when there is proof of the vulnerability being
exploited in a real world system. The most pure form of this proof is when a de-
tection rule for an exploit is hit in an Intrusion Detection System (IDS) or firewall
running in an organisations network. This data is very scarce and mainly com-
mercially owned. The most well known publicly available dataset for this use is
the Symantec dataset (SYM), derived from the Symantec Attack Signature [Syman-
tec, 2018b] and Intrusion Protection signature [Symantec, 2018a] data. This dataset
records real-world exploits of vulnerabilities in networks of Symantec customers
together with the reported date. It is widely adopted by prediction methods in
related work trying to predict exploits in the wild [Almukaynizi et al., 2019, 2017;
Chen et al.,, 2019; Fang et al., 2020; Sabottke et al., 2015; Tavabi et al., 2018]. Other
works have a more loose view when it comes to exploits in the wild, and take
rumors on security blogs as truth for exploitation [Fang et al., 2020].

Combination of multiple sources

Some works evaluate their prediction on both PoC exploit code as exploit in the
wild ground truth [Chen et al., 2019; Fang et al., 2020]. Others gather ground truth
data from multiple sources and combine them [Hoque et al., 2021; Sabottke et al.,
2015; Suciu et al., 2021].

Implications for EPS performance

Prior work suggests that only about 10 to 15% of all vulnerabilities disclosed, ever
have exploit code written for them, and even a smaller amount have functional
exploits in exploit kits such as Metasploit [Bozorgi et al., 2010; Hoque et al., 2021].
Even a way smaller amount ever gets exploited in the wild. It is commonly agreed
in literature that the percentage of exploits in the wild is under 3% [Allodi and
Massacci, 2014; Nayak et al., 2014; Sabottke et al., 2015]. Sabottke et al. [2015] finds,
that about 1.4% of all vulnerabilities ever get exploited in the wild. This number
corresponds to the findings in this thesis.
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This implies that a large part of vulnerabilities which are flagged by EPS as having
PoC exploit code available for them, are actually never exploited. EPS using avail-
ability of PoC exploit code as ground truth, generally report better performance
than works with exploit in the wild as ground truth data. However, it is the ques-
tion if this advantage holds, considering that not all vulnerabilities with exploit
code are actually exploited in the wild, and not all vulnerabilities exploited in the
wild, have exploit code available.

So, hopefully, this makes clear that the choice of ground truth has an effect on EPS
performance, and might inflate their performance. Considering this, the following
critical assumption is formed;

Assumption 1. Ground truth; are vulnerabilities labeled as exploited when PoC code exists,
or when there is proof of exploit in the wild?

3.1.3 Respecting order of events

The goal of EPS is to say something useful about new vulnerabilities that are being
disclosed. In practice this would mean that an organisation is using EPS in real-time,
every time a new CVE gets disclosed, using the information available at that time to
predict the event of exploitation. The way such a system would operate in a practical
setting, needs to be kept in mind when designing an EPS. Because most machine
learning models are trained and evaluated on batches of data, the temporal order
of events is not naturally respected. Prior works show different approaches when
considering the order of events, making it debatable if their reported performance
would translate to a real world setting. The most common caveat is the prediction
of past data. What is observed in a lot of EPS is the prediction of an exploit that has
already occurred. When using an EPS in a real world scenario the events of interest
are the ones in the future. There is no real challenge in predicting what has already
happened. Most prior works do not filter out events that have happened before
disclosure time (which is also prediction time), meaning that the performance they
report is probably lifted by the predictions of the past. Yin et al. [2021] clearly
shows heavily increased prediction performance in the subset of vulnerabilities with
exploit dates before disclosure.

Instinctively one would argue that the prediction of past events would inflate
EPS performance. While Yin et al. [2021] and Bullough et al. [2017] clearly show
a decrease in performance once past samples are excluded from the data, Reinthal
et al. [2018] reports conflicting results. That is why the following assumption is
formed;

Assumption 2. Order of events; is the temporal aspect of the data respected and are vul-
nerabilities which are already exploited at prediction time excluded or not?

3.2 PROCESSING OF DATA

After the assumption of what data is used, how this data is handled has great
consequences for EPS performance. Three areas of focus are found in literature;
feature design, resampling of data, and label-leakage.

3.2.1 Feature design

The correct processing of raw data into usable features is important, but some works
fail to do so. An example of that is when the difference between batch learning and
prediction in a real world setting is not considered. As discussed earlier, prediction
takes place when a vulnerability gets disclosed. EPS are limited by the information
which is available at that time. Bozorgi et al. [2010], Hoque et al. [2021] and Reinthal
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et al. [2018] design and use features which are only available in a batch setting,
and not in a real world setting. They use the difference in publication-date and
last-modified-date of a certain CVE in the NVD database as a feature. While this
feature could be differentiating in a batch setting, in a real world setting it cannot,
since prediction takes place at publication time where publication-date equals last-
modified-date. This results in a feature which is the same for each prediction.

Another example of an issue observed in literature is when CVSS is used as a
feature. CVSS-scores are calculated and published by the NVD, after thorough
analysis of the vulnerability. This analysis takes time, and historically, the NVD did
not have enough capacity to timely publish CVSS scores. As identified in Chen et al.
[2019], this resulted in a gap between CVE publishing and the publishing of CVSS.
The reported size of this gap is 132 days on average (based on data between 2016
and 2018). The problem lies in the fact that typical EPS make their prediction at the
moment a new vulnerability gets disclosed, which means CVSS would not yet be
available. When batches of historic data are used for training it is possible to use
the CVSS-score anyways, while in a real life setting this would be impossible. While
this is a flaw, and it will probably influence EPS performance, it is not taken into
consideration in this thesis work. The reason for this is that exact data about when
CVSS scores are published are not available, making it difficult to simulate a real
world situation. Besides, nowadays this gap between disclosure of a vulnerability
and publishing of its CVSS is generally way smaller, and the CVSS score is almost
always published within a few days.

While the incorrect usage of features is expected to have an effect on EPS perfor-
mance, it is not widely observed, and difficult to analyse. Because of this no further
experimenting will be done on this subject, but it was mentioned for completeness.

3.2.2 Resampling of data

Exploit events are rare, meaning that only a small percentage of vulnerabilities ever
get exploited. This holds regardless of the choice of ground truth. This results in
an imbalanced dataset; not all classes occur equally often. Machine leaning models
generally perform worse on imbalanced datasets. There are different techniques to
combat this, such as data-resampling or the use of a cost-function. While these tech-
niques are widely used and accepted, errors in the application can lead to inflated
performance of the prediction system. When rebalancing data, equal classes are
created by leaving out samples of the majority class, or by synthetically generating
extra samples is in minority class. The main rule when rebalancing data is that
only training data can be used in the process and the test-data should be left as
is. That means that after resampling the training data contains an equal amount of
exploited and unexploited samples, while the test set has its original distribution.
If this is violated, information about the true class of a sample leaks into the model,
which results in overoptimistic performance scores.

It is a general rule of machine learning that the test data can never be touched,
except for the actual testing. That being said, a lot of related works manipulate
the test data. Bhatt et al. [2021]; Bozorgi et al. [2010]; Edkrantz [2015]; Hoque et al.
[2021]; Sabottke et al. [2015] do so by rebalancing the full dataset, before train and
test sets are defined, implicitly meaning that the original distribution of the test
set is not preserved. The influence of this is expected to be severe. The following
assumption is formed;

Assumption 3. Distribution of test set; is the original distribution of the test set preserved,
or is this data manipulated?
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3.2.3 Label leakage

The goal of a prediction system is to predict the class-label of a sample with features
derived from data. It is essential that information about these labels do not leak into
the features. This is a common pitfall in machine learning and leads to unrealistic
performance statistics. There are multiple ways this leakage of information can
occur. Two of them, one per ground truth dataset, are explained below;

Label leakage with exploit in the wild data

As mentioned earlier the most common dataset used for the prediction of exploits
in the wild is the Symantec dataset (SYM). This data is aggregated by security
company Symantec, by combining detection alarms from the networks of their cus-
tomers. When this data was collected their largest customers where Microsoft and
Adobe, which can also be derived from the data; most of the exploits are in Mi-
crosoft or Adobe products. Working with this biased data is possible, and even
believed to be the best possible way to predict exploitation in the wild, but care has
to be taken not to be victim to label leakage.

Because of the bias towards specific vendors such as Microsoft and Adobe, having
"vendor name" as a feature would result in information about the label leaking
into the features and thus an unfair prediction. Emitting "vendor name" from the
features intuitively should solve this problem, and is commonly done. What is often
overlooked is that textual descriptions used as features also contain information
about the vendor. This can clearly be observed in Tavabi et al. [2018], where the
most important features for prediction as exploited are words like "Flash", "Adobe",
"Windows" and "Microsoft".

Label leakage with PoC exploit data

In case the availability of PoC exploit code is assumed to be the ground truth, a
vulnerability is marked as exploited if code exploiting it is publicly available. The
most common source of this information are exploit databases, such as Exploit-DB
(exploit-db.com) or the database with Metasploit exploits (rapid7.com/db). Con-
sider a situation where the existence of a CVE-ID in the Exploit-DB (EDB) is used
as the ground truth for a prediction task. A lot of related works use references as
one of the features for prediction. These are references listed on the NVD page of
a CVE, leading to other domains with additional information about the vulnerabil-
ity. A problem occurs when these references point to exploit-db.com, because the
occurrence of this reference in the feature set is inherently the same as having a
positive label. While this seems a bit naive, some related works fail to filter out this
label leaking references. Also there are more obscured versions of the same prob-
lem. One could for example remove references to exploit-db.com but not to other
databases, say rapid7.com/db. In this situation there is no direct label leakage, but
because of the large overlap between EDB and Metasploit, a lot of information can
be deducted about the probability an exploit exists, which still leads to a unfair
prediction.

Implications for EPS performance

If the problem of label leakage is not attended to, performance metrics will be artifi-
cially high [Yang et al., 2020]. The impact of this design flaw on EPS performance is
expected to be significant. That is why the following critical assumption is formed;

Assumption 4. Label leakage; are elements in the feature set which leak information about
the class-label filtered out, or not?
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3.3 EVALUATION OF MODEL

Model evaluation is of critical importance in any machine learning project. A lot of
different techniques exist, which are not all appropriate for every situation. In this
section the focus lies on cross-validation and data separation for parameter tuning.

3-3.1  Cross-validation

Cross-validation is used to test how robust a prediction model is and how well it
generalises on data it has not seen before. The most basic form is 10-Fold cross-
validation, where the full dataset is split in 10 folds. Then the model is trained on
9 of these folds, and evaluated on the last remaining. This is repeated 10 times,
every time with a different fold as evaluation fold (see 3.1 for illustration). The
scores of all 10 evaluations is averaged, leading to a more realistic score which is
less vulnerable to overfitting on the training data. Alperin et al. [2019]; Bhatt et al.
[2021]; Bozorgi et al. [2010]; Edkrantz [2015]; Fang et al. [2020]; Hoque et al. [2021];
Jacobs et al. [2019, 2020]; Sabottke et al. [2015]; Tavabi et al. [2018]; Yang et al. [2020]
all use this a cross-validation form similar to this, while it is not so suitable for EPS.
The reason for this is that exploit prediction data is temporal, while this temporality
is not respected by this form of cross-validation.

All Data
Fold 1 Fold 2 Fold3 | Fod4 | Folds
split1 | Train | Test |
Split 2 | Train ‘ Test ‘ Train ‘
split3 | Train | Test | Train |
Split 4 | Train | Test ‘ Train ‘
Split 5 | Test ‘ Train ‘

Figure 3.1: K-Fold cross-validation

New vulnerabilities are disclosed every day, meaning that the information avail-
able for EPS also changes over time. In a real life setting all historic data is avail-
able for prediction, and the predictions you would be interested in, lay in the fu-
ture. When using k-Fold cross-validation to evaluate an EPS, this property is not
respected. In most splits, test data precedes (part of the) train data. This essentially
means that data from the future can be used to make predictions in the past. Be-
sides this being counter intuitive, it also yields exaggerated results [Bullough et al.,
2017].

Temporal cross-validation is form of cross-validation which adheres to the tempo-
ral nature of exploit data. In this form test data always precedes train data. Different
techniques can be leveraged to accomplish this [Almukaynizi et al., 2017, 2019; Bul-
lough et al., 2017; Chen et al., 2019; Reinthal et al., 2018; Suciu et al., 2021; Yin et al,,
2021; Zhang and Li, 2020].

Different views on cross-validation are observed in literature, and the implica-
tions for EPS performance are tremendous. That is why the following critical as-
sumption is formed;

Assumption 5. Cross-validation; is the temporal nature of exploit data respected in cross-
validation or not?
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3.3.2 Data separation for parameter tuning

Most classification algorithms have parameters which can be tuned, to optimize
performance on the data at hand. The optimal set of parameters is obtained by sim-
ply trying different settings and observing how the model performs. This practice
is known as a gridsearch; searching all possible settings for optimal performance.
This is a common method in machine learning. Problems occur when the same data
is used for parameter tuning as is used for evaluation of the final model. When this
is done, the parameters are optimized to yield the best performance on a specific
evaluation dataset, and chances are this model does not do so well on new unseen
data. This practice is in contradiction with the machine learning rule that test data
should only be touched when actual testing is done.

Prior works often don’t report clearly on this matter, but Hoque et al. [2021];
Jacobs et al. [2020]; Sabottke et al. [2015]; Suciu et al. [2021]; Tavabi et al. [2018]
seem not to respect this rule, while Bozorgi et al. [2010]; Edkrantz [2015]; Fang et al.
[2020]; Reinthal et al. [2018] do. This design choice is expected to have an effect on
EPS performance, that is why the following assumption is formed;

Assumption 6. Parameter-tuning; is separate data used for parameter-tuning and final
evaluation?

3-4 RELATED WORKS RESEARCHING ASSUMPTIONS

This thesis work is not the first to acknowledge that certain design decisions greatly
impact performance of EPS. Bullough et al. [2017] was the first work that exper-
imented with this. They conduct experiments on the effect of rebalancing data,
(temporal) cross-validation and the order of events, similar to assumptions 3, 5, 2
respectively. Reinthal et al. [2018] also experiments with (temporal) cross-validation
and the order of events. Where in some experiments similar results are reported,
there are some contradictions, for example in the order of events experiment. This
thesis work is different because more assumptions are identified and analysed, and
additional ground truth data is evaluated. Besides, it tries to reproduce parts of
Bullough et al. [2017] and Reinthal et al. [2018], to investigate contradicting results.

3.5 CHAPTER SUMMARY

Related works in the exploit prediction domain follow different approaches, and
adhere to different assumptions while making decisions in the EPS design process.
In this chapter an extensive analysis of nineteen related works has been conducted,
focusing on these assumptions. A detailed overview of the analysis can be found in
table form in Appendix A. In short, three important distinctive phases in the EPS
pipeline are identified: the collection of realistic data, the processing of data, and
the evaluation of the model. Within these phases certain assumptions about how to
correctly model an EPS and its context are made. Some of these assumptions are
unrealistic or faulty, leading to models that fail to represent a real world situation.
In the three phases as described earlier, the following six critical assumptions have
been identified.

o Collection of realistic data

1. Ground truth (are vulnerabilities labeled as exploited when PoC code
exists, or when there is proof of exploit in the wild?)

2. Order of events (is the temporal aspect of the data respected and are
vulnerabilities which are already exploited at prediction time excluded
or not?)
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e Processing of data

3. Distribution of test-set (is the original distribution of the test set pre-
served, or is this data manipulated?)

4. Label leakage (are elements in the feature set which leak information
about the class-label filtered out, or not?

e Model evaluation

5. Cross-validation (is the temporal nature of exploit data respected in
cross-validation or not?)

6. Parameter-tuning (is separate data used for parameter-tuning and final
evaluation?)

The goal of this chapter was to analyse the methods of related works in the exploit
prediction domain, to identify which methodological assumptions are adhered to.
This has resulted in an extensive related works analysis (Appendix A) and in six
critical methodological assumptions as listed above. Knowing the effects of these
assumptions on EPS performance is important to place reported results of prior
work into context. In this thesis, experiments will be conducted to quantify these
effects. Results will be compared to Bullough et al. [2017] and Reinthal et al. [2018],
who have also experimented with some of these assumptions.

In the next chapter, Chapter 4, the methods that will be used for this experiments,
and for the optimization steps after it will be elaborated. Results can be found in
Chapter 5.
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METHOD

In this chapter the method of this research will be elaborated. Section 4.1 describes
how the assumptions as obtained from literature are evaluated and compared. Ba-
sics as data collection and the design of features and baseline models are explained.
Next, in Section 4.2, the method for optimization of EPS is outlined. Finally, in
Section 4.3, the information of this chapter is summarized.

4.1 EVALUATION OF ASSUMPTIONS

In this section the used data is described, and how it is collected. After this, base-
line models are constructed and the experimental design is presented. Lastly, the
performance metrics used to evaluation are explained and justified.

4.1.1  Data collection and feature design

The goal of this analysis is to evaluate the effects of different assumptions in the
prediction system design phase. Earlier works such as Bullough et al. [2017] and
Reinthal et al. [2018] tested some of these assumptions. It is attempted to replicate
some of their work, also to obtain more clarity about conflicting results. Both works
have different time-frames of analysis; 2009-2015 and 2015-2018 respectively. In the
data collection phase of this thesis, it is attempted to obtain all data from different
sources that is available. A selection is made later what data to use, for compar-
ison to other works. First, input data is collected from NVD. Ground truth data
is collected from Symantec and Exploit-DB. Information from different sources is
aggregated based on its CVE-ID.

Input data

Input data is obtained from NVD. This is a database maintained by NIST and has
the most complete collection of known vulnerabilities. All vulnerabilities have a
CVE-ID as identifier. This identifier is broadly adopted in the security community
and functions as common ID across different sources. All data from the NVD is
extracted amounting to 163,602 samples in total ranging from 1988 till 2022. Figure
4.1 shows the distributions of published vulnerabilities between 2000 and 2022 (the
few vulnerabilities from 1988 till 2000 are excluded, to prevent a very long-tailed
histogram).

Each sample consists of different information fields including CVSS information,
vendor information (Common Platform Enumeration), vulnerability type (Common
Weakness Enumeration), textual description of the vulnerability, and reference in-
formation. Some data preprocessing is needed to make these information fields
accessible and useful for machine learning algorithms. Numerical features such
as CVSS Bases score and reference count are scaled from o to 1. Categorical fea-
tures are encoded using One-Hot-encoding, and textual features are encoded using
a Natural Language Processing method called Text-Frequency Inverse-Document-
Frequency (TF-IDF) vectorization. TF-IDF is a numerical statistic that is intended to
reflect the importance of a certain word in a corpus of words. Feature-space tends
to get very big when TF-IDF is used, because a new feature is created for each word
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Figure 4.1: Amount of vulnerabilities published by NVD

occurring in the corpus. To limit feature space, only the 1000 most important words
are considered. An overview of all features used, and from what source they origin
can be found in Table 4.1.

Ground truth data

Ground truth data is collected from two sources; Symantec for exploit in the wild
data, and Exploit-DB for PoC exploit code data. Figure 4.2 shows the amount of
exploited vulnerabilities from both sources between 2009 and 2018.

Symantec is a security company which is now owned by another company called
Broadcom. Unfortunately Broadcom does not make the same exploit data available
as Symantec did. Therefore extra effort has been done to collect the same data from
symantec as other works have reported. This is accomplished by using a website
archiving tool called the WaybackMachine * . The tool enables to search and scrape
previously archived websites. Different historic copies of the Symantec websites,
between 2014 an 2018 are have been scraped. Samples from both Symantec Attack
Signature [Symantec, 2018b] and Intrusion Protection signature [Symantec, 2018a]
pages have been collected. The IPS signatures do not have temporal information
available making them unusable, as it cannot be confirmed that these exploits take
place after disclosure of the vulnerability. Most samples from the IDS attack signa-
tures have the date of discovery available. Since the archiving tool did not archive all
the needed pages, vulnerabilities are gathered from different Symantec webpages
such as an overview page, separate writeups and an archived RSS feed. For some
Attack Signatures the discovery date was not available. For these the publishing
date is used, which was available. Manual inspection of samples with both the dis-
covery date and publishing date available, showed that these dates lie very close to
each other. This justifies using the publishing dates for samples without a discovery
date. In total 645 samples with date have been collected, ranging from 2014 to 2018.

Exploit-DB is one of the main public collections of PoC exploit code. Although
the completeness of EDB is on decline, it is considered the most complete set of
exploits. To use exploits on EDB as ground truth, samples from EDB need to be
mapped to a CVE-ID. MITRE (maintainer of CVE database) publishes an official
mapping from CVE-ID to EDB-ID [MITRE, 2022a]. This source contains mappings
to about 12000 CVE-IDs, but is not complete. An additional mapping is obtained
from Fang et al. [2020] which, combined with MITRE’s mapping, leads to a set of
23478 unique CVEs which have exploit code available on EDB. The publishing date
of the exploit is obtained by scraping the EDB website.

1 https://www.archive.org
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Figure 4.2: Amount of vulnerabilities exploited per source

Once the exploit date of a vulnerability is gathered, either from Symantec or
from Exploit-DB, class labels are generated in the following fashion; a sample gets
labeled as positive, if the exploit date is within 6 months of the publishing date.
A certain cut-off time is essential, because otherwise it would never be possible
to assign a negative label to a sample. After all, exploitation could still happen
even a long time after NVD publishing. Different cut-off times have been tested,
and a cut-of time 6 months have proven to be ideal. When a 12 month window is
asserted, performance does not change much in comparison with 6 months. The
shorter window of 6 months, however, gives a more precise indication of when a
vulnerability is expected to be exploited and thus of the urgency of remediation.

4.1.2 Baseline models

To test the effect of the methodological assumptions on EPS performance 3 baseline
models have been created. Two of these models are reproductions of the baseline
models of Bullough et al. [2017], Reinthal et al. [2018], to enable comparison to their
works. The third baseline model is created for experiments which have not yet been
conducted by prior works. All models use the same input data from the NVD and
the features as described in Table 4.1. Table 4.2 contains an overview of the settings
of the 3 baseline models.

Baseline 1 (BUL)

The period of analysis of their work is from 2009 through 2016. Input data is
collected from the NVD, and the ground truth is based on exploit availability in
EDB. They attempt to prevent label leakage by removing references to "Exploit-DB",
"Milworm" and "OSVDB". Zero-day exploits are not removed from the training
data. A Support Vector Machine (SVM) with a linear kernel is used as prediction
algorithm, which is validated using K-Fold cross-validation.

Baseline 2 (REIN)

The period of analysis is from 2015 through 2018. The feature-set consists of data col-
lected from the NVD and additional "web chatter". The latter source is not available,
so in this work only NVD data will be used. They use availability of exploit code

19



4.1 EVALUATION OF ASSUMPTIONS \

Source Name Type Processing
CVSS (NVD) Access vector Categorical OHE
Access Complexity Categorical OHE
Authentication Categorical OHE
Confidentiality impact Categorical OHE
Integrety impact Categorical OHE
Availability impact Categorical OHE
Base score Numerical N(o,1)
CPE (NVD) Vendor name Text TF-IDF
Product count Numerical  N(o,1)
CWE (NVD) Vulnerability type Categorical OHE
CWE count Numerical N(o,1)
References (NVD) Reference domain Text TF-IDF
Reference count Numerical  N(o,1)
Summary (NVD)  Description text Text TF-IDF
Description length Numerical  N(o,1)
Labels (Symantec) Exploited Boolean True/False
Disclosure date Date Datetime
Labels (EDB) Exploited Boolean True/False
Disclosure date Date Datetime

Table 4.1: Features per data source

in the EDB as ground truth. NVD references are also used as a feature, however,
no filtering of references to exploit databases is conducted, possibly leading to label
leakage as described in 3.2.3. Zero-day exploits are removed from the training-data
and the performance is temporally evaluated with a separation date of 08-08-2017.
This means that all samples before this date are in the training set, and all sam-
ples after this date in the test set. They have chosen to use XGBoost as prediction
algorithm.

Baseline 3 (OWN)

The third baseline model will be based on data collected between 2014 and 2018.
Features will be created from NVD data and the availability of an exploit in EDB is
chosen as ground truth. Label leakage will be prevented by filtering out references
containing "Exploit-DB", "Milworm" and "OSVDB". Zero-day exploits will not be
removed from the training data. Three classification algorithms are selected; Logis-
tic Regression Classifier (LR), Linear Support Vector Classifier (SVC) and XGBoost
(XGB). Multiple algorithms are used in the experiments to assure that observed
behaviour is generic, and not just the specific behaviour of a certain classifier in
that scenario. LR, LinearSVC and XGB belong to very different "families" of classi-
fication algorithms, and rely on different mathematical foundations. This choice is
made to solidify the outcome of the experiments, and to be able to make statements
about machine learning models in general. Besides these three algorithms are used
by a lot of related works, and SVC and XGB specifically in Bullough et al. [2017]
and Reinthal et al. [2018]. Temporal cross-validation is used to evaluate the models.
The temporal cross-validation is implemented by using a rolling window approach.
The rolling window technique dynamically defines training and testing datasets
from the data available. The data is ordered by date and an initial model is trained
on batch data of the first 12 months. With a trained model, performance metrics are
calculated on the following 6 months of data. After this the testset of 6 months is
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added to the training data and the model is retrained (see 4.3 for illustration). This
goes on until the end of the data is reached.

| All Data ‘
Split 1 | Train ‘ Test ‘ ‘
Split 2 | Train ‘ Test | ‘
Split 3 | Train | Test | ‘
Split 4 | Train | Test ‘ ‘
Split 5 | Train ‘ Test ‘

Figure 4.3: Temporal cross-validation (rolling window)

In the design of this baseline model all choices are made to simulate an environ-
ment that is closest to a real world situation, which reflects in the methodological as-
sumptions. The only exception is the choice of ground truth. The decision has been
made to use EDB data as ground truth, because the use of different ground truth
would make comparison difficult and less intuitive. Evaluation of SYM ground
truth data will be done at a later stage.

The Python package sklearn is used for implementation of all classification algo-
rithms. Instead of hard classification predictions, prediction probabilities are used
to make it possible to create Precision-Recall curves (more on evaluation metrics in
Section 4.1.4).

Setting BUL REIN OWN

Period 2009-2015 2015-2018 2014-2018

Input NVD NVD NVD

Ground truth EDB EDB EDB

Zero-days Not excluded Excluded Excluded

Label leakage Filtered Not filtered Filtered

Validation K-Fold Temporal single Temporal rolling
date window

Classifier(s) SVC XGBoost LR, XGBoost, SVC

Table 4.2: Design settings baseline models

4.1.3 Experimental design

For each of the 6 identified assumptions as described in Chapter 3 an experiment
has been set up. Table 4.3 gives an overview of all experiments. Per assumption 1
experiment will be conducted. An X is present in the columns BUL and/or REIN
if the experiment is conducted by prior work an will be re-evaluated. The baseline
model will be chosen as outlined in Section 4.1.2. Per experiment the experimental
variable (Experiment column) will be changed, and all other settings will remain as
is in the baseline model. By doing so, it is attempted to isolate the effect of this
single variable on EPS performance as good as possible.
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# Assumption Experiment BUL REIN OWN
1 Ground truth EDB or SYM X
2 Order of events Remove zero-days X X X
or not
3 Distribution of = Resample testset X X
testset or not
4 Label leakage Prevent label X
leakage or not
5 Cross- Temporal or X X X
validation intermixed
6 Parameter Using only X
tuning training set or not

Table 4.3: Experimental design

Experimental Prediction Framework

To facilitate the extensive experiments in both the evaluation of the methodological
assumptions and in the optimization steps, an exploit prediction framework has
been designed and implemented. The goals of this framework was to automate
the collection and processing of publicly available data, to simplify experimenta-
tion with different machine learning techniques in the field of exploit prediction.
Flexibility for future additions and adjustment has been one of the main priorities.
Another requirement was that all of the parameters, from the choice of (ground
truth) data to the selected ML techniques, can be supplied in a json configuration
file, enabling queueable and efficient experimenting. An example of this file, with
an explanation of the parameters, can be viewed in Appendix B. The framework
consists of 3 modules that handle different subtasks; the Data Collection Engine,
the Experimentation Engine and the Visualisation Engine.

The Data Collection Engine collects input data from NVD, the IBM Threat Ex-
change, and the CVE database. Ground truth data is collected from EDB and Syman-
tec. Data is collected through different webscrapers and API scripts, aggregated and
matched on CVE-ID, and is stored efficiently in a SQL-database. Information in the
database can easily be queried and preprocessed according to the desirable format.
The Experimentation Engine is the backbone of the exploit prediction framework,
and relies on the the structure of sklearn Pipelines. This module enables experiment-
ing with different (pre-)processing steps, rebalancing techniques, machine learning
algorithms, optimization approaches, and cross-validation methods. All of the ex-
perimental parameters are supplied in the configuration file. Lastly, the Visuali-
sation Engine aggregates detailed results and creates insightful illustrations. Each
evaluated candidate can be inspected and analysed.

Currently most prior works are closely guarding their advancement by shielding
the used data and methods. As mentioned earlier, the source-code of this project
will be open-sourced. This is important, because it enables collective and sustained
progress in the field of exploit prediction. The full Exploit Prediction Framework
will be pulished on Github 2.

2 https://github.com/EPFramework/Exploit-Prediction-Framework
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4.1.4 Performance metrics

Using the right performance metrics to evaluate EPS is important to prevent skewed
results. To illustrate this, consider the performance metric accuracy. Accuracy is de-
fined as the number of correctly predicted samples, divided by the total number
of predictions. While this is the right metric for some situations, in others it is not.
In a situation with heavy class-imbalance, such as in an exploit prediction environ-
ment, it does not make sense to use accuracy as a metric. Suppose only about 2.5%
of all vulnerabilities are exploited. A classifier which would classify all samples
as non-exploited, would have a accuracy of 97.5%. This seems like a good score,
but the classifier did not predict any exploited vulnerability. To prevent these prob-
lems, in this thesis Precision, Recall, and Fi-score are used, in combination with
a Precision-Recall plot. To understand these metrics first the basic classification
results need to be clear. Table 4.4 is a confusion matrix, showing the 4 different
possibilities for a prediction result. There are two kinds of correct predictions and
two kinds of incorrect predictions. Correct predictions happen when a sample is
predicted as exploited and it’s true label says it is exploited, or when it is predicted
as not exploited, and it’s true label says it is not exploited. These are called True
Positives (TP) and True Negatives (TN) respectively. Incorrect predictions occur in
two situations; when a sample is predicted as exploited, while it actually is not, or
when a sample is predicted as not exploited but it actually is. These are called False
Positives (FP) and False Negatives (FN). A perfect classifier would not have False
Positives and False Negatives.

Predicted: Predicted:
Exploited Not Exploited
True: . True Positive  False Negative
Exploited
True: o .
Not Exploited False Positive True Negative

Table 4.4: Confusion metrics

Precision

Precision is defined as the amount of True Positives divided by the sum of the
True Positives and False Positives (equation 4.3). In terms of exploit prediction the
precision score reflects the fraction of all vulnerabilities predicted as exploited that
are correctly classified as exploitable. Precision can also be seen as the efficiency of
an EPS; of all vulnerabilities marked as exploited, how much are correctly flagged
as such, and how much are not. The latter, False Positives, cause organisations to
put effort in the remediation of vulnerabilities which probably never get exploited,
thus leading to an inefficient patching strategy.

TP

Precision = m

(4.1)

Recall

Recall is defined as the amount of True Positives divided by the sum of True Posi-
tives and False Negatives (equation 4.2). For EPS this score represents the fraction of
all exploited vulnerabilities which are marked as such by the EPS. The recall score
can be seen as a measure of coverage; of all exploitable vulnerabilities, how many
did the EPS find? Coverage is important for organisations because a low coverage
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means that there is a large blind spot of vulnerabilities which can be exploited but
are not picked up by the system, thus leading to a larger (invisible) risk for the
organisation.

TP

Recall - m

(4.2)

F1

The F1 score is the harmonic mean of the precision score and the recall score, and
can be calculated with equation 4.3. As outlined above, both precision as recall
are important for measuring EPS performance. Unfortunately, there is a trade-off
between the two. A higher precision means a lower recall and vice versa. An EPS
with a high recall score is useless if precision is lacking, and the other way around.
F1 gives a clear score in a situation that precision and recall are equally important.

precision - recall

F=2 .
! precision + recall 43)

Precision-Recall curve

As mentioned earlier both recall and precision are important metrics for EPS, and
there is a trade-off between the two. The Fi-score represents the harmonic mean of
those two scores. However, situations can occur where one of those scores is more
important than the other. Consider for example a situation where an organisation
has a very small security team responsible for remediating vulnerabilities. It is then
most important that an EPS leads to improved efficiency (precision), because all
wasted effort it too much. Another example is a situation where an organisation is
not willing to take risk and has the resources to remediate most vulnerabilities. In
this situation coverage (recall) is most important, because an EPS missing a lot of
exploitable vulnerabilities results in a larger risk and in (extensive) resources being
idle.

threshold =~ 1

1,0
0,9

0,8

0,7

0,6 ratio of positive samples
0,5 w.rt all samples

0,4 /

0,3
0:2 threshold =~ 0
0,1
0,0
o0 01 02 03 04 05 06 07 08 09 10

recall

precision

Figure 4.4: Example of Precision-Recall curve

By adjusting the classification threshold of a classifier (the minimal probability to
classify a vulnerability as exploited) one can influence this precision-recall trade-off.
Increasing the threshold, leading to a less sensitive classifier, results in EPS with
a higher precision and a lower recall. The other way around, when lowering the
classification threshold, the classifier gets less sensitive and classifies more vulnera-
bilities as exploited. This leads to higher recall, at the price of precision. To capture
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the dynamics of this behaviour, a Precision-Recall curve is plotted. Figure 4.4 is an
image of such a plot in the most basic form. As can be seen in this PR-curve, a
threshold of +1 (all vulnerabilities classified as not-exploited) leads to a recall near
o and a precision near 1 (top left dot). Conversely, a threshold of +o (all vulnera-
bilities classified as exploited) leads to a recall near 1, because all truly exploited
vulnerabilities are obviously identified, and a precision which is equal to the ratio
of positive samples with respect to all samples. For all classification threshold be-
tween o and 1, the precision and recall is calculated and plotted on this curve. An
ideal classifier would have a PR-curve which would reach all the way to the top
right corner of the figure.

4.2 OPTIMIZATION UNDER REALISTIC CIRCUMSTANCES

As leads from Chapter 3, different assumptions in the design stage of an EPS have
an impact on its performance. Some choices in this process are more realistic than
others. In this section the most realistic assumptions for an EPS will be discussed in
Section 4.2.1. After this, promising paths are explored to optimize EPS performance
under these restricted but realistic assumptions. This is done by leveraging different
techniques of handling class-imbalance (Section 4.2.2), by designing more advanced
features (Section 4.2.3), and by exploring and tuning different machine learning
algorithms (Section 4.2.4). These optimization steps will be evaluated sequentially.
This means that the results of the first optimization step will be incorporated in
the second, and so on. In this section the theory behind all evaluated techniques is
elaborated. Results of the actual analysis can be found in Chapter 5.

4.2.1 Restricted realistic environment

To get an idea of how EPS would perform once operating in a real world situation, it
is attempted to create an environment that most closely resembles such a situation.
This is done by complying to the most strict methodological assumptions, as iden-
tified in Chapter 3. So to recap, this entails the following situation. Exploit in the
wild ground truth data is used instead of Proof-of-Concept ground truth. The order
of events is strictly respected by removing all zero-days from the data, to prevent
"prediction” of the past. The class-distribution of the test set data is not tempered
with. Features are filtered so that no illegitimate leaking of the class-labels can oc-
cur. And lastly, temporal intermixing is prevented by applying cross-validation that
respects the temporal aspect of the data.

Three models (Logistic Regression, LinearSVC and XGBoost) are trained in an
environment as described above. These 3 models function as the baseline models
for this optimization step. All optimized models will be compared against the
baseline models, to get a view of what effect the optimization techniques have.

4.2.2 Imbalance handling

The first step in this optimization section, is the step of handling class-imbalance.
Imbalanced data generally causes problems for machine learning models. To illus-
trate this, consider the following example. Suppose, that there is an imbalanced
dataset with a minority class that consists of 10% of all samples. This means that
the other samples (90%) are of the majority class. A classifier might learn to classify
all samples as belonging to the majority class, reaching an accuracy of 9o%. An
accuracy score of 90% seems quite decent, while such a classifier fails to correctly
predict any of the samples in the minority class. Since the goal of exploit prediction
is to identify the minority samples (exploited vulnerabilities), the handling of class-
imbalance is extra important. In this section the theory behind different techniques
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to mitigate the negative effect of class-imbalance are explained. First, different data
resampling techniques are covered (oversampling, undersampling, and a combina-
tion). Then, algorithmic utilization of class-weights to minimize the negative effects
of class-imbalance is explained. The performance of these methods is evaluated in
Chapter 5.

Undersampling Oversampling

\
 ——

Original dataset Original dataset

Figure 4.5: Visualisation of undersampling and oversampling

Oversampling

The first technique to handle class-imbalance is oversampling. The goal of oversam-
pling is to obtain an equal class-distribution by artificially creating new samples
similar to samples of the minority class (see Figure 4.5). To build further on the
earlier example, suppose a dataset has 100 data samples with a distribution of go
negative samples and 10 positive ones. Oversampling techniques would generate
8o extra positive samples, to obtain equal classes of both go samples. These new
data samples can be obtained in various ways. A few of the evaluated techniques
are SMOTE, BorderlineSMOTE, SVMSMOTE and ADASYN.

A widely adopted resampling technique is Synthetic Minority Oversampling
Technique (SMOTE), developed by Chawla et al. [2002]. SMOTE is a technique
that generates new samples which are of similar to existing samples of the minority
class. It does so by by following a few predefined steps. To illustrate these steps
a very simple 2 dimensional example is considered. The first step is to draw a
random sample from the minority class, and identify its k nearest neighbors (see
4.6b). When this is done one of the nearest neighbors is randomly selected. A new
sample is generated which lies along the line between the drawn sample and the se-
lected nearest neighbor (see 4.6¢c). The position on this line is also chosen randomly.
This procedure is repeated for all samples in the minority class, until the desired
class-distribution is reached.
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Figure 4.6: Graphical demonstration of SMOTE oversampling

26



4.2 OPTIMIZATION UNDER REALISTIC CIRCUMSTANCES \

SMOTE works quite well in situations like the considered example, where the
classes show little to no overlap. Problems might occur when there is a lot of over-
lap between the different classes, or if there are a lot of outliers. Several adaptations
of the SMOTE algorithm, such as BorderlineSSMOTE and SVMSMOTE, have been
developed to tackle these shortcomings.The BorderlineSMOTE strategy has a more
advanced selection of minority samples, before the generation of new data is started.
The algorithm identifies outliers by checking the nearest neighbors of a drawn mi-
nority sample. If all of these neighbors are of the majority class, the drawn point
is considered an outlier and is not used for the creation of new samples. Also sam-
ples along the class-border are identified (points with both minority and majority
nearest neighbors), and more synthetic samples are generated near these border-
line points. SVMSMOTE, is a technique that builds further on the principles of
BorderlineSMOTE. The difference is that SVMSMOTE uses a SVM instead of KNN
algorithm to estimate the class-border. SVMSMOTE generally generates more data
further away from the region of class-overlap, enabling easier classification. The
last oversampling technique considered in this thesis is Adaptive Synthetic Sam-
pling (ADASYN). This technique is very similar to the other approaches described
earlier. ADASYN has a different way of choosing where in the feature space new
samples are generated. BorderlineSSMOTE and SVMSMOTE pay special attention to
minority samples near the class-border and to outliers, while ADASYN adaptively
decides which areas should be accentuated. It generates more new samples in areas
where there is a low density of minority samples, and less where the density is
already higher.

Undersampling

Another resampling technique is undersampling, where samples from the majority
class are removed to obtain a more equal class-distribution (see Figure 4.5). There
are several undersampling techniques considered in this thesis, such as Rando-
mUndersampling, TomekLinks, EditedNearestNeighbors and OneSidedSelection.
The simplest of all is RandomUndersampling, where random samples from the ma-
jority class are removed until the desired class-distribution is achieved. The other
techniques have other criteria for selecting which samples to remove.

The TomekLinks approach selects majority samples to remove by identifying so
called Tomek links. Two samples, A and B, share a Tomek link if A is B’s nearest
neighbor and B is A nearest neighbor, and A and B belong to a different class. These
Tomek links can be used to identify noisy samples that lie close to each other and
might be difficult to distinct for classification models. When this technique is used
for undersampling, the majority sample of the Tomek link is removed. The Edited-
NearesNeighbors (ENN) technique removes samples by finding the k nearest neigh-
bors of all samples in the data. For each data sample its class is compared with the
most prevalent class of its nearest neighbors. If the most prevalent class is different
than the class of the selected sample, the sample and all its nearest neighbors are re-
moved from the data. This procedure is repeated until the desired class-distribution
is reached. OneSidedSelection combines TomekLinks with another approach called
Condensed Nearest Neighbors (CNN). TomekLinks is used to remove noisy and
borderline samples, and CNN focuses on removing redundant samples from the
majority class.

Over-undersampling

A drawback of the application of undersampling in highly imbalanced environ-
ments, is that a lot of the training data is lost in the process, Figure 4.5 illustrates
this. In exploit prediction datasets often as little as 2% of the samples is marked
as exploited. Undersampling would result in a dataset with these positive samples,
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and the same amount of negative samples, meaning that 96% of the data remains un-
used. By applying a combination of oversampling and undersampling techniques,
this can be prevented. This is done by first using an oversampling technique to
reach a certain desired class-distribution, and after this, undersampling is used to
remove samples of the majority class to obtain a balanced dataset. To continue with
the example above, consider a dataset with 100 samples of which 2 are positive and
98 are negative. With only undersampling 4 of the 100 original samples will be used.
Now suppose that first a form of oversampling is applied to reach a 30/70% posi-
tive/negative class-distribution. This would mean that 40 synthetic samples would
be generated (so 2+40 positive samples, and 98 negative samples). By applying
undersampling, a balanced dataset will be obtained consisting of 42 positive and
42 negative samples. With this approach 2 positive and 42 negative samples of the
original dataset are used, in stead of 2 positives and 2 negatives when only applying
undersampling. In the implementation of the optimization step all combinations of
undersampling and oversampling are considered.

Class weight of algorithm

Most machine learning algorithms have the option to provide the class_weight pa-
rameter. When this parameter is specified, mis-classifications of positive and nega-
tive samples are weighted differently. This can serve as an approach to mitigate the
bias of classification algorithms due to class imbalance. This process is most intu-
itively explained by means of a simple example. Consider an imbalanced dataset
with a minority class that consists of 10% of all samples. This means that the other
samples, 9o percent, are of the majority class. A classifier might learn to classify all
samples as belonging to the majority class, since this would yield a decent accuracy
of 90%. Consider now a situation where a classifier is provided with class weights,
so that mis-classification of a sample of the minority class is 9 times as "costly"
as a mis-classification of a sample of the majority class. In this situation the cost
of mis-classifying all minority samples (10% x 9 = 90) is equally expensive as mis-
classification of all majority samples (90% x 1 = g9o). In theory, by applying these
different class weights, a classification algorithm no longer favours classification to
the majority class.

4.2.3 Feature design

As outlined in Section 4.1.1 input data is collected from the NVD. In this optimiza-
tion step it is attempted to improve prediction results by creating richer features
from the information available. Another option would obviously be to collect more
information from different sources. In this thesis the choice is made to focus on
making more efficient use of the data available from the NVD, instead of the collec-
tion of additional data. The main reason for this is that the collection of new data
might introduce issues concerning the temporal nature of the data. As described
in Section 3.2.1 some related works design features based on data which would
not be available at the time of prediction in a realistic situation. When collecting
historic data retrospectively, it is very difficult to assess when certain data is pub-
lished. Guaranteeing that is was already available at the time of prediction, is often
impossible. With data from the NVD this risk is minimized, since it reports about
a vulnerability as soon as it gets assigned a CVE-ID. The information the NVD re-
ports is often not the most extensive, but it is guaranteed to be available at the time
of prediction.

The data collected from NVD consists of numerical, categorical and textual data
(see feature Table 4.1). The features obtained from numerical and categorical data
are pretty straight forward; raw information is used directly with minimal normal-
ization and encoding. Improvements of these features are unlikely. That is why the
focus of this optimization step lies on improving features constructed from textual
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data. The art of presenting textual data in a machine readable form is called Nat-
ural Language Processing (NLP). There exist loads of different techniques with the
purpose of effectively extracting meaningful features from text. Building further on
the previous optimization step, two fundamentally different approaches are consid-
ered in this thesis work. The first approach is Text Frequency-Inverse Document
Frequency (TF-IDF, as used in the baseline models of Section 4.1), and the second
is text featurization by leveraging word embeddings.

Text Frequency - Inverse Document Frequency (TF-IDF)

TF-IDF is a technique to statistically describe words in a sentence, making textual
data more suitable for interpretation by machines. In the most simple words this
technique keeps a count of the occurrences of words in a set of sentences (Text
Frequency), and normalizes this count by diminishing the weight of very frequent
words and increasing the weight of terms that rarely occur (Inverse Document Fre-
quency). This technique yields one vector per sentence in which every word of a
sentence is represented as a decimal number. In the case of exploit prediction the
sentence is the textual description of a vulnerability as obtained from the NVD. To
calculate the TF-IDF value for a sentence, the first step is to calculate the Text fre-
quency. Text frequency is nothing other than the number of occurrences of a specific
word in a sentence. The TF operation can be be expressed mathematically following
equation 4.4.

# of occurences word in sentence
# of words in sentence

TF(w,s) = (44

Relying only on the TF of a word in a sentence, would result in high values for
words that are prevalent in a lot of sentences. This is unwanted because words that
occur in a lot of sentences (stopwords) are generally not distinctive, and thus of
little significance. This issue can be overcome by introducing the Inverse Document
Frequency in the calculation. The IDF value of a word can be calculated by taking
the logarithm of the total number of sentences over the number of sentences con-
taining the specific word (equation 4.5). This results in lower values for words that
are occuring in a lot of sentences.

# of sentences
(4-5)

IDF =1
(w) 8 (# sentences containing word

Finally, the TF-IDF value of a certain word in a sentence is calculated by multiply-
ing the TF and the IDF values (equation 4.6). By calculating this value for each word
in a sentence, a sentence can be represented as a vector of decimal numbers which
can be processed by machine learning models. TF-IDF creates a single feature for
all unique words that occur in any of the sentences, which can lead to an enormous
feature space. To contain this, often the maximum number of features is defined.
By doing so only the most important words are kept as a feature.

TFIDF(w,s) = TF(w,s) * IDF(w) (4.6)

Word embeddings

Representing textual data with word embeddings is the second approach consid-
ered in this thesis. This process is more complex than the calculation of a TF-IDF
vector. One of the main advantages of using word embedding over using TF-IDF
is that embeddings also capture semantic properties of words. This means for ex-
ample that similar words like "cat" and "tiger" also have similar embedding vectors,
which can be valuable for the interpretation of words and sentences. The details
about the working and the construction of word embedding models is out of scope
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for this thesis, but the general structure of several models will be covered is this sec-
tion. The following techniques will be considered: Word2Vec, GloVe, and fastText.

Word2Vec is a NLP technique that uses a neural network to learn word asso-
ciations from a large corpus of training text. Each word is represented as a dec-
imal number, so a sentence consists of a vector of decimal numbers. The value
of Word2Vec is that similar words also have similar embeddings. The WordzVec
algorithm can be used to train a custom model, but it is also possible to utilize
pre-trained models which are publicly available. Both of these options are explored
in this optimization step. The pre-trained model that is used, is a model trained by
Google based on more than 3 million unique words.

GloVe stands for Global Vectors and is a unsupervised learning algorithm for
obtaining vector representations for words, developed by researchers at Stanford
University [Pennington et al., 2014]. This algorithm generates word embeddings by
aggregating global word co-occurrences matrices for a given corpus. A co-occurence
matrix shows how often a certain word pair occurs together in a sentence. The goal
is to derive the relation between words from these statistics. For the GloVe model
there are also pre-trained models available. The first one used in this thesis is
trained on Twitter and contains 1,2 million unique words, and the second is trained
on Wikipedia data and contains 400k words.

fastText is a library for the learning of word embeddings created by Facebook’s
Al Research lab [Bojanowski et al., 2017]. It offers both supervised as unsupervised
algorithms to obtain vector representations of words. The working of fastText is
quite different from the first two word embedding algorithms. Word2Vec and GloVe
consider words as smallest unit to train on, while fastText uses n-gram character
strings as smallest unit. This means for example that a word like "apple" will be
represented as "ap","app", "ppl" and "ple" before an embedding is created. The
advantage of fastText over other algorithms is that it performs well on words that
are rare, or even not present in the training data. Both pre-trained as custom trained
models are considered. The pretrained model is trained on Wikipedia news and
contains 1 million words.

4.2.4 Algorithm optimization

In this optimization step the focus lies on finding the optimal machine learning
algorithm, and tuning it so that it performs as good as it potentially can. This is
done by hyper-parameter tuning, and by testing a lot of different machine learning
algorithms.

Hyper-parameter tuning

Generally machine learning algorithms have a set of hyper-parameters, which are
parameters that in some form control the learning process, and can not be interfered
with during the fitting of the model to the training set. These parameters generally
influence the speed and/or the quality of the learning process. These parameters
can for example influence the learning rate, the amount of regularization or the
structure and topology of the model. An other example of a hyper-parameter is the
class weight parameter we saw earlier in the imbalance handling section (Section
4.2.2).

It is difficult to find the optimal set of hyper-parameters. The most common
approach in finding those parameters is by exhaustively evaluating every different
set of parameters. This can effectively be done by GridSearchCV which is a Python
class developed as part of the sklearn library. This class enables you to specify
different classifiers and different parameter ranges, and returns the detailed results
when it is done. This seems easy, but the limitation lies in the computational effort
it requires. Suppose for example that we have parameter x, with possible values
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{1,2,3}. To find the optimal setting for this parameter, just 3 models need to be
trained. Now if another parameter y is introduced, with possible values {10,20,30},
the problem scales exponentially. Now 3x3 = 9 models have to be trained. With
only two parameters with small value ranges, this is no issue. But when a dozen of
parameters need to be tuned and possible value ranges are extensive, this becomes
infeasible very quickly. In this thesis it is attempted to find a balance in this trade-off
between computational effort and reaching the optimal performance of a model.

Prediction algorithms

The baseline algorithms used in the experiments of the methodological assump-
tions are Logistic Regression, LinearSVC and XGBoost. Besides these 3 algorithms
there exist tons of others in the field of machine learning. The following have been
selected for further evaluation; AdaBoost Classifier (with both DT and LogReg as
base), Decision Tree, K-Nearest-Neighbors Classifier, RandomForest Classifier, SGD-
Classifier, (regular) SVC and a Neural Network Classifier. Also, a Voting Classifier
is used to test the effect of assembling different algorithms. A voting classifier trains
different algorithms, that separately make their predictions. To reach the final pre-
diction a majority vote is casted. The hyper-parameters of all algorithms have been
tuned roughly to limit the computation time. Algorithms yielding promising results
are then subjected to a more thorough grid search.

4.3 CHAPTER SUMMARY

This chapter consisted of two parts. In the first part the method and experimental
design is outlined in order to evaluate the methodological assumptions as identified
in Chapter 3. The second part contains optimization strategies, to improve EPS
performance under restricting but realistic assumptions.

To evaluate the effect of different methodological assumptions, first a few baseline
models are constructed. The BUL and REIN models are created to enable compari-
son to Bullough et al. [2017] and Reinthal et al. [2018] respectively. It is attempted
to reproduce the models of their works as accurately as possible. Then, the OWN
baseline model is constructed, which is constructed following the most realistic
methodological assumptions. In different experiments these baseline models will
be evaluated, following the experimental design as described in Table 4.3.

In the second part of this chapter promising optimization strategies are described.
The goal of those strategies is to boost EPS performance under realistic circum-
stances. This is done by exploring different techniques of handling class-imbalance,
by designing more advanced features, and by exploring and tuning different ma-
chine learning algorithms.

The methods for the experimental evaluation of assumptions and the optimiza-
tion steps, are implemented in the Exploit Prediction Framework. This framework
enables easy and automated experimentation with different machine learning tech-
niques, and handles all steps from data collection to exploit prediction. This system
requires a configuration file in json format, in which the experiment or optimization
parameters should be defined. The working of this file, and the framework, is de-
scribed in Appendix B. The results of the experiments and optimization steps, can
be found in Chapter 5.
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5 RESULTS

In this chapter the results of this thesis will be presented. For the results, the
same two part structure as in the previous chapter is followed. In the first part the
influence of six critical methodological assumptions in EPS design will be evaluated
(Section 5.1). Section 5.2, the second part, is an attempt to optimize a EPS using
more restricting, but realistic assumptions. Additionally, in Section 5.3, these results
will be interpreted from an organisational perspective.

5.1 ASSUMPTION EXPERIMENTS

This section contains the results of the conducted experiments as outlined in the
experimental design (Table 4.3). Per assumption one experiment will be conducted
and evaluated against at least one baseline model, depending on if similar experi-
ments have been conducted in prior work. Experiments 2 and 5, can be compared
to Reinthal et al. [2018] and thus will be evaluated using the REIN baseline model.
Experiments 2, 3, 5 which are compared to Bullough et al. [2017] will be evaluated
using the BUL baseline model. Experiments which are not previously conducted
will be evaluated on data from 2014 until 2018, using the OWN baseline model. The
results of the experiments will be presented in the form of a Precision-Recall plot.
Full experimental results can be found in Appendix C. In all PR-curves, the same
classifier has the same color line. So for example a green solid line and a green
dotted line, represent a classifier in the baseline and experimental environment re-
spectively.

5.1.1  Reproduction of baseline models

To be able to compare the results of this experiments to prior work, the baseline
models of Reinthal et al. [2018] and Bullough et al. [2017] are reproduced in this
section. It is important to confirm that similar results are observed with the baseline
models, otherwise later comparison might not make sense.

Bullough et al. [2017] (BUL)

The period of analysis of their work is from 2009 through 2016. All features are
created from NVD data, and the ground truth is based on exploit availability in
EDB. They try to prevent label leakage by removing references to "Exploit-DB",
"Milworm" and "OSVDB". Zero-day exploits are not removed from the training
data. A Support Vector Machine (SVM) with a linear kernel is used as prediction
algorithm, which is validated using K-Fold cross-validation.

Reinthal et al. [2018] (REIN)

The period of analysis is from 2015 through 2018. The feature-set consists of data
collected from the NVD and additional "web chatter". The latter source is not avail-
able, so in this work only NVD data will be used. They use availability of a CVE-ID
on the EDB as ground truth. NVD references is also used as a feature, however, no
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filtering of references leading to exploit databases is conducted. Zero-day exploits
are removed from the training-data and the performance is temporally evaluated
with a separation date of 08-08-2017. This means that all samples before this date
are in the training set, and all samples after this date in the test set. They have
chosen to use XGBoost as prediction algorithm.
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Figure 5.1: Baseline models of related works

Figure 5.1 contains Precision-Recall curves for all 3 baseline models. The obtained

results for BUL and REIN are very similar to what is observed in the original works.

The reported Fi-score of the baseline model in BUL is 0.647, while it was 0.641 in
this reproduction. For REIN the difference is a bit bigger. Their reported Fi-score
is 0.407, while 0.485 is found in this reproduction. Even though slightly different
features are used, the performance of the reproduced models is very close to that
of the original work. The OWN baseline model performs worse than the other two
models, with an average F1-score between 0.002 and 0.310. This is the result of more
strict assumptions.

5.1.2 Experiment 1: Assumption of Ground Truth

In this experiment the choice of ground truth is evaluated. This is not yet done
in prior work, so comparison to the OWN baseline model will be conducted. The
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baseline model is trained with ground truth data from Exploit-EB (EDB), and the ex-
perimental models are trained using exploit-in-the-wild ground truth from Syman-
tec (SYM). Because the baseline and experimental models are based on other data,
it is difficult to compare performance one-to-one. What this experiments shows,
however, is that based on the same input data and features, the choice of ground
truth affects the performance of an exploit prediction system. These two choices of
ground truth are widely adopted as outlined in Chapter 3, making it interesting to
discover what the effects of this choice are.

1.0

——' LR_GT_EDB (AP=013)
—— LR_GT 5YM (AP=0.27)
SVC_GT_EDB (AP=0.11)
# SVC_GT_SYM (AP=0.24)
0.8 1 ——' XGB_GT_EDB [AP=0.17)
—— XGB_GT_5YM [AP=0.22)

Precision

Figure 5.2: Experiment 1: Baseline versus SYM ground truth (OWN baseline)

As can be seen in Figure 5.2 performance of the experimental models is slightly
higher than that of the baseline models with EDB ground truth. This is unexpected
behaviour, because most related works using EDB ground truth report much better
results. This is normally attributed to SYM having limited positive samples, and
thus being very imbalanced. The EDB dataset is bigger and less imbalanced. When
zero-days vulnerabilities are excluded though, as in the OWN baseline setting, this
difference in imbalance gets very small (+1% for SYM and +2% for EDB). Figures
5.3a and 5.3b show the time difference in days between NVD publication, and the
reported exploit date for SYM and EDB ground truth respectively. This figures show
that the proportion of zero-day vulnerabilities in the EDB ground truth data is way
higher than in the SYM data. In experiment 2 this behaviour will be evaluated
further.

5.1.3 Experiment 2: Assumption of Order of events

In this experiment the effect of zero-day vulnerabilities present in the training data
will be evaluated. Zero-day vulnerabilities are defined as vulnerabilities which
already have PoC exploit code available, before they are disclosed by the NVD.
In this case the prediction if exploit code for a vulnerability will be developed,
does not make sense, because it already happened. The amount of vulnerabilities
which appear on EDB before they are published on NVD is quite extensive. Figure
5.3a shows a histogram of the difference in days between NVD publishing and the
exploitation date (date published on EDB). The amount of zero-days is vast; in the
BUL setting from 2009 until 2016, 6,282 of all 7,625 vulnerabilities that have exploit
code available on EDB, were published before being disclosed on NVD. This is
almost 83% of all vulnerabilities. For the REIN setting in period 2015-2018, this
number is 53%.
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Figure 5.3: Difference in days between NVD publishing date and exploit date

The effect of excluding zero-days will be tested by removing these vulnerabilities
from the training-set and compare it to a situation where these vulnerabilities are
not filtered out. The result of this experiment can be observed in Figure 5.4.

The influence of removing zero-day exploits from the training data is extensive.
F1-scores drop 62% and 42% respectively for BUL and REIN. In both baseline set-
tings, more than half of the positive samples is removed. This also results in a shift
in class-distribution of the dataset. BUL went from 18.7% to 2.5% positive samples
and REIN from 8,6% to 3.5%. Possibly, this interferes with classifier performance.
To test this effect the experiment has been conducted, but now with resampling
of the training data to create a balanced dataset. The effect of applying SMOTE
oversampling was minimal, and performance even dropped a bit (full results in Ap-
pendix C). This shows the effect of imbalance is minimal and the performance drop
is likely attributable to the removal of zero-day exploits.

The severe drop in performance is in line with the results Bullough et al. [2017]
report. The results for the period from 2015-2018, the REIN setting, are in conflict
with what they report. They report an increase of performance when zero-day ex-
ploits filtered out. This is the opposite behaviour observed in this work and in
other works. While the baseline model of Reinthal et al. [2018] is successfully repro-
duced, this behaviour is not easily explained. Upon more thorough investigation,
it seems that the data used in Reinthal et al. [2018] is incomplete. Table 2 in their
report gives an overview of the collected data. They report to have collected 24,944
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Figure 5.4: Experiment 2: Exclusion of zero-day exploits

samples from NVD of which 809 are exploited, whereas in this work 28,889 NVD
samples have been collected in the same timeframe, of which 2,511 are exploited.
The cause of this is unknown, but it is reasonable to assume that this difference
in data would affect EPS performance. As a benchmark the collected data in this
work is compared to the data of BUL (2009-2015). The difference of collected data
was very small (NVD 38,129 versus 39,430, EDB 6,470 versus 7,380). Also Yin et al.
[2021] reports having found 23,413 vulnerabilities with exploit code in EDB, from
1990 until 2020 which is the same amount as what is found in this work.

5.1.4 Experiment 3: Assumption of Distribution of test-set

In this experiment the effect of incorrect data-sampling to mitigate the effects of
class imbalance is evaluated. Resampling is done to create an artificial dataset in
which different classes are roughly equally distributed. This is done to optimize
classifier training, and often yields improved results. One way to do this is by gen-
erating synthetic samples from the minority class (oversampling), by using SMOTE.
Using oversampling is legit and widely used in machine learning. The only con-
dition is that SMOTE must be applied to the training data only, leaving the test
data with it’s original class-distribution. What is observed in a lot of prior works, is
that the full dataset is resampled, before training and testing data is defined. This
way, the distribution of the testset is also changed. As can be seen in Figure 5.5
EPS performance gets a big boost when the distribution of the testset is being ar-
tificially altered. While this should ring all alarm bells, this kind of behaviour is
observed in multiple prior works (see Chapter 3). Figure 5.5a shows the result of
the experiment compared using the BUL baseline settings. The Fi-score observed
in this experiment is inflated by 21% by resampling the testset, which is comparable
to results found in Bullough et al. [2017]. Figure 5.5b shows the experiment in the
OWN baseline setting. This extra experiment has been conducted to visualise how
enormous this effect is on EPS performance, and that the behaviour generalises over
different classification algorithms.

The altering of the testset is wrong, because information about the labels leak
into the model, and unrealistic, because in a real world setting the labels that are
attempted to be predicted are not know at that time.
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Figure 5.5: Experiment 3: SMOTE oversampling of test set

5.1.5 Experiment 4: Assumption of Label Leakage

This experiment tests the effect of label leakage. This experiment is not yet con-
ducted in previous work and will be evaluated in the OWN baseline setting. Be-
sides, the REIN baseline is evaluated, because in their work they fail to avoid label
leakage. In machine learning the number one rule is that the testset should never
be available in any form when training a classifier. When this does occur a foul
and unrealistic situation arises yielding overoptimistic classification results. The
EDB ground truth dataset is prone to a form of label leakage where references
of a vulnerability on NVD contain information which should not be available for
training. Since the EDB dataset is constructed using the availability of PoC exploit
code on the Exploit-DB website, references to this website should not be available
in the feature set. NVD references often contain a url either to the EDB website
or to the website of another exploit database. The existence of such a url implic-
itly reveals the class label. Every vulnerability with a link to EDB is labeled as
positive, no exceptions, meaning that a machine learning classifier might learn this
pattern leading to overoptimistic classification results. To test this, the baseline mod-
els are compared to a model where references to 4 exploit databases are filtered out
(www.exploit-db.com, www.rapid7.com, www.osvdb.org, wew.milw@rm.com). The
results of this experiment can be seen in Figure 5.6.

Full results can be found in Appendix C. When filtering the references for unin-
tended references to EDB, the F1-score decreases 30% on average over the 3 tested
classifiers in the OWN baseline configuration, and about 10% for the REIN configu-
ration. All other configurations are unchanged, meaning that the isolated effect of
label leakage is extensive.

5.1.6 Experiment 5: Assumption of Cross-validation

In experiment 5 the effect of different cross-validation methods is evaluated. The
main distinction between different methods observed in prior work, is if the tempo-
ral nature of the data is respected. The most basic form of cross-validation is k-Fold
cross-validation. When applying k-Fold validation, the available data is divided in
k parts (folds). In multiple rounds, different train-test splits are evaluated. So say
k=3, then the data is divided in 3, and in the first split fold 1 and 2 are training data
and fold 3 is test data. In the next split the test data is changed to fold 2 and the
rest is training data, and so on. The scores of all splits are averaged to obtain the
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Figure 5.6: Experiment 4: Filtering of label leaking references

final score. One of the issues of this approach is that in most train-test splits, future
data is used for training, which would never be available in a real world setting.
The intermixing of temporal data can be result in inflated performance metrics of
EPS. To overcome this, some form of temporal cross-validation has to be applied.
The most straightforward technique is by splitting the data in using some cutoff
date. All samples before this cutoff date are in the training set, and all the other
samples are in the test set. While this solves the problem of temporal intermixing,
only a single split and score is available. One of the goals of cross-validation is to
produce more robust metrics, by testing the model on different splits of data. This
goal is defeated by this form of cross-validation. Lastly, there is another form of
temporal cross-validation which is called online learning or rolling window valida-
tion. When using this technique the data should be sorted chronologically. The
first split consists of a initial batch of data (in this work 12 months), on which a
model is trained. This model is then evaluated using a test-set that consists of the
next 6 months. Once the performance metrics of this split have been calculated, the
test-set is added to the training data. A new model is then trained on this new
training-set, and is evaluated on the following 6 months. This goes on until the end
of the available data. All data except for the initial training set, is in the test set at
some point. The scores of all different splits are averaged to obtain the final score.
This approach mitigates the problem of temporal intermixing of data, while still
producing robust results over multiple different splits.

Figure 5.7 shows the result of this experiment. There is a clear pattern which
holds for both the BUL and the REIN baseline setting. Performance of regular
k-Fold cross-validation, with temporal intermixing, yields the best performance.
Second and third come the temporal evaluation methods. Worst performing is the
temporal method where a single cutoff date is chosen to split training and test set.
Somewhere between those two extremes the temporal cross-validation method of
online learning is observed. This order holds for both baseline evaluation settings.
The difference between methods is greater in the BUL setting than in REIN.

5.1.7 Experiment 6: Assumption of Parameter Tuning

This experiment shows the effect of improper separation of data uses during the
tuning of hyper parameters. Parameter tuning is the art of finding the right pa-
rameters for a classification algorithm, with the goal of optimizing its performance.
Tuning these parameters enables a classifier to optimize its working on the data at

38



5.1 ASSUMPTION EXPERIMENTS \

10 L0
— SVC_KFOLD {AP=0.73) — XGBOOST_KFOLD (AP=0.65)
SVC_CUTOFF (AP=0.35) XGBOOST_ONLINE (AP=061)
—— SWC_ONLINE (AP=0.60) —— XGBOOST_CUTOFF (AP=0.59)
0.8 0.8
0.6 | 0.6
=] =]
K s
2 4
o o
& &
0.4 0.4
0.2 0.2
\\
0.0 ‘ ‘ ‘ ‘ 0.0 ‘ ‘ ‘ ‘
0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
Recall Recall
(a) BUL setting (b) REIN setting

Figure 5.7: Experiment 5: Evaluation of cross-validation methods

hand. More on this topic will be explained later in the optimization part of this
chapter.

Searching for the optimal parameters is often done in a brute force manner where
all possible combinations of parameters are tested (called a grid-search). The pa-
rameter set yielding the best performance is selected for further usage in the model.
When the classifier performance during parameter tuning is evaluated on the same
data that will later be used for the final scoring, the final parameters depend on the
labels of this data. In a real situation it would not be possible to optimize classifier
performance on this data.

To test this effect a nested gridsearch is performed. The difference between a
nested gridsearch and a regular gridsearch is that the final evaluation data is al-
ways fresh and unseen by the model, even during parameter tuning. This is accom-
plished by conducting a gridsearch on the training data only. The parameters this
search yields, are then used to train a model on the full training set, to evaluate
performance on the test-set.
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Figure 5.8: Experiment 6: Parameter tuning with regular gridsearch compared to a nested
gridsearch
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Figure 5.8 shows the results of this experiment where parameter optimization
with a gridsearch and a nested-gridsearch are compared. As can be seen the ef-
fects are minimal but there is a slight difference. All classifiers except the XGBoost
classifier show a small decrease in performance. With an additional analysis with
a bigger parameter space, also the XGBoost performed worse with a nested grid-
search. While this result is apparent, it will not be taken into account in the opti-
mization phase of this chapter. The reason for this is that the process of conducting
a nested gridsearch is extremely time consuming, even more than a standard grid-
search. With the performance difference being neglectable, ignoring this factor is
legitimized.

5.1.8 Summary of Assumption Experiments

This section provided the experimental results for the methodological assumption
experiments as outlined in Section 4.1. In total six experiments have been conducted,
following from the six methodological assumptions. In each experiment the most
realistic design decision is compared to a less restrictive alternative observed in lit-
erature. These design decisions following from methodological assumptions, are
evaluated using three baseline models. The BUL and REIN models are reproduc-
tions of the EPS from Bullough et al. [2017] and Reinthal et al. [2018]. These repro-
ductions yield results very similar to the original works. The OWN baseline model
is introduced in this thesis, testing multiple classification algorithms using assump-
tions which are considered the most realistic. The outcomes of each experiment will
be briefly discussed.

1. Ground truth - In this experiment ground truth based on availability of PoC
exploit code (EDB) is compared to ground truth based on exploitation in the
wild (SYM). This experiment is not yet conducted in prior work, and therfore
is evaluated with the OWN baseline model. The results are unexpected; SYM
ground truth returns better results than EDB ground truth, while prior works
using EDB ground truth generally report much higher results. This could be
attributable to most of these works failing to adhere to the order of events,
which results in a much more balanced EDB dataset.

2. Order of events - This experiment compares a situation where all vulnerabili-
ties which are exploited before the disclosure (zero-days) are excluded, versus
a situation where they are not excluded. BUL and REIN baselines will be
used, because both those works conduct this experiment as well. Both BUL
and REIN show a dramatic drop in performance when zero-day exploits are
excluded. This is in line with what Bullough et al. [2017] reports, but con-
tradicts Reinthal et al. [2018]. The latter reported an increase in performance
when zero-day exploits are excluded. Possibly this is attributable to the fact
that they use a smaller (incomplete) dataset.

3. Distribution of test-set - In this experiment the effect of tempering with the
distribution of the test set is evaluated. This is done by comparing a situation
where the complete data set is resampled to a situation where only the training
data is resampled. Resampling the full data set is methodologically wrong.
The performance of EPS when resampling the full data set are near perfect for
both BUL and OWN baseline models.

4. Label leakage - In this experiment the effect of label leakage is evaluated. Fail-
ing to prevent label leakage in both the REIN as the OWN baseline models,
leads to heavily inflated performance. This experiment is not conducted in
Reinthal et al. [2018] but they do not prevent label leakage, making it interest-
ing to compare against the REIN baseline model.
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5. Cross-validation - The fifth experiment tests the influence of different cross-
validation methods. The two compared methods are K-fold cross-validation
and temporal cross-validation using a rolling window approach. The differ-
ence between the two is that the latter respects the temporal aspect of the data.
The BUL and REIN baseline models have been used for evaluation. They both
show decreased performance when temporal cross-validation is used, which
is in accordance what Bullough et al. [2017] and Reinthal et al. [2018] reported.

6. Parameter-tuning - The last experiment tests the influence of parameter-tuning
on the same data as the evaluation data, by comparing a regular gridsearch
with a nested gridsearch. This experiment is not conducted in prior work.
While it was expected that a regular gridsearch, which uses the same data as
the evaluation data, would produce inflated performance metrics, this was not
the case. Both situations yielded near identical results on the OWN baseline
model.

This section has visualized that different methodological assumptions have the
power to make or break an EPS. By comparing the effect of these decisions to exist-
ing work, and analysing newly found assumptions, reported advancements in EPS
design can be placed in context. Figures 5.9a and 5.9b show the final performance
of the BUL and REIN baseline models when the most restricting, but also the most
realistic methodological assumptions are respected (blue line), compared to their
original settings (orange line). In figures 5.9c and 5.9d performance of the OWN
baseline setting is evaluated on EDB ground truth as well as SYM ground truth. It
can be concluded that only a fraction of the predictive power of EPS is sustained
when realistic methodological assumptions are adhered to. In Section 5.2 it is at-
tempted to improve this performance by leveraging a variety of machine learning
techniques.

5.2 OPTIMIZATION

As follows from the previous section, EPS adhering to critical and realistic method-
ological assumptions tend to yield poor prediction results. In this section an effort is
made to improve EPS performance under these circumstances, leveraging different
techniques, while complying with realistic methodological assumptions. In Section
5.2.1 the performance of baseline EPS are presented. The following 3 sections cover
different optimization strategies. First, performance is optimized by mitigating the
effects of class imbalance in Section 5.2.2. Then is sections 5.2.3 and 5.2.4 optimiza-
tion attempts through improved feature design and different (tuned) classification
algorithms is conducted. In Section 5.2.5 the final, best performing models are
presented.

5.2.1 Baseline performance in restricted environment

Figure 5.9 displays the final performance of EPS under the most restrictive and re-
alistic assumptions. Specifically, 5.9d shows the result of 3 classifiers evaluated on
a timeframe from 2013 until 2018, using SYM exploit-in-the-wild data as ground
truth. This setting will be used as baseline for the optimization task in this chapter.
The reason for this is that exploit-in-the-wild ground truth data is generally consid-
ered to have the closest resemblance to a real world situation. Performance metrics
for the 3 classifiers (Logistic Regression, LinearSVC and XGBoost) can be found in
Table 5.1. These models are considered the baseline in this optimization section.
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Figure 5.9: Final performance in most restrictive and realistic scenario

5.2.2 Imbalance handling

The first approach to improve the baseline exploit prediction models is by address-
ing the imbalanced nature of the data. The greatest amount of vulnerabilities will
never get exploited, making an exploit event a rare event. Some machine learn-
ing models fail to effectively learn patterns when there is a heavy class imbalance
within the data. As discussed earlier, in Section 4.2.2, there are different techniques
to limit or eliminate this negative effect. The techniques used for the handling of
class imbalance, can be subdivided in two groups; resampling techniques and algo-
rithmic techniques (there are more ways to address imbalance, but these are out of
scope for this thesis).

Resampling techniques

Altering the class distribution of a dataset can be done in two ways; undersampling
of the majority class, or oversampling of the minority class. It is also possible to
apply a combination of the two. Different undersampling techniques yield differ-
ent results, because they adhere to other rules on which samples to exclude. The
following techniques are evaluated: Random undersampling, undersampling by
application of Tomek Links, Edited Nearest Neighbors, and One-sided selection.
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Classifier PRE REC Fi1

LR 0.696 0.105 0.182
SvC 0.462 0.08 0.135
XGBOOST o0.607 o0.126 0.202

Table 5.1: Performance of baseline classifiers in restricting but realistic environment

Oversampling is the act of generating new syntetic data samples, which closely re-
semble samples of the minority class. Different techniques are evaluated: SMOTE,
ANASYN, Borderline SMOTE, and SVMSMOTE. It is possible to control how much
syntethic samples will be created. This is done be defining the sampling-strategy of
the algorithms, which is used to specify the desired class-distribution after resam-
pling. Lastly, a combination of over- and undersampling is tested, by first applying
oversampling of the minority class, and then undersampling of the majority class.
Results of this analysis can be found in Table 5.2.

Algorithmic technique

Machine learning models generally perform worse on imbalanced data, because the
algorithm tends to be biased in favour of the majority class. The odds of a certain
sample belonging to the majority class are bigger after all. With resampling one
tries to eliminate this bias by creating equally distributed classes. Another way to
address this bias is by assigning different costs to the mis-classification of samples
of the majority and minority class. Exact working of this is outlined in Section 4.2.2.
All algorithms are tested with a class weight between 0.8 and 0.99, with steps of 0.01,
to find the class weight that yields the best performance. Results can be viewed in
Table 5.2.

LogReg LinearSVC XGBoost
PRE REC F1 PRE REC F1 PRE REC F1

Oversampling

SMOTE 0.22 0.624 0.31 0.209 0.495 0.273 0.255 0.2 0.206
BorderlineSMOTE  0.252 0.426 0.286 0.229 0.395 0.261 0.184 0.205 0.169
SVMSMOTE 0.227 0.504 0.289 0.278 0.357 0.256 0.302 0.173 0.209
ADASYN 0.26  0.486 0.309 0.227 0.422 0.256 0.255 0.162 0.193
Undersampling

RandomUndersamp 0.086 0.872 0.155 0.094 0.861 0.168 0.099 0.907 0.177
TomekLinks 0.921 0.144 0.242 0.759 0.141 0.224 0.433 0.164 0.23
EditedNN 0.433 0.26 0.254 0.306 0.319 0.268 0.209 0.303 0.225
OneSidedSelection  0.921 0.144 0.242 0.704 0.125 0.196 0.433 0.164 0.23
Combined

SMOTE + ENN 0.223 0.599 0.311 0.204 0.572 0.284 0.198 0.538 0.27
Algorithmic

Class weight 0.246 0.49 0.306 0.286 0.415 0.301 0.5  0.157 0.234
Baseline 0.696 0.105 0.182 0.462 0.08 0.135 0.607 0.126 0.202

Table 5.2: Results of different imbalance handling techniques on EPS performance
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Design choice

As can be seen in Table 5.2, comparable results are obtained by the best resampling
techniques and by the algorithmic approach. It depends on the classification algo-
rithm which (combination of) resampling technique(s) works best. It is observed
that handling class imbalance by adjusting class weights is nearly always about as
effective as resampling of the data. The most successful resampling techniques are
(partly) based on oversampling, which leads to bigger datasets. Working with a big-
ger dataset results in significantly higher training times. Because model optimiza-
tion is already computationally expensive, the choice has been made to continue to
use class weight as a measure to mitigate the effects of class imbalance in further
optimization steps.

5.2.3 Feature design

Feature design is an important tool to obtain optimal predictions with the data at
hand. As can be seen in feature Table 4.1, there are categorical, numerical and
textual features. In the optimization process of the features the focus lies on im-
proving the textual features. Natural Language Processing (NLP) is a promising
field where more advanced techniques of representing textual data exist. The two
main improvement areas focused on in this work are in the optimization of TF-IDF
text vectorizers and in the optimization of NLP methods using word embeddings.
The techniques are explained in more detail in Section 4.2.3.

Text Frequency - Inverse Document Frequency (TFIDF)

The TF-IDF technique has a few parameters to fine tune to obtain optimal results.
The following parameters are considered: the n-gram range, the maximum amount
of features, and whether or not to combine textual columns. Firstly, the so called
n-gram range. A n-gram is a combination of words next to each other in a sentence,
which are grouped together. Consider for example the following sentence; "I am
exploited". If only 1-grams are considered all words are used separately (so "I",
"am", "exploited"). If 2-grams are used also words next to each other are considered
in addition to the 1-grams (so, "I am", "am exploited", "I", "am", "exploited"). The
same pattern is followed for higher order n-grams. When n-grams are used, more
attention is paid to the context of a word, which could hold important information
for the prediction task. The tested n-gram ranges are (1,1) through (1,5), meaning
only 1-grams and all n-grams up to and including 5-grams respectively. Secondly,
the max features parameter is optimized. This parameter controls how many fea-
tures can be created when vectorizing text. If this is not controlled, TD-IDF creates
a feature for every word that occurs in one of the sentences, resulting in an enor-
mous features set. By defining the max features parameter only the most important
features are used. Limiting the amount of features used can positively impact the
computational costs as well as EPS performance. The maximum features are varied
from 500 through 2000, in steps of 500. Lastly, a parameter not directly related to TF-
IDF if tuned. This parameter prescribes if the textual columns should be merged be-
fore TF-IDF analysis, or if the textual columns should be treated as separated sets of
words (text columns; vulnerability description, domain name). Combining columns
can influence the predictive power of vectorized text. Some distinctive words might
for example stand out when considered in a context of its own text column, while
becoming insignificant when combined with text from other columns. The decision
of combining columns or not is binary, so either true or false. Results can be found
in Table 5.3.

44



5.2 OPTIMIZATION \

Custom word embeddings

Two forms of word embedding techniques are tested in this part of the feature
optimization. The first flavour is when custom word embeddings are learned from
the specific words in the textual data, to later form a feature set for the prediction
task. When creating custom word embeddings different parameters can be altered
to achieve optimal prediction results. The most important evaluated parameters
are the following; vector size (defining the maximum length of the embedding of a
sentence), the mode of combining word embeddings into sentence level embeddings
(summation or averaging), type of training-method (either by Skip-gram or Bag of
Words), and the minimal count of a word for it to be included in the model (value
range from 5 to 20 in steps of 5). Two custom word embedding methods will be
evaluated; Word2Vec and fastText

Pretrained word embeddings

Another form of NLP with word embeddings is by leveraging excising, pre-trained,
word embeddings. There are several pre-trained models, with different training sets
and slightly different training methods. The pre-trained models used are as follows:
Word2Vec (trained on Google news), fastText (trained on Wiki news), Glove (trained
on Twitter), and Glove (trained Wikipedia). The result of this different models can
be seen in Table 5.53.

LogReg LinearSVC XGBoost
PRE REC F1 PRE REC F1 PRE REC F1
TF-IDF 0.268 0.597 0.35 0.33 0.498 0.346 0.482 0.159 0.234
Word2Vec custom 0.308 0.501 0.353 0.303 0.441 0.316 0.439 0.119 0.184
Word2Vec 0.263 0.559 0.333 0.306 0.469 0.333 0.569 0.147 0.224
fastText custom  0.253 0.557 0.329 0.301 0.489 0.346 0.465 0.109 0.174
fastText 0.242 0.495 0.301 0.332 0.396 0.321 0.538 0.138 0.213
GloVe Twitter 0.36 0.386 0.34 0.297 0.499 0.339 0.496 0.169 0.241
GloVe Wiki 0.287 0.5 0.339 0.298 0.432 0.327 0.508 0.132 0.202
Baseline 0.696 0.105 0.182 0.462 0.08 0.135 0.607 0.126 0.202

With class-weight 0.246 0.49 0.306 0.286 0.415 0.301 0.5 0.157 0.234

Table 5.3: Results of different NLP techniques for extracting features from text

Design choice

The results of this optimization step, as can be observed in Table 5.3, show some
improvements of the (balanced) baseline. Generally, the optimized TF-IDF text vec-
torization yields decent performance. For both the Logistic Regression and Lin-
earSVC model, the F1 score is boosted by about 5 percent point compared to the
class-weight rebalanced baseline. These improvements do not hold for the XGBoost
where the optimization of TF-IDF did not have effect (although still the second best
performning method). This experiment has shown that TF-IDF generally performs
the best, or at least close to the best, for all baseline classifiers. Hence, the choice
has been made to use TF-IDF in further optimization steps.

5.2.4 Algorithm optimization

The last step in this optimization section is algorithm optimization. This is done in
both the choice of algorithm as well as in hyperparameter tuning, to obtain the opti-
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mal results per algorithm. Section 5.2.4 covers the optimization of hyperparameters
and in Section 5.2.4 different machine learning algorithms are evaluated.

Hyperparameter tuning

As described in more detail in Section 4.2.4, prediction algorithms often need to be
tweaked to the data to perform optimally. This is done by exhaustively evaluating
different parameter settings by means of a grid search. This step will be integrated
with the analysis of Section 5.2.4, and results can be found in Table 5.4.

Choice of algorithm

Countless different machine learning algorithms are available for prediction tasks.
Besides from the 3 baseline algorithms used in earlier analysis (Logistic Regres-
sion, LinearSVC and XGBoost), 8 additional algorithms will be analysed and tuned.
Also, a voting classifier combining prediction results though majority voting will be
tested, consisting of optimized KNN, AdaBoost, SGDC, SVC and LR classifiers.

Classifier PRE REC F1

AdaBoost-DT 0.307 0.13 0.168
AdaBoost-LogReg 0.26  0.469 0.312
Decision Tree 0.241 0.309 0.245
KNN 0.536 0.25 0.315
Random Forrest 0.177 0.51 0.248
SGDC 0.38 0.512 0.354
SvC 0.229 0.583 0.306
Neural Network 0.333 0.553 0.351
Voting Classifier 0.442 0.375 0.366

Baseline (balanced, TF-IDF)

Logistic Regression 0.268 0.597 0.35
LinearSVC 0.33 0.498 0.346
XGBoost 0.482 0.159 0.234

Table 5.4: Results of different tuned machine learning algorithms on EPS performance

5.2.5 Final Exploit Prediction System

Table 5.4 shows the final results of the exploit prediction system optimization effort
in this thesis. This optimization has been achieved by handling class-imbalance,
improving features and lastly by leveraging different (tuned) machine learning al-
gorithms. The biggest advancements in performance was reached in by handling
imbalance and the featurization of textual data. The last step where different algo-
rithms have been tested has also proved itself useful, however the advancements
were less dramatic and multiple different algorithms yield results close to that of
the best algorithm. The optimal exploit prediction system found in this section is
a VotingClassifier, combining prediction results from the KNN, AdaBoost, SGDC,
SVC and LR classifiers, which yielded a F1-score of 0.366. This is a slight improve-
ment over the performance of its separate classifiers. This classifier operated on data
which was balanced by using the class weight method, and used TF-IDF for the fea-
turization of text. The baseline models (LR, LinearSVC, XGB) had F1-scores of 0.182,
0.135 and 0.202 respectively. The Fi-score for the optimized EPS was 0.366, which is
an improvement of the baseline by 200%, 270% and 180% respectively. This drastic
improvement highlights the importance of proper handling of class-imbalance and
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feature design.

5.3 IMPLICATIONS FOR INDUSTRY

The results in this chapter have shown that EPS are very sensitive to their sur-
roundings. The effects of six methodological assumptions on EPS performance are
evaluated in Section 5.1. The results of these experiments demonstrated that the
assumptions prior works build their work on have a fundamental impact on the
reported performance of EPS. When the most restrictive but realistic assumptions
are complied to, only a fraction of the predictive power of the evaluated models is
sustained.

Literature review has shown that a lot of EPS in prior work fall victim to at least
some unrealistic assumptions, and thereby reporting inflated performance metrics.
Some are vague in what assumptions they apply leading to uncertainty on how to
interpret their results. Extra uncertainty emerges when closed-source data is used,
making it impossible to reproduce and verify the results.

The optimization steps as outlined in Section 5.2, display effective opportunities
for improvement of EPS performance under realistic assumptions. Substantial im-
provements are possible by handling class imbalance, optimizing feature design
and leveraging different tuned algorithms. Despite these developments, the perfor-
mance of the evaluated EPS are insufficient to be able to justify their deployment in
the industry.
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CONCLUSION AND
RECOMMENDATIONS

The growing number of vulnerabilities released and requiring attention is posing
a challenge to many organisations. Patching these vulnerabilities is a resource in-
tensive practice and only a small fraction of all vulnerabilities ever get exploited in
the wild, and actually pose a real threat. Prioritization is key in an effective and effi-
cient patching strategy. Current approaches for patch prioritization are failing and
are sometimes no better than random guessing. EPS are trying to fill this gap by
leveraging machine learning to predict the exploitability of a vulnerability, which
then can be used to effectively prioritize vulnerabilities to mitigate.

Exploit prediction is a challenging task with scarce (high-quality) data and heavy
class-imbalance. Over the last decade several researchers have attempted to opti-
mize EPS. Their approaches vary in what data is used, which machine learning
techniques are used and how the models are evaluated. Another important factor is
how several design decisions are influenced by methodological assumptions. Prior
works like Bullough et al. [2017] and Reinthal et al. [2018] identify and acknowledge
some of these assumptions and their impact on EPS performance.

The first goal of this thesis was to identify all of the critical methodological as-
sumptions in EPS design, their prevalence in prior work, and the magnitude of
their effects. Six critical assumptions have been identified in the area of realistic
data collection, the correct processing of data, and proper evaluation of the model.
Prior works vary greatly in what assumptions they base their prediction models
on. Almost all works fall victim to at least one faulty or unrealistic methodological
assumption, and thereby report overoptimistic results. Some works don’t clearly
state which assumptions they make, leading to uncertainty on how to interpret
their results. Extra uncertainty emerges when closed-source data is used, making
it impossible to reproduce and verify the results. The effect these methodological
assumptions have on EPS performance has been tested by means of experiments.
In these experiments the most strict/realistic option is set out against the less stric-
t/unrealistic option. Almost all of the realistic choices have a considerable negative
impact on the EPS performance. Some of the experiments of Bullough et al. [2017]
and Reinthal et al. [2018] are reproduced in this thesis. Comparable results are ob-
tained in most cases. Except for experiment 2 evaluating the exclusion of zero-day
exploits. Reinthal et al. [2018] reports opposite behaviour from what is observed in
this thesis and in Bullough et al. [2017]. When all realistic choices are made in the
process of designing an EPS, only a fraction of the predictive power of the evaluated
models is sustained.

These realistic models form the basis of the second phase of this thesis; the opti-
mization of EPS under restricting yet realistic circumstances. The goal of this part
was to optimize the realistic baseline models to improve their performance. This
optimization is done by exploring different techniques to effectively handle class
imbalance, create richer textual features and/or leverage different prediction algo-
rithms. Substantial improvements are achieved in this optimization step, with a
final EPS with a Fi-score of 0.366. This is a 200%, 270% and 180% increase in
performance compared to the baseline models (LR, LinearSVC, XGB). This score
is higher than the score reported by Bullough et al. [2017] in the most restrictive
setting. While this optimization step made a big difference, the final performance
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of the EPS is still too low to be of value in a real world setting. It might be tempting
to improve performance at the expense of sound methodological decisions, but this
undermines the effort altogether.

The third contribution of this thesis is the implementation and release of a frame-
work that enables easy experimentation with different kind of machine learning
techniques for exploit prediction. The Exploit Prediction Framework will be pub-
lished open-source. Hopefully this will contribute to a more open and transparent
community and pave the way for cooperation in the field, instead of reinventing the
wheel.

6.1 RECOMMENDATIONS

The combination of overoptimistic reports of EPS performance due to unrealistic
methodological assumptions, the inability to objectively verify most EPS systems,
and the fact that attaining workable results in EPS is very challenging, leads to the
need for extreme caution when using existing EPS in a production environment.
Putting your full trust in existing systems would be a risk. The main recommenda-
tion for players in the industry, such as Adyen, is to be careful with the the adoption
of EPS. With the current level of maturity, exploit prediction could have value as a
complementary measure to existing vulnerability prioritization systems. Further
improvements and more transparent systems are essential for EPS to be suitable for
practical usage.

One of the main challenges that is holding back this improvement is the scarcity
of high-quality data. Exploit data is often commercially owned by for example se-
curity solution providers, who are not keen on sharing this data. Looking for new
ways to obtain more data from higher quality is of vital importance for progress
in EPS and would be a valuable direction for further research. Other means of
EPS refinement, such as creating richer features, consuming additional information
sources, experimenting with the use of other NLP techniques for text processing,
and exploration of other classification algorithms would also be useful future work.

Besides better performance, there is a need for openness and transparency in EPS.
Systems with a black box nature can not be verified objectively and could possibly
lead to a false sense of security. The source code of this work has been published
open-source to set an example.

6.2 LIMITATIONS

This study has potential limitations. The results produced in this thesis rely on the
used data and the chosen machine learning techniques. The following potential
limitations are identified.

o Limitation of ground truth data. Ground truth data for the final EPS is ob-
tained from Symantec’s Attack Signatures and Intrusion Protection Signatures.
Although considered the best available data for exploit-in-the-wild prediction,
it only contains Microsoft and Adobe exploits and might thus be biased. Ef-
forts have been put in mitigating this bias by filtering vendor information from
the feature set. Despite this, it might still influence the ability of the EPS to
generalize to vulnerabilities of other vendors than Microsoft and Adobe. An-
other limitation of the ground truth is that non-exploitation can not be guar-
anteed. A vulnerability is labeled as exploited if a detection in a real system
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has occurred. While this gives certainty about a detected vulnerability being
exploited, it does not guarantee that vulnerabilities that are not detected, are
actually not exploited. The reason for this is that detection method might have
missed it. This limitation holds for any EPS in the exploit prediction domain.

Limitless techniques exist in machine learning which can be used for creation
an optimization of EPS. This calls for a clear scoping on which methods to
include, and which not. While this has been done with care, it might be that
other methods are more suitable for the task, and yield better performance for
EPS.
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A METHODOLOGICAL ASSUMPTIONS IN
RELATED WORKS

Summary table A.1 can be found on the next page in landscape orientation.
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Author

Year

Title

Time-
frame

ACC PRE

REC Fz1

A1:
Ground
truth

A2: Order
of events

A3: Dist. of
test-set

A4: Label
leakage

As: Cross-
validation

A6:
Parameter-
tuning

Bhatt

Hoque

Suciu

Yin

Fang

2021

2021

2021

2021

2020

Exploitability
prediction of
software
vulnerabilities
An Improved
Vulnerability
Exploitation
Prediction Model
Vector Embedding
Expected
Exploitability:
Predicting the
Development of
Functional
Vulnerability
Exploits
Vulnerability
exploitation time
prediction: an
integrated
framework for
dynamic
imbalanced
learning
Fastembed:
Predicting
vulnerability
exploitation
possibility based
on ensemble
machine learning
algorithm

2012-
2015

1997-
2020

1999-
2020

1999-
2020

2013-
2018

0.88

0.92

0.93

0.91

0.89

0.62

0.85

0.98

0.25

0.88

0.94

0.36

EDB

EDB,
SYM

Commercial

EDB

SecFocus,
EDB,
SYM

Not
respected

Not
respected

Not
respected

Resamp. of
test

Resamp. of

test

No resamp.

Resamp. of
test

No resamp.
on test

Prevented

Prevented

Prevented

Prevented

Strat.
10-fold

10-fold

Temporal

Temporal

Strat.
10-fold

No
optimization

Not
separated

Not
separated?

Separated

Table A.1: Summary table with methodological assumptions in related works (1/4)



Author Year Title Time- ACC PRE REC F1 Az A2: Order A3: Dist. of  Ag4: Label As: Cross- A6:
frame Ground of events test-set leakage validation Parameter-
truth tuning
Jacobs 2020 Improving 2009- - 0.88 0.23 045 Commercial Not No resamp. Prevented Strat. 5-fold Separated
vulnerability 2018 respected on test
remediation
through better
exploit prediction
Yang 2020 Better not to use ? 0.83 0.56 0.80 o0.65 EDB - Resamp. of Prevented Strat. 5-fold No
vulnerability’s test optimization
reference for
exploitability
prediction
Zhang 2020  Dynamic 1990- - - - - EDB Not Resamp. of Prevented Temporal No
Risk-Aware Patch 2019 respected test optimization
Scheduling
Almukaynizi 2019  Patch Before 2015- - 0.45 0.35 o040 SYM Experimenting No resamp. Prevented Temporal No
Exploited: An 2016 on test optimization
Approach to
Identify Targeted
Software
Vulnerabilities
Alperin 2019  Risk prioritization 1999- - - - - EDB - No resamp. Strat. 5-fold No
by leveraging 2019 optimization
latent vulnerability
features in a
contested
environment
Chen 2019  Using twitter to 2016- - 056 0.68 o0.59 EDB, Not No resamp. Unsure Temporal No
predict when 2018 SYM respected on test optimization

vulnerabilities will
be exploited

Table A.2: Summary table with methodological assumptions in related works (2/4)



Author Year Title Time- ACC PRE REC F1 Az A2: Order A3: Dist. of Ag4: Label As: Cross- Aé:
frame Ground of events test-set leakage validation Parameter-
truth tuning
Jacobs 2019  Exploit Prediction 2016- - - - - Commercial Not No resamp. Prevented 5-fold & -
Scoring System 2018 mentioned Temporal
(EPSS) Jay
Reinthall 2018  Data Modelling for ~ 2015- - - - - EDB Experimenting No resamp. Not- Experimenting Separated
Predicting Exploits 2018 prevented
Tabavi 2018  DarkEmbed: 2010- - - - - SYM, Respected No resamp. Not- - Not
Exploit prediction 2017 Metas- prevented separated?
with neural ploit
language models
Almukaynizi 2017  Proactive 2015- - 0.67 038 048 SYM Not No resamp. Not- Temporal No
identification of 2016 respected prevented optimization
exploits in the
wild through
vulnerability
mentions online
Bullough 2017  Predicting 2009~ - - - - EDB Experimenting Experimenting Prevented Experimenting No
exploitation of 2015 optimization
disclosed software
vulnerabilities
using open-source
data
Edkrantz 2015 Predicting Exploit 2005- 0.83 082 084 083 EDB Not Resamp. of Prevented 10-fold Separated
Likelihood for 2014 respected test
Cyber
Vulnerabilities
with Machine
Learning
Table A.3: Summary table with methodological assumptions in related works (3/4)



Author Year Title Time- ACC PRE REC F1 Az A2: Order A3: Dist. of Ag: Label As: Cross- Aé:
frame Ground of events test-set leakage validation Parameter-
truth tuning
Sabottke 2015  Vulnerability 2014- - - - - SYM, Respected Resamp. of Unsure Strat. Not
Disclosure in the 2015 EDB, test 10-fold separated
Age of Social OSVDB,
Media: Exploiting Microsoft
Twitter for
Predicting
Real-World Exploit
Bzorgi 2010 Beyond heuristics: 1991- 0.90 - - - OSVDSB Not Resamp. of 10-fold Separated
Learning to 2007 respected test

classify

vulnerabilities and
predict exploits

Table A.4: Summary table with methodological assumptions in related works (4/4)
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EXPLOIT PREDICTION FRAMEWORK

In this section the configuration file of the Exploit Prediction Framework will be
elaborated. This configuration file is used to specify all experimental variables.
This file should be provided in json format and consist of 7 top level parameter
categories. These categories will be explained in further detail in the sections of this
chapter. In an experiments, two or more experiment scenarios can be provided by
concatenating the scenarios in list form.

B.1 GENERAL PARAMETERS

The general parameters are displayed in listing B.1. In this part of the configuration
file, the experiment name can be defined by setting EXP_NAME, this is also the name
of the directory that will be created for the results. Then the period of analysis is
chosen by setting the START_DATE and END_DATE. The START_BATCH and LAG_SIZE
parameters have to do with temporal cross-validation. The start batch is the batch
that an initial classifier is trained on before the rolling window is started. Once a
classifier is trained on the start batch, the lag size decides from how far back the
data will be used. As an example, in most experiments this value is 12, meaning
that data until 12 months prior to the prediction date is considered. If this value is
set to o, all available historic data is used. The LABEL_PERIOD defines the maximum
amount of months the exploitation date of a vulnerability can be after the disclosure
date, for it still to be labeled as exploited. The default value used in this thesis is 6
months. So the vulnerabilities that are exploited more than 6 months after the dis-
closure date are discarded. This rule is used to obtain binary labels, and to be able
to say something about the timeframe of a prediction. The RANDOM_STATE parame-
ter defines the seed for different machine learning techniques for repeatability con-
cerns. If set to null the experiment yield different results every time they are run.
If USE_CACHE is set, different time consuming elements of the experiment are using
cached data instead of rerunning all calculations. This can for example be cleaned
data or trained word embedding models. Lastly, the W2V_PRETRAINED_PATH param-
eter, holds the path to pretrained word vector models such as Word2Vec, GloVe or
fastText.

"general": {
"EXP_NAME": "1.1_GT_OWN",
"START_DATE": "2013-01-01",
"END_DATE": "2018-01-01",
"START_BATCH": 12,
"LAG_SIZE": 0O,
"LABEL_PERIOD": 6,
"RANDOM_STATE": 42,
"USE_CACHE": false,
"W2V_PRETRAINED_PATH": "../path/to/pretrained.vec"

Listing B.1: General parameters
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B.2 DATA PARAMETERS

The data parameters define what data will be used for the experiment, and how it
will be preprocessed. The example in listing B.2 shows the basic structure of an ex-
periment with 2 scenario’s using different ground truth data. The INPUT parameter
is used to choose what input data should be used for the experiment. By default
data from the NVD is used, but it is also possible to use data from the IBM X-Force
ThreatExchange. Then, the CVSSv specifies what version of CVSS to use, either 2 or
3. This has a influence on the amount of total samples, because not all vulnerabili-
ties have CVSS version 3 information available. When version 3 is chosen, samples
without a CVSS version 3 score are dropped. The GT parameter is used to define
what ground truth data will be used, either PoC based ground truth from EDB,
or exploit in the wild ground truth from Symantec. FILTER_LEAK, FILTER_SYM
and EXCLUDE_PAST are parameters that affect the filtering of some datasamples. If
FILTER_LEAK is set, label leakage is avoided by removing references that possibly
leak information about the labels. Another form of label leakage is avoided by set-
ting FILTER_SYM. This parameter is explicitly for the SYM ground truth. It filters
the textual description of the vulnerability for references for vendor information.
Lastly, the EXCLUDE_PAST parameter is used to specify if exploits that have occured
prior to the disclosure data should be filtered out or not.

"data": [
{
"INPUT": "NVD",
"CVSSv": 2,
"GT": "EDB",

"FILTER_LEAK": true,
"FILTER_SYM": true,
"EXCLUDE_PAST": true

b

{
"INPUT": "NVD",
"CVSSv': 2,
“GT": "SYM",
"FILTER_LEAK": true,
"FILTER_SYM": true,
"EXCLUDE_PAST": true

}

]

Listing B.2: Data parameters, example of experiment with 2 different ground truth datasets

B.3 OPTIMIZATION PARAMETERS

The optimization parameters as listed in listing B.3, are used to define the specifics
for parameter tuning. The first parameter, TUNE_PARAMS, is used when optimization
should take place. If it is false, only 1 model should be provided. If set to true, a
model should be defined by setting parameter ranges which will be explored. When
GS_RANDOM is set to true, sklearn’s RandomizedGridSearchCV will be used in stead
of GridSearchCV. This means that of all possible different parameter settings, only
GS_ITER are randomly chosen for evaluation. If GS_NESTED is set to true, a nested
gridsearch will be conducted. The last 3 parameters are parameters for this nested
gridsearch. So, firstly GS_INNER_TEMP decides if the inner loop of the gridsearch
should also be split temporally or not. CANDIDATE_SCORES specifies if scores of all
candidates in the inner gridsearch should be returned or not (more computation-
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ally expensive). Lastly, OPT_THRESH is set if also the classification threshold of the
classifier should be optimized.

"optimization": [
{

"TUNE_PARAMS": false,
"GS_RANDOM": false,
"GS_ITER": 2,
"GS_NESTED": false,
"GS_INNER_TEMP": false,
"CANDIDATE_SCORES": false,
"OPT_THRESH": false

Listing B.3: Optimization parameters

B.4 CROSS-VALIDATION PARAMETERS

Listing B.4 displays the cross-validation parameters, used for defining how model
evaluation should be conducted. If TEMPORAL is set, temporal cross-validation with
a rolling window of size WINDOW_SIZE is used (procedure as shown in 4.3). If
TEMPORAL is not set basic k-fold cross-validation is used for evaluation of the exper-
imental models, with k set equal to FOLDS. STRATIFIED, SHUFFLE are options for
the k-fold cross-validation. Lastly, the RESAMPLE_TEST can be set if both training
and testing data should be resampled (this is methodically incorrect, but is used to
show the impact in one of the experiments).

"crossval": [
{

"TEMPORAL": true,
"WINDOW_SIZE": 6,
"FOLDS": 5,
"STRATIFIED": false,
"SHUFFLE": true,
"RESAMPLE_TEST": false

Listing B.4: Cross-validation parameters

B.5 MODEL PARAMETERS

This section lists the model parameters, consisting of classifier parameters and fea-
turization parameters. Listing B.5 shows the 3 baseline classifiers and some basic
parameter ranges for optimization. The classifiers should be described in key value
pairs, with the classifier name as a key and its parameters in list form as the value.
The classifier parameters should be supplied as a stringified python dicts, so that
after evaluation and concatenation, a parameter dictionary as accepted by sklearn’s
GridSeachCV is the result.
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"LR": [
"{"clf’: [LogisticRegression()1}",
"{"clf__C’: np.logspace(-4, 4, 8)}",
"{"clf__class_weight': [{0:x, 1:1.0-x} for x in np.linspace(0.
01,0.2,10)1}"
1l
"XGB": [
"{'clf’': [XGBClassifier()]}",
"{"clf__eval_metric’: ['logloss’']}",
"{"clf__objective’: [’'binary:logistic’]}",
"{"clf__max_depth’: [3, 5, 15]}",
"{'clf__n_estimators’: [100, 300, 6001}",
"{’'clf__scale_pos_weight’': np.linspace(0.8,0.99,10)}"
Il
"LinearSVC": [
"{’clf': [LinearSVC()]}",
"{"clf__C': np.logspace(-4, 4, 8)}",
"{'clf__class_weight’: [{0:x, 1:1.0-x} for x in np.linspace(0.
01,0.2,10)]1}"

Listing B.5: Classifier parameters

The last part of the configuration consists of the feauturization settings of the

62

model (listing B.6). Here common preprocessing steps can be defined, such as
what numerical scaler to use, which textual columns are used and if they should be
combined or not. In the specific preprocessing dictionary, different NLP techniques
can be defined used for the vectorization of the textual columns. Multiple entries
can be supplied in list from to experiment with different NLP techniques.
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"preprocess_common": [
"{'preprocessor__num__scaler’': [StandardScaler()]1}",
"{’'preprocessor__text__vectorizer__columns’: [[’description’, '
domain’, ’vendor’]]1}",
"{’'preprocessor__text__vectorizer__combine_cols’: [True]}"
P
"preprocess_specific": {
"tfidf" ¢ [
"{’"preprocessor__text__vectorizer':[MultiColumnTfidfVectorizer
(None) ] }",
"{'preprocessor__text__vectorizer__max_features’': [1000]}",
"{'preprocessor__text__vectorizer__ngram_range’: [(1,4)]1}",
"{'preprocessor__text__vectorizer__sublinear_tf’': [True]}"
]

Listing B.6: Featurization parameters



ALL RESULTS

C.1 ASSUMPTION EXPERIMENTS

Experiment 1

Classifier Baseline Experiment Diff
PRE REC F1 PRE REC F1 F1
LR 0.258 0.022 0.041 0.818 0.095 0.171 0.13
SvC 0.429 0.004 0.008 0.692 0.032 0.061 0.053
XGB 0.244 0.043 0.073 0.359 0.131 0.192 0.119
Average 0.31  0.023 0.041 0.623 0.086 0.141 0.101

Table C.1: Experiment 1: EDB versus SYM ground truth (OWN)

Experiment 2

Classifier Baseline Experiment Diff
PRE REC F1 PRE REC F1 F1

SvC 0.773 0.548 0.641 0.667 0.01 0.02 -0.621

Average 0.773 0548 0.641 0.667 0.01 0.02 -0.621

Table C.2: Experiment 2: Exclusion of zero-day exploits (BUL)

Classifier Baseline Experiment Diff
PRE REC Fi1 PRE REC F1 F1

XGBOOST o0.962 0.864 0.91 0.709 0.368 0.485 -0.425

Average 0.962 0.864 0.91 0.709 0.368 0.485 -0.425

Table C.3: Experiment 2: Exclusion of zero-day exploits (REIN)
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Classifier Baseline Experiment Diff
PRE REC F1 PRE REC F1 F1

SvC 0.729 0.615 0.667 0.161 0.467 0.239 -0.428

Average 0.729 0.615 0.667 0.161 0.467 0.239 -0.428

Table C.4: Experiment 2: Exclusion of zero-day exploits with SMOTE (BUL)

Classifier Baseline Experiment Diff
PRE REC F1 PRE REC F1 F1

XGBOOST 0.949 0.867 0.906 0.601 0.421 0.495 -0.411

Average 0.949 0.867 0.906 0.601 0.421 0.495 -0.411

Table C.5: Experiment 2: Exclusion of zero-day exploits with SMOTE (REIN)

Experiment 3

Classifier Baseline Experiment Diff
PRE REC F1 PRE REC F1 F1
SVC 0.776 0551 0.644 0.846 0.858 0.852 0.208
Average 0.776 0551 0.644 0.846 0.858 0.852 0.208
Table C.6: Experiment 3: Resampling of testset (BUL)
Experiment 4
Classifier Baseline Experiment Diff
PRE REC F1 PRE REC F1 F1
LR 0.54 0.126 0.204 0.321 0.028 0.052 -0.152
SvC 0.49 0.135 0.211 0.202 0.023 0.041 -0.17
XGB 0.032 1.0 0.062 0.032 1.0 0.062 0.0
Average  0.354 0.42 0.159 0.185 0.35 0.052 -0.107

Table C.7: Experiment 4: Filtering of label leaking references (REIN)

Classifier Baseline Experiment Diff
PRE REC F1 PRE REC F1 F1

XGBOOST 0.641 0.394 0488 0.69 o0.114 0.196 -0.292

Average 0.641 0394 0488 0.69 0.114 0.196 -0.292

Table C.8: Experiment 4: Filtering of label leaking references (OWN)
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Experiment 5

C.1 ASSUMPTION EXPERIMENTS |

Classifier k-Fold Cutoff Online
PRE REC F1 PRE REC F1 PRE REC F1
XGBOOST o0.776 0.55 0.644 0.526 0.226 0.316 0.59 0.479 0.521
Average 0.776 055 0.644 0.526 0.226 0316 059 0479 0.521
Table C.9: Experiment 5: Cross-validation (BUL)
Classifier k-Fold Cutoff Online
PRE REC F1 PRE REC F1 PRE REC F1
XGBOOST o0.725 0.509 0.585 0.641 0.394 0488 0.679 0.492 0.56
Average 0.725 0.509 0.585 0.641 0.394 0488 0.679 0.492 0.56
Table C.10: Experiment 5: Cross-validation (REIN)
Experiment 6
Classifier Baseline Experiment Diff
PRE REC F1 PRE REC F1 F1
LR 0.18 0.108 0.135 0.124 0.204 0.154 0.019
SvC 0.128 0.068 0.089 0.142 0.104 0.12 0.031
XGB 0.032 1.0 0.062 0.032 1.0 0.062 0.0
Average  0.113 0.392 0.095 0.099 0436 0.112 0.017

Table C.11: Experiment 6: Parameter tuning with regular gridsearch compared to a nested

gridsearch
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