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A Decentralized Event-Based Approach for
Robust Model Predictive Control

Arman Sharifi Kolarijani , Sander Christian Bregman , Peyman Mohajerin Esfahani ,
and Tamás Keviczky

Abstract—In this paper, we propose an event-based sam-
pling policy to implement a constraint-tightening, robust
MPC method. The proposed policy enjoys a computation-
ally tractable design and is applicable to perturbed, linear
time-invariant systems with polytopic constraints. In par-
ticular, the triggering mechanism is suitable for plants with
no centralized sensory node as the triggering mechanism
can be evaluated locally at each individual sensor. From
a geometrical viewpoint, the mechanism is a sequence of
hyperrectangles surrounding the optimal state trajectory
such that robust recursive feasibility and robust stability
are guaranteed. The design of the triggering mechanism is
cast as a constrained parametric-in-set optimization prob-
lem with the volume of the set as the objective function.
Reparameterized in terms of the set vertices, we show that
the problem admits a finite tractable convex program refor-
mulation and a linear program relaxation. Several numerical
examples are presented to demonstrate the effectiveness
and limitations of the theoretical results.

Index Terms—Convex optimization, event-triggered con-
trol, polytope, robust model predictive control (RMPC).

I. INTRODUCTION

NOWADAYS, networked control systems (NCSs) generally
demand an array of compatibility and efficiency mea-

sures from control design methods, such as utilization under
shared resources, applicability to mobile tasks, and compatibil-
ity with digital communication infrastructures [1]. Event-based
control (EBC) is a class of strategies that aims to improve
the efficiency of NCSs in the context of communication and
computation. In EBC, the dynamics determine the instance to
update a control action (contrary to the traditional case where
a control action is updated periodically) [2]. There are two
options to implement such an event-based logic—embedded in
the sensory system, the so-called event-triggered control [3],
[4], or embedded in the controller, the so-called self-triggered
control [5], [6]. The responsible entity to determine an update
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instance is known as the triggering mechanism. In particular,
model predictive control (MPC) methods [7] have been the
subject of many studies in order to be amended with an EBC
mindset.

MPC methods are a class of on-line optimization-based con-
trol approaches. In these methods, a measure of system perfor-
mance is optimized over a finite horizon while states and inputs
are subject to certain constraints. When the underlying dynamics
is uncertain, the specific term robust MPC (RMPC) is used for
these methods in the literature [8]. We refer the interested reader
to the survey papers [9] and [10] that discuss about different
aspects of MPC.

Traditionally, the controller solves the corresponding opti-
mization problem at every time step and produces as outcomes
two sequences of optimal inputs and states. Then, the controller
sends the first element of input sequence to the actuators and
the remaining elements of the input sequence and the whole
state sequence are discarded. These discarded predictions in a
standard MPC setting can serve as a basis to design a trigger-
ing mechanism. Moreover, the computational burden of MPC
methods is a major drawback, hindering their usage in practice.
One thus hopes, by employing an EBC approach, to reduce
the frequency at which the underlying optimization problem is
solved. Notice that there are already some techniques in the
MPC literature (the so-called warm start approaches [11]) that
exploit the computed sequences at the previous step to speed up
the computation process.

There is also a big incentive to exploit the computed se-
quences of MPC methods in a class of NCSs, namely, wire-
less sensor/actuator networks (WSANs). In these systems, the
most important concern is the energy efficiency, see, e.g.,
[12, Sec. IV-B]. The main source of energy depletion in a
wireless node is the transceiver (responsible for sending and
receiving data). To reduce the frequency of data transfer, it is,
hence, more efficient (energywise) to aggregate the data into a
single packet (if possible) and transmit the resulting packet at
once over the communication network [13] and [14].

Statement of contribution: In this paper, an event-triggered
(ET) approach is proposed to implement an RMPC method
on perturbed, linear time-invariant (LTI) systems. The RMPC
method is originally introduced in [15]. The core idea behind
the ET approach is to construct a sequence of hyperrectangles
around the optimal state sequence available from solving the
RMPC problem. Then, these hyperrectangles will be sent to the
sensors. The optimal input sequence will also be transmitted
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to the actuators. Once the observed states at the sensory units
leave these hyperrectangles, a triggering happens and the states
at the triggering instance will be transmitted to the controller.
This procedure is then repeated in a sampled-data fashion. A
key feature of the proposed ET approach is its ability to decide,
based on the local observation of each individual sensor, whether
to trigger or not. This feature stems from the fact that the
sets describing the triggering mechanism are hyperrectangles.
Hence, the conditions required for a triggering in different
states of the system are independent of each other. This feature
is particularly appealing to systems with decentralized (spa-
tially dispersed) sensing units, including systems equipped with
high-level (or supervisory) MPC methods, e.g., water treatment
systems [16], HVAC systems [17], and commercial refrigeration
systems [18] to name a few. The collocation of the triggering
mechanism and the sensory units is physically impossible in
such systems. Moreover, the addition of a central node (on which
the triggering mechanism is placed on) to collect the sensory
data comes at the price of extra communication bandwidth
usage. On the theoretical side, the design of the ET approach
is decoupled from the design of the underlying RMPC method.
As a result, a fair comparison between the performances of
the ET and standard implementations of the RMPC method
becomes possible. This paper extends the results of the authors’
previous work in [19] in multiple directions, in particular, by
simplifying the triggering “law.” The approach in [19] requires
an “advanced” triggering mechanism that is responsible for:
1) constructing certain input and state sequences; 2) evaluating
the satisfaction of MPC’s constraints by these sequences; and
3) comparing the values of the cost function based on the con-
structed sequences with the value function at the last triggering
instance. The main contributions of this paper are summarized as
follows.

1) Decoupled recursive feasibility and stability: Given an
RMPC method in place, we propose a set-theory-based,
ET approach that preserves robust recursive feasibility
and robust stability. The proposed approach is decoupled
from the control synthesis process and does not require
additional assumptions, such as extra conditions on eigen-
values of weighting matrices in the cost function or the
need to define user-specified thresholds for the triggering
mechanism (see Theorem IV.1).

2) Decentralized applicability: The proposed approach en-
joys a decentralized triggering mechanism that only re-
quires local sensory information (see Definition III.3).

3) Tractable convex program reformulation: We show that a
certain type of nonconvex volume-maximization problem
with set-based constraints, that is deployed to design the
triggering mechanism, admits a finite tractable convex
program (CP) reformulation (see Theorem IV.4).

4) Suboptimal linear program (LP) relaxation: Motivated by
an approach in the literature, we further show that an
LP relaxation of the CP reformulation is possible (see
Theorem IV.5).

Literature review: In what follows, we first review several
event-triggered, MPC approaches. We then close this section
by giving a brief account of several computationally efficient

approaches that are customized for MPC problems. Related
works: Let us first mention the shared properties of the refer-
ences that follow—linear discrete-time models, event-triggering
mechanisms, constrained MPC methods, minimal (to none)
coupling of the parameters of the triggering mechanism and the
considered MPC method, and a computationally viable approach
to design the triggering mechanism.

To deal with practical issues, such as a band-limited commu-
nication channel, a novel design approach for NCSs is proposed
in [20]. They employ the notion of moving horizon [21] to
design the estimator and controller. A remarkable character of
their approach is its ability to decide on the fly which input
channel should be updated (i.e., a certain type input-channel
event-triggering control). In case of collocated controller and
actuator units, an event-based estimator with a bounded covari-
ance matrix is designed in [22]. While the estimator receives
data via a Lebesgue sampling approach, it periodically updates
the controller’s information regarding the disturbances with
a polytopic overapproximation of the covariance matrix. The
authors of [23] propose an interesting transmission strategy
for wireless sensor/controller communications with practical
energy-aware provisions (the controller is collocated with the ac-
tuator system). Using some predefined thresholds for each state’s
sensor (i.e., an �1-type triggering mechanism), the controller is
computed offline using an explicit MPC approach [24]. Based on
a prescribed 2-norm ball around the optimal state trajectory, the
authors in [25] propose a triggering mechanism for WSANs.
They show that the approach is robustly stable to a set that
is a function of the radius of threshold ball and the maximal
2-norm of disturbance. For linear, continuous-time dynamical
systems affected by a Wiener process, a codesign method (i.e.,
simultaneous design of the scheduler and the controller) is
proposed in [26]. The main idea is inspired by the notion of
rollout from dynamic programming [27]. More importantly, the
authors show that under some mild conditions, an EBC approach
outperforms a traditional control approach w.r.t. closed-loop
performance/average transmission rate. (Notice that for most
of the approaches in the literature including our paper such a
guarantee is not provided.) A set theoretic triggering mechanism
is introduced in [28] for systems with collocated controller and
sensory units. The approach is inspired by the tube-based MPC
proposed in [29]. By exploiting the known probability distri-
bution of disturbance, they also guarantee an average sampling
rate. However, their tube-contraction method requires a certain
type of realization of a discrete-time system, see [28, Remark
8]. Demirel et al., introduce a sensor/actuator event-triggering
mechanism for control systems with limited number of control
messages (i.e., communication and computation resources are
scarce) [30]. They relax the underlying combinatorial prob-
lem into a convex one by an appropriate definition of event
thresholds. In [31], a packetized approach is proposed for input-
affine, nonlinear systems with bounded additive disturbances in
continuous-time. In the proposed approach, an RMPC controller
(connected via a communication network to the plant) takes
into account the mismatched uncertainties while an integral
sliding-mode controller [32] (placed at the plant) counters the
effect of the matched uncertainties.
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Algorithmic viewpoint: An MPC optimization problem is
computationally expensive by itself. Hence, the merit of an
event-based policy of implementation would be lost if the
mechanism demands a drastically higher computational effort
compared to the underlying MPC problem. Dunn and Bertsekas
in [33] exploit the structure of their problem to reduce the cubic
complexity of computing a Newton step to a linear one. In [34],
the authors use a specific ordering of decision variables to
promote a sparse structure that decreases the cost of computing
a control action. The authors in [35] employ a simple, gradient-
based algorithm to solve an MPC problem while providing a
priori computational complexity certificate.

The layout of the paper is as follows. The mathematical
notions used in the paper are outlined in Section II. Section III
is devoted to the considered RMPC method. The main results
regarding the event-based implementation policy are introduced
in Section IV. Section V contains the technical proofs. Several
numerical examples are presented in Section VI to evaluate the
effectiveness and limitations of the theoretical results. Finally,
we present several future research directions in Section VII.

II. NOTATION AND PRELIMINARIES

In what follows, we begin with a brief review of the mathe-
matical preliminaries employed in the rest of the paper.

Notation: The set of nonnegative integers is denoted by Z≥0.
Given positive integers m and n, Rm and Rm×n represent
the m-dimensional Euclidean space and the space of m× n
matrices with real entries, respectively. Given two integers
i, j where i ≤ j, {i : j} := {i, i+ 1, . . . , j}. For any pairs of
vectors a, b ∈ Rn, the inequality a < (≤)b is realized in a
componentwise manner. Given a vector v ∈ Rn and a scalar

p ≥ 1, ‖v‖p denotes the p-norm
(∑n

i=1 (v
i)p
)1/p

. Given a
matrix M ∈ Rm×n, Mij denotes the ith row, jth column entry
of M . Moreover, the matrix M+ ∈ Rm×n is the matrix with
entries M+

ij := max{0,Mij}. The n× n zero and identity ma-
trices are denoted by 0n and In, respectively. Given a setS ⊂ Rn

and a matrix M ∈ Rm×n, the set MS denotes the set {c ∈
Rm : ∃s ∈ S,Ms = c}. Given a matrix M � 0 (i.e., positive
definite), the squared weighted distance of a point r ∈ Rn from
a closed set S ⊂ Rn is defined as dM (r,S) := mins∈S ||r −
s||2M = mins∈S (r − s)	M(r − s). Denote the projection of r
onto S by ΠM (r,S) ∈ argmins∈SdM (r,S). Note that when
S is also convex, the projection is unique. Given sets C and
D, the Pontryagin difference C 
 D and the Minkowski sum
C ⊕ D are defined as C 
 D := {c : c+ d ∈ C, ∀d ∈ D} and
C ⊕ D := {c+ d : ∀c ∈ C, ∀d ∈ D}, respectively. The function
sign(·) represents the standard sign function. Given a set X ∈
Rn and an extended real-valued function f : X → [−∞,+∞],
the effective domain of f is the set dom(f) = {x ∈ X : f(x) <
∞}.

The following result will be used frequently in the develop-
ment of the triggering mechanism.

Lemma II.1 (Set-difference lower bound [15]): Let r be a
vector in Rn, B and C be two compact sets in Rn, and M
be a positive definite matrix in Rn×n. Then, dM (r + c,B) ≤
dM (r,B 
 C), for all c ∈ C.

We now revisit some notions from convex analysis (see
e.g., [36, Sec. 2] for a compact exposition of the subject). Given
a set S ⊂ Rn, the support function of S evaluated at η ∈ Rn is
hS(η) := sups∈S 〈η, s〉. The domain KS on which the support
function is defined is a convex cone pointed at the origin. If S
is bounded, then KS := Rn. Given a matrix M ∈ Rn×m and
a vector v ∈ Rn, if M	v ∈ KS , then hMS(v) := hS(M

	v).
Suppose S ⊂ Rn is closed and convex. Then, S := {s ∈ Rn :
〈η, s〉 ≤ hS(η), ∀η ∈ KS}, i.e., the intersection of its supporting
half-planes. A set S ⊂ Rn is called a polyhedron, if S = {s ∈
Rn : ASs ≤ bS}, AS ∈ Rm×n, bS ∈ Rm. If the polyhedron S
is bounded, the set is called a polytope and its representation
given above is known as the H-representation. Furthermore,
the support function hS(η) of a polytope S is the solution
of the LP, hS(η) = maxs 〈η, s〉 subject to ASs ≤ bS . Given
the H-representation of a polytope, we employ the notations
ai,S ∈ R1×n and aS,j ∈ Rm×1 to denote the ith row and the
jth column of AS , respectively. Moreover, bi,S is the ith entry
of bS . Given a polyhedron S ⊂ Rn and a set V ⊂ Rn, assume
thathV(a

	
i,S) is well defined for all i ∈ {1 : m}. Then,S 
 V :={

z ∈ Rn : 〈a	i,S , z〉 ≤ bi,S − hV(a
	
i,S), ∀i ∈ {1 : m}

}
. For any

vector-pairs l, u ∈ Rn such that l < u, the full-dimensional con-
vex polytope B(l, u) := {x ∈ Rn : l ≤ x ≤ u} = {x ∈ Rn :
ABx ≤ bB} is called a hyperrectangle, where AB := [In − In]	

and bB = [u	 − l	]	.

III. ROBUST MODEL PREDICTIVE CONTROL METHOD

In this section, we introduce the class of constrained dynami-
cal systems considered in this paper, followed by the description
of the RMPC method. At last, we formally state the problem
addressed in this paper.

Consider an LTI system with a bounded additive disturbance
given by

x+ = Ax+Bu+ w (1)

where x+ is the successor state and x, u, and w are the current
state, input, and disturbance, respectively. The current state,
input, and disturbance are subject to the hard constraints

x ∈ X ⊂ Rnx u ∈ U ⊂ Rnu w ∈ W ⊂ Rnx . (2)

A system is called the nominal system associated with (1) when
w = 0. Given a positive integer N , let U := UN =

∏N−1
i=0 U

(W := W N ) denote the class of admissible control sequences
u := {ui}i∈{0:N−1} (admissible disturbance sequences w :=
{wi}i∈{0:N−1}). Initiated at state x, the solution to (1) at time
i with the control and disturbance sequences u and w, respec-
tively, is denoted by φu,w

i (x). Similarly, we define φu,w(x) :=

{φu,w
i (x)}i∈{0:N}. Moreover, let φu,0

i (x) denote the nominal
solution with the input sequenceu initiated at statex. The RMPC
method is designed such that the state x and the input u eventu-
ally converge to some user-defined target sets T X ⊂ Rnx and
T U ⊂ Rnu , respectively, while the constraints (2) are satisfied
at all times.

Assumption III.1 (System and constraint sets): 1) Nominal
controllability: The pair (A,B) is controllable. 2) Polytopic
sets: The sets X, U , T X, T U , and W are all convex, compact
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polytopes containing their underlying spaces’ origin in their
interior.

We start by introducing two types of feedback gains which are
used in the RMPC method and are essential for the construction
of the triggering mechanism. LetF ∈ Rn×m be a given feedback
gain that guarantees the stability of the nominal system with u =
Fx. The nominal gain F can be designed so that a satisfactory
performance (e.g., in an LQ optimal control sense) is guaranteed
for the nominal system.

Let integer N ≥ nx + 1 be the horizon length of the RMPC
method and integer M be given, where M ∈ {nx : N − 1}.
Suppose next that a set of feedback gains K = {Ki}i∈{0:N−1}
are given such that

∏M
i=1(A+BKi) = 0, i.e., for all k ≥ M ,

φu,0
k (x) = 0. We call the set of gains K the tightening gains

since these gains are employed in the state and input constraint
tightening process. We refer the interested reader to [15, Sec. IV]
for a possible approach to construct the gains K. The constraint
tightening approach is applied to the input, state, input target,
and state target sets, that is, for all i ∈ {0 : N − 2}

U0 = U , Ui+1 = Ui 
KiLiW (3a)

X0 = X, Xi+1 = Xi 
 LiW (3b)

T U
0 = T U , T U

i+1 = T U
i 
KiLiW (3c)

T X
0 = T X, T X

i+1 = T X
i 
 LiW (3d)

whereL0 = Inx
andLi+1 = (A+BKi)Li for all i ∈ {0 : N −

2}. The M -step nilpotency of the set of gains K implies that for
all i ∈ {M : N − 1}, Li = 0nx

.
Let the terminal set Xf ⊂ Rnx be a control invariant set for

the nominal system, i.e., (A+BF )ξ ∈ Xf for all ξ ∈ Xf .
Assumption III.2 (Terminal set): For all ζ ∈ Xf , the follow-

ing conditions hold:

ζ ∈ XN−1 ∩ T X
N−1 Fζ ∈ UN−1 ∩ T U

N−1.

For the sake of notational simplicity, let us define UN :=∏N−1
i=0 Ui and XN :=

∏N−1
i=0 Xi ×Xf . The cost function of the

RMPC problem is

VN (x,u) :=

N−1∑

i = 0

dQ(φ
u,0
i (x), T X

i ) + dR(ui, T U
i )

+ δfeas
(
u,φu,0(x)

)
(4)

where δfeas
(
u,φu,0(x)

)
= 0 if u ∈ UN and φu,0(x) ∈ XN ,

and = ∞ otherwise, is the indicator function of the set UN ×
XN . The input and state constraints are embedded in the ob-
jective function via the indicator function. The optimization
problem for a finite horizon N with an initial state x reads as

V ∗
N (x) := min

u
VN (x,u) (5)

with umpc(x) := argminuVN (x,u) as the optimal input se-
quence. When it is clear from the context, we may instead use
the shorthand notation umpc. The above-mentioned sequence of
inputs is indeed an optimal solution to a nominal (i.e., w = 0)
finite optimization problem emerging in the context of finite
horizon MPC in the rest of this paper. In this light, we denote

this nominally optimal controller by a similar label, for which
the associated nominal state sequence is φumpc,0(x).

In a standard RMPC setting, the optimal control problem (5)
is solved. The first element umpc

0 (x) of umpc(x) is then applied
to the plant yielding to the closed-loop dynamics x+ = Ax+
Bumpc

0 (x) + w. In an event-based setting, the triggering mech-
anism generally exploits the optimal state sequence φumpc,0(x)
in order to possibly employ the rest of the elements in the nom-
inally optimal input vector umpc(x). The challenge in designing
the triggering mechanism is then to guarantee robust stability
and robust recursive feasibility of the resulting event-triggered,
closed-loop dynamics.

Definition III.3 (Triggering mechanism): Given an initial
state x and a sequence of (possibly) state-dependent, hyper-
rectangular sets E(x) := E0 ∪ {Ei(x)}N−1

i=1 ⊂ (Rnx)N , the trig-
gering instance is defined by

kwtrig(x) := min
{
j ∈ {0 : N − 1} :

φumpc,w
j (x)− φumpc,0

j (x) /∈ Ej(x)
}

(6)

where E0 := Rnx .
The quantity kwtrig(x) is known as the interexecution time in

the literature. One can observe that φumpc,w
0 (x) = φumpc,0

0 (x) =

x. As a result, φumpc,w
0 (x)− φumpc,0

0 (x) = 0 ∈ Rnx = E0, and
thus, kwtrig(x) ≥ 1. The closed-loop dynamics is then, for all t ∈
Z≥0

ξt+1 = Aξt +Bumpc
t−τt

(ξτt) + wt (7a)

τt+1 =

⎧
⎪⎨

⎪⎩

τt,

{
t− τt ≤ N − 1 &

ξt − φumpc,0
t−τt

(ξτt) ∈ Et−τt(ξτt)
t, otherwise

(7b)

given the initial state ξ0 and the initial triggering instance τ0 = 0.
Here, τt denotes the last triggering instance up to time t. Also,
notice that a mandatory triggering is put in place at time τt +N .
The problem addressed in this paper is now introduced.

Problem III.4: Consider the closed-loop dynamics (7) under
Assumptions III.1 and III.2. Devise an approach to construct the
sequence of triggering setsE(ξτt) in (6) such that the trajectories
of the closed-loop dynamics satisfy:

1) Recursive feasibility: IfV ∗
N (ξ0) < ∞, thenV ∗

N (ξt) < ∞,
for all t ∈ Z≥0;

2) Robust stability: The states and inputs of the closed-loop
dynamics converge to the target sets T X and T U , respec-
tively, (limt→∞ V ∗

N (ξt) = 0).
Remark III.5 (Smart actuators and sensors): The actuator

and sensor units are “smart” in the following sense. The actuator
(sensor) units can buffer the time-stamped and packetized
sequence umpc(ξτt) ({φumpc,0

s (ξτt)⊕ Es(ξτt)}N−1
s=1 ). The

actuator units consecutively apply the input action umpc
s−τt(ξτt)

on the plant at each time s ∈ {τt : τt+1 − 1}. The sensor units
evaluate the triggering condition

ξs /∈ φumpc,0
s−τt (ξτt)⊕ Es−τt(ξτt)

at each time s ∈ {τt + 1 : τt +N − 1}. When the triggering
condition holds at some time s, the sensors send the most recent
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states ξs to the controller and the triggering instance is set to
τt+1 = s.

Remark III.6 (Iteration complexity): RMPC problems with
linear dynamics, a quadratic cost function, and polytopic con-
straints are quadratic programs for which dedicated solvers
provide the complexity per iteration O(N(nx + nu)

3) [34].

IV. MAIN RESULTS

In this section, we provide several approaches to construct
the sequence of sets E(x) which meets the requirements of
Problem III.4. To this end, we begin by describing a certain type
of constrained optimization problem that produces E(x). Based
on these constructed sets, we then state the main theoretical
results of this paper.

A. Construction of Hyperrectangles E(x)
Let j ∈ {1 : N − 1}. The procedure to construct each hy-

perrectangle Ej(x) comprises the parametric representation of
Ej(x), the definition of auxiliary quantities associated with
Ej(x), and finally, the optimization problem to find Ej(x).

Notice that one way to represent a hyperrectangle Ej(x) is

Ej(x) :=
{
ε ∈ Rnx : −ej(x) ≤ ε ≤ ej(x)

}

for some vectors ej(x), ej(x) ∈ Rnx
≥0. In other words, each hy-

perrectangle Ej(x) is parameterized by 2nx entries of ej(x) and
ej(x).

Let us now introduce the auxiliary quantities involved in
the derivation of Ej(x). Let Acl := (A+BF ) be the nominal,
closed-loop state matrix. Define the input sequence ũ(x; j) and
the associated state sequence φũ,0(x; j) as

ũi(x; j) :=

{
umpc
j+i(x), i ∈ {0 : N − j − 1}

FAj+i−N
cl φumpc,0

N (x), i ∈ {N − j : N − 1}
(8a)

φũ,0
i (x; j) :=

⎧
⎨

⎩

φumpc,0
j+i (x), i ∈ {0 : N − j}

Aj+i−N
cl φumpc,0

N (x), i ∈ {N − j + 1 : N}.
(8b)

The above-mentioned candidate input sequence is constructed
by concatenating the last N − j elements of umpc(x) with the
nominal feedbackF (recursively) applied to the optimal terminal
state φumpc,0

N (x).
Define T U

N :=
∏N−1

i=0 T U
i and T X

N :=
∏N−1

i=0 T X
i . Denote

now the projections of optimal state and input sequences
φumpc,0(x) and umpc(x) onto their corresponding target sets by
sX(x) ∈ T X

N and sU (x) ∈ T U
N , where for all i ∈ {0 : N − 1}

sX
i (x) := ΠQ(φ

umpc,0
i (x), T X

i ) sU
i (x) := ΠR(u

mpc
i (x), T U

i ).

Based on the above definition, the next two auxiliary quantities
are defined as follows. Let s̃U (x; j) and s̃X(x; j) represent
the projection of ũ(x; j) and φũ,0(x; j) onto T U

N and T X
N ,

respectively. We have

s̃U
i (x; j) :=

{
sU
j+i(x), i ∈ {0 : N − j − 1}

ũi+j(x; j), i ∈ {N − j : N − 1}
(9a)

s̃X
i (x; j) :=

⎧
⎨

⎩

sX
j+i(x), i ∈ {0 : N − j}

φũ,0
j+i(x; j), i ∈ {N − j + 1 : N − 1}.

(9b)

Let us clarify the conventions used in (9). The definition of
ũi(x; j) in (8a) implies that ũi(x; j) ∈ T U

N−1 ⊆ T U
i , for all i ∈

{N − j : N − 1}. That is, the distance dR(ũi(x; j), T U
i ) = 0,

and hence, ΠR(ũi(x; j), T U
i ) = ũi(x; j), as given in (9a). A

similar line of reasoning has been used in (9b).
We next adopt the feedback gains K̃i and the state-transition

matrices L̃i defined as

K̃0 = 0nu×nx
, K̃i+1 = Ki, ∀i ∈ {0 : N − 2} (10a)

L̃0 = Inx
, L̃i+1 = (A+BK̃i)L̃i, ∀i ∈ {0 : N − 1}. (10b)

In the following, we use the matrices (10) to identify certain
sets around the optimal state sequence φumpc,0(x). These sets in
turn will be used to formulate recursive feasibility and robust
stability for the event-triggering setting (see the problem (12)
and Section V-A).

Let us now provide two definitions for the volume of Ej(x),
that are

vol1(Ej(x)) :=
∏

p∈{1:nx}

(
epj (x) + epj (x)

)
(11a)

vol2(Ej(x)) :=
∏

p∈{1:nx}

(
epj (x)× epj (x)

)
(11b)

where epj (x) (resp. epj (x)) denotes the pth entry of ej(x) (resp.
ej(x)). Notice that (11a) is the standard definition of volume for
Ej(x) in Rnx . As it will be discussed later on, the application of
(11a) to construct Ej(x) leads to a more asymmetric spread of
Ej(x) around φumpc,0

j (x) compared to the application of (11b).
The asymmetry in turn implies that the triggering mechanism
has no robustness in certain error directions, see Remark IV.7
for further details. Nonetheless, the definition (11a) leads to the
construction of sets that have the maximum possible volume, in
particular, higher than the ones constructed based on (11b).

For all j ∈ {1 : N − 1}, the problem to find each Ej(x) is

max
ej(x),ej(x)≥0

volq(Ej(x)) (12a)

s.t.

φũ,0
i (x; j) ∈ Xi 
 L̃iEj(x), ∀i ∈ {0 : N − 1} (12b)

ũi(x; j) ∈ Ui 
 K̃iL̃iEj(x), ∀i ∈ {0 : N − 1} (12c)

s̃X
i (x; j) ∈ T X

i 
 L̃iEj(x), ∀i ∈ {0 : N − 1} (12d)

s̃U
i (x; j) ∈ T U

i 
 K̃iL̃iEj(x), ∀i ∈ {0 : N − 1} (12e)

where q ∈ {1, 2} determines which type of the volume def-
inition in (11) is chosen. Notice that the objective function
volq(Ej(x)) is a nonlinear, nonconvex function with a decision

Authorized licensed use limited to: TU Delft Library. Downloaded on January 12,2022 at 13:29:12 UTC from IEEE Xplore.  Restrictions apply. 



3522 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

variable Ej(x). Hence, the problem (12) is difficult to solve.
In the next subsection, we show that this problem remains
practically solvable, in particular, the set-based constraints
(12b)–(12e) are effectively representable by linear inequali-
ties (i.e., polytopic inequalities) such that: 1) the optimization
problem (12) has a CP counterpart (in Theorem IV.4) and
2) the optimization problem (12) admits an LP relaxation (in
Theorem IV.5).

B. Event-Based Implementation

We first show that the robust stability of the event-triggered,
closed-loop dynamics (7) is guaranteed, which in turn leads to
recursive feasibility of the closed-loop system. The triggering
mechanism (6) is constructed by the approach proposed in (12).
We next establish that the nonconvex problem (12) to construct
the hyperrectangles E(x), has a CP reformulation and an LP
relaxation, and therefore, can be efficiently solved in practice.

Theorem IV.1 (Robust convergence): Consider the closed-
loop dynamics (7), and suppose that the initial state ξ0 is feasible
(i.e., V ∗

N (ξ0) < ∞). For all s ∈ {τt + 1 : τt+1}, there exists an
input sequence u ∈ UN such that

V ∗
N (ξτt+1

)− V ∗
N (ξτt) ≤ VN

(
ξs,u(ξs)

)
− V ∗

N (ξτt)

≤ −
(

s−τt−1∑

k=0

dQ(φ
umpc,0
k (ξτt), T X

k ) + dR(u
mpc
k (ξτt), T U

k )

)

.

(13)

In particular, the closed-loop dynamics (7) is asymptotically
stable, i.e., limt→∞ V ∗

N (ξt) = 0.
Remark IV.2 (Recursive feasibility): The second inequality

in (13) implies that VN

(
ξs,u(ξs)

)
< ∞, for all s ∈ {τt + 1 :

τt+1}. In other words, the optimization problem (5) remains
feasible for all time t ∈ Z>0.

Remark IV.3 (Transmission protocol): We assume that all
sensor and actuator units are clock synchronized. When the
problem (5) is solved, the controller node sends: 1) umpc(ξτt) to
the actuator nodes and 2) each entry of φumpc,0

j (ξτt)− ej(ξτt)

and φumpc,0
j (ξτt) + ej(ξτt) to the corresponding sensory nodes,

for all j ∈ {1 : N − 1}. Moreover, the nx sensor units declare a
triggering instance to each other, through a cost-efficient short-
range transmission. Then, all sensors declare their time-stamped,
observed states to the controller.

The successful usage of the above-mentioned results is con-
ditioned upon the premise that there exist computationally
tractable methods to construct the sets E(x). We now revisit
problem (12) to show that such a premise is valid by provid-
ing two frameworks—one in a CP form and another one in
an LP form. In these frameworks, the parametric-in-set con-
straints (12b)–(12e) can be reformulated into a new set of
linear inequalities in terms of the vertices of each set Ej(x).
We shall call the polytope represented by the derived linear
inequalities, the principal polytope S̄ . Both frameworks try
to find a maximum-volume hyperrectangle Ej(x) inscribed (or
contained) in the principal polytope such that 0 ∈ Ej(x). In the
LP framework, we partly employ some results from [37], see

Section V-B and avoid reiterating the proofs of borrowed mate-
rial. For notational convenience, let ξ ∈ S 
MB(l, u) represent
a concatenated version of the constraint (12b)–(12e) where, in
particular,B(l, u) := Ej(x). Hereafter, when we take the volume
(of a hyperrectangle) as defined in (11), index q = 1 and q = 2
refers to (11a) and (11b), respectively.

Theorem IV.4 (Volume maximization—CP reformulation):
Consider a vector ξ ∈ Rp, a matrix M ∈ Rp×k, and a
polytope S = {s ∈ Rp : ASs ≤ bS} containing the origin
where AS ∈ Rm×p and bS ∈ Rm. The maximum volume
hyperrectangle B(l, u) ⊂ Rk that contains the origin and
satisfies ξ ∈ S 
MB(l, u) is B(−v∗, v∗) where v∗ and v∗ are
the optimal solutions of the problem

min
v,v

fq
(
v, v
)

s.t. 〈wi, [v	 v	]	〉 ≤ bi,S − ai,Sξ, ∀i ∈ {1 : m}
v ≥ 0, v ≥ 0 (14)

where for q ∈ {1, 2}

f1
(
v, v
)
:= − Σ

j∈{1:k}
log
(
vj + vj) (15a)

f2
(
v, v
)
:= − Σ

j∈{1:k}
log
(
vj
)
+ log

(
vj) (15b)

and for all j ∈ {1 : k}

wi
j =

{(
M	a	i,S

)
j
, if ŵi

j = 1

0, otherwise

wi
k+j =

{−
(
M	a	i,S

)
j
, if ŵi

j = −1

0, otherwise
(16a)

with ŵi := sign(M	a	i,S), for all i ∈ {1 : m}.
Theorem IV.5 (Volume maximization—LP relaxation):

Suppose the hypotheses in Theorem IV.4 hold.
1) (q = 1) The maximum volume r-constrained hyperrect-

angle B(l, u) ⊂ Rk that contains the origin and satisfies
ξ ∈ S 
MB(l, u) is B(z∗, z∗ + λ∗r) for which z∗ ∈ Rk

and λ∗ ∈ R are the optimal solutions of

max
z,λ

λ

s.t. ASMz + (ASM)+rλ ≤ bS −ASξ

z + λr ≥ 0, z ≤ 0 (17a)

where the jth entry of r, j ∈ {1 : k}, is defined as

rj(S̄) := max
z,ω

ω

s.t. ASMz ≤ bS −ASξ

ASM(z + ωej) ≤ bS −ASξ

z + ωej ≥ 0, z ≤ 0 (17b)

where ej ∈ Rk is the unit vector in the jth direction and
the polytope S̄ is

S̄ := {z ∈ Rk : ASMz ≤ bS −ASξ}.
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2) (q = 2) The maximum volume r-constrained hyperrect-
angle B(l, u) ⊂ Rk that contains the origin and satisfies
ξ ∈ S 
MB(l, u) is B(−λ∗r1, λ

∗r2) for which λ∗ ∈ R
is the optimal solution of

max
λ

λ

s.t. (W )+rλ ≤ B (18a)

where r =
(
r	2 , r

	
1

)	
and the jth entry of r, j ∈ {1 : 2 k},

is defined as

rj := max
ω

ω

s.t. W ′(ωej) ≤ B′ (18b)

where ej ∈ R2k is the unit vector in the jth direction

W =
(
w1, . . . , wm

)	
W ′ =

⎛

⎜
⎜
⎝

W

− Ik 0k×1

0k×1 −Ik

⎞

⎟
⎟
⎠

B = bS −ASξ B′ =
(
B	, 01 × 2k

)	

and for all i ∈ {1 : m}, wi are defined in (16).
We should emphasize that although Theorems IV.4 and IV.5

provide a way to construct Ej(x) with a maximal volume, the
derived set is not unique (the corresponding cost functions
of these approaches are not strictly convex to guarantee the
uniqueness of the solution). In the remainder of the paper, we
denote the construction approach based on the CP (14) with
q = 1 and q = 2 by CP1 and CP2, respectively. Furthermore,
LP1 represents the LP relaxation (17) of CP1 and LP2 denotes
the LP relaxation (18) of CP2.

C. Further Comments on Complexity and Sensitivity

In the rest of this section, we allude briefly to two impor-
tant practical aspects of the proposed construction approaches
and possible directions to improve them. First, since these ap-
proaches are implemented online, they require an extra com-
putation step besides the computation of the optimal input
sequence. Fixed-thresholding approaches in the literature, for
example [25], avoid this extra step by considering predefined
triggering sets. We provide the arithmetic complexity of the
proposed approaches to quantify the extra computational burden.
To this end, we adopt the following notion of an oracle to repre-
sent the optimization problems in this paper. Let A ∈ Rnc×nd ,
b ∈ Rnc , c ∈ Rnd , and f : Rnd → R be a concave function.
Also, let lp(nc, nd) denote the oracle complexity for solving
maxη{c	η : Aη ≤ b}, and cp(nc, nd) denote the oracle com-
plexity for solving maxη{f(η) : Aη ≤ b}.

Remark IV.6 (Computational complexity): The oracle com-
plexity of the CP reformulations (14) in Theorem IV.4 iscp(m+
2 k, 2k) and of the LP reformulations (17) and (18) in The-
orem IV.5 are lp(m+ 2 k, k + 1) + k × lp(2m+ 2 k, k + 1)
and lp(m, 1) + 2k × lp(m+ 2 k, 1), respectively. A possible
remedy to circumvent these computations is to introduce a

Fig. 1. Comparison of the CP and LP approaches to construct Ej(x) ⊆
S. (a) S is distributed in a fairly uniform manner around the origin. All the
approaches provide close behaviors. (b) S is distributed in a relatively
uneven manner around the origin. The approaches CP2 and LP2 pro-
mote more symmetric constructions compared to the approaches CP1

and LP1. (a) Well-shaped polytope example, rc
r◦

= 1.0861. (b) Ill-shaped
polytope example, rc

r◦
= 8.0669.

state-independent triggering law, as opposed to the current state-
dependent law (6). This extension would allow to compute the
desired sets offline and only once.

The other issue regarding the proposed approaches is the
asymmetry of the triggering sets with respect to the opti-
mal state sequence. Let polytope S ⊂ Rnx represent the con-
straints (12b)–(12e) that the triggering set Ej(x) satisfies. In
other words, Ej(x) is constructed inside S . Recall that Ej(x)
represents the “allowable” prediction error so that the triggering
mechanism is not activated. Qualitatively speaking, for a “better”
directional resilience against prediction errors, one would prefer
symmetry in the constructed Ej(x). The above statements are
schematically depicted in Fig. 1. When S is well shaped as
in Fig. 1(a), the approaches in Theorems IV.4 and IV.5 lead
to a relatively symmetric set Ej(x) with respect to the origin.
When S is ill shaped as in Fig. 1(b), the constructed set Ej(x)
is, however, extremely asymmetric with respect to the origin
along some coordinates. This difference is well captured by the
geometric measure rc

r◦
ofS , where rc is the radius of the maximal

2-norm ball inside S , and r◦ is the radius of the maximal 2-norm
ball, centered at the origin and inside S . By definition, we have
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rc
r◦

≥ 1. Observe that in well shaped cases rc/r◦ ≈ 1 and in
ill-shaped cases rc/r◦ � 1.

Remark IV.7 (Directional sensitivity to prediction errors):
The directional sensitivity issue is the main reason for introduc-
ing the second definition (11b) of the volume. To see this, assume
first that our goal is to maximize the log value of the volume of
Ej(x). The first definition (11a) solely aims at maximizing the
width of Ej(x) within S along each coordinate. On the other
hand, the second definition (11b) maximizes the width of Ej(x)
in both positive and negative directions along each coordinate.
As shown in Fig. 1, in both cases the set Ej(x) constructed
by the approaches CP2 and LP2 is typically more symmetric
compared to those constructed by the approaches CP1 and LP1.
An interesting research direction to alleviate this sensitivity issue
is to investigate the impact of the MPC design parameters (e.g.,
the tightening gains K or the target sets T X and T U ).

V. TECHNICAL PROOFS

A. Proof of Theorem IV.1

The proof consists of five main steps. Each step is labeled
by the guaranteed property. Let x := ξτt be the state at the last
triggering instance. Define the prediction error

ewj (x) = φumpc,w
j (x)− φumpc,0

j (x) (19)

indicating the mismatch between the perturbed system and the
nominal one. For some integer j ∈ {0 : N − 1}, suppose that
the mechanism is enabled at time j + 1, that is, either (1) j <
N − 1 so that for all i ∈ {0 : j}, ewi (x) ∈ Ei(x) and ewj+1(x) /∈
Ej+1(x), or (2) j = N − 1 [see equation (7b)]. We omit the
arguments of variables for convenience when it is clear from
the context (unless mentioned otherwise). In what follows, we
also use the notation �(xi, ui) for dQ(xi, T X

i ) + dR(ui, T U
i ) for

notational simplicity.
1) Interevent recursive feasibility: Define the candidate input

sequence uc(x; j) such that for all i ∈ {0 : N − 1}

uc
i := ũi + K̃iL̃ie

w
j (20a)

and its associated candidate state sequence φuc,0(x; j), where
for all i ∈ {0 : N}

φuc,0
i := φũ,0

i + L̃ie
w
j . (20b)

Note thatφuc,0
0 = φumpc,w

j anduc
0 = umpc

j . We now establish that
the sequences uc and φuc,0 satisfy uc ∈ UN and φuc,0 ∈ XN ,
i.e.,VN (φumpc,w

j ,uc) < ∞. By assumption, ewj ∈ Ej . Moreover,
Ej satisfies (12b)–(12c). From the definition of the Pontrya-
gin difference, it follows that uc

i ∈ Ui and φuc,0
i ∈ Xi, for all

i ∈ {0 : N − 1}. Recall that LN−1 = 0. Hence, L̃N = 0 and
φuc,0
N = φũ,0

N . From (8b), we have φũ,0
N = Aj

clφ
umpc,0
N (x). Since

Xf is a control invariant set, φuc,0
N ∈ Xf . We conclude that

VN (φumpc,w
j ,uc) < ∞.

2) Interevent cost function decay: Observe that

dQ(φ
uc,0
i , T X

i ) = dQ(φ
ũ,0
i + L̃ie

w
j , T X

i )

≤ dQ(φ
ũ,0
i , T X

i 
 L̃iEj)

where we made use of the definition (20b) and Lemma II.1,
respectively. Recall from (12d) that s̃X

i ∈ T X
i 
 L̃iEj . Hence

0 ≤ dQ(φ
uc,0
i , T X

i ) ≤ dQ(φ
ũ,0
i , s̃X

i ). (21a)

Similarly, one can arrive at

0 ≤ dR(u
c
i, T U

i ) ≤ dR(ũi, s̃
U
i ). (21b)

Consider i ∈ {0 : N − j − 1}. In light of the definitions (8b)
and (9b), we have dQ(φ

ũ,0
i , s̃X

i ) = dQ(φ
umpc,0
j+i , T X

j+i). Thus

dQ(φ
uc,0
i , T X

i ) ≤ dQ(φ
umpc,w
j+i , T X

j+i). (22a)

In a similar fashion, we can show

dR(u
c
i, T U

i ) ≤ dQ(u
mpc
j+i, T U

j+i). (22b)

From (22), it is then straightforward that

N−j−1∑

i=0

�(φuc,0
i , uc

i) ≤
N−j−1∑

i=0

�(φumpc,0
j+i , umpc

j+i). (23a)

Now, let i ∈ {N − j : N − 1} and consider the definition (9).
Then, dQ(φ

ũ,0
i , s̃X

i ) = dR(ũi, s̃
U
i ) = 0. These equality rela-

tions coupled with (21) give rise to

N−1∑

i=N−j

�(φuc,0
i , uc

i) = 0. (23b)

From (23), we finally infer that if ewj ∈ Ej , then

VN (φumpc,w
j ,uc) = VN (φuc,0

0 ,uc)

≤ V ∗
N (x)−

j−1∑

i=0

�(φumpc,0
i , umpc

i ). (24)

3) At-event recursive feasibility: Consider now the new can-
didate input sequence ûc(x; j + 1) where

ûc
i :=

{
uc
i+1 +KiLiwj , ∀i ∈ {0 : N − 2}

Fφuc,0
N + FLN−1wj , i = N − 1

(25a)

and its associated candidate state sequence φ̂ûc,0(x; j + 1) such
that

φ̂ûc,0
i :=

⎧
⎨

⎩

φuc,0
i+1 + Liwj , ∀i ∈ {0 : N − 1}

Aclφ̂
ûc,0
N−1, i = N

(25b)

where wj ∈ W . Observe that

φ̂ûc,0
0 = φuc,0

1 + wj = Aφuc,0
0 +Buc

0 + wj

= Aφumpc,w
j +Bumpc

j + wj = φumpc,w
j+1 .

We now show that ûc ∈ UN and φ̂ûc,0 ∈ XN , i.e.,
VN (φumpc,w

j+1 , ûc) < ∞. Observe thatuc
i+1 ∈ Ui+1 andwj ∈ W .

Hence, uc
i+1 ∈ Ui+1 ⊕KiLiW for all i ∈ {0 : N − 2}. Since

Ui+1 = Ui 
KiLiW , we have ûc
i ∈ Ui for all i ∈ {0 : N − 2}.

Recall now φuc,0
N ∈ Xf (from Step 1). Assumption III.2 along

with LN−1 = 0 imply that ûc
N−1 ∈ UN−1. We have φuc,0

i+1 ∈
Xi+1 for all i ∈ {0 : N − 2}. Then, φ̂ûc,0

i ∈ Xi+1 ⊕ LiW . For
all i ∈ {0 : N − 2}, it follows from Xi+1 = Xi 
 LiW that

Authorized licensed use limited to: TU Delft Library. Downloaded on January 12,2022 at 13:29:12 UTC from IEEE Xplore.  Restrictions apply. 



KOLARIJANI et al.: DECENTRALIZED EVENT-BASED APPROACH FOR ROBUST MODEL PREDICTIVE CONTROL 3525

φ̂ûc,0
i ∈ Xi. Recall that φuc,0

N ∈ Xf and LN−1 = 0. Hence, we
arrive at φ̂ûc,0

N−1 ∈ Xf , and as a result, φ̂ûc,0
N ∈ Xf . We thus have

ûc ∈ UN and φ̂ûc,0 ∈ XN , i.e., VN (φumpc,w
j+1 , ûc) < ∞.

4) At-event value function decay: Consider now ûc and φ̂ûc,0

as the candidate input and state sequences at time j + 1, respec-
tively. For all i ∈ {0 : N − 2} and for all wj ∈ W

dQ(φ̂
ûc,0
i , T X

i ) = dQ(φ
uc,0
i+1 + Liwj , T X

i )

≤ dQ(φ
uc,0
i+1 , T X

i 
 L̃iEj) = dQ(φ
uc,0
i+1 , T X

i+1)

(26a)

where the first inequality follows from (25b), the inequality is
implied by Lemma II.1, and the second equality is derived from
(3b). Following a similar argument, we arrive at

dR(û
c
i, T U

i ) ≤ dR(u
c
i+1, T U

i+1). (26b)

SinceLN−1 = 0, φ̂ûc,0
N−1 = φuc,0

N and ûc
N−1 = Fφuc,0

N . In Step 3,

it is shown that φ̂ûc,0
N−1 ∈ Xf . Then, Assumption III.2 implies that

φ̂ûc,0
N−1 ∈ T X

N−1 and ûc
N−1 ∈ T U

N−1. Hence, �(φ̂ûc,0
N−1, û

c
N−1) = 0.

By virtue of the inequalities in (26), we then arrive at

VN (φumpc,w
j+1 , ûc) = VN (φ̂ûc,0

0 , ûc) ≤
N−1∑

i=1

�(φuc,0
i , uc

i)

= VN (φuc,0
0 ,uc)− �(φuc,0

0 , uc
0)

= VN (φuc,0
0 ,uc)− �(φumpc,0

j , umpc
j )

≤ V ∗
N (x)−

j∑

i=0

�(φumpc,0
i , umpc

i ). (27)

It follows from the optimality principle that V ∗
N (φumpc,w

j+1 ) ≤
VN (φumpc,w

j+1 , ûc). This inequality along with (27) in turn implies
that

V ∗
N (φumpc,w

j+1 ) ≤ V ∗
N (x)−

j∑

i=0

�(φumpc,0
i , umpc

i ). (28)

5) Robust convergence: First, observe that (13) is an immedi-
ate consequence of (24) and (28). Let us now recall that x = ξτt
and φumpc,w

j+1 (x) = ξτt+1
. Then, one can rewrite (28) as follows:

V ∗
N (ξτt+1

)− V ∗
N (ξτt) ≤ −

τt+1−τt−1∑

i=0

�
(
φumpc,0
i (ξτ ), u

mpc
i (ξτ )

)
.

The right-hand side of the above inequality is strictly negative
unless when φumpc,0

i (ξτ ) ∈ T X
i and umpc

i (ξτ ) ∈ T U
i for all i ∈

{0 : τt+1 − τt − 1}. Since V ∗
N (ξτt+1

) is a nonnegative value,
it is straightforward to observe that the states and inputs of the
closed-loop dynamics (7) converge to their corresponding target
sets. This concludes the proof.

B. Proof of Theorems IV.4 and IV.5

We first begin with a preliminary argument that is shared
between both theorems. We then carry on with the proof of each

case in an orderly fashion. Notice that ξ ∈ S 
MB(l, u) and
S is a polytope by the theorems’ hypothesis. Let hMB be the
support function of MB. One can infer that

〈a	i,S , ξ〉 ≤ bi,S − hMB(a
	
i,S), ∀i ∈ {1 : m}.

Next, observe that B(l, u) ⊂ Rk is a polytope (and as a result
bounded), and the domain KB on which the support func-
tion hB is defined is the whole space, i.e., KB = Rk. Hence,
hMB(a

	
i,S) = hB(M

	a	i,S), and as a consequence

〈a	i,S , ξ〉 ≤ bi,S − hB(M
	a	i,S), ∀i ∈ {1 : m}.

Rearranging the above inequality, we arrive at

hB(M
	a	i,S) ≤ bi,S − 〈a	i,S , ξ〉, ∀i ∈ {1 : m}

where the only unknown entity is hB(M
	a	i,S) with M	a	i,S ∈

Rk. It follows from the definition of the support function that
〈M	a	i,S , z〉 ≤ hB(M

	a	i,S) for all z ∈ Rk. Thus

〈M	a	i,S , z〉 ≤ bi,S − 〈a	i,S , ξ〉, ∀i ∈ {1 : m}, ∀z ∈ B. (29)

Let us now define for all i ∈ {1 : m}, a	
i,S̄ := M	a	i,S , bi,S̄ :=

bi,S − 〈a	i,S , ξ〉, and the convex polytope (which we referred to
as the principal polytope in the paragraph before Theorem IV.4)

S̄ := {s ∈ Rk : 〈a	i,S̄ , s〉 ≤ bi,S̄ , ∀i ∈ {1 : m}}

= {s ∈ Rk : AS̄s ≤ bS̄} (30)

where AS̄ := [a	
1,S̄ , . . . , a

	
m,S̄ ]

	 = (M	A	
S )

	 = ASM and

bS̄ := [b1,S̄ , . . . , bm,S̄ ]
	 = bS −ASξ. Now, one can deduce

from the inequalities (29) and the definition (30) that the
convex polytope S̄ contains the hyperrectangle B(l, u), i.e.,
B(l, u) ⊆ S̄ . Notice that B(l, u) is parametric in the variables l
and u.

Theorem IV.4: In the CP framework, we propose a convex
nonlinear program to compute the hyperrectangle B(l, u) ⊆
S̄ such that its volume is maximized. Suppose B(l, u) is
parameterized as l := −v = [−v1, . . . ,−vk]

	 and u := v =
[v1, . . . , vk]

	 such that for all i ∈ {1 : k}, vi and vi are positive
scalars (this condition has to do with the fact that the resulting
hyperrectangle should contain the origin). Recall the inequal-
ity (29), that is 〈M	a	i,S , z〉 ≤ bi,S − ai,Sξ, for all i ∈ {1 : m}
and for all z ∈ B. In what follows, we show that although the
hyperrectangle B(l, u) = B(−v, v) is parametric, one can pro-
vide a closed form for its support function evaluated at M	a	i,S .
By definition of a support function

hB(M
	a	i,S) = max

z
〈M	a	i,S , z〉

s.t. ABz ≤ bB

(31)

where AB = [Ik − Ik]	 and bB = [v	 v	]	. The above problem
is an LP with a bounded feasible set. Thus, the optimal solu-
tion lies on the boundary of the hyperrectangle toward which
the normal M	a	i,S points. Let us define, for all i ∈ {1 : m},
ŵi := sign(M	a	i,S) ∈ Rk, where the sign operator is applied
entrywise. (Notice that this vector simply indicates the orthant(s)
that the vector M	a	i,S points to.) It then becomes clear that the
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vectors wi ∈ R2k, as defined in (16), enable us to express the
optimal solution of (31) in terms of a linear combination of the
vertices of B, i.e.,

hB
(
M	a	i,S

)
= 〈wi, [v	 v	]	〉, ∀i ∈ {1 : m}.

Based on the above relation, the inequality (29) simplifies to

〈wi, [v	 v	]	〉 ≤ bi,S − ai,Sξ, ∀i ∈ {1 : m}

in which the vectors v, v ∈ Rk are the decision variables. In-
tuitively, the above inequalities represent the linear constraints
that the vertices of the hyperrectangle B(−v, v) should satisfy
in order to guarantee ξ ∈ S 
MB(−v, v).

Based on the chosen definition of volume for B(−v, v) in
(11), we intend to find a hyperrectangle B(−v, v) that possesses
the maximal volume. Unfortunately, regardless of the definition
choice for the volume, the resulting objective function is non-
convex and becomes unsuitable for optimization. Interestingly
enough, one can simply use the logarithmic mapping for the
volume definitions in (11) to obtain the objective functions
suggested in (15), that are monotonic nonlinear concave func-
tions. Then, it follows that a maximum hyperrectangle B that
contains the origin and satisfies ξ ∈ S 
MB is the solution of
the CP (14).

Theorem IV.5: In the LP framework, we follow the procedure
proposed in [37] with which one is able to cast the problem as a
linear program. We first provide the proof for the LP relaxation
of the problem (14) with q = 1. Let us denote the maximum
length of a line segment containing the origin, parallel to the jth
coordinate axis, and contained in S̄ by rj . It follows from [37,
Prop. 3] that one can use (17b) to find rj , for all j ∈ {1 : k}. It
is worth noting that in the LP (17b), the constraints z ≤ 0 and
z + ωej ≥ 0 are two extra regularity conditions that we placed
on the line segment compared to [37, Prop. 3]. These conditions
ensure that the origin lies inside this line segment. Now, define
the strictly positive vector r ∈ Rk by rj = ωj for all j ∈ {1 : k}.
Then, it follows from [37, Prop. 2] that a maximum r-constrained
inner hyper-rectangular B of S̄ that contains the origin is given
by B(z∗, z∗ + λ∗r) where z∗ and λ∗ are the optimal solutions of
(17a). Here, we also emphasize the fact that we have introduced
the extra constraints z ≤ 0 and z + λr ≥ 0 with respect to [37,
Prop. 2]. By doing so, the LP (17a) is forced to find a hyper-
rectangular B such that it contains the origin. Then, the claim
for the LP case follows.

We now present a sketch of proof for the LP relaxation
of the problem (14) with q = 2. Observe that the polytope
S̄ ′ :=

{
s ∈ R2k : W ′s ≤ B′} is the inequality representation

of the constraints in the CP (14), where W ′ and B′ are defined
in Theorem IV.5. We seek to find a hyperrectangle that fits inside
this lifted polytope as follows. In the first step, we place a vertex
of the hyperrectangle at the origin. We then find the width of
the line segment along each coordinate that is inside the lifted
polytope and contains the origin using (18b). In the second step,
we use (18a) to find a scaling factor λ such that the λ-scaled
hyperrectangle constructed based on the first step fits inside the
polytope S̄ ′. This concludes the proof.

Fig. 2. Comparison of the event-based implementation using the con-
struction approach CP1 with the standard implementation. (Top four)
The solid lines are the evolution of states. The crosses are the states
at triggering instances. The (gray) shaded areas are the projection of
constructed hyperrectangles E on the corresponding state’s coordinate
axis. (Bottom left) The lines are the input of the closed-loop system.
(Bottom right) The crosses are the value function V ∗

N at triggering in-
stances. The solid line is the interevent cost function VN computed using
Theorem IV.1. (a) Uniform disturbance. (b) Worst case disturbance.

VI. NUMERICAL EXAMPLES

In this section, we provide a numerical exam ple to study the
results presented in Section IV. For the numerical simulations,
we use CVXOPT [38] and (py)cddlib [39]. The system is an un-
stable batch reactor borrowed from [40, p. 213]. We discretized
the model using the zero-order-hold method with step size 0.05,
that is

x+ =

⎛

⎜
⎜
⎜
⎝

1.08 −0.05 0.29 −0.24

−0.03 0.81 0.00 0.03

0.04 0.19 0.73 0.24

0.00 0.19 0.05 0.91

⎞

⎟
⎟
⎟
⎠

x

+

⎛

⎜
⎜
⎜
⎝

0.00 −0.02

0.26 0.00

0.08 −0.13

0.08 −0.00

⎞

⎟
⎟
⎟
⎠

u+ w
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Fig. 3. Comparison of the event-based implementation using the con-
struction approach LP1 with the standard implementation. (Top four)
The solid lines are the evolution of states. The crosses are the states
at triggering instances. The (gray) shaded areas are the projection of
constructed hyperrectangles E on the corresponding state’s coordinate
axis. (Bottom left) The lines are the input of the closed-loop system.
(Bottom right) The crosses are the value function V ∗

N at triggering in-
stances. The solid line is the interevent cost function VN computed using
Theorem IV.1. (a) Uniform disturbance. (b) Worst case disturbance.

where the state and input constraint sets are X = {x ∈ R4 :
‖x‖∞ ≤ 2} and U = {u ∈ R2 : ‖u‖∞ ≤ 2}, respectively. The
disturbance set is defined as W = {w ∈ R4 : ‖w‖∞ ≤ 0.02}.
The state and input target sets are Tx = {x ∈ R4 : ‖x‖∞ ≤
0.5} and Tu = {u ∈ R2 : ‖u‖∞ ≤ 1.5}, respectively. The hori-
zon length N is set to 10. The weight matrices in the cost
function (4) are Q = 2× I4 and r = I2. Finally, the terminal
set is Xf = {x ∈ R4 : ‖x‖∞ ≤ 0.2}.

In what follows, we employ the triggering set construction
approaches of Theorems IV.4 and IV.5 for q = 1. Two types
of disturbance realizations are considered: 1) a uniform dis-
tribution with the bounded support W and 2) a worst case
disturbance wt = argmaxw∈W ξ	t w at each time t. In the case
of uniform disturbance, we also manually applied an impulse-
type disturbance to the closed-loop dynamics by resetting the
second state ξ225 to 1.7. This disturbance does not belong to the
admissible disturbance set W .

Figs. 2 and 3 show the behavior of the event-based imple-
mentation of the MPC method. (Notice that the behavior of

the standard MPC was almost identical, we did not include the
results of the standard MPC for the sake of clarity.)

We begin by pointing out the shared properties of the ap-
proaches CP1 and LP1. First of all, it is evident that the number
of instances that the optimization problem (5) is solved has
effectively reduced in all considered cases compared to standard
periodic implementation. Observe that the inputs and states of
the closed-loop dynamics (7) do not violate the constraint sets
X and U , respectively, in all considered cases. Moreover, the
closed-loop states ξt and the inputs ut converge to the target sets
Tx and Tu, respectively. Finally, both of the approaches CP1 and
LP1 can effectively recover from the impulse-type disturbance
applied on time t = 25. We also note that the event-based
implementations exhibit an almost limit-cyclic behavior inside
the target set Tx in the worst case disturbance realizations.

Let us now highlight the difference between the construction
approaches CP1 and LP1. As depicted in the top right plots
of Figs. 2(a) and 3(a), the construction method LP1 is more
conservative in comparison with the construction method CP1.
The width of the shaded areas represents the projection of the
triggering sets E(x). In Fig. 2(a), one can also observe in the
top right plot that the triggering intervals are tight with respect
to the target sets as well.

VII. FUTURE DIRECTIONS

In this paper, an ET approach was proposed to implement
an RMPC method to constrained, perturbed LTI systems. The
procedure to design the triggering mechanism is online, and
is decoupled from the controller design. Specifically, we in-
troduced two theoretical frameworks to construct the trigger-
ing mechanism as a volume maximization problem. There are
multiple directions that one can pursue to extend the results in
this paper. First, it is interesting to investigate the possibility of
extending the results of this paper to a nonlinear MPC case. In a
qualitative manner, we have observed that the choice of tighten-
ing gains K directly impacts the constructed triggering sets E .
Hence, another possible direction is to explore the possibility of
characterizing this unknown dependency in a more quantitative
manner. Finally, the triggering approach proposed in this paper
is online (and in fact, state dependent). It is thus valuable to
investigate whether it is possible to make the triggering set
design offline.
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