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On the Consistent Classification
and Treatment of Uncertainties in
Structural Health Monitoring
Applications
In this paper, we provide a comprehensive definition and classification of various sources of
uncertainty within the fields of structural dynamics, system identification, and structural
health monitoring (SHM), with a primary focus on the latter. Utilizing the classical
input–output system representation as amain contextual framework, we present a taxonomy
of uncertainties, intended for consistent classification of uncertainties in SHM applications:
(i) input uncertainty; (ii) model form uncertainty; (iii) model parameter/variable
uncertainty; (iv) measurement uncertainty; and (v) inherent variability. We then critically
review methods and algorithms that address these uncertainties in the context of key SHM
tasks: system identification and model inference, model updating, accounting for
environmental and operational variability (EOV), virtual sensing, damage identification,
and prognostic health management. A benchmark shear frame model with hysteretic links is
employed as a running example to illustrate the application of selected methods and
algorithmic tools. Finally, we discuss open challenges and future research directions in
uncertainty quantification for SHM. [DOI: 10.1115/1.4067140]
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1 Introduction

Many critical engineering tasks such as model calibration,
nonlinearity identification, and damage detection of complex
dynamical systems are significantly affected by the presence of

uncertainty. Computational tools developed within fields that are
driven from dynamics, such as structural dynamics and control,
system identification, and structural health monitoring (SHM), do
rely on similar input–output system representations, but often
employ different definitions and classifications of the various
uncertainty sources, ultimately affecting how the uncertainty is
quantified and communicated for supporting decision-making.
The purpose of this review work is twofold. First, to define and

classify the sources of uncertainty within the context of structural
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dynamics, system identification, and SHM applications through the
prism of the classical input–output system representation. Second,
we aim to present an overview of methods that are suitable for
treating the various forms of encountered uncertainties from the
perspective of defining downstream tasks (e.g., prediction, infer-
ence, and damage identification) within these domains.
Figure 1 shows a high-level representation of a monitored

dynamical system, as often represented in the context of dynamics,
control, and SHM [1]. The box S represents a physical engineering
system that is of dynamic nature and is beingmonitored. This system
is set up to address a particular downstream task. Therefore, it is
designed to capture only some aspects of the real world, often linked
to the states or degrees-of-freedom (DOFs) of the dynamical system,
and typically comprises an assembly of components that interact
with each other. The system receives an input u(t), while
concurrently being exposed to disturbances d(t) due to confounding
processes, namely, environmental and operational variability
(EOV) [2], as well as to deterioration processes h(t). When exposed
to uðtÞ, dðtÞ, hðtÞ� �

, the system produces an output y(t), a subset of
which is usuallymonitored via the use of sensors. Input, disturbance,
and deterioration quantities can also be measurable directly or
indirectly via the use of dedicated sensors. A modelM is employed
that aims to represent the actual physical system as closely as
possible. Such a model can be prescribed a priori, e.g., numerical
approximation of the system on the basis of available engineering
knowledge, or it may alternatively be inferred from data through the
process of system identification [3]. The fidelity and complexity of
this model are dependent on the task, on the availability of
informative measurements, and on domain knowledge and physics
insights. In its simplest representation, the systemmodel is assumed
to be linear time-invariant (LTI); an assumption which is often
inadequate, due to the varying nature of the loads and the
configuration of the system itself, which can be nonstationary or
nonlinear [4]. It becomes evident that uncertainties are involved in
every component of the essential system depicted in Fig. 1. In this
work, we attempt to distinguish and classify these sources in a way
that allows us to subsequently guide the selection of an appropriate
method for addressing these (see Sec. 2).
From a high-end perspective, uncertainties are often classified

into two broad categories, namely, aleatory and epistemic [5,6].
Aleatory uncertainty is attributed to randomness and inherent
variability (spatial, temporal, part-to-part, sensor noise), or in other
words to factors that cannot be described with a single value and are
therefore treated as stochastic. For instance, the wind or traffic loads
that a bridge experiences are subject to inherent variability both in a
spatial and temporal sense, which can be modeled as an aleatoric

stochastic process. Epistemic uncertainty is attributed to missing
information (lack of useful data or knowledge) onmodel parameters
or inadequacy of modeling assumptions. Aleatory uncertainty is
considered irreducible, in the sense that sufficiently rich data can
only refine the description of the dependency between the model
parameters/inputs and the outputs, which remains stochastic in
nature. Epistemic uncertainty is instead considered reducible, e.g.,
by gathering additional data or by refining the adopted models, it
would be possible in principle to identify the underlying
deterministic, but unknown, parameter value or model. The
classification of an uncertain quantity as aleatory or epistemic is
oftentimes a subjective and somewhat philosophical issue. Also, an
uncertain quantity can change from aleatory to epistemic depending
on the problem configuration. For example, prior to a structure being
erected, the concrete strength can be considered as an aleatory
variable because of lack of control over available fabrication and
manufacturing processes and the expected differences between the
properties of the designed and as-built structure. Nonetheless, the
same variable can be considered as epistemic as soon as the building
is built, since detailed (e.g., nondestructive) investigations can be
carried out to identify the actual concrete strength [5].
This broad classification of uncertainties in terms of aleatory and

epistemic classes is not comprehensive in capturing all aspects of the
essential dynamical process depicted in Fig. 1, including the crucial
effects linked to time-varying phenomena. In this paper, we propose
the adoption of a refined classification for characterization of the
various sources of uncertainty within the context of structural
dynamics, system identification, and SHM,with the latter serving as
the primary focus area. We first review relevant literature that
discusses different sources of uncertainty in engineering contexts
where some system representation and measurement data are
available. We next outline the terminology adopted in this paper for
addressing different sources of uncertainty. Subsequently, we
outline methods that attempt to account for the individual forms of
uncertainty that characterize each component of the presented
flowchart. We will discuss these methods through the prism of the
following defining tasks within an SHM perspective:

� System identification and model inference [7],
� Model updating [8,9],
� Capturing of environmental and operational variability [2],
� State estimation/virtual sensing [10],
� Damage identification [8,11,12],
� Remaining useful life/prognostic health management [13].

This paper is organized as follows. Section 2 discusses thoroughly
the uncertainty sources that are involved in every component of the
process illustrated in Fig. 1 and presents the taxonomy of
uncertainties adopted in this work. Section 3 reviews methods and
algorithms from existing literature that address the uncertainties
encountered in fundamental SHM tasks, through the lens of the
taxonomy defined in Sec. 2. Section 4 employs a model of a
benchmark shear frame with hysteretic links, serving as a running
example for demonstrating methods and algorithms suitable for
performing these fundamental SHM tasks. Finally, Sec. 5 touches
upon open challenges and opportunities in uncertainty quantifica-
tion for SHM and offers some concluding remarks.

2 Sources of Uncertainty

In engineering applications, various types of uncertainty sources
may be overlapping, making it difficult to distinguish individual
contributions. We will now attempt to break down the sources of
uncertainty in relation to the essential components comprising the
dynamical system depicted in Fig. 1.

2.1 Input/Excitation—u(t). Here, we discuss those sources of
uncertainty that relate to the input of the monitored system, or in
other words, the loads/excitation that are acting onto the system.We
further summarize the methods that can be used to tackle the
associated uncertainties. In terms of their temporal profile, such

Fig. 1 High-level representation of a monitored dynamical
system. S represents a physical engineering system subjected
to an input u(t), while being exposed to disturbances d(t) and
deterioration processesh(t). The systemproduces anoutput y(t),
a subset ofwhich is usuallymonitoredvia theuseof sensors. The
system representation is escorted by a prescribed or inferred
system model M that aims to represent the actual physical
system as closely as possible. This features an internal, usually
latent, state vector x(t), and can be further described by a set of
parameters N.
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inputs range from stationary broadband (e.g., white noise) to
nonstationary excitation sources (e.g., wind gusts or earthquake
signals), which may further operate concurrently (e.g., seismic
excitation under traffic loading on a bridge). In terms of their spatial
profile, they can be classified to either concentrated (point) or
distributed loads. Examples of the former are loads from operating
devices (e.g., shakers), which are typically positioned in a fixed
location, or moving loads, such as axle loads from traversing
vehicles on a bridge. Large scale structures are, on the other hand,
most often exposed to distributed loads (e.g., wind on an aircraft
wing or a bridge deck, wave loads along wind turbine towers).
The input to the system may be measurable; however, in most

typical instances of operating engineering structures, the acting
loads remain unobserved. Examples of measurable inputs pertain to
measured actuator forces in controlled laboratory experiments,
contact forces in instrumented bearings, or the earthquake excitation
reaching the foundation of seismically excited structures. It should
be explained that, evenwhen the input quantities, or a subset thereof,
are measurable, uncertainty is involved in the form of noise
corruption due to the employed instrumentation, which is bound by
prescribed noise levels (defined in related sensors documentation)
and in the form of a bias, for example, outside the linearity range of
the sensor. In such a case, it is typical to simulate this noise process
on the basis of an assumed, typically white noise Gaussian
distribution. When records of the inputs are available, these can be
used to build probabilistic models of the input processes. For
instance, in Ref. [14], it is shown that earthquakes can be modeled
via parameterized stochastic models, using a time-modulated
filtered white noise process with the filter having time-varying
characteristics. In addition, under availability of known or
controlled inputs, the system identification task is facilitated. The
inference of a model of the system is accomplished via techniques
such as experimental modal analysis (EMA) [15] and corresponding
algorithms, which rely on input–output identification methods.
Since, however, most loads acting on engineered systems are of a
distributed nature, they are also not possible to precisely measure in
a realistic operational setting (field conditions). When the input to
the system is unmeasured, various schemes exist for tackling this
challenge:

� Assume that the input follows a prescribed probabilistic
distribution (e.g., Gaussian), and apply corresponding identi-
fication schemes, e.g., those under the class of operational
modal analysis [16].

� Assume that it is described by a random process of known type,
e.g., randomwalk, or a stochastic time series model, e.g., of the
AutoRegressive form, which is assigned to the eXogenous
input [17].

� Attempt to infer a more elaborate probabilistic model,
describing the evolution of the input in the form of a stochastic
differential equation, e.g., Gaussian latent force models [18].
This may call for use of sample data of the inputs.

� Attempt to reject the unknown input in the form of a
disturbance or jointly estimate this along with the system’s
response (state), through appropriate observer designs [19,20].

We elaborate on the influence of this source of uncertainty in
terms of the prescribed downstream tasks in Sec. 3. It is worth
mentioning that the characterization of this input/excitation
uncertainty is extremely important in the presence of nonlinearities
in the system, since the level of energy injected into the system
notably affects the nature of the system’s response [21].

2.2 Environmental and Operational Variability—d(t). The
presence of disturbances that are clustered under the class of EOV
raises a significant source of uncertainty which often hinders the
“health” assessment of monitored systems [22–25]. EOV, often also
referred to as varying environmental and operational conditions,
refers to the variability in the (i) environmental conditions within
which a structure operates, such as temperature, humidity, alkalinity
(pH), as well as the variance of the common operational loads,

including wind speed and direction, traffic loading, and rotor
revolutions per minute. The impact of operational conditions,
including loading and environmental factors, on monitored
structural dynamics has been extensively studied over the past
years. In bridges, in particular, temperature variations affect
structural stiffness, as well as support conditions (e.g., bearing
performance) with notable impact on the structure’s dynamic
properties. Typically, this influence is in a benign and nonharmful
manner.
In the domain of bridge monitoring, Farrar et al. [26] observed

natural frequency variations of the order of 5%over a 24-h period for
the Alamosa Canyon Bridge, attributed to changes in temperature
and spatial temperature gradients. Alampalli [27] reported up to a
50% difference in natural frequencies for an abandoned bridge in
Claverack, NY, due to the freezing of its supports. In the context of
the SIMCES project [28], a maximum variation of 14–18% was
observed in the first four natural frequencies of the Z24 Bridge over
nine months. Catbas et al. [29] demonstrated that ambient
temperature significantly affected the structural reliability of a
long-span truss bridge in the U.S. Cross et al. [30] identified
variations of up to nearly 5% in the modal properties of the Tamar
suspension bridge in the UK due to temperature, traffic loading, and
wind speed. Mart�ın-Sanz et al. [31] report on the influence of
operational loads in the identification of bridge structures, explain-
ing that nonstationary behavior can arise, which calls for use of
dedicated system identification tools that account for time-varying
response.
Despite the EOV influence being often reported for the case of

bridge structures, this variability affects further structures, including
tall buildings, as reported in Ref. [32], where one-year measure-
ments of a 22-story reinforced concrete building are analyzed, and a
relationship is established between natural frequencies and environ-
mental factors, such as temperature and humidity. Finally, perhaps
the strongest case to be made for dependence of structural response
on EOV is the case of wind turbine systems, where the EOV factors
are logged in the form of statistical averages that are logged as
supervisory control and data acquisition [33,34].
Environmental and operational variability contributes to the

variability of the system’s response and affects its output and
thereby the acquired measurements. It can further interact with
nonlinearities in the system, giving rise to complex response effects
[21]. EOV impacts the capacity to solve inverse problems that
require identification and tracking of the structure’s response (e.g.,
damage detection tasks). Thus, in terms of SHM-based assessment,
EOV acts as a confounding process and must therefore be properly
accounted for or disentangled from other contributions to the system
output. To tackle this, various model-based or data-driven methods
are available, as discussed in Sec. 3.3.

2.3 Deterioration Processes—h(t). Deterioration processes of
various forms (e.g., corrosion, fatigue, and wear) can adversely
affect the intended performance of engineering systems. Various
sources of uncertainty influence the deterioration process h(t),
mainly relating to environmental factors, loading conditions, or
material properties. We here classify the result of these processes
under the term deterioration, i.e., a category that is separate to the
EOV (d(t)), since we here refer to those mechanisms that are now
internal and intrinsic to the system.
Deterioration modeling is a rather complex task. With respect to

the mathematical form describing the deterioration process h(t),
deterioration models can be classified into two categories, empirical
models or physics-based models [35]. Owing to the uncertainty of
the influencing agents, a stochastic approach to deterioration
modeling must be adopted. With respect to the way in which
stochasticity is introduced in the mathematical form describing the
deterioration process, empirical and physics-based deterioration
models can be classified into random variable models and stochastic
process models [36]. If a deterioration model is employed,
deterioration model form uncertainty and model parameter
uncertainty are introduced, as later discussed in Sec. 2.5. In certain
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cases, a deterioration process can be directly monitored via use of
dedicated sensors—albeit in most cases indirect measurements are
obtained. In either case, measurement uncertainty is naturally
prevalent.
Deterioration processes directly affect the validity of the LTI

assumption that is often adopted in a simplified approximation of
operating systems. It becomes evident, that under influence of
deterioration phenomena, model parameters can no longer be
assumed as time-invariant, and dedicated uncertainty quantification
strategies need to be implemented [37]. However, depending on the
time-scale of the data being collected, it could be assumed that
deterioration is a slow-varying phenomenon with respect to the
duration of the monitoring campaign. In this case, its influence may
be considered in a (long) scale that is different to the short scale of
the model and measurements, as in the case of vibration-based
monitoring [23].

2.4 Output/Measurements—y(t). When exposed to the set of
inputs and influencing agents uðtÞ, dðtÞ, hðtÞ� �

, the dynamical
system produces an output y(t), which reflects the set of quantities
that describe a system’s response, e.g., displacement or rotation,
velocity, acceleration, reaction force, or stain. The system outputs
can be fully or partiallymeasured. In the partiallymeasured case, we
can distinguish between the measured ys and the unmeasured subset
yu. The entire subset can form target of estimation schemes. For the
monitored subset ys, the goal of estimation may be to estimate the
output quantities with a higher precision than the physical
measurement, or to perform a step-ahead prediction for diagnostic
and control tasks. When the main target is to estimate (predict)
quantities that lie in the unmeasured subset yu, then this is termed a
virtual sensing task [38]. We regard the uncertainty surrounding the
estimated quantities as an outcome of themodeling process and not a
“source” of uncertainty; we thus do not classify this as a class in the
taxonomy offered in Table 1.
The subset ys reflects output quantities that are monitored via

sensors, with a multiplicity of sensing systems today available for
monitoring these diverse response quantities [44]. Sensor measure-
ments are in turn associated with measurement uncertainty, which
consists of random measurement noise (e.g., electronic noise,
thermal noise, etc.) and/or systematic errors or biases (e.g., due to
calibration issues, sensor drift, etc.) [11]. The rawmeasurement data
are typically processed by subsequent signal processing or system
identification algorithms [45], which can contribute to the presence
of systematic errors or biases. The random measurement noise is an
aleatory irreducible uncertainty, whereas systematic errors or biases
classify as epistemic uncertainties, which can be reduced if properly
accounted for. The level of random measurement noise can
significantly impact SHM-based assessment, e.g., high levels of
noise canmake it challenging to differentiate between small changes
caused by damage and the inherent variability in the measurements
due to noise. Added to this is the challenge of sensor faults, which
occur in a nonsystematic manner, raising false, which negatively
impact diagnostic tasks [46,47].
Sensor arrangements are typically sparse, necessitating careful

consideration of sensor placement in order to ensure that the selected
sensor locations effectively capture relevant information on the
system’s behavior. Sensor placement methodologies can be
classified under two main schemes, namely, information-theoretic
[48,49] or decision-theoretic approaches [50,51]. The information-
theoretic schemes employ rigorous criteria for optimal sensor
configuration from an information-theoretic point of view (e.g., via
use of the Fisher information matrix), relying on the principle that
more sensors lead to higher information gained and, therefore,
improved damage identification. On the other hand, decision-
theoretic criteria attempt to balance the information gain with
further important or pragmatic design parameters, such as the cost of
the monitoring system, bringing in concepts such as the expected
value of information [50]. A placement scheme, which attempts to
balance information with available budget, ought to account for
correlation among measurements both in the spatial (e.g., due

to spatial dependencies in the system dynamics) and temporal sense
(e.g., due to temporal trends) [52–54]. Furthermore, the heteroge-
neity of available monitoring solutions and measurements, often
obtained at different sampling rates with different type of sensors,
adds a further layer of complexity. Addressing these issues is
essential for robust uncertainty quantification in dynamical systems.

2.5 Model Configuration—M. In this section, we refer to
those uncertainties that arise on the basis of themodel configuration,
which can pertain to both the model form, as well as the defining
parameters of a prescribed form. The seminal work of Kennedy and
O’Haghan [40] presents a fundamental classification of the various
sources of uncertainties that are present when using computational
models to describe different processes in science and engineering.
Parameter uncertainty describes the uncertainty corresponding to
the model parameters. In our context, such parameters could
correspond to the system’s characteristics/properties, but even to
parameters that are used to describe the input (e.g., spectral or
amplitude properties). Model inadequacy refers to the fact that a
computational model cannot perfectly capture the real process, i.e.,
no model is perfect. Specifically, the authors define model
inadequacy as the difference between the true mean value of the
real-world process and the model output evaluated at the true model
input values. Residual variability refers to variations of the real
process, even in cases when the conditions specified by the model
input remain fixed. This may be because the real process is
inherently stochastic, or because the model lacks specification of
additional, unrecognized conditions. The latter case is very closely
related to model inadequacy. Parametric variability relates to the
fact that the model input parameters will inherently vary with time,
e.g., under influence of a deterioration process. Finally, in the
taxonomy of Kennedy and O’Haghan [40], code uncertainty
emerges due to the fact that, typically, the mathematical model
needs to be implemented in a computer code. O’Hagan and Oakley
[55] further categorize the sources of uncertainty presented in Ref.
[40] to either aleatory or epistemic.
In a similar vein, Simoen et al. [11] discuss the different sources of

uncertainty related to the prediction model within a damage
assessment setting. Specifically, the authors separate between: (i)
model parameter uncertainty (same as parameter uncertainty of
Kennedy and O’Haghan [40]), (ii) model structure uncertainty, and
(iii) model code uncertainty, i.e., the uncertainty that results from
errors in the computer implementation, which is usually ignored or
assumed part of the model structure uncertainty. Model structure
uncertainty arises as a result of modeling assumptions and
simplifications made by the designer/analyst due to lack of
knowledge or understanding of the true system (this relates both
to model inadequacy and implicitly also to residual variability from
the taxonomy of Kennedy and O’Haghan [40]). Examples include
the uncertain extent of a numerical model, potentially invalid
assumptions regarding boundary conditions, model order, and
governing equations. It should be noted that models that are inferred
via data-driven or system identification procedures, also suffer from
the curse of inadequate model structure, and can thus be classified
under this category, since the deduced form is limited to capturing
the information contained in their trained datasets. Indicatively, we
mention the popular use of stochastic subspace identification or
other operational modal analysis (OMA) methods for inferring a
linear state-space model or the modal properties of monitored
dynamical systems [56], or the use of black-box methods for
nonlinear model inference from monitored data (e.g., the deep
Markov model [57]). Finally, Simoen et al. [11] further place finite
element (FE) discretization errors or approximation errors in the
model structure uncertainty category.
The aspect of model inadequacy and model structure uncertainty,

which appears in the aforementioned taxonomies, has more recently
been referred to asmodel form uncertainty; a term that is more broadly
adopted in our context [58–61]. As discussed in Refs. [62] and [63],
model form uncertainty can arise owing to wrong physics assumptions
and physics-based model approximations, corrupted or uninformative
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measurements leading to an incorrect data-driven model, or a
combination of both. Some parameter and model form uncertainties
might be irreducible because of Ref. [62]: (i) impossibility of carrying
out destructive testing, inaccessible sensors locations, lack of access to
experts and/or information, unavailability of informative data, or (ii)
impossibility of distinguishing confounding sources in the measure-
ments because of ignorance. Such irreducible uncertainties might lead
to poor model prediction performance (e.g., low variance and high
bias), underestimation of the overall output uncertainty, and poor
inference on future health conditions. This type of uncertainty hampers
extrapolation potential, limiting forecasting and prognostic capabilities,
thus negatively impacting decision-making under uncertainty.

2.6 Taxonomy of Uncertainties Adopted in This Work. We
henceforth adopt the following terminology and definitions for the
different sources of uncertainty within the context of dynamics and
SHM applications, through the prism of the representation of our
reference high-end model, depicted in Fig. 1. We recast that
representation in the context of the proposed uncertainty taxonomy
in Fig. 2.

� Input uncertainty; under this class, we cluster any uncertainty
and associated assumption related to the dynamic inputs (load/
excitation) to the system, which are assembled in the vector
uðtÞ. Given that the input itself can be modeled via a function,
this uncertainty comprises both a statistical and an input-model
form uncertainty. We represent this as a parameterized
probabilistic input submodel fhuðujMuÞ describing the distri-
bution of the random vector u, which can be dependent on a
physical input submodel Mu. The model, when supplied,
describes the assumed model of the input with respect to time
and space u ¼ Muðt, huÞ. Such a model, which is here
parameterized by the parameter vector hu, can be a mathemat-
ical model, e.g., a dynamic evolution model, a model of the
spectrum of the input, or a model of its spatial distribution.
Under this definition, uncertainties related, for example, to the
input matrix B and feedthrough (or feedforward) matrix D of a
state space model would be considered as model form
uncertainty.

� Model form uncertainty arises from the unknown functional
form of the underlying model of the system, which aims to
reproduce the outputs yðtÞ. This can be represented by a
physical systemmodel y ¼ Mðu, x, nÞ describing the relation-
ship between the input quantities uðtÞ, the possibly present
system’s latent variables xðtÞ, and the derived output quantities
yðtÞ. In our context, the parameter vector n can correspond to
the system’s characteristics/properties, e.g., material proper-
ties, geometry, joint properties, and damping/energy dissipa-
tion mechanisms. Thus, by model form uncertainty, we here
specifically refer to the uncertainty arising due to the selection
of the functional form—or structure—of the systemmodelM,
whether this is purely data-driven or physics-based. This may
refer to the selected physics-based model, which may not fully
capture the physics of the problem at hand (e.g., unknown term
(s) in the governing equations, use of simplified model), to
inadequacy of a data-driven model approximation, or to
implementations which suffer errors in the computer imple-
mentation/solver. Within this definition, model form uncer-
tainty accounts for the many plausible model choices and
model parametrization. As a result, themodel hyperparameters
(set manually and/or to be tuned) are also included in
this uncertainty. It should be noted that the effect of
deterioration h(t), which is assumed to intrinsically affect the
system, is also included in this class, should themodeler opt for

Table 1 Taxonomy of sources of uncertainty characterizing the SHM process

Input uncertainty Input errors [39]

Model parameter/variable uncertainty Parameter uncertainty [40]
Model parameter uncertainty [11]
Uncertainty in the model variables [5]

Model form uncertainty Model inadequacy, residual variability, code uncertainty [40]
Model discrepancy [41]
Model structure uncertainty, model code uncertainty [11]
Model framework uncertainty [42]
Uncertain modeling errors, uncertain errors resulting from computational errors,
numerical approximations, truncation [5]
Modeling errors [12]
Model uncertainty [43]
Model structure errors [39]

Measurement uncertainty Observation errors [40]
Measurement or experimental error [11]
Uncertain errors in measuring observations [5]
Measurement noise [12]
Uncertainty that is inherent in the finite set of measured data [43]

Inherent variability Residual variability [40]
Inherent variability of effective structural properties due to varying EOVs [12]
Susceptibility of the system to EOVs [43]

The left column contains the terminology adopted by the authors herein, and the right column contains associated categories from
selected literature sources.

Fig. 2 Illustration of the infiltration of the classes or our defined
uncertainty taxonomy in the essential representation of a
monitored dynamical system, as portrayed in Fig. 5. The defined
classes include input uncertainty, model formuncertainty,model
parameter/variable uncertainty, measurement uncertainty, and
inherent variability.
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approximating the deterioration process via a model. In a more
extended context, within a Bayesian model updating (BMU)
setting, it may further pertain to the choice of the likelihood
function describing the discrepancy between the observations
and model prediction (form of probabilistic submodel).

� Model parameter/variable uncertainty refers to the statistical
uncertainty associated with the parameters and variables of the
employed model of the system, once its form is selected. It can
be represented through definition of the probabilistic model
fXðxÞ of the (possibly present) latent variables xðtÞ and the
probabilistic model fNðnÞ of the parameter vector N, which
parameterizes the functional form of the systemmodelM. The
effect of deterioration can also be reflected here on the basis of
its influence on the model parameters (e.g., stiffness and
strength). On the other hand, the dynamic latent variables xðtÞ,
which depending on the model form may or may not exist,
describe the system’s latent dynamical state.

� Measurement uncertainty reflects the uncertainty associated
with sensor noise, typically represented as a random process
vðtÞ, and/or systematic errors (bias). This uncertainty class
affects any measurable quantity of the system described in
Fig. 1, including the inputs uðtÞ, outputs yðtÞ, and even the
disturbances dðtÞ.

� Inherent variability is defined as the inherent uncertainty linked to
variability in the inputs, disturbances, and deterioration processes
of the system. This class pertains to irreducible aleatory
uncertainties. It encompasses uncertainties that operate at a
temporal scale that is slower than the scale describing the
dynamics of the operating system. Similarly to the case of the
input vector, we represent this uncertainty via a parameterized
probabilistic input submodel fhd ðdjMdÞ describing the distribu-
tion of the randomvectord, which can be dependent on a physical
input submodel Md . The model, when supplied, describes the
assumed model of the disturbances/EOV parameters with respect
to time and space d ¼ Mdðt, hdÞ.

In Table 1, we relate the terms adopted in this work to categorize
the different sources of uncertainty with the equivalent terms
adopted in other original contributions from the literature.

3 Tackling Uncertainty—The Structural Health

Monitoring Perspective

We proceed with a review of available methods and algorithmic
tools that have been put forth in existing literature for tackling the
uncertainties appearing in our above-defined taxonomy, now
classified under the prism of defining SHM tasks, as listed in the
introductory Sec. 1.

3.1 System Identification and Model Inference. Model
inference forms a primary task within the domain of SHM, typically
described under the term system identification, which describes an
inverse problem formulation that aspires to deliver a mathematical
(and not necessarily physics-based) representation of the system, on
the basis of the available monitoring data [1]. In this sense, this task
is inherently linked to the model form uncertainty of our described
taxonomy. System identification pertains to broader class of
methods, attempting to infer the input–output relation, or in other
words the modelM, of a considered system. These can be clustered
under the broad categories of purely data-driven and hybrid, also
referred to as model-based schemes.

3.1.1 Purely Data-Driven Schemes. Such methods can be
classified into parametric and nonparametric schemes.
Parametric methods rely on consideration of a parameterized
system model (e.g., of the transfer function or state-space form).
Nonparametric methods deliver defining system properties, such as
modal characteristics, without imposing a specific structure, with
the system regarded as a black box. The primary SHM task, for
which both parametric and nonparametric methods are deployed, is
operational modal analysis. A listing of typically adopted such

schemes for the purpose of OMA, along with a further classification
in terms of their domain of operation, i.e., the frequency versus the
time domain, is offered in Table 2.
These methods are further defined by assumptions that relate to

input uncertainty. As aforementioned, OMA schemes assume
ambient, i.e., broadband inputs which are assumed unmeasured.
On the other hand, input–output methods (such as EMA), assume
availability of measurements of the input, linking to the measure-
ment uncertainty class. Both OMA and EMA, its input-aware
counterpart, impose the assumption of linear and time invariance.
Uncertainty is further introduced via the assumption that the system
response is a realization of a Gaussian distributed stochastic process
that has zero mean, liking to the model parameter/variable
uncertainty class. To what concerns linear systems in particular, a
suite of methods has been put forth for tackling mode form
uncertainty [58], but for further also quantifying the propagated
uncertainty to the output quantities, such as modal properties [45].
The interested reader is related to the works of D€ohler [77] and Gre�s
et al. [56,78] for extensive discussions in this respect.
However, real operating structural systems often experiencemore

complex effects, such as nonlinearity or nonstationarity. Non-
linearity ismet in the case of structural response to pronounced (e.g.,
seismic) loads, which push structural sections beyond their yield/
ultimate capacity, or can be induced by large deformations in
deformable structures such as cables. Nonstationary is often linked
to the nature of loads a structure (e.g., a wind turbine) is subjected to.
For tackling such cases, refined alternatives of parametric and
nonparametric system identification tools again exist. The para-
metric class includes tools such as nonlinear autoregressive (AR)
models with eXogenous input [79], as well as linear parameter
varying (LPV) models for time-varying structural response model-
ing [80]. In such a case, uncertainty is introduced by the model’s
residual sequence,which ismodeled as a randomprocess assumed to
be described by a given probability distribution. Nonparametric
techniques that are suited for nonlinear and nonstationary tasks
include wavelet-based approaches and methods utilizing the short-
time Fourier and Hilbert transforms, which can as well be combined
with stochastic processes [81].

3.1.2 Hybrid Schemes. The former summary pertains to
methods that attempt to infer a system model, M, purely on the
basis of data availability. However, within the context of SHM,
hybrid constructs are also employed. Hybrid methods exploit a
model of first principles in the identification loop. Thesemethods are
also referred to as model-based or, when used in conjunction with
machine learning (ML)-based schemes, as physics-enhanced
techniques [62,63,82,83]. Engineering applications, particularly
within the domain of civil andmechanical engineering, often rely on
use of numerical approximations of a system, often delivered in the

Table 2 Listing of selected parametric and nonparametric
methods for operational modal analysis

Domain Methods

Time domain Scalar and vector transfer function models [17,65,66]
Subspace identification [67–70]
Polyreference least square exponential [71]

Frequency
domain

Polyreference least square frequency (p-LSCF) domain
method [72]
Stochastic frequency-domain subspace method [73]
Nonparametric methods

Time domain Ibrahim time-domain method [74]
Random decrement technique [75]
Principal component analysis/blind source separation

Frequency
domain

Frequency response function estimation
Peak picking/circle fitting
Least squares frequency domain
Frequency domain decomposition method [76]

Table adapted from Ref. [64].
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form of FE representations. In these instances, system identification
typically involves estimating physical model parameters to ensure
that the numerical model accurately represents the monitored
structural behavior. This procedure is more appropriately termed
model updating or model calibration and is further elaborated in
Sec. 3.2.
On the other hand, the balance sought in a hybrid construct

between the selected model of the physics and a learnable
representation that is captured on the basis of data-driven (often
ML-based) learners is linked to model inference and themodel form
uncertainty class of our taxonomy. The derivation of such hybrid
representations in a way that balances availability of the physics-
based knowledge with the data at hand is offered in prior work of the
authoring team. We refer the interested reader to Haywood-
Alexander et al. [63] for a discussion on the spectrum of available
methods merging physics-based models and data-driven learners,
and to Cicirello [62] for a discussion as to how these models are
linked to the sources of uncertainty identified in our taxonomy,
including parameter and model form uncertainty. Available
approaches include schemes that try to discover the underlying
model form (e.g., dictionary methods [84–86]), schemes that
account for model discrepancy (e.g., Gaussian processes
[83,87,88]), methods that attempt to inject physics-based represen-
tations in the architecture of data-driven learners (physics-guided
schemes [89]), architectures that are fit to describe the dynamics
observed (neural ODEs [90] and symplectic encoders [91,92]),
methods that impose the physics in amore looseway in the objective
function of the problem (physics informed neural networks [93]),
and more. The discussion in this chapter can be extended to include
further aspects, including the aspect of model selection and/or
model aggregation [94], which however, we do not address here in
detail. See Ben Abdessalem et al. [95] for an elaboration on this
theme.

3.2 Model Updating. In the context of dynamics and SHM,
model updating refers to the process of calibrating the computa-
tional model of a system based on data collected from sensors [96].
The goal is to improve the accuracy of the computational model by
identifying the parameters of a prescribed model form, so that the
updated model would better capture (reproduce) the actual behavior
of the structure. In this respect, this downstream task is more closely
linked to the model parameter/variable uncertainty class of our
taxonomy. The updated model can then be used to investigate the
dynamic system behavior under various inputs and EOV conditions,
including extreme events. Uncertainties in the model updating
process are often accounted for via adoption of a Bayesian
framework [97]. The goal of BMU framework is to infer latent
uncertainmodel parameters, and quantify their posterior uncertainty
[8,11,40,98]. This is achieved by specifying a “prior distribution”
that encodes prior knowledge, experts’ opinion, physics constraints
and prior data on those parameters that cannot be directly observed
or measured, and a likelihood function which models the
discrepancy between some observed data and the corresponding
model prediction. This discrepancy can be modeled by considering
additive or multiplicative discrepancy errors and measurement
noise.
Bayesian model updating frameworks typically rely on evaluat-

ing the posterior distributions via use of asymptotic methods such as
the Laplace approximation [99], Markov chain Monte Carlo
(MCMC) methods [9,98,100,101], or variational inference
approaches [102,103]. Several works [12,104,105] make a dis-
tinction between model parameter estimation uncertainty and
inherent variability (e.g., EOV). They discuss that the classical
BMU framework does not properly account for inherent variability
and modeling errors. Specifically, they demonstrate that the
classical BMU scheme leads to underestimation of the true
variability in the posterior model parameter estimates, with the
uncertainty bounds becoming unrealistically narrow when multiple
datasets are available. To tackle this, they propose a hierarchical
BMU framework.

3.3 Environmental and Operational Variability. An impor-
tant task within the context of SHM lies in quantification—or
removal—of the influence of disturbances, primarily attributed to
EOV, in the context of estimation and assessment tasks. This task is
linked to the inherent variability uncertainty class of our taxonomy,
which typically aims to effectively capture the influence of long-
term trends underlying the induced dynamics [80,106]. When the
connection to EOV is established via adaptation of the system
model, then the relevant uncertainty taxonomies are also influenced.
Different strategies have been put forth for tackling this challenge.
In the case of data-driven schemes, these can be roughly classified in
three main categories, namely, (i) nonstationary time series models,
(ii) projection methods, and (iii) deterministic or stochastic func-
tional dependence models.
Nonstationary time series models are constructed as output only,

or input–output time series representations, which account for time
variability such as smoothness priors time-varying autoregressive
models or LPV models [107]. Projection-based schemes, also
known as data normalization methods, aim at projecting features
derived from systemmeasurements onto a subspace where the EOV
influence can be removed [108,109]. Characteristic such strategies
are found in the cointegration approach proposed by Cross et al.
[106], as well as the kernel principal component analysis approach
suggested by Rainieri et al. [110] in the context of SHM. These
methods offer the advantage of not requiring explicit measurements
of the EOV parameters, as opposed to methods relying on inference
of dependence models. Deterministic functional dependence
models assume a deterministic functional relationship between
EOV parameters and characteristic features of modelM describing
the dynamics of the response [22,111,112]. Deterministic methods
fail to account for the uncertainty associated with EOV. Random or
stochastic functions are more appropriate for such a task. Instances
of such models, associated with time series dynamics modeling, are
found in random coefficient [113], as well as polynomial chaos
expansions and Gaussian process-based time series models. Such
instances include polynomial chaos expansions-AR type models
[33,79] and GP-LPV-AR models [43,80] and time-varying
autoregressive-GPRMs [114]. Such models are capable of account-
ing for the global, i.e., both short- and long-term, identification of the
dynamic response of a structure by representing the short-term
dynamics via a linear-in-the parameters regressive time-series
model and a stochastic model, which takes on the stochastic
dependence on the (measured) EOV parameters.

3.4 State Estimation/Virtual Sensing. State estimation is a
fundamental problem in control theory, signal processing, and
SHM, where the goal is to infer the internal states, i.e., the response,
of a dynamical system from noisy and potentially incomplete
observations y(t). This is of particular importance for SHM
purposes, since it is linked to the virtual sensing task [38,115], or
in other words, the inference of the response of the system in
degrees-of-freedom that are not measured. Returning to our
reference system in Fig. 1, this implies that we try to infer the latent
dynamics contained in xðtÞ through measurements/observations of
the output, which we assume here contained in yðtÞ. This task is
typically accomplished by observer formulations, which are today
available in the form of conventional linear or nonlinear models as
well as deep learning variants. The classical formulations are
typically delivered in the form of Bayesian filters, which essentially
formdynamicBayesian networks [116]. These couple amodel of the
system M, which can be either physics-based or inferred via the
system identification tools outlined in Sec. 3.1. Within a virtual
sensing setting, these observers can be exploited to deliver a number
of tasks of increasing complexity. These include (i) response (state)
estimation, curbing model variable uncertainties, (ii) joint or dual
state-parameter estimation, thereby curbing model parameter
uncertainties [117], (iii) input-state estimation, curbing input
uncertainties [118–120], and even (iv) joint state-parameter-input
identification [121,122]. The delivered estimations can be further
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processed to achieve diagnostic tasks, such as damage detection
[123,124].
Estimator frameworks aim to deliver reliable estimates of the

system’s internal (latent) dynamics xðtÞ; in doing so, they account
for uncertainties stemming from all sources of our defined taxonomy
including input uncertainty, model form uncertainty, model
parameter/variable uncertainty, measurement uncertainty, and
inherent variability. To better illustrate this, let us offer below the
mathematical model employed by such observers for a general
dynamical system of n degrees-of-freedom, and let us specify this in
the more common discrete time formulation

xk ¼ f ðxk�1, ukÞ þ wk

yk ¼ hðxkÞ þ vk
(1)

The equations above essentially describe a model of the systemM,
as depicted in Fig. 1, employing a state vector xk 2 R2n and a
measurement vector yk 2 Rm. wk and vk are mutually independent
noise sequences with often a priori assumed probability density
function, usually assumed as stationary zero-mean uncorrelated
white noise sources, and f , h are functions of general (including
nonlinear) nature. One can account for the uncertainty that is
inherent in such a general dynamical system, by adopting a
structured probabilisticmodel, where amarginal likelihood function
is defined as a probability distribution phðy1:TÞ parameterized by
h 2� Rnh where h designates the vector of all parameters involved
in the systemmodel and nh is the dimension of the parameter space.
With the consideration that y1:T is conditioned on x1:T , the marginal
likelihood function can be written as [89]

phðx1:TÞ ¼
ð
pheðx1:T jz1:TÞphtðz1:TÞdz1:T (2)

in which a transition model phtðx1:TÞ parameterized by ht is
considered for describing how the dynamical system (or process
equation) evolves over time. Correspondingly, an emission model
pheðy1:T jx1:TÞ parameterized by he can be established for governing
the relationship between the observed variables and the latent states.
h ¼ ht [ he is vector of all parameters involved, formed via
concatenation of the transition and emission parameters.
Under the assumption that the state vector xk reflects a Markov

process, the transition model can be prescribed according to a
transition probability density pðxkjxk�1Þ. This model can be
expressed as xkjxk�1 ¼ xk � pðxkjxk�1Þ. The observations yk are
then described by the following conditional distribution
ykjxk ¼ yk � pðykjxkÞ.
Bayesian filters leverage this hybrid formulation to produce a

refined posterior estimate of the system’s response, xk, using a
“predict” and “update” procedure. The description of the details of
these implementation lie outside the scope of this work. However,
what is important to stress is that the finally updated estimate is
obtained as a weighted combination which accounts for the process
wðtÞ andmeasurement noise sources vðtÞ, as well as the discrepancy
(innovations) between the measurements and the model predicted
estimates. In this way, the final prediction of the system’s states and
or parameters are affected bymodel, parameter, input, disturbance,
andmeasurement uncertainties. Variants of these filters are designed
to handle linear systems (Kalman filter—KF) or nonlinear systems
(extended KF, unscented KF—UKF, particle filter, etc.) for various
estimation tasks. Additionally, when coupled with appropriate
reduced order models, Bayesian filter estimators can operate in real-
time or near real-time [125,126]. More details on the implementa-
tion of these filters can be found in Refs. [117] and [127], whereas a
PYTHON library is available in conjunctionwith a tutorial on nonlinear
Bayesian filtering [128].
The conventional formulation can tackle model parameter/

variable uncertainty through the joint state-parameter estimation
setup, but is less robust in handling model form uncertainty. This
challenge can be tackled by the deep learning variants of these

filters, such as deep Kalman filters and deep Bayesian filters, where
the nonlinear model M equations are also inferred. This can be
executed within a black box setting (no physics information) as
accomplished in the deep Markov model [57], or alternatively
within a gray box, physics-enhanced scheme, as proposed in the
physics guided deep Markov model [89].
Moreover, it is possible to tackle input uncertainties, by

modifying these filters for use in absence of inputuðtÞmeasurements
in what was already referred to as joint state-input estimation
schemes [129]. This can be achieved on the basis of (i) a random
walk evolution assumption, or—when feasible—by seeding some
knowledge of the expected formof the input (e.g., periodic [130]), or
via inference of amodel that is suited to describe the evolution of the
input. The latter has been tackled via adoption of Gaussian process
latent force models [18,118,131].

3.5 Damage Identification. Damage identification within the
SHM context is typically organized across the levels defined in the
hierarchy specified in thework ofRytter [132], namely, (i) detection,
(ii) localization, (iii) assessment (quantification), and (iv) conse-
quence.Most commonly, damage identification is narroweddown to
the first three levels, which correspond to diagnostic tasks, whereas
the consequence, which reflects a prognostic task, is separately
treated. Also here, we discuss the fourth level in Sec. 3.6. Damage
identification forms a complex task that can be achieved on the basis
of both purely data-driven as well as hybrid schemes and typically
mobilizes the whole construct depicted in Fig. 1, along with the
corresponding sources of uncertainty of our defined taxonomy in
Table 1.
Both purely data-driven and hybrid schemes rely on the extraction

of appropriate damage sensitive features (DSFs), whose shifts with
respect to a baseline serves for detecting damage. The system
identification tools, which were overviewed in Sec. 2.5, serve for
deriving such DSFs, as elaborated in Fig. 3. Modal properties, such
as natural frequencies or associatedmodal shapes, serve as a primary
instance of DSFs. Detection is achieved via detection of shifts in
these properties when compared against the values observed under
normal “healthy” conditions. Given the global nature of such
properties, the sensitivity of such features against local damages is
often questioned. Moreover, if a network of sensors is installed,
localization is further possible and will naturally depend on the
spatial resolution and type of sensors deployed. The task of
quantification is often more challenging and benefits from the
availability of a physics-based model (hybrid schemes) [133].
The characterization of damage forms in essence a classification

task, which can be achieved using unsupervised, semisupervised, or
fully supervised schemes [134].Within the context of SHM for civil
structures, the fully supervised scheme is often not exploitable, since
extensive labels of damages of various types and severity are hardly
available. Thus, unsupervised schemes are more valuable and often
pursued with priority. These can be achieved using either more
classical frameworks or methods exploiting machine learning.
Classical frameworks include statistical hypothesis testing
[135–138], which relies on quantification of the uncertainty of the
damage sensitive features and characterization of their probabilistic
distribution. Crucial to this task is the complementary task of
efficiently capturing, or normalizing for, the dependence on
influencing EOV parameters, as described in Sec. 3.3.
Data-driven methods are appealing for real-time damage

identification, but often struggle to achieve higher levels of the
damage identification hierarchy due to the absence of a physics-
based model of the system. In contrast, hybrid schemes exploit the
derived DSFs to estimate potential damage severity and its type/
position, usually on the basis of the model updating procedure,
which was described in Sec. 3.2.While thesemethods are less suited
for real-time (or fast) damage identification tasks due to the high
computational cost, the availability of a physics-based (e.g., FE)
model allows for more detailed damage assessment [8,12]. It is
worth mentioning that for alleviating computational costs, within an
inverse setting for the purpose of damage detection, an emulator/
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surrogate of an expensive physics-based model can be adopted
[99,139,140]. An overview of the vast literature on damage
identification lies outside the scope of this paper. We refer the
interested reader toRefs. [64,141], and [142] for an overviewof state
of the art schemes for damage detection in the context of SHM.

3 .6 Remain ing Usefu l Li fe /Prognos t i c Hea l th
Management. Prognostics focus on predicting the time instance
when a dynamical system will fail to function properly. In an online
monitoring setup, prognostic models are developed on the basis of
SHMand related data. Thesemodels, whichmay be hybrid or purely
data-driven, deliver predictions of the future evolution of a system’s
condition (e.g., predictions of the system’s remaining useful life).
The prognostics process is characterized by several uncertainties,
necessitating the adoption of stochastic approaches [143]. However,
this aspect has often been overlooked in the literature, where
deterministic ML-based prognostic approaches are abundant. For a
detailed discussion on the multiplicity of uncertainty sources, the
reader is referred to Ref. [144]. One basic aspect to consider in
prognostics relates to how the uncertainty regarding the system’s
current state is going to propagate in the future. This typically
requires models of the future loading conditions and the deterio-
ration processes. Health management refers to the subsequent task
of decision support for maintenance planning on the basis of the
prognostic predictions. Needless to say, the health management
process must properly account for the uncertainty in the prognostic
predictions andmust be formulated as a problemof decision-making
under uncertainty [145]. The overall process from prognostic
predictions to health management is referred to as prognostic health
management [146,147].

4 Demonstration on a Benchmark Shear Frame With

Hysteretic Links

As a demonstration example, we consider a FE model of a three-
dimensional two-story shear frame with nonlinear joints, each
exhibiting a Bouc–Wen type hysteretic behavior [148,149]. This
nonlinear multidegree-of-freedom simulator has been published as
an open-access benchmark in Refs. [150] and [151] and is available
through the following GitHub repository. The simulator is flexibly

reconfigurable allowing for assumption of a different number of
storeys and bays. The main features of this benchmark system are
first described. Subsequently, it is employed to explore uncertainty
quantification challenges in five downstream tasks.
Each node of the frame comprises 6DOFs, corresponding to three

displacements and three rotations. A graphical illustration of the
shear frame is given in Fig. 4, where the beam local axes are noted
and where the hysteretic joints are modeled as virtual elements of
zero length, while a negligible mass instead of zero mass is also
assumed to avoid ill-conditioned systemmatrices. The elements are
illustrated at an eccentric distance from the reference node in Fig. 4
solely for demonstration purposes. Each story of the deployed frame
has a height of h ¼ 3:2m. The configuration which was adopted has
two frames along the x axis, each of l ¼ 7:5m length and one of
w ¼ 5m along thewidth. All beam and column elements comprise a
rectangular steel cross section (40 cm� 40 cm). The Young
modulus for the examples demonstrated herein is set equal to
E ¼ 210GPa, the Poisson ratio is v¼ 0.30, and the density
q ¼ 8000kg=m3. Furthermore, 4% mass proportional damping is
assumed, and the structure is assumed fully constrained at the
bottom nodes that represent the ground.
A Bouc–Wen formulation has been introduced at every DOF of

every nodal coupling to model the total restoring force R of each
joint; this reflects a smooth hysteretic model, often adopted for
modeling material nonlinearity [148,152]. An example illustration
of the nonlinear mechanism in the longitudinal x-DOF is provided in
Fig. 5. Thus, the restoring forceR comprises a linear and a nonlinear
(hysteretic) component, represented by the two springs in Fig. 5. The
linear term depends on the total nodal response du, whereas the
nonlinear one on the hysteretic, and thus history-dependent,
component of the response z, respectively. The respective
mathematical formulation, using vector notation to reflect the
(uncoupled) hysteretic effect across all DOFs of each link, reads

R ¼ Rlinear þ Rhysteretic ¼ a � k � duþ ð1� aÞ � k � z (3)

where du represents the total nodal displacement, and a, k are traits
characterizing the Bouc–Wen model on each link. In terms of their
physical interpretation, a represents the characteristic post-yield to
elastic stiffness reaction for each link, whereas k is the correspond-
ing stiffness coefficient. As long as the link remains in the linear

Fig. 3 Categorization of purely data-driven system methods for damage identification,
organized according to the domain themethod operates in, themethod class, and the specific
feature that isproduced toserve fordamage identification. Thisfigure is adapted fromRef. [64].
This table overviews methods rely on identification of the system shown in Fig. 1. The feature
does not cover the deep learning based schemes for feature extraction.
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regime, it holds that du ¼ 0andz ¼ du, which implies that the
parameter a does not play a role during linear behavior. When the
yield force is surpassed, the spring acts nonlinearly, in which case z
is capped to be equal to a yield threshold value z¼ zy. The variable z
stands for the hysteretic portion of the elongation, or deformation in
general, and controls the hysteretic forcing. It obeys the differential
equation

_z ¼ Ad _u� � tð Þ bjd _ujzjzjw�1 � cd _ujzjw
� �

g tð Þ (4)

with

�ðtÞ ¼ 1:0þ d��ðtÞ (5a)

gðtÞ ¼ 1:0þ dg�ðtÞ (5b)

�ðtÞ ¼
ðt
0

zd _udt (5c)

where the shape, smoothness, and amplitude of the hysteretic curve
that characterize the dynamic behavior of each joint is determined
by b, c,w, and A. The terms �ðtÞ, gðtÞ are introduced to additionally
capture strength deterioration and stiffness degradation effects via
the corresponding coefficients d� and deta. In turn, their evolution in
time depends on the absorbed hysteretic energy, �ðtÞ. This
formulation allows for a structural dynamics simulator, which can
be parametrized with respect to system properties and traits of the
joints’ behavior. For a more detailed elaboration on the physical
connotations of the Bouc–Wen model parameters in terms of
yielding, softening, and hysteretic behavior effects, the reader is
referred to Chatzi and Smyth [117] and Vlachas et al. [150].
Regarding the forward-in-time integration of the governing
equations, the simulator employs a Newmark scheme, while a
forward Euler integrator is utilized to evaluate the hysteretic
response of the joints. The respective time discretization is chosen to
ensure stability and convergence.

4.1 Model Inference—Linear Time-Invariant Case. For the
purpose of system identification, the frame is excited on its linear
regime, i.e., it is ensured that the aforementioned nonlinearities are
not activated during simulation. Within its linear subdomain, the
structure is characterized by 72 normal modes, ranging from 3.85 to
433.70Hz. This band contains several pairs of closely spaced
modes, e.g., three separated less than 0.05Hz, which renders the
inference process a quite challenging task, in terms of EMA. Energy

dissipation is modeled via the Rayleigh damping scheme, by
adopting 2% modal damping ratio for the first two modes.
In demonstrating the propagation of uncertainty during the

system identification procedure, we conduct a Monte Carlo
campaign, consisting of 100 independent experiments. Each single
experiment is realized using a zero-mean Gaussian process as the
base excitation (with h ¼ p=4 and standard deviation equal to
0.01 g), and the absolute vibration accelerations along x and y
directions at point O2 (see Fig. 4), corrupted at 5% noise-to-signal
(N/S) ratio, as the available structural responses. To avoid aliasing,
we set the integration step as Ts ¼ 0:0078 s. The simulations are
conducted for 255 s, and the resulted input–output data records
consist of 32,768 samples.
We limit our analysis to the ½0, 50� Hz band, which already

contains 32 translational and rotational normal modes. To this end,
all input–output data pairs are first lowpass filtered (via a 17th order
Chebychev Type II digital filter, with less than 3 dB of ripple in the
passband, 80 dB attenuation in the stopband, and 50Hz cutoff
frequency), and accordingly resampled at Fs¼ 128Hz. The final
datasets have length equal to 4096 samples.
Figure 6 displays theMonte Carlo coherence functions, estimated

via Welch’s spectral method (window size 1024, zero-padding at
2048 samples, 50% overlap, Hanning window). High coherence is
observed within the frequency band of interest, whereas the
dispersion of the Monte Carlo estimates remains rather low. Yet,
there exist two low-coherence areas in both directions (around
5.44Hz and 4.18Hz, for the x and y axes, respectively), associated
with rotational DOFs, pointing out a potential inefficacy of the data
in modeling these modes.
The Monte Carlo frequency response function (FRF) estimates,

again estimated via Welch’s spectral method (window size 1024,
zero-padding at 2048 samples, 50% overlap, Hanning window), are
depicted in Fig. 7. As in the coherence estimate, the nonparametric
FRFs show small dispersion in both amplitude and phase within the
frequency band of interest, while there exist several peaks, with the
magnitude in y axis appearing “richer.” However, not all 32 normal
modes are visible in either axes; this is attributed to (i) the “local”
behavior of some modes, which can be detected only by placing
sensors at certain nodes of the frame, and (ii) to the adoption of
Rayleigh damping, which causes the modal damping ratio being
increased with increasing frequency.
It is noted that the above spectral estimates are characterized by

inherent uncertainty, since they are based on realizations of
stochastic processes and therefore they are also random variables.
The uncertainty associated with these estimates has been quantified
as bias and random error (i.e., statistical sampling errors of two

Fig. 4 Graphical representation of the two-story frame with
annotation of the hysteretic (nonlinear) link positions, as well as
the positions of acceleration sensors that are assumed to be
deployed for the state estimation/virtual sensing task of Sec. 4.4

Fig. 5 Illustration of the nonlinear hysteretic mechanism that is
applied for each link element, according to its DOF. The link
elements are noticeable through the additional nodes (white
circles) near the end of each beam/column element. The arrows
indicate the local coordinate system assumed for each beam
element.
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types). Formulas for evaluating these errors can be found, for
example, in Ref. [153] (Table 19.4, Chap. 19).
Proceeding with model inference, we now turn our attention to

parametric identification. We focus on scalar parametrizations,
namely, single input–single output models when the excitation is
measured, and output-only ones when the excitation is assumed
unknown. In the former case, we estimate autoregressive with extra
input ARX(n, n, nk) models of the form

y½t� þ
Xn
i¼1

aiy½t� i� ¼ b0u½t� nk� þ
Xn
i¼1

biu½t� nk � i� þ e½t� (6)

in which u½t� and y½t� correspond to the excitation and response
signals, respectively, n is the model order, nk is the input–output
delay, herein set equal to zero, ai and bi are the coefficients of the AR
and exogenous polynomials, respectively, and e½t� is a zero-mean
Gaussian white noise process (termed the residuals) of variance r2ee.
For estimating the order of the ARX model, we use data from 20
independent simulations and the Bayesian information criterion
(BIC)

BIC hð Þ ¼ ln
r̂2ee hð Þ
N

� �
þ 2nþ 1ð Þ ln Nð Þ

N
(7)

over a set of even orders in the range [2,50]. In Eq. (7), r̂2ee is the
estimated variance of the residuals e½t�, which is a function of the
ARX parameter vector h

h ¼ ½a1 … anjb0 … bn�T ð½2nþ 1� 1�Þ

and N¼ 3000 is the length of the estimation dataset. The latter is
formulated after dropping the initial 512 data (2 s), in order to avoid
transient dynamics. ARX model estimation is carried out using
linear least squares.
The performance of the BIC for both axes is illustrated in Fig. 8.

We observe a small standard deviation around the mean of the
estimated BIC values and a “levelling off” after n¼ 18. One could
well proceed in selecting this order as the candidate one and continue
with the model validation phase. However, in order to maintain an
“automated” decision-making procedure and reduce the subjectivity
related to user-expertise, we select as candidate orders theminimum
mean values resulted for each axis. Therefore, we get

Fig. 6 Welch-based coherence function estimates (Monte Carlo
experiments; LTI frame, point O2): (a) along x-axis and (b) along
y-axis

Fig. 7 Welch-based FRF estimates (Monte Carlo experiments;
LTI frame, point O2): (a) magnitude along x-axis, (b) phase along
x-axis, (c) magnitude along y-axis, and (d) phase along y-axis

Fig. 8 ARX model order estimation (Monte Carlo experiments;
LTI frame, point O2. The squares indicate mean value and the
vertical bars standard deviation): (a) along x-axis and (b) along y-
axis.
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nx ¼ 30 and ny ¼ 42

The linear least squares estimation of ARXxð30, 30, 0Þ and
ARXyð42, 42, 0Þ models for the x and y axes, respectively, returns
the parameter vectors visualized in Fig. 9, in terms of mean
values6 standard deviations for every AR and exogenous polyno-
mial coefficient. Recall that (i) the linear least squares problem,
which is treated by formulating the normal equations from the
associated loss function (the variance of the residuals), is a convex
optimization one and, as such, is characterized by a global
minimum; and (ii) the statistical conditions required for the
successful ARX model estimation (stationary and persistent
excitation) are fulfilled. Therefore, one would ideally expect that
the estimated ARX models from the Monte Carlo simulation data
would return “identical.” Still, the standard deviation of many
parameters is non-negligible and demonstrates how uncertainty
propagates from (noise-corrupted) data to models.
The uncertainty in the parameter vector is further inherited to the

estimated vibration modes, shown in Fig. 10. We observe a certain
consistency in the estimate of natural frequencies, although there
exist several erroneous ones above 50Hz, which appear as
structural. Damping ratio returns quite scattered; an issue that is
well reported in the literature.
The output-only case may be treated, among others, by AR(n)

models of the form

y½t� þ
Xn
i¼1

aiy½t� i� ¼ þe½t� (8)

under the assumption of stationary excitation. The estimation
procedure is identical to the ARX one and conducted also via linear
least squares. For illustrative purposes, we herein report the resulted
vibration modes along the x direction, displayed in Fig. 11. The
natural frequencies appear more dispersed, compared to the ARX-
based ones in Fig. 10(a), whereas the modal damping ratios are
completely scattered.

4.2 Model InferenceUnderEnvironmental andOperational
Variability—LTV Case. The previous analysis can be well-
adapted to structures that are subject to EOV. To examine this
case, we modify the frame properties, namely, the modulus of
elasticity, which now depends on temperature according to

EðTÞ ¼ 0:01KTðT½tl��Tref ÞE0 ðPaÞ (9)

where T½tl� is the temperature in 	C, tl corresponds to long (i.e.,
sufficiently lower with respect to the lowest structural vibration
mode) time-scale,KT ¼ 5� 10�3 is a thermal coefficient, Tref ¼ 20
	 C is a reference temperature, and E0 ¼ 210� 109. The temper-
ature is considered as a discrete-time stochastic process described by

T½tl� ¼ Tref þ Tspan sinð2pfltlÞ þ wT ½tl� (10)

in which Tspan ¼ 30 	C, fl is the long time-scale frequency,
and wT ½tl� 2 Uð0, 2Þ. Figure 12(a) plots a realization of T½tl� for
tl ¼ 1, 2,…, 365 and fl ¼ 1=365, while its sample and kernel-based
probability density functions (PDFs) are displayed in Fig. 12(b). The
induced modulus is shown in Fig. 12(c), and the variability of the
first three vibration modes is depicted in Fig. 13. It is noted that
Eq. (9) is a fictitious equation, which is nonetheless chosen to
represent the decrease in stiffness with increasing temperature, a
feature that dominates the mechanics of most structural systems.
We conduct 365 independent experiments, corresponding to the

available temperature values of Fig. 12(a). Simulations are
Fig. 9 ARXmodel parameter vectors (Monte Carlo experiments;
LTI frame, point O2. The squares indicate mean value and the
vertical bars standard deviation): (a) ARXx ð30, 30, 0Þ models and
(b) ARXy ð42, 42, 0Þmodels.

Fig. 10 ARX-estimated vibration modes (Monte Carlo experi-
ments; LTI frame, point O2): (a) natural frequency along x-axis,
(b) modal damping ratio along x-axis, (c) natural frequency along
y-axis, and (d) modal damping ratio along y-axis
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performed using the same parameters as in theLTI case and the same
lowpass filtering and resampling procedures, for limiting the
analysis in the ½0, 50� Hz band.
For the identification task, we apply the method described in

Ref. [154] and estimate GPR–ARX models of the form

y½k� þ
Xn
i¼1

aiðTÞy½k � i� ¼
Xn
i¼0

biðTÞu½k � i� þ e½k� (11)

where now aiðTÞ, biðTÞ and e½k� � Nð0, r2eðTÞÞ depend on
temperature and admit a Gaussian process regression (GPR)
representation as

aiðTÞ ¼
Xpa
j¼1

aijSa,jðTÞ þ PaðTÞ þ �a (12a)

biðTÞ ¼
Xpb
j¼1

bijSb,jðTÞ þ PbðTÞ þ �b (12b)

r2eðTÞ ¼
Xpr
j¼1

cijSr,jðTÞ þ PrðTÞ þ �r (12c)

In the above set of equations, Sð
Þ,ð
ÞðTÞ is a set of basis functions,

Pð
ÞðTÞ � GPð0,jð
ÞðT, T0ÞÞ, where jð
ÞðT,T0ÞÞ is a kernel function
determined by a set of hyperparameters #ð
Þ, and �ð
Þ � Nð0, r2�ð
Þ Þ.
The associated identification problem involves the estimation of all
unknown model parameters of Eqs. (11) and (12), upon proper
selection of the basis and kernel functions. For details on the
procedure, the reader is referred to Tatsis et al. [154]. Here, we
outline the core steps:

� Short time-scale ARXðn, n, 0Þmodels are estimated whenever
data become available.

� The estimated AR and exogenous parameters, as well as the
estimated noise variance and measurement(s) of T are stored.

� The stored parameters are modeled via GPR in accordance to
Eq. (12), when a full EOV cycle is completed.

In applying these to the frame structure, we will report results for
the y axis response at point O2. We start by estimating the ARX
model order at a reference temperature, herein set at 20 	C. Figure 14
shows the BIC and the percentage fitness to the estimation data,
defined as

fit ¼ 100 1� jjy t½ � � ŷ t½ �jj
jjy t½ � � lyjj

 !
%ð Þ (13)

where ŷ½t� denotes the model output, and ly is the mean value of the
measured output y[t]. TheBIC returnsn¼ 42 as themost appropriate
order, while the fitness is best for n¼ 50. However, the

Fig. 11 AR-estimated vibration modes (Monte Carlo experi-
ments; LTI frame, point O2): (a) natural frequency along x-axis
and (b) modal damping ratio along x-axis

Fig. 12 Temperature andmodulusdata for the lineat timevariant
(LTV) frame: (a) temperature time-series over the long temporal
scale, (b) sample (bars) andassociatedkernel-based (continuous
line) PDF estimates, and (c) elastic modulus versus temperature

Fig. 13 Behavior of the first three natural frequencies of the LTV
frame: (a) versus temperature and (b) versus long time-scale
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corresponding fitness value at the BIC order is quite close to the best
one, and thus we select n¼ 42. Figure 15 illustrates the behavior of
the ARX(42, 42, 0) prediction errors, from where the hypothesis of
Gaussian white noise process can be safely adopted.
We proceed by estimating ARX(42, 42, 0) models for tl ¼

1,…, 365 and accordingly storing their parameter vectors and
prediction error variances for the GPR modeling stage. As Fig. 16
indicates, the parametric identification process is characterized by

high consistency, since the percentage fitness is concentrated around
98.95%.
Following the structural identification stage, we fitGPRmodels to

the available AR, exogenous, and variance data. The selected basis
functions and GPR orders are listed in Table 4 of Tatsis et al. [154].
Indicative results are illustrated in Fig. 17 and demonstrate the high
fitting to the parameters. It is noted that not all AR/X parameters
return structured from the estimation stage, which implies that their
GPR modeling may fail. This is an issue already reported by the
authors [154]. In any case, the GPR–ARXmodel may be interpreted
as a global description of the system in closed-form, when EOV is
present, and may be further applied for SHM purposes [154].

4.3 Model Updating. The goal of BMU is to infer uncertain
model parameters based on data and to quantify the uncertainty in
the estimation. In this section, we demonstrate the BMU process
with the aid of the benchmark shear frame structure.
For the sake of simplicity, we assume only one uncertain

parameter in the model, specifically the parameter a of the
Bouc–Wen model of each link. For this parameter, we assume an
uninformative prior uniform distribution, pprðaÞ � Uð0:05, 1:0Þ.
Accelerometers are assumed available at three locations on the
frame structure. The input loading on the structure is an assumed
Gaussian white noise excitation applied at the base. We generate
synthetic acceleration time series data via use of the full-order FE
model MFOM for an assumed underlying “true” realization of the
parameter a¼ 0.2 and for slightly perturbed values of the Young’s
modulusE along the elements of the structure. The acceleration time
series dataset is then contaminated with Gaussian white noise of

Fig. 14 Performance of the model order selection criteria (LTV
frame, point O2, y direction): (a) the BIC and (b) the percentage
fitness to data

Fig. 15 Performance of the ARX(42, 42, 0) prediction errors (LTV
frame, point O2, ydirection): (a) sample autocorrelation function,
(b) samplePDFof thenormalized (�e½k �‰Nð0, 1Þ) predictionerrors,
and (c) normal probability plot of �e½k �

Fig. 17 Indicative resultsof theAR/Xparameters’GPRmodeling
(LTV frame, point O2, y direction): (a) AR coefficient and
(b) exogenous coefficient

Fig. 16 Distribution of the percentage fitness to the short time
estimation dataset during ARX modeling (LTV frame, point O2,
y direction)
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10% root-mean-square (RMS) noise-to-signal ratio, simulating
sensor measurement error. This results in the monitoring dataset
d ¼ ~zk 2 RNt , k ¼ 1,…,Ndof

� �
, where Ndof is the number of

monitored DOFs, and Nt is the dimension of the measured
acceleration time series vector, which depends on the monitoring
signal sampling rate. The synthetic dataset d is used in the BMU
process.
For the BMU process, we employ a reduced-order FE model

MROM that is parametrized with respect to the uncertain parameter
a. The reduced order model (ROM) is produced using a projection-
based strategy, thoroughly described inRefs. [155] and [156], which
allows building a ROM through snapshots of the full order model
(FOM) simulation across various values of the parameter space.
Here, we apply a proper orthogonal decomposition in a single FOM
response obtained using reference simulation hysteretic parameters
and truncate adopting nine orthogonal modes, which define a
“global” orthogonal basis 2 Rn�n. We useMROM for obtaining the
model-predicted acceleration time series signals zkðaÞ 2 RNt at the
monitored DOFs of the frame structure. The same Gaussian white
noise excitation is applied onMROM as the one applied onMFOM for
generating the data. The likelihood function is constructed based on
the discrepancy gk ¼ ~zk � zkðaÞ between the monitoring time series
data and the model-predicted time series data. It is assumed that, for
each monitored DOF k, the random vector gk � Nð0,RkÞ, i.e., it
follows the multivariate normal distribution N with a zero-mean
vector and covariance matrix Rk ¼ diagðc2jj~zkjj2Þ. A diagonal
covariance matrix is assumed, with the variance of each component
in the vector gk assumed proportional to the L2-norm of the data
vector ~zk. The underlying assumption here is that there is no
temporal correlation among the measurements at the different time
instances i ¼ 1,…,Nt in the vector ~zk. By further assuming no
spatial correlation among themeasurements obtained at the different
DOFs, the final likelihood function can be expressed as

LðdjaÞ ¼
YNdof

k¼1

Nð~zk � zkðaÞ; 0,RkÞ (14)

where Nð
 ; 0,RÞ denotes the value of the multivariate normal
probability density function with zero mean vector and covariance
matrix R evaluated at a specific location. It should be noted that in
many applications, particularly when using data obtained from
spatially dense sensor grids sampling at high frequencies, spatial and
temporal correlation may be present in the discrepancies between
measurements and model predictions which can have a significant
influence on the estimated posterior distribution. However,
accounting for correlation can be challenging due to the difficulty
of specifying an appropriate description in the likelihood function,
and the additional computational effort required to infer the
corresponding parameters [53,54].

The improved transitional MCMC method [157] is used to
perform the BMU process. The result is shown in Fig. 18. The
posterior distribution has significantly reduced uncertainty com-
pared to the prior distribution and has shifted toward the underlying
true value of the parameter a. The posterior uncertainty is non-
negligible.

4.4 State Estimation/Virtual Sensing. In this section, we
utilize the MFOM in order to generate synthetic data of the two-
storey frame structure, under earthquake excitation.We use a scaled
version of the (1986) Kalamata earthquake record (Kalamata
OTE—Building N80E Station) sampled at 100Hz, applied at a
45 deg angle. The record is scaled at an unrealistically large
amplitude in order to excite nonlinear response for this toy problem,
which assumes properties that are not necessarily up to the real scale
(the assumed nonlinear link stiffness is here assumed k ¼
1:75� 108 N/m). The numerical analysis was carried out using a
time-step dt ¼ 1=100 ¼ 0:01 s. The reference simulation hysteretic
parameters were set as a ¼ 0:25, Alpha¼ 1.0, N¼ 1, b¼ 3, and
c¼ 2, with zero stiffness and strength deterioration effects assumed
for all nonlinear joints (links).
In demonstrating the task of virtual sensing, we will here apply a

joint state-parameter estimation strategy and attempt to infer both
unmeasured signals, such as displacements and velocities, as well as
a characteristic system parameter; namely, the hysteretic variable a.
We assume that the accelerations in both horizontal directions are
measured only for the top storey of this frame. The measured
accelerations are produced by contaminating the reference MFOM

Fig. 18 BMU for inferring the parameter a of the Bouc–Wen
model and quantifying the posterior uncertainty

Fig. 19 Virtual sensing; estimation of unmeasured quantities of
interest—displacement and velocities at the first (node O1) and
secondstorey (nodeO2), along thexdirectionofFig. 4.Quantities
estimated via coupling of the MROM with a UKF are denoted in
dashed lines, reference (true) time histories, as simulated via the
MROM, in solid lines. It is reminded that only the second storey
accelerations are assumed to be measured.
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simulation with a 2% RMS (RMS) noise-to-signal ratio. We
additionally, assume that the nonlinear hysteretic parameter a is
unmeasured and attempt to jointly identify this on the fly as data is
attained (online). In order to achieve this task, as in the former
example, we will utilize the MROM as our system model. For this
simple example, the computational gains of theROMare not severe;
however, the reduced dimension allows us to deploy a (nonlinear)
state space xðtÞ of reduced dimension (2� 9 ¼ 18 displacement and
velocity states, versus 348 of the original model), which signifi-
cantly facilitates the identification task. The UKF is here deployed
for the purpose of joint state-parameter estimation. To this end, the
uncertain hysteretic parameter is augmented to the original state
vector xðzÞ as an additional state, whose evolution is governed by a
randomwalk assumption. The filter initiates from an off initial guess
â0 ¼ 08, with assumed process and measurement noise covariance
sources defined as w � Nð0,QÞ, Q ¼ 1� 102I18�18 and
v � Nð0,RÞ, R ¼ 1:5� 107I12�12.
Figure 19 illustrates the UKF-estimated response, in the form of

displacements and velocities, at characteristic DOFs of the first and
second storey of the benchmark frame, namely, nodes o1 and O2 as
annotated in Fig. 1. The filter is shown to closely approximate these
quantities, which are not directly measured, succeeding in the state
estimation/virtual sensing task. In addition, Fig. 20 displays the
convergence in the estimation of the uncertain hysteretic parameter
a. It is worth noting that nonlinearity is not activated in this system
until after the third second of the analysis, when the ground motion
amplitude is significant enough to induce nonlinear behavior. Due to
the nature of its definition (3), the hysteretic parameter a remains
unobservable until nonlinearity is excited. This is also manifested in
the convergence of the estimation, which is activated only after this
parameter becomes observable, i.e., one nonlinearity is induced.
Indeed, the tasks of state estimation, parameter estimation, and input
estimation require fulfillment of specific formal conditions, namely,
observability, identifiability, and invertibility, respectively. These
can be defined for linear [158], as well as nonlinear systems
[159,160]. It is possible to incorporate the principle of observability
within the Bayesian filter construct, as suggested in the discontin-
uous unscented Kalman filter [161].

4.5 Inverse Problem Formulat ion for Damage
Identification. This section demonstrates the application of a
probabilistic approach for damage identification for the benchmark
shear structure. In this approach, determining the existence and

severity of damage in the structure is cast as an inference problem
where the damage is described by a set of uncertain parameters
whose posterior distribution is estimated from data using Bayesian
inference. The Young’s modulus of all elements in the healthy state
before the onset of damage, denoted as Eh, is considered a priori
known and equal to 210.0GPa. Damage in the structure is simulated
as a uniform reduction of the stiffness of the first and second storey
columns, applied at t¼ 2.5 s. Denoting the Young’s modulus of the
damaged columns at the ith storey as Ed,i, the structure is
parameterized by the ratio of the healthy and damaged Young’s
modulus per storey, yielding the parameters h1 ¼ Ed,1=Eh and h2 ¼
Ed,2=Eh for the first and second storey, respectively.
A synthetic dataset is obtained by subjectingMFOM, with ground

truth values for h1 and h2 equal to 0.8, to a Gaussianwhite noise base
excitation. The parameters of the Bouc–Wen hysteretic model are

taken as k ¼ 8:5� 107 N/m, a ¼ 0:15, N¼ 0.8, b¼ 3, and c¼ 4.
The acceleration response is recorded at two DOFs, and the
measurements are subsequently contaminated with Gaussian white
noise corresponding to a 10% RMS noise-to-signal ratio. The
recorded acceleration signals are truncated to the interval between
t¼ 2.5 and t¼ 5.0 s, corresponding to 250measurements per sensor,

yielding the dataset d ¼ ~zk 2 RNt , k ¼ 1,…,NDOF

� �
with NDOF ¼

2 and Nt ¼ 250 (Fig. 21).
Damage identification is performed using the reduced order

model MROM, with a basis composed of the first 32 orthogonal
modes. The construction ofMROM follows the description provided
in the previous case studies and is therefore omitted. For simplicity,
it is assumed that the influence of EOV is negligible, and that the
discrepancy between measurements and model predictions gk ¼
~zk � zkðh1, h2Þ will be dominated by the measurement uncertainty
stemming from the simulated sensor noise, and the model form
uncertainty induced by the use of MROM to approximate the
response of the structure. The combined influence of the identified
sources of uncertainty is accounted for in the formulation of the
probabilisticmodel, fromwhich the likelihood function is derived. It
is assumed that the combined influence of the measurement and
model form uncertainties can be approximated as zero-mean
Gaussian white noise, i.e., gk � Nð0,RkÞ. The variance of the
Gaussian white noise is assumed proportional to the L2-norm of the
data vector ~zk, with the same proportionality constant c across all
monitored DOFs. Under the assumption that no spatial or temporal
correlation is present in the data, the covariancematrix is obtained as

Rk ¼ diagðc2jj~zkjj2Þ, and the likelihood function can be expressed as

‘ðdjh1, h2, cÞ ¼
YNDOF

k¼1

Nð~zk � zkðh1, h2Þ; 0,RkðcÞÞ (15)

Fig. 20 Hysteretic loop drawn for the link element experiencing
the largest amount of relative deformation. In this case, this
corresponding to a rotational spring of a second storey element.
The plot displays the difference between the FOM and ROM
simulation, reflecting the aspect of model form uncertainty.

Fig. 21 Identification of the hysteretic (Bouc–Wen) model
parameter a, in an effort to narrow model parameter uncertainty
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Both h1 and h2 are assigned a Gaussian prior distribution
Nð1:0, 0:2Þ. The lower tail of the Gaussian prior is truncated at a
small positive value in order to restrict the prior and posterior
distributions of h1 and h2 to a positive support. Additionally, c will
be considered as an uncertain parameter and inferred alongside the
stiffness parameters. The prior distribution Cð1:0, 0:05Þ is placed
over c, where Cðkp, spÞ denotes the Gamma distribution with shape
and scale parameters kp and sp, respectively. It is noted that in
practice, specifying prior distributions over uncertain parameters of
the probabilistic model is often challenging or even infeasible due to
the limited available information or due to the difficulty of
expressing this information in terms of a prior distribution.
Bayesian model updating is performed to infer the posterior

distribution over the uncertain parameters, using the variational
Bayesian Monte Carlo (VBMC) approach [102]. VBMC utilizes an
active learning scheme to build a Gaussian process surrogate of the
likelihood function, which is then used to perform variational
inference [162]. In variational inference, the posterior pðh1, h2, cjdÞ
is approximated by a family of distributions parameterized by / (in
this case aGaussianmixture), denoted as q/ðh1, h2, cÞ. Optimization
is performed to obtain the optimal set of parameters/ thatmaximize
the evidence lower bound, which is equivalent to minimizing the
discrepancy between the true and approximate posteriors quantified
by the Kullback–Leibler (KL) divergence

KL q/ h1, h2, cð Þjjp h1, h2, cjdð Þ� 	 ¼ E/ log
q/ h1, h2, cð Þ
p h1, h2, cjdð Þ

" #

The VBMC approach is sample-efficient, making it suitable for
computationally expensive likelihood functions. However, the
reduction in the number of model evaluations (compared to typical
MCMCmethods) comes at the cost of additional uncertainty on the
posterior distribution of the parameters due to the approximation of
the likelihood function and the posterior. The approximate
posterior distribution q/ðh1, h2, cÞ is shown in Fig. 22. It can be
seen that additional information in the measurements results in a
significant reduction in uncertainty over the distribution of the
parameters.
The existence of damage in the structure can be determined

directly from samples of the uncertain parameters from the posterior
distribution, or from samples of the response from the posterior
predictive distribution [12,163]. For this application, the damage
factor for the ith storey is defined as DFi ¼ Eh,i � Ed,i=Eh,i. Samples
from the approximate posterior are used to compute the probability
of damage in a given storey exceeding a given value of the damage

factor df, i.e., P½DFi > df �. The results are shown in Fig. 23. The
overestimation of the first storey damage factor compared to the
known ground truth can be attributed to the limited amount of data
used to perform the damage identification, as well as the combined
influence of measurement uncertainty, model form uncertainty, and
the uncertainty over the posterior distribution due to the variational
approximation.

5 Concluding Remarks

In this paper, the definition and classification of various sources of
uncertainty in structural dynamics, system identification, and SHM
domains was provided through the prism of the classical
input–output system representation. A taxonomy is proposed for
consistent classification of the different sources of uncertainties
into: (i) input uncertainty; (ii) model form uncertainty; (iii) model
parameter/variable uncertainty; (iv) measurements uncertainty; and
(v) inherent variability. We further offer an overview of available
strategies for tackling associated uncertainties, with a focus on key
downstream tasks within these domains. We demonstrate a select
subset of such schemes by means of their implementation on a
benchmark shear frame with nonlinear dynamic behavior, induced
via hysteretic joints. The running example is deployed to investigate
the uncertainty quantification challenges in five key downstream
tasks in SHM: (i) model inference; (ii) environmental and opera-
tional variability characterization; (iii) model updating; (iv) state
estimation/virtual sensing; and (v) inverse problem formulation for
damage identification. Through this review, a set of open challenges
emerges, including:

� The definition of prior assumptions affecting the uncertainty
quantification. Including: (i) inaccurate choice of constitutive
behavior (model form and parameter uncertainty), such as the
dissipation model form and/or parameterization, or dissipation
identification strategy, leading to inaccurate quantification of
driving material behavior or energy dissipation mechanisms
and their uncertainty. (ii) Invalid simplifying modeling
assumptions, such as that of LTI behavior (model form
uncertainty), often leading to unidentifiable nonlinearities,
damage or degradation, and/or wrong quantification of the
uncertainty in the latentmodel parameters. (iii) Handling of the
statistical nature of the measurement uncertainty: e.g.,
measurements/data values are often assumed as independent
and identically distributed, free from unknown external
influences and/or biases; inappropriate Gaussian-like errors
assumption. (iv) Choice of a data-driven architecture (model
form uncertainty), which may not be appropriate for the task to
be addressed, leading to underfitting/overfitting and poor
generalization to unseen conditions.

Fig. 22 Posterior distribution of the uncertain parameters h1, h2,
and c. The vertical dashed lines denote the ground truth for
parameters where it is known.

Fig. 23 Probability of the damage factor at the ith storey
exceeding a given threshold
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� Metrics to assess uncertainty quantification accuracy, bench-
marks, and validation strategies. Different SHM algorithms
might return similar uncertainty bounds on training data;
however, their performance on unseen data (test data) might be
very different, as well as their ability to quantify the
contribution of each source of uncertainty, to identity reducible
and irreducible uncertainty, and to properly quantify uncer-
tainties of slowly/fast time-evolving parameters. There is a
need to develop metrics, complex benchmark case studies, and
validation strategies that can be used to rate the performance of
different uncertainty quantification algorithms on key tasks for
SHM applications. We suggest the adoption of the proposed
taxonomy for establishing such uncertainty class-conscious
metrics.

� Scalable uncertainty quantification solutions for complex
problems. Including: (i) mapping the expensive-to-evaluate
system model in a low-dimensional space to speed-up
computation while retaining accuracy (see suggested use of
reduced order modeling schemes); (ii) high-precision learning
from small informative datasets or large, heterogeneous, and
(spatially or temporally) correlated dataset; (iii) dealing with
large number of uncertainties; (iv) automatically reducing the
number of uncertainties based on the task at hand; and (v)
efficiently quantifying uncertainties in the quantity of interest
and their impact on decision-making.

� Strategies for reducing uncertainties. Including: (i) distinguish-
ing and handling confounding influences (including EOV,
sensor failure, quality of data, and noise in the data) to quantify
and potentially remove otherwise irreducible uncertainties; (ii)
scalable solutions for monitoring deployment to reduce
uncertainty in the latent parameters by accounting for different
measurements type, resolutions, and accuracy; and (iii)
development of value of information (VoI) strategies for
quantifying the cost/benefit of carrying out additional meas-
urements, information, inspection, maintenance, and so on and
improving remaining useful life quantification by combining
physics and domain knowledge with data-driven strategies.

By putting forth the suggested taxonomy for classification of
uncertainties in the realm of SHM, we aspire to put in place a tool
that is useful for organizing the treatment of these sources in a
consistentmanner,while further serving as a basis for systematically
tackling the above-listed open challenges.
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