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Semiconductor (SC)-based bulk absorbers operating in 
the (sub-) THz range are discussed. The conductivities 
of the bulk media are described by the Drude model for 
electron gas where the electron density is controlled. The 

Drude model predicts the existence of two frequencies of inter-
est: one associated with the scattering time of the electrons and 
a second associated with the plasma frequency. The dimensions 
of the absorbers for a specific frequency range can be mini-
mized by tuning the doping levels. Eventually, the maximum 
ohmic absorption from a bulk material is achieved when the real 
part of the characteristic impedance of the absorber is matched 
to the one of the surrounding medium and the imaginary 

part of the characteristic impedance is high so that the power 
entering the material is actually transformed in heat. Using 
a classic transmission line representation, a matching layer is 
introduced to further increase the absorption capabilities of 
an SC slab. Measurements using a time-domain spectroscopy 
(TDS) system show the increased accuracy of the Drude model 
compared to the quasi-static approximation of the conductiv-
ity. The transmission line representation in combination with 
the Drude model proves to be a simple and accurate tool for 
integrated antenna front-end design and absorber optimization.

DRUDE MODEL PREDICTIONS  
The Drude theory for conduction electrons is a fairly accu-
rate description of the electromagnetic (EM) waves’ disper-
sion in metals [1] whose typical resistivities are lower than 
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.10 cm4X-  However, the antennas scientific community 
often does not consider all of the theory’s details since the 
dependence of the conductivity of metals on frequency starts 
to become significant at frequencies much higher than the 
upper limit of the antennas’ working frequency range (i.e., 
hundreds of GHz). Metals up to 5 THz can be considered 
very good conductors, amenable to the low-loss simplifications 
assumed by Leontovich [2].

However, for mildly doped SCs whose typical resistivity falls 
between 1 and ,100 cmX  the Drude model predicts a strong 
frequency dependence of the conductivity and dielectric con-
stant already in the GHz range. The dispersion properties of 
SCs were observed with increasing interest since the fabrication 
of the first silicon (Si) and germanium devices (diodes, bipolar 
transistors, etc.). Later, the first models for the high-frequency 
(>100-GHz) properties of these devices were developed begin-
ning in the mid-1960s [3]. In particular, the Drude model was 
proven to be fundamental for the explanation of the high-fre-
quency diode response as a function of the spreading resistance 
[4]. Moreover, it was not before 1978, the high-frequency cutoff 
of Schottky diodes was understood, again thanks to the Drude 
theory of free charge carriers in SCs [5].

During the 1990s, significant technological breakthroughs 
in THz TDS [6] allowed for the accurate measurement of SCs’ 
free charge carriers’ scattering time, electrical mobility, and 
effective mass. The experimental results reported in [6]–[8] 
also demonstrated that the Drude model, despite its simplicity, 
describes these conduction parameters well for SCs, such as Si, 
in the GHz and THz range. For specific reading, comprehensive 
reviews on SC dispersion can be found in [9], [10]. To overcome 
some inaccuracies and limitations of the Drude theory for SCs, 
numerical approaches based on Monte Carlo simulations, Max-
well equations, and molecular dynamics have been presented 
in [11]. However, this kind of complex methodology resulted 
in less than 10% more accuracy for the determination of the 
frequency-dependent complex conductivity of Si. Hence, the 
Drude theory remains the simplest classical model that can 
predict SCs’ dispersion properties with minimal computational 
efforts, allowing the fast engineering of SC-based components 
for antenna systems and imagers.

For historical reasons, all of Drude theory’s aspects and 
consequences, widely studied by the physicist and time-domain 
communities, have not yet received proper attention from the 
microwave and THz engineering communities. For example, 
in the modeling of the state of the art of CMOS integrated 
detectors (one pixel of which could be as presented in Figure 1) 
and imaging arrays [12], the material’s dielectric constant has 
been assumed to be frequency independent. Although the 

consequences of assuming the conductivity is frequency inde-
pendent are negligible for some highly resistive materials, such 
as the material considered in [13], for other materials, the over-
estimation of the ohmic losses is very significant [14].  

Moreover, it appears that SC composites have not yet been 
exploited in the design of absorbers. Bulk absorbers in the 
THz regime could be simply fabricated by Si micromachin-
ing and deep reactive-ion etching. High-resolution imaging in 
the THz band, [12], [15]–[17] for instance, is a technological 
field in which arrays of antenna-coupled dielectric lenses are 
often adopted. Each lens corresponds to a specific observa-
tion direction, and the mutual coupling between the feeds of 
different lenses must be avoided. The mutual coupling can be 
diminished by selectively increasing the conductivity of spe-
cific lateral portions of the lenses to render them opaque, as 
displayed in Figure 2.

When complying with stringent volume requirements, the 
fine-tuning of the parameters of the SC slabs leads to significant 
ohmic losses, which can be characterized by equivalent trans-
mission lines. These losses imply characteristic impedances 
whose imaginary parts are comparable to the real parts. These 
lines are not usually addressed in the microwave community, 
and they require a heuristic approach to the design as there are 
no well-known design principles.

ANALYSIS OF THE CONDUCTOR USING THE DRUDE MODEL
The most important characteristics of the Drude model will be 
briefly summarized in this section to provide the reader with a 
complete view and to introduce essential variables and termi-
nology used in this article. The effective parameters from the 
Drude model as a function of the frequency are discussed with 
a focus on bulk metals (specifically gold).

©SHUTTERSTOCK.COM/PLASTEED
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FIGURE 1. An example of stratification consisting of an 
antenna and a dielectric lens, separated by a thin layer of 
low-resistivity Si.  
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In the quasi-static limit, the conductivity of a metal or an SC 
can be approximated as

 ,m
ne

qs
e

2
v x=  (1)

where n is the electron density, .e 1 6 10 C19#= -  is the charge 
of an electron, and .m 9 1 10e

31#= -  kg is the mass of a free 
electron. The scattering time, ,x  characterizes the electron gas, 
and, in the case of a metal, it is in the order of femto seconds  
(27 fs for gold at room temperature).

The model predicts a linear frequency-dependent resis-
tivity as

 ,j1qst ~ t ~x= +^ ^h h  (2)

where / ,1qs qst v=  and both qsv  and x  have been provided 
in (1). As a specific case, the resistivity of gold, calculated 
using the Drude model, at 300 K, is presented in Figure 3. 
The electron density is .n 5 9 1028#=  electrons/m3. It is seen 
that, at very low frequency, the resistivity is mostly real. The 
Drude model introduces a frequency dependence for the 
conductivity of the metal, describing the bulk material as an 
ion sea, with free electrons. The free electrons are accelerated 
by the presence of an electric field and hit the metal ions, as 
illustrated in Figure 4. When these hits occur, kinetic energy 
is transferred to the ions, which are accelerated, and, as a con-
sequence, heat is generated. In a first-order approximation, 
the average time, ,x  between the successive hits of electrons 
and the ion sea does not depend on the electric field. Instead, 
it depends on the effective scattering surface of the ions, 
which is a function of the temperature via the average energy 
of the ions. Significant changes in the resistivity occur as the 
frequency of the EM wave propagating in the metal increases. 
At the transition frequency / ( )f f 1 2rx= =x , which corre-
sponds to 6 THz for gold, the imaginary part of the resistiv-
ity becomes as large as the real part. This corresponds to the 
notion that for frequencies higher than ,fx  the electric field 
changes sign with a period shorter than .x  Accordingly, with-
in the time interval x  the electrons are accelerated in alter-
nating opposite directions. For this reason, the electrons do 
not discharge all of the kinetic energy that they acquired into 
the ion sea. A pictorial view of the average electron accelerat-
ed by a high-frequency electric field is presented in Figure 5.

From (2), the frequency-dependent conductivity is

 ( ) .j j1 1 1
qs qs qs

2 2 2 2v ~
~x

v

~ x

v

~ x

v ~x
=
+

=
+

-
+

 (3)

The introduction of (3) in Maxwell’s equations provides the 
effective dielectric constant

 ( )
( )

.
j

1,r r
r

0 0
0

eff efff ~ f f f f
~f f

v ~
= = -3

3
c m  (4)

The effective dielectric constant presents both a real and an 
imaginary part, which can be isolated after introducing the plas-
ma frequency as [18]:

 .m
ne

p
r e

2

0

2

f f
~ =

3
 (5)
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FIGURE 3. The resistivity of gold as a function of the frequency 
calculated using the given parameters.

FIGURE 4. The free electrons (red dots) are accelerated by 
a low-frequency electric field (red arrows) until they hit a 
metal ion (blue dots), which, in turn, is accelerated.

Low-Resistive
Si Absorber

High-Resistive
Si

FIGURE 2. An on-chip lens array made of high-resistive Si. 
Locally increasing the doping levels for maximum absorption 
can reduce surface wave-propagation in the chip.
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One finds
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(6)

The absolute values of the real and imaginary parts of the 
effective relative dielectric constant are plotted in Figure 6 
again for the case of gold, calculated using the given param-
eters ( ).1rf =3  The term in (6) within the square parenthesis 
expresses the real part of the effective relative dielectric con-
stant. Since .1 6 10p

2 2 5#.~ x  for gold at room temperature, it 
is apparent that for frequencies lower than the plasma frequency 
the real part of the effective dielectric constant is negative.

A similar transition to the one that was observed in the resis-
tivity can be observed in the equivalent relative dielectric con-
stant. For frequencies lower than ,fx  the imaginary part of the 
effective relative dielectric constant is much larger than the real 
part. Also, at extremely high frequencies ( , / ),f f f 2p p p2 ~ r=  
gold (as all metals) becomes transparent.

The propagation constant also shows a signature associ-
ated to the fx  transition. The propagation constant for gold, 
calculated using the Drude model, is plotted in Figure 7 with 
frequencies varied both in linear and in logarithmic scale. For 
frequencies below 2,200 THz propagation in gold is highly 
attenuated. However, on a logarithmic scale, it is apparent that 
from dc to the mentioned f 6 THz=x  the amplitude of the 
real part of the propagation constant increases in the same way 
as the amplitude of the imaginary part. At f 6 THz=x  the real 
part of the propagation constant reaches a maximum value and 
then decreases while the imaginary part saturates at approxi-
mately 20 THz.

The transition that characterizes the propagation and atten-
uation constant corresponds to the change in the dominant 
mechanism of attenuation for the EM waves in the metal: 

At low frequencies there are ohmic losses corresponding to 
the transformation of EM energy into kinetic energy while at 
higher frequencies there is attenuation with minimal phase 

FIGURE 5. The free electrons (red dots) are accelerated by a 
high-frequency electric field (red arrows). The direction of 
the electric field changes sign before the electrons hit an ion 
(blue dots), and the electrons oscillate without transferring 
energy to the ions.
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FIGURE 6. The absolute value of the real and imaginary parts 
of the effective relative permittivity of gold, calculated using 
the given parameters. Both the real and imaginary parts are 
negative for frequencies lower than the plasma frequency.
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FIGURE 7. The propagation constant of an EM wave within 
gold, calculated using the given parameters. (a) Frequency 
on a linear scale. (b) Frequency on a logarithmic scale.
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progression. The electron density 
in the metal is very high, and as the 
electrons are excited by an incident 
wave they radiate a scattered field, 
which opposes the propagation of 
waves (similarly to what happens in 
a waveguide in cutoff). As long as 
the average distances between the 
electrons are small in terms of the 
wavelength the scattering destruc-
tively interferes with progressive 
waves in the metal. As the frequen-
cy increases, the electrons become 
too massive to respond with an 
acceleration to the force impressed 
by the electric field before it chang-
es sign. Since the electrons are less 
accelerated, they also do not radi-
ate the scattered field. Therefore, 
the total field in the metal is only 
represented by the incident field that can propagate in the 
metal unobstructed. The specific frequency at which this 

happens, ,fp  depends on the elec-
tron density and the effective mass 
of the electrons. Mathematically, 
this condition is represented by the 
real part of the effective dielectric 
constant rising higher than zero, 
i .e. ,  / ( ) ,1 1 0p

2 2 2 2 2~ x ~ x- +  
which happens as the frequency 
increases to values higher than the 
plasma frequency.

Another interesting parameter 
is the characteristic impedance 
of the gold calculated using the 
Drude model, which is illustrated 
in Figure 8. The impedance tends 
to 3770 .g X  for frequencies 
much higher than the plasma fre-
quency of the metal, it undergoes 
a resonance at the plasma frequen-
cy, and it is mostly imaginary for 

lower frequencies. However, a zoomed view of the impedance 
curves at low frequencies [Figure 8(b)] shows that for frequen-
cies below 1 THz the real and imaginary parts of the imped-
ance tend to be equal. Real and imaginary parts having the 
same value is the signature of the “good conductor” behavior 
on which the Leontovich [2] approximation for losses is built.

SC DISPERSION
For doped bulk SC materials, the quasi-static conductivity can 
be approximated using (1). Here, we are neglecting the hole 
conductivity, which is negligible for n-doped SC materials. For 
SCs, an equivalent electron mass is used to account for the 
diminished inertia of electrons embedded in a periodic lattice 
potential: .  m m0 29,e si e=  for Si [6]. The scattering time x  for 
Si is in the order of a few ps, depending on the doping and the 
temperature. The scattering time is found as

 ,e
msix n=  (7)

where the mobility n  is at ,T 300 K=  equal to [19]:

 n
nN

N1 1
ref,

,
min

max min

1
2

1

ref1 2
n n

n n n
= +

+

-
-
+

a a` cj m
. (8)

The several parameters in (8) are based on experimen-
tal data, and the values are:  . ,6 85 10 m V smin

3 2 1 1#n = - - -   
. ,0 1414 m V smax

2 1 1n = - -  . ,5 61 10 m V s1
3 2 1 1#n = - - -  Nref,1 = 

. ,9 20 10 m22 3# -  . , .N 3 41 10 0 711mref,2
26 3

1# a= =- ,  and 
. .1 982a =  For SC materials, the transition frequencies, fx , 

are in the range of a few hundred GHz. The plasma frequen-
cies can also be in this frequency range depending on the 
doping levels. Therefore, both of these frequencies should be 
reasons for attention, specifically from mm- and sub-mmWave 
front-end designers.

Similar to the case of gold, the effective relative permittiv-
ity of the SC can be calculated as a function of frequency from 
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FIGURE 8. The characteristic impedance of gold, calculated 
using the given parameters. (a) Complete spectrum under 
consideration. (b) Zoomed in on low frequencies.

All of Drude 
theory’s aspects 
and consequences, 
widely studied by the 
physicist and time-
domain communities, 
have not yet received 
proper attention 
from the microwave 
and THz engineering 
communities.
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the Drude model using (6) so that the characteristic imped-
ance of the SC and its propagation constant are expressed 
as / ,r0 effg g f=  and ,k k ,r0 efff=  respectively. Figure 9 
presents the dispersion curves of plane waves propagating in 
gold [Figure 9(a)] and in doped Si [Figure 9(b)], calculated 
using the Drude model and the appropriate parameter val-
ues. The propagation constants normalized to the propagation 
constant of free space, ,k0  (for gold) and to the propagation 
constant of undoped Si, ,k k r0host f= 3  (for Si) are shown as 
functions of the frequency. The propagation constant of gold 
undergoes a very drastic transition after ,f 2 200 THzp =  as 
waves are actually allowed to propagate without significant 
attenuation for frequencies higher than .fp  The case of Si 
presents a more complex dispersion. The plasma frequency in 
SCs largely depends on the doping levels, and, accordingly, the 
dispersive properties can be designed to meet certain require-
ments. In the case presented in Figure 9(b), four different 
levels of doping are considered. The parametrization refers to 

( ) / ( ) . .n n m e 8 8 10 m,rp e si si0
2 2 21 3#f f x= = =3

-  This dop-
ing is such that f fp = x  and corresponds to . cm.0 6qst X=  
These orders of doping levels are common in Si wafers used in 
electronic circuits. The dopings of Figure 9(b) correspond to 

/ ,n n 5p=  ,n np=  ,n n5 p=  and .n n25 p=  The lower doping 

levels imply lower dispersion. However, for higher dopings, the 
frequency dependence of the propagation constant is stronger. 
From this figure, one can anticipate that significant freedom in 
the design of front ends at sub-THz frequencies can be obtained 
by finely controlling the electron doping levels in Si.

IMPEDANCES OF LOW-RESISTIVITY SILICON
Arguably, the most important property of a material for an EM 
engineer is its characteristic impedance. It relates the electric 
and magnetic field of a plane wave traveling in a bulk medium 
and is routinely introduced in transmission line tools to describe 
the interaction of waves with the finiteness of the structures. 
The superposition of multiple reflections in slabs is well-under-
stood in the TDS community [6]. However, the representation 
of the total fields via equivalent transmission lines is much less 
common there than it is in the electrical engineering communi-
ty. For this reason, to the authors’ knowledge, the characteristic 
impedance of a bulk SC cannot be found in published literature.

The resistivity of doped Si as calculated using the Drude 
model with n np=  is displayed in Figure 10(a). The same 
behavior as what happens with the resistivity of gold is seen, 
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where the real part is constant as a function of the frequency 
while the imaginary part grows linearly, reaching the value of 
the real part at .fx  The characteristic impedance of Si doped 
with different electron densities is presented in Figure 10(b). 
The characteristic impedance of doped Si is

 ,
 ,r

0

eff
g ~

f ~

g
=^ ^h h  (9)

where ,r efff ~^ h is introduced in (6). After some algebraic steps, 
(9) is written as

 ,e
j1

1/j

qs

4 0 2 2
g ~

v
n ~

c ~
~ x=
+
+r^ ^h h  (10)

where we introduced

 ( ) ( ) .1
p

p2
2 2 2c ~

~ x
~ ~ ~ x= + -^ h  (11)

In the limit for low frequency, it can be seen that c  goes to 
zero so that

 ( ) ( ),j2 1p
qs

0
%g ~ ~

v
n ~

= +  (12)

which is recognized as the Leontovich approximation for good 
conductors. Instead, for very high frequencies (i.e., ),p&~ ~  
using / ( ),p qs r

2
0~ x v f f= 3  we see

 ( ) 1p
qs

r 0 2 2& f f
c ~ ~

v
~

~ x= +3 ^ h (13)

so that

 ( ) .p
r 0

0
&

f f
g ~ ~

n
=

3
 (14)

The impedance behavior in the frequency range around p~  
exhibits an interesting behavior. As the frequency grows from 
very low frequency, both real and imaginary parts (RSi  and ,XSi  
respectively) of the impedance rise and show peaks that are 
close to each other in frequency. The “Applications in Absorbers 
and Lens Design” section presents that the percentage of inci-
dent power absorbed within the SC is maximal at a frequency 
between the peaks of RSi  and .XSi

A better physical understanding of the imaginary part can be 
understood as follows: Assuming that a plane wave propagates in 
a positive z-direction and the magnetic field is of zero phase at a 
given observation point, the corresponding electric field is

 ,e h z R jX h zSi Si# #g= = +v v t v t^ h  (15)

which presents two components that are 90° phase-shifted. One 
component is in phase with the magnetic field, ,e R h zSi #=v v t  

and, thus, contributes to the real part of the pointing vector 
along zt  as

 { } .Re S R h2
1

z Si
2

= v  (16)

The second component is in quadrature to the magnetic 
field: e jX h zSi #=v v t . This component only contributes to reac-
tive energy transported in the longitudinal direction. However, 
this same component of the electric field is actually in phase 
with the flow of electrons in the Si (electric currents) and, thus, 
directly contributes to losses.

The imaginary part of the characteristic impedance is asso-
ciated with real power in the form of ohmic losses. It can be 
observed from Figure 10 that, for increasing frequency, the 
value of RSi  tends to the impedance in the absence of doping 
while XSi  decreases, resulting in lower ohmic losses.

VERIFICATION OF THE MODEL
The Drude model for the dispersion of the SCs in (6) was first 
validated in [6]. In this section, we present an experimental 
validation that largely follows the one in [6] by means of state-of-
the-art TDS measurement equipment [20] and Si wafers.

The experiment was conducted in the following way: Two 
photoconductive antennas face each other and are coupled by 
means of a quasi-optical path consisting of four spherical lens-
es that focus the field radiated by the transmitting (Tx) anten-
na onto the receiving (Rx) one. The antennas are excited by a 
pulsed in-fiber gaussian laser at 1,580 nm, each pulse having 
a full width at a half-maximum of 100 fs and being repeated 
at 100 MHz. The Tx antenna is biased to a constant voltage, 

,V 100 Vb =  that accelerates the carriers injected by the laser 
generating the radiating process; the carriers freed in the 
Rx antenna are accelerated by the incoming THz radiation. 
The Si wafer is positioned in the middle of the quasi-optical 
path, the time-domain current induced in the Rx antenna is 
sampled, and its spectrum is calculated. The spectrum of the 
induced current on the Rx antenna is calculated both with 
and without the sample in the quasi-optical path. From these 
spectra, the dielectric properties of the slab can be extrapo-
lated by knowing the slab’s geometry and location.

Next, we consider an SC slab that is much larger in the 
transverse directions (i.e., the x- and y-directions) than the 
width of the beam profile generated by the TDS system. The 
slab has a finite thickness, h, in z-direction, and it has free space 
above and below it. The beam profiles can be represented as 
normally incident plane waves. Thus, the total electric field can 
be expressed as the product of a voltage, V, and a transverse nor-
malized field unit vector, :ett

 ( ) ( ) .E r V z et t=v v t  (17)

Resorting to a standard transmission line representation, 
as illustrated in Figure 11, the voltage distributions in the 
slab (medium 2) and in the two half-spaces of host material 
(free space in this case) for z h1-  (medium 1) and z 0>  
(medium 3) can be expressed as the superpositions of incident 
and reflected waves:

ζ1, k1 ζ2, k2 ζ3, k3

V1
+ V3

+
Zin2

z = –h z = 0

FIGURE 11. The transmission line model representing the 
absorbing slab surrounded by a lossless host medium.
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 ,V z V e V ei i
jk z

i
jk zi i= ++ - -^ h  (18)

where the subscript , ,i 1 2 3=  indicates the portion of space 
under consideration. The propagation constant and the char-
acteristic impedance of the transmission lines in Figure 11 are 
those of the host material for medium 1 and 3 and those of SC 
material for medium 2.

After a few algebraic steps, the transmission line solution for 
the value of the voltage propagating after the slab to the receiver 
of the measurement setup is

 ,V V V
e e

e
1

1 1
jk h jk h

jk h

3 2 1out
out

in out
2 2

1

C
C

C C
= + =

+

+ ++ + +
-

^ ^ ^h h h
 (19)

where ( ) / ( )Z Z2 2in host hostin ing gC = - +  and ( ) /out hostg gC = -

( )hostg g+  are the voltage reflection coefficients at the cross sec-
tions z h=-  and ,z 0=  respectively.

Figure 12 presents the amplitude of the transmission coef-
ficient /T V V3 1= + +  as a function of the frequency for a dielectric 
slab of Si of thickness h 434 mn=  and resistivity declared by 
the provider of 5Xcm. The value of ,rf 3  of the slab was found 
beforehand to be 10.5. In the model, a nominal resistivity of 

.3 77qst X= cm corresponding to a doping of .n 1 16 1021#=  
was adopted because it led to the best fit. The scattering time 
was found using (7). It is apparent that the frequency-indepen-
dent nominal resistivity, or conductivity, does not represent the 
losses in the dielectric slab for frequencies higher than a few 
hundred GHz.

Meanwhile, the transmission coefficient evaluated via the 
full Drude model and the measured one show very good agree-
ment in measurement accuracy. The expected and measured 
oscillations are directly related to the multiple reflections at the 
dielectric air interfaces.

From the same measurements, the TDS measurement 
equipment [20] allows for the extraction of the index of refrac-
tion, ( ).,r efff  In Figure 13, the measured real and imaginary 
parts (red solid curves) are compared with the ones predicted 
by the Drude model (black solid lines) and with those from 
a model that only considers the quasi-static, frequency-inde-
pendent approximation for the conductivity (dashed lines). It 
is apparent that the accuracy of the measured { }Im ,r efff  
(proportional to the attenuation constant) is impacted by the 
multiple reflections within the slab. On the large scale of Fig-
ure 13(a), both models seem to agree very well with measure-
ments. However, Figure 13(b)–(d) shows expanded views of 
the imaginary part of the index of refraction on separate fre-
quency ranges. The larger apparent dispersions occur at lower 
frequencies, with { }Im ,r efff  varying from –0.7 to –0.1 in the 
band, from 100 GHz to 500 GHz. However, in that frequency 
range, the quasi-static approximation of the conductivity already 
provides { }Im ,r efff  with good accuracy with respect to the 
measurements and the Drude model. In the frequency range 
between 0.5 THz and 1.5 THz, the measured { }Im ,r efff  and 
the one predicted by the Drude model start to significantly 
deviate from the one predicted by the quasi-static conductiv-
ity model. Finally, in the ranges from 1.5 THz to 4 THz, the 

{ }Im ,r efff  is five to 20 times smaller than the one predicted 

by the quasi-static conductance approximation, indicating that 
the full Drude model must be used to assess the losses in doped 
SCs to maintain a useful estimation of the propagation losses. 
Overall, the Drude model captures the dominant features very 
well, validating the analysis from the previous sections.

APPLICATIONS IN ABSORBERS AND LENS DESIGN
In the “Drude Model Predictions” section, integrated lens 
arrays for imagers were introduced as a typical field of applica-
tions where the Drude model is commonly overlooked while 
estimating losses. In this section, numerical examples will be 
described to highlight the usefulness of adopting the Drude 
model in the design stages of integrated-lens antennas and 
absorber design.

In the previous section, it was presented that the transmis-
sion line model from Figure 11 can be used to estimate the 
power absorbed in a slab of finite thickness which is surrounded 
by free space. Here, we will consider a slab of doped Si embed-
ded in both nondoped Si and free space as examples. The 
absorbed power in the slab can be expressed as

 , , ,ReP E x y z dV2
1

abs
V

2
2

SC
v= v ^ h" ,###  (20)

where VSC  is the volume of the SC slab, and E2
v  is the elec-

tric field inside the slab. The integral can be analytically 
evaluated as

 ,{ }ReP A V e e
2 2

1 1 1outabs
h h

2
2 2 2 2v

a
C= - + -a a+ - j` ^ h  (21)

where v  is provided in (3), { }Im k2a =- , and A is the effective 
area under illumination. The effective area under illumination 
is only needed to provide absolute power values. However, if 
the absorbed power is normalized to the incident power,

 ,P A V2
1

1
2

host
inc

g
= +  (22)

the effective area information cancels out.
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FIGURE 12. The transmission through a slab of doped Si (h = 
434 nm; n = 1.16 × 1021 m−3) and a comparison between the 
measurements of the Drude model and of the quasi-static 
approximation.
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ABSORBING SLAB SURROUNDED BY SILICON
Using the transmission line model from Figure 11 and 
(21) and (22), one can calculate the losses associated to the 
low-resistive Si layer in the front-end design introduced in 

Figure  1 [14]. The frequency band under consideration is 
from 200 to 600 GHz, the thickness of the slab is ,200 mn  
and the quasi-static resistivity is 10Xcm. This resistivity 
corresponds to a doping level of .n 4 5 10 m20 3#= - . From 
the quasi-static approximation, the expected losses over 
the frequency band of interest are constantly slightly below  
1 dB. However, after implementing the Drude model, it is 
seen that the losses actually peak at 200 GHz at 1 dB before 
decreasing with frequency to only 0.6 dB at 600 GHz and 
even lower at higher frequencies. The losses as a function 
of frequency, calculated using both models, are displayed 
in Figure 14. From Figure 14 it is clear that the commonly 
used quasi-static approximation for the conductivity severely 
overestimates the losses at higher frequencies for the trans-
mission of a wave through low-resistive Si. The lower losses, 
as calculated from the Drude model, show greater promise 
for the integration of antennas in low-resistive Si just below 
Si lenses at THz frequencies.

The doping level can be tuned to maximize absorption: The 
highest absorbing efficiency is achieved by the thinnest slab that 
absorbs the maximum power for a given frequency. Assuming 
a frequency band is centered around a given central frequency, 
such an SC absorber can be synthesized parametrically by 
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FIGURE 14. The losses in a slab of 200 mn  with 10 cmqst X=  
( . ).n 4 5 10 m20 3#= -  The expected losses are displayed as 
calculated (using the quasi-static approximation and the 
Drude model).
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tuning the electron doping, n, and the thickness, h. A good 
absorber will be one that
1) minimizes the reflections of the incident waves, i.e., one for 

which hostSC .g g

2) maximizes resistive wave attenuation.
As previously introduced, three frequency regimes, 

,  ,f f f f fp1 1 1x x  and ,f fp2  can be identified from the 
Drude model. For frequencies below ,fp  the real part of the 
effective dielectric constant is smaller than zero. For frequencies 
that are also lower than ,fx  waves can still propagate in the SC, 
with the attenuation constant equal to the propagation constant. 
However, for frequencies in the range of ,f f fp1 1x  there is 
no propagation possible, with or without attenuation. Accord-
ingly, the frequencies between fx  and fp  are less useful for an 
efficient absorber. It is apparent that for SC absorbers fp  is a 
design parameter since the doping n can be finely tuned in a 
cleanroom environment. Accordingly, a starting point for our SC 
absorber design will be the choice of an electron density doping 
that cuts out the middle frequencies’ region, which is achieved 
by choosing .n np=

Looking at the absorption within slabs of different thick-
nesses, as presented in Figure 15, it is apparent that for n np=  
a slab with a thickness of one effective wavelength at 350 GHz, 
corresponding to approximately ,250 mn  is sufficient to absorb 
more than 90% of the incident power. As expected, thicker and 
thinner slabs absorb a larger and smaller portion of the incident 
power, respectively. Figure 16 illustrates the power absorbed by 
a slab of thickness h 250 mn=  as a function of the frequency 
and doping level. Lower dopings lead to lower impedance con-
trasts, associated to a lower .XSi  On one hand, this also implies 
lower ohmic attenuations. On the other hand, higher dopings 
lead to a higher attenuation per unit length but also higher 
reflection at the interfaces.

ABSORBING SLAB SURROUNDED BY FREE SPACE
A clearer example of the usefulness of the transmission line 
representation for the propagation in SC material involves 
minimizing the volume of an SC stratification to absorb a 
wave incident from free space. In this case, an Si with the 
higher doping level .n n6 5 3 10 mp

22 3#= = -  was chosen 
for the main absorber. The power absorbed in this single slab 
absorber (of thickness )125 mn  is presented in Figure 17, 
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with the maximum absorption being 75% around 1.5 THz. 
However, the introduction of a second perforated doped-Si 
matching layer can be used to facilitate the penetration from 
free space to the densely doped Si. The effective dielectric 
permittivity of the matching layer in the absence of doping is 

. .3 4,r m rf f= =3  In this second case, the matching layer 
was taken with /l 81 4m dm n m= =  at 500 GHz, where dm  is 
the wavelength in the matching layer. The thickness of the core 
absorber was reduced to l 44 ma n=  so that the total absorbing 
thickness remained .125 mn  The doping level of the matching 
layer was chosen to be .n 3 10 mm

21 3#= -  In this second case, 
more than 95% of the power was absorbed in the cumulative 
space of /50m  at 500 GHz. It was interesting to observe that, 
despite the heavy losses in the matching layer, the standard 
quarter wavelength transformation rule still roughly applied.

CONCLUSIONS
The frequency-dependent properties of gold and doped Si were 
investigated using the Drude model. The propagation constant 
of bulk Si for different levels of n-type dopings was presented. 
The characteristic impedance for low-resistivity Si was also 
introduced and used in a classic transmission line tool. Here, 
the notable feature is that this tool is used as it is in standard 
microwave designs, also in the presence of very high losses 
per wavelength. The model was validated by means of time-
domain sensing measurements. It was found that the commonly 
used quasi-static approximation for the conductivity is valid 
for frequency regimes up to a few hundred GHz. However, for 
frequencies higher than 300 GHz, the Drude model exhibits 
significantly more accurate results than the quasi-static model 
when measurements are compared.

Guidelines were presented for synthesizing efficient THz 
absorbers for a given target frequency by finely tuning the 
doping of semiconducting materials. By introducing a match-
ing layer, an absorption of more than 95% of the incident 
power is realized in a slab of 1/5 of the wavelength in free 
space. As the frequency increases above the target frequency, 
the absorption decreases, and the losses in the doped Si are 
much lower than would be assumed from the quasi-static con-
ductance model.
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