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Abstract 
Recent improvements in mobile technology have allowed computationally intensive augmented reality 
systems to become increasingly ubiquitous. As will be shown in this thesis an increasing number of 
companies have started developing markerless AR systems that can be used professionally. Robust pose 
estimation is essential for such systems to convey users into a believable AR experience by excluding 
outlying and erroneous tracked features. Robust statistics can detect and reject large percentages of 
outliers but in highly dynamic scenes more dedicated motion segmentation is required.   
 
In this thesis a motion segmentation algorithm is presented that is designed to increase robustness in a 
vision based marker-less stereo AR framework, to improve pose estimation and mapping. This is based 
on a motion segmentation method that has successfully been tested on PTAM [1]. We believe that by 
expanding this to stereo vision, improvements can be made by utilizing the extra visual information 
obtained by the second camera.  
 
By modeling the stereo triangulation error we could use the Mahalanobis distance for clustering 
features and correct for their error distribution, which increases with distance from the camera. Initial 
visual inspection showed that this improved the dynamic feature rejection with respect to the Euclidean 
distance and with that also the accuracy of pose estimation. This is shown in the test results.  
By using the 3D distribution in the scoring of each set, the correct labeling of a set of clustered features 
as being static was improved. This is because static features are more likely to be arbitrarily spread over 
the 3D scene while dynamic features belonging to the same moving object are more likely to be grouped 
in a relatively planar configuration. Stereo vision provides 2.5 D information (in contrast with X-ray 
images) and moving objects are generally smaller than the 3D scene in which the user resides itself. 
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1. Introduction  
Recent advances in mobile technology have made computationally intensive augmented reality (AR) 
applications become more widely available. Although these applications are still very limited (mainly 
marketing gimmicks), AR could reach its full potential in 5 to 10 years with further development and 
improvements in technology. Figure 1.1 shows for example an AR application that shows venues and 
spots in the user’s vicinity that might be interesting. 
 
 

 
 

Figure 1.1 AR application that can show the user points of interest in the vicinity. 

 

1.1 Augmented reality (AR) 
In AR, virtual images are superimposed over those of the real world so the user can view and interact 
with them.  Azuma [2] defined AR as a technology that; 
 

 Combines real and virtual imagery 

 Is interactive in real time 

 Registers the virtual imagery with the real world 
 

For the AR experience to become believable to the user the system needs to perform these three tasks 
convincingly. The AR system therefore needs to have an accurate notion of its own position and 
orientation (pose) in relation to the environment, even when the user wearing the AR device moves 
around. 
 

1.2 Previous work and developments 
The earliest AR system was developed by Sutherland in the 60's [3], who made a device which projects 
wire-frame images onto a see-through head-mounted display. The wire-frame images were projected in 
accordance to the movements of the user’s head, which was tracked using ultra-sonic and mechanical 
sensors.  
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Figure 1.2 The first AR installation developed by Sutherland in the 60’s called the sword of Damocles because of 
the large structure that hangs over the user.   

 
In 1992 a team from Columbia University created what can be considered to be one of the first real AR 
systems; Knowledge based Augmented Reality for Maintenance Assistance (KARMA) [4]. It uses markers 
attached to an object to determine the pose of that object. It overlays instructions on the video image 
which the user can then carry out.  
From that moment on many AR systems have been designed to also use visual information for pose 
estimation. 
 
Depending on the AR system, the entire process of registering the environment and estimating the pose 
can be computationally expensive. Because of the increased computational power of mobile devices 
they can now support AR applications that make use of the integrated sensors and cameras. One 
example of such an application is a ghost capture game SpecTrek. In it, ghosts are placed in an area with 
a radius of 124 meters which the user can capture using the phone’s camera, as shown in Figure 1.3. 
 
 

 
 

Figure 1.3 SpecTrek; A simple AR game about hunting ghosts in the area. It uses GPS to track the users position 
and once close to a ghost it can be displayed in the camera image and be caught. 
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Nintendo has always been known for pushing novel gaming interfaces and experiences. So when 
Nintendo launched the Nintendo 3DS it also featured some small AR games. The 3DS has a camera on 
the back side that tracks markers to update its pose.  
 

 
 

Figure 1.4 AR games on the Nintendo 3DS uses markers for pose estimation. 

 
A very promising advancement in AR comes from a Silicon-Valley start-up Meta which develops the 3000 
dollar Meta-pro [5]. The Meta-pro creates a real 3D virtual interface where users can interact with 
virtual objects, giving a holographic computing experience. Meta sees surgery and 3D CAD as promising 
fields to apply this technology. In order for the Meta-Pro to estimate its own pose and the position of 
the users hand it needs reference information from the environment which it receives through a 3D 
time-of flight depth sensor, a stereo-camera, accelerometers, a gyroscope and a compass. To process all 
this information it has a 1.5 GHz i5 Intel processor and 4Gb RAM, which is located in a separate unit 
connected through a wire to the glasses. The Meta-pro requires all these sensors because believable AR 
needs a reliable and accurate pose estimation to be convincing, in contrast to virtual reality (VR) that 
also works well with a rougher estimate. The high price, however, makes that the Meta-pro is primarily 
aimed at professional user. 
 

 
 

Figure 1.5 The development of the Meta-Pro is currently also focused on using it as a more intuitive 3D CAD tool. 
In this figure it is used to sculpt objects that can be dragged-dropped to a 3D printer to start prototyping. 
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In 2007 Klein and Murray developed a popular AR framework; Parallel Tracking And Mapping (PTAM) [1] 
(see section 2.2 for more details). It was the first AR framework to benefit from parallel processors, that 
became increasingly common in computers, by running the tracking and mapping processes in parallel 
threads. PTAM has been adapted by O. Akman to use a stereo- instead of a monocular camera; Stereo 
Tracking And Mapping (STAM) [6]. The advantage of a stereo camera is that the baseline between the 
right and left camera is known giving a real world scale reference to estimate 3D coordinates in true 
scale. Stereo images can be rectified so that finding image correspondences is easier through stereo-
matching. More on the subject of stereopsis in chapter 2.2. STAM will also be the framework in which 
the method to make pose estimation more robust against dynamic features will be implemented.   
 
 

 
 
Figure 1.6 Microsoft has collaborated with NASA to recreate a 3D environment of Mars from pictures provided 
by Curiosity. This environment could then be explored using its newly developed Hololens. 

 
In January 2015 Microsoft announced something similar to the Meta-Pro that would also work with their 
new operating system Windows 10; the Hololens, Figure 1.6. It hasn’t released much technical details 
but looking at the head band it seems to contain several stereo camera’s which are probably used for 
head tracking. Having such a large company investing in and promoting this technology might very well 
spur AR development. 
 

1.3  Challenges and difficulties in AR 
There is still a long way for AR to become a part of people’s everyday life. A lot of challenges and 
limitations still need to be improved before AR will be able to showcase a wider range of possibilities. Ö. 

Blissing [7] gave a comprehensive summation of some of these limitations and challenges of which a 
short overview is given. 
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1) Portability 
Recent developments in mobile devices such as smart-phones and tablets have made AR more 
widely available. Equipped with cameras and additional sensors they form a good platform for AR 
applications. This trend makes the cumbersome backpacks required for larger devices ultimately 
obsolete. 
 

2) Tracking 
Accurate tracking is crucial in AR applications and is a fundamental enabling technology for AR. With 
the most cited ISMAR paper, and five out of ten of the highest cited ISMAR papers being about this 
subject [8]. For reliable tracking distinguishable features, such as corners and edges are required in 
the scene. Large monotonic surfaces therefore pose problems, are hard to be recreated correctly 
and generally show up as dark spaces in dense depth maps. Changes in illumination or occlusion can 
cause loss of the tracked feature. 

 
3) Outdoor use 

Tracking and mapping large amounts of features can take up an increasing amount of memory. This 
will also cause computational time to increase exponentially when these feature points are 
computed using a probabilistic framework. Especially in (open) outdoor spaces the risk increases to 
end up with a large map which is less so the case indoors. These environments can also be a lot 
more hectic with the scenes becoming highly dynamic with multiple independent motions and 
frequent partial occlusions. Outlier detectors like RANSAC can in such cases become overwhelmed 
and fail [9] [10]. 
 

4) Depth perception 
Depth information can be calculated using multiple (consecutive) 2D images, and is needed for pose 
estimation and 3D map construction. Systems using monocular cameras in this case are not able to 
obtain a sense of scale without some form of reference. Using calibrated stereo cameras this 
problem can be overcome using the baseline as reference. But most stereo vision algorithms are still 
in its infancy and need additional development. 

 
5) Overload and over-reliance 

In order to be usable, AR systems shouldn’t overload the user through its interface and avoid having 
the user to become overly reliant on the displayed information. This may cause that he or she 
misses important cues from the environment. 
 

6) Computational load 
For a realistic experience, real time performance in AR is required. The human threshold of 
perceiving images as being separate is 10 to 12 frames per second. 24 frames per second is the 
widely adopted rate in video, meaning the computational time, and thus the algorithm, needs to be 
fast enough to process and render approximately within this time frame. As mentioned previously, 
AR requires a high computational load for tracking, pose estimation and map updating. Especially 
purely vision based systems need complex algorithms to perform accurately and robustly. 
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1.4 Research goal 
As aforementioned in challenge number 3; the moving features can disrupt accurate pose estimation 
and therefore disrupt mapping and tracking. The goal of this research is to improve the pose estimation 
of an existing vision based AR framework in dynamic scenes by implementing a motion segmentation 
method into its tracking process. It might be important to consider that the camera itself is not static, 
because in such a case simple subtraction of previous frames would already be sufficient. Four steps can 
be considered to reach this goal; 
 

 Adapt a motion segmentation method from literature. 

 Design a proper way to implement it into the AR framework. 

 Optimize its performance inside that framework. 

 Test performance in dynamic scenes compared to several state of the art methods. 
 

The algorithm we used to make the framework more robust in dynamic scenes is based on a method 
from literature [11] and is adapted to work with input from a stereo camera [6]. For the implementation 
a good location inside the AR framework needs to be found. From there the motion segmentation 
algorithm can filter out features from moving objects.  
Parameter settings in this method need to be fine-tuned to make the motion segmentation run 
effectively while also minimizing computational load. This fine-tuning has to be done experimentally on 
test-data and also includes trying out some adaptations to improve the segmentation method.  
An experimental setup has to be devised to see if the goal of improved pose estimation robustness has 
actually been achieved and how it compares to other state of the art visual odometry algorithms. This 
requires ground-truth data of the pose and related stereo images. Since there is no motion 
segmentation dataset readily available for a stereo setup, it has to be created.  
 

1.5  Thesis outline 
The outline of this thesis will be as follows. Chapter 2 will explain the main processes inside a stereo 
vision based AR program. Some background theory on these processes will be presented along with the 
AR framework that is used in this research. The motion segmentation that will be implemented in that 
AR framework will be explained in chapter 3. The integration of the segmentation algorithm is presented 
in chapter 4. The setup to test the performance of the AR framework with motion segmentation is 
explained in chapter 5 along with their results. The conclusions that can be drawn from these tests 
results are then discussed in chapter 6. 
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2 AR methods and background theory 
Before going further into the details of this research, some background theory on the process of pose 
tracking will be explained.  
 

2.1 Vision based tracking techniques 
To estimate the position and orientation (pose) of the AR framework, using visual information, the 
system needs to detect cues that can be used as reference from the scene. These can be either fiducials 
or models.  

 Models; 
In this case the system tracks structures in the scene of which it has a 3D model stored in its 
memory. This model is then used to align with the geometry as recorded by a camera. 
However, since this method is of no relevance to this research it will not be explained any 
further in this report. 

 Features; 
This can be either; 

o Fiducials; patterns that have been placed in the environment and match a pattern 
stored in the system’s memory.  

o Natural features; points that occur naturally in the scene and can be considered 
interesting and informative. 
 

2.1.1 Fiducials 
Markers are (printable) patterns that can be placed in the environment. A model of the marker is stored 
in the system’s memory so it can be aligned with the visual input. Several examples of AR markers are 
shown in Figure 2.1.  
 

  
 
Figure 2.1 taken from [12]; Different AR markers from different frameworks. They all have high contrasting 
asymmetric patterns. 
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Some properties most AR markers have in common are: 

 High contrasts; this helps the system with detecting the marker in the scene.  

 An anti-symmetric pattern; to determine the correct pose relative to the marker, the system 
needs to tell the difference between its four sides. 

 
Once the system has detected the marker in the camera frame it will try to align it with the stored 
marker model. The transformation of that projection can then be related to the pose of the camera. 
 

 
 

Figure 2.2 A square fiducial marker, in grey, is detected from its four corners. The camera pose can then be 
estimated by minimizing a re-projection error. 

 
This method is accurate and computationally relatively inexpensive. But a marker must be in view the 
whole time for the system to be able to estimate its pose. So the camera can either only make small 
movements, or multiple markers need to be placed in the environment to cover for larger movements. 
But, when placing multiple markers in the environment their relative positions need to correspond 
accurately to how the lay-out of those markers is stored in the system, which requires precise 
measuring. 
 
Edge detectors are often used to find markers in the scene [12]. The error for edge detection depends 
on the observed line thickness, the thicker a line the smaller the error. This error also varies depending 
on the evaluation distance of the edge detectors. J. Caarls [13] showed that an evaluation distance of 2 
pixels works well for a line thickness of 5 pixels or more, below that an evaluation distance of 1 pixel 
performs better. He therefore proposed varying this evaluation distance according to the line thickness.  
 

2.1.2 Natural features 
A natural feature is an area detected in the scene that is considered interesting. An example of what a 
feature represents is shown in Figure 2.3. Most feature detectors consider such an area to be interesting 
if it has high image intensity gradients because this makes it more distinct and informative, which means 
that it has characteristics by which it can be easily re-detected and matched over multiple frames. 
Reliable features have high intensity gradients in multiple directions, preferably two, indicating a corner. 
These gradients are generally also used for classification and description.  
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Figure 2.3 A feature patch, the image coordinate of the pixel indicating the feature’ s coordinate is marked with 
a red square. The green arrows indicate the direction of the intensity gradients. 

 
There are a multitude of methods to classify and describe features which is usually done by using the 
intensity gradients. For example a SIFT feature is described by the average gradient in each sub-patch of 
the feature patch, as shown in Figure 2.4 taken from [14]. 
 

 
 

Figure 2.4 A SIFT feature. The arrows indicate the direction of the gradient, their length the magnitude. In this 
case the feature of 16x16 pixels is divided into 16 4x4 sub-patches for each of which the main gradient is 
computed. In the end the descriptor for this feature will be  a vector of 128 numbers. 

 
The pose can be estimated using the 2D coordinates of the features. In monocular visual odometry 
methods this is usually done by re-projecting the 3D world coordinates to the 2D coordinates. These 3D 
coordinates need to be obtained first however by triangulation over corresponding 2D image 
coordinates.  
Using features from the environment avoids the preparation issues that come with fiducials but brings 
up new ones that are mainly due to problems from continually tracking them over consecutive frames. 
Just a few of these problems are: 
 

 Occlusions; either by other objects or a part of the object on which the feature is detected can 
move in front of the view. Drift can occur if loss of the feature is unnoticed. 

 Changes in brightness; As the camera moves, the reflection with respect to the light source can 
change, causing changes in brightness making feature matching prone to errors. 

 Drift; matching over consecutive frames can cause incremental tracking errors and slowly 
change, the characteristics of the feature that initially was tracked. 

 Independent motion of objects; Reliable pose estimation becomes impossible if the data-points 
used in its estimation process show different motion patterns. This problem and its solution will 
be elaborately explained henceforth since it’s the research topic of this thesis. 
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Because the use of natural features is central to this research, the methods and their theory to use it in 
visual odometry methods, such as natural feature based AR, is explained more in depth in the following 
section. 
 

2.1.2.1 Optical flow tracking 
The use of optical flow is currently the method of choice to efficiently track features over consecutive 
images. This method was pioneered by B.D. Lucas and T. Kanade [15]. (  1  ) shows the idea behind 
optical flow; the principle of brightness constancy. This means that the brightness of a pixel patch in a 
new image 𝐼 at time 𝑡 + 1 at position  𝑥𝑖 + 𝑉 should be similar to the patch in the previous frame at 𝑡 at 
position 𝑥𝑖. Here 𝑥 represent a patch of pixels of size 5x5 𝑥 = {𝑥1, 𝑥2, … , 𝑥25},  each pixel 𝑥𝑖 with image 
coordinate 𝑥𝑖 = [u𝑖, v𝑖]. And V is the change in pixel location [∆u, ∆v], so for ease of notation;  
∆𝑥 ≡  𝑉 ≡  [∆u, ∆v]. 
 

 I(𝑥, 𝑡) − I(𝑥 + V, t + 1) =∑I(𝑥, 𝑡) − I(𝑥 + V, t + 1) =

𝑁

𝑖=𝑜

0 
(  1  ) 
 

 
Taking the Taylor expansion it can then be written as in (  2  ) where ∇𝐼 is the spatial intensity gradient. 
The contribution from second and higher order terms  𝑂2 is negligible so they can be left out. 
 
 I(𝑥 + V, t + 1) = I(𝑥, 𝑡) + ∇𝐼 ∙ V + 𝐼𝑡 + 𝑂

2 (  2  ) 
 

∇𝐼 = [
𝐼𝑥  
𝐼𝑦
] (  3  ) 

  
From (  1  ) it is clear that in (  2  ) the second and third right hand term should add up to zero, 
as shown in (  4  ). Then to obtain the optical flow we have to solve the motion constraint 
equation (  4  ). 
 

 

 ∇𝐼 ∙ V + 𝐼𝑡 = 0 (  4  ) 
 
Equation (  4  ) can then be solved for V using a linear least squares method as shown in Figure 2.5 over 
multiple features (a patch) to obtain an over defined equation (  6  ). 
 
 𝑉 = (∇𝐼𝑇∇𝐼)−1∇𝐼𝑇 𝐼𝑡 (  5  ) 
   

 𝑉 = [
∆u
∆v
] = [

∑𝐼𝑥(𝑥𝑖)
2 ∑𝐼𝑥(𝑥𝑖)𝐼𝑦(𝑥𝑖)

∑𝐼𝑦(𝑥𝑖)𝐼𝑥(𝑥𝑖) ∑𝐼𝑦(𝑥𝑖)
2

]

−1

∙ [
∑𝐼𝑥(𝑥𝑖)∑𝐼𝑡(𝑥𝑖)

∑𝐼𝑦(𝑥𝑖)∑𝐼𝑡(𝑥𝑖)
] (  6  ) 

 
When trying to estimate the motion of a small patch that only has an image gradient in one direction, 
i.e. an edge or a line, it becomes hard if not impossible to determine its velocity without seeing either 
end of the edge or a line. This problem is known as the aperture problem. Estimation of the local optical 
flow can therefore only be done reliably on sufficiently textured patches such as corner features.  
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A downside of estimating the optical flow using the linear method is that it only holds for small motions. 
A larger patch size can be used to keep the feature within range of the window. But using a larger 
window can smooth out the details in the image making the optical flow estimate less accurate. It also 
can pick up features on other bodies as well so that not all points move as their neighbor. 
 
Using multiple scale pyramids of the image solves the problem with large motions [16]. At each level the 
optical flow is estimated in an iterative manner and used as initial estimate for the next level of higher 
resolution. The image difference 𝐼𝑡(𝑝) then becomes; 
 
 𝐼𝑡(𝑥) = I(𝑥) − J(𝑥 + 𝑔

𝐿 + 𝑉𝑘−1) (  7  ) 
 
Where 𝑉𝑘 is the updated optical flow from the last iteration step or residual displacement since there is 
already an initial estimate, so it just needs to be refined at each new scale and iteration. This term then 
also has consequences for the update for each new scale;  
 
 𝑔𝐿−1 = 𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟 ∙ (𝑔𝐿 + 𝑉𝐿) (  8  ) 
   
The scaling factor is usually set to 2, where the tracking starts at the smallest scale. The image gradient 
will then be calculated as in (  9  ) using a central difference operator. 
 

 ∇𝐼(𝑥) = [
𝐼𝑥 
𝐼𝑦
] =∑[

I(𝑥𝑖 + 1, 𝑦𝑖) − I(𝑥𝑖 − 1, 𝑦𝑖)

2
I(𝑥𝑖, 𝑦𝑖 + 1) − I(𝑥𝑖, 𝑦𝑖 − 1)

2

]

𝑁

𝑖=𝑜

 
(  9  ) 
 

 
The solution for each iteration for one scale is near the point where 𝑉 hardly changes anymore; 

‖∆V‖ < 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑. So at each 𝑘𝑡ℎ iteration at level 𝐿  Vk
L is updated by (  10  ) and used to 

update 𝐼𝑡(𝑝) with (  7  ). 
 

 Vk
L = Vk−1

L + V (  10  ) 
 

The new 𝐼𝑡(𝑝) is then used to update the Right most 2 × 1 matrix holding [
∑ 𝐼𝑥(𝑥𝑖)∑ 𝐼𝑡(𝑥𝑖)

∑ 𝐼𝑦(𝑥𝑖)∑ 𝐼𝑡(𝑥𝑖)
] is updated 

at each iteration, the left 2 × 2 matrix of  (  6  ) that needs to be inverted is only updated at each new 
scale level 𝐿. The incremental update of the optical flow ∆𝑉 is then calculated as in equation (  6  ). The 
process is shown in Figure 2.5. 
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Figure 2.5 Flow chart showing the process to frack a feature using a pyramidal Lucas Kanade optical flow 
algorithm. It calculates optical flow and uses the scaled up flow vector to obtain an initial estimate of the new 
location in increasingly higher scales in the new image. 

 
The larger the window size the more accurate it can track (large) motions, but this also comes at a cost 
of increased computational load. 
A shortcoming with optical flow is that it only assumes rigid transformations. In a 3D world pixel 
displacements from neighbours can vary with depth and rotations. 
 

2.1.2.2 Keyframe tracking  
As the camera moves, incremental changes in the tracked patch can cause drift of a feature’s location. 
This can be avoided by tracking features using key-frames.  
A key-frame is created when certain conditions have been met, for example when the camera’s position 
has changed significantly at which point new features are detected. This allows a comparison of a 
feature in the current frame with that in a key-frame which can be seen as comparing it with its former 
self. This way possible drift can be corrected for. 
Because there is a large view-point change between frames the patch from the keyframe needs to be 
warped so as to align it with the current pose. The process is shown Figure 2.6. 
 
 

                                               
                                                                                     
Figure 2.6 The left image shows the key-frame, the image on the right the current frame in which the feature 
needs to be searched. The large rotation between these frames shows that it becomes difficult if not impossible to 
match the red squared pixel patches in both frames with each other. Instead the red feature patch from the left 
image needs to be warped as shown in the middle patch between the arrows to find a good match. The purple 
square shows how it can be matched in the new frame. 
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2.1.2.3 Pose estimation 
The camera pose can be estimated by finding the transformation 𝑃 = [𝑅|𝑇] from the 2D image 
coordinates {𝑥1

𝑐, 𝑥2
𝑐… 𝑥𝑁

𝑐 } in a frame to their corresponding 3D world coordinates {𝑋1
𝑤 , 𝑋2

𝑤 … 𝑋𝑁
𝑤}, as 

shown in Figure 2.7. This transformation can be found by minimizing the 2D – 3D re-projection error 
through a least squares method over a selection of 𝑁 points, so for each 𝑖 points; 
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖:  𝑥𝑖

𝑐 = [𝑅|𝑇]𝑋𝑖
𝑤 

 
 

 
 
Figure 2.7 The basic idea behind pose estimation. The vectors between the optic center O and the image points 
(Ac, Bc and Cc) lie collinear to the vectors between the image points and the world points (Aw, Bw and Cw). 

 
A popular method is currently the Perspective-n-Point (PnP) method which was proposed by Fischler 
and Bolles [17]. The advantage of this method is that it puts a constraint on possible solutions for the 
pose. In Figure 2.7 it can be seen that the perspective lines from the optic center to the image points 𝑎, 
𝑏 and 𝑐 lie collinear to those between the image points and world points; 𝑎′, 𝑏′ and 𝑐′. The angle 
between these lines will therefore be equal, so 𝜃𝑎𝑏 = 𝜃𝑎′𝑏′. Using the cosine rule these constrains can 
be expressed by (  11  ), (  12  ) and (  13  ). 
 

 𝑎′
2
+ 𝑏′

2
− 2𝑎′𝑏′ cos(𝜃𝑎𝑏) = 𝐴𝐵

2 (  11  ) 

 𝑏′
2
+ 𝑐′

2
− 2𝑏′𝑐′ cos(𝜃𝑏𝑐) = 𝐵𝐶

2 (  12  ) 

 𝑐′
2
+ 𝑎′

2
− 2𝑐′𝑎′ cos(𝜃𝑐𝑎) = 𝐶𝐴

2 (  13  ) 
 

Since the camera pose is unknown 𝑎′, 𝑏′ and 𝑐′ cannot be known. Rewriting (  11  ), (  12  ) and (  13  ) 
into polynomial equations and solving for this can return the rotations and translations of the camera in 
the world frame.  
 
Various methods have been developed to solve for the rotations and translations of the camera. One 
such method that has proven to be both efficient and effective compared to some of the more complex  



 
19 

 

PnP methods is the Efficient Perspective-n-Point (ePnP) algorithm [18]. It uses imaginary reference 
points 𝒄𝑗  representing the camera coordinates 𝒑𝑖

𝑐 through a weighted sum. The transformation from 

camera coordinates to image points 𝑤𝑖 [
𝑢𝑖
𝑣𝑖
1
] is written in (  14  ), where 𝛼𝑖𝑗  represent the homogenous 

barycentric coordinates. This can be rewritten into a linear system that can be solved using the SVD to 
obtain the unknown control points 𝒄𝑗. Because this might return different solutions (multiple small 

Eigenvalues), the solution with the smallest re-projection error is chosen.  
 

 

2.1.2.4 Pose estimation using M-estimation 
STAM and PTAM both use a robust non-linear optimization method to estimate the pose. This is because 
outliers can emerge during feature tracking which violate the Gaussian noise assumption of a least 
squares method. This skews the result of such a method thereby reducing its accuracy. 
 
M-estimators can use a cost function 𝜌(𝑟𝑖)  ( 15 )  that is continuous, symmetric and monotonically 
increasing. This gives the possibility to bind the influence of large errors and outliers or completely 
eliminate them, as shown in Figure 2.9. While the residual of measurements with small errors that 
correspond to the Gaussian noise principal are included in the minimization process. 

In the cost function ( 15 ), 𝑟𝑖 is the residual error; the difference between the 𝑖𝑡ℎ observation and its 
fitted value, the parameter vector is represented by 𝑝 = [𝑝1, 𝑝2…𝑝𝑛], in the case of pose estimation 
this represents the pose.  
 

 ∑𝜌

𝑛

𝑖=1

(𝑟𝑖) ( 15 ) 

 
The solution can be found by taking its derivative and finding the minimum of (  16 ). 
 

 
∑ 

𝑑𝜌(𝑥)

𝑑𝑥

𝑛

𝑖=1

 
𝜕𝑟𝑖
𝜕𝑝𝑗

= 0, 𝑓𝑜𝑟 𝑗 = [1…𝑛] 

 

(  16 ) 

Introducing a weight function 𝑤(𝑥) =  
𝑑𝜌(𝑥)

𝑑𝑥
 
1

𝑥
  the equation becomes (  17 ). Figure 2.8 shows several 

types of such functions. 
 

 ∑𝑤(𝑟𝑖)𝑟𝑖
𝜕𝑟𝑖
𝜕𝑝𝑗

= 0

𝑛

𝑖=1

, 𝑓𝑜𝑟 𝑗 = [1…𝑛 ] (  17 ) 

 
This can then be solved using a Gauss Newton method. There are different types of cost functions for 
𝜌(𝑟𝑖). In [6] the Tukey’s biweight was selected (  18 ) because the cost function levels off and the weight 
function goes to zero after some residual error |𝑟| > 𝑎, where 𝑎 is a predefined constant. 

 
𝑤𝑖 [

𝑢𝑖
𝑣𝑖
1
] = 𝑨𝒑𝑖

𝑐 = 𝑨∑𝛼𝑖𝑗

4

𝑗=1

𝒄𝑗 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]∑𝛼𝑖𝑗 [

𝑥𝑗
𝑐

𝑦𝑗
𝑐

𝑥𝑗
𝑐

]

4

𝑗=1

 

 

(  14  ) 
 



 
20 

 

 

 𝜌(𝑟)     

{
 
 

 
 𝑎

2

6
[1 − (1 − (

𝑟

𝑎
)
2

)
3

]       |𝑟|  ≤ 𝑎

                     
𝑎2

6
                       |𝑟| > 𝑎

 (  18 ) 

 

 
 

Figure 2.8 Different cost functions 𝝆(𝒓) showing their response to a residual. Tukey levels off after the residual 
becomes larger than some set constant 𝒂 which in this case is set to 4.6851, for example in the case of outliers. 
This figure is taken from [6]. 

 

 
 

Figure 2.9 from [6]. It shows several weight functions that can be used with the M-estimation method.  

 
The pose estimation can then be solved iteratively by updating point 𝒑 till it converges to a solution; 
 
 𝒑𝑡+1 = 𝒑𝑡 − (𝐽

𝑇𝑊𝐽)−1𝐽𝑇𝑊𝑏 (  19  ) 
 
For pose estimation the residual error 𝑟𝑖 will be the re-projection error of the 3D map point onto the 
image in which the feature is being tracked. 
𝐽 is the Jacobian of the re-projection error evaluated at point 𝒑 and 𝑊 is a diagonal matrix 
𝑑𝑖𝑎𝑔(𝑤1, 𝑤2… 𝑤𝑛) corresponding to the weights. 
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2.2 Stereopsis 
In this research a stereo camera will be used to calculate the 3D location of a world point. With 
monocular vision the 3D location has to be obtained through triangulation; solving the least square error 
for corresponding image coordinates over two or more camera poses. The accuracy of this estimation, 
however, depends also on the accuracy of the pose estimation process. 
With a stereo setup on the other hand the 3D coordinates can be calculated algebraically, as shown in    
(  23  ), (  24  ) and (  25  ), using the left and right (rectified) camera frame whose relative pose can be 
accurately calibrated offline. This location will also be known to scale since a real world reference, the 
baseline, is known.  
 
Figure 2.10 shows the geometry of such a stereo setup which is also known as the epipolar geometry 
[19] with 𝑐𝑙  and 𝑐𝑟 being the left and right optic centers. This epipolar geometry indicates how the 
epipolar plane, identified by 𝑃,  𝑐𝑙  and 𝑐𝑟, intersects the left and right images at a line in either image 
called the epipolar line; 𝑬𝑙  and  𝑬𝑟 for the left and right image respectively. Point 𝑃 is projected into the 
left and right images at the intersection of lines 𝑝𝑙  and 𝑝𝑟. If the projection of 𝑃 onto the left image is 
known its matching location in the right image will lie on 𝑬𝑟, also known as the epipolar constraint. This 
reduces the stereo matching from a 2D to a 3D problem.  
 

 
 

Figure 2.10 The epipolar geometry. 

 
The relation between a world point 𝑃 at {𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤} observed in the left and right camera frame at 
image coordinates 𝑥𝑙 and 𝑥𝑟 respectively can be written as; 
 
 𝑥𝑟   =  𝑅(𝑥𝑙  −  𝑇 ) (  20  ) 

 
Since a point can be viewed from both cameras, it can be thought to reside on a plane lying tangent to 
both image planes. So for the left image plane the co-planarity condition can be written as; 
 
 (𝑥𝑙   −  𝑇 )

𝑇 𝑇 ×  𝑥𝑙   =  0 (  21  ) 
 

𝐸𝑙  
𝐸𝑟  
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Substituting (  21  ) into equation (  20  ) gives; 
 
 (𝑅𝑇  𝑥𝑟)𝑇 

𝑇 × 𝑥𝑙 = 0 (  22  ) 
 
After some rewriting (  22  ) can be solved in a least squared error equation to obtain the intrinsic and 
extrinsic parameters using multiple (generally a minimum of eight) corresponding points from the stereo 
images. 
 

 
Figure 2.11 A world point observed by a left and right camera into rectified images. 

 
Looking at Figure 2.11 it can be easily worked out how to calculate the 3D coordinates [𝑋, 𝑌, 𝑍] from the 
rectified left [𝑥𝑙 , 𝑦𝑙] and right image [𝑥𝑟, 𝑦𝑟] coordinates using the camera parameters. These 
parameters are the focal length 𝑓, optical centers 𝑐𝑥 and 𝑐𝑦 and baseline 𝑏. These have to be 

determined in advance through camera calibration. 
 

 𝑋 =
(𝑥𝑙 − 𝑐𝑥)𝑏

𝑥𝑙 + 𝑥𝑟
 (  23  ) 

 

 𝑌 =
(𝑦𝑙 − 𝑐𝑦)𝑏

𝑥𝑙 + 𝑥𝑟
 (  24  ) 

 

 𝑍 =
𝑓𝑏

𝑥𝑙 + 𝑥𝑟
 (  25  ) 

 
 

2.3 Parallel tracking and mapping (PTAM) 
The novelty of this method is to make use of parallel processers that have become commonplace in 
modern computers. This allows having the tracking and mapping processes to run in parallel threads and 
gives PTAM better real-time performance [1]. Figure 2.14 gives an overview of how this process works. 
 
To make tracking and pose estimation more robust it uses keyframe tracking, which is explained in 
section 2.1.2.2. Features are first tracked using the optical flow after which the pose is estimated using 
an M-estimator, as explained in 2.1.2.4. The tracked coordinates are improved using key-frame tracking 
and can then be used to refine the pose with an M-estimator.  
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Because it uses a monocular camera setup it needs to find a baseline first, meaning; the user needs to 
translate the camera roughly 10 centimeters for the system to initialize a map and find a plane on which 
it can project virtual objects. 
 
While the tracking process is running, the map points are continually being updated by local or global 
bundle adjustment. Local bundle adjustment is done over the five most recent key-frames to avoid 
exponentially increasing complexity with each new keyframe.  

 
Figure 2.12 PTAM parallel tracking and mapping frame work. The two separate tracking and mapping threads 
are bounded by different dashed rectangles. 

 
PTAM has proven to outperform EKF SLAM as shown in Figure 2.13 where both their performances are 
tested on synthetic data. It can be clearly seen that PTAM stays a lot closer to the ground truth 
compared to the EKF-SLAM method. 
 

 
Figure 2.13 taken from [1]. Performance comparison of PTAM (the proposed method) and an EKF-SLAM method. 
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2.4 AR framework with STAM  
STAM [6]  is an extension of PTAM [1] that uses a stereo setup in favor of a monocular setup. This way it 
doesn’t need to initialize a baseline and all coordinates can be represented in a real world scale. 
It also uses the features tracked from the second camera in the pose estimation, which is done using an 
M-estimator, this method is further explained in section 2.1.2.4. 

 
Figure 2.14 An overview of the AR framework. It has 5 threads, one for each camera, two for the tracking and 
mapping and one for the visualization part. 

 
Next to adapting PTAM to a stereo setup other improvements have also been implemented to increase 
performance and robustness; 
 

 Instead of detecting Features from an Accelerated Segment Test (FAST) STAM uses an Adaptive 
and Generic Accelerated Segment Test (AGAST) [20] detector because it is more adaptable to 
various scenes while being equally efficient in detection. It uses the same corner criterion as 
FAST but can adapt the detector dynamically during the process. AGAST’s adaptability is due to 
its training on different environments (indoors and outdoors) while FAST has only been 
optimized for one.  

 An extra test to find outliers is done by comparing the displacement of points that are 
connected through a Delaunay [21] mesh. If a point does not have at least two neighbours that 
show similar motion within 5 pixels difference, it is marked as an outlier. 

 To improve the robustness of the estimated pose even further the ePnP [22] method inside a 
RANSAC routine is used to refine the pose after the first stage. Because the computational 
complexity for the ePnP algorithm grows linearly it can be used effectively on a small number of 
points inside RANSAC. 
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2.5 Fast Semi-Direct Monocular Visual Odometry  (SVO)  
Semi-Direct Monocular Visual Odometry (SVO) [23] is an efficient method for pose estimation that can 
run at 55Hz and has proven to outperform PTAM in terms of accuracy, as shown in Figure 2.15. 

 
Figure 2.15 Accuracy of pose estimated by SVO compared by PTAM for the x, y and z translations. The accurate 
and fast are the two different modes SVO can operate in. 

 
It consists of a motion estimation and mapping part that both run in different threads, similar to [1]. The 
camera motion estimation is done in three stages, as shown in Figure 2.16. The three different stages 
will be explained next. 
 

 
Figure 2.16 Taken from [23]. SVO works by running the motion estimation and mapping process in different 
threads. The motion estimation consist of three steps to refine the motion estimation. The estimated motion is 
then used to update the map. 



 
26 

 

Motion: 
1) First the photometric error between the 4x4 feature patches from the previous image and the 

new image are minimized with a Gauss-Newton procedure. 
2) Second, to reduce drift, the result from the first stage is used as an initial guess to project the 3D 

map points in the current frame. The features of those re-projected points that are visible in the 
current frame are compared to their respective feature in the key-frame that has the closest 
viewing angle compared to the current one. This error is minimized by affine warping using the 
inverse compositional Lucas-Kanade algorithm [24]. This is a relaxation step that violates the 
epipolar constraints to achieve higher correlation between feature patches. 

3) The last step optimizes the pose to minimize the re-projection residuals, and is solved using an 
iterative non-linear least squares method, also known as motion only bundle adjustment [25]. 
The 3D points can also be optimized through structure only bundle adjustment, this is however 
omitted in the fast parameter settings of the algorithm. 

 
Mapping: 

A depth filter is used in the triangulation of 3D coordinates for each point. The advantage of this 
is that it has fewer outliers because the filter makes many measurements until it converges. 
Depth even converges in highly similar environments because erroneous measurements are 
explicitly modeled by a Gaussian and Uniform mixture model distribution [26]. 
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3 Motion segmentation 
This chapter will introduce the method that is developed during this research to segment moving parts 
from the scene. First some of the previous work in the field of visual motion segmentation that has been 
examined during a literature research will be discussed. 
 
In motion segmentation features are separated according to their motion patterns. As in any 
segmentation method the result depends both on the segmentation method used as well as how the 
various similarities within a population are modeled and compared. 
 

3.1  Previous work 
Quite some research has been done in the field of feature based motion segmentation, most of which 
with (autonomous) automotive applications in mind, since it is important that such a system has 
awareness of other road users in order to be able to avoid accidents. 
 
To distinguish between dynamic and static (background) points [27] assumes motion constraints on 
dynamic objects like independent motion, constant heading and the planarity constraint (objects 
residing on the ground plane). In [28] objects that are part of the environment’s background (trees, 
billboards etc.) are assumed to be relatively large and/or are also expected to violate the planarity 
constraint. Features from tree branches that have been clustered without the trunk for example might 
appear to the system to float in the air, while clustered features from a car should be close to the 
ground.  
 
The velocity of a point is calculated over up to six consecutive images using backward differences with 
weighted coefficients; more recent measurements will be weighed more heavily. These are then 
clustered according to their Mahalanobis distance to account for noise and errors that are expected to 
increase with the distance from the camera. Due to the correction on the increasing noise level in the 
depth direction, the detection of cars and pedestrians at close and far range of up to 60m worked well 
for this method in a rural environment. In a city environment this method worked well for up to 50m. 
Turning cars were properly detected due to the continuous velocity assumption, though it failed for 
sharply turning ones. Also pedestrians and bicyclists aren’t always detected in their entirety. This 
method, however, mainly segments translations, which is fine for vehicles describing a translating 
trajectory. But people wearing AR helmets will rotate their heads resulting in rotations that this method 
does not segment well. 
 
A motion segmentation method that uses multi-body segmentation is described in [29]. Individual 
moving bodies are detected and segmented according to their individual affine rigid body motion 
models using a robust algebraic segmentation (RAS) method [30]. RANSAC is used with an eight-point 
algorithm to find the fundamental matrix in order to detect and reject outliers within each group. The 
use of efficient geometric constraints and a probability framework which propagates the uncertainty in 
the system allows for extra robustness and capability to segment complex motions. It appears that a 
pose estimator in conjunction with RANSAC is a popular method to create multiple motion hypotheses. 
A 3 point linear algorithm in conjunction with RANSAC is also used in [9] to create motion hypotheses 
from disparity space. The largest consensus group, which is considered to be the static background, is 
then used to estimate the camera motion using a Levenberg-Marquardt algorithm. Tracking is further 
improved by using blob extraction which creates macro blobs that grow on a regional disparity similarity 
assumption.  
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Motion segmentation can also be done using the Euclidean distance to determine the connectedness 
measure [31] of pixels in a point cloud. Building on the local convexity criterion, based on the idea that 
objects generally have a convex outline, every border between objects will have a concave outline and 
thus will not be grouped.  
Motions are modeled using a probabilistic framework. Different objects that show similar motion 
models will be grouped and those that have unique motions will create new tracks. Although there is 
some measure of over-segmentations due to errors, this method allows for good motion estimation 
even in highly dynamic scenes. An interesting improvement that can help overcome over-segmentation 
is from [32] where edge scoring is also used in the clustering process so that objects are better 
separated. Motion detection from row vectors relies on good background motion assumptions. And 
since no robust statistics are needed it will not suffer from outliers that can distort the optimization 
algorithms for pose estimation. Its effectiveness does however depend on the texture richness of 
dynamic objects. For example people's clothing can have very few detectable features. It also takes 
several frames to detect and track objects to obtain a reliable row vector, hence segmentation is not 
instantaneous. 
 

3.2  Method chosen from literature 
The method we consider to be most effective for our AR framework is from [33] and will be explained 
here separately. This method is basically a RANSAC method where the best data set is chosen depending 
on the spatial distribution of the image coordinates and the corresponding inlier ratios.  
Its motion segmentation involves the following steps; 
  

1) Put the feature points in bins, these can be of size 10 × 10 pixels for example. The reason for 
this is to avoid densely populated areas that might skew the scoring result (  26  ) which depends 
on position covariance (  27  ); densely packed inliers can result in a low covariance for example. 

2) A sample set is taken from the bins at random. The probability that a sample is picked from a bin 

depends on its inlier ratio  𝜀𝑖 =
∑𝑖𝑛𝑙𝑖𝑒𝑟𝑠

𝑁
 which is truncated into the range of [0.2 – 1] for 𝜀�̃�.  

 The probability that a point is selected from a bin is 𝑝𝑖 =
𝜀�̃�

∑ �̃�𝑗𝑗
 

3) First only one point per bin is tested on the new hypotheses. 

 If there are enough inliers it will recalculate a new hypotheses over all the inliers and test it 
on all the points. 

4) The score of the hypotheses is calculated by; 
 

𝑠 =∑𝜀𝑖
𝑖

𝜋√det (𝐶)

𝐴
 (  26  ) 

The covariance 𝐶 is calculated by (  27  ), where 𝑥𝑖 is the centre of the bin 𝐵𝑖  and 𝑥 the weighed 
mean position is calculated using equation (  28  ). 

 
 

𝐶 =
∑ 𝜀𝑖𝑖

(∑ 𝜀𝑖𝑖 )2 −∑ 𝜀𝑖
2

𝑖
∑(𝑥𝑖 − 𝑥)(𝑥𝑖 − 𝑥)

𝑇

𝑖

 

 

(  27  ) 

 
𝑥 =

1

∑ 𝜀𝑖𝑖
∑𝜀𝑖𝑥𝑖
𝑖

 (  28  ) 
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5) The stopping criterion is fulfilled if; (1 − (∑ 𝑝𝑖𝑖 𝜀𝑖)
𝑚)𝐾𝑠 <  𝜂, where 𝑚 is the initial sample size, 

𝐾𝑠 the number of iterations done and 𝜂 an experimentally set constant. 
6) Create a probability map which is used for the selection of a new sample in the next frame. 

Points that lie in a bucket that contained more inlier points in the previous frame have a higher 
probability to be selected for estimating an initial model. A probability map is visualized in 
Figure 3.1.  

 
 
 
 
 
 
 
 

 
 
 

Figure 3.1 The probility map (right) obtained from the identification of inliers and outliers (left). The inliers 
(green)in the left image result in bins more likely to be picked in the next frame (white).  

 

3.3 Proposed motion segmentation algorithm 
The proposed motion segmentation method to be implemented into STAM is based on the algorithm 
explained in 3.2. It will be adapted to work with a stereo camera setup, as is shown in Figure 3.2. So 
consequently the motion model can be estimated using stereo matched features, as explained in 3.3.3. 
The benefit of using a stereo setup over a monocular setup is that for each feature its 3D coordinates 
can be estimated individually in camera coordinates using equations (  23  ), (  24  ) and (  25  ). This 
means that fewer points (≥ 3) are needed to create a camera motion hypothesis with 6 degrees of 
freedom (DOF). A monocular setup on the other hand needs at least eight (in case of the eight point 
algorithm). The fewer points are needed to initialize a motion hypothesis, the smaller the chance that 
this initial sample contains outliers; the better the sample the quicker a good motion model with 
corresponding inliers is found. 
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Figure 3.2 The process to filter out independently moving features using the stereo tracked coordinates. It 
consists of two main steps, the first calculates the data needed for motion segmentation. The second is the actual 
motion segmentation process that filters out the independent motions. For outlier detection it also needs to 
estimate the camera motion which can be used to update the camera pose in STAM, which can thereby skip the 
Gauss-Newton process that would normally do this update in the first pose tracking stage.  

 
The original paper [33] didn’t exactly specify what method was used to create a model by which to 
segment dynamic features. Quite possibly this could have been a pose estimation method such as PnP, 
which only needs 3 points for a monocular setup, as explained in section 2.1.2.3. PnP however also 
requires corresponding 3D world coordinates for those points, making it reliant on the quality of the 
mapping process. 
 
Measurement uncertainty will be taken into account to improve static feature detection from the 3D 
camera coordinates. While features are tracked their coordinates are perturbed by a certain amount of 
noise [34]. Points lying further from the camera cannot be described as accurate as those lying closer by 
because the resolution deteriorates with distance with the effect that the accuracy of the 3D location 
also decreases. 
 
Incorporating the uncertainty of the 3D locations into the testing of the motion model on each point can 
be done by using the Mahalanobis distance ∆(𝑋1, 𝑇(𝑋2)) (  29  ), which will be further explained in 3.3.1. 
𝑇(𝑋2) is the transformation of the 3D coordinate 𝑋2 in the second frame so it matches 𝑋1 in the first 
frame using the motion model. Ω is selected for the notation of the covariance over its more 
conventional sign Σ to avoid confusion with the summation signs in this thesis. 
 

 ∆(𝑋1, 𝑇(𝑋2)) = √(𝑋1 − 𝑇(𝑋2))Ω
−1(𝑋1 − 𝑇(𝑋2))

𝑇 (  29  ) 
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Normally to check the fitness of the motion model, the sum of squared errors is taken between the 
measured and estimated position through a transformation using the motion model. But the squared 
error should be transformed using the covariance matrix to correct for the distribution of measurement 
errors. 
 
This is also done in a similar way in [28] in order to compare the motion of individual points with each 
other and cluster them if the Mahalanobis distance is within some error margin. Another example that is 
closer to our use for hypotheses testing using the Mahalanobis distance is [35], which includes the log of 
the determinant of the covariance in order to regularize the Mahalanobis distance (  30  ). This way data 
points are not penalized when the inverse of their covariance is relatively well aligned with the error 
𝑋1 − 𝑇(𝑋2).  
 

 ∆(𝑋1, 𝑇(𝑋2)) = √(𝑋1 − 𝑇(𝑋2))Ω
−1(𝑋1 − 𝑇(𝑋2))

𝑇 + log (det(Ω)) (  30  ) 

   
 

3.3.1 The Mahalanobis distance 
One can take the Euclidean distance from a point to the mean of a data set to test how well this point 
fits that data set. Or, when the data is normally distributed one can find out how many standard 
deviations the point is removed from the set’s mean. Since the population percentage for each standard 
deviation is known a sense of a standardized reference frame can be employed. This however requires 
the data to be univariate so the variables can be normally distributed. 
 
The Mahalanobis distance [36] is a generalization of this idea of a standardized reference frame for 
multivariate data, where the distribution is represented using a covariance. 
Mahalanobis compared his theory to that of Galilean transformations which maps all coordinates into a 
frame of reference and thus ensures that apples are compared to apples, using a common expression. 
This makes complex problems a lot more trivial because they can be solved within a frame of reference. 
With the Mahalanobis distance the standard normal distribution is the frame of reference [37]. 
 
To transform a random variable 𝑥~(Ω, µ ), with covariance Ω and mean µ, into a standard normally 
distributed random variable 𝑟’ it has to be transformed with the transformation 𝑇(𝑥). 
 

𝑇(𝑥) =  Ω−1/2(𝑥 − µ) (  31  ) 
 
The Mahalanobis distance is the Euclidean norm of the transformation in (  31  ). To compare two data 
points with the same covariance for example this becomes; 
 

∆(𝑥, 𝑦) = ||𝑇(𝑥) − 𝑇(𝑦)|| 
 

(  32  ) 

When writing out (  32  ) using (  31  ) µ cancels out and gives equation (  33  ). 
 

∆(𝑥, 𝑦) = √(𝑥 − 𝑦)Ω−1(𝑥 − 𝑦)𝑇 (  33  ) 
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Figure 3.3 shows the difference in analyzing data using the Euclidean and Mahalanobis distance. It can 
be seen that along the second principal axis 𝑦’ of the data the Mahalanobis distance is a lot stricter 
because the variance along that axis is also smaller, while it is more generous along the primary principal 
axis 𝑥’. These vectors can be found from the eigenvectors of the covariance, the eigenvalues then 
represent a sense of scale.  
 
  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 The difference between the Euclidean distance (left) and the Mahalanobis distance (right).  
Both images display exactly the same dataset. The color represents how well each individual data point fits in the 
set (dark blue is closer as light green). 

 
Using the Mahalanobis distance the dissimilarity measure between two vectors with similar covariance 
can thus be calculated while taking their distribution into account. For the segmentation method in this 
research the dissimilarity between a point’s estimated position and its measured position needs to be 
compared. The covariance is employed to adjust for the error distribution of each 3D position. 
 

3.3.2 First order error propagation, or why we need to calculate the Jacobian to obtain the 
covariance.  

To calculate the Mahalanobis distance the covariance needs to be calculated. This is done using 
equation (  34  ), also known as the error propagation law, where 𝐽 is the Jacobian of the input signals 
and 𝑆 the matrix holding their variances. To better understand the reasoning behind this formula this 
section, which is a summery from [38], will explain a bit more about why the covariance Ω is calculated 
according to equation (  34  ).  
 
 Ω =  𝐽 𝑆 𝐽𝑇 (  34  ) 
 
The covariance can be defined as the measure by which the change of one variable influences the 
change of another variable. Or; the degree to which two sets of variables deviate from their expected 
values. An intuitive explanation for the use of the Jacobian 𝐽 could therefore be because 𝐽 also describes 
the (local) behavior of the system caused by its variables. 
 
 
 
 
 

x’ 

y’ 

System 𝑓(𝑋) 𝑋 
 

𝑌 
 

Figure 3.4 A single input single output system 𝑓(𝑋) 
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Figure 3.4 shows a system with a single input 𝑋 and output 𝑌. Figure 3.5 shows how the normal 
distributions of 𝑋 can be projected onto the output Y through the linearization of the system 𝑓(𝑋). If the 
distribution on the 𝑋 axis would be projected onto the 𝑌 axis through the non-linear function 𝑓(𝑋) 
itself, the y axis distribution would be asymmetric and thus no longer be Gaussian.  
 

 
Figure 3.5 One dimensional case of a non-linear error propagation problem through the system 𝒇(𝑿). The 
distribution for 𝒀 is obtained through the linearization of 𝒇(𝑿) around the mean of 𝑿. 

 
The linear relationship can be obtained by describing 𝑓(𝑋) by a first order Taylor expansion around the 
mean of 𝑋; µ𝑥. 
 

 𝑌 ≈ 𝑓(µ𝑥) +
𝜕𝑓

𝜕𝑋𝑥=µ𝑥
∙ (𝑋 − µ𝑥) (  35  ) 

 
The mean and standard deviation of 𝑌, µ𝑦 and 𝜎𝑦 respectively, can be described as a function of 𝑋.  

 
 µ𝑦 ≈ 𝑓(µ𝑥) (  36  ) 

 

 𝜎𝑦 = 
𝜕𝑓

𝜕𝑋
  𝜎𝑥  =  

𝜕𝑓

𝜕𝑋𝑥=µ𝑥
∙ (𝑋 − µ𝑥) (  37  ) 

 
 𝐸[𝑌] = µ𝑌 (  38  ) 
 
This reasoning can be expanded to a more complex system with multiple inputs and one or more 
outputs as shown in Figure 3.6.  
 
 
 
 
 
 
 
 
 
 

System 𝑓(𝑋) 

𝑋1 
 𝑌 

 
𝑋2 

 𝑋𝑖  
 

𝑍 
 

Figure 3.6 A system with multiple inputs and multiple 
outputs. 
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The output for a system with multiple inputs can be written using a first order Taylor expansion as in  
(  35  ) for both Y and Z; 
 

𝑌 ≈ 𝑓1(µ𝑖, µ𝑖, … , µ𝑛) +∑[
𝜕𝑓1
𝜕𝑋 𝑖

(µ𝑖 , µ𝑖, … , µ𝑛)] ∙ (𝑋𝑖 − µ𝑖) = µ𝑌 +∑
𝜕𝑓1
𝜕𝑋 𝑖

[𝑋𝑖 − µ𝑖  ]

𝑛

𝑖=1

 
(  39  ) 
 

 

𝑍 ≈ 𝑓2(µ𝑖, µ𝑖, … , µ𝑛) +∑[
𝜕𝑓2
𝜕𝑋 𝑖

(µ𝑖 , µ𝑖, … , µ𝑛)] ∙ (𝑋𝑖 − µ𝑖)

𝑛

𝑖=1

= µ𝑧 +∑
𝜕𝑓2
𝜕𝑋 𝑖

[𝑋𝑖 − µ𝑖 ] (  40  ) 

 

The distribution for Y, 𝜎𝑌
2, is shown in (  41  ), the distribution for Z, 𝜎𝑧

2, can be done similarly. 
 

 𝜎𝑌
2 = 𝐸[(𝑌 − µ𝑌)

2] = 𝐸 [
𝜕𝑓1
𝜕𝑋 𝑖

(µ𝑖, µ𝑖 , … , µ𝑛) ∙ (𝑋𝑖 − µ𝑌)
2] (  41  ) 

 
In the case of a system with multiple inputs and multiple outputs Y and Z, their relationship between 
their variance, the covariance 𝜎𝑌𝑍 is; 
 

 
𝜎𝑌𝑍 = 𝐸[(𝑌 − µ𝑌)(𝑍 − µ𝑍)]

= 𝐸 [(µ𝑌 +∑
𝜕𝑓1
𝜕𝑋 𝑖

[𝑋𝑖 − µ𝑖  ])  ∙ (µ𝑧 +∑
𝜕𝑓2
𝜕𝑋 𝑖

[𝑋𝑖 − µ𝑖  ])] − µ𝑦µ𝑧 
(  42  ) 

 
Similar to how the distribution for 𝑌 from (  35  ) can be described in (  37  ), so can the covariance for  (  
41  ) and (  42  ) be rewritten into (  43  ) and (  44  ). The derivation to come to (  43  ) and (  44  ) is quite 
lengthy so the reader is advised to read [38] for a more complete explanation. But it boils down to 
writing out the variance in expected values (  38  ) using the variable and mean over multi-input multi-
output systems.  
 
After rewriting (  41  ) and (  42  ) µ𝑌 and µ𝑍 cancel out in both equations. So after a lengthy derivation 
these equations can be written as  
 

 σYZ =∑
∂f1
∂Xi

∂f2
∂Xi

σi
2 +∑∑

∂f1
∂Xi

∂f2
∂Xj

i≠j

σij
2 (  43  ) 

 
 

𝜎𝑌
2 =∑(

𝜕𝑓1
𝜕𝑋𝑖

)
2

𝜎𝑖
2 +∑∑

𝜕𝑓1
𝜕𝑋𝑖

𝜕𝑓2
𝜕𝑋𝑗

𝑖≠𝑗

𝜎𝑖𝑗
2  (  44  ) 

 
Let’s now write out the structure of the equation for the covariance in matrix form as  
 

 𝐽 𝑆 𝐽𝑇 = [
𝜎𝑌1
2 𝜎𝑌1𝑌2

𝜎𝑌2𝑌1 𝜎𝑌2
2 ] =

[
 
 
 
 
𝜕𝑓1
𝜕𝑋1

⋯
𝜕𝑓1
𝜕𝑋𝑛

𝜕𝑓2
𝜕𝑋1

⋯
𝜕𝑓2
𝜕𝑋𝑛]

 
 
 
 

[
 
 
 
 
𝜎𝑋1
2 𝜎𝑋1𝑋2 ⋯ 𝜎𝑋1𝑋𝑛

𝜎𝑋1𝑋2 𝜎𝑋2
2 ⋯ 𝜎𝑋2𝑋𝑛

⋮ ⋮ ⋱ ⋮
𝜎𝑋𝑛𝑋1 𝜎𝑋𝑛𝑋2 ⋯ 𝜎𝑋𝑛

2
]
 
 
 
 

[
 
 
 
 
𝜕𝑓1
𝜕𝑋1

𝜕𝑓2
𝜕𝑋1

⋮ ⋮
𝜕𝑓1
𝜕𝑋𝑛

𝜕𝑓2
𝜕𝑋𝑛]

 
 
 
 

 (  45  ) 
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The comparison can be seen when writing out an entry from the matrix 𝐽 𝑆 𝐽𝑇. For each diagonal entry 
the resulting equation will look like (  44  ), while those off-diagonal will look like (  43  ). Again for the 
extended proof and comparison the reader is referred to [38]. 
 

3.3.2.1 Modeling the noise 
The noise for the 3D position obtained over the stereo images can be modeled by taking the partial 
derivative over (  23  ), (  24  ) and (  25  ) to obtain the Jacobean for (  34  ). During this research we 
initially looked at [28] as an example for how to construct the Jacobean. In that paper the partial 
derivative of the 3D coordinate vector [𝑋 𝑌 𝑍]𝑇  is taken over the left image coordinate along the 𝑥 axis, 
𝑢𝑙 and the 𝑦 axis 𝑣𝑙  and also the disparity  𝑑 =  𝑢𝑙 − 𝑢𝑟 to obtain (  46  ), where 𝑏 is the baseline and a𝑖 
the weight for frame 𝑖.  
 

 𝐽 =
𝜕[𝑋 𝑌 𝑍]𝑇

𝜕𝑢𝑙𝜕𝑣𝑙𝜕𝑑
= a𝑖 ∙

[
 
 
 
 
 
 
𝑏

𝑑𝑖
0

(𝑢𝑙𝑖 − 𝑐𝑢) ∙ 𝑏

𝑑𝑖
2

0
𝑏

𝑑

(𝑣𝑙𝑖 − 𝑐𝑣) ∙ 𝑏

𝑑𝑖
2

0 0
𝑓 ∙ 𝑏

𝑑𝑖
2 ]

 
 
 
 
 
 

, 𝑖 = 0…5 (  46  ) 

 
The covariance of this method is used for the clustering of the weighted position difference over 6 
frames, which returns a 3 × 18 Jacobian matrix. Here the difference is weighed using weights a𝑖. 
Because this method clusters motion vectors with 3 degrees of freedom (DOF) it might not be very 
applicable to a motion segmentation method based on a 6 DOF motion model.  
When this 3D position covariance using the Jacobean from (  46  ) was used in our motion segmentation 
method it did perform quite well. Even though (  46  ) was meant to be used to cluster 3DOF motions, 
while we cluster 6DOF motions. 
 
Alternatively the 3D position [𝑋 𝑌 𝑍]𝑇  can be differentiated over the 4 image coordinates from the left 
and right frame; 𝑢𝑙 , 𝑣𝑙 , 𝑢𝑟 𝑎𝑛𝑑 𝑣𝑟  [34]. This means that the disparity is differentiated over its two 
variables as opposed to be considered a variable upon itself. 
 

 𝐽 =
𝜕[𝑋 𝑌 𝑍]𝑇

𝜕𝑢𝑙𝜕𝑣𝑙𝜕𝑢𝑟𝜕𝑣𝑟
=

[
 
 
 
 
 
 

𝑏

(𝑢𝑙 − 𝑢𝑟)
−
(𝑢𝑙 − 𝑐𝑢) ∙ 𝑏

(𝑢𝑙 − 𝑢𝑟)
2

0
(𝑢𝑙 − 𝑐𝑢) ∙ 𝑏

(𝑢𝑙 − 𝑢𝑟)
2

0

(𝑣𝑙 − 𝑐𝑣) ∙ 𝑏

(𝑢𝑙 − 𝑢𝑟)
2

𝑏

(𝑢𝑙 − 𝑢𝑟)

(𝑣𝑙 − 𝑐𝑣) ∙ 𝑏

(𝑢𝑙 − 𝑢𝑟)
2

0

−
𝑓 ∙ 𝑏

(𝑢𝑙 − 𝑢𝑟)
2

0
𝑓 ∙ 𝑏

(𝑢𝑙 − 𝑢𝑟)
2

0
]
 
 
 
 
 
 

 (  47  ) 

  
It can be seen in both (  46  ) and (  47  ) that the variance is determined by the distance from the optic 
center, but more so by the disparity; the larger the disparity, the closer a point is to the camera, the 
smaller the error distribution. The same goes for points detected closer to the optic center, where 
measurements are also more accurate.  
It can be argued that since the disparity is a function of 𝑢𝑙 and 𝑢𝑟, it seems more logical to differentiate 
over the four image coordinates as in (  47  ). 
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3.3.3 The RANSAC algorithm 
This is probably the most popular method to detect outliers in a dataset. It was developed by Fishler and 
Bowels, who in that same paper [17] also presented the PnP algorithm, section 2.1.2.3.  
 
Figure 3.7 shows a flow chart of the method. It works by initially picking a small sample and then testing 
that sample over the entire population. Data that fits into the hypothesis within some threshold is 
considered an inlier. Some predetermined measure or function can then determine the hypothesis that 
is the most successful, along with the corresponding inliers. It can generally work robustly in a data set 
that contains up to 50% outliers. 
 

 
 

Figure 3.7 The RANSAC algorithm 

 

3.3.4 Estimating the 3D motion 
For this research a simple linear method was chosen that could quickly generate a motion hypothesis to 
test in a RANSAC iteration. The motion will be described by a rotation 𝑅 and translation 𝑇 element that 
is obtained by solving (  48   ). The corresponding coordinate vectors are described by  𝑋𝑡 at consecutive 
frames at time  𝑡. 
 
 𝑋𝑡+1 = 𝑅 ∙  𝑋𝑡  + 𝑇 (  48   ) 
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To solve for 𝑅 and 𝑇 a minimum of 3 points are required. Following are the steps on how to obtain these 
from (  48   ). 

 Find the centroid, removing the translation component, of the 3D points 𝑋 = [
𝑥
𝑦
𝑧
] 

 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑡 = 
1

𝑁
∑𝑋𝑖,   𝑡

𝑛

𝑖=1

 (  49  ) 

 

 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑡+1 = 
1

𝑁
∑𝑋𝑖,   𝑡+1

𝑛

𝑖=1

 (  50  ) 

 
  

 
Figure 3.8 Figure taken from [39]. To obtain pure rotations, the translation component needs to be removed by 
finding the centroid of each dataset. 

 

 Accumulate the centered vectors in a 3𝑥3 covariance matrix 𝐻. 
 

 𝐻 =∑(𝑋𝑖,   𝑡+1 −

𝑛

𝑖=1

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑡+1) ∙ (𝑋𝑖,   𝑡 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑡)
𝑇 (  51  ) 

 

 Use the Singular Value Decomposition (SVD) to obtain the singular matrices of 𝐻. The rotations 
are along 𝐻’s principal axis which can be found with the SVD.  
 

 [𝑈 𝑆 𝑉] = 𝑆𝑉𝐷(𝐻) (  52  ) 
 

The left and right singular matrices U and V need to be multiplied to obtain the rotation matrix 
𝑅. 
 

 𝑅 = 𝑉 ∙  𝑈𝑇 (  53  ) 
 

o It can happen that R is a reflection matrix. To check this take 𝑅’s determinant; 
If det(𝑅) < 0 : Multiply 3rd column R with -1 
 

 Finally the translation can be obtained by rotating the centroid from time 𝑡 to the frame at 𝑡 + 1 
and adding that centroid. 
 

 𝑇 = − 𝑅 ∙ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑡 + 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑡+1 (  54  ) 
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3.3.4.1 Updating the pose 
The camera motion that this method estimates can also be used to update the pose at the first stage of 
the key-frame tracker in STAM, which currently uses an M-estimator for pose-estimation. Bypassing the 
need for this computationally intensive method could negate some of the extra computationally load 
that is required by this segmentation method.  
 
It can happen that after 80 iterations no suitable motion hypotheses have been found because none has 
provided enough inliers. In that case the M-estimator from STAM will need to provide the pose update. 

The minimum number of inliers is set at 
𝑁

𝜏
< 𝑖𝑛𝑙𝑖𝑒𝑟𝑠, where 𝑁 is the total population size and 𝜏 a fixed 

number, which has been experimentally set at 5. It can happen that hardly any features comply with the 
set error margin if there is an exorbitant amount of (motion) disturbance. 
 
The rotation and translation components of the camera pose are updated separately; these are 
represented by 𝑃(𝑅) and 𝑃(𝑇) respectively. In (  55  ) the translation component 𝑃(𝑇) is updated by 
first transforming the translation, which was estimated in the camera’s local coordinate frame, into the 
global coordinate frame using the rotation 𝑃(𝑅) at time 𝑡. The rotation component 𝑃(𝑅) is updated in (  
56  ). 
 
 𝑃(𝑇)𝑡+1 = 𝑃(𝑅)𝑡

−1𝑇 + 𝑅 ∙ 𝑃(𝑇)𝑡 (  55  ) 
 

 𝑃(𝑅)𝑡+1 = 𝑅 ∙ 𝑃(𝑅)𝑡 (  56  ) 
 

3.3.4.2 Finding a better fitting motion model 
STAM uses an M-estimator for the pose, as is explained in section 2.1.2.4. It improves robustness partly 
by using weights on each measurement so that good fitting measurements, that have a smaller error, 
have a larger influence on the result.  
 
The idea that will be explained in this section is that a small improvement in our motion estimation 
might be made by lending this idea of weighing the measurements from the M-estimator. 
 
Because this method re-estimates the model after the first round of inlier detection, see the dashed line 
in Figure 3.2, the resulting errors from the inliers can be used as weights in the re-estimation and can 
thereby improve it. 
This is also known as Wahba's problem [40] which tries to estimate a satellite’s attitude 𝐴 by using 
weighed 𝑤𝑖 unit vectors of observations 𝑢𝑖 and 𝑣𝑖 in their local coordinate frames using a least squares 
error (  57  ). 

 𝐴2 =
1

2
∑𝑤𝑖‖𝑢𝑖 − 𝐴1𝑣𝑖‖

2

𝑁

𝑖=1

 (  57  ) 

 
The weight 𝑤𝑖 could in this case be found using a weight function with the Mahalanobis distance as 
input, section 3.3.4.3 will go into more detail on that subject. 
The solution to Wahba’s problem used in this research is basic and only requires a small adaptation to 
the method explained in 3.3.4. The covariance matrix 𝐻 from (  51  )  is multiplied by the weight for each 
vector before finding its SVD; 
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𝐻 =∑𝑤𝑖(𝑋𝑖,   𝑡=1 −

𝑛

𝑖=1

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑡=1) ∙ (𝑋𝑖,   𝑡=0 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑡=0)
𝑇 (  58  ) 

 
The rest of the steps to estimate motion remain as they are.  
 
Because the motion estimate will also be used to update the pose, a third and final weighted re-
estimation can be done to further refine it. 
 

3.3.4.3 The weight function 
The weight function for 𝑤𝑖 to be used in (  57  ) could be similar to that used for robust estimators. 
The weight function that might work best is Tukey’s; Figure 3.9 shows a plot of this function 𝜀 is the 
error and 𝑐 the threshold for when a point is still considered an inlier. 
 

 𝑤(𝜀) = {(1 − (
𝜀

𝑐
)
2

)
2

  𝑖𝑓 |𝜀| ≤ |𝑎|

         0         𝑖𝑓 |𝜀| > |𝑎| 

 (  59  )   

 

 
Figure 3.9 Tukey weight function, c is set to 30 in this case. Errors larger than the threshold c (30) are discarded 
as outliers, similar to setting the cutoff of |𝜀| > |𝑎|. 

 
The zero gradient at zero error means that most small errors are weighed equally strong. The almost 
linear descent means larger errors are weighed relative to their error. The lack of a root in this function 
also means it is easier to compute.  
Another weight function is the “Fair” weight function, shown in equation (  60  ) and Figure 3.10, which 
has a steeper initial gradient and converges to zero slower.  
 

 𝑤(𝜀) = (1 +
|𝜀|

𝑎
) (  60  ) 
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Figure 3.10 The ‘Fair’ weight function. 

 
The slope is a lot steeper which means that this function has a higher preference towards good fitting 
points. It has to be tested what function would work best since there are many different weight 
functions. Four different weight functions are shown in Figure 2.9. 
 

3.3.5 Sample preselection using sceneflow 
The speed of the algorithm largely depends on how quickly a good initial sample is picked from the set 
of 3D vectors, since this affects the moment at which a correct camera motion can be estimated. So a 
procedure allowing a more selective initial picking of vectors for the sample might help to accelerate 
this.  
 
In this case vectors are selected using the similarity of their sceneflow, since this can be calculated for 
each point individually. Although the sceneflow can only describe three of the six degrees of freedom 
present in the scene, it can make sure that all samples contain points whose motion is not too dissimilar.  
A large enough margin for the sceneflow  difference should make sure that this pre-selection does not 
exclude points that actually have a similar 6 DOF motion, but due to rotations and a large spatial 
distribution (a long rotating stick for example) have a 3 DOF motion that is considered too dissimilar. 
 

3.3.6 Region growing clustering 
The motion segmentation method spends a lot of time testing motion models that are rejected when 
they do not fit the displacement of a sufficient number of points. Each motion model is tested on nearly 
all points requiring a lot of computation time. So the faster the algorithm can notice by itself that the 
motion model does not fit sufficient points, and stops testing it, the better. 
 
It can be considered that points that belong to the same object and lie side by side are more likely to 
have a similar motion. Using this notion a crawler can be designed that goes through the set of points 
methodically, following a mesh which is created using Delaunay triangulation. That way a new iteration 
can stop earlier if all connected points in that mesh show dissimilar motion.  
 
The region growing process involves the following steps; 
1) Mesh points using the Delaunay triangulation method. 
2) Crawl through this mesh from multiple starting points in the sample, (so with a sample size of four, 

there are four starting points) 
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Figure 3.11 shows how this works out; connected points with dissimilar motion are connected with red 
lines and similar motions are connected with green lines. After it notices that all inliers connect to 
outliers it stops. In Figure 3.11 it can be seen that about halve the points are not tested, which saves 
computation time on a wrong motion model. The red lines connect to points that don’t fit the motion 
model, so the testing stops there. The green dots do fit the model and the routine therefore continues 
to crawl along the lines to test new points. It can be seen that it stops at the book, which is moving. A 
starting point in the bottom right that started on the book did not find any fitting points, so it stopped 
after three points. The points in black were not tested since the function could not grow further. This 
saved on computations for a model that was probably not a very good fit to begin with. 

 
Figure 3.11 A visualization of the path followed by the region growing process and where it stops.  

 
The downside of region growing is that if the scene contains a lot of outliers, groups of similar points can 
become separated by them. The effect might be that the method won’t be able to find a solution at all. 
Plus it only makes sense in large data-sets, say larger than 40, because the creation of the mesh also 
takes time which might negate the savings of region growing. 
 

3.3.7 Improving the scoring function 
The set of static features and the corresponding motion model is selected using a scoring function (  26  
). This scoring function depends on the image coordinate covariance 𝐶 which is calculated using the 
inlier ratio of each bin (  27  ). This adds a weight to the calculation of the covariance to reduce the effect 
of bins with few inliers. 
 
However, since the feature space is quite sparse each bin generally holds just one point. So the inlier 
ratio for each bin usually returns either a 1 (the bin contains only inlier(s)) or a 0 (no inlier(s)).  
The inlier ratio per bin is simply the number of inliers per bin divided by the total number of points in 

that bin  
∑𝑏𝑖

𝑁𝑏
. So if there is only one point in a bin, then the inlier ratio will be either 0 or 1. 
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But this makes it less fair for better fitting models that have a smaller chance of also (incidentally) 
including points on a moving object. So to make this ratio a bit more accurate it might be better to use a 
weight function, such as Tukey’s (  59  ). This measure to grade the fitness of a point with respect to a 
model more precisely might help the algorithm to come up with a more accurate motion model. 
 

3.4 Conclusion 
This chapter introduced the method that will be used to segment dynamic features from a stereo 
camera feed. This is an adaptation from a monocular segmentation algorithm made compatible for a 
stereo camera setup.  
The use of a stereo setup allows for easier motion estimation that can be done independently from 
other processes like mapping. Noise and measurement errors still persist, however, in the calculated 3D 
position. So a noise model is therefore used to adjust for this when comparing a point’s displacement 
with the hypothesized camera motion. 
 
Some other additions to the process have also been presented with the intention to improve efficiency 
and effectiveness of this algorithm. Their level of effectiveness will be demonstrated in chapter 5 and 
discussed. Because this algorithm estimates the camera motion, it can also replace the first pose 
estimation step which is currently done using an iterative Gauss-Newton method explained in 2.1.2.4. It 
is therefore important that the motion estimate from our method is as accurate as possible.  
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4 Integration 
This section will explain how the segmentation method is integrated into the pose tracking process of 
STAM. The segmentation method needs to receive tracking data generated by STAM from both the right 
and left camera frame. This information will be used to determine which features are outliers. The result 
of this process is then send back to be processed by STAM to account for the outliers in its further pose 
estimation process. This exchange in data between STAM and the motion segmentation process is also 
shown in Figure 3.2.  
Implementing the motion segmentation process into STAM meant making alterations to its code. It was 
attempted to implement this with as few adjustments to STAM as possible.  
 

 
 

Figure 4.1 A simple overview of the AR framework. The grey dashed box represents STAM.  The blue box is where 
the motion segmentation will be implemented in STAM. The colors correspond to those processes also shown in 
Figure 3.2. 

 
Figure 4.1 shows where in the pose tracking process of STAM the motion segmentation method needs 
to be implemented. This is at the first stage of the process; after the world points have been tracked in 
the current image and before STAM performs the first estimation of the pose.  
This means that the segmentation process needs to run in series with the pose tracking process. The 
simplest solution is therefore to implement the motion segmentation algorithm as a function that can 
be called from the pose tracking process. 
 

4.1 OpenCV library 
In this project a lot of use has been made of the OpenCV library to avoid writing code for processes such 
as image processing. The Mat type variable is also an easy to use way to do matrix operations and store 
and retrieve data. The downside is that it is not very efficient compared to arrays. A small test showed 
that it can take 10 times longer to do a matrix operation with the cv::Mat type compared to mimicking 
this process in a for loop with a floating point array. 
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OpenCV is an open source computer vision library developed by Intel in 1999 and released to the public 
in 2000. It was mainly meant to speed up the development of their CPU-intensive applications. 
(http://opencv.org/) 
 
There is currently a large community supporting it, so it can be assumed that most of the functions in 
the library are bug-free. It also includes the more popular computer vision algorithms and provides 
variable types that are very useful in working with computer vision processes. 
 
The algorithm initially took on average 40 milliseconds (ms) per frame to detect moving features, with 
the maximum number of RANSAC iterations set to 60. This might prove to be a bottle neck for use in an 
AR application which has to process frames in real-time. A standard camera running at 30 frames per 
second leaves the AR application 33 ms between frames to do its processes.  STAM takes on average 26 
ms to do a full pose tracking process on a single frame, which leaves about 7 ms to perform the motion 
segmentation process. 
 
The motion segmentation process repeats a lot of matrix operations, for instance to estimate the 
camera motion and to test for each feature whether its 3D motion is reasonably similar to that of the 
camera. By performing these matrix operations using floating point arrays instead of cv::Mat types these 
processes can be performed 10 times faster.  
Further optimizations where made by declaring variables that have large amounts of memory allocated 
to them only once at initialization, instead of each time the function is called. Overall these 
optimizations combined decreased computation time by about 85%. 
 

4.2 What data is send to the motion segmentation process 
 Since the segmentation process needs to find outliers in the tracked features, it receives the left 

and right image coordinates (that are tracked using the Pyramid Lucas Kanade method) from 
STAM over the previous and current frame. 

 To calculate the 3D coordinates of the stereo matched features relative to the left camera, the 
calibration parameters of that camera are also needed. Because these are constant and 
available from a data file, the program retrieves these from that data file only at initialization. 

 For visualization of the results the rectified images of the left camera frame is also obtained 
from STAM. These aren’t required for the segmentation process but are useful while developing 
and debugging the segmentation process. 
 

4.3 What data is send to STAM 
 The list of which feature are considered outliers is sent back as a vector of integers.  Each 

integer corresponds to the entry of the feature vector that has been found to be dynamic, so 
these features can be identified in STAM by that number. It is sorted by entry number to make it 
easier to delete these respective entries from the feature vector using a for loop. 

 The estimated camera motion is also returned because it can be used to update the pose. 
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4.4 Changes made inside STAM 
The algorithm is implemented as a function to be called from STAM. To process the returned 
information (so STAM can ignore dynamic features) requires the following changes: 

 The features are tracked in two stages, first using LK optical flow and afterwards key-frame 
tracking. This happens at different locations in the code using different variables. Therefore the 
dynamic features need to be excluded from further processing in two different variables at 
different locations in the pose tracking code.  
This is done using the vector holding the entries of the tracked features that are considered to 
be dynamic. 

 A routine to update the pose using the estimated camera motion in the first tracking stage was 
also implemented. This process is also explained in section 3.3.4.1. But tests have shown that it 
does not work well.   
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5 Experiment setup and test results 
 
In this section the results of the tests of the motion segmentation algorithm will be presented. To 
measure the effectiveness of the pose estimation combined with the motion segmentation algorithm it 
is tested in a dynamic environment and compared to a ground truth to obtain the error.  
 
The performance of STAM with the motion segmentation algorithm will also be compared to what can 
be considered to be currently the state of the art in (monocular) visual odometry; SVO [22]. A short 
explanation of this program was given in section 2.5. 
 
Next to the accuracy of the pose estimation, the computation time will also be an important 
performance indicator. The reason for this is that with decreased lag the virtual objects can blend into 
the real world more smoothly and make the AR experience more convincing to the user. 
 

5.1 Research setup 
The ground truth is obtained using a marker based visual odometry program Aruco [12], which is 
explained in Appendix A. The choice was made for Aruco because it has shown to outperform almost all 
other freely available marker based visual odometry programs. 
 
Since it uses markers, it will not be disturbed by the moving objects in the scene and should therefore 
return the ground truth pose reliably enough for testing. These markers can become occluded when an 
object or person moves in front of them. Placing multiple markers in the environment should avoid 
occlusions as much as possible but not completely. In such cases Aruco returns an error message 
indicating it does not know the camera pose. The frames in which full occlusions occurs therefore have 
to be skipped in the evaluation of the pose accuracy. 
 

 
Figure 5.1 Multiple markers are used to avoid Aruco becoming ‘lost’ as much as possible. It is important that 
their relative distance, corresponding to a file read by Aruco holding these distances, is accurate enough for good 
camera pose estimation. 
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Because the markers are recorded from a distance they needed to be large enough to be recognized by a 
0.3 mega-pixel camera which is why they are printed on A3 paper. A fiducial with three markers was 
created and printed on three A3 sheets as shown in Figure 5.1, and placed along the background. The 
file holding the information on the spatial configuration of the markers was then altered to correspond 
to their real world placement. 
 
There are four different video sequences used for testing. These should resemble slightly different 
scenarios of an object or person moving through the scene with the background at varying distance. 
Because the covariance used in calculating the Mahalanobis distance creates a bias towards features 
further from the camera we would also like to check if the algorithm works with points lying at relatively 
the same distance, which is the case when the camera is close to the wall or pointed at a desk. These 
scenes are filmed with a simple stereo camera. This setup is shown in  
Figure 5.2.  Each camera makes 30 frames per second (fps) and has a resolution of 680 x 480 pixels.  

 

 
Figure 5.2 The stereo camera setup. 

 

5.2 Varying results due to optimization routines 
Because the pose and 3D location of the points are estimated using a Gauss-Newton optimization 
process and are in a multi-threaded environment the result of the estimated pose can differ on each run. 
The mapping process runs in a different thread as the tracking process and will improve the map using 
global or local bundle adjustment while the tracking process runs in another thread. If the tracking 
process needs information of map coordinates it can interrupt the bundle adjustment and use whatever 
is optimized at that moment. Because each thread will also constantly be interrupted by the operating 
system and other background processes the outcome will always vary to a certain extent. Figure 5.3 and 
Figure 5.4 show the pose error of multiple runs of STAM. 
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Figure 5.3 Segmentation results of 30 different runs showing the pose error from STAM compared with the 
ground truth provided by Aruco using markers. 
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Figure 5.4 30 runs for STAM on a test video. The error is obtained by comparing the pose returned by STAM with 
the pose obtained by Aruco using AR markers. 

 
It can be seen from Figure 5.3 and Figure 5.4 that although the settings of STAM are constant, the 
results vary to some extent. Except for some outliers the majority of the lines do follow roughly the 
same path, shown by a thick cluster of lines. 
We might therefore assume that the distribution of the results of each run is Gaussian. So according to 
the law of large numbers enough runs should average out to the expected value of the estimated pose. 
There is a debatable rule of thumb that a sample set of 30 can be considered large enough. During some 
trial runs the results already seemed to average out after 20 runs, so 30 are considered to be enough for 
this experiment. 
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5.3 Scoring of the data 
For easy comparison each run is given a score. There are two metrics by which we will judge the 
performance of the algorithm, these are; 

 Pose error; This is the main benchmark for the performance of the algorithm. The estimated 
pose from STAM is compared to the ground truth obtained with Aruco. We will measure the 
pose at the second (final) stage of the pose tracking process. 

 Computation time. The run of the pose tracking process is timed in milliseconds (ms). 
 
The pose error is represented by the absolute mean error (ME) (  61  ), and the root mean sum of the 
squared error (RMSE) (  62  ). Because 30 runs are done for each test it is preferred to take the average of 
the errors over every run.  
The RMSE can be considered more important for this research since the main purpose of this method is 
to avoid large errors which can be more noticeable to the user. They might for example make the virtual 
object go out of view. Because the aim of this research is to improve the user experience of the AR 
framework, large errors should be weighed more heavily.  
At run 𝑖 𝑝𝑜𝑠𝑒𝑗 is the estimated pose at frame 𝑗 and 𝑔𝑟𝑛𝑑𝑗 the ground truth for the corresponding frame. 

 
 

𝑀𝐸 =
∑ ∑ |𝑝𝑜𝑠𝑒𝑗 − 𝑔𝑟𝑛𝑑𝑗|

𝑓𝑎𝑚𝑒𝑠
𝑗=0

𝑟𝑢𝑛𝑠
𝑖=0

𝑟𝑢𝑛𝑠 ∙ 𝑓𝑟𝑎𝑚𝑒𝑠
 

 

(  61  ) 

 
 

𝑅𝑀𝑆𝐸 = √
∑ ∑ (𝑝𝑜𝑠𝑒𝑗 − 𝑔𝑟𝑛𝑑𝑗)

2𝑓𝑎𝑚𝑒𝑠
𝑗=0

𝑟𝑢𝑛𝑠
𝑖=0

𝑟𝑢𝑛𝑠 ∙ 𝑓𝑟𝑎𝑚𝑒𝑠
 

 

(  62  ) 
 

 
The errors are summed separately over either the three rotations or the three translations. So for each 
run we end up with 2 ME's and 2 RMSE's, one for the rotations and one for the translations. 
 
At times STAM is not able to return a measurable pose estimate but instead returns a non-representable 
value (NaN), which makes it impossible to calculate the error. Because an unknown pose is also not a 
preferable result it will be penalized with an error score of 1. This number was chosen arbitrarily, but 
looking at the error plots this more or less corresponds to the largest errors measured during testing. 
 

5.4 What needs to be tested 
The proposed motion segmentation algorithm is a modification of the algorithm described in [11]. The 
alterations made to it were explained in the subsections of 3.3. We would like to see what the effects of 
these alterations are on the performance of the motion segmentation.  The experiment should therefore 
answer the following questions; 
 

1) Does the algorithm improve the accuracy of the estimated pose? This is the most important test 
because it is central to this research. 
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2) What improves the motion segmentation more, the Mahalanobis distance or the Euclidean 
distance? In this research the choice was made to use the Mahalanobis distance because it 
should cope better with decreased location accuracy of points removed further from the 
camera. Short trial runs already showed an improvement in segmentation but this had not been 
accurately validated. 

3) The algorithm gives each found set of inliers a score that to a large extent is based on its spatial 
distribution. In this research it was chosen to use the 3D world distribution rather than the 2D 
image distribution, as is explained in section 3.3. But does selection of the best set of inliers 
improve when using a 3D distribution? 

4) Does giving weights to the points at the second motion estimation stage improve the selection 
of inliers? An essential part for good motion segmentation is the estimation of the camera 
motion. Using weights for each feature point should improve the motion estimate, as is 
explained in section 3.3.4.2. 

5) Can the estimated camera motion be used to update the pose? The algorithm estimates the 
camera motion from frame to frame. As explained in section 3.3.4.1 this information can be used 
to update the pose so we can skip the first Gauss-Newton pose update and save on computation 
time. 

6) Because the 3D location for each feature can be calculated individually we can calculate the 
translations to improve the initial sampling as explained in section 3.3.5. Does this selective 
sampling using the known translational velocity then speed up the motion segmentation 
process? 

7) As explained in section 3.3.6, static features can be considered to be neighboring each other. 
Going through the set of features more methodically might decrease computation time since 
they can be rejected quicker. So does region growing speed up motion segmentation?  

 
The results of these tests will be presented in this chapter and discussed further in chapter 6. 
 

5.5 Creating the test data 
Several issues were encountered during the creation of the test data which are mentioned here; 
 
Decreasing motion blur  
Fast camera movements can blur the image because photons coming of a part of the scene can be 
picked up by multiple pixels from the image sensor while the shutter is opened. This can affect feature 
tracking which relies on sharp contrasts in the images for reliable matching over consecutive frames. To 
avoid this as much as possible the shutter time of the stereo camera needs to be decreased. But 
decreasing the shutter time leaves the sensor with less time to receive sufficient photons to create the 
image, resulting in a darker image, the extent of how dark depends on the quality of the image sensor. 
Increasing gain and brightness can negate this effect to some extent, though increasing the gain also 
increases the noise. Increasing the brightness will worsen the glaring effects of places that are already 
quite bright by themselves. 
In the end an optimal setting was found that had as little motion blur as possible by setting the fastest 
shutter speed without having to increase the gain and brightness to such extent it would greatly 
decrease the image quality.  
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Problem unsynchronized stereo video 
Problems were encountered when creating the stereo camera recordings.  
An essential part of the application is stereo matching. This is performed along the epipolar line so it is 
vital that objects align along it. This requires the time difference between both images to be as small as 
possible. A time difference between images of tens of milliseconds can already create feature coordinate 
differences, depending on its velocity, too large for reliable stereo matching.  
A multi-threaded program is therefore used to record video for both cameras (almost) simultaneously. 
As it turned out the video buffer required some time to process a frame, which was not always given. 
The effect was that from either camera a frame could be dropped. So when playing back that video the 
left video would be at frame 100, for example, while the right was already displaying frame 101 or 102. 
This meant a difference between frames of several tens of milliseconds. Enough for a moving scene to 
misalign all features along the epipole and disrupt the stereo matching process significantly, making the 
segmentation process fail for all cases.   
The solution was simply to add a sleep cycle of just a few milliseconds to give time for the video buffer to 
run its processes and store the frame. 
 

5.6 Test results 
The results are presented for each video separately.  
There are four different videos; 
    1, 2) In two videos an object (book) moves through the view of the camera. One of these videos starts 

by translating the camera horizontally to allow SVO to obtain a baseline. 
3) A person holding a board moving through the view. The board is to make sure enough features 

will be detected. 
4) The camera looks at a desk with an object moving through the scene to test its performance 

when the variation in depth is negligible. 
 

5.6.1 A book moving through the scene 
The scene for this experiment is shown in Figure 5.5 and its results in Figure 5.6. The various additions 
are tested only in this video because it was the most dynamic, meaning it had a lot of movement in it. 
 

 
 
Figure 5.5 Motion segmentation on a book moving through the camera view. The red dots are identified as 
moving points which should not be used for pose estimation. The green points are considered to be static points. 
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Figure 5.6 This graph shows the average error over 30 runs of the program on the video. The abbreviations 
along the x axis are explained here; 

 STAM; AR framework running without motion segmentation. 
 Motion seg. 3D; STAM with motion segmentation with the score for a set of inliers is calculated using 

the 3D distribution of the inliers. 
 Motion seg. 2D; STAM with motion segmentation with the score for a set of inliers is calculated using 

the 2D image distribution of the inliers. 
 Motion seg. RG; STAM with motion segmentation using the 3D distribution for scoring and region 

growing. 
 Motion seg. Wght; STAM with motion segmentation using the 3D distribution. Weights are calculated 

for each inlier with which the motion is estimated. 
 Motion seg. Vdiff; Selecting the sample based on difference in lateral velocity. 
 Motion seg. ED; STAM with motion segmentation using the Euclidean distance instead of the 

Mahalanobis distance. 

 
 
For the motion segmentation method using the 3D distribution the decrease in error for the translation 
is 14% and 21% for the rotations. 
It can be seen that using the 3D real world distribution rather than the 2D image distribution of inliers 
increases performance on motion segmentation.  
Selecting the sample using the criterium that the translational velocity should be comparable (Vdiff.) 
decreases the accuracy. Similar as when using a weighted motion estimation (Wght.). 
 
The motion segmentation algorithm requires at least 3 features to estimate a motion hypothesis; an 
extra fourth is included to counter noise. So if there are less than 5 features there are simply not enough 
features to segment and the motion segmentation can be skipped. 
During implementation of the algorithm the code was changed so the estimated camera motion could 
be used to do a pose update. This resulted in a bug that caused a skip of the first stage pose update if 
there were fewer than 5 features tracked in the new frame, which improved performance considerably. 
The reason for this effect is that a pose estimate using very few features can hardly be performed 
reliably since the M-estimator will have trouble determining a good reference to decide on which the 
inliers are and which the outliers. 
The result of selectively skipping a pose update if there are too few features is shown in Figure 5.8.  
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Using the estimated motion to update the pose significantly decreased the accuracy of the pose tracking 
process.  
To further investigate the effect of selective pose updates STAM also ran with a selective update of the 
pose. This showed significant improvements using only this small alteration. Motion segmentation 
improves it even further and shows a decrease in RMSE of 62% for rotations and 53% for translations 
over the unmodified STAM. 
 
Figure 5.7 shows the results for the various configurations of the program, the abbreviations are similar 
to those explained for Figure 5.6. For this test the program is run 30 times over, similar to the tests on 
pose estimation accuracy.  The average time is taken over these 30 runs. 
 
 

 
 
Figure 5.7 Compuation time of the pose tracking process and the number of iterations for some different 
configurations of the motion segmentation algorithm. *ED; Euclidean distance. The maximum number of 
iterations was set to 120. 

 
The average computation time for the pose tracking process including the motion segmentation 
algorithm is 34 ms, while without motion segmentation the pose tracking takes about 25 ms. So the 
motion segmentation itself takes about 9 ms. The computation time for frames for which the algorithm 
could not segment motion due to a lack of tracked features are not added to the total. The process to 
detect motion needed on average 82 iterations to detect outliers.  
The maximum number of iterations was set to 120 but this could be set lower. The motion segmentation 
algorithm did not return a significantly better result if the number of iterations was set to more than 60. 
At 60 iterations the algorithm ran a few milliseconds faster, about 6 ms on average.  
This was tested on a x86 64 bit quad core 2.3 GHz Intel i7 computer.  
 
Region growing did not improve outlier detection or computation time. On the contrary; creating the 
mesh takes extra time, as does traversing it. It might be because the region growing process can stop 
before having traversed through all the points that good points are more likely to be skipped. This can 
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decrease the likelihood of finding the best set of inliers, which can decreases pose estimation 
performance in STAM. 
 
 

 
 
Figure 5.8 This table shows the errors (ME and RSME) of STAM with and without motion update when the first 
pose estimate is skipped if there are too few features in the current frame. The first graphs marked with ‘STAM’ is 
placed for comparison and always does a pose update, also when there are too few (0 to 4) features available. 
The abbreviations are the same as in Figure 5.6 and also explained in that figure’s caption. 

 

5.6.2 Comparison to SVO 
In this test STAM with and without motion segmentation will be compared to SVO. This scene is shown in 
Figure 5.9. 
 

 
 
Figure 5.9 A still from the scene in which STAM with motion segmentation can be compared with SVO. 
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Figure 5.38 The estimated angles over consecutive frames of the ground truth obtained using Aruco (blue line), 
STAM with Motion segmentation (green line) and SVO (red line). Because SVO is monocular it does not have a 
real sense of scale. The translations are therefore left out because they cannot be compared well. 

 

 
 
Figure 5.10 The ME and SMSE error scores for STAM, SVO and the motion segmentation algorithm. Because the 
SVO uses a monocular camera the scale of the translations of SVO are unknown and are thus left out of the 
comparison. 

 
Because SVO is monocular it needs to initialize a baseline before it can start mapping the environment. , 
Translations cannot be compared because SVO’s world map scale is arbitrary. Rotations on the other 
hand can be compared; these results are shown in Figure 5.10. 
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In this scene it performed best and slightly outperformed STAM.  There is however hardly any difference 
with the motion segmentation algorithm. SVO required a lot of configuring to make it run properly. The 
pace at which it creates new key-frame needed to be increased significantly for SVO not to lose its 
tracked features as soon as the camera made just a slight movement.  
 

5.6.3 Video of a person with a marker board 
In this video a person is moving a marker board through the scene as shown in Figure 5.11. This marker 
board was used because it has a lot of good features on it that can be tracked. This marker board is not 
used by Aruco so it does not interfere when it obtains the ground truth.  
 
 

 
 

Figure 5.11 A still from the video where a person is moving through the scene holding a marker board which was 
only used to make sure that enough features are tracked on the moving object. 

 
 

 
 
Figure 5.12 The test result showing the averaged errors over all frames.  
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It can be seen that for the rotations the motion segmentation makes an improvement of 14% over STAM. 
For translations there is no improvement. Again, skipping pose updates when there are too few features 
significantly improves the results. 
 

5.6.4 Video of a desk scene 
A scene of a desk is filmed with a magazine moving over it. The goal of this test is to see whether the 
Mahalanobis distance might still be beneficial if points are located at equal distance from the camera.  
 

 
 
Figure 5.13 A still from the video where all objects are close by to test if the depth bias of the algorithm might 
have negative consequences. 

 
 

 
 
Figure 5.14 Results of the tests. The first set of columns marked ‘STAM’ are from STAM without motion 
segmentation. The second are from STAM with motion segmentation using the Mahalanobis distance while third 
(Motion seg. Eucl. Dist) uses the Euclidean distance. The fourth and fifth are from STAM with and without motion 
segmentation but doing a selective pose update. 
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Using the Mahalanobis distance instead of the Euclidean distance in the segmentation process improves 
its performance. So the covariance, which increases with distance, still improves performance when all 
points lie at about an equal distance.  
When we skip a pose update when there are too few features (less than 5) it greatly improves 
performance by itself as can be seen in Figure 5.14  under ‘STAM slct. Pose upd.’ which improves 
rotations by 47% and translations by 80%. When the motion segmentation is included in STAM it 
improves another 4% and 6% for the rotations and translations respectively. 
 

5.6.5 Pose update 
As explained in section 3.3.4.1, it is also attempted to update the pose using the estimated camera 
motion from our segmentation process. This however caused significantly larger pose errors, mainly in 
the translational directions. In Figure 5.15 the pose estimates of STAM (red) and the estimated motion 
(green) is shown, the ground truth is represented in blue. The estimated motion is not used to update 
the actual pose of STAM but shown as a virtual pose update to evaluate the estimate from the motion 
segmentation algorithm. Inspection shows that the rotations seem to be estimated reasonably accurate. 
The translations on the other hand behave a lot more erroneous. When using the estimated camera 
motion in the pose update of STAM during test runs, the largest errors were found in the estimated 
translations.  
 

 
Figure 5.15 The estimated camera motion (green) from the motion segmentation process. This is done separately 
from the actual pose update and is not used in the actual pose estimation of STAM.  
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6 Conclusions 
 
In this thesis we have shown how a motion segmentation algorithm designed for a monocular visual 
odometry program could be adapted to one for a stereo camera. It could benefit from using the extra 
visual information made available by the second camera to model the error distribution of tracked 
features. This error distribution was used to improve the clustering process by using the Mahalanobis 
distance instead of the Euclidean distance. When comparing the use of these two error metrics the 
Mahalanobis showed an improved performance over the Euclidean distance. 
 
Also using the 3D world distribution for scoring a set of found inliers, rather than the 2D image 
distribution, improved the selection of the correct set of inliers.  
Since dynamic features tend to lie closer together and generally only one side of an object faces the 
camera, the features residing on the moving object are usually arranged in a plane like shape. This 
means that generally features on the side of a moving object which the camera can see are at relatively 
equal depth, decreasing their 3D distribution, while the static features are more spread out. So even 
when a moving object obscures much of the view the algorithm will still prefer feature sets that are also 
more distributed along the depth of the scene. 
 
The accuracy of the pose estimation deteriorated significantly when the estimated camera motion was 
used to update the pose in the first stage of the pose tracking process. This might indicate that the 
estimated camera motion is not accurate enough because noise and outliers negatively influenced the 
motion estimate of the linear method. Using a weighted method did however not seem to improve this. 
 
By doing matrix operations with arrays instead of the OpenCV Mat type, the computation time could be 
decreased by 50%. Because the matrix operations are 10 times faster using floating point arrays 
compared to openCV Mat type, more iterations can be done which might improve the accuracy of the 
motion segmentation process. Other optimizations decreased the computation time further with an 
extra 35%. This has made real-time performance possible, making it a useful addition to the AR 
framework. Further optimization might shave off a few more milliseconds. 
 
The overall estimated pose improves significantly when frames that have too few tracked features are 
skipped. The reason for this is that robust pose estimation requires a sufficiently large set of features to 
make a statistical distinction between inliers and outliers. The reason why features are not tracked well 
in certain frames might be due to too much motion blur. Skipping such frames thus avoids erroneous 
pose estimations based on a poor data set. 
 
We did not succeed in updating the pose using our outlier detector’s estimated camera motion because 
this significantly increased the pose error for STAM. Inspection of the estimated motion, isolated from 
the further pose updating process, shows that the estimated translations are not very accurate. So the 
motion estimation process can use some improvements. 
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7 Appendix 

7.1 ArUco  
A recently developed library for camera pose estimation using fiducial markers is Aruco [12]. It has 
proven to outperform other popular systems, such as ARToolKitPlus and ARTag as shown in Figure 7.1. It 
has also shown to run at almost 100 Hz on a single core of a 2.40 GHz dual-core processor. 
It creates its own fiducial marker with the number of markers for each fiducial to be set by the user. One 
such marker is shown in Figure 7.2. Using a fiducial with multiple markers makes it more robust against 
occlusions. When creating its own dictionary of markers, based on requirements in size and number of 
markers, it tries to maximize the inter-marker distance and number of bit-transitions. The more bits, 
which the system uses for identification and error detection and correction, the better. These markers 
should however not become too small to remain detectable.  
 

 
 

Figure 7.1 Taken from [12] it shows the comparative  robustness of ArUco against added noise to 100 images 
containing markers from different viewpoints. 

 

 
 
Figure 7.2 A marker that is generated by Aruco. It uses printable boards with multiple markers to increase 
accuracy and make it more robust against occlusions. 
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