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Abstract—In this letter, closed-form expressions for the bit
error rate of 𝑀−ary pulse amplitude modulated signal con-
stellations as a function of the analog-to-digital converter word
length, the signal-to-noise ratio and the fading distribution, are
derived. These results allow for a rapid and accurate evaluation
of the system performance when the analog-to-digital converter
resolution is limited, as is generally the case in high sampling
rate communication systems, and thus provide a useful tool for
system design, analysis and optimization.

Index Terms—ADC quantization noise, BER analysis, Nak-
agami fading and RF system design.

I. INTRODUCTION

D IRECT conversion transceivers employing single-carrier
(SC) schemes with directional antennas to counter inter-

symbol-interference (ISI) are a promising alternative to multi-
carrier (MC) schemes, for high data rate communication
systems operating in the 60 GHz and 100 GHz regime. In-
phase and quadrature-phase (I/Q) imbalance is one of the
major problems associated with direct conversion transceivers
[1] which can be alleviated to an extent by employing one
dimensional signal constellations [2]. It is well known that the
power consumption in an analog-to-digital converter (ADC)
is directly proportional to 𝐹𝑠 ⋅ 2𝑁 , where 𝐹𝑠 denotes the
sampling frequency and 𝑁 represents the ADC word length.
Thus with sampling rates in the range of Giga samples per
second, 𝑁 must be kept as small as possible. Monte Carlo
simulations are often used to evaluate the system performance
in terms of average probability of error in the presence of
limited ADC resolution. In [3] an analytical expression for the
BER of orthogonal frequency division multiplexing (OFDM)
based MC schemes is presented, which is based on the
assumption that ADC quantization noise (QN) is Gaussian
distributed. This assumption is valid only when the OFDM
system employs a large number of sub-carriers and in general
is not true for SC schemes.

In this letter, we derive closed form expressions for the
bit error rate (BER) of Gray coded 𝑀−ary pulse amplitude
modulated (MPAM) signal constellations for SC transmission
in the presence of ADC QN over additive white Gaussian
noise (AWGN) and fading channels. With the novel derived
expressions, 2PAM (i.e, binary phase shift keying (BPSK)) and
4PAM are used as examples for the performance evaluation
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in various fading cases. For fading analysis the Nakagami
distribution is assumed which covers line-of-sight as well as
non-line-of-sight channels. To the best of our knowledge, no
closed form expressions for MPAM schemes in the presence
of ADC QN, AWGN and fading have been reported in the
literature.

The remainder of the letter is organized as follows. In
Section II, the system model is introduced. The closed form
expressions for the BER are presented in Section III and
numerical results are given in Section IV. Conclusions are
drawn in Section V.

II. SYSTEM MODEL

The real baseband equivalent received signal of an MPAM
communication system, after coherent detection, operating
under the influence of fading ℎ, AWGN 𝑛 and in the presence
of ADC QN 𝑢 is given as 𝑦 = ℎ𝑠 + 𝑛 + 𝑢 = ℎ𝑠 + 𝑧,
where 𝑠 denotes the transmitted symbol chosen from the
signal set 𝒮 = {𝑠0, ⋅ ⋅ ⋅ , 𝑠𝑀−1}. The AWGN is assumed to
be zero mean with variance 𝜎2𝑛 and power spectral density
𝑁0 = 2𝜎2𝑛. The additive QN 𝑢 is uniformly distributed
between [−𝑉/2𝑁 , 𝑉/2𝑁 ] [4, p.186] and its variance is related
with 𝑁 as 𝜎2𝑢 = 𝑉 2/

(
3 ⋅ 22𝑁)

, where the ADC is assumed to
be operating over a voltage range [−𝑉, 𝑉 ] volts. It is assumed
that prior to ADC an automatic gain control circuit brings the
signal within [−𝑉, 𝑉 ] and there is no clipping. In this letter all
signal constellations are assumed to be Gray coded and equally
distributed between [−𝑉, 𝑉 ] with an an inter-symbol distance
of 𝑑 = 2𝑉/ (𝑀 − 1), i.e., the 𝑙−th symbol in the signal
constellation set is given as 𝑠𝑙 = 𝑉 (2𝑙−𝑀 + 1) / (𝑀 − 1).
The average constellation energy is given as
𝐸𝑠 = (1/𝑀)

∑𝑀−1
𝑙=0 𝑠2𝑙 = 𝑆𝑀𝑉

2/
(
𝑀 (𝑀 − 1)

2
)
,

where 𝑆𝑀 =
∑𝑀−1

𝑙=0 (2𝑙−𝑀 + 1)2. Thus we get
𝑉 =

√
𝑀𝐸𝑠 (𝑀 − 1) /

√
𝑆𝑀 . A system with frequency

flat fading is assumed. The independent and identically
distributed fading amplitudes ℎ are drawn from a distribution
with probability density function (PDF) 𝑝 (ℎ). Assuming
perfect channel state information at the receiver, symbol
wise detection is performed, with the most likely transmitted
symbol being chosen as the symbol which minimizes the
metric 𝒞 (𝑦, 𝑠𝑘) = ∣𝑦 − ℎ𝑠𝑘∣2 over all 𝑠𝑘 ∈ 𝒮.

III. BER ANALYSIS

The signal-to-noise ratio (SNR) per symbol is defined as
𝛾 = 𝐸𝑠/𝑁0. The average energy per bit 𝐸𝑏 is related with 𝐸𝑠

as 𝐸𝑠 = log2 (𝑀)𝐸𝑏. The SNR per bit is thus given as 𝛾𝑏 =
𝛾/ log2 (𝑀) = 𝐸𝑏/𝑁0. In the fading case, the instantaneous
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𝑃𝑏 =𝐾𝑀

log2(𝑀)∑
𝑘=1

ℒ(𝑘,𝑀)∑
𝑖=0

𝒳 (𝑘, 𝑖,𝑀) ⋅𝑄
(√

𝑀𝛾

(
2 ⋅ 𝒴 (𝑖) + (𝑀 − 1) ⋅ 2−𝑁+1

√
2𝑆𝑀

))
⋅
(
1 +

𝒴 (𝑖) ⋅ 2𝑁
𝑀 − 1

)
+

𝐾𝑀

log2(𝑀)∑
𝑘=1

ℒ(𝑘,𝑀)∑
𝑖=0

𝒳 (𝑘, 𝑖,𝑀) ⋅𝑄
(√

𝑀𝛾

(
2 ⋅ 𝒴 (𝑖)− (𝑀 − 1) ⋅ 2−𝑁+1

√
2𝑆𝑀

))
⋅
(
1− 𝒴 (𝑖) ⋅ 2𝑁

𝑀 − 1

)
−

𝐾𝑀

log2(𝑀)∑
𝑘=1

ℒ(𝑘,𝑀)∑
𝑖=0

𝒳 (𝑘, 𝑖,𝑀) ⋅ √𝑆𝑀
(𝑀 − 1)

√
𝑀𝜋𝛾2−𝑁+1

⋅
[
𝑒
− 𝑀𝛾

𝑆𝑀
(𝒴(𝑖)+(𝑀−1)⋅2−𝑁)2 − 𝑒− 𝑀𝛾

𝑆𝑀
(𝒴(𝑖)−(𝑀−1)⋅2−𝑁)2

]
. (3)

and average SNRs are given as ℎ2𝛾 and 𝐸
[
ℎ2

]
𝛾, respectively,

where 𝐸 [.] denotes the expectation operation. In this letter
𝐸
[
ℎ2

]
= 1 is assumed.

A. AWGN and ADC QN

In [5], the BER for Gray coded MPAM signal constellations
in the presence of AWGN is given, which can be generalized
for any additive noise 𝑧 as

𝑃𝑏 = 2𝐾𝑀

log2(𝑀)∑
𝑘=1

ℒ(𝑘,𝑀)∑
𝑖=0

𝒳 (𝑘, 𝑖,𝑀)

∫ ∞

𝒴(𝑖)𝑑
2

𝑞(𝑧)𝑑𝑧, (1)

where 𝑞 (𝑧) represents the noise PDF and 𝐾𝑀 =
1/ (𝑀 log2 (𝑀)). The modulation and bit dependent functions
ℒ (𝑘,𝑀), 𝒳 (𝑘, 𝑖,𝑀) and 𝒴 (𝑖) are seen to follow a regular
pattern for Gray coded MPAM signal constellations and are
given as ℒ (𝑘,𝑀) =

(
1− 2−𝑘

)
𝑀 − 1, 𝒳 (𝑘, 𝑖,𝑀) =

(−1)

⌊
𝑖⋅2𝑘−1

𝑀

⌋ (
2𝑘−1 −

⌊
𝑖⋅2𝑘−1

𝑀 + 1
2

⌋)
and 𝒴 (𝑖) = 2𝑖+ 1 [5].

The combined PDF of a sum of normally 𝒩 (
0, 𝜎2𝑛

)
and

uniformly 𝒰 (
0, 𝜎2𝑢

)
distributed random variables 𝑧 = 𝑛 + 𝑢

[6, p.22] can be stated as

𝑞 (𝑧) =
2𝑁−2

𝑉

[
erf

(
𝑧 + 𝑉 ⋅ 2−𝑁

√
𝑁0

)
− erf

(
𝑧 − 𝑉 ⋅ 2−𝑁

√
𝑁0

)]
,

(2)
where erf (𝑥) = 2√

𝜋

∫ 𝑥

0 𝑒
−𝑡2𝑑𝑡, which is related to the 𝑄

function as erf (𝑥) = 1 − 2𝑄
(√

2𝑥
)
. Substituting (2) in (1)

and solving the integral yields the expression of the BER for
AWGN channels in the presence of ADC QN as given in
(3). As an illustrative example the BER of 2PAM (BPSK), by
substituting 𝑀 = 2 in (3) can be written in closed form as

𝑃𝑏 =

(
1

2
+ 2𝑁−1

)
𝑄
(√

2𝛾
(
1 + 2−𝑁

))
+

(
1

2
− 2𝑁−1

)
𝑄
(√

2𝛾
(
1− 2−𝑁

))−
2𝑁−2

√
𝜋𝛾

[
𝑒−𝛾(1+2−𝑁)

2 − 𝑒−𝛾(1−2−𝑁)
2
]
. (4)

For the case when there is no additive quantization noise, i.e.,
𝑁 → ∞, (4) reduces to lim𝑁→∞ 𝑃𝑏 = 𝑄

(√
2𝛾

)
, which is the

exact expression for the error probability of BPSK in AWGN
channels.

B. Fading, AWGN and ADC QN

For the case of fading channels and coherent detection the
signal constellation is scaled by a factor of ℎ. This implies that

for a given fading realization ℎ, the Euclidean inter-symbol
distance is given as ℎ𝑑. Therefore, the BER evaluation requires
the computation of an average over the fading distribution
𝑝 (ℎ) as

𝑃𝐹
𝑏 =

∫ ∞

0

𝑃𝑏 (ℎ) 𝑝 (ℎ) 𝑑ℎ, (5)

where 𝑃𝑏 (ℎ) denotes the instantaneous BER for a given fading
realization ℎ and is given as

𝑃𝑏 (ℎ) = 2𝐾𝑀

log2(𝑀)∑
𝑘=1

ℒ(𝑘,𝑀)∑
𝑖=0

𝒳 (𝑘, 𝑖,𝑀)

∫ ∞

𝒴(𝑖)ℎ𝑑
2

𝑞(𝑧)𝑑𝑧.

(6)

Following the derivation in the last section it can be easily
shown that 𝑃𝑏 (ℎ) can be written as (7) in case 𝑧 = 𝑛 + 𝑢
as before. By substituting ℎ = (1 + 𝑥) / (1− 𝑥) in (5),
multiplying with

√
1− 𝑥2/√1− 𝑥2 and using the Gauss-

Chebyshev quadrature (GCQ) [7, p.889, 25.4.38], the BER
over fading channels in the presence of AWGN and ADC QN
can be approximated as

𝑃𝐹
𝑏 ≈ 𝐺𝐿

𝐿∑
𝑙=1

𝑃𝑏

(
1 + 𝑥𝑙
1− 𝑥𝑙

)
𝑝

(
1 + 𝑥𝑙
1− 𝑥𝑙

) √
1− 𝑥2𝑙

(1− 𝑥𝑙)2
, (8)

where 𝐺𝐿 = 2𝜋/𝐿, 𝑥𝑙 = cos ((2𝑙− 1)𝜋/2𝐿) and 𝐿 denotes
the degree of the Gauss-Chebyshev polynomial. The larger the
value of 𝐿 the closer is the approximation to the actual value.
For our analysis a value of 𝐿 = 16 was found to be sufficient.
The expression given in (8) is in general true for any fading
distribution but we restrict our discussion to the Nakagami-𝑚
distribution. The PDF of the Nakagami-𝑚 distribution is given
as

𝑝 (ℎ) =
2𝑚𝑚ℎ2𝑚−1

Γ (𝑚)
𝑒−𝑚ℎ2

, (9)

where Γ (.) denotes the gamma function. It is good to note
here that the Rayleigh distribution is a special case of the
Nakagami-𝑚 (𝑚 = 1) distribution.

IV. NUMERICAL RESULTS

A comparison of the simulation and analytical results of
4PAM modulation for various 𝑁 values and Rayleigh fading
channels obtained by evaluating (8), is shown in Figure 1. The
closed-form expression (8) is seen to be in good agreement
with the Monte Carlo simulation results. Equation (8) is
general and can be used for the error probability evaluation of
any Gray coded MPAM signal constellation set. As another
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𝑃𝑏 (ℎ) =𝐾𝑀

log2(𝑀)∑
𝑘=1

ℒ(𝑘,𝑀)∑
𝑖=0

𝒳 (𝑘, 𝑖,𝑀) ⋅𝑄
(√

𝑀𝛾

(
2 ⋅ ℎ ⋅ 𝒴 (𝑖) + (𝑀 − 1) ⋅ 2−𝑁+1

√
2𝑆𝑀

))
⋅
(
1 +

ℎ ⋅ 𝒴 (𝑖) ⋅ 2𝑁
𝑀 − 1

)
+

𝐾𝑀

log2(𝑀)∑
𝑘=1

ℒ(𝑘,𝑀)∑
𝑖=0

𝒳 (𝑘, 𝑖,𝑀) ⋅𝑄
(√

𝑀𝛾

(
2 ⋅ ℎ ⋅ 𝒴 (𝑖)− (𝑀 − 1) ⋅ 2−𝑁+1

√
2𝑆𝑀

))
⋅
(
1− ℎ ⋅ 𝒴 (𝑖) ⋅ 2𝑁

𝑀 − 1

)
−

𝐾𝑀

log2(𝑀)∑
𝑘=1

ℒ(𝑘,𝑀)∑
𝑖=0

𝒳 (𝑘, 𝑖,𝑀) ⋅ √𝑆𝑀
(𝑀 − 1)

√
𝑀𝜋𝛾2−𝑁+1

⋅
[
𝑒
− 𝑀𝛾

𝑆𝑀
(ℎ⋅𝒴(𝑖)+(𝑀−1)⋅2−𝑁)2 − 𝑒− 𝑀𝛾

𝑆𝑀
(ℎ⋅𝒴(𝑖)−(𝑀−1)⋅2−𝑁)2

]
. (7)
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Fig. 1. A comparison of simulation and analytic results of 4PAM for various
𝑁 values over a Rayleigh fading channel (i.e., 𝑚 = 1).

interesting application of the obtained results, the impact on
BER by changing the ADC resolution of 2PAM for different𝑚
parameters at 𝐸𝑏/𝑁0 = 10 dB is depicted in Figure 2. This can
help the system designer to quickly establish the degradation
in system performance due to limited ADC resolution for a
given channel (𝑚 parameter). For example, a maximum BER
of 10−3 at 𝐸𝑏/𝑁0 = 10 dB can be achieved with a 2 bit ADC
at 𝑚 = 7, while for a channel with 𝑚 = 5 a 3 bit ADC would
be required.

V. CONCLUSIONS

In this letter, the BER of MPAM modulation schemes in
the presence of ADC QN has been analyzed for fading and
non-fading scenarios. Closed form expressions for the BER
of Gray coded MPAM signal constellations in the presence
of AWGN, Nakagami fading and ADC QN, are presented.
These expressions are then used to investigate the system
performance. This analysis enables the system designer to
rapidly determine for example the minimum number of bits
required to achieve a desired performance in a particular
fading scenario.

1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

m

A
ve

ra
ge

 B
it 

E
rr

or
 P

ro
ba

bi
lit

y

 

 

Simu.  N=1
Anal.  N=1
Simu.  N=2
Anal.  N=2
Simu.  N=3
Anal.  N=3
Simu.  N=4
Anal.  N=4
Ideal  N → ∞

Fig. 2. BER of 2PAM as function of various 𝑁 and 𝑚 values over Nakagami-
𝑚 fading channels at 𝐸𝑏/𝑁0 = 10 dB.

ACKNOWLEDGMENTS

This work was supported by IOP GenCom under SiGi Spot
project IGC.0503.

REFERENCES

[1] J. Tubbax, B. Come, L. Van der Perre, S. Donnay, M. Engels, H. De
Man, and M. Moonen, “Compensation of IQ imbalance and phase noise
in OFDM systems,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp.
872–877, May 2005.

[2] T. Matsumoto, S. Fujita, H. Lei, M. Sim, and Y. Z. Raymond, “Panasonic
PHY and MAC proposal to IEEE802.15 TG3c CFP,” 15-07-0698-05-
003c-panasonic-ook-based-60ghz-phy-mac-proposal.pdf, July 2007. [On-
line]. Available: https://mentor.ieee.org/802.15/file/07/.

[3] A. Moschitta and D. Petri, “Wideband communication system sensitivity
to overloading quantization noise,” IEEE Trans. Instrumentation and
Measurement, vol. 52, no. 4, pp. 1302-1307, Aug. 2003.

[4] J. H. Reed, Software Radio: A Modern Approach to Radio Engineering.
Prentice Hall, 2002.

[5] K. Cho and D. Yoon, “On the general BER expression of one- and two-
dimensional amplitude modulations,” IEEE Trans. Commun., vol. 50, no.
7, pp. 1074-1080, July 2002.

[6] R. K. Bock and W. Krischer, The Data Analysis BriefBook. Berlin,
Germany: Springer-Verlag, 1998.

[7] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables, 9th ed. New York:
Dover Publications, 1970.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 12:25:39 UTC from IEEE Xplore.  Restrictions apply. 


