
H.J.A. de Krom 

 
 

 

Supplier Disruption Prediction using 
Machine Learning in Production 

Environments 

  



 

 

  



 

Supplier Disruption Prediction using 

Machine Learning in Production 

Environments 
 

By 

 

Hubertus Joannes Aimé de Krom 

 

Master Thesis  
 

in partial fulfilment of the requirements for the double degree of 

 

Master of Science in Mechanical Engineering 

at the Department Maritime and Transport Technology of Faculty Mechanical, Maritime and Materials Engineering 

of Delft University of Technology 

 

& 

 

Master of Science in Civil Engineering 

at the Department Transport & Planning of Faculty of Civil Engineering and Geosciences of Delft University of 

Technology 

 

to be defended publicly on Wednesday April 28, 2021 at 11:00 AM 

 

 

 

 

Student number:   4349784 

ME track:  Transport Engineering and Logistics (Mechanical Engineering) 

CIE track:  Transport & Planning (Civil Engineering) 

  

Report number:  2021.MME.8512 

   

Thesis committee:  Prof.dr.ir. L.A. Tavasszy   TU Delft, CiTG, Chair 

Dr. B. Wiegmans   TU Delft, CiTG 

Ir. M.B. Duinkerken  TU Delft, 3mE 

Ir. M.J.J. Hutten   Philips  

   

Date:   April 20, 2021 

 

 

 

An electronic version of this thesis is available at http://repository.tudelft.nl/. 

 
Front page: Philips collection 

 
It may only be reproduced literally and as a whole. For commercial purposes only with written authorization of Delft University of 

Technology. Requests for consult are only taken into consideration under the condition that the applicant denies all legal rights 

on liabilities concerning the contents of the advice.  

 
 

  

http://repository.tudelft.nl/


 

Page | i  
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perspective. Incorporating influences of the supply chain (design) and corresponding transport 
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sooner, different (less polluting) transportation modes might be viable increasing the sustainability or 

allowing for a redesign of the underlying transport (network).  
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Summary 
Many developments within supply chains (SCs) and supply chain management (SCM) have taken place 

in the last years leading to increasing SC size, global spread and interconnections between other SCs. 

This results in more complex, vulnerable and uncertain SC which in its turn could lead to undesired 

losses in shareholder value, sales, customer satisfaction and reputation. This increase in complexity 

and vulnerability urges an increase in monitoring of SC performance. Especially in production oriented 

SCs disruptions in the material flow could influence downstream supply chain performance and 

continuity significantly. SC integration and information transparency are often brought forward in this 

context. However, achieving such integration or transparency is limited to mainly conceptual studies 

and SC actors can be reluctant in achieving the desired transparency as it could require sharing 

sensitive company information. Therefore, this research focusses on exploring the potential of 

machine learning (ML) using a manufacturer’s point of view and data available to the manufacturer to 

assist in predicting and mitigating material-oriented supplier disruptions and therewith increase SC 

resilience.  

A novel methodology aimed to develop predicting classification models assisting on operational and 

tactical level is proposed and applied in a case study at Philips’ production facility in Best to verify the 

expected contributions. The methodology consists of six steps (see Figure i.1) incorporating a binary 

and novel multiclass classification extension while following a bottom-up approach considering 

individual suppliers and custom supplier groups rather than all suppliers combined. This reduces initial 

complexity, increases expected performance and transparency which is expected to lead to easier 

verification and acceptance of obtained results by the targeted user group (buyers).  

 
Figure i.1: Overview of steps in proposed methodology  

The steps can be summarised as follows: 

1. Data collection and exploration incorporates system analysis with data collection and focuses 

on understanding the production system, its data generation (influences), limitations and 

prediction goal. 

2. Performance and metric definition focusses on translating the prediction goal to suitable 

metrics for model performance evaluation throughout model development. 

3. During Data preparation and feature engineering, the collected data elements are 

transformed to suitable formats for machine learning algorithms, incorrect data entries or 

noise are removed, and data characteristics (features) are added using the available raw data, 

domain knowledge and experience. 

4. Supplier grouping and feature selection focusses on defining additional supplier groups using 

the individually considered suppliers. The dimension and complexity of the resulting subsets 

consisting of the individually considered suppliers and supplier groups are thereafter reduced. 

For each subset recursive feature elimination based on feature permutation importance is 

used to select the most contributing features. 

5. Data pre-processing incorporates ML-algorithm specific transformations as data scaling or 

normalisation and the possibility to apply resampling on each considered subset to reduce 

negative impacts of data imbalance on the resulting prediction performance. No sampling, 

over-sampling, under-sampling and a hybrid of over- and under-sampling are applied. 
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6. Algorithm comparison and evaluation is the final step in which algorithm parameter grids for 

five1 different machine learning algorithms are used to evaluate and compare prediction 

performances of the various algorithms for the individual suppliers and supplier groups. 

Additionally, post-processing by means of threshold tuning for binary classification is 

incorporated to shift prediction performance in the direction of the main performance metric 

at some cost of different less important metrics. 

The methodology is applied to a selection of 21 suppliers of Philips’ production facility in Best. Three 

years of historical purchase order (PO) data has been made available, containing order characteristics 

like creation-, due- and receipt date and quantity. The available data allows the focus on predicting 

delivery performance for PO deliveries, which in the case study translates to classifying whether a PO 

delivery will be delayed (binary formulation) or extremely early, early, on-time, delayed or extremely 

delayed (multiclass formulation). 

Consultation with practitioners regarding potentially valuable features based on their experience and 

domain knowledge led to the definition of three feature domains: “Order”, “Supplier-material” and 

“Dynamic ‘environment’”2. Suggested features for those domains which could be created using the 

available data were added to the dataset. Besides the 21 individual suppliers, three additional supplier 

groups (consisting of these 21 suppliers) based on supplier location (Western Europe, Rest of Europe 

and Rest of World) were manually defined to potentially discover region-related influences on delivery 

performance. For each individual supplier and supplier group feature selection has been conducted, 

leading to the identification of common important features regarding considered material, provided 

delivery time, outstanding supplier orders or quantity, previous delivery performance and the week 

and day of the week when the order is due. The recurring importance of the latter was unexpected 

and consultation with practitioners led to the idea that this indicates inefficiencies in process-related 

aspects as day-offs or delayed invoicing. This illustrates that feature selection and importance can 

assist in identifying potential root causes for inefficiencies in operations or supplier relations, 

contributing towards mitigating disruptions on a tactical level. 

After feature selection, prediction models for each individual supplier and supplier group are trained 

using a defined parameter grid for each of the selected algorithms and sampling techniques. This 

resulted in varying prediction performances reaching MCC3 scores up to 0.9, accompanied with 98% 

accuracy, 100% precision and 83% recall in the binary problem formulation. In the multiclass case lower 

performances are observed (0.75 MCC, 88% accuracy, 85% macro-precision and 80% macro-recall), 

which can be expected since the introduction of additional prediction classes increases the complexity 

of the classification task and data requirements. 

  

 
1 Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, and eXtreme Gradient Boosting 
2 “Order”: features which are characteristic for the PO record. Examples: creation- and due date.  
“Supplier-material”:  features regarding the supplier-material relation. Examples: lead time and price. 
“Dynamic ‘environment’”: features with dynamic behaviour. Examples: outstanding order quantity at the 
moment of ordering and preceding delivery performance. 
3 MCC (Matthew’s Correlation Coefficient): correlation between prediction model and data. Accuracy: 
percentage of correct classifications. Precision: percentage of predictions correctly classified as delayed. Recall: 
percentage of actual delayed deliveries correctly identified.   
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The obtained results showed varying prediction performances for individual suppliers for which no 

specific reason in the available dataset could be identified. Given the same methodology applied for 

each individual model, it is expected that the differences result from random supplier behaviour or 

additional influences as sharing demand forecasts or communication between buyers and suppliers. 

In this way, differences between supplier performance can indicate random supplier behaviour or 

suppliers who often need additional steering. Therewith, it can assist in identifying suppliers where the 

SC relation might need to be re-designed, potentially leading to tactical improvements. 

The high performing prediction models can be applied on an operational level assisting planners and 

buyers in time prioritisation, evaluating production plan feasibility, and increasing the time window in 

which mitigating measures can be applied. This can lead to less expensive mitigating measures and use 

of different transport alternatives as well. 

However, the difference in individual supplier performances limits general implementation and urges 

additional research focussing on increasing overall prediction performance in the binary and multiclass 

formulation (for the specific case of Philips’ production facility). Suggested is to initially focus on the 

differences between suppliers and their corresponding model performances by investigating internal 

differences regarding different ways-of-working and communication of buyers with suppliers. 

Thereafter, additional data collection is suggested to incorporate and account for the currently 

insufficiently accounted aspects. 

Additionally, it is suggested to apply the methodology in different production environments to verify 

its generalised formulation and expected applicability. 
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1 Introduction 
This chapter presents the purpose and general approach of the conducted research. At first, in section 

1.1, a brief introduction into the context of this research and the problem statement is given. 

Thereafter in section 1.2, this problem is rephrased into the main research question which is divided 

into four sub-questions. Section 1.3 puts this research in perspective by presenting the research 

relevance and contributions. Section 1.4 concludes the introduction by presenting the outline of the 

rest of the report. 

1.1 Research context and problem statement 
Many developments within supply chains (SC) and supply chain management (SCM) have taken place 

in the last years. Examples are the increase in data collection resulting from the fourth industrial 

revolution (Industry 4.0), the increased demand in new emerged rural areas, changing labour 

demographics and the interest in adopting the concept of circular economy into SCs and SCM (Alicke 

& Balaji, 2013; Alicke, Rachot, & Seyfert, 2016). These developments lead to an increase in SC size, 

global spread and interconnections between other SCs leading to more complex, vulnerable and 

uncertain SCs (Zhao, Ji, & Feng, 2020), which in its turn could lead to undesired losses in shareholder 

value, sales, customer satisfaction and reputation (Behzadi, O'Sullivan, Olsen, Scrimgeour, & Zhang, 

2017). 

This increase in complexity and vulnerability of supply chains, urges an increase in monitoring of supply 

chain performance throughout the entire chain to maintain healthy operations and prevent supply 

chain (actors’) degradation and losses. Especially in a production-oriented supply chain, disruptions in 

the material flow could influence downstream supply chain performance and continuity significantly. 

Terms as SC integration and information transparency are often connected to this overarching SCM 

monitoring task, since by providing information transparency between supply chain actors, this 

monitoring and additional insights could be obtained and negative impacts resulting from disruptions 

mitigated (Alicke, Azcue, & Barriball, 2020). However, achieving such integration or transparency is 

limited to mainly conceptual studies with the exception of some automotive companies (Alicke et al., 

2016). Supply chain actors can be reluctant in achieving the desired transparency as it could require 

sharing sensitive company information (Atallah, Elmongui, Deshpande, & Schwarz, 2003). 

Therefore, one could question the direct necessity of the desired full transparency within SCs given its 

complications and wonder if value could be obtained by pro-actively monitoring SC components in the 

direct area around an SC actor, as illustrated in Figure 1.1 below. Given the increased data collection 

and interactions and communication with first (and higher) tier suppliers, potentially disruptions on a 

more local SC level can be predicted and mitigated. Especially with the increasing interest in “Big Data” 

and “Machine Learning (ML)” in SCM to gain additional insights in supply chain operations to improve 

overall performance and reduce risks (Nguyen, Zhou, Spiegler, Ieromonachou, & Lin, 2018; Ni, Xiao, & 

Lim, 2020; Wang, Gunasekaran, Ngai, & Papadopoulos, 2016).  
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Figure 1.1: Focus area of (first tier) material-oriented supplier disruption. 

This concept of predicting material-related supplier disruptions using ML on a local level has been the 

topic of a few recent studies. Within these studies, binary classification problems have been 

formulated for which ML has been applied to available historical production data to predict (1) 

whether an order from a supplier is expected to be delayed (Baryannis, Dani, & Antoniou, 2019; 

Brintrup et al., 2020) or (2) whether an item is expected to go out-of-stock (De Santis, De Aguiar, & 

Goliatt, 2018; Hajek & Abedin, 2020).  

Since it is a new field considered only by a few studies, one could question if their findings can be 

generalised. In addition, the amount of research focussing on practical applications of ML in SCM is 

scarce and additional (decision supporting) practical research is necessary (Ni et al., 2020). 

1.2 Research objective 
Empirical and more advanced studies are needed to further investigate the possibilities of ML in 

predicting and mitigating risk resulting from supplier disruptions. Therefore, this research focusses on 

ML applications in material-oriented supplier disruption prediction (hereafter supplier disruption 

prediction), while relaxing the simplification towards binary classification. A generalised approach is 

proposed to explore the potential of ML in combination with commonly available data in production 

systems, which is applied to a case study involving Philips’ Magnetic Resonance (MR) and Image Guided 

Therapy (IGT) factory. The research focus is translated in the following research question: 

How can machine learning be applied to assist in the mitigation of material-oriented supplier 

disruptions in production environments? 

The assistance of mitigating material disruptions will translate into developing prediction models 

aiming to classify expected delivery performance on an operational level, while potentially also 

revealing (unexpected) underlying indicators for tactical supplier performance improvements.  

To structure and steer this research, the stated research question is divided into four sub-questions, 

which are as follows: 

1. What system and characteristics are considered when researching the possibilities of machine 

learning-based supplier disruption prediction? 

2. Which machine learning algorithms and techniques have been used in literature regarding 

supplier disruption prediction? 

3. How could machine learning be applied in predicting supplier disruptions in a general 

production environment? 

4. What level of prediction performance can be achieved in the specific case of Philips’ 

production facility? 
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1.3 Relevance of research 
The main contribution of this research is the development and application of a generalised 

methodology to apply machine learning in supplier disruption prediction. Additionally, the following 

contributions are made: 

1. This research focusses on individual suppliers and supplier groups rather than the entire 

dataset, illustrating potential implications and limitations of preceding work regarding 

interpretability and applicability. 

2. The implemented methodology is the first to consider and introduce multiclass classification 

in supplier disruption prediction. 

3. The application to a case study in addition to the scarcely available applied studies regarding 

ML-based decision support research for material management in supply chain (risk) 

management. 

4. Feature domains and suggestions are formulated which can serve as guidance for feature 

engineering in following supplier disruption prediction research. 

5. Future research directions towards increasing the general performance and applicability of the 

methodology are formulated.  

Successful creation of ML models for suppliers could increase Supply Chain Resilience by contributing 

in the ‘anticipation’/‘readiness’ and ‘resistance’/‘response’ dimensions of the Supply Chain Resilience 

Frameworks defined by Singh, Soni, and Badhotiya (2019) and Han, Chong, and Li (2020). High 

performing prediction models could assist to detect potential disruptions sooner (visibility), resulting 

in more time to mitigate the disruption or its negative effects (flexibility). Additionally, more structural 

causes for disruptions might be (indirectly) brought forward (awareness), which can reduce the 

possibility for disruptions to occur. The increase in visibility and awareness contributes towards the 

first dimension ‘anticipation’/‘readiness’, whereas the increase in flexibility assists in the second 

dimension ‘resistance’/‘response’ dimension. 

From an economic perspective, these contributions are valuable for manufacturers, since the amount 

of expensive last-minute mitigation measures will be reduced, and production continuity can be better 

maintained. Simultaneously, customer experience could improve. From an environmental perspective, 

less express services (as air transport) might be needed, opening the possibility to use (slower) less 

polluting transportation modes. 

1.4 Outline 
In chapter 2, a generalised production system is sketched which incorporates the scope of the 

indicated area in Figure 1.1. Chapter 3 reviews which ML algorithms and techniques have been used 

in previous research. This aids the development of a generalised ML approach for disruption prediction 

in chapter 4. Chapter 5 presents the application of the approach including its results in a case study 

regarding Philips’ production facility. Chapter 6 concludes this report by stating the findings and 

recommendations.  
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2 Production environments for supplier disruption prediction 
For production, its planning and fulfilment different systems and actors interact. Figure 2.1 depicts a 

production chain on an operational level from suppliers till order fulfilment including important 

interactions between actors. This depicted chain will serve as basic system for this research. Within 

the figure, the left side represents the material demand in the chain, where the right side represents 

material supply. The physical and information flows within the production chain will be discussed in 

section 2.1. Section 2.2 describes the storage of data from the manufacturer’s perspective and dwells 

on its availability. 

 
Figure 2.1: Schematic representation of physical and information flows in a production chain. 

2.1 Physical and information flows 
In Figure 2.1 the flow of physical goods is visualised by the large grey arrows. The physical flow 

originates from a supplier from which the material is transported by a logistic partner to the warehouse 

of the manufacturer. Depending on the requirements, different transport modalities could be selected 

and combined. Once delivered to the warehouse, the material is stored until it is needed on the 

production floor. Intra-facility transport delivers the material to the production floor and once the 

material is processed and the final product is manufactured, the final product is transported to the 

customer. Again, this transportation can be fulfilled by different or combined transport modalities. 

The initiation and fulfilment of this physical flow is accompanied by various information flows, of which 

the most relevant are depicted in Figure 2.1 by solid lines. The customer creates a demand for a 

product for which an order is created and placed. This product order is processed and its fulfilment 

feasibility is determined based on the currently available production plan and material availability. 

When expected that the order can be fulfilled, the order is accepted and status updates can be 

communicated to the customer over time.  
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The acceptance of the order leads to a change in material demand, which is held against current 

inventory levels and incoming material flows. In case the changed demand would exceed inventory, 

purchase orders (POs) are created by buyers and sent to suppliers. PO acceptance or rejection is 

returned, such that the incoming material flows can be updated.  

Depending on the supplier and its contract, the supplier or the buyer arrange transport between the 

supplier and the warehouse by hiring a logistic partner. Once the material is produced, the logistic 

partner collects and fulfils transport to the desired warehouse, whereafter the inventory levels are 

updated when the material is received and processed. After processing, the created PO is marked as 

complete. 

Based on the production plan and current deviations from the plan, the completed production time 

can be estimated such that transport towards the customer can be arranged. By contacting a logistic 

partner, the products ordered by the customer can be transported once produced, closing the 

production chain. 

2.2 Data storage and availability 
In production environments, material management often uses a material requirements planning 

(MRP) framework to monitor and maintain material availability such that production plans can be 

successfully executed (Sridharan & La Forge, 2000). By projecting (expected) material demand onto 

current and incoming material flows using static data as lead times, shortages are identified which 

buyers can prevent or act upon by amongst others creating POs for suppliers and registering them in 

the MRP system.  

Since the creation and fulfilment of material demand of suppliers is stored in an MRP system, the basic 

relation and behaviour of suppliers with respect to the manufacturer is present. Therefore, an MRP 

system serves as basis for supplier disruption prediction. Conceptually, any production environment 

working with a structured MRP system storing historical PO data should be eligible to explore the 

potential of ML in supplier disruption prediction, provided that the stored data is of sufficient quality 

and quantity for the specific prediction target. 

Additionally, demand forecasts and inventory levels could be relevant for predicting supplier 

disruptions and material availability. Especially when this type of information is shared with suppliers 

and therefore could influence their behaviour and performance. Depending on the size and 

organisational structure of a manufacturer, the systems used to communicate and potentially store 

this information can significantly differ. These systems can range from locally and temporarily storing 

systems to collecting on a higher global level by means of an overarching Enterprise Resource Planning 

(ERP) system, which is an extension of the previously mentioned MRP framework ("Enterprise 

Resource Planning (ERP)," 2000). Depending on the availability, quantity and quality of these types of 

data in a production environment, the scope and coverage of dependencies and influences in supplier 

disruption prediction can be broadened or shifted.  
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2.3 Concluding system characteristics 
When focussing on supplier disruption prediction and necessary system characteristics, production 

systems as depicted in Figure 2.1 in which material supply is initiated, monitored and stored in the 

manufacturer’s material requirements planning (MRP) system seem sufficient. Within the MRP 

system, historical created purchase orders (POs) can be used as a source containing supplier behaviour. 

Disadvantages of POs alone could be the limited visibility on internal and external influences on the 

supplier relation and behaviour. Therefore, incorporating additional data or databases containing for 

example shared information or communication with suppliers between ordering and fulfilment could 

reduce potential noise on supplier behaviour and improve prediction performance or broaden the 

scope for supplier disruption prediction. 
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3 Machine learning in supplier disruption prediction: model 

development and algorithms 
This chapter presents results of the literature review focussing on applied machine learning (ML) 

algorithms and techniques for supplier disruption prediction in systems and environments as described 

in the previous chapter. It serves as a basis for choices being made in the methodology development 

as is described in the next chapter.  

The Scopus database was consulted to explore terminology and led to the definition of the following 

3 search term groups:  

1. “supply chain”, “logistics”; 

2. “disruption”, “deficiency”, “lead time”, “resilience”, “backorder”, “stock out”; 

3. “machine learning” or “big data”. 

Terms from all groups were used in different combinations to find publications. The complete search 

resulted in 269 results covering multiple research fields due to the disjunctive inclusion of “supply 

chain” AND logistics. Excluding publications not covering supply chain activities or ML applications, 

resulting in 64 remaining publications.  

Systematically examining those illustrated the main focus of ML applications on prediction 

(improvements) on the demand side of production and supply chains, including incorporating different 

data sources or influences as weather. Non-ML applications often consider time-series or simulation 

for risk prediction or evaluation, as identified by M. He, Ji, Wang, Ren, and Lougee (2015) and 

Fagundes, Teles, Vieira de Melo, and Freires (2020). However, this research focuses on the potential 

of ML in material-oriented supplier disruptions, leading to a limited selection of four publications in 

the last three years. These four are used as basis for this chapter and are presented in Table 3.1 below. 

The publication dates and the small number of publications illustrates the novelty of this ML-based 

(applicational) research field. 

Table 3.1: Selection of publications focusing on ML applications in material-oriented supplier disruptions. 

Author + Reference Title 

De Santis et al. (2018) 
Predicting material backorders in inventory management using 

machine learning 

Baryannis et al. (2019) 
Predicting supply chain risks using machine learning:  

The trade-off between performance and interpretability 

Brintrup et al. (2020) 
Supply chain data analytics for predicting supplier disruptions:  

a case study in complex asset manufacturing 

Hajek and Abedin (2020) 
A Profit Function-Maximizing Inventory Backorder Prediction 

System Using Big Data Analytics 

 

Baryannis et al. (2019) and Brintrup et al. (2020) focus on predicting whether a supplier will deliver on 

time or not by formulating a binary classification problem and purely use historical POs from a 

manufacturer’s MRP system. De Santis et al. (2018) and Hajek and Abedin (2020) focus whether a 

material will go on backorder by formulating a binary classification problem as well. However, they 

considered the same dataset from a Kaggle’s competition (Kaggle Inc., 2021), which incorporated 

historical demand forecasts, sales data, inventory levels, material characteristics and whether or not 

the material went on backorder, which required the loosening of the detail on PO level and enabling 

the broadening of the scope towards inventory levels. 
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The remainder of the chapter is structured as presented in Figure 3.1 below, which depicts a 

generalised methodology structure based on observations in supplier disruption prediction literature, 

complemented with applied algorithms and techniques. 

 

Figure 3.1: Generalised methodology components including observed techniques and algorithms in supplier disruption 
prediction literature. 

3.1 Data collection and exploration 
Data collection and exploration is often barely addressed in scientific literature, while one could argue 

it might be the most important phase of the entire model development. All stages of an ML model are 

based on the data that is being presented to it and if there is any misunderstanding or incorrect ‘usage’, 

the performance could be severely influenced. Within this phase, it is important to understand the 

system behind the data, therefore knowing how the data is being generated, how it could be 

influenced, what irregular values are and so on. Using simple visualisations and conducting regular 

meetings with field experts could assist in acquiring such understanding and assessing the quality of 

data available. 

3.2 Performance and metric definition 
Performance and metric definition are influenced by the goal of the model and its target values. It is 

necessary to define suitable performance metrics beforehand since ML algorithms use these metrics 

to iteratively evaluate their learning performance. Therefore, unsuitable metrics could push the ML 

algorithm in the wrong direction (Baryannis et al., 2019).  

  



 

Page | 9  

Commonly used classification metrics are based on elements of a confusion matrix. A confusion matrix 

is “a two-dimensional matrix indexed in one dimension by the true class of an object and in the other 

by the class that the classifier assigns.” (Ting, 2010). An example of a confusion matrix for a binary 

classifier is presented in Table 3.2 below. In the example table, the correctly predicted values are on 

the main diagonal (top left to bottom right) since the actual class and the predicted class are equal. 

These cells are called true positive (TP) and true negative (TN) respectively. The other diagonal 

presents falsely predicted classes, which are like type 1 (false positive; FP) and type 2 (false negative; 

FN) errors in statistics. In case of binary supplier disruption prediction, positive and negative could 

correspond to ‘delayed’ and ‘on-time’. 

Table 3.2: Example confusion matrix for a binary classification problem. 

 Predicted Class 

P (positive) N (negative) 

Actual class 
P (positive) TP (10) FN (3) 

N (negative) FP (2) TN (11) 

 

Different numerical metrics are defined based on combinations and ratios of TP, TN, FP and FN. The 
most common and simple formula-based metrics generally observed and applied in literature are 
presented in Table 3.3 below, in which the main interpretation is presented as well. 

Table 3.3: Common numerical (performance) metrics. 

Metric Definition Interpretation 

Accuracy 
TP + TN

TP + TN + FP + FN
 

Fraction of the correctly classified 

values over the complete set 

Precision 

Positive Predictive Value 

(PPV) 

TP

TP + FP
 

Fraction of the correctly classified 

positive values in the positive class  

Negative Predictive Value 

(NPV) 

TN

TN + FN
 

Fraction of the correctly classified 

negative values in the negative class 

Specificity 

True negative rate (TNR) 

TN

TN + FP
 

Fraction of negative samples 

correctly classified 

Recall 

Sensitivity 

True positive rate (TPR) 

TP

TP + FN
 

Fraction of positive samples correctly 

classified 

Geometric mean of true rates 

(GM) 
√

TP

TP + FN
∗

TN

TN + FP
 

Geometric mean of sensitivity and 

specificity 

F-Score 
(β2 + 1) ∗ PPV ∗ TPR

β2 ∗ PPV + TPR
 

Weighted (β) mean of precision and 

sensitivity. 

Special case: β = 1, since it results in 

the harmonic mean. 

Matthews Correlation 

Coefficient (MCC) 

TP ∗ TN − FP ∗ FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

Correlation coefficient between 

prediction and samples 
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Besides numerical metrics, graphical-based metrics are often used: Area under the Receiving Operator 

Characteristic-curve (AUC) and Precision-Recall curves (PRC). As the name suggests, the AUC uses a 

Receiving Operator Characteristic-curve (ROC), which is the line representation of sensitivity as a 

function of (1 – specificity). The ROC visualises the probability curve of obtaining correct positive 

predictions (benefits) over false positive predictions (costs). The AUC metric therefore varies between 

0 (complete inverse classification) and 1 (completely correct classification), with 0.5 presenting the 

worst performance, since no specific distinction is observed. The PRC is similar to the ROC-curve. 

However, PRCs show the relation between the correctness of the predicted values versus the amount 

of relevant positive predictions returned instead.  

In presence of an imbalanced dataset, in which the different classes are not equally present, the 

definition and choices for metrics become more important. General metrics as accuracy become less 

relevant and metrics specific for the target prediction value are preferred. Combined metrics, such as 

the GM and F1-score might become less suitable as well since comparison of different performances 

becomes more difficult due to the combined weighted definitions. Metrics as precision and recall are 

more suitable in the field of supplier disruption prediction since the target value is the positive 

(minority) class. This is observed in the selected publications, where De Santis et al. (2018), Baryannis 

et al. (2019) and Brintrup et al. (2020) all used precision- and recall-based metrics. De Santis et al. 

(2018) explicitly used precision and recall, while Baryannis et al. (2019) opted for implicit use in the F1 

score and MCC, due to the prioritisation of positive or negative predictions. Brintrup et al. (2020) 

combined explicit use of precision and recall with implicit use in the F1, F0.5 and F2 scores since they 

placed the importance of false negative classification over false positive classification. 

Noticeable in the work of Hajek and Abedin (2020) is the choice for following previous research and 

using the AUC over the Precision-Recall curve. Especially in the case of imbalanced datasets, the use 

of the Precision-Recall curve is more suitable since the minority (positive) class is explicitly accounted 

for and not weighted with the majority (negative) class. However, they used a different method to 

define performance and tackle class imbalance by using a cost-sensitive approach and defining a cost 

for each misclassification (FP and FN). Originally a misclassification cost should be defined for every 

material in the dataset, but for simplicity misclassification costs were extended to all the different 

materials. The performance of different models can thereafter also be based on the differences in final 

cost values.  

Recent research conducted by Chicco and Jurman (2020) concluded that in general the use of 

Matthews Correlation Coefficient (MCC) should be preferred over the use of the F1-score in imbalanced 

binary classification problems due to the intuitive- and straightforwardness. A high quality MCC score 

requires correct predictions in the majority of both classes (positive and negative), independent of the 

initial class distribution. Together with the Precision-Recall curve, one might therefore conclude that 

these metrics might be more suitable in general for imbalanced classification problems. However, 

specific applications or case-based priorities may result in different choices as is observed in the 

research by Brintrup et al. (2020). 
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3.3 Data preparation: pre-processing, feature engineering and selection 
Using input of domain experts, knowledge about the considered data, the prediction goal and selected 

metrics, data can be pre-processed and potentially relevant features (individual measurable properties 

or characteristics of a phenomenon being observed (Bishop, 2006)) can be proposed (‘feature 

engineering’). By eliminating features not significantly contributing to the prediction performance of 

the developed model, the complexity and data needs decrease while potentially increasing its 

interpretability and maintaining similar levels of performance.  

In sub-section 3.3.1 observed and mentioned data (pre-)processing steps and techniques are 

presented. Thereafter, feature engineering and selection is addressed in sub-section 3.3.2, in which 

engineered features and observed selection methods are presented. 

3.3.1 Data preparation and pre-processing 
Datasets involving disruptions in production systems or healthy supply chains are often imbalanced 

(Brintrup et al., 2020). This imbalance could reduce the prediction performance which can be mitigated 

resampling (external), algorithm modification (internal) and cost-sensitive learning (combination). The 

following paragraphs focus on the resampling techniques as applied in the selected publications. A 

general advantage of resampling over the other techniques, is the possibility to incorporate it with any 

desired classifying algorithm afterwards (De Santis et al., 2018). Three categories of sampling will be 

covered: ‘over-sampling’, ‘under-sampling’ and ‘hybrid sampling methods’. Table 3.4 presents an 

overview of the observed resampling techniques, including their stated positive and negative aspects. 

Algorithm modification and cost-sensitive learning are omitted in this review since they often result in 

case-specific alterations. 

3.3.1.1 Over-sampling algorithms and techniques 

Over-sampling categorises techniques creating (synthetic) instances of the minority class. The simplest 

over-sampling technique is random over-sampling (ROS). It randomly selects an instance from the 

minority class, which will be duplicated. However, the duplication of existing instances increases the 

likelihood of overfitting (“describing features that arise from noise or variance in data rather than the 

underlying distribution” (Webb, 2010)). Therefore, different techniques are often preferred and 

commonly applied.  

Synthetic Minority Oversampling Technique (SMOTE) creates synthetic minority class instances, by 

(random) interpolating minority class instances that are closely located to each other. De Santis et al. 

(2018), Baryannis et al. (2019) and Hajek and Abedin (2020) all reported the use of SMOTE in their 

work. SMOTE uses the k-Nearest Neighbours (kNN) algorithm to find closely related instances, 

whereafter the set amount of over-sampling determines how many instances are synthetically created 

(Chawla, Bowyer, Hall, & Kegelmeyer, 2002). By creating random interpolated instances, the problem 

of overfitting is less present while simultaneously the decision boundaries of the minority class are 

spread further in the majority class space (Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2012). 

However, the latter could potentially result in increased overlapping between classes (López, 

Fernández, García, Palade, & Herrera, 2013) and overgeneralisation (Hajek & Abedin, 2020; Weiss, 

McCarthy, & Zabar, 2007). 

ADAptive SYNthetic (ADASYN) sampling, as also briefly stated and investigated by Baryannis et al. 

(2019), adds an additional small random component to newly created minority class instances, tending 

to slightly better represent real-world examples with respect to SMOTE (H. He, Bai, Garcia, & Li, 2008).  
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3.3.1.2 Under-sampling algorithms and techniques 

Under-sampling categorises techniques reducing the number of instances in the majority class, to 

match the number of instances in the minority class better. The simplest form of under-sampling is 

random under-sampling (RUS), where random instances from the majority class are removed in the 

training dataset, leading to potentially discarding valuable information. 

Another under-sampling approach is cluster-based under-sampling (CBUS). CBUS applies a clustering 

algorithm, often k-means clustering due to its linear complexity (Ofek, Rokach, Stern, & Shabtai, 2017), 

to identify centroids of clusters in the majority class. By selecting the centroid as a replacement 

instance for the entire cluster of neighbours, the amount of majority class instances will be reduced in 

the training set. This specific type for CBUS is also referred to as cluster centroid under-sampling, as 

applied in Baryannis et al. (2019). Another possibility is to select the closest instance with respect to 

the cluster centroid instead of the centroid itself in the majority class, keeping an actual instance 

instead of a synthetic one. This specific variant is applied by Hajek and Abedin (2020). They selected 

the CBUS algorithm to overcome the problem of the trade-off between prediction performance and 

complexity, based on earlier studies. The advantage of their applied CBUS variant is that actual 

instances remain, therewith keeping actual information instead of using synthetically created 

instances. An advantage of CBUS over random under-sampling is the reduced likelihood of discarding 

valuable data, since the clusters formed in CBUS have similar data characteristics. Therefore, removing 

instances from such clusters has less impact on the entire dataset’s characteristics with respect to 

random under-sampling (Lin, Tsai, Hu, & Jhang, 2017; Ofek et al., 2017). Disadvantages of the CBUS 

technique have not explicitly been stated in the covered research, besides the shared notion that it 

still can be undesired to discard any data instances nonetheless. 

Tomek link (TL) removal is also an under-sample technique. A Tomek link is a pair of instances from 

different classes which are their closest neighbour. In case of under-sampling using TL, the instance 

from the link which is part of the majority class is removed. In the application of data cleaning (full 

Tomek link removal), both instances from the link will be removed. By removing the majority instance 

and keeping the minority instance, the distinction between both classes can become more explicit, 

increasing the potential performance of different ML classifier models especially focussing on the 

minority class (López et al., 2013). However, depending on the distribution of classes in the obtained 

dataset, Tomek link removal can have insignificant impact in the increase of classifier performances. 

As an example, if minority class instances are heavily enclosed by majority class instances, the removal 

of some majority class instances will still result in the dominant representation of the majority class 

over the minority class. 

3.3.1.3 Hybrid sampling algorithms and techniques 

To overcome the potential insignificant impact of TL removal, it is often combined with other resample 

techniques, resulting in a ‘hybrid’ techni ue. A common combination is the together with SMOTE, as 

tried by Baryannis et al. (2019). SMOTE is used to create additional samples of the minority class, 

whereafter full Tomek link removal is used to reduce overfitting potential and enhance distinction 

between class clusters (reduce class overlapping) (Batista, Prati, & Monard, 2004; Devi, Biswas, & 

Purkayastha, 2019). 
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Table 3.4: Resampling techniques applied in supplier disruption prediction literature, complemented with positive and 
negative characteristics. 

Type Technique Positive Negative 

Over-sampling 

Random over-sampling - Simple technique 
- Increase likelihood of 

overfitting 

Synthetic Minority 

Oversampling 

TEchnique (SMOTE) 

- Reduced likelihood of 

overfitting with respect to 

random over-sampling 

- Spread decision boundaries of 

minority class further in 

majority class space  

- Potential increase of 

overlapping between classes 

ADAptive SYNthetic 

(ADASYN) 

- Same positives as SMOTE 

- Slightly more realistic due to 

minor additional random 

component  

- Potential increase of 

overlapping between classes 

Under-

sampling 

Random under-

sampling 
- Simple technique 

- Potential to discard valuable 

data 

Cluster-based under-

sampling (CBUS) 

- Less potential to discard 

valuable data with respect to 

random under-sampling 

- - 

Tomek Link (TL) under-

sampling 

- Enhances distinction of decision 

boundaries between classes 

- Suitable to remove noise in the 

dataset 

- Performance improvement can 

be negligible if minority 

instances are heavily enclosed 

by majority instances 

Hybrids SMOTE + Tomek 

- Reduce potential of overfitting 

with respect to SMOTE alone 

- Enhances distinction between 

class clusters 

- - 

 

3.3.2 Feature engineering and selection 
Feature engineering is the process of enriching available data by combining existing features or data 

characteristics in a suitable way given the applicational field and/or by complementing the data using 

different data sources. It is highly dependent on the dataset and the prediction goal and requires 

domain knowledge to effectively combine existing features (Baryannis et al., 2019). Therefore, it is 

difficult to identify or define a common approach for feature engineering. 

Baryannis et al. (2019) applied feature engineering by mainly focussing on splitting dates into different 

categories as day, week, season and taking differences between dates. Brintrup et al. (2020) focussed 

more on applicational specific features after consultation with domain experts resulting in features as 

‘average number of orders’, ‘average monthly book size’ and their own defined ‘agility’ feature, 

covering “the capability of suppliers to handle the highest monthly order variations as a proxy of 

supplier’s flexibility”. Their definition of ‘agility’ is according to e uation (1) below, in which 𝐴𝑠 is the 

agility score, 𝑝 the set of products offered by the supplier, 𝑡 the index for orders and 𝑤 the order date 

(Brintrup et al., 2020). The final applied agility score is normalised by the maximum agility score of all 

suppliers 𝐴𝑚𝑎𝑥, as given in equation (2). Brintrup et al. (2020) classify the agility-feature as a ‘dynamic 

feature’, since the agility score of a supplier might change over time as its ability to handle order 

variations might change.  

Within the research from Baryannis et al. (2019), feature engineering did not significantly improved 

prediction performance, while the agility feature from Brintrup et al. (2020) contributed to a 

performance increase. 
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0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

   

 As
′ =

As

Amax
 (2) 

According to H. Liu (2010), “Feature selection is the study of algorithms for reducing dimensionality of 

data to improve ML performance.” By applying feature selection techniques, the performance of the 

ML algorithm is ‘optimised’ and the outcome can become better interpretable (Kotu & Deshpande, 

2015). Feature selection can also positively contribute towards tackling the curse of dimensionality 

and overfitting (Baryannis et al., 2019; Brintrup et al., 2020). The number of features (and therewith 

dimensions) of a dataset can be reduced in roughly two ways, by filtering (feature ranking) or by 

wrapping (subset selection).  

Filtering can be partially manually done based on domain knowledge by omitting redundant features 

(such as order ID’s). Additionally, features can be filtered by applying techniques to rank relevance of 

features under consideration. In case of numerical data, Principal Component Analysis (PCA) can be 

applied. Chi-squared-based filtering can be applied on categorical data (Kotu & Deshpande, 2015). 

Baryannis et al. (2019) stated the use of various feature selection techniques by feature ranking based 

on the chi-squared test and the ANOVA F-value, which are all methods easily accessible and 

implemented in the scikit-learn library (Pedregosa et al., 2011). For additional information regarding 

PCA and chi-squared-based filtering, the author refers to Kotu and Deshpande (2015). Brintrup et al. 

(2020) mentioned the use of feature selection but did not explicitly stated which techniques were 

applied. Similar to feature engineering, De Santis et al. (2018) and Hajek and Abedin (2020) did not 

mention feature selection, potentially due to their usage of a dataset from Kaggle’s competition “Can 

you Predict Product Backorders?”. Therefore, there is no presence of a manufacturing party with 

specific domain knowledge, indicating that domain knowledge is indeed required for meaningful 

feature engineering and selection. 

Wrapping or subset selection is the second class of feature selection algorithms. Wrapping requires a 

learning algorithm, which iteratively selects or keeps attributes positively contributing the most 

towards the performance of the learning algorithm, expressed by the metrics selected before. 

Different learning algorithms could respond differently on the in- or exclusion of features and result in 

(slightly) different selections. 

Examples of wrapping techniques are recursive feature elimination and feature selection using 

ensembles (e.g., Extra-Trees algorithm), which are both used by Baryannis et al. (2019). However, they 

did not state which classifier or specific parameters they used for the recursive feature elimination and 

other applied techniques. 

Recursive feature elimination considers all features at first, whereafter each iteration the least 

contributing feature is removed, until the required number of features is obtained, or no significant 

improvement is achieved. 

Forward feature selection is the opposite approach, where the most contributing single feature is used 

to start the search, whereafter each iteration the most contributing feature is added to the base set of 

features until the set maximum number of features is obtained or all features are selected. 

Exhaustive search considers all possible combinations of features, which are all evaluated and used to 

select the most suitable configuration. However, this approach is very computational expensive and 

therefore often not applied. 
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3.4 Algorithm comparison 
After feature engineering and selection, the selection for a suitable ML algorithm needs to take place. 

In general, it is not easy to select a specific algorithm which will perform best in advance. Therefore, 

often several ML algorithms are applied (and partially finetuned) to explore several algorithm’s 

performances. Depending on the defined performance metrics and model goal, the best performing 

algorithm is selected. This indicates the need for research focussing on quicker identification of 

potential algorithms, such that more time can be allocated to increasing model performance rather 

than exploring different algorithms. 

An overview of algorithms applied in supplier disruption prediction literature including positive and 

negative attributes is presented in Table 3.5 below. The algorithms are briefly addressed in the 

following paragraphs. 

Table 3.5: Machine learning algorithms applied in supplier disruption prediction, complemented with positive and negative 
characteristics. 

Algorithm Positive Negative 

Logistic Regression 

(LR) 

- Simple approach 

- Feature scaling not required 
- Generally poor performance 

Decision Tree (DT) 

- High interpretability 

- Feature normalisation or scaling not 

necessary 

- ‘Automatic’ feature selection 

- Prone for overfitting 

Random Forest (RF) 

- Can converge to small generalisation error 

with Bagging 

- Good performance on imbalanced datasets 

- Suitable for feature selection  

- Sensitive to features with different values 

- Difficult to interpret 

Support Vector 

Machine (SVM) 

- Performs well on high dimensional data 

- Highly suitable for separated classes in the 

dataset 

- Requires problem transformation to one-

vs-one or one-vs-rest classifier in case of 

multiclass classification 

- Sensitive to parameter settings 

- Data must be scaled 

k-Nearest Neighbours 

(kNN) 

- Low complexity 

- Simple for (non-linear) classification 

- Suitable for multiclass problems 

- Difficulty for successful application with 

(large) unbalanced datasets 

- Data must be scaled 

- Sensitive to data or objective changes 

Neural Network (NN) 

- Strong self-study ability 

- Strong ability to fit nonlinear relations 

- Possibility to extend to higher dimensions 

with additional features 

- Sensitive to parameter settings (e.g., 

network topology) 

- Difficult to interpret and explain 

- Data must be scaled 

Ensemble algorithms 

(ESM; e.g., XGBoost  

and EasyEnsemble) 

- Good for assembling advantages of 

different methods while reducing negative 

characteristics 

- Dependent on the underlying classifier 

- Can become difficult to interpret 

- Potentially more parameter to set (and 

tune) to obtain best performance 

 

De Santis et al. (2018), Brintrup et al. (2020) and Hajek and Abedin (2020) investigated Logistic 

Regression (LR) as a potential method for predicting delayed supplier deliveries. Due to simplicity, LR 

is used to create a benchmark regarding model performance. In almost all of their conducted 

experiments, the different applied algorithms resulted in higher model prediction performance. 
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Decision Trees (DT) as classifier is applied by Baryannis et al. (2019) and Hajek and Abedin (2020). Due 

to the high interpretability of DTs, Baryannis et al. (2019) investigated the performance and concluded 

that the performance of interpretable DTs (maximum depth of 6 with maximum 13 leaf nodes) was 

similar to the performance of the ‘less-interpretable’ Support Vector Machine (SVM). The results from 

Hajek and Abedin (2020) showed a better performance of DTs with respect to their SVM model. De 

Santis et al. (2018) reported using exhaustive grid search to optimise the parameter settings of their 

algorithms. 

Random Forest (RF) is a form of an ensemble learning algorithm that combines different DTs, trained 

on different subsets of the available dataset. Due to the combination of the different DTs the 

performance is expected to increase when the dataset could result in instable DTs. The combination 

reduces this instability, leading to better results with less variance. However, since the combination of 

trees is present, the classifier becomes less interpretable with respect to the DT-algorithm. De Santis 

et al. (2018), Brintrup et al. (2020) and Hajek and Abedin (2020) applied RF and concluded that in their 

case RF performed well, or even the best with respect to the algorithms considered.  

Support Vector Machines (SVM) were applied by Baryannis et al. (2019), Brintrup et al. (2020) and 

Hajek and Abedin (2020), based on the SVM performance in previous research. SVM tries to identify a 

hyperplane, which creates a boundary between two classes. Based on this boundary new instances are 

classified. Due to this behaviour, applying SVM for multiclass classification would require the use of 

one-vs-one or one-vs-all classification. In one-vs-one classification, the multiclass problem is split in 

several binary problems where classification between each class pair is considered. In one-vs-all 

classification, the multiclass problem translates to several binary problems predicting whether the data 

entry belongs to the considered class or one of the rest. SVM applied in the basic articles performed 

in general well but was not the most suitable algorithm for the specific cases. Baryannis et al. (2019) 

reported the use of exhaustive grid search for parameter tuning for the SVM algorithm. 

K-Nearest Neighbours (KNN) as classifier works similar with respect to the generally known KNN 

algorithm, in which new instances are assigned to the highest observed class within the k number of 

nearest neighbours. KNN is considered as classifier by Brintrup et al. (2020) and Hajek and Abedin 

(2020). However, the KNN prediction performance was not the best or the worst within all considered 

algorithms. 

A (Multi-Layer) Neural Network (NN) is only considered by Hajek and Abedin (2020), potentially due to 

the complexity of creating and understanding NN’s with respect to the previous algorithms. The NN 

model created by Hajek and Abedin (2020) performed worst from all considered algorithms. However, 

nothing has been reported regarding model parameters, indicating that hyperparameter optimisation 

could improve performance. They concluded that under-sampling in their case worsens the 

performance of the NN-based model. 

Ensemble Learners (ESM) is a specific type of ML algorithms. According to Galar et al. (2012), the 

objective of ensemble learners is “to try to improve the performance of single classifiers by inducing 

several classifiers and combining them to obtain a new classifier that outperforms every one of them.” 

Due to this combination of different classifiers, the generalisation ability of the ensemble increases. 

Within ESM, different classes can be identified: Bagging, Boosting and Hybrids.  

Bagging (or bootstrap aggregating) creates bootstrapped replicates of the training set, which are used 

to train individual classifiers in parallel (Galar et al., 2012). Thereafter, the individual classifiers are 

combined leading to the ensemble. The main focus of bagging is to reduce the variance of the classifier. 

A well-known example is the RF algorithm mentioned before. Brintrup et al. (2020) used the bagging 

principle with all algorithms they considered.   
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Boosting is a class in which different individual classifiers are not created in parallel, but sequentially. 

Individual classifiers are iteratively trained, where information is passed on through the iterations. 

Therewith, boosting mainly focusses on reducing bias in the ensemble classifier (Galar et al., 2012). 

Like bagging, different specific methods are applied and proposed in literature. De Santis et al. (2018) 

applied Gradient Boosting in their research and concluded that ensemble learners improved prediction 

performance. A similar conclusion is stated by Hajek and Abedin (2020), who used eXtreme Gradient 

Boosting (XGB), which is often applied in practical applications. 

Hybrid ensembles combine bagging as well as boosting techniques. An example applied by De Santis 

et al. (2018) and Hajek and Abedin (2020) is EasyEnsemble (EE). Both stated that this method 

performed well or even better than most of their investigated algorithms. Additional information 

regarding the EasyEnsemble algorithm can be found in the research from X. Y. Liu, Wu, and Zhou 

(2009).  

3.5 Conclusion literature review 
When focussing on applicational studies regarding ML-based supplier disruption prediction, only 

recently a few studies have been conducted. More researched areas focus on applying ML in the 

demand side of the supply or production chains or use older techniques as time-series analysis and 

simulation. Within the studies focussing on supplier disruption prediction, the main problem 

formulations are simplified to binary classification problems and addressed using similar 

methodologies. These methodologies are generalised in this chapter to five components: “Data 

collection and exploration”, “Performance and metric definition”, “Data preparation and pre-

processing”, “Feature engineering and selection” and “Algorithm comparison”. While each component 

has a specific goal and contribution, different choices can be made and different algorithms and 

techniques can be applied, as depicted in Figure 3.1. These possibilities have been described in this 

chapter and summarised including positive and negative characteristics in the tables 3.3, 3.4 and 3.5 

regarding (performance) metrics, sampling and machine learning algorithms respectively.  

Additionally, it was found that the presence of a (manufacturing) party with specific domain knowledge 

is necessary for meaningful feature engineering and selection. Additional research is needed focussing 

on the quicker identification of potential algorithms such that more time can be allocated to increasing 

model performance rather than exploring different algorithms. 

The generalisation of the methodologies, the positive and negative aspects and the characteristics 

derived in chapter 2 will be used for the development of the methodology for the application in 

production environments as will be defined in the next chapter.   
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4 Model development approach for supplier disruption prediction 
This chapter describes the novel methodology proposed in this research to initiate and explore the 

potential of ML in material-oriented supplier disruptions in production environments. An overview of 

the steps in the methodology including different algorithms and techniques are depicted in Figure 4.1 

below. The methodology is suitable for the unexplored extension towards multiclass classification and 

includes the possibility to incorporate newly developed algorithms or techniques. 

In the proposed methodology the possibility to consider and compare individual suppliers and custom 

supplier groups is incorporated, which has, to the best of the author’s knowledge, not been applied in 

supplier disruption prediction literature before. Expected is that a better understanding and practical 

use result from including supplier groups, since the complexity is initially reduced and extracted 

supplier specific behaviour could be verified easier and accepted by buyers. This could potentially lead 

to a higher acceptance and adoption of ML techniques in production environments. 

Additionally, the application of threshold tuning combined with non-cost sensitive learning algorithms 

in supplier disruption prediction has not been observed before, which is expected to be valuable, since 

it incorporates another possibility to focus model performance on case specific targets without 

structurally altering trained models. 

 
Figure 4.1: Overview of steps in proposed methodology including techniques and algorithms. Indicated in green: existing 
techniques newly applied in supplier disruption prediction and additions to different steps with respect to literature, besides 
the incorporation of multiclass classification and the formulation of the generalised methodology.  
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4.1 Data collection and exploration 
The goal of this step is to obtain a comprehensive understanding of the considered production system. 

In different production systems similar information regarding material management is being used. 

However, specific aspects of operations, data creation, data storage, data influences et cetera could 

change approaches or usage of the data in the subsequent steps in the methodology. Therefore, it is 

important to keep in close contact with domain experts and practitioners in the considered system to 

acquire the necessary insights and understanding.  

These insights can be used to determine relevant data aspects with respect to the specific prediction 

goal. Given the ease of access or collection of these desired data elements, a data collection project 

could be initiated before following the rest of the methodology. Otherwise, the methodology can be 

followed using the already available data (provided that historical POs are included). However, for the 

latter it is important to have a clear understanding of the resulting limitations and underlying 

assumptions. 

4.2 Performance and metric definition 
Supplier disruption prediction literature using ML focusses on binary classification problem definitions. 

A new addition in the proposed methodology is the exploration of the possibilities and value of 

multiclass classification in supplier disruption prediction. Multiclass classification allows for more 

specific mitigation or risk estimations. However, the increase in number of classes requires better 

distinction between classes in the dataset to prevent negative effects of class overlapping. To evaluate 

multiclass classifiers, multiclass performance metrics need to be used. 

4.2.1 Multiclass metrics 
In section 3.2 the binary 2 x 2 confusion matrix is introduced for which multiple metrics could be 

defined. In case of multiclass classification with 𝑛 classes, the matrix expands to a 𝑛 x 𝑛 matrix leading 

to the inability to use former metric definitions based on the four different outcomes (true positive, 

false positive, true negative and false negative). To overcome this for multiclass classification, the 

metrics can be class-wise defined by expressing them in a one-vs-rest fashion. Table 4.1 shows an 

example confusion matrix for a three-class classifier to simply illustrate this, but the same can be 

applied with more classes. When computing the recall value for the ‘Early’ class in the example – the 

fraction of correctly predicted ‘Early’ samples over all actual ‘Early’ deliveries – it is calculated as 
3

3+2+1
= 0.5 (50%). Similarly, the precision of the ‘Early’ class – fraction of correctly predicted ‘Early’ 

over all predicted as ‘Early’ – is then 
3

3+1+0
= 0.75 (75%). The same calculations can be repeated for 

each class. However, when comparing different algorithms, the increase in number of values to 

compare limits the transparency and suitability. Therefore, precision and recall values can be weighted 

to obtain one single value.  

Table 4.1: Example confusion matrix for a multiclass classification problem (number of classes = 3). 

 Predicted Class 

Early On Time Delayed 

Actual class 

Early 3 2 1 

On Time 1 7 2 

Delayed 0 3 4 
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Three main strategies are micro (𝜇), macro (𝑀) and weighted (𝑊) averaging. However, micro 

averaging, averaging over all predictions over all classes, and weighted averaging, averaging weighted 

by the number of samples per class, are less suitable for imbalanced problems since more importance 

is assigned to higher frequency classes. Macro averaging assigns equal weights to all classes, making it 

more suitable with respect to micro or weighted averaging for imbalanced problems (Branco, Torgo, 

& Ribeiro, 2016). Macro-Recall and Macro-Precision can be calculated using equations (3) and (4), in 

which 𝐶 represents the set of all classes present.  

 RecM =
∑ recall(c)c∈C

|C|
 (3) 

 PrecM =
∑ precision(c)c∈C

|C|
 (4) 

Matthews Correlation Coefficient is originally defined for the binary case. When increasing the number 

of classes, the original definition does not suffice anymore. Gorodkin (2004) adapted the MCC to a 

more general RK coefficient for K classes. By generalising the definition, Gorodkin (2004) defined the 

RK coefficient in the following way:  

 
RK =

∑ CkkClm − CklCmkklm

√∑ (∑ Ckll ) (∑ Ck′l′  l′

k′≠k

)k √∑ (∑ Clkl ) (∑ Cl′k′  l′

k′≠k

)k

 
(5) 

In equation (5), the 𝐾 stands for the number of classes and the indices for 𝐶 represent the value in the 

𝐾-dimensional confusion matrix. Due to its definition, the minimum value of 𝑅𝐾 varies between -1 and 

0, depending on the underlying distributions. Like the binary definition, zero represents no correlation 

and random performance, negative values represent negative correlation, and the maximum value will 

remain 1, indicating the best performance (over all classes).  

4.2.2 Metric selection 
Given the focus of supplier disruption prediction and the inherently linked imbalance problem, the 

usage of accuracy is not sufficient to express the performance of an ML model in one value. Therefore, 

the usage of the MCC as main performance metric is proposed. MCC has a better ability with respect 

to accuracy to express model performance in a single value while accounting for imbalance in the 

binary and multiclass case. A high score requires correct predictions in all classes independent of the 

initial class distribution. Having a single metric for measuring (main) performance eases selection and 

comparison of different algorithms and configurations in the following stages. In addition, an 

expression of MCC for the multiclass case is present, leading to a more uniform performance 

expression throughout the different problem formulations. 

To support the MCC expression and be able to show prediction performance per class, precision and 

recall as assisting measures are proposed. Precision since it represents the fraction of correct 

predictions within a predicted class and recall since it represents the fraction of correct predictions of 

an actual class. The definition of precision and recall allows to represent the prediction performance 

on different classes individually. The class-wise representation can be applied in the multiclass case as 

well, which can be macro averaged when different algorithm configurations are compared. 

Accuracy can be considered as final proposed supportive numerical metric since it is able to put 

precision and recall into perspective with respect to other classes and the imbalance ratios. 

Looking forward to algorithm comparison, graphical metrics as ROC and PRC are useful to fine-tune 

the final algorithm configuration by threshold tuning, which will be elaborated in section 4.4. 

Therefore, ROC and PRC are considered as metrics for threshold tuning in the proposed methodology. 
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4.3 Data preparation: feature engineering, supplier grouping, feature selection and 

pre-processing 
With the initial understanding of the system and the available data as obtained in the first step “Data 

collection and exploration”, the available data can be cleaned by omitting inconsistent, incomplete or 

noise data entries, filling in missing data entries and standardising units. In case missing data entries 

cannot be obtained via different systems or consultation with practitioners, missing values can be 

imputed based on for example the mean or median value. However, one should split the dataset first 

before applying such transformations. 

In ML model development often three datasets are considered: a train, validation, and test set. The 

train set is used to train an initial model, of which components could be fine-tuned using the validation 

set. Thereafter, the test set is used to evaluate the (generalised) model performance since it has not 

been used during the model development. 

These sets can be individually obtained or created by partitioning the available dataset. However, a 

validation set is not always necessary or available, especially if the available data cannot be partitioned 

in three sets with similar characteristics. 

Therefore, following common literature and practice, a 0.8-0.2 train-test partition is suggested. 

4.3.1 Feature engineering 
To enhance model training, the available dataset can be complemented with potentially more relevant 

viewpoints. Simple feature engineering transformations are representing existing features into ML-

understandable formats, such as splitting dates in numerical partitions as “day”, “week” and “month” 

or by combining and transforming features by taking for example the ratio between the time given for 

a supplier to deliver and the contracted lead time. 

However, these suggestions and simple transformations do not necessarily include or represent 

domain knowledge and practitioners’ expertise, which is needed for valuable features (Baryannis et 

al., 2019). Domain experts and practitioners are consulted to focus on potential valuable features for 

material-oriented supplier disruptions in production environments. The discussions and obtained 

suggestions led to the definition of three different feature domains:  

- “Order” represents features which are characteristic for the historical order (PO record). 

Examples are the simple transformations from dates to “day”, “week” and “month” as stated 

before, differences between available dates such as difference between order and due date, 

or order value based on the price and quantity of ordered items. 

- “Supplier-material” focusses on features based on the supplier-material relation. Examples are 

the ratio between the time given for a supplier to deliver and the contracted lead time as 

stated before, and the ratio between ordered quantity and the standard or average quantity. 

- “Dynamic ‘environment’” is a broader domain, which covers features with dynamic behaviour. 

Preceding supplier delivery performance, outstanding number of orders and outstanding 

number of overdue orders at the moment of order creation are all features which change over 

time and could be derived from the minimum expected requirement of historical PO records.  

An overview of suggested features within the domains after consultation with domain experts is 

presented in Table 4.2 below. The overview incorporates features based on the expected minimum 

required data as stated in section 2.3, and potential extensions (indicated with – instead of •) when 

more information is available. These potential features are adopted in the proposed methodology and 

serve as guidance for feature engineering.  
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Table 4.2: Overview of proposed (engineered) features per defined feature domain. 

Feature 

domain 

Features 

Order 

• Creation/Due Day 

• Creation/Due Day of Week 

• Creation/Due Week 

• Creation/Due Month 

• Creation/Due Season 

• Creation/Due Year 

• Days between Creation and Due date 

• Material 

• Quantity 

• Supplier 

• Value 

- Days between confirmed delivery date and due date 

- Order changed indicator 

- Order involved execution of mitigating measure 

Supplier-

material 

• Price per material 

• Contracted lead time 

• Ratio of quantity over standard quantity 

• Ratio of material order frequency over standard frequency 

• Ratio of given time for fulfilment and contracted lead time 

• Size of product portfolio for corresponding supplier 

• Considered Safety time for the supplier-material combination 

• Unique number of materials produced/ordered at a supplier 

- Default shipment method 

- Possible alternative (express/priority) shipping methods 

Dynamic 

‘environment’ 

• Previous (confirmed) order delivery performance 

• Open or outstanding (confirmed) quantity (per material) 

• Open or outstanding (confirmed) overdue quantity (per material) 

- Ratio of current requested/outstanding quantity over maximum allocated production 

quantity/capacity in a time period 

- Ratio of current requested quantity over shared forecasted quantity 

- Performance/number of deviations of supplier confirmed orders 

- Inventory level at moment of ordering 
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4.3.2 Supplier grouping 
Supplier characteristics could vary significantly between different suppliers which could influence the 

possibility to train a ML model. Therefore, especially when exploring possibilities of ML, it is more 

suitable to consider single suppliers at first, whereafter suppliers could be grouped to increase the 

complexity, supplier coverage and more general supplier behaviour. To the best of the author’s 

knowledge, this build-up has not been applied and documented in literature before. 

Different methods could be applied to group different suppliers, of which manual grouping would be 

deemed simplest. Manual grouping could be performed based on information in the available dataset 

such as number of orders and lead time of materials, or by incorporating practitioners’ expertise and 

already available supplier groups. Potentially interesting could be to group suppliers based on a risk 

measure regarding production impact, as has been acknowledged by consulted practitioners. One 

could think about combinations of lead time, material value, shipping possibilities, raw material 

requirements and uniqueness of products for such measure. However, fully defining such measure is 

out of scope and therefore left for future research.  

Alternatively, one could apply more advanced grouping or clustering techniques and algorithms, such 

as ML-based methods as hierarchical clustering or k-nearest neighbours (KNN) clustering. Based on the 

available data and selected characteristics, similarity is expressed in distance between data entries and 

used to group the different suppliers. These groups could then be used as subsets for the next steps in 

the proposed methodology.  

The usage of manual grouping while incorporating practitioners experience is initially proposed in the 

methodology, since it is more transparent, easier to adjust to the specific production characteristics 

and therewith easier to explore possibilities with. In later exploration stages or iterations of the 

methodology, the application of clustering algorithms could be investigated using (to-be-) defined 

(risk) measures as mentioned before.  

4.3.3 Feature selection 
Two directions for feature selection, filtering and wrapping, have been observed in literature and 

described in section 3.3.2. When applying filtering, the resulting feature ranking can be biased if 

different features describe similar information and relations, which negatively influences the selection 

process. Manual filtering combined with simple correlation analysis could reduce these influences, 

especially when combined with a wrapping technique as recursive feature elimination (RFE) or forward 

feature selection (FFS). 

Standard RFE or FFS use an estimator with importance attributes such as feature weights or 

importance (in tree-based methods) which is trained on the train dataset. Based on the importance 

value of a feature, it is kept, added to, or removed from the feature subset. However, complications 

may arise when categorical variables are present in the dataset. For most estimators to handle 

categorical variables, the variables must be encoded in numerical representations, potentially 

imposing relations between different category values. Therefore, in contrast to preceding literature, 

the usage of feature permutation importance is proposed. 
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Feature permutation importance uses the difference in model prediction performance after shuffling 

feature values as an expression for feature importance (Breiman, 2001). By shuffling the values of a 

single feature, the potential link between the feature and the prediction target is broken and changes 

in model prediction performance (expressed in the main metric as selected in 4.2.2) could be assigned 

to the absence of this link. This expression of importance can be used to create a different formulation 

of the standard RFE or FFS techniques. Desirably a separate validation dataset or partition is used for 

the feature selection since it allows for a more generalised result. However, if such dataset or partition 

is not available, the training set could be used instead. 

RFE using feature permutation importance is preferred over FFS. FFS is in general significantly more 

computationally expensive since it needs to train models for each new feature combination in each 

iteration with respect to a single combination in each RFE iteration. 

4.3.4 Data pre-processing: scaling and sampling 
Depending on the algorithms considered for model training and comparison, scaling of features might 

be necessary to improve performance. Different scaling methods as min-max scaling, max-abs-scaling 

or robust scaling could be feature-wise applied. Important is to apply scaling before applying any form 

of sampling, since the creation or removal of data points influences the value distribution within 

features, which could influence the results of scaling operations. Since scaling is feature and algorithm 

dependent, the possibility for scaling is incorporated in the methodology instead of specifying a 

specific scaling technique, since specific feature characteristics determine suitable scaling techniques. 

As stated in literature, class imbalance is a common problem in disruption prediction in general 

(Baryannis et al., 2019; Brintrup et al., 2020), due to the generally small number of disruptions 

occurring during healthy operations. Given the different possibilities to mitigate the negative 

influences of class imbalance on model performance as stated in section 3.3.1, the resample strategy 

is incorporated in the methodology based on its modularity, easiness to apply and results in preceding 

literature. Three resample strategies besides not resampling are proposed, which could be run parallel 

and compared in the algorithm comparison step. 

The first strategy would be to apply over-sampling on the minority class by means of the SMOTENC 

algorithms developed by Chawla et al. (2002). SMOTENC is a small alteration of the SMOTE algorithm 

which is often applied in practice and literature (López et al., 2013) such that categorical variables can 

be over-sampled as well. To reduce overgeneralisation an over-sampling factor of two is suggested as 

initial limit. An over-sampling factor of two corresponds to doubling the size of the minority class.  

Potentially different factors might result in more desired trade-offs, which could be investigated in 

future research. However, expected is that such factor is highly case or environment dependent. 

The second proposed strategy applies under-sampling on the majority class by means of random 

under-sampling (RUS). RUS is simple to apply and has successfully been applied in preceding literature, 

despite the possibility that valuable information is omitted (Brintrup et al., 2020). However, to prevent 

potentially omitting too much information, a maximum under-sampling factor of three is suggested as 

limit. This is slightly higher than the suggested limit for over-sampling since no synthetic information 

is added. Similar to the over-sampling factor, it is an initial suggestion of which its impact can be 

investigated in future research. 

The third proposed strategy combines the preceding strategies sequentially, such that negative effects 

of both strategies could be reduced, and larger imbalance ratios could be addressed. In the multiclass 

application, proposed is to sample individual classes towards the mean number of samples over the 

different classes. 
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4.4 Algorithm comparison and evaluation 
With the training set being prepared for model training, ML algorithms and parameters need to be 

selected. Since there is no commonly accepted best algorithm, the following five algorithms are 

suggested:  

1. Logistic Regression (LR) 

2. Decision Tree (DT) 

3. Support Vector Machine (SVM) 

4. Random Forest (RF) 

5. eXtreme Gradient Boosting (XGB) 

For each algorithm an indicative grid search is applied to explore obtainable performance rather than 

optimising all parameters for each considered algorithm. This is proposed to limit the size of the grids 

(and therewith computational cost) and the required specific knowledge for each algorithm, making it 

more reproducible and understandable in production environments. The algorithm configurations 

present in the grid will be evaluated using stratified 5-fold cross-validation to additionally reduce 

negative influences of class imbalance and randomness during the training process. 

An overview of the parameters and considered values in the indicative grids suggested is given in Table 

4.3 below. Additional information regarding the parameters is presented in Appendix A: Considered 

algorithm parameters. The values and ranges are based on considered ranges in literature (Baryannis 

et al., 2019; De Santis et al., 2018) and initial explorations. After the grid search is conducted, the 

different algorithms and configurations can be compared based on the metrics defined before while 

applying the trained models on the independent test set. 

Table 4.3: Overview of suggested parameter values for the indicative grid search per considered algorithm. 

Algorithm Parameters Range 

Logistic Regression 
- Regularisation – C 

- Class weight 

- Solver 

- 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000 

- None, balanced 

- Newton-cg, lbfgs 

Decision Tree 
- Max tree depth 

- Max leaf nodes 

- Class weight 

- 5, 6, 7, 8, 9, 10 

- 20, 30, 40, 50 

- None, balanced 

Random Forest 

- Max tree depth 

- Max leaf nodes 

- Nr. of estimators  

- Class weight 

- 5, 6, 7, 8, 9, 10 

- 20, 30, 40, 50 

- 10, 50, 100, 500 

- None, balanced_subsample 

Support Vector Machine 
- Regularisation – C 

- Gamma – γ  

- Class weight 

- 0.1, 1, 10, 100, 1000, 10000 

- 0.01, 0.1, 1, 10, 100, 1000 

- None, balanced 

eXtreme Gradient Boost 

- Max tree depth 

- Min child weight 

- Gamma – γ 

- Nr. of estimators 

- 5, 6, 7, 8, 9, 10 

- 1, 2, 3 

- 0, 1, 10, 100 

- 10, 50, 100, 500 
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After models have been trained, additional post-processing of model results could be applied to steer 

predictions towards the most interesting or valuable prediction value. A common method in binary 

classification, which has only been observed in a similar form in the cost-sensitive approach of Hajek 

and Abedin (2020), is threshold tuning. Threshold tuning involves the adjustment of the threshold 

value used to determine to which class a prediction belongs. By adjusting the threshold value, a custom 

trade-off between class-specific prediction performances can be obtained. Two common trade-offs in 

practice are (1) between the true positive rate and true negative rate, as visualised in the ROC and (2) 

between precision and recall as visualised in the PRC.  

As general optimisation indicator for the first case the Youden’s J statistic (𝐽) is used, which translates 

to the probability of making an informed decision (Powers, 2020) and can be expressed as 𝐽 = 𝑇𝑃𝑅 −

𝐹𝑃𝑅 (Youden, 1950), or visually as the distance between the ROC and the ROC of a random guesser 

(diagonal from bottom left to top right). Selecting the threshold value corresponding to the largest 𝐽-

value flattens the difference in prediction performance over all classes, which could improve the 

performance on the minority class at the expense of majority class prediction performance. 

In the second case, often the F-Score is used since it describes a relation between precision and recall. 

By selecting a  corresponding to the case-specific focus, the trade-off between precision and recall 

can be expressed and the threshold value corresponding to the largest F-Score can be selected.  

The formulation of threshold tuning for binary classification problems cannot be generalised to 

multiclass classification. In fact, it would require a reformulation of the multiclass problem into pair-

wise binary classification problems, for which simultaneously all thresholds could be tuned by for 

example Particle Swarm Optimisation, as proposed by Cheng, Chen, Khosla, and Kim (2011). 

Once threshold tuning is applied, the test set is used to evaluate and compare the final model 

performance and its generalisability, whereafter is decided if the model can be applied in practice. 

4.5 Concluding statements 
This chapter described the proposed methodology to apply ML for supplier disruption prediction in a 

general production environment, of which the steps and outline are depicted in Figure 4.1. The 

important characteristics per defined step are summarised in the following sections. 

Data exploration and understanding 

To acquire a sufficient understanding of the production system, its data generation (influences), 

limitations and prediction goal, it is important to keep in close contact with practitioners and experts. 

Suggestions for additional data collection can follow and be formulated and proposed as a result. 

Performance and metric definition 

MCC as main metric has been proposed since it is able to express performance over all classes in one 

value while accounting for imbalance in both problem formulations (binary and multiclass). Accuracy 

and class-wise precision and recall are proposed as supportive metrics with the possibility of macro-

averaging when aggregating to one precision or recall value. Recall is extra valuable in disruption 

prediction since it represents the fraction of correctly predicted instances in a class and therewith 

correctly predicted disruptions. ROC and PRC are only suggested as supportive graphical methods 

when applying threshold tuning as post-processing technique for binary classification, since it could 

assist in visualising the difference in performance. 
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Feature engineering and selection 

For feature engineering three feature domains (“Order”, “Supplier-material” and “Dynamic 

‘environment’”) are defined and proposed, with the notion of a potential fourth (“Quality”) if sufficient 

quality data is available. The different suggestions for features are presented in Table 4.2. For feature 

selection, the use of feature elimination using feature permutation importance is proposed, which is 

different with respect to applied feature selection in preceding supplier disruption literature. Feature 

permutation is chosen since it allows for considering categorical data in the selection process while 

presenting a ranking of features for each number of features considered. Feature elimination is 

preferred over forward feature selection due to computational expensiveness.  

Supplier grouping 

The usage of manual grouping while incorporating practitioners experience is initially proposed since 

it is an easy to implement and understandable approach for the newly introduced step in supplier 

disruption prediction. Additionally, it is more transparent, easier to adjust to the specific production 

characteristics and therewith easier to explore possibilities with. In later (exploration) stages or 

iterations of the methodology, the application of clustering algorithms could be investigated using (to-

be-) defined (risk) measures or feature selection results for individual suppliers.  

Sampling 

Three different resample techniques are proposed to potentially reduce the impact of class imbalance: 

SMOTENC, RUS and a hybrid of both. SMOTENC is an addition towards current applied techniques, 

enabling the incorporation of categorical features without the need to transform them. For SMOTENC 

a maximum over-sample rate of 2 is suggested to prevent significant reductions in generalisation ability 

and increased training time. A maximum under-sample rate of 3 is suggested to prevent potentially 

removing too much valuable information. 

Algorithm comparison 

Five different algorithms are suggested to explore and evaluate performance given their complexity, 

illustrated performance and fundamental definitions: LR, DT, RF, SVM and XGB. For each algorithm an 

initial explorative grid is suggested to observe what level of performance can be obtained by adjusting 

the most common parameters as depicted in Table 4.3. After the grid search, the best performing 

classifiers in the binary formulation can be fine-tuned by changing the classification threshold to the 

value where the Youden’s statistic or F-Score is the highest, depending on the case specific focus. 
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5 Supplier disruption prediction in Philips’ production facility 
This chapter describes the application of the methodology proposed in the previous chapter in Philips’ 

production facility. The application within this case study can show initial value and potential of ML in 

predicting material-related supplier disruptions in production environments using the proposed 

methodology. 

In section 5.1, a brief description of relevant case specific information is given. Section 5.2 presents 

how feature engineering and supplier grouping is applied, whereafter the results of the feature 

selection stage are presented in section 5.3. Section 5.4 presents the results of the grid searches and 

post-processing, whereafter section 5.5 reflects on the results and the applied approach. 

5.1 Case study: Philips’ MR & IGT production facility  
Within the production facility several of Philips’ medical imaging products as Magnetic Resonance 

Imaging (MRI) scanners, X-ray scanners and computed tomography (CT) scanners are being assembled 

and produced. The portfolio of the facility consists of 36 different products of which more than 3000 

combined are produced and shipped globally on a yearly basis. Within each product up to 7500 unique 

components are being used, illustrating the importance of correct and efficient material management. 

5.1.1 Data availability and limitations 
Different systems are being used to monitor and store data and information for the different actors 

present in the production chain. The main system for the material management aspect is the 

Enterprise Resource Planning (ERP) system. Within the ERP system, information regarding material 

demand and flows is maintained while also being used to monitor and create POs. Data regarding 

historical POs has been made available for this case study, therewith fulfilling the expected minimum 

data requirement as stated in section 2.3 to predict delivery performance of created orders. 

In addition, to maintain and improve supplier collaboration, supplier performance scores (CLIP) are 

being calculated based on among others delivery performance of placed and fulfilled POs. These scores 

are being stored in Philips’ Global Supplier Rating System (GSRS) database, which has been made 

available for this case study. Due to definition changes in the considered time scope (April 1st, 2017 

until April 1st, 2020), the latest logic behind these scores is used to recreate historical performance 

scores in which individual deliveries are considered and the percentage of on-time deliveries is 

translated to the monthly CLIP score. 

Unfortunately, historical demand forecasts, inventory levels, executed mitigation measures and 

communication were not available for this case study. Therefore, only historical PO records on 

schedule line level are extracted using a third-party tool Every Angle and GSRS performance scores will 

be used, imposing the following implications and limitations: 

- Influences or disruptions outside Philips’ view impacting supplier performance, such as 

transportation disruptions or production problems at the supplier, are not made available in 

the ERP system export and therewith not explicitly represented in the available data. 

- PO changes are not extracted using Every Angle, only initial PO characteristics. 

- Known potential influences as shared demand forecasts, manual communication or disruption 

mitigation measures are not available and cannot explicitly be accounted for. 
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Figure 5.1 illustrates these implications and limitations by visualising an example timeline between PO 

creation and obtaining the PO receipt(s). Within this timeline, several events which influence supplier 

behaviour (delivery performance) which cannot be explicitly extracted from or represented in the 

available data are indicated in grey. Events that are explicitly available in the data are indicated in 

black. Since the result (PO Receipt date) is available in the data, these events and influences are 

implicitly incorporated and accounted for but could potentially result in noise and reduced prediction 

performance. An example export of the available data is presented in Appendix B: Example dataset. 

 
Figure 5.1: Example timeline of PO creation till fulfilment (receipt) including events that cannot be explicitly extracted from or 
are not explicitly represented in the available data set. 

5.1.2 Case specific scope 
The prediction target for this case study will be the expected delivery performance of an inbound 

delivery. Using Philips’ definitions for delivery performance, the target classes for the binary and 

multiclass classification problem formulations are defined and presented in Table 5.1 below.  

Table 5.1: Target classes for binary and multiclass classification. 

Problem formulation Target classes 

Binary 
- On-time: before or on due date  

- Delayed: after due date 

Multiclass 

- Extremely early: more than 3 days before due date  

- Early: between 1 and 3 days before due date 

- On-time: on the due date 

- Delayed: 1 or 2 days after due date  

- Extremely delayed: 3 or more days after due date 

 

As relevant metrics for the Philips’ case, the suggested metrics in section 4.2.2 are selected since the 

focus is predicting delayed deliveries, while limiting the number of false positives to reduce 

unnecessary mitigations. Therefore, the main performance metric is MCC, supported by precision, 

recall and accuracy. 

5.1.3 Dataset characteristics and preparation 
Historical order PO data between April 1st, 2017 and April 1st, 2020 from the ERP system is extracted 

using Every Angle. Every Angle combines different data locations in the ERP system to create a single 

dataset of historical deliveries which is used for this case study. An overview of features contained in 

the dataset is presented in Table 5.2. 

  



 

Page | 30 

Table 5.2: Overview of extracted data. 

Feature Format Description 

PO document type Text Category indicating type of PO 

PO Schedule Line number Text Purchase order number + PO item number + SL number 

Order date Date Date when the order is created 

Due date Date Date when the order is requested to be delivered 

Confirmed delivery date Date Confirmed delivery date by supplier (if available) 

Statistical delivery date Date Delivery date used for supplier performance determination 

Receipt date Date Date when the order is received and invoiced 

Material Alpha numeric Unique code indicating material ordered 

Material description Text Description of the material 

Lead time Integer Contracted supplier lead time 

Quantity Float Amount of material ordered 

Material unit Text Unit of the order amount 

Price per unit Integer Price of the default order unit 

Safety time Integer 
Additional time used to move material requirements forward 
in time to cover for supplier deviations 

ABC indicator Text Importance category of a material based on usage 

Lot size type Text 
Category indicating frequency or time dependent 
replenishment  

Minimum/fixed lot size Integer 
Minimum of fixed amount of time or quantity between 
orders or per order 

MRP type Text Category indicating material planning type 

Supplier Integer Unique code indicating supplier considered 

Supplier description Text Supplier name 

SNC relevancy Text Category indicating maturity level of information exchange 

 

The raw dataset has been initially processed using Python 3.7 with the libraries NumPy (v1.19.1) (Harris 

et al., 2020), pandas (v1.1.1) (McKinney, 2010) and Matplotlib (v3.3.1) (Hunter, 2007) and filtered 

based on the following aspects: 

- Removal of duplicate or incorrectly split deliveries. 

- Manual imputation of missing values when present in the ERP system and otherwise removal 

of the specific deliveries. 

- Unification of order units for materials over different orders. 

- Removal of irregular deliveries consisting of inconsistent dates or quantities (because of Every 

Angle’s export logic). 

- Removal of deliveries of materials which are ordered less than five times at the supplier in the 

considered time scope. 

- Removal of suppliers which have less than five unique orders in the considered time scope. 

This resulted in a dataset of 68807 different deliveries corresponding to 26512 unique orders for 2899 

unique materials at 180 suppliers. Of those deliveries 12321 (17.9%) were delayed and 21132 (30.7%) 

were delivered early. The average delivery moment is around two days before the due date. Table 5.3 

presents the number of deliveries per delivery performance class. 

Table 5.3: Number of deliveries per delivery performance class in the considered dataset. 

Extremely Early Early On-time Delayed Extremely Delayed 

12357 8775 35354 6642 5679 
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5.2 Feature engineering and supplier grouping 
To enrich the dataset by feature engineering, feasible suggested features in the three domains 

presented in Table 4.2, literature and additional suggestions of Philips were engineered. Removing 

irrelevant features regarding delivery performance like ‘PO document type’ and ‘Material description’ 

from Table 5.2 while adding the engineered features resulted in the list presented in Appendix C: List 

of (engineered) features. 

Suppliers with a minimum amount of 300 PO records and a product portfolio different than (software) 

licenses are selected, to explore the potential of considering individual suppliers and supplier groups. 

This resulted in a sub-selection of 21 suppliers, which are further categorised based on their region, to 

potentially explore regional effects. Three regions are defined: ‘Western Europe’, ‘Rest of Europe’ and 

‘Rest of World’. The classification towards ‘Western Europe’ or ‘Rest of Europe’ follows the United 

Nations standard country and area codes (United Nations Statistics Division, 2021). This resulted in a 

‘Western Europe’ group consisting of 11 suppliers, a ‘Rest of Europe’ group of 6 suppliers and a ‘Rest 

of World’ group of 4 suppliers as presented in Table 5.4. The supplier imbalance ratios (number of on-

time deliveries per delayed delivery) and number of data points are presented as well. The delivery 

performance distributions of the selected suppliers and groups are presented in Appendix D: 

Performance distributions of the selected suppliers. 

After the supplier grouping the datasets per supplier are split using a 0.8-0.2 train-test split following 

common practice and preceding literature. 

Table 5.4: Basic (data) characteristics of the selected suppliers and groups. Imbalance ratio: number of on-time deliveries per 
delayed delivery. *excluded from supplier group since the performance score (CLIP) was not applicable to a large amount of 
the orders. 

Supplier 1 2 3 4 5 6 7 8 9 10 11 12 

Region RoW WE RoE RoW RoE WE RoE WE WE WE WE RoW 

Imbalance ratio 3.92 0.19 1.55 2.7 2.42 2.02 2.98 25.6 10.53 6.45 1.89 2.81 

# data points 1804 633 301 529 277 1860 688 19550 680 685 689 1064 
             
Supplier 13 14 15 16* 17 18 19 20 21 WE RoE RoW 

Region WE WE WE RoW RoE WE RoE WE RoE WE RoE RoW 

Imbalance ratio 6.39 4.99 3.77 8.56 0.9 1.8 4.09 12.3 6.71 4.73 2.89 3.31 

# data points 1493 923 1501 1157 744 10909 326 399 1788 39322 4124 3397 
 

5.3 Feature selection 
This section describes the implementation and results of the recursive feature elimination (RFE) using 

feature permutation importance applied on the selected suppliers and supplier groups. Two suppliers 

(11 and 18) are selected to elucidate the results in more detail. 

5.3.1 Implementation 
Before applying recursive feature elimination using feature permutation importance (RFE-FPI), 

features irrelevant for the considered supplier (group) or highly correlated features (based on 

Pearson’s correlation coefficient) with similar meaning are removed from the (supplier) specific subset. 

Irrelevant features for individual suppliers are for example ‘Uni ue materials’ since it has the same 

value for all data entries or ‘Sup. outstanding POs (SA)’ if no schedule line agreements are used besides 

standard POs. Observed correlated features are ‘Created/Due Month’ and ‘Created/Due Season’, 

which leads to omitting the season-related features. Another example is ‘Outstanding PO items’ and 

‘Outstanding  uantity’, which could be highly correlated if material is often ordered in the same 

quantity. This would result in omitting ‘Outstanding PO items’, since it is expected that quantity 

influences the delivery performance more than PO items.  
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A Random Forest (RF) estimator with a maximum tree depth of 6, a subset sample of 80% and a 

balanced subsample class weight is used for all feature selection steps in the binary and multiclass 

cases. A maximum tree depth of 6 is selected to reduce the potential of overfitting in the initial and 

especially the later stages of the RFE process when fewer features are present and is based on the 

minimum amount of data entries and shown performance of decision trees with a maximum depth of 

6 in the work of Baryannis et al. (2019). Different maximum depths have been explored, but no 

significant differences in ranking were observed. 

In each elimination step, a model is trained and scored using stratified 5-fold cross-validation, 

whereafter each feature is individually considered and permuted 30 times. The difference in model 

prediction performance after permutation determines the permutation importance of the permuted 

feature. The feature with the lowest mean permutation importance (based on the MCC) is removed 

and a new iteration follows until the prescribed number of resulting features is obtained.  

It is expected that material is an important feature. Therefore, the RFE is run with and without the 

imposition of material as feature throughout the elimination process.  

5.3.2 Feature selection example: supplier 11 (binary) 
After the RFE is completed, model prediction performance over the number of features is visualised as 

depicted in Figure 5.2, which is the output of the RFE-FPI for the binary problem formulation without 

material as feature imposed for supplier 11. In the figure, the four selected performance metrics are 

expressed over the number of features selected. From the figure, it can be observed that the maximum 

MCC score can be obtained when the top seven features are considered, as indicated with the dashed 

box. In addition, the resulting accuracy, precision and recall scores for the top 7 features are (one of 

the) highest observed as well. Therefore, for this supplier in the binary problem formulation the top 7 

features consisting of ‘Material’, ‘Order/Lead time ratio’, ‘Due Week day’, ‘Price’, ‘CLIP score’, ‘Sup. 

outstanding POs (SA)’ and ‘Quantity’ are selected, of which their permutation importance is depicted 

in Figure 5.3. The imposition of the ‘Material’ feature had no effect on this selection, since ‘Material’ 

is in the top 7 features, nevertheless. 

 
Figure 5.2: Prediction performance over number of features without material imposed as feature for supplier 11 in the  
binary problem formulation. Dashed box gives best performance obtained. MCC: Matthew’s Correlation Coefficient, Accuracy: 
fraction of correct predictions, Recall: fraction of correctly classified actual delayed deliveries, Precision: fraction of correct 
predictions classified as delayed (see Table 3.3). 
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From Figure 5.3 it can be observed that the feature representing ‘Material’ has the most significant 

link with the binary prediction target, since differences in MCC performance could reach values up to 

0.25. The importance of the feature ‘Material’ can be expected when looking at the specific supplier 

in more detail, since its product portfolio for Philips consists of a variety of products ranging from bulk 

materials as bolts and screws to specific custom-made products for Philips.  

To some extent, this customisation behaviour can also be incorporated in the ‘Price’ feature, since 

custom-made products are often more expensive than off-the-shelf products, which can explain the 

importance of ‘Price’ as shown in the figure. The importance of ‘Order/Lead time ratio’ can be expected 

as well in this instance, since the time given for specific (custom made) products with respect to the 

contracted lead time could influence the fulfilment feasibility and therewith delivery performance. 

Similar holds for ‘Quantity’ if suddenly more Philips specific products are ordered.  

Outstanding POs (and schedule line agreements) together with an expression of the CLIP score can be 

expected in general since it indicates the demand on the supplier and the recent performance.  

The importance and selection of ‘Due Week day’ is an interesting result since initially this was not 

expected or considered as important by domain experts. However, after consultation agreed was that 

this could illustrate inefficiencies in process-related aspects such as day-offs or delayed invoicing. 

 

 
Figure 5.3: Feature permutation importance box plot of the selected features for supplier 11 in the binary problem formulation. 

5.3.3 Feature selection example: supplier 18 (binary) 
An example of a supplier in which the imposition of ‘Material’ during feature elimination makes a 

(negative) difference is supplier 18. Figure 5.4 shows the different performance scores for the number 

of features considered for this supplier. ‘Material’ is the seventh most important feature and after 

excluding it from the subset, a noticeable increase in prediction performance is observed.  

This supplier produces material which has in general short lead times and uses similar raw materials 

for the different products in their portfolio, which could explain this sudden increase. In addition, from 

a more algorithmic perspective, this supplier has almost 840 unique material numbers which are 

considered as categorical variables, increasing the complexity to train a model. Especially if the tree 

that can be trained is constrained to be relatively small (because of setting the max depth to 6) for the 

resulting number of features, the reduction in complexity after removing the feature could result in 

increased prediction performance. 
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Figure 5.4: Prediction performance over number of features without material imposed as feature for supplier 18 in the  
binary problem formulation. Dashed box gives best performance obtained. MCC: Matthew’s Correlation Coefficient. 

To verify that this drop in complexity and increase in performance is not the result of overfitting, 

training performance is investigated. The mean and standard deviation of the performance scores of 

the different folds of the trained model are presented in Table 5.5. Similar performance is ranges are 

observed on all metrics, illustrating the generalisability of the trained model rather than the 

occurrence of overfitting. 

Table 5.5: Mean and standard deviation of prediction performances of the stratified 5-fold feature selection model for the top 
5 features for supplier 18 in the binary problem formulation. MCC: Matthew’s Correlation Coefficient, RF: Random Forest. 

Supplier 18 Test fold Train fold 

MCC 0.5530 ± 0.0108 0.5731 ± 0.0056 

Accuracy 0.7971 ± 0.0058 0.8065 ± 0.0020 

Precision 0.7303 ± 0.0174 0.7452 ± 0.0053 

Recall 0.6857 ± 0.0199 0.6960 ± 0.0141 

Algorithm settings: RF 

Max depth: 6 Class weight: balanced subsample 

Max samples: 0.8   

 

The selected features and their permutation importance are depicted in Figure 5.5. The selection of 

‘Due Week day’ as well as ‘Due Week’ could suggest that specific periods in history were characteristic 

for delivery (mis-)performance, which could question the possibility to generalise historical behaviour 

towards future predictions. Visualising the delivery performance over the ‘Due Week day’ and ‘Due 

Week’ as shown in Figures 5.6 and 5.7 does not explicitly show such periods. Therefore, it is expected 

that the increase in performance can be accounted for by the decrease in data complexity and supplier 

specific characteristics. 
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Figure 5.5: Feature permutation importance box plot of the selected features for supplier 18 in the binary problem formulation. 

5.3.4 Feature selection results for all considered suppliers and groups 
The same approach and exploration are conducted for each supplier (group) for the binary and 

multiclass problem formulation, resulting in the selected number of features per supplier (group) as 

presented in Tables 5.6 and 5.7. The specific features selected per supplier (group) are presented in 

Appendix E: Selected features per supplier (group). In 3 out of 48 situations, the explicit imposition of 

‘Material’ was valuable for prediction performance, which for supplier 5 could be expected due to the 

material-specific production technique (moulding) which is used.  

In Tables 5.6 and 5.7 the selected number of features per supplier in both problem formulations are 

presented. Differences between both problem formulations can be expected since the increased 

complexity of multiclass classification can require additional data or brings out different relations 

between features and the added classes. 

Differences between suppliers can result from unique supplier behaviour and characteristics leading 

to different important features, or the ability to extract (and generalise) this behaviour from the 

available dataset.  

  

 
Figure 5.6: Delivery performance of supplier 18 over ‘Due 
Week day’. Total numbers of data entries corresponding to 
the ‘Due Week day’ are presented in dark grey above the 
bars. 

 
Figure 5.7: Delivery performance of supplier 18 over ‘Due 
Week’. 
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Table 5.6: Selected number of features for the selected suppliers and groups in the binary problem formulation.  
*excluded from supplier group since the performance score (CLIP) was not applicable to large amount of supplier’s orders. 

Supplier 1 2 3 4 5 6 7 8 9 10 11 12 

# of features 10 11 11 9 11 11 11 14 4 13 7 13 

Mat. imposed - - - - x - - - - - - - 

Region RoW WE RoE RoW RoE WE RoE WE WE WE WE RoW 
             
Supplier 13 14 15 16* 17 18 19 20 21 WE RoE RoW 

# of features 6 12 13 6 6 5 8 3 17 9 14 11 

Mat. imposed - - - - - - - - - - - - 

Region WE WE WE RoW RoE WE RoE WE RoE WE RoE RoW 

 

Table 5.7: Selected number of features for the selected suppliers and groups in the multiclass problem formulation.  
*excluded from supplier group since the performance score (CLIP) was not applicable to large amount of supplier’s orders. 

Supplier 1 2 3 4 5 6 7 8 9 10 11 12 

# of features 10 6 7 5 9 11 7 17 8 8 13 15 

Mat. imposed - x - - x - - - - - - - 

Region RoW WE RoE RoW RoE WE RoE WE WE WE WE RoW 
             
Supplier 13 14 15 16* 17 18 19 20 21 WE RoE RoW 

# of features 17 12 15 12 13 14 9 - 9 6 8 16 

Mat. imposed - - - - - - - - - - - - 

Region WE WE WE RoW RoE WE RoE WE RoE WE RoE RoW 

 

To identify commonly shared important features, the selected features for the individual suppliers and 

the regional supplier groups are combined into region-based bar charts using the top 5 features of 

each individual supplier, which are depicted in Figures 5.8-5.13. From the figures, expected important 

features as ‘Material’, ‘Order/Lead time ratio’ and ‘Sup. outstanding  uantity’ are often observed 

throughout the different regions for individual suppliers and the supplier groups. However, interesting 

is the recurring importance of ‘Due Week day’ in both problem formulations. As stated in the example 

of supplier 11 before (section 5.3.2), this might be the result of inefficiencies in process-related aspects, 

which becomes more plausible since it is observed for multiple individual suppliers. 

For completeness, the region-based bar charts consisting of all selected features are visualised in 

Appendix F: Overviews of selected features per region. 

5.3.5 Feature selection: additional value 
The unexpected identification of ‘Due Week day’ is an example of how feature importance and 

selection can assist in identifying potential directions and causes of non-optimal supplier relations or 

behaviour for individual suppliers or groups. These directions can be used for internal investigations 

or performance improvement programmes to potentially discover inefficiencies which can lead to 

more efficient and reliable supplier relations. Therewith, feature importance and selection can assist 

in mitigating disruptions on a tactical level.  

It is expected that feature importance in the binary case is initially more viable, since it directly reflects 

the importance of the distinction between on-time and delayed deliveries.  
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Figure 5.8: Overview of features present in top 5 for each 

individual supplier (group) in Western Europe  
for the binary problem formulation. 

 
Figure 5.9: Overview of features present in top 5 for each 

individual supplier (group) in Western Europe  
for the multiclass problem formulation. 

 
Figure 5.10: Overview of features present in top 5 for each 

individual supplier (group) in the Rest of Europe  
for the binary problem formulation. 

 
Figure 5.11: Overview of features present in top 5 for each 

individual supplier (group) in the Rest of Europe  
for the multiclass problem formulation. 

 
Figure 5.12: Overview of features present in top 5 for each 

individual supplier (group) in the Rest of World  
for the binary problem formulation. 

 
Figure 5.13: Overview of features present in top 5 for each 

individual supplier (group) in the Rest of World  
for the multiclass problem formulation. 
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5.4 Algorithm evaluation 
After feature selection described in the previous section, different model configurations are created, 

trained and compared. Using python 3.7 with the libraries NumPy (v1.19.1) (Harris et al., 2020), pandas 

(v1.1.1) (McKinney, 2010), Matplotlib (v3.3.1) (Hunter, 2007), scikit-learn (v0.24.0) (Pedregosa et al., 

2011), imbalanced-learn (v0.7.0) (Lemaître, Nogueira, & Aridas, 2017) and xgboost (v1.3.1) (Chen & 

Guestrin, 2016) these different model configurations are implemented and tested and results 

visualised. The models are trained on a computer with an Intel Core I5-8365 CPU and 16 GB RAM. 

For each supplier (group) the parameter grids presented in Tables 5.8 are considered in the binary and 

multiclass problem formulations. The grids follow the suggested grid proposed in the methodology, 

with the addition to add scaling of features for LR and SVM and a minor change in the gamma range 

for SVM based on initial explorations. In the multiclass case, the LR and SVM implementations are 

omitted due to the significant increase in computational time and limited observed performance. 

Default algorithm implementations from the scikit-learn and xgboost libraries were used as basis in 

which the grid parameters were implemented. For the RF and XGB algorithms a subsample size of 0.8 

is additionally set to stimulate variation in internal estimators.  

Table 5.8: Applied parameter values in the grid searches per considered algorithm in both problem formulation. 

Algorithm Parameters Range (binary) Range (multiclass) 

Logistic 

Regression 

(LR) 

- Regularisation – C 

- Class weight 

- Solver 

- Sampling 

- Scaling 

- 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000 

- None, balanced 

- Newton-cg, lbfgs 

- None, SMOTENC, RUS, Hybrid 

- Yes, No 

 

Decision Tree 

(DT) 

- Max tree depth 

- Max leaf nodes 

- Class weight 

- Sampling 

- 5, 6, 7, 8, 9, 10 

- 20, 30, 40, 50 

- None, balanced 

- None, SMOTENC, RUS, Hybrid 

- 5, 10, 15, 20 

- 100, 200, 400, 800 

- None, balanced 

- None, SMOTENC, RUS, Hybrid 

Random 

Forest  

(RF) 

- Max tree depth 

- Max leaf nodes 

- Nr. of estimators  

- Class weight 

- Sampling 

- 5, 6, 7, 8, 9, 10 

- 20, 30, 40, 50 

- 10, 50, 100, 500 

- None, balanced_subsample 

- None, SMOTENC, RUS, Hybrid 

- 5, 10, 15, 20 

- 100, 200, 400, 800 

- 10, 50, 100, 500 

- None, balanced_subsample 

- None, SMOTENC, RUS, Hybrid 

Support 

Vector 

Machine 

(SVM) 

- Regularisation – C 

- Gamma – γ  

- Class weight 

- Sampling 

- 0.1, 1, 10, 100, 1000, 10000 

- 0.001, 0.01, 0.1, 1, 10 

- None, balanced 

- None, SMOTENC, RUS, Hybrid 

 

eXtreme 

Gradient 

Boosting 

(XGB) 

- Max tree depth 

- Min child weight 

- Gamma – γ 

- Nr. of estimators 

- Sampling 

- 5, 6, 7, 8, 9, 10 

- 1, 2, 3 

- 0, 1, 10, 100 

- 10, 50, 100, 500 

- None, SMOTENC, RUS, Hybrid 

- 5, 10, 15, 20 

- 0, 1 

- 0, 1, 10 

- 10, 50, 100 

- None, SMOTENC, RUS, Hybrid 

 

After completing the grid searches and analysing the results of the best performing parameter 

combinations many cases of overfitting (and poor generalisation performance) were observed, 

indicated by noticeable differences between train and test performance during model training (Figure 

5.14). Figure 5.14 presents the MCC performances of the best performing models (in terms of MCC 

performance) on the test set, test and train folds during model training for the suppliers and groups.  

An example of such an overfitted model is the best model for supplier 4, of which the train and test 

results are presented in Table 5.9. The performance scores obtained from the independent test set are 

presented in the first column ‘Score on test set’. The mean training scores and their standard deviation 

resulting from the cross-validation during training are presented in the second and third column. 
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Figure 5.14: Matthew’s Correlation Coefficient (MCC) scores for the best model configuration in the considered binary problem 
formulation. ‘Best’ is the algorithm configuration resulting in the highest MCC score on the test set after selecting the highest 
performing configurations in the grid per algorithm based on the test fold MCC score. 

Table 5.9: Prediction performance of overfit eXtreme Gradient Boosting (XGB) model for supplier 4 in the binary problem 
formulation. Test set: performance on independent test set. Test fold: mean performance ± standard deviation on test fold 
during training. Train fold: mean performance ± standard deviation on train fold. MCC: Matthew’s Correlation Coefficient. 

Supplier 4 Test set Test fold Train fold 

MCC 0.6883 0.7426 ± 0.0868 0.9639 ± 0.0031 

Accuracy 0.8774 0.9006 ± 0.0324 0.9858 ± 0.0012 

Precision 0.7857 0.8489 ± 0.0605 0.9911 ± 0.0083 

Recall 0.7586 0.7711 ± 0.1029 0.9561 ± 0.0099 

Algorithm settings: XGB 

Gamma: 0 Max depth: 8 Min child weight: 1 

# estimators: 100 Sampling: None Max subsample: 0.8 

 

The high performance scores on the train fold with respect to the noticeable lower performance scores 

on the test fold illustrate this overfitting behaviour, which limits the generalisability and therewith 

applicational value of the specific model. Therefore, to prevent comparing overfitted model results 

and drawing incorrect conclusions, all models with a delta mean MCC score of 0.1 between the train 

and test folds during model training are omitted from the results. This results in lower obtained MCC 

performance, but higher generalisability, as is illustrated in Figure 5.15 by similar MCC performance 

over the independent test set, test and train folds.  

Taking supplier 4 again as example, the results of the new best XGB model are presented in Table 5.104. 

The results show similar performance over the test set, test and train folds and noticeable are the 

differences in parameter settings. In this case gamma and minimum child weight are changed from 0 

to 1 and 1 to 3 respectively, which were expected to reduce the potential of overfitting, as is illustrated. 

 
4 The new best model is trained using DT. However, the results of the new best XGB model are used for comparison and 
maintaining consistency between examples. 
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Figure 5.15: Matthew’s Correlation Coefficient (MCC) scores for the best non-overfit model configuration in the binary problem 
formulation. ‘Best non-overfit’ is the algorithm configuration resulting in the highest MCC score on the test set after selecting 

the highest performing configurations in the grid per algorithm based on the test fold MCC score with |𝑀𝐶𝐶𝑡𝑒𝑠𝑡 𝑓𝑜𝑙𝑑 −

𝑀𝐶𝐶𝑡𝑟𝑎𝑖𝑛 𝑓𝑜𝑙𝑑| ≤ 0.1. 

Table 5.10: Prediction performance of best non-overfit eXtreme Gradient Boosting (XGB) model for supplier 4 in the binary 
problem formulation. Test set: performance on independent test set. Test fold: mean performance ± standard deviation on 
test fold. Train fold: mean performance ± standard deviation on train fold. MCC: Matthew’s Correlation Coefficient. 

Supplier 4 Test set Test fold Train fold 

MCC 0.5545 0.5458 ± 0.1445 0.6358 ± 0.0343 

Accuracy 0.8302 0.8367 ± 0.0446 0.8629 ± 0.0117 

Precision 1.0000 0.8489 ± 0.0882 0.9395 ± 0.0293 

Recall 0.3793 0.4652 ± 0.1478 0.5262 ± 0.0499 

Algorithm settings: XGB 

Gamma: 1 Max depth: 9 Min child weight: 3 

# estimators: 100 Sampling: None Max subsample: 0.8 

 

From an operational perspective, the results in Table 5.10 show value given the MCC and accuracy 

score and the 100% score on the deliveries classified as too late (precision). However, only 38% of the 

actual delayed deliveries have been correctly identified using this model, reducing this applicational 

value. Additional post-processing without altering the trained model could assist in steering this 

behaviour towards the class and metric of most interest. In the Philips’ case with the aim for production 

continuity, this would translate to aiming for higher recall values at some cost of precision and general 

accuracy. Applying threshold tuning on Table 5.10’s model as proposed in the methodology by 

maximising the Youden’s statistic or F-Score leads to the results presented in Table 5.11. From the 

table it can be observed that in both cases the correct identification of delayed deliveries is increased 

at the cost of correctly identifying on-time deliveries (reduced accuracy and reduced precision), 

therewith illustrating the trade-off that can be made and increasing the potential applicational value 

on an operational level.  
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Table 5.11: Comparison of eXtreme Gradient Boosting (XGB) model prediction performance for supplier 4 in the binary problem 
formulation when applying threshold tuning. ROC: tuning towards optimal Youden’s statistic score. PRC: tuning towards 
optimal F1-score. MCC: Matthew’s Correlation Coefficient. 

Supplier 4 No tuning ROC PRC 

MCC 0.5545 0.5138 0.4547 

Accuracy 0.8302 0.7642 0.7453 

Precision 1.0000 0.5455 0.5238 

Recall 0.3793 0.8276 0.7586 

Algorithm settings: XGB 

Gamma: 1 Max depth: 9 Min child weight: 3 

# estimators: 100 Sampling: None Max subsample: 0.8 

 

Comparing the sampling strategies of the models presented in Figure 5.15 and their overfit 

counterparts, the sampling strategies presented in Table 5.12 are observed. For the overfit models 

over-sampling or no sampling are more applied which can be expected. Especially since over-sampling 

could decrease generalisation performance and lead to overfitting (Weiss et al., 2007) and no sampling 

could indicate too much freedom during model training.  

The use of under-sampling (combined with over-sampling) seems to be valuable to reduce overfitting, 

increase generalisation and reduce negative impacts of class imbalance, which were reasons for 

Brintrup et al. (2020) to not even consider applying over-sampling in their research. 

Table 5.12: Applied sampling strategies (columns) in best model performances illustrated in figures 5.14 (overfitting) and 5.15 
(non-overfitting) with and without overfit mitigation in the binary problem formulation. 

 Over-sampling Under-sampling Hybrid sampling No sampling 

Overfitting  5 2 5 12 

Non-overfitting 0 9 9 6 

 

Tables 5.13 and 5.14 present the model performance scores on the independent test sets for the best 

performing supplier-algorithm combinations (without post-processing) for the binary and multiclass 

formulations, respectively. In Table 5.14 the precision and recall scores are macro-averaged and for 

supplier 20 no parameter combination in the applied grid led to a similar (non-overfit) MCC score in 

the train and test folds.   

Table 5.13: Overview of best prediction performance scores on the test set and corresponding algorithm per supplier (group) 
for the binary problem formulation. *excluded from supplier group since the performance score (CLIP) was not applicable to 
a large amount of the orders. MCC: Matthew’s Correlation Coefficient, LR: Logistic Regression, DT: Decision Tree, RF: Random 
Forest, SVM: Support Vector Machine, XGB: eXtreme Gradient Boosting. 

Region Supplier Algorithm Sampling MCC Accuracy Precision Recall 

Western 
Europe 
(WE) 

2 XGB Hybrid 𝟎. 𝟖𝟔𝟎𝟒 𝟎. 𝟗𝟔𝟎𝟔 𝟎. 𝟗𝟖𝟏𝟎 𝟎. 𝟗𝟕𝟏𝟕 

6 XGB Under 0.1926 0.5860 0.4188 0.6504 

8 XGB Hybrid 0.5345 0.9716 0.7000 0.4286 

9 SVC Under 0.3247 0.6691 0.2000 0.9167 

10 LR Hybrid 0.1451 0.7080 0.2105 0.4444 

11 LR Under 0.3453 0.6667 0.5147 0.7292 

13 SVC Hybrid 0.1993 0.7391 0.2500 0.4750 

14 SVC None 0.1643 0.8378 1.0000 0.0323 

15 XGB None 0.4999 0.8505 0.7143 0.4762 

18 XGB None 𝟎. 𝟕𝟓𝟏𝟎 𝟎. 𝟖𝟖𝟔𝟑 𝟎. 𝟖𝟓𝟏𝟕 𝟎. 𝟖𝟐𝟓𝟒 

20 XGB Hybrid 0.4157 0.9125 0.4286 0.5000 

WE XGB None 0.5915 0.8945 0.8175 0.5091 
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Table 5.13 (continued). 

Region Supplier Algorithm Sampling MCC Accuracy Precision Recall 

Rest of 
Europe 
(RoE) 

3 XGB Under 0.2618 0.6066 0.5000 0.7500 

5 SVC Under 0.6244 0.8214 0.6364 0.8750 

7 XGB None 0.2435 0.7681 0.8000 0.1143 

17 RF Under 0.4842 0.7383 0.7910 0.6795 

19 XGB Under 0.2769 0.7576 0.4000 0.4615 

21 LR Hybrid 0.1442 0.6341 0.1898 0.5652 

RoE DT None 0.4128 0.7964 0.6594 0.4292 

        

Rest of 
World 
(RoW) 

1 DT Hybrid 0.2202 0.6233 0.3019 0.6575 

4 DT Hybrid 0.5728 0.7830 0.5652 0.8966 

12 XGB Under 0.3652 0.6854 0.4421 0.7500 

16* SVC Hybrid 𝟎. 𝟗𝟎𝟒𝟐 𝟎. 𝟗𝟖𝟐𝟖 𝟏. 𝟎𝟎𝟎𝟎 𝟎. 𝟖𝟑𝟑𝟑 

RoW DT Under 0.2121 0.6044 0.3271 0.6646 

 

Table 5.14: Overview of best prediction performance scores on the test set and corresponding algorithm per supplier (group) 
for the multiclass problem formulation. Precision and recall values are macro-averaged. *excluded from supplier group since 
the performance score (CLIP) was not applicable to a large amount of the orders. MCC: Matthew’s Correlation Coefficient, DT: 
Decision Tree, XGB: eXtreme Gradient Boosting.

Region Supplier Algorithm Sampling MCC Accuracy Precision Recall 

Western 
Europe 
(WE) 

2 XGB Hybrid 0.5877 0.8583 0.4743 0.4790 

6 XGB Hybrid 0.2621 0.3898 0.4129 0.4325 

8 XGB Hybrid 0.4749 0.9494 0.5137 0.5447 

9 XGB Hybrid 0.4919 0.6985 0.3184 0.3712 

10 XGB Hybrid 0.3697 0.5401 0.3844 0.4038 

11 XGB Hybrid 0.2000 0.3478 0.3577 0.3544 

13 DT Under 0.1204 0.2274 0.3182 0.3534 

14 XGB Hybrid 0.1523 0.3405 0.3186 0.3688 

15 XGB None 0.3479 0.5781 0.5690 0.3384 

18 XGB Hybrid 0.6691 0.7438 0.7439 0.7453 

20 - - − − − − 

WE XGB Under 0.6047 0.7612 0.6136 0.6739 

        

Rest of 
Europe 
(RoE) 

3 XGB Hybrid 0.1928 0.3770 0.5028 0.3349 

5 XGB None 0.3796 0.5179 0.3738 0.3706 

7 XGB Hybrid 0.3947 0.5580 0.4727 0.4335 

17 XGB Hybrid 0.3733 0.5638 0.3536 0.4243 

19 XGB Hybrid 0.0000 0.4091 0.0818 0.2000 

21 XGB None 0.2659 0.5168 0.5535 0.3212 

RoE XGB Hybrid 0.3822 0.5176 0.4989 0.5015 

        

Rest of 
World 
(RoW) 

1 XGB Hybrid 0.3937 0.5706 0.4865 0.4505 

4 XGB Hybrid 0.4971 0.6509 0.5652 0.5389 

12 XGB None 0.4881 0.6244 0.5776 0.4505 

16* XGB Under 𝟎. 𝟕𝟓𝟔𝟗 𝟎. 𝟖𝟖𝟑𝟔 𝟎. 𝟖𝟓𝟏𝟑 𝟎. 𝟖𝟎𝟐𝟑 

RoW XGB Hybrid 0.3588 0.5206 0.5015 0.4502 

 

When comparing the MCC and accuracy scores of the different suppliers, it can be observed that very 

different levels of performance are achieved on the same grid of model parameters, with a shared 

difficulty to create high performing models in the multiclass formulation. The resulting supplier models 

range from almost random predictions (supplier 19, multiclass) to predicting with high accuracy 

(supplier 16, binary).  
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Suppliers indicated in bold in Tables 5.13 and 5.14 correspond to supplier prediction models which 

seem suitable for direct implementation as decision support using a threshold of 0.8 for recall and 

accuracy. Suppliers in italic are expected to lead to applicable prediction models when applying 

threshold tuning, considering a finer grid, or performing additional individual parameter tuning. 

Nevertheless, for slightly more than half of the considered suppliers no valuable prediction model 

could be created, illustrating the need for further (follow-up) research. 

From the results it can also be observed that over-sampling alone has not led to best performing 

models in both problem formulations. In the binary case no particular algorithm-sampling method 

combination consistently led to the best results, although (combined) under-sampling is observed in 

75% of the cases. In the multiclass formulation the XGB-Hybrid sampling combination often leads to 

the best results. However, the multiclass performance cannot equal the obtained performances in the 

binary formulation. 

To get insights and potential explanations for the observable difference in performance or success 

factors, data characteristics of the different suppliers were compared. However, no shared 

characteristics visible in the dataset were observed for the successful or potential suppliers that were 

noticeably different to the unsuccessful suppliers. Examples are imbalance ratios ranging from 0.19 to 

25.6, dataset sizes ranging from 277 to 39322 entries and the selected number of features ranging 

from 3 to 14. 

Since the applied methodology and considered parameter grids are consistent throughout the 

different suppliers and the same data source is used, it is expected that the reason for the different 

performance follows from individual supplier behaviour itself, insufficient available data (for the 

encountered scenarios), Philips’ interactions with its suppliers or additional external influences. 

Especially since some of these aspects are known to be present and not explicitly represented in the 

available dataset as identified and stated before (see section 5.1.1). 

5.5 Discussion and reflection 
The obtained results show that high prediction performances can be obtained after application of the 

proposed methodology on the available data set. In the binary case MCC scores up to 0.9 are achieved, 

accompanied with 98% accuracy, 100% precision and 83% recall on independent test sets. In the 

multiclass formulation MCC scores up to 0.75 are achieved, accompanied with 88% accuracy, 85% 

macro-precision and 80% macro-recall. However, performance in the multiclass case is in general 

lower than its binary counterpart. This can be expected since the introduction of additional prediction 

classes increases the complexity of the classification task and data requirements, since distinctions 

between all classes need to be represented in the dataset as well. Therefore, multiclass classification 

is proposed to be a follow-up and extension of binary classification once valuable performances are 

obtained in the binary problem formulations. 

For the best obtained results, under-sampling (combined with over-sampling) has been applied in 75% 

and 83% of the cases in the binary and multiclass problem definition, respectively. This illustrates the 

value of sampling techniques, and in particular under-sampling, to reduce negative effects of class 

imbalance and increase generalisability and performance of prediction models in supplier disruption 

prediction.   
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Focussing on the obtained results, it is difficult to compare the applied region-based grouping with its 

individual components. The combination of different suppliers with different sizes influences the 

results to such extent that it is difficult to state if a region-based supplier group can cover general 

supplier behaviour better than its individual components purely based on the performance scores. In 

the ‘Western Europe’ group for example, suppliers 8 and 18 account for 77% of the total number of 

orders, expecting that the performance of the grouped model is highly in line with their individual 

models. However, when comparing the selected features (see Appendix E: Selected features per 

supplier (group)), the main features of supplier 18 are not selected in the supplier group while high 

performance5 is obtained. This indicates that different, more generalised behaviour is captured and 

therewith value of the applied grouping. 

In contrast, in the ‘Rest of World’ (RoW) group each individual supplier model performs better than 

the group model, illustrating that the applied grouping is too limited. Therefore, different methods or 

logic for grouping should be applied in future research. 

Reflecting on the obtained results from the binary formulation presented in Table 5.13, one could 

question the general applicability of the proposed methodology and the value of ML in this case. 

However, since suppliers are present for which high performing or promising prediction models can 

be trained, it is difficult to believe the methodology is the limiting factor for the unsuccessful suppliers. 

The same holds for the data usage since order data are created and managed in a similar way. 

Therefore, it is expected that influences on delivery behaviour, such as communication between 

buyers and suppliers and shared forecast information (as suggested in Figure 5.1), affect the captured 

behaviour in the data to such extent that operational behaviour cannot be extracted using the available 

data in combination with the proposed methodology. This hypothesis can be supported and potentially 

verified by consulting responsible buyers for each of the considered suppliers and compare their 

answers regarding the amount of communication with suppliers, frequency of executing mitigating 

measures and general experience with the supplier. Unfortunately, this could not be included in this 

research, and is urged to carry out for the initiated follow-up projects.  

Nevertheless, because of these uncaptured influences, the inability to successfully extract supplier 

behaviour could assist in identifying operations which are (heavily) manually influenced, or suppliers 

which perform unpredictable themselves. In both cases this translates to re-evaluating the current 

supply chain design and interactions, which could lead to a better performing, more predictable 

supplier relation. Therewith, assisting the mitigation of disruptions on a more structural (tactical) level.  

 

  

 
5 An MCC score of 0.59 with an accuracy of 90% and 82% precision 
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6 Conclusion and recommendations 
This chapter presents the main findings of this research and recommendations for future research 

directions and Philips. In section 6.1 the main findings regarding the defined sub-questions are 

presented whereafter the main research question is answered. Section 6.2 presents recommendations 

for future research, whereafter section 6.3 concludes this report by presenting recommendations for 

Philips.  

6.1 Main findings 
Chapter 2 focussed on the first sub-question by formulating a generalised presentation of a production 

environment focusing on the interaction between production and its suppliers. Common physical and 

information flows are presented, illustrating the distinction between the material demand and supply 

side, in which procurement (planners and buyers) takes a central managing role. Material Requirement 

Planning (MRP) systems are commonly used in production systems, storing large amounts of data 

regarding the material supply-related flows in created purchase orders (POs). Therefore, production 

environments in which procurement manages material supply and stores historical POs are 

considered, potentially accompanied by data sources covering additional information flows as shared 

demand forecasts or executed mitigating measures.  

The second sub-question is addressed in chapter 3, resulting in a literature review focussing on applied 

machine learning (ML) techniques and algorithms for supplier disruption prediction. The review 

explained the observed methodologies in literature and showed a limited number of studies, 

illustrating the novelty of this empirical field. Only the application of binary classification for predicting 

delayed deliveries or stock-out occurrences is observed, indicating the unexplored field of multiclass 

classification and therewith a gap in current literature. Additionally, different performance metrics are 

considered in the different studies, reducing the comparability of obtained performance results. It was 

found that the presence of a (manufacturing) party with specific domain knowledge is necessary for 

meaningful feature engineering and selection. Sampling techniques as Synthetic Minority Over-

sampling (SMOTE) and random under-sampling (RUS) to reduce negative influences of class imbalance 

combined with Logistic Regression (LR), Decision Tree (DT), Random Forest (RF) and Support Vector 

Machine (SVM) algorithms are mainly applied. The common approach to explore different algorithms 

indicate the need for research focussing on faster identification of potential algorithms such that more 

time can be allocated to increasing model performance rather than exploring different algorithms. 

Chapter 4 focuses on the developed methodology as answer to the third sub-question. The proposed 

methodology consists of six steps incorporating binary and the novel extension to multiclass 

classification. Additionally, the methodology considers individual suppliers and custom supplier groups 

rather than all suppliers at once, which is different from preceding work. Considering individual 

suppliers and custom groups reduces initial complexity. Additionally, extracted supplier specific 

behaviour can be easier verified and accepted by buyers. The six steps of the methodology are: 

1. Data collection and exploration: system analysis incorporated with data collection and focuses 

on understanding the production system, its data generation (influences), limitations and 

prediction goal. 

2. Performance and metric definition: translating the prediction goal to suitable metrics for model 

performance evaluation throughout model development. Matthew’s Correlation Coefficient 

(MCC) is selected as primary performance metric supported by accuracy, precision and recall. 
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3. Data preparation and feature engineering: transformation to suitable ML formats of the 

collected data elements, removal of incorrect data entries or noise and addition of data 

characteristics (features) using available raw data, domain knowledge and experience. For 

feature engineering 3 main feature domains (“Order”, “Supplier-material” and “Dynamic 

‘environment’”) including feature suggestions are defined and proposed. 

4. Supplier grouping and feature selection: defining additional supplier groups using the 

individually considered suppliers and reducing the dimension and complexity of the resulting 

sub-problems by feature selection. Recursive feature elimination using feature permutation 

importance is considered rather than standard feature importance to support categorical 

features as well as giving a clearer result regarding relevant characteristics related to observed 

supplier (group) behaviour. 

5. Data pre-processing: application of ML-algorithm specific transformations as data scaling or 

normalisation and the possibility to apply resampling on each considered subset. No sampling, 

SMOTENC, random under-sampling and a hybrid formulation of both are incorporated to 

incorporate support for categorical features while extending the currently applied techniques. 

6. Algorithm comparison and evaluation: evaluation of model performances for the individual 

suppliers and supplier groups resulting from algorithm parameter grids for five6 different ML 

algorithms. Additionally, post-processing by means of threshold tuning for binary classification 

is incorporated. 

Chapter 5 presents the results of the application of the methodology on 21 suppliers in a case study at 

Philip’s production facility to explore its potential value and answer the fourth sub-question. Historical 

PO data has been made available to predict if placed POs will be delivered delayed in the binary case, 

or if they will be delivered extremely early, early, on-time, delayed or extremely delayed in the 

multiclass case. Results from the feature selection step indicate an unexpected importance of the 

feature ‘Due Week day’, corresponding to the day of the week when an order was due. Discussion with 

practitioners led to the hypothesis that inefficiencies occur in process-related aspects like day-offs of 

buyers or delayed invoicing, which further (internal) research needs to verify. In the binary problem 

formulation, MCC scores up to 0.9 are obtained, accompanied with 98% accuracy, 100% precision and 

83% recall on independent test sets for individual suppliers. In the multiclass case lower performances 

are observed (0.75 MCC, 88% accuracy, 85% macro-precision and 80% macro-recall), illustrating the 

possibility to develop multiclass prediction models with the proposed methodology. However, the 

generally lower performance with respect to binary classification leads to the conclusion that 

multiclass classification for now must be seen as an extension of binary classification when valuable 

performance in binary classification is (already) obtained. Additionally, threshold tuning showed the 

possibility to improve identification of actual delayed deliveries at the cost of increasing the number 

of false positives. 

The results also illustrate the importance to consider individual suppliers or subsets and be aware of 

limitations when focussing on the entire dataset as whole as it can translate to a ‘supplier imbalance 

problem’, negatively influencing the results and practical use. The value of applying resample 

techniques (under-sampling, potentially combined with over-sampling) to reduce negative effects of 

class imbalance and overfitting is illustrated as well. 

  

 
6 Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, and eXtreme Gradient Boosting 
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The differences in prediction performance between individual suppliers show that historical PO data 

is insufficient in a general context. Literature obtained sufficient prediction performances resulting 

from using historical PO data, but this research illustrated that additional factors influence prediction 

performance and feasibility for individual suppliers, emphasizing the importance of the first step of the 

methodology “Data collection and exploration”. 

Additionally, preceding literature does not mention overfitting or generalisation ability of prediction 

models and does not state training performance, making it difficult to put their results into perspective. 

As figures 5.14 and 5.15 illustrate, higher prediction scores can be obtained when a model is overfit 

and recreates the dataset rather than the covered relations and behaviour. Especially in the research 

from Brintrup et al. (2020), it would have been valuable to present the train results, since the limited 

amount of considered features combined with the available datapoints with respect to the used 

maximum tree depth could result in overfitting. Therefore, preceding results cannot be generalised 

and similar methodologies and reporting are needed, in which the proposed methodology aims to 

assist. 

The possibility of the methodology to identify important characteristics relevant for observed delayed 

deliveries can assist root cause analysis to improve (internal) operations or supplier relations. 

Additionally, differences between suppliers of successful and less successful supplier models can be 

investigated which can lead to redesigns of supply chain components. Therewith, both can assist in 

mitigating disruptions on a tactical level. The high-performing prediction models can be applied on an 

operational level assisting planners and buyers in time prioritisation, evaluating production plan 

feasibility, and increasing the time window in which mitigating measures can be applied. This can lead 

to less expensive mitigating measures and use of different transport alternatives as well. 

Therefore, the research question “How can machine learning be applied to assist in the mitigation of 

material-oriented supplier disruptions in production environments?” can be answered by concluding 

that machine learning can be applied to assist in mitigating material-oriented supplier disruptions on 

an operational and tactical level. This includes assisting in evaluating the feasibility of (upcoming) 

orders and production plans, increasing the time window for executing mitigating measures and 

identifying possible root causes for inefficient processes or supplier relations. In the Supply Chain 

Resilience Framework, this translates to the expected contributions towards an increase in supply 

chain resilience by increasing awareness, flexibility and visibility. However, additional research is 

needed to increase overall prediction performance (in the specific case study) and therewith direct 

applicability in operations. 
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6.2 General recommendations 
Multiple future research directions can be defined to increase the possibilities of the proposed 

methodology and improve the application value. Grouping of suppliers has been manually done based 

on region to potentially discover regional-related effects. However, the application of manual grouping 

on region might be too limited and different grouping methods or characteristics to group by need to 

be investigated. Examples are ML-based clustering or grouping based on different characteristics or 

to-be-defined risk measures with respect to potential impact on production continuity. These 

measures could for example depend on lead times, manufacturing method, material specificness and 

potential of quality issues. Additionally, applying supplier grouping after feature selection on the 

individual suppliers can be investigated, since suppliers with similar important features might show 

similar behaviour. 

The imposition of ‘Material’ during feature selection showed minor (positive) changes that could arise 

after imposing specific features. Since feature selection impacts the following development steps 

significantly, it can be valuable to compare different selection methods combined with the feature 

permutation score. Suggestions are the computationally expensive full factorial search, or the 

adaptation in which performance of different subsets of a fixed number of features is evaluated. 

Additionally, the application of different estimators for the future permutation importance can be 

explored to investigate the impact on feature ranking and bias towards increased performance for 

similar estimators in the algorithm comparison step. 

The results show the valuable addition of resampling during model training. The applied sampling 

factors for over-sampling and under-sampling are determined based on consultation with ML 

practitioners. However, different sampling factors could be more valuable without reducing the 

generalisation ability significantly. Additional research could focus on the effect of these factors and 

potentially define thresholds after comparing prediction performances over different (publicly 

available) datasets. 

Additionally, the proposed parameter grid can be re-evaluated since different combinations resulted 

in overfitting. Considering a finer grid could result in higher performance of individual models as well, 

although it would increase computational time. 

Future research directions regarding extensions of the proposed methodology can focus on the 

possibility to update or re-train developed models over time in the applicational context, to account 

for changes in supplier behaviour or ways of working. An example could be to include the newly 

acquired data in the previous dataset, while reducing weights (and therewith impact) of the older data. 

However, its potential and value within production environments needs to be assessed. 

Finally, incorporating different data sources and applying the methodology on different production 

environments could improve the general prediction performance while showing its general 

applicability to introduce and explore ML for material-oriented disruption prediction in production. 
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6.3 Recommendations for Philips 
For Philips, different suggestions and explorative directions are proposed, focussing more on the 

results to increase the feasibility and applicability for the considered and other production facilities. 

The results have shown the possibility of the methodology to extract supplier behaviour and develop 

successful prediction models. However, this has not been achieved for all the selected suppliers. The 

available data was not sufficient to indicate specific attributes which contribute positively or negatively 

towards the prediction performances. Since the methodology for the different supplier models is the 

same, it is expected that the prediction performance is influenced by external and internal factors such 

as communication between buyers and suppliers, shared demand forecasts or executed mitigating 

measures. Therefore, additional research is needed to focus on these influences and differences 

between supplier prediction performances. 

Similarly, it is recommended to investigate and verify the idea that the importance of ‘Due Week day’ 

reflects inefficiencies in internal processes since it could limit overall performance. 

The available data did not cover intermediate PO or shipment updates and changes which are 

necessary to incorporate prediction updates in the resulting models. Therefore, it is recommended to 

collect and incorporate more data related to order updates throughout the active period of a PO such 

that these prediction updates can be incorporated and provided. Examples of such order updates are 

shipment updates or updates received from the supplier. 

It can also be interesting to shift the scope from manually created orders to orders following schedule 

line agreements (SA) or which are results of supplier managed inventory (VMI) policies. Expected is 

that less influences from Philips’ buyers are present, which can result in stronger expressions of 

supplier behaviour leading to higher applicability of ML in disruption prediction. 

The methodology can be applied to different production facilities as well. Differences in way-of-

working and suppliers will result in different performances, which can lead to better insights regarding 

the general applicability and feasibility in Philips’ production facilities. 

Regarding data extraction, recommended is to extract the required data elements from the ERP system 

itself without the use of a third-party extraction/reporting tool as Every Angle. The initial use of such 

tools can be viable for quick extraction and analysis in the early stages. However, for deeper analysis, 

the implied logic and limitations of such tools can negatively influence results or impose additional 

work to reverse the undesired transformations or logic. 
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Appendix A: Considered algorithm parameters 
The parameters selected for the proposed grid searches are the following: 

• Regularisation - 𝐶:  

• Logistic Regression: the value of C represents the amount of regularisation (variance 

reduction) applied in the calculation of the error function. The smaller the value for 𝐶, 

the more regularisation is applied and the simpler the decision function gets, reducing 

the potential for overfitting. 

• Support Vector Machine: “trade-off of correct classification of training examples 

against maximization of the decision function’s margin” (Scikit-Learn, 2021). It serves 

as a regularisation parameter, in which smaller values for 𝐶 aim for a larger margin 

leading to a simpler decision function with less potential for overfitting. 

• Gamma - 𝛾:  

• Support Vector Machine: the value of 𝛾 represents the effect of a single sample on the 

final model. The 𝛾-value could be described as the inverse radius of influence for 

samples, with smaller values meaning a larger radius. 

• eXtreme Gradient Boost: the value of 𝛾 describes the minimum loss reduction in order 

to split a current node in the decision tree (XGBoost, 2021). Increasing the value for 𝛾 

results in a more conservative model, reducing the potential for overfitting. 

• Class-weight: a possibility to adjust the weight of a sample given the number of occurrences 

of the specific class. This parameter enables a (simple) implementation of cost-sensitive 

learning since different misclassification costs can be introduced and used. 

• Maximum tree depth: the set value represents the maximum depth of the decision tree being 

created. Smaller values lead to smaller more conservative trees reducing the potential of 

overfitting. 

• Maximum leaf nodes: the value describes the maximum number of final (leaf) nodes present 

in the created decision tree. Smaller values lead to a smaller tree with less potential for 

overfitting. 

• Minimum child weight:  

• Decision Tree and Random Forest: the value represents the minimum number 

required samples to form a tree node. Higher values reduce the number of nodes 

resulting in more conservative trees, while simultaneously reducing the potential of 

overfitting. 

• eXtreme Gradient Boost: the value represents the “minimum sum of instance weight 

(hessian) needed in a child” (XGBoost, 2021). Therefore, it does not set the minimum 

required samples, but the minimum sum, which results in a similar behaviour: higher 

values reduce the number of nodes resulting in more conservative trees, while 

simultaneously reducing the potential of overfitting. 

• Number of estimators: the value represents the number of estimators considered in the 

bagging or boosting process. 
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Appendix B: Example dataset slice 
Table B.1: Example entries and format of obtained dataset 
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Appendix C: List of (engineered) features 
Table C.1: Overview of all considered (engineered) features 

Feature Format Description 

Order   

Creation/ 

Due 

Day Integer Day of the month of the creation or due date 

Week day Integer Week day of the creation or due date 

Week Integer Week of the creation or due date 

Month Integer Month of the creation or due date 

Season Integer Season of the creation or due date 

Year Integer Year of the creation or due date 

Supplier Category Supplier number as categorical variable 

Material Category Material number as categorical variable 

Quantity Float Quantity of ordered material 

Schedule Line value Float Monetary value of the specific schedule line 

Diff. order-due Integer Difference in days between order and due date 

Order/Lead time ratio Float 
Ratio between time between order and due date normalised 

by the material’s lead time 

Frequency indicator Binary 
Indicator whether the order is placed sooner with respect to 

lot size or last  uarter’s median order fre uency 

Quantity indicator Binary 
Indicator whether the order quantity is higher than the fixed 

lot size or last  uarter’s median order  uantity 

   

Supplier – material   

Lead time Integer Contracted lead time in number of days 

Price Float Price of the ordered material per standardised unit 

Safety time Integer Number of workdays the material order is moved forward 

ABC indicator Category 
Material class according to ABC classification (quantity-spend 

relation) 

SNC relevancy Text Category indicating maturity level of information exchange 

Lot size type Text 
Category indicating frequency or time dependent 

replenishment  

Unique materials Integer Number of unique materials supplied by supplier 

Agility (Brintrup et al., 

2020) 
Integer Proxy for ability of supplier to handle order variance 
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Dynamic ‘environment’   

CLIP score Float 
Supplier performance score of the last preceding recorded 

month, as calculated within Philips’ GSRS 

CLIP score 3 months Float Average of CLIP scores from the last three months 

Outstanding POs Integer Number of outstanding standard orders for the material 

Outstanding PO items Integer Number of outstanding PO items for the material 

Overdue POs Integer Number of overdue standard orders for the material 

Overdue PO items Integer Number of overdue PO items for the material 

Outstanding quantity Float Outstanding quantity for the material 

Overdue quantity Float Overdue quantity for the material 

Weighted overdue quantity Float 
Quantity overdue weighted by the amount of days overdue 

for the material 

Sup. outstanding POs Integer Number of outstanding standard orders on supplier level 

Sup. outstanding POs (SA) Integer 
Number of outstanding schedule line agreements for the 

material 

Sup. outstanding PO items Integer Number of outstanding PO items on supplier level 

Sup. overdue POs Integer Number of overdue standard orders on supplier level 

Sup. overdue PO items Integer Number of overdue PO items on supplier level 

Sup. outstanding quantity Float Quantity of outstanding material on supplier level 

Sup. overdue quantity Float Quantity of overdue material on supplier level 

Sup. weighted overdue 

quantity 
Float 

Quantity overdue weighted by the amount of days overdue 

on supplier level 

 

  



 

Page | 57  

Appendix D: Performance distributions of the selected suppliers 

 
Figure D.1: Delivery performance supplier 1 

 
Figure D.2: Delivery performance supplier 2 

 
Figure D.3: Delivery performance supplier 3 

 
Figure D.4: Delivery performance supplier 4 

 
Figure D.5: Delivery performance supplier 5 

 
Figure D.6: Delivery performance supplier 6 

 
Figure D.7: Delivery performance supplier 7 

 
Figure D.8: Delivery performance supplier 8 
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Figure D.9: Delivery performance supplier 9 

 
Figure D.10: Delivery performance supplier 10 

 
Figure D.11: Delivery performance supplier 11 

 
Figure D.12: Delivery performance supplier 12 

 
Figure D.13: Delivery performance supplier 13 

 
Figure D.14: Delivery performance supplier 14 

 
Figure D.15: Delivery performance supplier 15 

 
Figure D.16: Delivery performance supplier 16 
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Figure D.17: Delivery performance supplier 17 

 
Figure D.18: Delivery performance supplier 18 

 
Figure D.19: Delivery performance supplier 19 

 
Figure D.20: Delivery performance supplier 20 

 
Figure D.21: Delivery performance supplier 21 

 
Figure D.22: Delivery performance suppliers Western Europe 

 
Figure D.23: Delivery performance suppliers Rest of Europe 

 
Figure D.24: Delivery performance suppliers Rest of World 
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Appendix E: Selected features per supplier (group) 
Table E.1: Selected features and their ranking for each supplier (group) in the binary problem formulation. 

Supplier Selected features + ranking  Supplier Selected features + ranking 

1 

- Due Year 

- Sup. overdue quantity 

- Material 

- Schedule Line value 

- Price 

- Order/Lead time ratio 

- Sup. outstanding POs 

- Due Week 

- CLIP score 

- Outstanding quantity 

 

2 

- Diff. order-due 

- Sup. outstanding quantity 

- Sup. weighted overdue quantity 

- Due Week 

- Outstanding quantity 

- Sup. overdue POs 

- CLIP score 3 months 

- Outstanding POs 

- CLIP score 

- Creation Day 

- Creation Week 

3 

- Due Week 

- Diff. order-due 

- Material 

- Sup. outstanding PO Items 

- Schedule Line value 

- Sup. outstanding quantity 

- Quantity 

- Due Day 

- CLIP score 3 months 

- Order/Lead time ratio 

- Due Week day 

 

4 

- Due Week 

- Due Day 

- Order/Lead time ratio 

- Due Week day 

- Sup. outstanding quantity 

- ABC indicator 

- CLIP score 3 months 

- CLIP score 

- Sup. outstanding POs 

5 

- Material 

- Sup. overdue POs 

- Order/Lead time ratio 

- Due Week 

- Outstanding PO items 

- Schedule Line value 

- Creation Day 

- Quantity 

- Price 

- Due Week day 

- Due Day 

 

6 

- Order/Lead time ratio 

- Material 

- Creation Day 

- Due Day 

- Due Week 

- CLIP score 3 months 

- CLIP score 

- Quantity 

- Sup. outstanding quantity 

- Sup. weighted overdue quantity 

- Price 

7 

- Sup. overdue quantity 

- Material 

- Creation Week 

- Schedule Line value 

- Sup. outstanding POs (SA) 

- Due Week 

- Creation Day 

- Diff. order-due 

- Lot size type 

- Due Day 

- CLIP score 3 months 

 

8 

- Due Day 

- Sup. weighted overdue quantity 

- CLIP score 3 months 

- Material 

- Sup. outstanding PO Items 

- Sup. outstanding POs (SA) 

- Diff. order-due 

- Due Week 

- Sup. overdue PO items 

- Creation Day 

- Creation Week Day 

- Creation Week 

- Due Week day 

- Lot size type 
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Supplier Selected features + ranking  Supplier Selected features + ranking 

9 

- Safety time 

- Material 

- Creation Week 

- Schedule Line value 

 

10 

- Due Week day 

- Material 

- Sup. outstanding quantity 

- Order/Lead time ratio 

- Price 

- Creation Week 

- Due Day 

- Quantity 

- Due Week 

- Sup. outstanding POs 

- Schedule Line value 

- CLIP score 

- CLIP score 3 months 

11 

- Price 

- Material 

- Due Week day 

- Order/Lead time ratio 

- CLIP score 

- Sup. outstanding POs (SA) 

- Quantity 

 

12 

- Due Year 

- Material 

- Due Day 

- Price 

- Sup. outstanding quantity 

- Diff. order-due 

- Due Week 

- Creation Day 

- Schedule Line value 

- Outstanding quantity 

- Order/Lead time ratio 

- Sup. outstanding PO Items 

- Due Week day 

13 

- Creation Week 

- Material 

- Due Week day 

- Order/Lead time ratio 

- Due Week 

- Sup. outstanding quantity 

 

14 

- Order/Lead time ratio 

- Material 

- Creation Day 

- Due Day 

- Due Week 

- CLIP score 3 months 

- CLIP score 

- Quantity 

- Sup. outstanding quantity 

- Sup. weighted overdue quantity 

- Price 

15 

- Due Week 

- Material 

- Diff. order-due 

- Schedule Line value 

- CLIP score 3 months 

- Creation Day 

- Due Day 

- ABC indicator 

- Order/Lead time ratio 

- Sup. outstanding POs 

- Creation Week 

- CLIP score 

 

16 

- Order/Lead time ratio 

- Due Day 

- Sup. outstanding quantity 

- Creation Week 

- Creation Week Day 

- Creation Day 

17 

- Due Week day 

- CLIP score 3 months 

- Due Week 

- Sup. outstanding POs 

- Material 

- Due Day 

 

18 

- Due Week 

- CLIP score 3 months 

- Due Week day 

- Sup. outstanding PO Items 

- Sup. outstanding POs 
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Supplier Selected features + ranking  Supplier Selected features + ranking 

19 

- Due Day 

- Due Week 

- Sup. outstanding quantity 

- Schedule Line value 

- Due Week day 

- Creation Week 

- Creation Day 

- CLIP score 3 months 

 

20 
- Due Week 

- Due Week day 

- Creation Day 

21 

- Material 

- Sup. outstanding POs 

- Due Day 

- Outstanding POs 

- Lot size type 

- Due Week 

- Price 

- Order/Lead time ratio 

- Creation Week 

- CLIP score 

- Sup. outstanding quantity 

- Schedule Line value 

- Sup. outstanding POs (SA) 

- CLIP score 3 months 

- Sup. overdue quantity 

- Diff. order-due 

- Outstanding quantity 

 

Western 

Europe 

(group) 

- Supplier 

- Material 

- Sup. overdue quantity 

- ABC indicator 

- Order/Lead time ratio 

- Sup. overdue PO items 

- Due Week day 

- Due Year 

- Sup. overdue POs 

Rest of 

Europe 

(group) 

- Supplier 

- Material 

- Agility 

- Sup. outstanding quantity 

- Price 

- CLIP score 

- Sup. weighted overdue quantity 

- Due Week 

- Creation Week 

- Due Week day 

- Schedule Line value 

 

Rest of 

World 

(group) 

- Sup. outstanding quantity 

- CLIP score 

- Material 

- Due Week 

- Sup. overdue quantity 

- Schedule Line value 

- Creation Week 

- Diff. order-due 

- Due Day 

- Agility 

- Outstanding quantity 

- Order/Lead time ratio 

- CLIP score 3 months 

- Safety time 
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Table E.2: Selected features and their ranking for each supplier (group) in the multiclass problem formulation. 

Supplier Selected features + ranking  Supplier Selected features + ranking 

1 

- Material 

- Outstanding quantity 

- CLIP score 

- Diff. order-due 

- Due Week day 

- Due Week 

- CLIP score 3 months 

- Outstanding POs 

- SL Value 

- Quantity 

 

2 

- Material 

- Diff. order-due 

- Due Day 

- Sup. weighted overdue quantity 

- Due Week day 

- Due Week 

3 

- Order/Lead time ratio 

- Material 

- Sup. outstanding quantity 

- Due Week day 

- CLIP score 3 months 

- Quantity 

- SL Value 

 

4 

- Due Week 

- Due Week day 

- Due Day 

- CLIP score 3 months 

- Sup. outstanding POs 

5 

- Material 

- Due Week 

- Due Week day 

- Sup. weighted overdue quantity 

- Order/Lead time ratio 

- SL Value 

- Frequency indicator 

- Creation Week 

- Outstanding POs 

 

6 

- Due Week day 

- Diff. order-due 

- Material 

- Sup. outstanding POs 

- Sup. outstanding quantity 

- Due Week 

- Sup. overdue quantity 

- CLIP score 3 months 

- SL Value 

- Due Day 

- Order/Lead time ratio 

7 

- Due Week day 

- Material 

- CLIP score 3 months 

- Due Day 

- Due Week 

- Sup. outstanding POs 

- Order/Lead time ratio 

 

8 

- Sup. weighted overdue quantity 

- Creation Week day 

- Due Day 

- Due Week 

- Outstanding POs 

- Sup. outstanding POs (SA) 

- Sup. outstanding PO items 

- Material 

- Lead time 

- Creation Week 

- Creation Day 

- Sup. outstanding POs 

- Price 

- Sup. overdue PO items 

- ABC indicator 

- Frequency indicator 

- CLIP score 

 

  



 

Page | 64 

Supplier Selected features + ranking  Supplier Selected features + ranking 

9 

- Safety time 

- Material 

- Diff. order-due 

- Due Week day 

- Lot size type 

- Sup. outstanding quantity 

 

10 

- Due Week day 

- Material 

- Sup. outstanding quantity 

- Due Week 

- Diff. order-due 

- Sup. outstanding POs 

- SL Value 

- CLIP score 3 months 

11 

- Material 

- Due Week day 

- CLIP score 

- Price 

- Due Week 

- Sup. outstanding POs 

- Sup. outstanding quantity 

- SL Value 

- Creation Week 

- Sup. overdue quantity 

- Diff. order-due 

- Creation Week day 

- Creation Day 

 

12 

- Due Year 

- Due Week day 

- Material 

- Sup. outstanding POs 

- Due Day 

- Due Week 

- SL Value 

- Order/Lead time ratio 

- CLIP score 3 months 

- Sup. outstanding quantity 

- Diff. order-due 

- Sup. overdue quantity 

- Sup. overdue POs 

- ABC indicator 

- Outstanding quantity 

13 

- Material 

- Due Week day 

- Due Week 

- Sup. outstanding quantity 

- Quantity 

- Order/Lead time ratio 

- Due Day 

- Creation Week 

- Creation Day 

- SL Value 

- Price 

- Diff. order-due 

- Outstanding quantity 

- CLIP score 

- Lot size type 

- Outstanding POs 

- Safety time 

 

14 

- Due Day 

- Material 

- Due Week day 

- Diff. order-due 

- CLIP score 

- Creation Week 

- Creation Day 

- ABC indicator 

- CLIP score 3 months 

- Due Week 

- Order/Lead time ratio 

- Outstanding POs 

15 

- Sup. outstanding PO items 

- Material 

- Sup. outstanding quantity 

- Lot size type 

- CLIP score 3 months 

- Due Day 

- Creation Week 

- Creation Day 

- Order/Lead time ratio 

- CLIP score 

- Diff. order-due 

- Due Week day 

- Due Week 

- Sup. weighted overdue quantity 

- Sup. outstanding POs 

 

16 

- Order/Lead time ratio 

- Creation Week day 

- Due Day 

- Creation Week 

- Sup. outstanding quantity 

- Material 

- Due Week 

- Sup. outstanding PO items 

- Quantity 

- Creation Day 

- Lot size type 

- Sup. overdue POs 
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Supplier Selected features + ranking  Supplier Selected features + ranking 

17 

- Due Week day 

- CLIP score 3 months 

- Material 

- Due Week 

- Sup. outstanding quantity 

- SL Value 

- Due Day 

- Sup. outstanding POs 

- CLIP score 

- Diff. order-due 

- Creation Week 

- Quantity 

- Creation Day 

 

18 

- Due Week day 

- Order/Lead time ratio 

- Sup. outstanding POs 

- Material 

- Due Week 

- CLIP score 3 months 

- ABC indicator 

- Creation Day 

- Sup. outstanding quantity 

- CLIP score 

- Due Day 

- Sup. outstanding PO items 

- Lead time 

- Quantity 

19 

- Creation Week 

- Sup. outstanding quantity 

- Material 

- Due Day 

- Due Week 

- Diff. order-due 

- Creation Day 

- CLIP score 3 months 

- SL Value 

 

20 -  

21 

- Due Week day 

- Material 

- Due Week 

- Sup. outstanding POs 

- Diff. order-due 

- Order/Lead time ratio 

- Lot size type 

- Due Day 

- Sup. outstanding quantity 

 

Western 

Europe 

(group) 

- Supplier 

- Material 

- Due Week day 

- Diff. order-due 

- Order/Lead time ratio 

- Due Week 

Rest of 

Europe 

(group) 

- Due Week day 

- Material 

- Agility 

- Due Week 

- Order/Lead time ratio 

- CLIP score 

- Diff. order-due 

- Creation Week 

 

Rest of 

World 

(group) 

- Material 

- Due Week day 

- Sup. outstanding POs 

- Outstanding POs 

- Sup. outstanding PO items 

- Diff. order-due 

- Agility 

- Sup. outstanding quantity 

- Due Week 

- Due Day 

- CLIP score 3 months 

- SL Value 

- Creation Week 

- Outstanding quantity 

- CLIP score 

- Order/Lead time ratio 
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Appendix F: Overviews of selected features per region 

 
Figure F.1: Overview of features selected in Western Europe 

for the binary problem formulation 

 
Figure F.2: Overview of features selected in Western Europe 

for the multiclass problem formulation 

 
Figure F.3: Overview of features selected in Rest of Europe 

for the binary problem formulation 

 
Figure F.4: Overview of features selected in Rest of Europe 

for the multiclass problem formulation 

 
Figure F.5: Overview of features selected in Rest of World 

for the binary problem formulation 

 
Figure F.6: Overview of features selected in Rest of World 

for the multiclass problem formulation 
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Appendix G: Research paper 
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Abstract— Recent developments in supply chains and supply 

chain management (SCM) lead to increased complexity and 

vulnerability of supply chain operations. Therefore, it is needed to 

better anticipate and prepare for or prevent disruptions from 

occurring. Increasing interest for the application of machine 

learning in supply chain (risk) management has been observed, 

but applicational studies are lacking. Therefore, in this paper a 

generalised methodology is proposed to introduce and apply 

machine learning to provide insights in supply chain operations 

and predictive analytics for supply chain (risk) management. The 

methodology is applied to a case study from a high-tech medical 

imaging manufacturer with the focus on predicting delivery 

performance of supplier deliveries by means of classification. 

Experiments show that the application of the methodology led to 

successful model development resulting in binary and multiclass 

classification models obtaining Matthew’s Correlation Coefficient 

(MCC) scores of 0.75 accompanied with 90% accuracy, 87% 

precision and 84% recall and MCC scores of 0.66 accompanied 

with 74% accuracy, 74% macro-precision and 74% macro-recall, 

respectively. 

 

 
Index Terms—machine learning, risk prediction, 

manufacturing, material management, supplier disruptions, 

supply chain management 

 

 

I. INTRODUCTION 

evelopments such as the increase in data collection 

resulting from the fourth industrial revolution (Industry 

4.0), the increased demand in new emerged rural areas, 

changing labour demographics and the interest in adopting the 

concept of circular economy into supply chains and Supply 

Chain Management (SCM) [1, 2] have taken place within 

supply chains and SCM in the last years. These developments 

lead to an increase in supply chain size, global spread and 

interconnections between other supply chains, leading to more 

complex, vulnerable and uncertain supply chains [3], which in 

its turn could lead to undesired losses in shareholder value, 

sales, customer satisfaction and reputation [4]. 
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This increase in complexity and vulnerability urges an 

increase in monitoring of supply chain performance to better 

anticipate and prepare for or even prevent disruptions from 

occurring [5]. Especially in a production-oriented supply chain, 

disruptions in the material flow could influence downstream 

supply chain performance and continuity significantly.  

Considering the increasing interest in ‘Big Data’ and 

‘Machine Learning’, combined with the expected value of 

predictive analytics in supply chain (risk) management [6-8], 

the question arises to what extent machine learning can assist in 

reducing supply chain risks and mitigating its negative effects. 

Besides conceptual studies and the expressed expected value, 

only limited applicational studies applying machine learning in 

a SCM context are observed. Most of those studies focus on 

demand forecasts or predicting lead time [7], although recently 

interest for predicting material-related supplier disruptions has 

been observed. 

To contribute towards this interest and lack of applicational 

studies, this research investigated the possibility of applying 

machine learning in production environments to provide 

additional insights in supply chain operations and predictive 

analytics for supply chain (risk) management. A generalised 

methodology is proposed focussing on a systematic 

introduction and model development of machine learning-

based prediction models whereafter it is applied in a case study 

of a high-tech medical imaging manufacturer. In this case study, 

risk is expressed as the occurrence of delayed supplier 

deliveries and its prediction is achieved through classification. 

Various machine learning algorithms and sampling techniques 

are considered in a binary and multiclass formulation to predict 

whether future deliveries will be delayed. The contributions of 

this paper are as follows: 

• A generalised methodology that focusses on the 

systematic introduction and development of machine 

learning-based prediction models in production 

environments.  

• An extension towards multiclass classification to 

explore potential additional applicational value and 

insights. 
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• An implementation of the proposed methodology that 

illustrates the potential and applicability in predicting 

delayed deliveries within a real-world production 

environment and supply chain. 

The remainder of this paper is structured as follows. In 

Section II a concise overview of research efforts focussing on 

predicting supplier disruptions is given. The proposed 

methodology is presented in Section III of which the results of 

the application in the case study are presented in Section IV. 

Section V concludes and future research directions are 

presented. 

II. LITERATURE 

 To the best of the authors’ knowledge, only four articles in 

scientific literature have applied ML in the context of 

identifying risk by means of predicting supplier-related 

disruptions in SCM. In these articles, two directions based on 

the prediction target are identified, (1) prediction of delayed 

deliveries and (2) prediction of stock-outs.  

A. Prediction of delayed deliveries 

Baryannis et al. [9] conducted a case study in a real-world 

multi-tier aerospace manufacturing supply chain focussing on 

the relation between second and first tier suppliers. They focus 

on the prediction of supplier-related risk by employing two 

binary classification algorithms, Decision Trees (DT) and 

Support Vector Machines (SVM), to predict whether future 

deliveries of suppliers will be delayed or not using historical 

product delivery data. To reduce negative influences of class 

imbalance, they applied 5-fold cross validation and explored 

various resample techniques with limited to insignificant effect 

in their experiments. Additionally, they expressed model 

performance in terms of F1-score, Average precision and 

Matthew’s Correlation Coefficient (MCC) to reduce bias in 

performance expression resulting from the class imbalance. 

Their experiments showed good performance, but no discussion 

regarding training results and the potential of overfitting was 

presented, limiting conclusions regarding generalisability and 

applicability of their results.  

Brintrup et al. [10] have a similar focus as Baryannis et al. 

[9] as they investigate the possibility to apply ML to predict 

delayed supplier deliveries in an Original Equipment 

Manufacturer case study. Again, binary classification is 

considered for which the application of a Random Forest (RF) 

classifier is selected for their experiments. Historical supplier 

delivery performance data extracted from the manufacturer’s 

Enterprise Resource Planning (ERP) system is considered. 

They reported the use of under-sampling to reduce negative 

effects of class imbalance, but no discussion regarding the 

implementation is presented. F0.5, F1, F2, precision and recall are 

used to express model performance. They conclude that their 

conducted experiments are promising as they present 

significant improvement in the prediction of disruptions with 

limited information available. However, like Baryannis et al., 

no discussion of potential overfitting and training results are 

presented. 

B. Prediction of stock-outs 

De Santis et al. [11] consider a different aspect of SCM risks, 

focussing on inventory control by developing binary 

classification models predicting whether an item goes on 

backorder. A real-world imbalanced dataset made available by 

Kaggle’s competition Can You Predict Product Backorders? is 

used, consisting of inventory, forecasted sales and supplier 

delivery performance data. To reduce negative impact of the 

highly imbalanced dataset, SMOTE and random under-

sampling (RUS) have been used in combination with Logistic 

Regression (LR), Decision Trees, Random Forest and Gradient 

Boosting algorithms. Performance is solely expressed in Area 

under the ROC Curve (AUC), leading to more difficult 

interpretation of the results as it is sensitive to class imbalance 

as well. This is illustrated by their presented precision-recall 

curve (PRC), which present low performance on the important 

class while the AUC illustrate high performance. 

Hajek and Abedin [12] consider the same dataset and focus 

as De Santis et al. [11], but use a different approach to predict 

the occurrence of backorders. Instead of using resampling 

strategies alone as has been observed in the other articles, Hajek 

and Abedin incorporate cost-sensitive learning, an approach in 

which costs are associated with predictions. They defined a cost 

function which they embedded together with cluster-based 

under-sampling (CBUS) in various ML algorithms, of which 

the combination with a RF classifier yielded the best results in 

terms of AUC. Interesting to observe is that the AUC value 

obtained by De Santis et al. [11] is higher than their reported 

AUC, but training performance is not discussed by Hajek and 

Abedin [12] as well, making comparison difficult. 

III. METHODOLOGY 

The generalised methodology proposed and applied in this 

paper for binary and multiclass classification consists of six 

steps as indicated in Fig. 1, which will be elaborated in the 

following sections.  

A. Data collection and exploration 

The basis of each ML model is the data used to train the 

model on combined with the desired focus and prediction 

target. Therefore, it is important to have a comprehensive 

understanding of the system in which the ML model is expected 

to operate, whilst being aware of the influences of the specific 

environment on and limitations of the data generation, 

processing and storage. Keeping in close contact with domain 

experts and practitioners is necessary to acquire these insights 

and address the correct question or problem.  

 
Fig. 1: Overview of steps in the proposed methodology 

 

Data preparation 

and feature 

engineering

Supplier 

grouping and 

feature selection

Data pre-

processing

Algorithm 

comparison and 

evaluation

Data collection 

and exploration

Performance and 

metric definition



 3 

Additionally, the obtained dataset is explored by simple 

visualisations and descriptive statistics to relate the acquired 

practical insights to the considered data.  

B. Performance and metric definition 

The selection of correct prediction performance metrics is 

crucial for valuable model development. Especially in a risk 

prediction setting where it represents the direct link to the 

desired outcome of the prediction process [9]. In classification, 

confusion matrices are commonly used to define metrics 

reflecting the desired focus while accounting for potential class 

imbalance. For binary classification, the confusion matrix is a 

two-by-two matrix consisting of the number of true positives 

(TP), true negatives (TN), false positives (FP) and false 

negatives (FN) as illustrated in Table I. For multiclass 

classification, the confusion matrix can be easily extended to a 

n-by-n matrix when considering n different classes.   

 Given the general focus when predicting disruptions and the 

inherently linked imbalance problem, the use of Matthew’s 

Correlation Coefficient (MCC) is recommended since it is able 

to give an intuitive and straightforward definition of 

performance in a single value independent of the initial class 

distribution [13]. The original definition for MCC in binary 

classification and its extension towards multiclass classification 

as defined by Gorodkin [14] are presented in the following two 

equations, respectively: 

Binary:
TP ∗ TN − FP ∗ FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 (1) 

Multi:
∑ CkkClm − CklCmkklm

√∑ (∑ Ckll ) (∑ Ck′l′  l′

k′≠k

)k √∑ (∑ Clkl ) (∑ Cl′k′  l′

k′≠k

)k

 

(2) 

In (2), Cij represents the number of predictions corresponding 

to classifying a data point to class i while it actually belonged 

to class j with j ≠ i.  
Additionally, to support the MCC score and to be able to 

show prediction performance per class, precision and recall are 

selected. Precision represents the fraction of correct predictions 

within a predicted class and recall represents the fraction of 

correct predictions of an actual class. In the binary case, the 

precision and recall of the positive class are expressed as 

follows: 

Precision =
TP

TP + FP
 (3) 

Recall =
TP

TP + FN
 (4) 

For multiclass classification, precision and recall values are 

class-wise computed, after which averaging can be applied to 

obtain a single value. Macro (M) averaging is recommended as 

it assigns equal weights to all classes, making it more suitable 

than micro or weighted averaging for imbalanced problems. 

Macro-precision and macro-recall are calculated using the 

following two formulas, respectively: 

PrecisionM =
∑ precision(c)c∈C

|C|
 (5) 

RecallM =
∑ recall(c)c∈C

|C|
 (6) 

in which C represents the set of all classes considered. 

Finally, accuracy can be considered as supportive metric 

since it is able to put precision and recall into perspective with 

respect to other classes and class imbalance. 

C. Data preparation and feature engineering 

The available raw dataset needs to be cleaned by omitting 

inconsistent or other data points reflecting noise, imputing 

missing values and standardising units. However, before 

imputing missing values and standardising units, the dataset 

needs to be split in a train and test set to prevent data leakage. 

Feature engineering is the step in which additional 

information is used to augment the prepared dataset. This 

involves transformation of existing data characteristics in the 

dataset and incorporation of domain knowledge and experience. 

Consultation with practitioners and field experts led to the 

definition of three feature domains relevant for supplier 

disruption prediction, of which suggestions are presented in 

Table V in the appendix: 

• Order, representing features focussing on order 

characteristics as creation- and due date. 

• Supplier-material, focussing on features regarding the 

considered supplier-material relation like contracted 

lead time and price. 

• Dynamic ‘environment’, encompassing features 

covering the time dimension and dynamic behaviour of 

which outstanding order quantity at the moment of 

ordering and preceding delivery performance are 

examples. 

D. Supplier grouping and feature selection 

The methodology initially considers individual suppliers 

since individual suppliers can vary significantly and therewith 

bias behaviour and performance when considering the entire 

dataset. Additionally, it is expected that considering individual 

supplier results in a better understanding and practical use. 

Complexity is initially reduced and extracted supplier specific 

behaviour could be easier verified and accepted by buyers, 

leading to higher acceptance and adoption of ML techniques. 

However, when purely focussing on individual suppliers, 

common behaviour might be excluded, for which the possibility 

of supplier grouping is introduced.  

After the creation of additional supplier groups, feature 

selection is applied on the individually considered suppliers and 

defined supplier groups. By means of feature selection, the 

complexity can be reduced while simultaneously extracting 

important characteristics relevant to the prediction target which 

TABLE I 
EXAMPLE CONFUSION MATRIX 

 Predicted Class 

Positive Negative 

Actual class 
Positive True Positive False Negative 

Negative False Positive True Negative 
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can increase understanding and assist in identifying root causes 

for disruptions. Recursive feature elimination (RFE) using 

feature permutation importance is recommended since feature 

permutation importance allows the presence of categorical 

features in the dataset. Feature permutation is expressed as the 

difference in model prediction performance after shuffling 

feature values. The selection of a performance metric able to 

express model performance in a single value while accounting 

for class imbalance is therefore needed, which illustrates the 

value of the recommendation for MCC as main metric. 

E. Data pre-processing 

To reduce negative influences of class imbalance, resampling 

can be applied on the resulting data subsets after feature 

selection. An exploration of no sampling, over-sampling, 

under-sampling and a hybrid form is recommended since 

different datasets are suitable for different resampling 

techniques. For over-sampling, the SMOTENC technique is 

recommended, which is a minor adaption of the commonly 

applied SMOTE technique allowing for datasets containing 

categorical features. For under-sampling, random under-

sampling (RUS) is initially suggested given its simple 

implementation and shown value in preceding literature. The 

hybrid is a combination of SMOTENC and RUS, in which the 

majority class and minority class(es) are under- and over-

sampled, respectively. Initially, a maximum over-sampling 

ratio of 2 and under-sampling ratio of 3 are suggested to reduce 

potential overgeneralisation and information loss. 

Additionally, some ML algorithms require that the dataset is 

scaled and/or normalised or perform better after scaling and 

normalisation. Therefore, scaling and normalisation is applied 

in this step when needed.  

F. Algorithm comparison and evaluation 

Different algorithms and configurations need to be 

considered, since no generally best algorithm is available and 

the data provided to the algorithms heavily influence resulting 

performance. Therefore, a selection of algorithms to consider 

including parameter grids are needed to explore potential 

performance while preventing the occurrence of overfitting and 

reduction of generalisation performance. Logistic Regression 

(LR), Decision Tree (DT), Random Forest (RF), Support 

Vector Machine (SVM) and eXtreme Gradient Boosting (XGB) 

are suggested algorithms to consider given their increasing 

complexity, different underlying definition and shown 

performance in literature. 

Additionally, post-processing for binary classification 

models by means of threshold tuning can be applied. This can 

steer the prediction performance of the resulting prediction 

models more towards the metric most related to the desired 

focus at some cost of performance on different metrics.  

IV. CASE STUDY 

To illustrate the possibilities and value of the proposed 

methodology, it has been applied to a case study at a high-tech 

medical imaging manufacturer. A dataset containing of three 

years of historical deliveries has been obtained, which 

contained 68807 deliveries corresponding to 26512 unique 

orders for 2899 unique materials ordered at 180 unique 

suppliers after data cleaning. Of those deliveries 17.9% were 

delayed and 30.7% were delivered early. The average delivery 

moment is around two days before the due date, illustrating the 

problem of data imbalance. The data available for each delivery 

are the following: 

• Order: purchase order and item number, order and due 

date and order quantity 

• Supplier: supplier id, name, location and information 

exchange maturity level 

• Material: material id and description, contracted lead 

time, safety time, price, ABC category, lot size type and 

material planning type 

• Delivery: receipt date 

 

The focus in the case study lies on predicting risk resulting 

from supplier disruptions, translating to predicting the 

occurrence of delayed supplier deliveries. A binary and 

multiclass classification problem are formulated using 

definitions obtained from the manufacturer (Table II). 

The following sections present the feature selection and 

performance results for a single supplier consisting of 10909 

deliveries with a delivery performance as visualised in Fig. 2. 

The train set contained 8727 entries (80%) and the resulting 

2182 entries (20%) form the independent test set, in which the 

delivery performance distribution is maintained. During feature 

selection and model training, stratified 5-fold cross validation 

is applied to ensure the same class distribution. 

 
Fig. 2: Delivery performance  

 

TABLE II 

TARGET CLASSES FOR BINARY AND MULTICLASS CLASSIFICATION 

Problem Target classes 

Binary 
• On-time: before or on due date  

• Delayed: after due date 

Multiclass 

• Extremely early: more than 3 days before due date  

• Early: between 1 and 3 days before due date 

• On-time: on the due date 

• Delayed: 1 or 2 days after due date  

• Extremely delayed: 3 or more days after due date 
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For the implementation of most ML algorithms, scikit-learn 

v0.24.0 [15] and xgboost v1.3.1 [16] are used, where we used 

imbalanced-learn v0.7.0 [17] for resampling. The experiments 

were conducted on computer with an Intel® Core™ I5-8365 

CPU and 16 GB RAM. 

A. Feature engineering 

Irrelevant features regarding delivery performance were 

initially manually removed. This led to the exclusion of 

purchase order and item number, supplier id, name and location 

(since only one supplier is selected) and material description. 

To prevent data leakage, receipt date has been omitted as well, 

since this is unknown at the time of prediction. The difference 

between due and receipt date is taken as target variable, using 

the definitions presented in Table II. 

Additionally, feature engineering is applied to enrich the 

dataset using experience and knowledge from practitioners and 

domain experts. Feature suggestions corresponding to the three 

defined feature domains have been added to the dataset while 

excluding highly correlated features, leading to the 28 features 

presented in Table VI in the appendix. 

B. Feature selection 

Recursive feature elimination using feature permutation 

importance has been conducted using a RF classifier with a max 

depth of 6, a max subsample of 0.8 and a balanced subsample 

class weight and MCC as metric.  

Fig. 3 shows the results of the elimination process for the 

binary formulation, indicating a significant performance 

increase after removing the seventh most important feature, 

‘Material’. In case of the specific supplier this can be expected, 

since the supplier has almost 840 unique material numbers 

associated and omitting this categorical variable reduces the 

dimension, and therewith complexity, significantly. The 

resulting subset contains five features consisting of ‘Due Week 

day’, ‘Sup. outstanding PO items’, ‘Due Week’, ‘Performance 

score 3 months’ and ‘Sup. outstanding POs’.  

For the multiclass formulation, the results of the elimination 

process are shown in Fig. 4. The subset consisting of 14 features 

is selected since similar performance with respect to larger 

subsets is obtained and a noticeable decrease in performance is 

observed after removing the fourteenth feature. In this subset 8 

additional features with respect to the binary formulation are 

selected, consisting of ‘Order/Lead time ratio’, ‘Material’, 

‘ABC indicator’, ‘Creation Day’, ‘Performance score’ and ‘Due 

Day’.  

The observed importance of ‘Due Week day’ was not 

expected. Discussion with practitioners led to the hypothesis 

that it suggests inefficiencies in process-related aspects like 

day-offs of buyers or delayed invoicing. Therewith, feature 

importance and selection can assist in increasing model 

understanding, but also in potential root cause identification for 

inefficiencies in operations or supplier relations. 

C. Algorithm comparison 

Experiments using the five suggested algorithms (LR, DT, 

RF, SVM and XGB) have been conducted. For each algorithm, 

an indicative parameter grid has been defined to explore 

potential performance without the initial need to manually 

optimise parameters individually. LR and SVM have been 

omitted in the multiclass grids since significant increases in 

computational time occurred. Additionally, data pre-processing 

steps are included in the grid, to investigate the impact of 

sampling on the resulting performance. The considered grids 

are presented in Table VII in the appendix. 

Analysis of the obtained results indicated the presence of 

overfitting. Therefore, parameter combinations leading to MCC 

differences larger than 0.1 between the test and train folds 

during cross-validation are omitted. The performance scores of 

the resulting algorithm-parameter combination with the highest 

MCC score on the test fold are presented in Table III and Table 

IV for the binary and multiclass formulation, respectively. 

The results show high prediction performance in the binary 

formulation, reaching 88% accuracy with 85% of the 

predictions of late deliveries being correct and a correct 

prediction of 82% of the actual delayed deliveries. Similar 

performance is obtained on the test fold during model training 

as well, indicating a good generalisation ability of the trained 

model. 

 
Fig. 3: Cross-validated model performance (MCC) during RFE (binary) 

 

 
Fig. 4: Cross-validated model performance (MCC) during RFE (multi) 

 

TABLE III 

BEST PREDICTION SCORES FOR THE BINARY FORMULATION 

Metric Test set Test fold Train fold 

MCC 0.7510 0.7842 ± 0.0143 0.8758 ± 0.0022 

Accuracy 0.8863 0.9007 ± 0.0066 0.9432 ± 0.0010 

Precision 0.8517 0.8741 ± 0.0177 0.9302 ± 0.0020 

Recall 0.8254 0.8437 ± 0.0108 0.9091 ± 0.0027 

Algorithm settings: XGB 

Gamma: 1 Max depth: 9 Min child weight: 3 

# estimators: 100 Sampling: None Max subsample: 0.8 
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In the multiclass case, obtained performance is slightly 

lower, which can be expected since the introduction of 

additional prediction classes increases the complexity of the 

classification task and data requirements. Nevertheless, 74% 

accuracy is achieved, with a 74% macro-precision and macro-

recall. Again, similar performance is obtained on the 

independent test set and the test fold during model training, 

indicating good generalisation ability. 

V. CONCLUSIONS AND FUTURE RESEARCH 

This paper presented a generalised methodology focussing 

on a systematic introduction and model development of ML-

based prediction models with the aim to provide additional 

insights in SC operations and prediction analytics for supply 

chain (risk) management. The methodology initially considers 

individual supplier to create higher transparency and reduced 

complexity, whereafter supplier grouping can take place to 

cover more general relations. The methodology is applied in a 

case study of a high-tech medical imaging manufacturer. Binary 

and multiclass classification have been employed, of which the 

obtained results illustrate the possibility of the methodology to 

obtain good performance and additional insights. The 

utilisation of feature importance can assist in identifying root 

causes for inefficient operations and supplier relations, while 

high performing prediction models can assist in assessing and 

(timely) mitigating risk resulting from supplier disruptions. 

Future research is needed to increase prediction performance 

in the binary and multiclass formulations by focussing on more 

specific parameter grids or additional parameter tuning. This 

includes investigating different algorithms and techniques and 

in particular the impact of sampling ratios on the resulting 

performance. Additionally, different data can be added to 

improve performance or incorporate the possibility to provide 

prediction updates once additional data (e.g., order 

configurations or transport updates) become available. 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

  

TABLE IV 
BEST PREDICTION SCORES FOR THE MULTICLASS FORMULATION 

Metric Test set Test fold Train fold 

MCC 0.6691 0.6599 ± 0.0099 0.7451 ± 0.0052 

Accuracy 0.7438 0.7351 ± 0.0080 0.8016 ± 0.0042 

Precision* 0.7439 0.7266 ± 0.0088 0.7930 ± 0.0049 

Recall* 0.7453 0.7443 ± 0.0062 0.8099 ± 0.0037 

Algorithm settings: XGB 

Gamma: 10 Max depth: 20 Min child weight: 0 

# estimators: 100 Sampling: Over Max subsample: 0.8 

*Precision and recall are macro-averaged over the considered classes. 

 
 

TABLE V 

OVERVIEW OF SUGGESTED FEATURES FOR THE DIFFERENT FEATURE DOMAINS 

Domain Feature 

Order 

• Creation/Due Day 

• Creation/Due Day of Week 

• Creation/Due Week 

• Creation/Due Month 

• Creation/Due Season 

• Creation/Due Year 

• Days between Creation and Due date 

• Material 

• Quantity 

• Supplier 

• Value 

• Days between confirmed delivery date and due date 

• Order changed indicator 

• Order involved execution of mitigating measure 

 

Supplier-
material 

• Price per material 

• Contracted lead time 

• Ratio of quantity over standard quantity 

• Ratio of material order frequency over standard frequency 

• Ratio of given time for fulfilment and contracted lead time 

• Size of product portfolio for corresponding supplier 

• Considered Safety time  

• Unique number of materials produced/ordered at a supplier 

• Default shipment method 

• Possible alternative (express/priority) shipping methods 

 

Dynamic 

‘environ

ment’ 

• Previous (confirmed) order delivery performance 

• Open or outstanding (confirmed) quantity (per material) 

• Open or outstanding (confirmed) overdue quantity (per 

material) 

• Ratio of current requested/outstanding quantity over 

maximum allocated production quantity/capacity in a time 

period 

• Ratio of current requested quantity over shared forecasted 

quantity 

• Performance/number of deviations of supplier confirmed 

orders 

• Inventory level at moment of ordering 

 

 



 7 

   

TABLE VI 

OVERVIEW OF CONSIDERED FEATURES BEFORE RECURSIVE FEATURE ELIMINATION 

Feature Format Definition 

Order   

Creation Day Integer Day of the month of the creation date 
Creation Week day Integer Week day of the creation date 

Due Day Integer Day of the month of the due date 

Due Week  Integer Week of the due date 
Due Week day Integer Week day of the creation date 

Material Category Material number as categorical variable 

Quantity Float Quantity of ordered material 
Delivery value Float Monetary value of the specific delivery 

Order/Lead time ratio Float Ratio between time between order and due date normalised by the material’s lead time 

Late order indicator Binary Indicator whether the order is placed with a due date sooner than the contracted lead time 
Frequency indicator Binary Indicator whether the order is placed sooner with respect to lot size or last quarter’s median order frequency 

Quantity indicator Binary Indicator whether the order quantity is higher than the fixed lot size or last quarter’s median order quantity 

   
Supplier – material   

Lead time Integer Contracted lead time in number of days 

Safety time Integer Number of workdays the material order is moved forward 
ABC indicator Category Material class according to ABC classification (quantity-spend relation) 

SNC relevancy Text Category indicating maturity level of information exchange 

Lot size type Text Category indicating frequency or time dependent replenishment  
   

Dynamic ‘environment’   

Performance score Float Percentage of on-time deliveries of the most recent month in which deliveries were expected 
Performance score 3 months Float Average of Performance scores from the last three months 

Outstanding POs Integer Number of outstanding standard orders for the material 

Overdue POs Integer Number of overdue standard orders for the material 
Outstanding quantity Float Outstanding quantity for the material 

Weighted overdue quantity Float Quantity overdue weighted by the amount of days overdue for the material 

Sup. outstanding POs Integer Number of outstanding standard orders on supplier level 
Sup. outstanding PO items Integer Number of outstanding PO items on supplier level 

Sup. overdue POs Integer Number of overdue standard orders on supplier level 

Sup. outstanding quantity Float Quantity of outstanding material on supplier level 
Sup. weighted overdue quantity Float Quantity overdue weighted by the amount of days overdue on supplier level 

 

 

 TABLE VII 

OVERVIEW OF APPLIED PARAMETER GRIDS 

 
ALGORITHM PARAMETERS RANGE (BINARY) RANGE (MULTICLASS) 

 

 

Logistic Regression (LR) 

- Regularisation – C 

- Class weight 

- Solver 

- Sampling 

- 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000 

- None, balanced 

- Newton-cg, lbfgs 

- None, SMOTENC, RUS, Hybrid 

  

      

 

Decision Tree (DT) 

- Max tree depth 

- Max leaf nodes 

- Class weight 

- Sampling 

- 5, 6, 7, 8, 9, 10 

- 20, 30, 40, 50 

- None, balanced 

- None, SMOTENC, RUS, Hybrid 

- 5, 10, 15, 20 

- 100, 200, 400, 800 

- None, balanced 

- None, SMOTENC, RUS, Hybrid 

-  

      
 

Random Forest (RF) 

- Max tree depth 

- Max leaf nodes 

- Nr. of estimators  

- Class weight 

- Sampling 

- 5, 6, 7, 8, 9, 10 

- 20, 30, 40, 50 

- 10, 50, 100, 500 

- None, balanced_subsample 

- None, SMOTENC, RUS, Hybrid 

- 5, 10, 15, 20 

- 100, 200, 400, 800 

- 10, 50, 100, 500 

- None, balanced_subsample 

- None, SMOTENC, RUS, Hybrid 

-  

  -  -    

 

Support Vector Machine 

(SVM) 

- Regularisation – C 

- Gamma – γ  

- Class weight 

- Sampling 

- 0.1, 1, 10, 100, 1000, 10000 

- 0.001, 0.01, 0.1, 1, 10 

- None, balanced 

- None, SMOTENC, RUS, Hybrid 

 

 

      

 

eXtreme Gradient 

Boosting 
(XGB) 

- Max tree depth 

- Min child weight 

- Gamma – γ 

- Nr. of estimators 

- Sampling 

- 5, 6, 7, 8, 9, 10 

- 1, 2, 3 

- 0, 1, 10, 100 

- 10, 50, 100, 500 

- None, SMOTENC, RUS, Hybrid 

- 5, 10, 15, 20 

- 0, 1 

- 0, 1, 10 

- 10, 50, 100 

- None, SMOTENC, RUS, Hybrid 

-  
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