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Abstract
The comfort assessment of ships is based on several criteria. There are for example criteria for mo-
tions, noise and vibrations. The criteria formotions are nowadays often defined as comfort limits on the
accelerations in the ship motions. However, from other industries it followed that the rate of change of
the accelerations, the jerk, can also have an influence on the sense of comfort of passengers and crew.
The goal of this thesis is to investigate whether it would be useful to add jerk criteria to the comfort
assessment of ships. Jerk cannot bemeasured directly (yet), so it has to be obtained from acceleration
measurements or calculations. For this goal filter and processing procedures are defined. To be able to
make comparisons different ways of quantifying the jerk are established. One is aimed at peak values,
since these are often determining the limit for comfort and operability. The other is focused on quanti-
fying the non-linearity of the response. Research is performed on what the physics behind jerk are, and
what phenomena are likely to cause large jerk values. The prime cause is found in slamming. The jerk
following from slamming is influenced mostly by the shape of the bow and the speed of immersion in
the water. Using the measurement data of two different hulls from other research the effect of varying
conditions on the jerk is investigated. From this research it follows that there can be a difference in
seakeeping behaviour when looking at jerk instead of accelerations. Since jerk is the third derivative of
displacement to time, the non-linearity in this response is relatively high. Therefore non-linear codes are
required to calculate the jerk response correctly. The use of a Reynolds Averaged Navier Stokes (RANS)
code proves to be able to predict the jerk behaviour correctly. In this thesis only model test measure-
ments and calculations are used. The scaling of jerk to full scale, and difficulties that it might impose,
are only discussed theoretically. The general conclusion is that jerk is worth investigating to compare
the seakeeping behaviour of ships. Until quantitative limits are available only qualitative comparisons
are possible, but these can already give additional insight.
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1
Introduction

To start this research first the problem description will be given in section 1.1. The research objectives
for this problem are defined in section 1.2. To reach this objectives several research questions have
been established in section 1.3. The approach to answer this questions is given in section 1.4.

1.1 Problem description
Damen, a Dutch family-owned shipyard, is always looking to improve the comfort of their ships. Com-
fort is currently being assessed using for example criteria for motions, noise, vibrations and exhaust
gasses. The comfort criteria for ship motions are now mostly based on accelerations. There are how-
ever more aspects to consider. From research in the aerospace industry [17, 20], the public transport
industry [6, 10, 33, 44] and the elevator industry [23] it follows that the rate of change of acceleration of
amotion, the jerk, might have an influence on themotion perception and thus the sense of (dis)comfort
of passengers.

According to the Oxford Dictionaries, jerk is "a quick, sharp, sudden movement" [42]. Jerk is however
also the name of the derivative of acceleration. Although both these phenomena are definitely con-
nected, they are not physically the same. In this thesis the term jerk will be used for the derivative of
the acceleration.

Jerk is thus the derivative of acceleration, the third derivative of position with respect to time. This
means that every ship in seaway experiences jerk in its six degrees of freedom: surge, sway, heave, roll,
pitch and yaw. For example if a ship is sailing in relatively calm regular waves, the heave acceleration
will be harmonic, and thus the heave jerk will be as well. The jerk is thus always there, but this kind of
jerk is not likely to cause discomfort. However, when the ship slams into a wave there are probably large
peak values in the jerk which can cause discomfort. Contrary to other industries jerk has not yet been
investigated in the motions of ships. To improve comfort, a design criterion based on the jerk could be
implemented in the future. For this a measure of the ‘severeness’ of jerk is required.

The prediction of jerks in ship motions is however more difficult than the definition would suggest. In
ship motion calculations jerk has up until now not been considered, so it is not clear how well the avail-
able tools predict this motion characteristic. For ship motion calculations different computational fluid
dynamics (CFD) tools are available. There are tools based on the potential theory: 2D strip theory and
3D panel methods. There are also tools based on the Reynolds Averaged Navier-Stokes (RANS) equa-
tions. These tools are generally increasingly accurate, but the computational costs are also increasing.
The ability of these tools to correctly predict jerks in the motions is still unknown.

As mentioned slamming causes a very sudden change in acceleration and thus a significant jerk in
certain ship motions. The effects of slamming on the ship motions are however difficult to predict,
especially with the more linearised prediction tools such as the strip theory and the panel method.
Slamming is a highly non-linear effect, which is not captured by these linearised tools. There are ways
to include non-linear effects in the linearised tools, but the accuracy of this regarding the jerks in the
motions it causes is unknown and should be investigated.

Another way to predict ship motions is using model tests. In these tests the motions and accelerations
can be measured. Jerk can however not be measured directly, since there are not yet (commercially)
available jerk sensors [46]. Therefore the jerk in the motions should be determined by differentiating
the acceleration signal. But in these measurements noise is always present and it is unknown how this
affects the possibility to accurately determine jerk.
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2 1 Introduction

1.2 Objectives
The main objective of this research is to assess whether jerk could be a good parameter to assess the
motion comfort of ships, besides the accelerations. There are two ways in which the jerk assessment
of a ship can be performed. The first one is in a qualitative manner, for example when two different
ships are compared on their seakeeping performance. If the accelerations are larger at one ship, but
the jerk is larger at the other, jerk can thus give additional information. If the jerk is always larger at the
ship that also has the larger accelerations, the assessment of jerk does not have to be necessary to
compare the ships.

The second way is with a quantitative comparison. If there are limits on comfort for both acceleration
and jerk, it could be that a ship is below the comfort limit for accelerations but exceeds the limit of jerk.
In this case the jerk can also be a valuable addition to assessing the seakeeping performance. For this
method there are however comfort limits required, which need to be determined in physiological tests.
With these tests limits for comfort and workability are determined, just like the limits that are already
available for accelerations.

Since no limits are available yet, this researchwillmainly focus on the qualitative comparison of jerk. For
this procedures for quantifying the jerk are required, which can later be used in the quantitative research
as well to find which method has the best correlation with for example the comfort of passengers. Two
different procedures will be investigated.

Another objective is gaining insight in the most important physics behind jerk and what causes ships
to experience large jerk values. When this is known ships can be optimised with these physics in mind,
to minimise the jerks and/or accelerations.

1.3 Research questions
To reach the objectives as defined in the previous section, the following research questions are defined.

What is the influence of different physical phenomena on jerk?
One of the first steps is to determine which physical phenomena have the biggest influence on jerk
and/or cause the largest jerks. These phenomena can then be investigated using measurement data
from model tests.

How can the jerk in ship motions be determined from model tests and/or full scale tests?
For this question the type of data, the quality of the data and filtering of the measurement signal has
to be investigated. Noise in the signal makes determining the jerk in the acceleration signal more diffi-
cult. This question also covers requirements on the measurement data (for example sampling rate) to
accurately determine jerk.

How can the severeness of jerks in the ship motions be quantified?
As mentioned in the problem description jerk is always present in the ship motions, it does not have to
be bad for the sense of comfort. Therefore a method to quantify the severeness of the jerk should be
determined.

How can the jerk in ship motions be predicted with sufficient accuracy?
Sufficient accuracy is a variable concept. It can mean that the calculation method should be able to
predict the order of magnitude of the jerks and the peaks in the jerk correctly. But another meaning can
be that the number of large jerk peaks that can be expected is predicted, not necessarily the magnitude
of the peaks.

1.4 Approach
Jerk is a response of the ship to the seaway it is sailing in. It is therefore important to understand
the physics of ship motion response. The drivers behind ship motions and the different approaches
to describe ship motions are discussed in chapter 2. Special attention will be given on the physical
interpretation of jerk. Also one of the most likely phenomena to cause large jerk values, slamming,
will be analysed theoretically to understand what the influence of different parameters is and what
implications this has on jerk.
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As mentioned in the problem description the jerk cannot be measured directly. It therefore has to be
determined from the differentiated acceleration signal. In thesemeasurements usually noise is present,
so the effect of this on the ability to numerically differentiate the signal to determine the time trace of
the jerk has to be investigated. This will be done in chapter 3. The uncertainty in the measurement
signals and the implications it has on the ability to make comparisons are discussed in chapter 4.

No full scale data was available for this research, so the link between model scale and full scale could
only be investigated theoretically. In chapter 3 the requirements on model test measurements, and
the implications this has on full scale measurements will be discussed. The theoretical description of
scaling, the implications on the jerk and the difficulties that this might impose are described in chapter
8.

To be able to compare the jerk several procedures of quantifying the jerk have to be investigated. From
the literature mentioned in the problem description it became clear that often peak values are used for
this, so this will have the primary focus. However also a different quantifyingmethod for the severeness
of the ship motions based on jerk will be investigated. This is done in chapter 4. Since the comparisons
that will be made are primarily qualitative, the main goal is to see whether comparing the jerk of ships
gives a different perspective than comparing the accelerations. Therefore also the quantification of
acceleration is described.

In chapter 5 model test data is processed and the jerk is quantified according to the previously deter-
mined procedures. The data is analysed on both the accelerations and the jerk. With this good compar-
isons can bemade to determine the influence of several phenomena on the jerk and determine whether
jerk would give a different perspective compared to accelerations. The data frommodel tests using the
same models but in irregular waves is analysed in chapter 6. The focus here is first on analysing the
difference between the hulls and the influence of several parameters again. The behaviour is also linked
to the behaviour of the models in regular waves.

An important step in the design of a ship is the prediction of the motions using numerical methods.
These are usually cheaper to perform than model tests and can thus give a first indication of the sea-
keeping behaviour of a ship. There are different types of methods. Their difference and the impact it
has on the ability to correctly predict jerk is analysed in chapter 7. Results from numerical simulations
using the same conditions as the model tests in regular waves are compared with the measurement
data. In this thesis the correct prediction of the order of magnitude of the jerk will be investigated. The
differences between the calculations and measurements are then analysed as well.

By performing all these steps the research questions defined in the previous section can be answered.
This will be done in chapter 9. Some additional questions that came up, which are beyond the scope of
this thesis, are recommended for further research in this chapter as well.





2
Ship motion response

All ships move in the seaway they are sailing in. The different motions are defined in section 2.1. Due
to the response of a ship to the sea, it not only experiences velocity and acceleration in its degrees of
freedom, but also jerk. The first step in determining jerk is to investigate how a ship responds in seaway
and what the physics behind these responses are. All the responses of a ship in seaway are in the basis
non-linear with respect to the disturbant waves. However, in some cases the responses of a ship can
be described well with a linear approach. The distinction between the linear approach and non-linear
behaviour will be explained in this chapter.

In figure 2.1 two (partial) time traces of vertical acceleration (az) of a model are shown. These time
traces are the result of a RANS (Reynolds Averaged Navier-Stokes) calculation for the same model, but
in different regular wave conditions. In the first time trace, figure 2.1a, the wave length is longer than in
the second time trace, 2.1b. In both time traces also a sine fit determined by the least squares method
[21] is plotted. This is a sine function with an according amplitude and frequency that leads to the least
difference with the time trace of the acceleration. The similarity between the acceleration data and the
sine fit is described with the coefficient of determination (r2). This is the square of the coefficient of
correlation [41], and indicates how strong the linear correlation between two data sets is. The value of
this coefficient can be between 0 and 1, where a r2-value of 1 indicates that there is a perfect similarity
between the data sets. The data sets are then identical. Time trace 1 has a r2-value of 0.993. This
means that the acceleration can for 99.3% be correctly described with a single sine function. Time
trace 2 has a r2-value of 0.791, or 79.1%. The time traces of the jerk, corresponding with the time traces
in figure 2.1, are plotted in figure 2.2. The jerk in time trace 1 can be described for 93.2% with a sine
function, the jerk of time trace 2 only for 37.5%.

As will be explained in this chapter, a sine function is the response to a regular wave that would be
described by the linear response theory. For time trace 1 this is sufficient, the sine function can almost
perfectly describe the accelerations and the jerk of the ship. The shape of the acceleration of time
trace 2 has less similarity with a sine function. Especially the (negative) peaks and the gradient of the
acceleration are not well described. The jerk corresponding to time trace 2 is not described well at
all with a sine function. All the peaks are several factors higher than described by the sine function.
This thus illustrates that the non-linearity of the response is important when investigating the jerk. The
amount of non-linearity grows exponentially with increasing derivatives, as will be further discussed in
chapter 4.
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Figure 2.1: Examples of time traces of vertical acceleration in ship motions
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Figure 2.2: Examples of time traces of vertical jerk in ship motions

The linear approach, and the assumptions this is based on, will be described in section 2.2. There are
several phenomena that drive the ship to more non-linear behaviour. These will be discussed in section
2.3. In section 2.4 the different assessingmethods of ship response will be described. Finally in section
2.5 the physical interpretation of jerk and a derivation of the most important factors in jerk caused by
slamming will be given.

2.1 Definitions
The motions of an unrestrained ship are defined in six degrees of freedom: three translational motions
and three rotationalmotions. The ship-bound right-handed coordinate systemhas its origin in the centre
of gravity of the steady-state position of the ship. In case the ship is moving with steady forward speed,
the coordinate system is steadily moving forward as well. The motions along respectively the x-, y-, and
z-axis are called surge, sway and heave; the rotations roll, pitch and yaw [39]. See also figure 2.3. The
positive direction of each degree of freedom is indicated with the arrows. In table 2.1 the axis and units
of all degrees of freedom are defined.

Table 2.1: Definition motions and units

Name Axis Displacement Velocity Acceleration Jerk
Surge x m m/s m/s2 m/s3

Sway y m m/s m/s2 m/s3

Heave z m m/s m/s2 m/s3

Roll φ rad rad/s rad/s2 rad/s3

Pitch θ rad rad/s rad/s2 rad/s3

Yaw ψ rad rad/s rad/s2 rad/s3

Figure 2.3: Degrees of freedom of an unrestrained ship, recreated from Journée et al. [27]
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2.2 Linear approach
The response (displacement, velocity, acceleration or jerk) of a ship is linear if the response can be
described with a linear differential equation. The amplitude of the response is then proportional to
the amplitude of the incoming wave. The groundwork for the widely used linearised approach to the
response of a ship in seaway is laid by the paper of St. Denis and Pierson [54]. The most important
result of the linearisation is that the principle of superposition can be applied: the total response of
a ship can be determined from the summation of the forces of the restrained ship in waves plus the
free motion of the ship in still water. For a heaving ship model this is visualised in figure 2.4. Also the
response to different wave components can be superpositioned. The assumptions made in the linear
approach and the resulting approach will be discussed in this section.

+ =

Figure 2.4: Superposition principle, recreated from Journée et al. [27]

2.2.1 Assumptions
In this section the assumptions of the linear ship motion theory are discussed. These assumptions are
necessary to justify the superposition principle. The information is obtained from St. Denis and Pierson
[54], Ogilvie [40], Lloyd [31] and Journée et al. [27].
Small disturbance
In order for the linearisation to be valid, the disturbance that the ship causes must be small [40]. In this
case the wave diffraction can be approximated from the restrained body [37].
Small amplitude waves
Since the forces of the wave on the ship are calculated as if the body is restrained, the forces are
calculated on the still water underwater geometry. This is only valid if the amplitude of the waves is
small compared to the geometry of the ship. In large amplitude waves the changing geometry above
and below the waterline would introduce nonlinear forces on the body [54]. In small amplitude waves
the change in geometry is assumed to be negligible and the forces are thus linearly correlated with the
wave amplitude.
No non-linear coupling between degrees of freedom
There can be coupling between different degrees of freedom of the ship, for example heave and pitch.
This is dependent on (amongst other things) symmetry of the hull of the ship. These coupling effects
can however be non-linear. If the coupling effects are non-linear superposition cannot be applied any-
more. The non-linear coupling effects are generally assumed to be small, so they are neglected in the
linear approach. Only the linear coupling effects are included.
Low to moderate velocity
If the velocity of the ship is low to moderate, the lifting effects of the hull are considered small and can
be neglected. Lifting effects due to forward speed are non-linear, so should be neglected to get a linear
approach. Also the mass and inertia are assumed to be unaffected by the forward speed [54].
No viscous forces
The assumption that viscous forces, which are non-linear, are neglected, means that the damping in the
system is completely accounted for by wave generation. For most degrees of freedom this assumption
is valid, since especially in vertical motions (heave and pitch) the viscous damping is very small [27].
Only the roll damping near the resonance frequency is largely underestimated due to the lack of vis-
cous forces [50]. Neglecting the viscous forces enables the use of potential theory to determine ship
motions.
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2.2.2 Equations of motion
The linearised motions of a ship can be captured in the equations of motion. This starts with Newton’s
second law of motion, which states that the forces applied on a body are equal to the mass of the body
times the acceleration. For a ship the equations ofmotions for the six degrees of freedomare described
in equation 2.1 [37]. In theory each degree of freedom can have coupling terms with other degrees of
freedom, following from the asymmetry of the hull. A different shape of the fore and aft body can for
example cause an heave motion when the ship is pitching. Therefore M is a 6x6 matrix.

M · ẍ = F (2.1)

In this equation ẍ is the acceleration vector (second derivative ofmotion x with respect to time) for each
of the six degrees of freedom. The elements on the diagonal of the matrix M represent the mass term
(for translational motions) or moment of inertia term (for rotational motions). The off-diagonal ele-
ments provide the coupling terms between the different degrees of freedom. The force vector includes
all the forces that work on the ship in each degree of freedom. These forces are defined in Journée
et al. [27] as:

• Fr: Radiation forces. These are the hydrodynamic forces caused by the movement of the ship. It
consists of the added mass matrix A (which introduces additional inertia in the system) and the
damping term matrix B: F r = −A · ẍ− B · ẋ

• Fs: Hydrostatic restoring forces: Fs = −C · x
• Fw: Wave force of the incoming wave. This is calculated using the method of Froude-Krylov [55].

This method assumes that the pressure of the wave is not influenced by the presence of the ship.
• Fd: Diffraction forces. The force due to the disturbance of the incoming wave by the presence of

the ship.

Substituting and rearranging the terms in equation 2.1 leads to the equation of motion as in equation
2.2. The mass M, the added mass A, the damping B and the restoring term C are all matrices. The
remaining terms are all vectors to represent each degree of freedom.

(M + A) · ẍ + B · ẋ + C · x = Fw + Fd (2.2)

This equation of motion is a second order linear differential equation, and is the base for the linear
approach to ship motions. In the linear case the added mass A, the damping term B and the restoring
termC in the equation ofmotion are independent of thewave amplitude. The use of this linear approach
to determine the response of the ship in regular and irregular waves is described in the next sections.

2.2.3 Regular waves
A regular (two-dimensional) wave ζ propagating in negative y direction is described by equation 2.3. In
this equation ζa is the amplitude, k is the wave number and y is a spatial term. Furthermore ω is the
frequency (or encounter frequency) and t is the time. The wave equation describes the wave at any
location at any time instant. In the following equations the response is observed in the origin of the
system and the spatial term is thus zero.

ζ(y, t) = ζa · sin(k · y + ω · t) (2.3)

The solution to the equation of motion in equation 2.2 is then also a sinusoidal, see equation 2.4. In
this equation x is the response in the i-th degree of freedom, xi,a is the amplitude of the response and
εiζ is the phase difference between the response and the wave.

xi(t) = xi,a · sin(ω · t + εiζ) (2.4)

xi,a

ζa
= constant (2.5)
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Since the system is linear, the response is proportional to the wave amplitude, see equation 2.5. This
transfer function is called the response amplitude operator (RAO). RAOs are only dependent on (en-
counter) frequency and direction with respect to the sailing direction of the vessel [31]. The RAOs can
also be superpositioned to calculate the response at any location of the ship.

2.2.4 Irregular waves
In the previous section the response of a ship in regular waves is described. However, real seas are
seldom regular. To be able to describe the motions of a ship in irregular waves an appropriate method
is needed. The generally accepted method of describing an irregular sea is the assumption that the
elevation is a superposition of different waves with a certain frequency, amplitude and (random) phase
angle, see equation 2.6. This is called a Fourier series [19]. An example time series of an irregular sea
can be seen in figure 2.5.

ζ(t) =
N∑

j=1

ζa, j · sin(ωj · t + εj) (2.6)

Frequency spectrum
The principle of Fast Fourier Transform can be used to decompose the irregular sea into a number of
harmonic components with different frequencies and amplitudes. For each of these frequency intervals
the amplitude is determined. When plotted this gives the amplitude spectrum. More widely used is the
variance density spectrum or energy density spectrum. This spectrum is based on the variance of the
amplitude. Linear wave theory shows that the variance of the wave spectrum is proportional to the
energy in the wave spectrum [19]. An example of an energy density spectrum, based on a JONSWAP
wave spectrum, can be seen in figure 2.6a.
Transfer functions
The linear approach allows also for the superposition principle to be applied in irregular seas. The
response to all the individual wave components can be combined to the total response. When the
energy density spectrum of a sea is known, a response spectrum (see figure 2.6c) can be determined
using a (frequency dependent) transfer function, see equation 2.7. In this equation Sxi(ω) is the energy
density spectrum of the motion response of i-th degree of freedom and Sζ(ω) is the energy density
spectrum of the irregular waves. The transfer function is the square of the RAO of each frequency
component.

Sxi(ω) =
∣∣∣∣xi,a

ζa
(ω)
∣∣∣∣2 · Sζ(ω) (2.7)

The transfer function is plotted in figure 2.6b. This transfer function only relates the components of
the energy density spectrum of the waves to the response spectrum, thus the amplitude of each wave
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Figure 2.5: Example of a time trace of an irregular sea
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Figure 2.6: Example of energy density spectra and transfer function

component to the amplitude of each response component. To describe the full response and determine
a time trace of the response also a spectrum containing the phase difference between each frequency
component of the waves and the response is required. This spectrum is not plotted here.

2.2.5 Applicability
The linear method described here is the most simplified method possible to describe the motion re-
sponse of a ship in waves. Nevertheless many computational tools are based on this linear approach.
These tools will be discussed further in chapter 7. The tools often includemore (linearised) physics, for
example artificial roll damping to compensate for the missing viscous roll damping. Although all this
is linearised and thus a simplification of the reality, this method has been validated many times in the
last decades to give good predictions of ship motions, especially when the ship speed is relatively low
and the disturbances are small [3, 16, 27, 50]. Figure 2.1a in the introduction of this chapter also shows
that the linear approximation can in certain cases give a very good approximation of the ship motion.
The sine fit in this figure is the response that can be described by the linear theory.

2.3 Non-linear behaviour
Non-linear behaviour of a ship to incoming waves can be described as a response which is not de-
scribed well with a linear differential equation, and thus the response is not proportionally dependent
on the incoming wave. An example of non-linear behaviour can be seen in figure 2.7, recreated with
data from de Jong [7]. In this figure the filtered vertical acceleration signal of a model in regular wave
conditions is plotted. The least squares sine fit is also plotted, as was also done with the time traces in
the introduction of this chapter. If the response to the regular wave would be linear, the sine fit would
be the same as the measured response. However, the r2-value of this time trace is 0.668 and it can
thus not be described well by a sine function. It can be seen clearly that the measured response is not
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Figure 2.7: Example of non-linear response, from de Jong [7]
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Figure 2.8: Comparison of energy density spectra from linear and non-linear response in regular waves

proportional to the incoming wave and thus non-linear: the positive acceleration peaks are higher much
higher than the sine fit. Also the steepness of the acceleration signal from the trough to the crest is
higher than the sine fit.

The non-linear response of a ship to regular waves in one of the degrees of freedom can be defined as
given in equation 2.8. In this equationω is the encounter frequency (in rad/s) of the ship with the waves.
The first part of the equation is the first order (linear) response, with amplitude A1 and phase ε1. The
higher order responses are defined in the sum in the right part of the equation. These responses are
at multiples of the encounter frequency and have their own amplitudes and phases [15]. Only the first
order (linear) response can be linked with a RAO to the disturbant wave, which is the sine fit as plotted
in figure 2.7. It is also directly clear that this does not represent all the aspects of the motion signal. No
transfer function can be defined between the regular wave and the entire non-linear response.

xi = A1 · sin(ω · t + ε1) +
N∑

n=2

An · sin(nω · t + εn) (2.8)

Non-linear response is thus a response that consists of multiple harmonics: the first order response
and higher order responses at multiples of the first order. In figure 2.8 an example of the difference in
the energy density spectrum of linear and non-linear response in regular waves can be seen. In figure
2.8a only the peak at the excitation frequency is visible, while in figure 2.8b besides the peak at the
excitation frequency also peaks at multiples of the excitation frequency can be seen. These energy
density spectra are examples and are not linked to the time trace in figure 2.7. In section 2.4 more
explanation about the energy density spectrum will be given.

2.3.1 Large amplitude waves
One of the assumptions of the linear response was that the amplitude of the incoming wave was small
compared to the geometry of the ship [27]. When a ship sails in relatively large waves, the motions also
increase. The assumption that the hydrodynamic forces can be calculated on the still water geometry
is no longer valid. The instantaneous submerged body should be used for calculations, because large
changes in the hydrodynamic forces or the distribution of these forces along the hull can be caused
by large amplitude waves. If for example part of the hull emerges above the water, the hydrodynamic
forces disappear here until it re-enters the water. According to Keuning [29] especially the vertical ac-
celerations become increasingly non-linear with increasing wave amplitude and forward speed.

Also the (normally) above water geometry, for example the bow flare, becomes important. This part of
the hull might be submerged in a large amplitude wave, which will then result in a non-linear hydrody-
namic radiation and restoring force. In research performed on this topic it was found that the shape
of the bow has little influence on the displacement motions of the ship. There is however a significant
influence on vertical accelerations, especially in the bow region [43, 45]. The varying behaviour of ships
with different bow shapes also becomes clear from the research of de Jong [7], where was found that
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a ship with an axe bow (which is optimised for head waves) has significantly lower accelerations in the
bow section. This will also be further analysed in chapter 5 and chapter 6.

2.3.2 Non-linear waves
In the previous sections the assumption was made that the waves the ship responds to are described
with a single sine function in case of regular waves, or a superposition of different sine functions in case
of irregular waves. This is known as the linearwave theory. In reality this is however not always the case.
Especially steep waves and waves in shallow water are non-linear, and cannot be described accurately
with the linear wave theory anymore [19]. A Stokes wave is a commonly used for describing these non-
linear waves, see figure 2.9. The wave plotted here is a 5th order Stokes wave [13]. For reference also a
least squares fitted sine wave with the samewave frequency is plotted. It can be seen that the crests of
the Stokes waves are higher and the troughs are less deep. The wave is also steeper than a regular sine
wave. Since these waves cannot be fully described anymore with a single sine function, the response
of a ship to non-linear waves will therefore not be linear in the way it is described in section 2.2.

Wave breaking
If waves become too steep, they can break. This is a very non-linear hydrodynamic phenomenon, of
which many details are still unknown [19]. Energy is dissipated in breaking waves, and their effective
height reduces. Therefore the ship response to a breaking wavemight be lower than would be assumed
in linear theory. The ship response might also be larger due to the possible high impact loading of
breaking waves.
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Figure 2.9: Example of 5th order Stokes wave

2.3.3 High forward speed
In the extensive research into non-linear (seakeeping) behaviour of ships performed by Keuning [29]
and de Jong [7], the definition for a high-speed ship is a ship with Froude numbers ranging from 0.7 to
0.9. Ships are not in the fully planing regime with these speeds. For a monohull of 30-50 meters, these
Froude numbers result in a sailing speed of around 30 knots.

As already mentioned in section 2.3.1, Keuning [29] states that especially the vertical accelerations
become increasingly non-linear with increasing wave amplitude and forward speed. At high forward
speeds part of the weight of the ship is compensated by hydrodynamic lift. The submerged volume
of the ship becomes different, and also the sinkage and trim are affected. Therefore the underwater
geometry at high speeds will become different and this (non-linear) effect has a significant influence
on the motion response of a ship to the waves [29].

2.3.4 Slamming
The motions of a ship can become so large that there are violent impacts between the hull and the
water, a phenomenon called slamming. There are different types of slamming: bottom slamming, bow
flare slamming, and stern slamming [5]. Catamarans can also experience wet deck slamming. Bottom
slamming happens when the entire bow section emerges from the water in a wave. When the keel then
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re-enters the water, large impact loads occur. Themagnitude of these impact loads is highly dependent
on the deadrise angle [58, 60]. Bow flare slamming occurs at ships with a significant bow flare. When
the ship enters the water with speed, there is an impact at the side plating of the bow [2]. Slamming
in the bow area is most critical in head waves. Stern slamming happens when the stern of the ship
emerges from the water in a wave, and violently enters the water again. Stern slamming occurs most
in ships with a large overhanging or a flat stern area, for example container carriers or liquefied gas
carriers [2]. Wet deck slamming occurs when large waves impact the bottom of the structure between
the two hulls of a catamaran (the wet deck).

Slamming locally leads to large impact pressures. In large ships this leads to substantial structural
loads and vibrations, called whipping [31]. In smaller ships slamming causes peaks in the acceleration.
The occurrence of slamming is now often considered as the limit of operability of a ship in heavy sea
states [29].

The first researches into predicting the large impact pressures of slamming were performed by Von
Karman [58] and Wagner [60]. A theoretical slamming pressure coefficient was derived, based on a
2D wedge entering the water. The coefficient is mainly dependent on the deadrise angle of the hull.
The smaller the angle between the hull surface and the fluid surface, the larger the impact pressure.
Still a big challenge with slamming is the problems with scaling. Slamming, especially with low relative
angles between the hull and the fluid, involves trapping and compressing of air. The normally used
scaling laws, mostly Froude scaling, do not apply anymore in these cases. It is therefore not possible
to accurately predict the impact pressures of slamming using model experiments [28]. Scaling and the
impact of slamming on the accuracy of scaling will be discussed more in chapter 8.

2.3.5 Viscous forces
As mentioned in section 2.2.1 viscous forces are neglected in most motion computations, since the
major part of damping is caused by wave damping. Only in roll and surge the viscous forces are of
greater importance [27]. There these forces can cause non-linear responses. In calculations the non-
linear forces in the roll damping are usually linearised at a certain roll angle.

2.4 Assessing methods
There are generally two methods to assess the motion responses of a ship, will be described in this
section.

Time domain
The first assessing method is the time domain. This is the most intuitive method, since the response
is plotted against time. See for example figure 2.10a. In this figure the fictive non-linear response z of
a ship in regular waves (thus a single sine wave) is plotted, see equation 2.9.

z = A1 · sin(ω · t) + A2 · sin(2ω · t) (2.9)
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Figure 2.10: Assessing methods for ship motion response
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Figure 2.11: Comparison of single FFT and mean of multiple FFTs for response in irregular waves

The response is non-linear because it is not a single sine function as would be expected by the linear
approach. Insteadmultiple sine functions are superpositioned to describe the response. In figure 2.10a
the response is plotted for frequency ω = 2π rad/s and amplitudes A1 = 1 and A2 = 0.5.
Frequency domain
Another way of assessing the ship motion response is to convert the response in the time domain to
the frequency domain. This is done using the Fast Fourier Transform (FFT) [4]. The FFT transforms the
signal in the time domain to a two sided amplitude spectrum with complex numbers which indicate the
amplitude and phase of each frequency component. In the analysis of shipmotions usually a one-sided
spectrumwithout phase information is used. In figure 2.10b the Fast Fourier Transform of the time trace
in figure 2.10a is shown. It can be seen that in the amplitude spectrum the harmonic components of
the original function (equation 2.9) can be determined again. One component with a frequency of 2π
rad/s with amplitude 1, the other component with a frequency of 4π rad/s and an amplitude of 0.5. In
this case the function was known beforehand, but this method is especially valuable when this is not
the case.

The frequency spectrum can also be converted to an energy density spectrum, using equation 2.10.
Each amplitude Ai of harmonic component i is converted to a component Si of the energy density spec-
trum [27].

Si =
A2

i

2 · dω (2.10)

The use of the energy density spectrum instead of the amplitude spectrum has several advantages. The
first is that in irregular waves the amplitude of each harmonic component in the amplitude spectrum is
dependent on the frequency interval dω. The smaller the frequency interval, the smaller the amplitude
of each harmonic component. By converting it to an energy density spectrum the dependency on the
frequency interval is taken out. The second advantage is that the energy density spectrum has an
analogy with the amount of energy of each frequency component. When used for the analysis of a wave
spectrum, the amount of energy in each frequency component is the value from the energy density
spectrum multiplied by the water density ρ and the gravitational acceleration g [19]. The amount of
energy in the spectrum can be determined by integrating the energy density spectrum, see equation
2.11. This is also called the zeroth order moment of the spectrum.

m0 =
∫ ∞

i=0
Si(ω) dω (2.11)

When making the FFT of an irregular wave response, this is usually done by cutting the time trace in
a number of blocks and making the FFT of each block. The mean of the FFTs is then the FFT of the
complete time trace. If thiswould not be done, the spectrumwould look like figure 2.11a. This is because
the time traces have a finite length, with random components within the spectrum. By taking the mean
of the FFTs of several blocks the spectrum looks like figure 2.11b. The amount of energy in the spectra
is the same, only the shape is easier to analyse.
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2.5 Jerk
In this section a short description of the physical interpretation of jerk will be given. This will be linked
to ship hydromechanics with an example of Von Karman slamming theory [1, 58].

2.5.1 Physical interpretation
Newton’s second law states that the sum of forces (in a certain direction) on an object is equal to
the mass of the object times the acceleration of the object (in the same direction). This is defined in
equation 2.12.

~F = m · ~a (2.12)

The jerk is defined as the rate of change of the acceleration, see equation 2.13. Combining that with
equation 2.12 gives equation 2.14, assuming the mass does not change. The jerk is then the result of
the change of the force on a mass. The case where the (added) mass does change is discussed in the
next section.

d~a
dt =~j (2.13)

d~F
dt = m ·~j (2.14)

The largest jerk in ship motions can thus be expected in situations where the forces on the hull change
rapidly. The best known phenomena where this happens is slamming. As already mentioned in section
2.3.4, the impact pressures in slamming can become very large, which thus results in large forces on
the hull of a ship. Furthermore the time scale of a typical slam is very small. The rate of change of the
force in a slam event must thus be large. It is thus likely to find large jerk in slamming.

2.5.2 Von Karman slamming
To illustrate that a difference in jerk can come from a different hull shape in the same slamming con-
ditions, the approach of Von Karman [1, 58] is used to derive the parametric difference in slamming
forces following from different hull shapes. This is a simplified approach, but it identifies some factors
influencing the jerk following from slamming.

The Von Karman theory is based on a 2D wedge entering the water with a vertical velocity Vz, see figure
2.12a. This can be seen as a part of the hull that slams into the water due to a heave or pitch motion,
or a part of the bow that slams forward into a wave due to the forward speed of the boat. The force on
this wedge is then following from equation 2.15. This equation has the same basis as equation 2.12.
The chain rule is applied to determine the derivative, as can be seen in equation 2.16.

F = d
dt (m · Vz) (2.15)

Vz

(a) Wedge

2R

(b) Flat plate assumption

ma

(c) Added mass

Figure 2.12: Von Karman wedge slamming force approximation
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F = m · V̇z + ṁ · Vz (2.16)

To simplify the approach in this case the vertical velocity of the wedge into the water is assumed to be
constant, and the derivative V

.
is thus zero. The other term in the equation for the force follows from

the change of mass. Usually this term is zero, but in hydromechanics added mass is present, which
changes with the submersion of the wedge. In this case this term is thus not zero and is called the Von
Karman force FVK, see equation 2.17. In the Von Karman approach the added mass of the wedge at any
moment is approximated to be the addedmass of a flat plate, with the length 2R equal to the submerged
horizontal dimension of the wedge, see figure 2.12b. The added mass of a flat plate is defined as given
in equation 2.18 [1].

FVK = ṁa · Vz (2.17)

ma = ρ · π · R
2

2 (2.18)

In this equation ρ is the density of the water and R is the radius of the plate. The rate of change of the
addedmass is determined by the square of the rate of change of the radius R. The radius R is a function
of time, determined by the shape of the hull and the submersion speed Vz. In figure 2.12b the wedge
is displayed as a triangle, but the wedge can also have different shapes. Without knowing the exact
function for the hull shape, the rate of change of R2 is given in equation 2.19. The rate of change of the
added mass becomes then as defined in equation 2.20.

d
dtR(t)2 = 2 · R(t) · ddtR(t) = 2 · R · Ṙ (2.19)

dma

dt = ρ · π2 ·
d
dtR(t)2 = ρ · π · R · Ṙ (2.20)

Combining equation 2.17 and equation 2.20 leads to the expression for the Von Karman force as given
in equation 2.21.

FVK = ρ · π · R · Ṙ · Vz (2.21)

In section 2.5.1 the jerk was linked to the rate of change of the force on a mass. The jerk following from
slamming is thus the rate of change of the Von Karman force, see equation 2.22. The second derivative
of the added mass in this equation is defined in equation 2.23.

dFVK

dt = m̈a · Vz (2.22)

d2ma

dt2 = ρ · π2 ·
d2

dt2 R(t)2 (2.23)

d2

dt2 R(t)2 = 2 · R(t) · d
2

dt2 R(t) + 2 ·
(

d
dtR(t)

)2

(2.24)

The second derivative of the square of the shape function R is given in equation 2.23. From this equation
it becomes clear that two factor play an important role in the jerk following from slamming. The first one
is the width of the wedge times the second derivative of R. The second derivative of R is the curvature
of the wedge. When the wedge is a triangle as in figure 2.12a, the curvature is zero thus the jerk is
constant. When the curvature is not zero the jerk is thus not constant. Also the wider the wedge, the
higher the jerk. The second factor is the square of the first derivative of the shape function. The faster
the wedge is submerged, the higher the jerk. An optimised bow, like the AXE described in chapter 5, has
a smaller pitch velocity and a smaller rate of change of the geometry. The jerk from slamming is thus
expected to be significantly lower.



3
Determining jerk

To be able to use the jerk for quantifying seakeeping characteristics of a vessel, first the jerk should
be determined. Since there are no commercially available jerk sensors (yet), it cannot be measured
directly. The methods explained in this chapter are for the case that the acceleration is calculated or
measured, so the data only has to be differentiated once.

As explained in Vuik et al. [59] the errors in numerical differentiation come from rounding/measurement
errors and truncation errors. The effect on the total error of rounding and/or measurement errors de-
crease with increasing step size. On the contrary the effect of truncation errors on the total error de-
crease with decreasing step size. The numerical derivative of the acceleration signal is calculated in
this thesis using the central difference method (see equation 3.1). Both function values have a mea-
surement error ε. The error estimate E is then given by equation 3.2.

f ′(x) ≈ f(x + ∆t)− f(x− ∆t)
2 · ∆t (3.1)

E ≤ ε
∆t (3.2)

Measurements are usually performed at high frequencies, so the time steps are small. This means
that the total error when differentiating this signal could be large. Increasing the time steps is not
desirable since this lowers the accuracy of themeasurement. Therefore the signal first has to be filtered,
as explained in this chapter. In section 3.1 several digital filters will be analysed. A special filter, the
Savitzky-Golay filter which filters and differentiates the signal at the same time, is analysed in section
3.2. After that in section 3.3 a method of directly differentiating an energy density spectrum is given.
Finally in section 3.4 some requirements on measurements will be described.

3.1 Filtering
In model tests and sea trails the acceleration is measured using accelerometers. However, the signal
contains the accelerations due to rigid bodymotions, accelerations due to vibrations andmeasurement
noise. Since in seakeeping analysis generally only the rigid bodymotions are desired, the vibrations and
noise have to be filtered from the signal. If the signal is free from vibrations and noise, which is the case
in numerical simulations, numerically differentiation can be applied without filtering.

In the literature it is generally agreed that accurate, repeatable acceleration measurements of the rigid
body motions are hard to perform [35, 49, 61]. Accelerometers are sensitive measurement instruments,
the smallest accelerations from vibrations are measured as well. This can affect the peak values of
rigid body motions significantly. As mentioned above the vibrations and noise therefore have to be
filtered from the measurement data. However, the choice of filter type and filter settings like the cut-
off frequency have significant influence on the peak values of the acceleration. Therefore the cited
literature does not advise one certain filter or filter setting, but recommends to investigate several filters
and filter setting and choose the one best usable for the desired goal.

For the purpose of this thesis it is required to separate the rigid body motions in the measurement
signals from noise and vibrations. Rigid body motions are relatively low frequency, while vibrations
and noise are at higher frequencies. In general terms (digital) filters separate and remove parts of
the signals with a certain frequency, while maintaining others. For example, an ideal low-pass filter will
remove all the frequencies higher than the cut-off frequency (the stopband)while letting the frequencies
lower than the cut-off frequency through (the passband). Filters are however never ideal, they have a
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Figure 3.1: Frequency response of 9th order Butterworth low-pass filter with cut-off frequency of 10 Hz

transition from the passband to the stopband (the transition band). This transition is called the roll-
off [53]. The higher the roll-off, the smaller the transition band. These bands can be represented in
frequency response plots [38], see figure 3.1. The frequency response plots indicate how much the
amplitude of a certain frequency is attenuated. This can be done with a linear (unity) scale (figure 3.1a)
or as more practice in the field of signal processing using a decibel scale (figure 3.1b). The decibel gain
is the logarithm of the attenuation, see equation 3.3 [53].

dB = 20 · log
(

Afiltered

Aoriginal

)
(3.3)

In this equation Afiltered is the amplitude of a certain frequency component in the filtered signal and Aoriginal
is the amplitude of that same frequency component in the unfiltered signal. Every gain of -20 dBmeans
that the amplitude has reduced by a factor 10. So -20 dBmeans the amplitude gain is 0.1, -40 dBmeans
the amplitude gain is 0.01. The cut-off frequency is often defined as the frequency where the amplitude
gain first passes -3 dB, which translates to an unity amplitude gain of 0.707. Formore information about
digital filtering refer to National Instruments Corporation [38] or Smith [53].

As mentioned above the literature states that filtering has a significant influence on the peak values of
the acceleration. However, for this research the gradient of the acceleration (the jerk), not necessarily
the peaks values of the acceleration are important. Therefore the influence of filtering on the jerk is
investigated as well. In appendix B an extensive comparison is made between different filter types,
filter orders and cut-off frequencies. The findings of these comparison will be presented here. In this
comparison the following aspects are investigated:

• The smoothness of the signal after filtering
• The sensitivity of acceleration peaks and jerk peaks to varying filter settings
• The effect of filtering on the energy density spectrum

Filter type
The compared filter types are the Butterworth filter, the Chebyshev I filter and the Chebyshev II filter.
These filters are infinite impulse response filters (IIR filters). The Savitzky-Golay filter, a finite impulse
response (FIR) filter, will be discussed separately in section 3.2. The main difference between these
types of filtering is that the output of an IIR filter is based on previous output values as well as input
values, while the output of a FIR filter is only dependent on input values [38].

The Butterworth filter has the smoothest frequency response, but a slow roll-off. The performance
of the filter is however good, since the filtered data does not differ much with varying settings. The
Chebyshev I filter has a faster roll-off, but has ripples in the passband. That means that frequencies
lower than the cut-off frequency are affected as well. This effect is undesirable, since the data from
the rigid body motions is in this frequency region. Also the energy density spectra of the jerk seem
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Figure 3.2: Influence of Butterworth filter cut-off frequency and filter order on signals

to be affected more than with other filters. The Chebyshev II filter also has a faster roll-off than the
Butterworth filter, but has ripples in the stopband. This is more desirable than ripples in the passband.
However, the cut-off frequency cannot be directly used as input for the filter settings. The settings
(minimum attenuation in the stopband, critical frequency and order) do however have a big influence
on the effective cut-off frequency. The output from the Butterworth filter was least sensitive for small
variations in filter settings. Compared to the other filters the peak values observed in the signal changed
the least with these small variations in settings. For these reasons the Butterworth filter is chosen as
the best suitable filter.
Cut-off frequency
The cut-off frequency should be chosen such that the time scale of the most important events in the
time trace is covered [47]. In the time traces used in the appendix tomake the comparison the slamming
of the model is the event with the shortest duration of approximately 0.05 seconds. This means that
the cut-off frequency should not be lower than 20 Hz. In figure 3.2a an acceleration signal of the model
in regular waves is shown. The used filter here is a 6th order Butterworth filter, with varying cut-off
frequency. It can be seen that indeed the unfiltered signal is represented good with cut-off frequencies
of 20 Hz and higher. This can also be seen in figure 3.3. In this figure the mean of the peak values of
either acceleration or jerk are plotted for four data sets from chapter 5, determined with varying cut-
off frequency. The data sets are not the same in the different figures, but are chosen to show different
trends. It can be seen that some data sets (example 2 in figure 3.3a) are already well represented with a
cut-off frequency of 5 Hz. Others are increasing until higher frequencies. In some data sets themean of
the peaks is stable, but at higher frequencies the noise is not filtered out entirely anymore, so the peak
values increase again (see example 1 in figure 3.3a). The influence on the mean of the jerk peaks can
be seen in figure 3.3b. The influence on the non-linearity ratio of the acceleration and the jerk (defined
in chapter 4) can be seen in respectively figure 3.4a and figure 3.4b. Ideally all different parameters
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Figure 3.4: Influence of cut-off frequency on non-linearity ratio (6th order Butterworth filter)

from all different runs would be stable around a certain frequency, this then would be the ideal cut-off
frequency. This is however not the case, so 20 Hz is chosen as best compromise between the different
parameters. All the data sets are processed with this same cut-off frequency.
Order
The order of filtering can increase the smoothness of the filtered signal, since the roll-off in the fre-
quency response becomes steeper. So with increasing order the amount of frequencies above the
cut-off frequency in the filtered signal are decreasing. Increasing the order however also increases an
effect called ringing [35]. Ringing is the presence of oscillations around a step in the response. An
example of ringing with a block signal, and the increase of ringing with increasing filter order can be
seen in figure 3.2b. From the comparisons of filter order in appendix B for the acceleration data it can
be seen that the occurrence of ringing in the filtered measurement data is however limited. The peak
values for acceleration and jerk are, except for the 2nd order filter, within a margin less than one percent.
Besides that the signal becomes smoother with increasing filter order. However, increasing the order
increases the energy in the energy density spectra of jerk at higher frequencies. This can be expected
since the attenuation just before the cut-off frequency is less with higher filter orders. In combination
with a correctly chosen cut-off frequency this effect can be limited. In this thesis a 6th order Butterworth
filter will be used.

3.2 Savitzky-Golay method
In the work of Savitzky and Golay [51] a method is derived for differentiating noisy data. By calculating
a least squares polynomial using a certain window length, the data is differentiated and smoothed. In
Luo et al. [32] the effectiveness of this method to accurately calculate the derivative of noisy data is
demonstrated. Concluded is that this method has a low noise amplification factor, especially when
using higher order differentiation filters. This means that the amplification of the noise compared to
the amplification of the desired signal in the derivative is low. Details in the data are well preserved, but
are smoothed out more as the window length of the filter increases.

Since in this thesis the derivative of measurement data with noise has to be determined, this method of
filtering and differentiating is worth investigating. The behaviour of the Savitzky-Golay method can be
described as that of a finite impulse response filter (FIR filter) [52], contrary to the filters investigated in
section 3.1, which are infinite impulse response filters (IIR filters).

In figure 3.6 an example of the frequency response plots of the Savitzky-Golay filter can be seen. Cut-
off frequency is no input for the Savitzky-Golay method, only the order and the window length. To be
able to compare the Savitzky-Golay method with the other filters, combinations of orders and window
lengths are determined that are found to have certain cut-off frequencies. This is also dependent on
the sampling frequency of the data set. As mentioned above the cut-off frequency is defined as the
frequency where the amplitude gain first passes -3 dB, or 0.707 (unity) amplitude gain. In figure 3.6 the
frequency response of a 6th order Savitzky-Golay filter with a window length of 235 is shown. With the
sampling frequency of 1000 Hz, the cut-off frequency of this combination of settings is approximately
10 Hz. A full overview of cut-off frequencies can be found in table B.4 in appendix B.
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Figure 3.5: Example of signals (fs = 1000 Hz) filtered with 3rd order, Savitzky-Golay filter with window length of 53
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Figure 3.6: Frequency response of 6th order Savitzky-Golay filter with window length of 235 for fs = 1000 Hz

From the comparison in appendix B it becomes clear that the Savitzky-Golay method shows no im-
provement compared to the previously discussed filters in combination with numerical differentiation.
Frequencies above the cut-off frequency remain visible in the filtered and differentiated signals, see
figure 3.5. This is due to the large ripples in the stopband of the frequency response of this filter, see
figure 3.6. Also the peak values are affected just as much as with other methods of filtering. Another
disadvantage of this method is the difficulty to determine the cut-off frequency. Since this is dependent
on the sampling frequency of the data set, order of filtering and chosen window length, the method is
not practical to use for the goals of this research.

3.3 Energy spectrum differentiation
The energy density spectrum of the jerk can be determined directly from the energy density spectrum of
an acceleration signal, following and extending the method described in Mercer [36]. The acceleration
signal is build up of a number of harmonic components. Each of these components can be represented
as given in equation 3.4. The derivative of each component is calculated with equation 3.5. The change
of the sine to a cosine and a possibly neglected phase lag are not important, since only the amplitude
and frequency are part of the amplitude spectrum, as defined in section 2.4.

xi = Ai · sin(ωi · t) (3.4)

dxi

dt = Ai · ωi · cos(ωi · t) (3.5)

In these equations xi is the i-th harmonic component of the acceleration signal and dxi/dt is the i-th
harmonic component of the jerk signal. For each component Ai is the amplitude of the acceleration
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and ωi is the frequency in rad/s. This can also be represented in an amplitude spectrum for the sig-
nals. The amplitude spectrum for the acceleration can be converted to energy density spectrum of the
acceleration with equation 3.6 and the energy density spectrum for the jerk with equation 3.7.

Si,acc = A2
i

2 · dω (3.6)

Si,jerk = (Ai · ωi)2
2 · dω (3.7)

In these equations Si,acc is the spectral density of the i-th component of the energy density spectrum of
the acceleration and Si,jerk is the spectral density of the i-th component of the energy density spectrum
of the jerk. Furthermore dω is the step size in the frequency range of the spectrum. Combining these
equations gives the equation to directly calculate the energy density spectrum components of the jerk
from the energy density spectrum components of the acceleration, see equation 3.8.

Si,jerk = ω2
i · Si,acc (3.8)

In this equation ωi is again the frequency of the i-th component in rad/s. If the spectra are in Hertz,
equation 3.9 should be used.

Si,jerk = (2π · ωi)2 · Si,acc (3.9)

The advantage of this method is that the energy density spectrum of the jerk can be directly determined
from the energy density spectrum of the acceleration. There are however disadvatages. Since the
harmonic components, especially at higher frequencies, are multiplied with large values (the square of
an high frequency), more noise can become visible than via filtering and differentiating the time signal.
Therefore this method is only reliable if the source signal contains (almost) no noise. In theory this
method could also be used to determine the jerk spectrum from the energy density spectrum of the
velocity or displacement. However since the components then have to be multiplied by respectively ω4

i
orω6

i , even valueswhich are approximately zero in these spectra become very large in the jerk spectrum.
Therefore it is not recommended to use this method.

3.4 Requirements on measurements
The accelerationmeasurements need to fulfil certain requirements to be able to determine the jerk with
sufficient accuracy. Sufficient accuracy here means that the 95% confidence interval of the measured
values is small enough to make comparisons. This is ensured by an high signal-to-noise ratio, and the
sampling frequency needs to be high enough to capture the important phenomena with a small time
scale. The data used in chapter 5 and chapter 6 was measured with a sampling frequency of respec-
tively 1000 Hz and 400 Hz. Furthermore the noise levels of the accelerometers were low enough to
extract useful information for the data. No bottom line of sampling frequency or signal-to-noise ratio
can be given here, only the statement can be made that the accelerometers used in these experiments
provided a small enough 95% confidence interval to be able to make good comparisons between dif-
ferent signals.

In chapter 8 it is shown that the scale factor of time between model experiments and full scale is
equal to √αL in which αL is the scale factor of the length. Theoretically the sampling frequency of
the measurements can be scaled with 1/√αL. The sampling frequency to obtain the same amount of
information can thus be lower in full scale. The cut-off frequency for filtering needs to be adjusted
likewise.

For the full scale measurements it is important to notice that there are likely to be more vibrations in
the signal, since a full scale ship can be approximated less as a rigid body compared to a model. When
analysing the ship motions it is therefore important to filter out the vibrations due to bending, whipping
or other causes. Whether effects like whipping could cause large jerk peaks as well is beyond the scope
of this thesis and not investigated.



4
Quantifying ship response

To be able to analyse jerk in the time traces or the jerk energy density spectra of measurements or cal-
culations, procedures for quantifying are necessary. Because it is still unknown which method has the
best correlation with for example the sense of comfort, several procedures will be given and described
in this chapter.

A distinction will be made in the analysis of the response in regular or irregular waves. The response
of a ship in regular waves is suitable for an analysis of the harmonics of the response. Regular waves
and thus regular response is however less representative for the actual behaviour of a ship in seaway,
since ocean waves are seldom regular. The procedures for quantifying response in regular waves are
described in section 4.1. Also the ’ideal’ response of a ship will be described in this section.

Measurements of the response of a ship in irregular waves need to be quantified differently. Often the
aspects of the incoming waves are not exactly known and are approached using a spectrum. Therefore
the usual way of quantifying the response in these waves is with statistics, giving a probability of ex-
ceedance for a certain response. The procedures quantifying response in irregular waves are described
in section 4.2.

In section 4.3 an overview of all the definitions made in this chapter is given. Finally in section 4.4 a
brief analysis on the uncertainty in the measurement values and the propagation of this uncertainty to
the jerk values will made. Also the spread of the peak values of the regular wave tests is analysed, to
check if the assumption that the response is the same with each wave encounter is correct.

4.1 Quantifying response in regular waves
Analysis of the response in regular waves can be performed in a number of ways. In ship design often
the peak values of responses are reviewed to quantify the response of a ship, see section 4.1.1. From
preliminary literature research it became clear that non-linear effects have a large effect on the ship
response. A way to quantify this non-linearity will be discussed in section 4.1.2.

4.1.1 Peak values
From the preliminary research in chapter 1 it became clear that comfort limits on motions are often
defined by peak values. Therefore these will be used to quantify both acceleration and jerk.

Acceleration
Before analysis can take place first the peak values have to be defined. There are maximum values
(or crests) and minimum values (or troughs). For accelerations often the crest values are investigated,
since the trough values are often dominated by gravity effects [7]. The maximum values in acceleration
often occur where slamming is happening and are therefore often higher and thus more limiting.

The values of acceleration for translational motions can be investigated dimensional, or can be made
dimensionless using equation 4.1 as recommended by the International Towing Tank Conference [26].
In this equation Lpp is the length between the perpendiculars of the ship, and ζa is the amplitude of the
wave.

z̈non-dimensional =
z̈dimensional · Lpp

g · ζa
(4.1)

The values of acceleration for rotational motions can be made dimensionless with equation 4.2. In this
equation the dimensional rotational acceleration θ̈ is in rad/s2 and k is the wave number in rad/m.
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θ̈non-dimensional =
θ̈dimensional · Lpp

k · g · ζa
(4.2)

Jerk
Similar to acceleration the peak values in jerk can also be separated in maximum values (or crests)
and minimum values (or troughs). Since slamming often means a rapid change in acceleration from a
negative value to a positive value, maximum jerk values are to be expected at a slamming event. The
negative jerk values can however not be directly linked to the presence of gravity, since gravity is a
constant acceleration and thus causes no jerk.

There are no guidelines yet on obtaining a non-dimensional jerk value. Therefore the non-dimensional
acceleration in equation 4.1 is expanded with the wave frequency ω. This parameter is chosen to make
the jerk non-dimensional, since in a regular sinusoidal acceleration signal the amplitude of the cor-
responding jerk signal would be dependent on the amplitude of the acceleration and the excitation
frequency. This can also be seen in equation 3.5. The definition of the non-dimensional jerk for a
translational motion is given in equation 4.3, and the units that make up this dimensionless number in
equation 4.4.

...z non-dimensional =
...z dimensional · Lpp

g · ζa · ω
(4.3)

...z non-dimensional =
[m/s3] · [m]

[m/s2] · [m] · [1/s] = [-] (4.4)

The non-dimensional jerk for a rotational motion is given in equation 4.5, and the units that make up
this dimensionless number are given in equation 4.6.

...
θ non-dimensional =

...
θ dimensional · Lpp

k · g · ζa · ω
(4.5)

...
θ non-dimensional =

[rad/s3] · [m]
[rad/m] · [m/s2] · [m] · [1/s] = [-] (4.6)

Jerk-to-acceleration ratio
The ratio between the maximum value in the jerk and the maximum value in the acceleration is also
investigated. The ratio rjerk-acc is defined as given in equation 4.7, and by substituting equations 4.1 and
4.3 in this equation this results in equation 4.4.

rjerk-acc = jnon-dimensional

anon-dimensional
(4.7)

rjerk-acc = jdimensional

adimensional · ω
(4.8)

If the system would be linear, the response functions of acceleration and jerk would be as given in
respectively equations 4.9 and 4.10.

a = A · sin(ω · t + ε) (4.9)

j = da
dt = ω · A · cos(ω · t + ε) (4.10)

The maximum values of these response functions are the amplitudes of the harmonic, so A for the
acceleration and ω · A for the jerk. Filling in these values in the ratio rjerk-acc in equation 4.8 leads to the
conclusion that this ratio will always be 1, if the ship response to a regular wave is linear. Therefore this
ratio might be an indication of how non-linear the response is. The importance of this will be explained
more in section 4.1.2.
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4.1.2 Non-linearity ratio
From the researches of Keuning [29] and de Jong [7] it follows that the motions become increasingly
non-linear with increasing speed and wave height. Especially the accelerations are found to be highly
non-linear. This is because of the exponential growth of all higher order responses. To demonstrate
this the amplitudes of the harmonic components of the derivatives of equation 4.11 are given in table
4.1. Only the amplitudes of the harmonic components are given. The phase difference, and thus the
difference between sine and cosine in the derivatives is left out since this has no effect on the amplitude.

xi(t) = A1 · sin(ω · t) + A2 · sin(2ω · t) + A3 · sin(3ω · t) (4.11)

Table 4.1: Exponential growth of amplitudes of higher order components

Derivative First order Second order Third order
0 (displacement) A1 A2 A3
1 (velocity) ω · A1 2ω · A2 3ω · A3
2 (acceleration) ω2 · A1 4ω2 · A2 9ω2 · A3
3 (jerk) ω3 · A1 8ω3 · A2 27ω3 · A3

As can be seen all the higher order components of the response increase exponentially over the deriva-
tives. Therefore the total amount of energy of the non-linear response (called ’non-linear energy’ here)
also follows a exponentially growing trend. Therefore a procedure of quantifying the amount of non-
linear behaviour has been investigated in the scope of this thesis. This is defined in the non-linearity
ratio rnl, see equation 4.12, equation 4.13 and equation 4.14.

rnl = m0,non linear

m0,total
(4.12)

With:

m0,non linear =
∫ ∞

1.5·ωe

Sxi(ωe) dω (4.13)

m0,total =
∫ ∞

0
Sxi(ωe) dω (4.14)

In this equation ωe is the excitation frequency, so the encounter frequency of the ship with the waves.
The value m0,non linear is the integral of the energy density spectrum starting from 1.5 times the excitation
frequency. This integral is thus the amount of energy in the energy density spectrum that is in higher
orders than the first order, the non-linear energy. The split between linear and non-linear energy at 1.5
times the excitation frequency is chosen because it is halfway between the first order response and the
second order response. Therefore if the encounter frequency is slightly off or there is small variation in
the encounter frequency and the energy in the spectrum is thus slightly spread to surrounding frequen-
cies, the energy is still captured as linear or non-linear. For an example see figure 2.8b, where the split
would thus be made just below 10 rad/s.

The non-linearity ratio can be determined for both the acceleration and the jerk. It is a dimensionless
number, but does not give an indication on the magnitude of the response. The response can be highly
non-linear, but very small and thus not very uncomfortable. It is therefore not expected that the non-
linearity ratio in itself is a good indicator for the comfort on a ship, but it might be an useful addition to
the acceleration or jerk values.

In appendix A it is mathematically proven that the non-linearity ratio is a measure how much the time
trace of the response does not fit a sine function. Also it is proven that this is the opposite of the r2-
value (the coefficient of determination), see equation 4.15. The coefficient of determination is thus a
measure of how linear the time trace of a response is.

rnl = 1− r2 (4.15)
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4.1.3 ’Ideal’ response
From the research of Keuning [29] it follows that the impact of the bow in waves and the accelerations
coming from that are severely affecting the comfort on board of ships. These events are highly non-
linear. Now often acceleration levels are used to assess the comfort on ships, but following from the
above statement the assumption can be made that the amount in which the ship responses are non-
linear might also have an influence on the experience of (dis)comfort in a ship.

The linear response of a ship is the result of the geometric parameters (for example length, breadth ans
draft) and hydrostatic parameters (for example displacement and longitudinal position of the centre of
gravity) [27], and is therefore always present. The ship responses cannot be altered much without dras-
tically changing the properties of a ship. The non-linear response of a ship, the higher order responses,
can however be minimised. It is therefore also stated in de Jong [7] that the more optimised a ship is,
the more linear the response is. This also supports the investigation of the non-linearity ratio defined
in section 4.1.2 as a measure of the comfort of a ship. If the ship response would be completely linear,
the non-linearity ratio would be zero. The coefficient of determination r2 would be 1, since the linear
response of the ship to a regular wave is also a sine function.

4.2 Quantifying response in irregular waves
If the ship is in irregular waves, quantifying the response is not so straightforward anymore. Since
the wave pattern and thus the response spectrum is assumed to be a superposition of a number of
regular waves, there is not one peak value anymore. The linear response of a ship in irregular waves
has been described in section 2.2.4. In the case of linear response the response can be represented
with significant values, as described in section 4.2.1.

The behaviour of a ship in irregular waves can however also be non-linear, for example with fast, planing
boats. The extensive research of Fridsma [14] into the behaviour of fast boats in irregular waves lead to
the conclusion that the vertical accelerations are random and highly non-linear in relation to the wave
elevation [7, 18]. In these cases the only way described in literature to investigate the behaviour of a
ship is with statistics, using for example probability plots and values for probability of exceedance of a
certain value. This will be discussed in section 4.2.2.

4.2.1 Significant value
In the analysis of irregular seas usually the assumption can bemade that thewave elevation is Gaussian
distributed along a zero mean level [27]. In this case all the statistical properties of the wave elevation
can be derived from the energy density spectrum of the waves [19]. If the response of a ship is linear,
this means that the response spectrum (see section 2.2.4) has these same statistical properties.

The standard deviation σ (or root mean square) can be determined, see equation 4.16. The root mean
square can also be determined from the zeroth order moment of the energy spectrumm0, see equation
4.17 and equation 4.18.

σ =

√√√√ 1
N− 1 ·

N∑
n=1

ζ2
n (4.16)

m0 =
∫ ∞

0
Sxi(ω) dω (4.17)

σ =
√

m0 (4.18)

In wave statistics the significant wave height is the mean value of the highest one-third of waves [19].
The significant wave height is four times the root mean square, see equation 4.19. The significant
value for a ship response can be found likewise. This is the mean of the one-third highest maximum to
minimum (crest to trough) values, the significant double amplitude (SDA) value.

If the surface elevation or ship response is described as a Gaussian distribution, the amplitudes of the
waves or the amplitudes of the motion response can be described using a Rayleigh distribution. Using
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this Rayleigh distribution the maximum wave height or maximum response can then be determined.
Theoretically this would be infinity, but usually the maximum is defined as the once every 1000 peak
value [27]. This is approximately twice the significant value, see equation 4.20.

H1/3 = 4 · σ = 4 ·
√

m0 (4.19)

Hmax = 1.86 · H1/3 ≈ 2 · H1/3 (4.20)

4.2.2 Probability of exceedance
If the response of a ship becomes non-linear with respect to the wave spectrum, the statistical values
described in section 4.2.1 are not representative anymore for the behaviour of the ship. This is because
the amplitudes of the non-linear ship response are not Rayleigh distributed anymore. The occurrence
of peaks can also not be predicted anymore by applying the superposition principle on the response to
regular wave components [7].

The non-linear (random) character of the ship responses makes it necessary to analyse sufficient data
to come to a valid representation of the ship behaviour in terms in probabilities of exceedance. In the
case of model tests this might mean that multiple runs are necessary to obtain a sufficient amount of
data. The recommendation of the International Towing Tank Conference [26] is to have at least 200
wave encounters.

When sufficient data is available the crests (or troughs) can be analysed. The probability of exceedance
of a the value of a certain crest is calculated with equation 4.21. In this equation X is a data set with
N values for the crest values, sorted from small to large. The calculated probability P(Xi) is the chance
that the i-th element of the data set is exceeded.

P(Xi) =
i

N + 1 (4.21)

An important factor in calculating the distributions is determining a method for identifying the crests or
troughs in measurement data. In de Jong [7] two different methods were proposed. The first one made
the assumption that between two zero-crossing there could only be one crest or trough, and the crest or
trough should exceed a certain threshold value based on the standard deviation of the data. The second
method stated that the time lag between two crests or troughs should be at least 0.5 seconds. It was
assumed that the relevant rigid body motions that were studied would not appear in a higher frequency
than that. In de Jong [7] the second method was chosen. The probabilities in the higher part of the
Rayleigh plot were found to be almost identical, while in the lower part the results were less distorted.
In section 4.2.3 these methods will be compared to see which if the second method is also the best
choice when analysing jerk in the ship motions. A correctly determined distribution of the crests and
troughs is also important when trying to fit a certain mathematical distribution through the data [57].
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Figure 4.1: Example of crests and troughs
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This will not be done in this thesis, so here it is only important that the same procedures are applied to
all the data to be able to make a qualitative comparison.

Also a local maximum that is negative, or local minimumwhich is positive are discarded as respectively
crest or trough, see the example time trace in figure 4.1. This means that the assumption is made that
each crest should be positive and each trough should be negative.

4.2.3 Rayleigh plots
A useful way to plot the probability of exceedance is in a Rayleigh plot, see figure 4.2. For example, the
chance that the amplitude of a crest in the acceleration is higher than 20 m/s2, is approximately 15%,
as also indicated in the figure. The Rayleigh plot is a plot where the horizontal axis is changed in such
a way that a Rayleigh distribution will appear as a straight line in the plot. This is done using equation
4.23. As stated in section 4.2.2 the response of a ship in irregular waves would follow an Rayleigh
distribution if approximated well by the linear approach. The crests and troughs would then appear as
a straight line in the Rayleigh plot. From the fact that the crests and troughs are far from a straight line
in figure 4.2 it can be concluded that the response is highly non-linear.

In figure 4.2 also the probability of exceedance is plotted for a Rayleigh distribution with a significant
double amplitude (SDA) calculated with equation 4.19, which would be the response if it was a linear
response and the same amount of energy would be in the energy density spectrum. It can clearly be
seen that the Rayleigh distribution based on the SDA is not representative for the actual response of the
ship. The lower crest values seem to follow the linear response, but especially the higher crest values
are significantly higher.

The probability of exceedance of a certain amplitude (with value a) according to a Rayleigh distribution
is calculated with equation 4.22 [7]. Inverted, the amplitude that is exceeded with a certain probability
as input is calculated using equation 4.23.

P(xa > a) = exp(− a2

2σ 2 ) (4.22)

a = σ ·
√
−2 · ln(P(xa > a)) (4.23)

As mentioned in section 4.2.2 the procedure of identifying the crests and troughs has an influence on
the Rayleigh plots. This can be seen in figure 4.3. Method 1 is the first method explained in section 4.2.2
with the threshold value. Method 2 is the method with a minimum time gap between two subsequent
crests or troughs. The methods are applied on the vertical jerk corresponding to the data in figure 4.2.
Only the crest values are plotted, as a line instead of markers, to better show the difference. In de Jong
[7] it was concluded that method 2 worked better. This method is found to be working better for jerk
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Figure 4.2: Example of Rayleigh plot
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Figure 4.3: Comparison of methods for identifying crests



4.2 Quantifying response in irregular waves 29

as well. The methods give the same probabilities in the higher part of the Rayleigh plot. In the lower
part method 2 goes to zero at 100% probability of exceedance, while method 1 states the chance that a
crest value of 100 m/s3 is 100%. Therefore method 1 is chosen for this research as well for identifying
the peaks and troughs.

The probabilities of exceedance determined in this chapter are sensitive for first the filtering of the
measurement data and then applying themethod of crest and trough identifying. Therefore there might
be a difference between the calculated probability and the actual probability. The calculated values
can however be used to qualitatively compare different designs or different conditions, if the same
processing is applied to the different data sets. With the qualitative comparison it is possible to say
that the probability of exceedance of a certain value is higher for one ship than for the other.

4.2.4 Non-linearity
A different method than using statistics to quantify the non-linear response of a ship in irregular waves
is applying the theory of the non-linearity ratio (section 4.1.2). However, there is no analogy with the
correlation of a sine fit anymore, since fitting a sine is not possible through irregular waves. It can
however be an indication of the non-linearity in the ship response.

Instead of a first order peak and higher order peaks in the energy density spectrum, there is now a
response spectrum with higher order energy, see figure 4.4. From the energy density spectrum of the
displacement motions it can be determined where the first order roughly ends, since the motion is
(almost) completely first order response. For the data sets used in this thesis a good estimation to
make the split between first order energy and higher order energy is at 1.7 times the peak frequency of
the spectrum. This is an estimation, since there are already higher orders for the low frequencies at the
side that is now quantified as first order energy. It is however impossible to separate this any further.
The non-linearity ratio is thus for the response in irregular waves an estimation. It might be useful to
compare different ships, if determined in the same conditions with the same procedures.
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Figure 4.4: Example of energy density spectrum of response in irregular waves
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4.3 Overview of definitions
In this chapter a number of definitions and explanations have been given that are crucial for the under-
standing of the remaining part of this thesis. Therefore a short summary of these definitions is given
in table 4.2.

Table 4.2: Overview of the used terms and their definitions

Term Definition

Linear response

Linear response means that there is only a first order response of a ship to
the disturabant waves or wave spectrum. The effect from this is that there is
for every wave frequency a linear relation between the wave (spectrum) and
the response (spectrum), and the response is thus at the same frequency or
in the same frequency spectrum as the wave (spectrum).

Non-linear response

The response of a ship is non-linear if there is a response at the excitation
frequency of the waves, and one or more multiples of this frequency. If the
disturbant waves are part of a wave spectrum, there can be energy in the
response spectrum at multiples of all the frequencies in the wave spectrum.

First order response

The part of the response of the ship that is at the same frequency as the distur-
bant wave (spectrum), is the first order response. A response that is (mainly)
first order can be slightly non-linear, but is dominated by the first order re-
sponse. Therefore the response is very similar to a response determined with
the linear assumption.

Higher order response The part of the response of the ship that is at multiples of the frequency of
the disturbant wave (spectrum).

First order energy The amount of energy in the energy density spectrum that is at the frequency
or frequency spectrum of the disturbant wave or wave spectrum.

Higher order energy

The amount of energy in the energy density spectrum that is at muliple(s)
of the excitation frequency (spectrum). Since there is no energy in the wave
spectrum at these frequencies, it must come from non-linear response of the
ship to the wave (spectrum).

Sine fit

The sine fit is a single harmonic function, fitted with a least squares method
the response time trace. The frequency of this function is equal to the en-
counter frequency, and the amplitude, phase and offset are determined to
have the best correlation with the response time trace. Only applicable in reg-
ular waves.

Coefficient of determi-
nation (r2-value)

The coefficient of determination is a measure for the correlation between the
response time trace and the sine fit. As proven in appendix A this is ameasure
for how linear the response is, which part of the response comes from the first
order response. Only applicable in regular waves.

Non-linearity ratio

The non-linearity ratio is the ratio of the higher order energy in the energy den-
sity spectrum of the response to the total amount of energy in the energy den-
sity spectrum. As proven in appendix A the non-linearity ratio is the opposite
of the r2-value (in regular waves) and therefore a measure of how non-linear
the response is, which part of the response comes from the higher order re-
sponse(s). In irregular waves a sine fit is not possible, but the non-linearity
ratio then gives an indication of how non-linear the response is.
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4.4 Uncertainty
In the measurements that are going to be compared in the next chapters there is uncertainty in the
measurement data. The total uncertainty is defined as a composition of the precision error and the bias
error [7]. The precision error is the spread of a measured value around a certain mean value. The bias is
the distance between the true value and themean value of themeasurements. These errors are a result
of for example measurement errors, accuracy of instruments and uncertainties in the environment or
model. A more detailed assessment of uncertainty can be found in appendix D of de Jong [7] or in the
guidelines of the International Towing Tank Conference [24].

For this research the exact values are of less importance, because comparisons are going to be made
qualitatively. It is however needed to have an approximation of the uncertainty, since than with certainty
can be said if one value is indeed larger than the other. Therefore a simplified uncertainty analysis will
be performed in this section.

4.4.1 Uncertainty individual peaks
In the doctoral thesis of de Jong [7] an extensive derivation of the uncertainty in themeasurements also
used in chapter 5 and chapter 6 is performed, by determining a 95% confidence interval. In this thesis a
simplified approach will be used. To determine the same confidence interval for the jerk, the propaga-
tion of the uncertainty through differentiation is determined. As already mentioned in the introduction
of chapter 3, the error introduced through numerical differentiation consists of the truncation error and
the measurement error. In the method used in this report, central differentiation, the truncation error is
of order ∆t2, where ∆t is the time step in the measurements [59]. The regular wave experiments used
in chapter 5 were performed at 1000 Hz (so a time step of 0.001 seconds), the irregular wave experi-
ments used in chapter 6 at 400 Hz (so a time step of 0.0025 seconds). The truncation error is therefore
assumed to be negligible.

The uncertainty as defined by de Jong [7] can be defined as a measurement error and thus propagates
through differentiation as defined in equation 4.24.

Ujerk ≤
Uacc

∆t (4.24)

In this equation Uacc is the uncertainty in the acceleration value, Ujerk is the uncertainty in the jerk value. It
can be seen that according to this definition the uncertainty in the jerkwould become very large because
of the small time steps in the measurements. In chapter 3 it was however argued that the event with
the smallest time scale, slamming, was 0.05 seconds and that the data should thus be filtered at 20
Hz. Because of the filtering it is thus not representative anymore to define the time step in equation
4.24 with the inverse of the sampling frequency. Since all events with a time scale smaller than 0.05
seconds are filtered out, this value will be used to determine the propagation of uncertainty through the
numerical differentiation.

The uncertainty for individual acceleration peaks at the bow is defined in de Jong [7] as 0.884 m/s2

for the ESC and 0.877 m/s2 for the AXE. In this report that uncertainty is approximated as 0.88 m/s2.
Using equation 4.24 and the assumption for the time step the uncertainty in the individual jerk peaks at
the bow is then 17.6 m/s3. The uncertainty of individual peaks at the centre of gravity is lower, but not
defined. In figure 4.5a and figure 4.5b the mean acceleration and jerk levels with error bars are plotted
for the ESC. The error bars indicate the 95% confidence interval. In these figures the results of tests
(with model speed vs = 2.876 m/s) in regular waves with varying wave steepness κ are plotted. These
tests will be discussed further in chapter 5.

Uacc,bow = 0.88 m/s2 (4.25)

Ujerk,bow = 17.6 m/s3 (4.26)

In the research of de Jong [7] more uncertainties are included. In this report these uncertainties are
assumed to be small or constant, and are neglected for simplification reasons. As mentioned before
determining the exact value is of less importance, since mostly qualitative comparisons will be made.
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Figure 4.5: Crest values with error bars, ESC, bow, vs = 2.876 m/s

It can be seen that for both the acceleration and the jerk the uncertainty is low enough to make rea-
sonable qualitative conclusions about them. The uncertainty in the measurements will not be treated
furthermore in this report, but all the comparisons weremade considering this uncertainty. If values fall
within the uncertainty window of each other, no statements will be made that one or the other is larger
or smaller.

4.4.2 Spread of peak measurements
In the analysis of the regular wave experiments in chapter 5 single values are used as maximum or
minimum value in for example the accelerations. It is however important to investigate if this single
value is a good representation for the behaviour of the model in an experiment. Theoretically the re-
sponse should be the same with each wave encounter, so the spread in the maximum or minimum
values should be low. All the crest values of the heave acceleration and heave jerk are plotted per wave
frequency as a box plot in respectively figure 4.6 and figure 4.7. In these figures the spread of the val-
ues can be seen for both models used in the tests, the AXE and the ESC. The trough values of the pitch
acceleration and pitch jerk per wave frequency are visualised as box plot in respectively figure 4.8 and
figure 4.9. The crest values for the heave and the trough values for the pitch are presented because
these are often limiting, as will be explained further in chapter 5.

In all the figures it can be seen that the spread of the values is very low. The assumption that the
response is the same with each wave encounter is thus valid. Therefore the mean value of the crests
or troughs per measurement is used in chapter 5 to make comparisons.
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Figure 4.6: Box plots crests heave acceleration, vs = 2.876 m/s
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Figure 4.7: Box plots crests heave jerk, vs = 2.876 m/s
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Figure 4.8: Box plots troughs pitch acceleration, vs = 2.876 m/s
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Figure 4.9: Box plots troughs pitch jerk, vs = 2.876 m/s





5
Fast models in regular head waves

In this chapter the jerk in the response of model tests in regular waves will be investigated. The model
tests were performed in the FAST II research project [7]. Tests were performed with two hull types:
one with an axe bow, and one based on the enlarged ship concept. In section 5.1 more specifics of the
performed tests will be given. Next in section 5.2 comparisons will be made of the two hulls in different
conditions to see what the difference of the hulls in terms of jerk behaviour is, and what the influence of
different parameters on the jerk response is. These comparison methods will also be used in section
5.3 where the difference in jerk over the length of the ship will be investigated.

5.1 Introduction
The towing tank tests in regular waves were performed with models with a length of 2.75 m, based on
the axe bow concept (AXE) and the enlarged ship concept (ESC). A schematic view of the hull shapes
of these models can be seen in figure 5.1. The tests were performed in a larger scope to investigate
the seakeeping behaviour of fast vessels, see the doctoral thesis of de Jong [7] for more information
on this subject. Since the behaviour of fast vessels was investigated, the tests were performed with
a (full scale) speed of 25 knots and 35 knots. Converted to the 1:20 model using Froude scaling this
means respectively a speed (vs) of 2.876 m/s and 4.026m/s. For details on Froude scaling see chapter
8. The Froude numbers associated with these speeds and the length of the model are 0.554 and 0.775.
Based on these Froude numbers the ships are in a semi-planing regime [9]. In all the tests the vertical
accelerations at the centre of gravity (CoG) and the bowweremeasured. Also themotions at the centre
of gravity were measured.

(a) AXE (b) ESC

Figure 5.1: Schematic view of the models used in the tests, from de Jong [7]

Wave frequencies
The tests were performed with wave frequencies ranging from 2.68 rad/s to 5.81 rad/s. The encounter
frequency ωe of the models with these waves is calculated with equation 5.1. In this equation ω is the
frequency of the waves, vs is the speed of the ship and g is the gravitational acceleration. This equation
is valid for head waves. The non-dimensional frequencyωnd, which can also be used to compare the be-
haviour of the models, is calculated with equation 5.2. In this equation Lwl is the waterline length of the
ship. An overview of the different wave frequencies can be seen in table 5.1. In this thesis the dimen-
sional encounter frequency is used, contrary to the report of de Jong [7] where the non-dimensional
frequency is used. To be able to compare the different reports the non-dimensional frequencies are
also given here.

ωe = ω + ω
2 · vs

g (5.1)

ωnd = ω ·

√
Lwl

g (5.2)

35
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Table 5.1: Overview of the wave frequencies used in the model tests

ω ωe (2.876 m/s) ωe (4.026 m/s) ωnd
[rad/s] [rad/s] [rad/s] [-]
2.68 4.79 5.63 1.42
3.13 6.00 7.15 1.66
3.58 7.34 8.84 1.90
4.02 8.76 10.65 2.13
4.47 10.33 12.67 2.37
4.92 12.02 14.85 2.60
5.37 13.82 17.20 2.84
5.81 15.71 19.66 3.08

Wave steepnesses
The model tests were performed with constant wave steepness ratios κ of 1/60, 1/30 and 1/20. The
wave steepness ratio is defined as given in equation 5.3. In this equation ζa is the wave amplitude λ
is the wave length. An overview of the wave frequencies and the corresponding wave amplitudes are
given in table 5.2.

κ = 2 · ζa

λ (5.3)

The consequence of constant wave steepness is that the wave amplitude is different at each frequency.
To compare the responses the measurements have to be corrected for this, using the non-dimensional
numbers given in section 4.1. The advantage of constant wave steepness is that the non-linear effects
(for example wave breaking) due to increasing wave steepness in a constant wave amplitude test are
avoided. The disadvantage is that at high wave frequencies, the wave amplitudes are small. Therefore
the signal-to-noise ratio of the measurements decreases, making it harder to accurately process them.

Table 5.2: Overview of the wave amplitudes used in the model tests

ζa [mm]
ω [rad/s] κ = 1/60 κ = 1/30 κ = 1/20
2.68 71 130 -
3.13 52 105 -
3.58 40 80 120
4.02 32 63 95
4.47 26 51 77
4.92 21 42 64
5.37 18 36 54
5.81 15 30 46

Time traces and slamming
In this chapter references will be made to time traces. These time traces with the corresponding energy
density spectra for the acceleration and jerk can be found in appendix C. Also there will be referred to
first order dominated response, or slamming that is visible in the time traces. An example of what is
referred to as first order response can be seen in figure 5.2. The acceleration and the corresponding
jerk (although noisy) look like a sine function, and are thus dominated by the linear response to the
disturbant wave.

An example of slamming can be seen in figure 5.3. The acceleration suddenly changes from negative
to positive, and the sine fit is less good than with the first order dominated example. In the jerk it can be
seen that part of the time trace follows the sine fit, but there is a sudden impulse due to the slamming.
A more detailed analysis of the ship response when slamming occurs can be found in section 7.2.4.
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Figure 5.2: Time traces, ESC, centre of gravity, vs = 2.876 m/s, ωe = 4.79 rad/s, κ = 0.017
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Figure 5.3: Time traces, ESC, centre of gravity, vs = 4.026 m/s, ωe = 8.84 rad/s, κ = 0.033

5.2 Comparison
In this section the response of the two different hulls is compared. This will be done on the basis of
wave frequency, wave steepness and forward speed. In most of the comparisons themeasurements of
the 25 knots tests (model speed vs = 2.876 m/s) were used, since more data was available from these
tests. Only in the comparison of the influence of forward speed the 35 knots (model speed vs = 4.026
m/s) data will be used. The values that will be compared are the acceleration crests, the jerk crests
and the non-linearity ratio. The acceleration crests, although not directly the scope of this thesis, are
included to see if a comparison based on the jerk would give different results in terms of which hull
performs better at certain conditions.

5.2.1 Hull types
Acceleration peaks
The maximum (non-dimensional) vertical acceleration of both the ESC and the AXE can be seen in
respectively figure 5.4a and figure 5.4b. The acceleration crest value is made non-dimensional using
equation 4.1. The obtained values are plotted against the encounter frequency of the ship with the
waves, for each wave steepness.

For both hull types the natural frequency is clearly visible in the plots, with the peak around 8 rad/s.
Most of the tests were performed at frequencies higher than the natural frequency. The values for
the acceleration clearly decrease with increasing frequency, for both hull types. The accelerations at
the centre of gravity are slightly higher for the AXE than for the ESC. Looking at the time traces of
the response it can clearly be seen that the response is mainly first order, see time traces 1 and 2 in
appendix C. The first order heave amplitude of the AXE bow is higher than the heave amplitude of the
ESC, resulting in higher accelerations, see figure 5.6. In this figure the RAO of the heave displacement
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Figure 5.4: Maximum vertical acceleration (non-dimensional), centre of gravity, vs = 2.876 m/s
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Figure 5.5: Maximum vertical acceleration (non-dimensional), bow, vs = 2.876 m/s
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Figure 5.6: Maximum vertical displacement (non-dimensional), centre of gravity, vs = 2.876 m/s
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(za/ζa) is plotted. The larger vertical accelerations at the centre of gravity of the AXE thus come from a
larger heave displacement at the same frequency waves. The only exception is the response in waves
with a steepness of κ = 0.050 at a frequency of ωe = 8.76 rad/s. The time traces (time traces 3 and 4
in appendix C) show contrary to the other points a more severe slam. In this case the response of the
AXE is lower than the response of the ESC.

Looking at the accelerations at the bow there are certain differences, see figure 5.5a and figure 5.5b for
the non-dimensional amplitude of the vertical acceleration at the bow of respectively the ESC and the
AXE. Contrary to the accelerations at the centre of gravity, here only the response in wave steepness
κ = 0.017 is dominated by the first order response. The accelerations are then again slightly larger at
the AXE. For the other wave steepnesses the response of the ESC is larger than the response of the
AXE. In the time traces of these cases more distinct slamming is visible, see time traces 5 and 6 in
appendix C. The AXE bow is more optimised for this slamming [7], and therefore the response of the
AXE is smaller than the response of the ESC.

The vertical accelerations at the bow are a superposition of the vertical acceleration at the centre of
gravity and the pitch acceleration. As mentioned above the accelerations at the centre of gravity are
mainly dominated by the first order response. The distinct slamming in the accelerations at the bow
are thus originating from the pitch accelerations, this will be analysed further in section 5.3.

Jerk peaks
The maximum (non-dimensional) values for the vertical jerk of the ESC and the AXE, at the centre of
gravity, are plotted in respectively figure 5.7a and figure 5.7b. The jerk is made non-dimensional with
equation 4.3. The obtained values are again plotted against the encounter frequency.

From the graphs it becomes clear that the jerk behaviour of the hulls is different from the accelerations.
Where the values of the accelerations of the AXEwere generally larger at the centre of gravity than those
of the ESC, the jerk values of the ESC are mostly larger than those of the AXE, especially around the
natural frequency. The only exception is the tests with wave steepness κ = 0.017. The time traces (see
again time traces 1 and 2 in appendix C) show that the jerk values in these results are still dominated by
the first order response, and are thus slightly higher on the AXE. In the waves with higher steepnesses
the accelerations of the ESC are smaller than the AXE, but the ESC shows a more distinct slam in
the waves. This results in a higher jerk value. At higher encounter frequencies the response of both
hull types becomes more first order, there is no real slamming visible anymore. The response values
therefore become more first order.

In figure 5.8a and figure 5.8b the maximum non-dimensional jerk at the bow is plotted. The trend of the
lines looks the same as with the jerk in the centre of gravity. The difference between the jerk at the bow
of the ESC and the AXE is slightly larger than at the centre of gravity, indicating that the bow of the AXE
is indeed optimised for these conditions.
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Figure 5.7: Maximum vertical jerk (non-dimensional), centre of gravity, vs = 2.876 m/s
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Figure 5.8: Maximum vertical jerk (non-dimensional), bow, vs = 2.876 m/s
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Figure 5.9: Non-linearity ratio vertical acceleration, centre of gravity, vs = 2.876 m/s
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Figure 5.10: Non-linearity ratio vertical acceleration, bow, vs = 2.876 m/s
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Figure 5.11: Non-linearity ratio vertical jerk, centre of gravity, vs = 2.876 m/s
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Figure 5.12: Non-linearity ratio vertical jerk, bow, vs = 2.876 m/s
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Figure 5.13: Jerk-to-acceleration ratio, centre of gravity, vs = 2.876 m/s
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Non-linearity ratio
In chapter 4 also a procedure to quantify the amount which the response is non-linear was proposed,
the non-linearity ratio. This ratio can be determined for either the acceleration or the jerk. In figure 5.9a
and figure 5.9b the non-linearity ratio for the acceleration at the centre of gravity for the ESC and the AXE
have been plotted. The ratios are relatively constant at the lower encounter frequencies, and become
larger at higher encounter frequencies. This means that, although the responses are small at the high
frequencies, they are largely non-linear. It can also be seen that the response of the AXE in general is
less non-linear than the ESC. This also illustrates that the non-linearity ratio has no (direct) link with
the value of the response, since prior in this section it was concluded that the acceleration peaks are
higher for the AXE. There is no clear peak visible near the natural frequency. This can be explained by
the fact that most of the acceleration responses at the centre of gravity were dominated by the first
order response, as concluded earlier in this section.

The peak that is visible in the non-linearity of the ESC (figure 5.9a) at ωe = 13.82 rad/s and at the AXE
(figure 5.9a) at ωe = 15.71 rad/s is coming from the fact that the second order response (the peak in the
energy density spectrum at two times the encounter frequency) is (almost) equal to or larger than the
peak of the first order response. This will be analysed further in section 5.3.2. Here also an example of
the energy density spectra where this phenomenon happens can be seen, see figure 5.32a and figure
5.32b.

The non-linearity ratio of the acceleration at the bow can be seen in figure 5.10a and figure 5.10b. Con-
trary to the non-linearity ratio at the centre of gravity, there is a more distinct peak visible at the natural
frequency of the ESC. This is because of the slamming that happened in these tests, which is a non-
linear event. The optimisation of the bow of the AXE is again visible here, with a relatively less non-linear
response.

The non-linearity ratio can also be determined for the jerk, see figure 5.11a and figure 5.11b. As expected
from the explanation in chapter 4 the jerk is more non-linear than the acceleration, which is the trend
in both figures. It can be seen that the non-linearity is generally higher around the natural frequency
and at the higher frequencies. The only exception are the tests with κ = 0.017, here the non-linearity
ratio seems to drop around the natural frequency. This can be explained by the fact that there is no
distinct slamming visible in the time traces of these tests, while that is the case in the time traces of
the higher wave steepnesses. Since the slamming is highly non-linear, this explains the different trend
in non-linearity ratio.

The non-linearity ratio of the jerk at the bow is plotted in figure 5.12a and figure 5.12b for respectively
the ESC and the AXE. The non-linearity generally follows the same trend as the non-linearity at the
centre of gravity. However, the ratio is relatively higher around the natural frequency and lower at higher
frequencies. Also there is no second normal mode visible.

Jerk-to-acceleration ratio
In chapter 4 also the jerk-to-acceleration ratio has been defined, see equation 4.7. This ratio, determined
at the centre of gravity, has been plotted in figure 5.13a and figure 5.13b. Although the figures show
similarity with the figures of the non-linearity ratio for the jerk, they are less clear and it is harder to
distinguish trends in them. This method of quantifying will therefore not be used furthermore.
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5.2.2 Wave steepness
In all the figures in section 5.2 the response is plotted for different values of the wave steepness. In
this section the effect of wave steepness on the response of the ship is discussed. In time traces 7, 8
and 9 in appendix C the response at the bow of the ESC in the same wave frequency but varying wave
steepness values can be seen.

Acceleration peaks
In figure 5.4 it can be seen that there is a general decreasing trend of the non-dimensional acceleration
peaks with increasing wave steepness at the centre of gravity. This also shows that although it was
concluded in the previous section that the responses are dominated by the first order response, they
are still non-linear to the disturbant wave. If the response would be linear and the response would thus
be proportional to the wave amplitude, the non-dimensional response should be the same. This effect
is also visible in the heave displacement, see figure 5.6.

Contrary to the accelerations at the centre of gravity, the acceleration peaks at the bow of the ESC have
an increasing trend with increasing wave steepness as seen in figure 5.5. This is mainly due to the
increased slamming in these conditions. The AXE and the ESC at higher frequencies show the same
trend as the accelerations at the centre of gravity, decreasing with increasing wave steepness.

Jerk peaks
In figure 5.7 and figure 5.8 the jerk peaks at respectively the centre of gravity and the bow can be seen for
the ESC and the AXE. It can be seen that the maximum value of the jerk increases with increasing wave
steepness. This is especially visible around the natural frequency of the ship, where the slamming is
occurring. The severity of slamming, which increases with increasing wave steepness, seems to be the
main cause for the largest jerk peaks in the shipmodel. The jerk behaviour is dominated by slamming at
both the centre of gravity and the bow, contrary to the acceleration peaks. Theseweremainly dominated
by the first order response in the centre of gravity. In the jerk in time traces 7, 8 and 9 in appendix C
it is clearly visible that the impulse from the slamming significantly increases with increasing wave
steepness.

Non-linearity ratio
The non-linearity for acceleration and jerk, for the centre of gravity and the bow can be seen in figures
5.9 to 5.12. The general trend is an increasing non-linearity ratio for increasing wave steepness. The
difference between no occurrence of slamming for wave steepness κ = 0.017 and the occurrence of
slamming for higher wave steepness values can be seen clearly. Since the slamming is a highly non-
linear event, the non-linearity ratios of the higher wave steepness values are relatively high around the
natural frequency. This is contrary to the response to waves with a wave steepness of κ = 0.017, which
has a decreasing non-linearity ratio around this frequency.

5.2.3 Forward speed
To compare the influence of increasing forward speed the data of the tests with vs = 2.876 m/s and
the data from the tests with vs = 4.026 m/s are compared. This will only be done for a selection of
the results the AXE, since the ESC shows very similar trends. Also only the results from the tests with
wave steepness values of κ = 0.017 and κ = 0.033 will be compared, since these are tests that were
mainly dominated by first order response and tests where slamming occurred. This way the effect of
increasing ship speed can be compared for both these conditions.

Acceleration peaks
In figure 5.14 and figure 5.15 the maximum values for the acceleration are given at respectively the
centre of gravity and the bow. For the wave steepness of κ = 0.017 it can be seen that the acceleration
response at the centre of gravity near the natural frequency is slightly higher, but the response at the
bow around the natural frequency is lower. Since the response at this wave steepness is still dominated
by the first order response, this comes from increased heave response and decreased pitch response.
The influence of heave and pitch in the total ship response will be investigated further in section 5.3.
At higher frequencies the general trend is increased acceleration response with increasing speed. With
higher wave steepnesses the difference around the natural frequency is not visible anymore, because
the maximum values for the acceleration are dominated by slamming here. The slamming increases
with increasing forward speed.
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Figure 5.14: Maximum vertical acceleration (non-dimensional), AXE, centre of gravity
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Figure 5.15: Maximum vertical acceleration (non-dimensional), AXE, bow
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Figure 5.16: Maximum vertical jerk (non-dimensional), AXE, centre of gravity
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Figure 5.17: Maximum vertical jerk (non-dimensional), AXE, bow
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Figure 5.18: Non-linearity vertical acceleration, AXE, centre of gravity
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Figure 5.19: Non-linearity vertical jerk, AXE, centre of gravity
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Jerk peaks
With the jerk peaks a similar trend as in the acceleration peaks is visible, as can be seen in figure 5.16
and figure 5.17. In these figures the maximum values of the jerk at the centre of gravity and the bow are
plotted. With the wave steepness κ = 0.017 the jerk is lower around the natural frequency at the centre
of gravity with increasing speed, and higher at the bow. This is an expected consequence because
the response is mainly first order. Also the peak values are increasing with increasing speed at higher
frequencies. At the higher values for the wave steepness an increase of the jerk values is also visible
around the natural frequency, since the slamming in these region increases with increasing forward
speed.

Non-linearity
In figure 5.18 and figure 5.19 the non-linearity ratio at the centre of gravity for the acceleration and the
jerk can be seen. The general trend in these figures is that the response of themodel is less non-linear at
increasing speeds. This mainly comes from an higher first order response, see for example time traces
10 and 11 in appendix C. The higher order components, which are mainly a result of the impact with the
waves, remain the same order of magnitude. Therefore the maximum values of the acceleration and
the jerk only slightly increase, as concluded in the previous sections.

At higher frequencies the non-linearity ratios increase, but since the amplitude of the disturbant wave
and thus the amplitude of the motion response is very small, it is hard to see what this has for implica-
tions on the time traces.

5.3 Analysis over ship length
In the previous section the vertical accelerations and jerk at the centre of gravity and the bow have
been compared. In this section the influence of heave and pitch on the acceleration and jerk are in-
vestigated, to see if one has more effect than the other. With this also the maximum values of the
vertical acceleration and vertical jerk as well as the non-linearity ratio at any longitudinal position of
the ship can be determined. As was described in chapter 4, the maximum values are often limiting for
the operability and comfort of the ship. With an analysis of these values over the length of a ship the
operability and comfort can be assessed at different important locations, for example the wheelhouse,
crew accommodations and working areas.

5.3.1 Decomposition heave and pitch
The vertical acceleration at any part of the ship along the centerline is a result of the heave acceleration
and the pitch acceleration. The vertical acceleration at any longitudinal position x (along the centerline)
can be calculated as given in equation 5.4. In this equation the assumption is made that motions can
be linearly superpositioned to calculate the motions at any point on the ship. For this assumption to
be valid two conditions have to be met. One is that the model is rigid so that there is no bending of the
hull. This is assumed to be the case. The other is that the rotations are small, so that equation 5.5 is
valid. The maximum pitch displacement observed in all the tests is approximately 0.15 radians, which
is 8.6 degrees. This is small enough tomake the assumption valid. The positive x-direction and positive
θ-rotation are as defined in section 2.1.

az,x = az,CoG − aθ · x (5.4)

Assuming that:
sin(θ) ≈ θ (5.5)

The acceleration terms in these equation are the full time traces, not only the amplitude. Phase differ-
ences between different degrees of freedom are then automatically included. Since the acceleration at
the centre of gravity and the bow are known, as well as their longitudinal positions, the pitch acceler-
ation can be calculated using equation 5.4. With the pitch acceleration and the pitch jerk the vertical
acceleration and vertical jerk at any longitudinal position of the ship can be determined.

In figure 5.20 the maximum values for the pitch acceleration of the ESC and the AXE are plotted. Note
that the trough value is in most cases the largest pitch acceleration value. This is because the bow
pitching upward is, according to the definitions in section 2.1, a negative value. Slamming, which is
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Figure 5.20: Maximum pitch acceleration (non-dimensional), vs = 2.876 m/s
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Figure 5.21: Maximum pitch jerk (non-dimensional), vs = 2.876 m/s

the cause of the largest values in most cases, causes a bow upward acceleration. It can be seen that
the pitch accelerations of the AXE are lower than the pitch accelerations of the ESC. This is contrary
to the heave accelerations, which are higher at the AXE. Since the vertical acceleration at the bow is
a superposition of the heave acceleration and the pitch acceleration, this explains the lower vertical
accelerations at the bow of the AXE, compared to the bow of the ESC.

The maximum values of the pitch jerk for the ESC and the AXE are plotted in figure 5.21. These values
have a similar trend as the pitch accelerations. The jerk values for the AXE are lower than the ESC in
the same conditions.

The difference in the pitch acceleration and pitch jerk between the ESC and the AXE can also clearly
be seen in respectively time traces 12 and 13 in appendix C. In these time traces the acceleration and
jerk of both the heave and the pitch are plotted. There are some differences in the heave acceleration
and heave jerk, but the main difference in the behaviour between the two hulls comes from the pitch
acceleration and the pitch jerk.

When looking at the non-linearity of the pitch acceleration (figure 5.22) and the non-linearity of the pitch
jerk (figure 5.23) it can be seen that the pitch response of the AXE is in almost all wave conditions less
non-linear than the ESC. This is where the optimisation of the AXE bow can be observed well. Especially
in the higher wave steepness tests the relative difference is large.
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Figure 5.22: Non-linearity pitch acceleration, vs = 2.876 m/s
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Figure 5.23: Non-linearity pitch jerk, vs = 2.876 m/s

5.3.2 Different cases
In this section for a number of different conditions the maximum values along the ship length for both
models will be analysed. Since not every test run can be analysed here, these cases have been selected
to illustrate the different types of behaviour. The other test runs behaved in similar ways, but that is not
documented here.

Linear response
For this case the results from the model tests with speed vs = 2.876 m/s and an encounter frequency
of ωe = 7.34 rad/s in waves with steepness κ = 0.017 are used. This test was already dominated by
the first order response and thus quite linear, but to best illustrate how the linear distribution of the
maximum values along a ship would look like the measurements for this case have been filtered with
a lower cutoff frequency.

The phase difference between the heave and the pitch is an important parameter in the way the max-
imum values over the length of the ship look like. In figure 5.24 the maximum values for the vertical
acceleration and vertical jerk along the length of the model can be seen. These values have the shape
of a parabola. As expected in case of only linear response, the shape of the plot of the jerk looks the
same as the shape of the plot of the accelerations.

To better illustrate the importance of the phase difference between the heave and the pitch a theoretical
case of combined heave and pitch acceleration over the length of the model has been plotted in figure
5.25. The heave and pitch have been assumed as a sine signal. In figure 5.25a there is no phase angle
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Figure 5.24: Maximum values over ship length (linear response), vs = 2.876 m/s, ωe = 7.34 rad/s, κ = 0.017
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Figure 5.25: Maximum acceleration values over ship length, theoretical linear response

between the heave and the pitch. This results in straight lines. If the pitch is small compared to the
heave, the vertical accelerations are increasing towards the bow (positive x/L values) and decreasing
towards the stern (negative x/L). This also happens when the pitch is large compared to the heave,
but in this case there is a point where the vertical acceleration resulting from the pitch completely
cancels out the vertical acceleration from the heave. Behind this point there is a negative amplitude,
but since the maximum (absolute) value is plotted in the figure this shows as a bend in the line. In this
longitudinal part the vertical accelerations are in anti-phase (phase = π rad) with the accelerations at
other longitudinal parts of the model.

In figure 5.25b the maximum value for the vertical acceleration over the length of the ship has been
plotted in case the phase difference between the heave and the pitch is π rad. This means that in this
case the heave is a sine function and the pitch is a cosine function. It can be seen that the maximum
values for the vertical acceleration now are shaped like a parabola, with the lowest value in the centre
of gravity (x/L = 0). The larger the pitch motions, the more the maximum acceleration value increases
towards the bow and stern of the model.

The plots of the maximum values from the model tests in figure 5.24 are neither a straight line nor a
parabola originating in the centre of gravity. Thismeans that the (absolute value) of the phase difference
between the heave and pitch is in between 0 rad and 0.5 π rad.
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Figure 5.26: Maximum values over ship length, vs = 2.876 m/s, ωe = 7.34 rad/s, κ = 0.033

0.4 0.2 0.0 0.2 0.4
Longitudinal position (x/L) [-]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

r n
l,a

z [
-]

ESC
AXE

(a) Acceleration

0.4 0.2 0.0 0.2 0.4
Longitudinal position (x/L) [-]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r n
l,j

z [
-]

ESC
AXE

(b) Jerk

Figure 5.27: Non-linearity over ship length, vs = 2.876 m/s, ωe = 7.34 rad/s, κ = 0.033

Around natural frequency
To see the effect of slamming on the maximum values along the length of the ship, the results from
the model tests with speed vs = 2.876 m/s and an encounter frequency of ωe = 7.34 rad/s in waves with
steepness κ = 0.033 are analysed. Both the ESC and the AXE experience slamming in these conditions.

In figure 5.26a the accelerations over the length of the model is plotted for the ESC and the AXE. There
are several bends visible in the plots of the maximum values. Around the natural frequency the max-
imum value comes from the heave acceleration. More forward to the bow of the ship there is a bend
in the line, where the pitch acceleration due to the slamming becomes larger than the heave accelera-
tion. The slamming causes a crest in the acceleration. At the stern this effect is also visible, here the
slamming causes a trough in the acceleration. It can be seen that at the AXE the heave acceleration
is the cause for the maximum value of the acceleration at a larger part of the ship. Only close to the
bow, and a small section at the stern are dominated by the slamming. It is also visible that the heave
acceleration of the AXE is slightly higher than the ESC around the centre of gravity.

The maximum jerk values for this case are visible in figure 5.26b. At almost every section of the ESC
themaximum value for the jerk is originating from the slamming, not from the heave. So this is different
compared to the accelerations. At the AXE this is also the case, but the values are in general lower than
the ESC. At the stern of the AXE there is a section which is dominated by the heave jerk. It can be seen
that the optimisation of the AXE is evenmore pronounced in the jerk, there is only a small section where
the jerk at the ESC is lower.



5.3 Analysis over ship length 51

0.4 0.2 0.0 0.2 0.4
Longitudinal position (x/L) [-]

0

1

2

3

4

5
a z

,m
ax

 [m
/s

2 ]
ESC
AXE

(a) Acceleration

0.4 0.2 0.0 0.2 0.4
Longitudinal position (x/L) [-]

0

20

40

60

80

100

120

140

j z,
m

ax
 [m

/s
3 ]

ESC
AXE

(b) Jerk

Figure 5.28: Maximum values over ship length, vs = 2.876 m/s, ωe = 12.02 rad/s, κ = 0.050
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Figure 5.29: Non-linearity over ship length, vs = 2.876 m/s, ωe = 12.02 rad/s, κ = 0.050

The non-linearity in respectively the accelerations and the jerk are plotted in figure 5.27. Both the graphs
have similar trends, only the values are different. The response of the AXE is in general less non-linear
than the response of the ESC. There is trough visible in the non-linearity. The longitudinal location of
this trough coincides with the location of the lowest accelerations and troughs.

Higher encounter frequencies
To analyse the behaviour over the ship length in higher encounter frequencies the results from the
model tests with speed vs = 2.876 m/s and an encounter frequency of ωe = 12.02 rad/s in waves with
steepness κ = 0.050 are analysed.

In figure 5.28a the accelerations over the length of the AXE and ESCmodel are plotted. The behaviour is
very similar, although at the ESC there is small slamming visible in the forward part, where the response
of the AXE more looks like first order response.

In the jerk behaviour over the ship length, visible in figure 5.28b, a more distinct difference is visible. At
both models there is a peak in the jerk due to slamming visible in the forward part. The peak is however
significantly lower at the AXE than at the ESC.

The non-linearity of the acceleration and the jerk is plotted in figure 5.29. It can be seen that at these
high encounter frequency the non-linearity of the response is lower at almost every section of the AXE
model, compared to the ESC.
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Figure 5.30: Maximum values over ship length, vs = 2.876 m/s, ωe = 13.82 rad/s, κ = 0.033
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Figure 5.31: Non-linearity over ship length, vs = 2.876 m/s, ωe = 13.82 rad/s, κ = 0.033

Large non-linearity
In section 5.2 it was already mentioned that at some (high) encounter frequencies there was a peak in
the non-linearity ratio, see for example figure 5.9a. To more deeply analyse this behaviour the results
from the model tests with speed vs = 2.876 m/s and an encounter frequency of ωe = 13.82 rad/s in
waves with steepness κ = 0.033 are used. In general the motion response is very small in these cases
because of the low wave amplitude at this encounter frequency. Therefore this case will not be limiting
to the seakeeping behaviour of the ship. The accelerations (figure 5.30a) and jerk (figure 5.30b) show a
behaviour that is similar to previously described cases. In this case the behaviour of the ESC is slightly
better than the behaviour of the AXE, but the response in general is thus very low.

In the non-linearity, especially the non-linearity of the accelerations of the ESC, a relatively large peak
is visible. This peak comes from the way the non-linearity ratio is defined and the superposition of the
heave and pitch acceleration. In this case the peak in the heave acceleration and the peak in the pitch
acceleration are out of phase. The phase difference in combination with the peaks being the same
order of (small) magnitude leads to a time trace of the acceleration which looks more like a harmonic
function with twice the excitation frequency. This can be seen in figure 5.33b. In the energy density
spectrum the component at twice the encounter frequency is then larger than the component at the
encounter frequency. The way how the non-linearity ratio is defined (see section 4.1.2) results in a large
value here. Some length before and after this point the acceleration signal (visible in respectively figure
5.33a and figure 5.33c) the pitch acceleration has a larger contribution to the vertical acceleration and
is then the main component.
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Figure 5.32: Energy density spectra, ESC, centre of gravity, vs = 2.876 m/s, ωe = 13.82 rad/s, κ = 0.033
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Figure 5.33: Acceleration signal at different longitudinal positions, ESC, vs = 2.876 m/s, ωe = 13.82 rad/s, κ = 0.033





6
Fast models in irregular head waves

Prior to the FAST II project where the model tests in regular head waves have been performed, irregular
wave tests with the same models have been performed in the FAST project [7, 30]. The behaviour of
a model in irregular waves is more relevant since the seas a ship is going to sail in are never regular.
However, as already mentioned in chapter 4, especially the non-linear response of a ship to the wave
elevation in irregular seas is a highly random process.

In section 6.1 an introduction will be given to the performed tests. Next in section 6.2 different com-
parisons will be made on the performed tests. This will be extended in section 6.3 with an analysis of
maximum values over the length of the ship again. In section 6.4 the non-linearity of the response will
be discussed. Finally in section 6.5 the prediction of the behaviour in irregular waves will be treated.

6.1 Introduction
The tests in irregular waves were performed with the same 1:20 scale models of the AXE (axe bow
concept) and the ESC (enlarged ship concept) as the tests in regular waves discussed in chapter 5.
The tests were performed at full scale speeds of 25 knots, 35 knots and 50 knots. Converted to model
scale using Froude scaling this is respectively 2.876 m/s, 4.026 m/s and 5.752 m/s. For details on
Froude scaling see chapter 8. Not all wave conditions have been tested at all speeds.

The irregular waves were generated according to a JONSWAP wave spectrum. There are a number of
relevant parameters to describe this wave spectrum: the significant wave height (Hs), the mean zero
crossing period (Tz), the peak period (Tp) and the peak enhancement factor (γ) [19]. The wave spectrum
parameters for the different wave conditions can be seen in table 6.1 [30]. The values at model scale
are calculated using Froude scaling.

Table 6.1: Overview of the wave spectrum parameters, from Keuning and Vermeulen [30]

Full scale Model scale
Hs [m] Tz [s] Tp [s] γ [-] Hs [m] Tz [s] Tp [s] γ [-]

1 2.0 6 7.8 3.3 0.100 1.34 1.74 3.3
2 2.5 6 7.8 3.3 0.125 1.34 1.74 3.3
3 3.0 6 7.8 3.3 0.150 1.34 1.74 3.3
4 3.5 6 7.8 3.3 0.175 1.34 1.74 3.3
5 4.0 6 7.8 3.3 0.200 1.34 1.74 3.3

6.2 Comparison
The behaviour of the models will be compared on a number of different aspects. First the vertical
acceleration and vertical jerk peak values of the different models in similar wave conditions will be
compared. This will be done using the Rayleigh plots introduced in chapter 4. It is not possible to
compare the time traces, since the wave trains the models are subject to in the tests are not identically
alike. Only there spectral aspects, as described in section 6.1, are similar. Other comparisons will be
made to see the influence on the response when the significant wave height of the waves is increased,
or the speed is increased.
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6.2.1 Hull types
In this section the behaviour of the different hulls will be compared. This will be done in three differ-
ent wave conditions. The behaviour in other wave conditions was not very different compared to the
conditions presented here, and thus the conclusions from this analysis are also applicable to the other
conditions. The comparison will be made based on acceleration values and jerk values. In the Rayleigh
plots the crest values and absolute value of the trough values are plotted. Same as in regular waves,
the trough values for acceleration are often dominated by gravity effects. The crest values for accel-
eration and jerk are often following from slamming, and are more likely to be non-linear. Following the
explanation in chapter 4 the distribution of crest or trough values will show up as a straight line in a
Rayleigh plot if the response is linear with respect to the wave spectrum, which is also (approximately)
Rayleigh distributed. In Keuning and Vermeulen [30] all the wave conditions are checked and validated
to be corresponding to a JONSWAP spectrum.

In all Rayleigh plots also the linear response line (called Rayleigh line here) is plotted, as a black dashed
line. This line is Rayleigh distributed and is thus a straight line in the Rayleigh plot. This line is obtained
by calculating the significant value and corresponding Rayleigh distribution according to respectively
equation 4.19 and equation 4.23. In these equations the energy density spectrum integral m0 of the
entire spectrum (thus also the non-linear part) is used. The deviation of the actual measured response
thus gives an indication of how non-linear the response is. The more the deviation from the Rayleigh
line, the more non-linear the response is. To compare the response in this chapter references will be
made to the (expected) maximum value of this response. With this the height of the crest or trough that
is expected to be exceeded once every 1000 peaks is meant, so a 0.1% probability of exceedance.

Acceleration
In figure 6.1 the Rayleigh plots for the acceleration at the centre of gravity can be seen. The plots for
the AXE are in the first row, the plots for the ESC in the same wave condition are in the second row
below the corresponding plot for the AXE. As mentioned above the crest and trough values are plotted.
It can be seen that the trough values in all conditions follow the linear distribution relatively good. The
crest values are however more non-linear. In these cases non-linear response does not always mean
that the values are higher than as expected with the linear approach. In almost all conditions the crest
values of the AXE are lower than the Rayleigh line, and thus the significant amplitude of the crests is
lower than would be expected with a linear approach. At the ESC it can be seen that the crest values at
the higher part of the Rayleigh plot increase to a value significantly larger than the Rayleigh line at the
higher speeds. The maximum expected value for the acceleration on the Rayleigh lines are higher for
the AXE than the ESC in all conditions. This is thus not represented in the actual accelerations, since
these were found to be lower.

At the bow section the difference between the AXE and ESC is even more visible, see figure 6.2. The
linear significant values are almost identical in all conditions. Also the trough values are almost equal
for both models. The big difference is in the crest values of the acceleration. The actual measured
response is especially for the ESC highly non-linear with crest values much higher than the AXE. The
response of the ESC also shows a strong deviation from the Rayleigh line.

Jerk
In figure 6.3 the Rayleigh plots for the jerk at the centre of gravity can be seen, for the same conditions
as used to analyse the accelerations. The Rayleigh line based on the linear determined significant value
is by approximation the same for all conditions. Contrary to the accelerations crest values at the centre
of gravity, whichwere lower than the trough values, the crest values of the jerk are higher than the trough
values. In general the trough values are parallel to the Rayleigh line longer than the crest values. The
trough values are thusmore linear than the crest values, which is in line with the explanation given in the
previous section that the crest values are more dominated by highly non-linear effects like slamming.
The optimisation of the bow of the AXE is clearly visible again in these plots. The crest values of the jerk
are up to two times lower at the AXE. Contrary to the accelerations, where the crest or trough values
in some conditions deviated below the Rayleigh line, the jerk crest and trough values only deviate to
higher values than the Rayleigh line. Non-linear response in jerk thus seems to always lead to higher
jerk values than linearly assumed.

The jerk values at the bow are plotted in figure 6.4. The shape of the plots is quite similar to the shape
of the plots of the jerk at the centre of gravity, only the values are higher. This is in line with what is
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(a) AXE, vs = 2.876 m/s, Hs = 0.150 m
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(b) AXE, vs = 4.026 m/s, Hs = 0.175 m
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(c) AXE, vs = 5.752 m/s, Hs = 0.175 m
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Figure 6.1: Rayleigh plots vertical acceleration, centre of gravity
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Figure 6.2: Rayleigh plots vertical acceleration, bow
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Figure 6.3: Rayleigh plots vertical jerk, centre of gravity
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Figure 6.4: Rayleigh plots vertical jerk, bow
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found in the analysis of the values over the length of the ship chapter 5. Here was concluded that the
maximum jerk value at the bow and at the centre of gravity was dominated by the response following
from slamming, contrary to the accelerations. Here the heave acceleration was often the maximum
vertical acceleration at the centre of gravity. A more detailed analysis of the behaviour of the maximum
values over the length of the ship will be performed in section 6.3.

6.2.2 Significant wave height
To investigate the effect of increasing significant wave height of the irregular waves the response of
the ESC in the 25 knots tests is compared for different wave heights. The change in behaviour is similar
for the AXE, and the behaviour of the AXE will therefore not be explicitly discussed here.
Acceleration
In figure 6.5 the crest and trough acceleration values are plotted for different significant wave heights.
In the first row the response in the centre of gravity is plotted, in the second row the response at the bow.
In the plots of the response in the centre of gravity can be seen that the calculated linear response, the
Rayleigh line, increases proportionally with the increasing significant wave height. This is as would be
expected from the linear approach. The trough values follow this line relatively well, until limited by the
gravitational acceleration. The lower part of the crest values is lower than the Rayleigh line but follows
the proportional increase. The upper part shows the biggest difference. With increasing wave height
the upper part of the acceleration crests become larger than the Rayleigh line and show an increasingly
non-linear behaviour. The same phenomena are visible in the acceleration plots at the bow, although
the upper part of the crest values increases relatively more. This is what was also seen in the analysis
of response in regular waves, large accelerations at the bow in slamming conditions compared to the
centre of gravity.
Jerk
The crest and trough values of the jerk are plotted in figure 6.6. The jerk at the centre of gravity is
plotted in the first row, the jerk at the bow in the second row. Contrary to the accelerations in the centre
of gravity, the jerk shows a strongly increasing non-linear character with increasing significant wave
height. The deviation from the Rayleigh line is in all conditions very evident. The maximum jerk value
based on the Rayleigh lines is, in these graphs, up to eight times smaller than the actual measured
maximum value. The lines of the jerk crest and trough values again look the same as at the centre of
gravity, but are higher in value.

6.2.3 Forward speed
In this section the influence of increasing forward speed in the same wave conditions is analysed. For
this the response of the AXE in irregular waves with a significant value of 0.175 m (3.5 m full scale) will
be analysed, for the speeds 2.876m/s, 4.026 m/s and 5.752 m/s (respectively 25, 35 and 50 knots full
scale).
Acceleration
In figure 6.7 the crest and trough values for the acceleration are plotted. In the first row the values at
the centre of gravity can be seen. The values at the bow are in the second row. It can be seen in the
response plot of the centre of gravity that the trough values are highest and follow the Rayleigh line.
The crest values are lower than the Rayleigh line, but at the highest speed the values are relatively close
to this line. The significant value is highest for the tests with ship speed vs = 4.026m/s. This is because
with this speedmost of the energy of the wave spectrum is close to the natural frequency of themodels
[7]. The tests with ship speed vs = 5.752 m/s are thus further away from the natural frequency and the
response seems to be less non-linear.

The crest values of the accelerations at the bow are in all conditions higher than at the centre of gravity.
At the bow it is more clearly visible that tests with ship speed vs = 4.026 m/s are the most non-linear
response, with crest values larger than the Rayleigh line. The crests of the tests with ship speed vs =
5.752 m/s follow to a large extent the Rayleigh line and thus seem to be less non-linear than the other
conditions. The non-linearity in the response will be analysed to a further extent in section 6.4.
Jerk
The jerk at the centre of gravity and the bow is shown in respectively the first and second row of figure
6.8. The crest values of the jerk for the tests with ship speed vs = 2.876 m/s and vs = 4.026 m/s follow
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Figure 6.5: Rayleigh plots vertical acceleration, ESC, vs = 2.876 m/s
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Figure 6.6: Rayleigh plots vertical jerk, ESC, vs = 2.876 m/s
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(b) CoG, vs = 4.026 m/s
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(c) CoG, vs = 5.752 m/s
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Figure 6.7: Rayleigh plots vertical acceleration, AXE, Hs = 0.175 m
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Figure 6.8: Rayleigh plots vertical jerk, AXE, Hs = 0.175 m
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a quite similar distribution. The crest values for the tests with ship speed vs = 5.752 m/s are lower than
the other conditions, again because this speed in combination with the wave conditions is further away
from the natural frequency of the models compared to the other speeds.

6.3 Analysis over ship length
To analyse the pitch in the ship motions and the values of acceleration and jerk over the length of the
ship, the same procedures as determined in section 5.3 have been applied to the measurement data of
the irregular waves. With the measurements of accelerations at the centre of gravity and the bow the
pitch acceleration can be determined. From this the pitch jerk can then be derived. For both these data
sets Rayleigh plots can then be determined, to analyse the part of the response following from pitch.

6.3.1 Decomposition heave and pitch
In figure 6.9 the pitch accelerations of the same conditions as analysed in section 6.2.1 are plotted.
As defined in section 2.1 the pitch acceleration is positive when the bow moves down. The bow up
movements from slamming result thus in large trough values. This can also be seen in figure 6.9. In
this figure the pitch accelerations of the AXE are plotted in the first row, and the pitch accelerations
of the ESC are plotted in the second row. It can be seen that the crest values are quite similar for
both hulls in all conditions, while the trough values of the ESC are significantly higher than the AXE.
This corresponds with the conclusion of chapter 5 that the AXE is optimised to minimise pitching. The
reduced pitching is also the main reason the accelerations at the bow of the AXE are lower than at the
bow of the ESC.

In the figures also the Rayleigh lines are plotted. Although the distribution of the pitch acceleration
seems to be relatively straight in the Rayleigh plot in most cases, these are not significant values that
would follow from linear approach. However, the assumption can be made that the pitch acceleration
is not very non-linear. This will be further analysed in section 6.4.

The optimisation of the bow of the AXE is also clearly visible in the Rayleigh plots of the pitch jerk, as
can be seen in figure 6.10. The jerk values at the AXE are in all conditions significantly lower than the
ESC. The Rayleigh lines indicate that in all the conditions the pitch jerk is not approximated well by the
linear approach.

6.3.2 Different cases
Determining the values of acceleration and jerk over the length of the ship, as performed for the regular
waves in section 5.3, works different in irregularwaves. This is because the accelerations and jerk at any
longitudinal position of the ship at any moment in time are not only determined by the at that moment
encountered wave, but they are also influenced by the previously encountered waves. Therefore at any
part of the ship there is a certain chance that a certain value is exceeded. To determine this, the time
traces of the acceleration and jerk are determined at a number of longitudinal position of the ship. In this
analysis 100 longitudinal positions with equal interval are used. The same assumptions as in section
5.3 are applied to justify the use of equation 5.4. These assumptions were that the model is rigid and
the rotations are small.

When the time traces of the accelerations and jerk at any longitudinal position are determined, the
Rayleigh plots at that position can be determined. Since every longitudinal position has its own Rayleigh
distribution, the best way to visualise this is to plot the acceleration or jerk values corresponding to a
certain probability of exceedance over the length of a ship. When looking at for example figure 6.11c,
the probability is 1% that the accelerations at the AXE at x/L = 0.2 exceed approximately 11 m/s2. For
the ESC this is approximately 16 m/s2, in the same wave spectrum. The performance of the AXE is thus
better at this point. Similar to the procedure used in chapter 5, the absolute largest value is plotted
here. At the forward part of the ship this is often the crest value, more to the stern of the ship this is the
trough value.

In some figures there seem to be small outliers from the lines, see for example the jerk at x/L = -0.1
at the ESC in figure 6.11f. Since the crests and troughs are a finite number of values, the plotted line
is based on the values with a probability of exceedance closest to the target value, in this case 1%. It
could however be that due to the superposition of heave and pitch, and the way crests and troughs are
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(d) ESC, vs = 2.876 m/s, Hs = 0.150 m
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Figure 6.9: Rayleigh plots pitch acceleration
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Figure 6.10: Rayleigh plots pitch jerk
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Figure 6.11: Analysis over ship length, vs = 2.876 m/s, Hs = 0.150 m
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Figure 6.12: Analysis over ship length, vs = 4.026 m/s, Hs = 0.175 m
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determined, a different number of crests and troughs is found. The probabilities of exceedance then
change slightly, which might lead to a different value being closest to that probability of exceedance.
This causes a small outlier in the plot.

The values of acceleration and jerk over the length of the ship have been plotted for different probabili-
ties of exceedance (PoE) to illustrate the different behaviours. The plots with probability of exceedance
of 50% represent the ’mean’ behaviour of the ship in the irregular waves. The plots with a probability
of 10% or 1% illustrate the more extreme behaviour. This way the mean behaviour can be compared
with the extreme behaviour. The extreme behaviour is often limiting for the operability or comfort in a
certain seaway.

Case 1: vs = 2.876 m/s, Hs = 0.150 m (full scale 25 knots, Hs = 3.0 m)
In figure 6.11 the different plots over the length of the ship can be seen for the case with a ship speed of
2.876 m/s and 0.150 meter significant wave height. The acceleration values are in the first row, the jerk
values in the second row. The mean behaviour, with a probability of exceedance of 50%, is relatively
equal for both model considering heave and jerk. The ESC is performing slightly better when looking at
the accelerations, the AXE is performing better when looking at jerk. This behaviour was also found in
the regular waves experiments in moderate wave conditions. The difference in performance becomes
bigger when looking at the more extreme conditions, with probability of exceedance of 10% or 1%. The
maximum value for the accelerations in these conditions is over the length of the ESC dominated by
the pitch accelerations from slamming, as was also observed in the regular waves. This is less at the
AXE, and therefore the AXE is also performing better over the whole length when looking at the jerk.

Case 2: vs = 4.026 m/s, Hs = 0.175 m (full scale 35 knots, Hs = 3.5 m)
The acceleration and jerk plots over the length of the ship for the case with ship speed 4.026 m/s and
0.175 m significant wave height can be seen in figure 6.12. In general the graphs look quite similar
to the graphs in figure 6.11. The mean acceleration behaviour is now almost identical. The mean jerk
behaviour however shows that the AXE is performing better than the ESC. In the plots of the more
extreme conditions it can be seen that the pitching of especially the ESC increased, which leads to
larger acceleration and jerk values over the length of the model.

6.4 Non-linearity
In chapter 5 was proven that the non-linear part of the response is important to represent the actual
response of the models. To prove that this is also the case for the behaviour in irregular waves, the
response of a case is determined with and without the non-linear part. In figure 6.13 the Rayleigh plot
for the acceleration can be seen in the first row, and the energy density spectrum in the second row.
To get the linear response the data for this specific case has been filtered to not include energy at
frequencies anymore at which there is also no (almost) no energy in the wave spectrum. For reference
the actual Rayleigh plot and energy density spectrum, which followed from the processing procedure
also used in the rest of this report, have been plotted. For the jerk this is done in figure 6.14. It can be
seen that in the linear case the crests and troughs are all on the Rayleigh line. The significant value of
the Rayleigh lines is lower in the linear case, since there is less energy in the energy density spectrum.
The integral of the spectrum m0, which is used to determine the significant value, is thus also lower.
It can be seen that the maximum values of the acceleration and jerk are significantly underpredicited
with the linear approach, up to a factor ten.

The non-linearity ratio, as defined in chapter 4, has in irregular waves a different meaning than in regular
waves. The derivation showed that it was the inverse of the coefficient of determination of the sine fit
through a regular response. However, it is not possible to fit a sine function through irregular waves,
thus there is no coefficient of determination in this case. The definition of the non-linearity ratio (see
equation 4.12) can however still be applied to irregular waves. Since there are little test conditions,
making plots of the non-linearity as function of speed does not provide much information. Therefore
the non-linearity ratios for the different conditions already used multiple times in this chapter are given
in table 6.2.

There are no clear trends visible that are valid for both models. For example the vertical jerk at the
bow becomes increasingly non-linear for the ESC with increasing speed, but the AXE has a peak in the
non-linearity for the condition with ship speed vs = 4.026 m/s. In general it can be seen that the pitch
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Figure 6.13: Comparison vertical acceleration, ESC, bow, vs = 4.026 m/s, Hs = 0.175 m
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Figure 6.14: Comparison jerk, ESC, bow, vs = 4.026 m/s, Hs = 0.175 m
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Table 6.2: Non-linearity ratio for different irregular wave conditions

Centre of gravity Bow
Model Speed Hs rnl,az rnl,jz rnl,aθ rnl,jθ rnl,az rnl,jz

[m/s] [m]
AXE 2.876 0.150 0.067 0.544 0.088 0.627 0.087 0.543
ESC 2.876 0.150 0.096 0.716 0.143 0.760 0.141 0.726
AXE 4.026 0.175 0.064 0.482 0.115 0.637 0.110 0.584
ESC 4.026 0.175 0.149 0.786 0.242 0.841 0.260 0.855
AXE 5.752 0.175 0.065 0.472 0.139 0.572 0.131 0.512
ESC 5.752 0.175 0.180 0.745 0.280 0.801 0.294 0.809
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Figure 6.15: Energy density spectra of vertical jerk, bow, vs = 4.026 m/s, Hs = 0.175 m

acceleration and jerk ismore non-linear than the heave acceleration and jerk, which was also concluded
in section 6.3 and thus agrees with the behaviour in regular waves. Furthermore the response of the
AXE is in general less non-linear than the response of the ESC. This is also clearly visible in figure 6.15.
The first peak is the first order response to the wave spectrum, and at higher frequencies the non-linear
response is visible. The amount of non-linear energy in the energy density spectrum is significantly
lower for the AXE than for the ESC.

6.5 Prediction of response
Predicting the behaviour of a ship in irregular waves is an important step, since the seaway is almost
always irregular. Asmentioned in chapter 4 and the introduction of this chapter, the non-linear behaviour
of a ship in seaway is a highly random process with no direct correlation between wave amplitude and
amplitude of the response. Two methods to predict the response will be (briefly) discussed. The first
one is the use of numerical methods. The second method is predicting the behaviour based on the
response in regular waves.

6.5.1 Numerical methods
The importance to include non-linear behaviour in the response of the ship has been proven multiple
times in this report already. Therefore widely used linear numerical methods to predict the response
of the ship will not produce useful results in this case. As seen in section 6.2 the linear approach will
sometimes lead to overpredictions of the response, but in most cases and especially for jerk the linear
approach will lead to extreme underpredictions of the response.

In de Jong [7] the irregular wave tests have also been simulated using a weakly non-linear code, PAN-
SHIP. For more information on non-linearity of numerical methods, see section 7.1. It was found that
the results were significantly underpredicited, and looked more like the linear expected behaviour as
explained above. When using numerical methods to predict the behaviour of the models in this chapter
probably fully non-linear high fidelity codes like Reynolds Averaged Navier Stokes (RANS) are required.
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Tomake a good estimation about the behaviour in irregular waves, at least 200wave encounters should
be simulated [26]. This is however computationally very expensive.

6.5.2 Behaviour in regular waves
Another way to predict the behaviour in irregular waves is linking it to the behaviour in regular waves.
Predicting the exact values is difficult because of the highly non-linear behaviour of the models, in-
validating the use of transfer functions between the wave spectrum and the response spectrum. The
general behaviour can however be predicted. When looking at the heave behaviour in regular waves it
was found that the AXE performed better than the ESC especially in higher waves and with higher en-
counter frequencies, which relates to higher speeds here. At lower speeds and lower wave amplitudes
there were conditions where the accelerations of the ESC are lower than the AXE. All this behaviour was
also observed in irregular waves. The lower vertical accelerations of the AXE are especially visible at
the bow. Looking at jerk the AXE performed better in all conditions, even in the conditions where the
accelerations were higher than at the ESC.

Because the vertical acceleration difference is especially visible at the bow, where it is composed of
the heave acceleration and the pitch acceleration, it can be concluded that the pitching of a ship is an
important contributor to the seakeeping behaviour in irregular seas. The bow of the AXE is optimised
for this, which resulted in significantly lower pitch accelerations and pitch jerks.

The main driver in the behaviour as described here is the occurrence of slamming. Since the response
in regular tests is (almost) equal each wave encounter, either slamming occurred or there was no slam-
ming at all. This was also concluded by de Jong [7]. When looking at the response values in irregular
waves over the length of the ship it can be concluded that in the mean behaviour, which was defined as
the values with a probability of exceedance of 50%, no slamming is present and the behaviour is thus
similar to the behaviour of regular wave tests where no slamming was observed. In the more extreme
behaviour, defined by the probabilities of exceedance of 10% and 1%, the maximum response over the
length of the ship was comparable with the slamming behaviour of the models in regular waves. The
number of slams in an irregular seaway might thus also be an indicator for the seakeeping behaviour.

The optimisation of the AXE resulted in less non-linear behaviour in the same seaway, compared to the
ESC. This validates the assumption made in 4.1.3 that the ’ideal’ behaviour of a vessel is completely
linear behaviour, and that optimisation should thus be focused on minimising the non-linear behaviour.
Improving the non-linear behaviour of a ship in regular waves thus also improves the non-linear be-
haviour of a ship in irregular waves.



7
Numerical computation of ship motions

An important step in the process of ship design is predicting the responses of a ship. This can be
done using model tests, but these are normally very expensive. Therefore already in 1861 research was
performed by Froude in numerical ways to compute and predict the motions of a ship [3]. The methods
used nowadays were developed starting from the 1950’s [3]. Since then the computational capacities
of computers have increased drastically, enabling the use of methods that were not possible before.

In this chapter first an introduction on numerical methods and their non-linearity will be given. This
will be done in section 7.1. In section 7.2 the results of the regular wave tests from chapter 5 will be
compared to the results of numerical computations of the ship motions in the same conditions using
a Reynolds Averaged Navier Stokes (RANS) code. In section 7.3 a short summary will be given.

7.1 Non-linearity of numerical methods
There are three methods of computational fluid dynamics (CFD) which are widely used to numerically
calculate the motions of a ship. These are the strip theory, panel methods and RANS. The term CFD is
sometimes also used to indicate the RANS method. An important distinction can be made in the non-
linearity of the methods. Linear methods make more simplifications in the modelled physics, which
makes the calculations less computationally expensive. A consequence of that could be that the calcu-
lated response is less representative for the actual response than a response calculated with non-linear
methods. In non-linear methods less simplifications aremade, but thismakes themmore computation-
ally expensive.

There are different levels of non-linearity in the available numerical methods. In table 7.1, which comes
from the International Towing Tank Conference [25], an overview of the different methods is given. The
linearisation can be in the incident wave, the disturbance hydrodynamics (added mass and damping
terms) and/or the Froude-Krylov and restoring forces (wave forces and buoyancy). As explained in
chapter 2, if linearisation is applied, the hydrodynamic terms or forces are calculated for the still water
geometry. If the terms are calculated non-linear, the instantaneous submerged geometry is used.

Another factor are the viscous forces. The strip theory and the panelmethods are based on the potential
theory, and thus do not include viscous forces [27]. For example viscous roll damping can be artificially
added to these calculation. RANS CFD calculations can calculate the viscous forces.

Which method should be used is mainly dependent on the level of accuracy required from the results
and the test conditions. As explained in section 4.1.2 the amount of non-linear energy in the response
grows exponentially with increasing derivative. If thus accurate values for the acceleration or jerk are
required, the calculation should be non-linear. If only the heave displacement is required, then linear
codes might be sufficient since the displacements of a free sailing ship are usually mostly linear.

The test conditions are also of importance. In section 2.3 phenomena that drive the ship to more non-
linear behaviour were described. If the modelled ship is a slow-sailing ship in low to moderate wave
conditions, linear codes might be sufficient. If however the speed of the modelled ship is relatively
large or the waves amplitudes are large, non-linear codes are required to give accurate results. Espe-
cially when slamming is expected, RANS calculations might be required to give accurate results. This
is because slamming is a highly non-linear event, as described in section 2.3.4. If however only an in-
dication of the number slams in irregular seas is required, then a weakly non-linear method might be
sufficient. The number of slams can than be predicted by the relative keel clearance and the velocity
of the re-entry of the hull in the water at any moment. For this the Ochi criterion is defined [27]. This
subject will not be discussed further in this thesis.

69
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7.2 Regular waves tests - RANS CFD
For a Damen research project (performed by Sebastian Sigmund from Damen Shipyards Gorinchem)
parallel to this graduation project numerical computations using a Reynolds Averaged Navier-Stokes
(RANS) CFD code were performed. The simulations have been performed at a model speed of 2.876
m/s with wave conditions equal to the model tests in the wave steepness of κ = 0.033. The results of
these computations could also be used in this thesis. Therefore in this section the results of these sim-
ulations will be compared to the measurements of the towing tank tests, to see howwell the RANS CFD
code predicted the behaviour of the model. For the geometry of the AXE more results were available,
so this hull will be used to make the comparisons between the measurements and the calculations.
The comparisons will be made based on the peak values of the acceleration and the jerk and the non-
linearity. Furthermore the similarity between the time traces will be be defined. Finally the behaviour of
the vessel over one wave encounter where slamming is occurring will be analysed. Here results for both
the AXE and the ESC were available, so these are both used. The procedures for processing the data
coming from the RANS calculations is the same as with the measurement data from chapter 5, only
no filtering of the data is required. Since the data comes from calculations there is no measurement
inaccuracy or measurement noise.

7.2.1 Peak values
In figure 7.1 the heave acceleration and pitch acceleration, determined by the measurements and the
RANS CFD calculations, can be seen. The pitch acceleration was a direct output from the calculations,
so contrary to the measurements this did not have to be calculated from the acceleration at the centre
of gravity and the bow. The plotted heave values are the crest values, since these are often limiting
because of slamming. For the pitch this is the trough value, because of the definition of the positive
direction of the motions.

Looking at the heave accelerations, the maximum heave acceleration especially at higher frequencies
is predicted well. Around the natural frequency the calculated response is higher than the measured
response. The latter is also visible in the pitch accelerations. An example of this can be seen in time
trace 14 in appendix C. This mainly comes from an overpredicted first order response. In the energy
density spectra clearly the first order peak is higher in the calculations than in the measurements. The
higher order peaks are generally lower in the calculations than in the measurements.

The heave jerk and pitch jerk are displayed in figure 7.2. Contrary to the heave accelerations, the heave
jerk is underpredicted by the RANS CFD code. In the energy density spectra of time trace 14 in appendix
C it can be seen that although the first order peak is overpredicted, the higher orders are largely un-
derpredicted for the heave jerk. These higher order peaks are thus the main cause for the height of
the peaks of the heave jerk. At higher frequencies, further away from the natural frequency, the calcu-
lated values are close to the measured values. Examples of this can be seen in time trace 15 and 16 in
appendix C. The calculated peak values of the pitch jerk correspond well with the measured values.
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Figure 7.1: Maximum acceleration (non-dimensional), AXE, centre of gravity
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Figure 7.2: Maximum jerk (non-dimensional), AXE, centre of gravity
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Figure 7.3: Non-linearity ratio acceleration, AXE, centre of gravity
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From this comparison it can be concluded that the prediction of the response using RANS code is quite
accurate. The largest difference is occurring around the natural frequency, where slamming occurs. As
mentioned in section 2.3.4 the exact response of slamming is difficult to predict, because of the highly
non-linear character of this phenomenon.

7.2.2 Non-linearity
The non-linearity ratio of the accelerations (heave and pitch) is plotted in figure 7.3. The non-linearity
ratio for the jerk, also for heave and pitch, is plotted in figure 7.4. From all the figures it becomes clear
that the trendswith increasingwave frequency are the same for themeasurements and the calculations,
only the exact value is different. This can be explained by the general tendency of the calculations to
overpredict the first order response, and underpredict the higher order responses. The non-linearity
ratio is then by definition lower, since it presents the ratio of non-linear energy in the total amount of
energy in the energy density spectrum.

7.2.3 Time traces
To analyse the behaviour of a ship it is important that the entire time trace of all the movements is
predicted correctly, not only the peak values. This way it can be seen if all the trends are captured by
the RANS CFD calculations. In figure 7.6 the time traces of the AXE with encounter frequencyωe = 12.02
rad/s can be seen. The corresponding energy density spectra for the jerk can be seen in figure 7.7. It
can be seen that the similarity between the calculated andmeasured time traces is generally good. The
peak values are predicted well, except the trough values for the pitch jerk. These are overpredicted in
this case.

The trends are also predicted well. The only exception is some vibration of approximately 20 Hz which
is visible in the heave jerk and especially pitch jerk time traces determined from themeasurement data.
See for example the pitch jerk between 1.2 and 1.5 seconds. This vibration is not visible in the calculated
response. It is unknown what the exact cause of this phenomenon is. In the research of de Jong [7] it is
mentioned that in some experiments there is an interaction between the carriage of the towing tank and
the model, which might be an explanation. It can also be that other conditions during the experiments,
like the generation of the waves or interaction between the waves and the walls of the towing tank,
cause this vibration effect. If one of the above mentioned phenomena is the cause of the vibration,
this will not show in the calculations since these effects are not there. The exact cause of the vibration
cannot be determined, since no additional data like video captures of the experiments are available to
see what happens.

In figure 7.5 the best similarity between the time traces of the calculations and the the measurements
can be seen. The similarity is defined herewith the coefficient of determination (the r2-value, see chapter
4 for more information). If the signals are exactly the same the coefficient is 1, if there is no similarity
at all the coefficient is 0. This coefficient is determined by taking a period of five wave encounters from
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Figure 7.6: Time traces heave and pitch, acceleration and jerk, AXE, centre of gravity, ωe = 12.02 rad/s, κ = 0.033
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Figure 7.7: Energy density spectra jerk, AXE, centre of gravity, ωe = 12.02 rad/s, κ = 0.033
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the calculations. From the measurement data then the best fitting period of five wave encounters is
determined. Since the phase difference between the wave encounter and the response is not known
for both the measurements and the calculations, the assumption is thus that this can be neglected and
the best fit is at the same phase difference with the encountered waves.

The similarity of the accelerations is generally good, with values close to 1. Only at higher encounter
frequencies the coefficient of determination is low. This is because at these high frequencies the values
of the actual response are low. Therefore the signal-to-noise ratio of the measurements is also low, and
some noise andmeasurement inaccuracies are still visible in the time traces. This is themain cause for
the lower similarity, even though in the previous section was concluded that the peak values at higher
frequencies are in good agreement. An example of this can be seen in time trace 16 in appendix C. The
similarity of the jerk is lower than the similarity of the acceleration in all cases.

When looking at a time trace where slamming is occurring, for example time trace 14 in appendix C,
it can be seen that the impulse caused by the slamming is visible in the heave acceleration of both
the measurements and the calculations. The peak from the slamming is larger in the measurements.
In both time traces the peak from the slamming is not the largest measured acceleration, this comes
from the first order response. However the largest jerk is caused by the slamming. Since the peak in
acceleration due to slamming was underpredicted, the peak in the jerk is also smaller than measured.

7.2.4 Analysis of wave encounter
From the RANS CFD calculations images (captures) are available. Therefore a detailed analysis of a
wave encounter where slamming is present will be made in this section [48]. The captures from the
AXE, at different time instances, can be seen in figure 7.8. The captures from the ESC at the same time
instances can be seen in figure 7.9. The colours in the captures represent mass fractions. Red is a
mass fraction of 1 and is water. Blue is a mass fraction of 0 and is air. All the colours in between are
a mixture of air and water. For this analysis the difference between water and air is most important,
to determine which parts of the hull are submerged and which parts are not. The time traces (vertical
displacement to vertical jerk in the centre of gravity) corresponding to the captures are plotted in figure
7.10 for the AXE and figure 7.12 for the ESC. In the time traces the time steps are indicated, to illustrate
what the response of the model is at what time step. The time steps in the text below refer to these
time steps. Also the time traces for the bow are shown, in figure 7.11 for the AXE and figure 7.13 for the
ESC.

Time step 1 - 4: moving upwards from previous encounter
In these time steps the models (both AXE and ESC) are still moving upward from the previous wave
encounter. At time step 4 the centre of gravity of the models reached the highest position. Because of
the phase difference the bows are already at the highest position at time step 3. The acceleration is
already negative and the velocity is thus decreasing towards zero.

Time step 4 - 5: moving downwards
The models start moving downwards by the effects of gravity, and thus the velocity has become nega-
tive. The acceleration is still negative. At the centre of gravity the downward movement is only heave
displacement, at other positions this is a combination of the heave and pitch.

Time step 5 - 6: slamming
The forward part of the hulls impact the water surface. This results in a sudden change from negative
to positive acceleration. This moment is the most important when looking at the jerk. The sudden
change of acceleration can only be caused by a large jerk. The velocity reaches its minimum. Because
there is now interaction with the water, hydrodynamic restoring forces are decelerating the downward
movements of the models.

The AXE already cuts into the water surface with the foremost part of the hull at time step 5, and there-
fore the submersion of the hull ismore gradual and the jerk peak is lower. The ESC hits thewater surface
with a large part of the hull at the same time (see time step 6 of the ESC), resulting in a large jerk value.

Time step 6 - 9: moving downwards into the water
The momentum of the models still moves them downwards, the velocity is still negative. The hydro-
dynamic forces are decelerating the models until the velocity is zero. At the end the models are at the
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Time step 1: 0.00 s Time step 2: 0.08 s

Time step 3: 0.16 s Time step 4: 0.24 s

Time step 5: 0.32 s Time step 6: 0.40 s

Time step 7: 0.48 s Time step 8: 0.56 s

Time step 9: 0.64 s Time step 10: 0.72 s

Time step 11: 0.80 s Time step 12: 0.88 s

Figure 7.8: Captures from RANS CFD calculation (made by Sebastian Sigmund), AXE, 7.34 rad/s, one wave encounter
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Time step 1: 0.00 s Time step 2: 0.08 s

Time step 3: 0.16 s Time step 4: 0.24 s

Time step 5: 0.32 s Time step 6: 0.40 s

Time step 7: 0.48 s Time step 8: 0.56 s

Time step 9: 0.64 s Time step 10: 0.72 s

Time step 11: 0.80 s Time step 12: 0.88 s

Figure 7.9: Captures from RANS CFD calculation (made by Sebastian Sigmund), ESC, 7.34 rad/s, one wave encounter
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lowest position. In the captures of the AXE it can also be seen that there is some shipping of green
water because the forward part of the hull is completely submerged. This is contrary to the ESC, where
the bow is not completely submerged.

Time step 9 - 12: moving upwards out of the water
The forces due to the weight of the models and the buoyancy are not balanced, there is a net force
upwards. The models accelerate upwards out of the water again. One wave cycle is then completed,
and it starts again from time step 1.

7.3 Summary
Overall it became clear that the behaviour of the model could be predicted well with the RANS CFD
calculations. Although the values did not match exactly, this is almost never the case with calculations.
The results are already much better than the results with the weakly non-linear PANSHIP code used in
de Jong [7], discussed in chapter 6. There the slamming was not captured at all and the behaviour in
irregular seas was drastically underpredicted. From the RANS CFD calculations the slamming could
be observed well, and matched the behaviour of the model tests. These calculations are thus a good
alternative to model tests to make comparisons between the models.
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Figure 7.10: Time traces RANS CFD calculation, AXE, centre of gravity, 7.34 rad/s, with time steps of captures
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Figure 7.11: Time traces RANS CFD calculation, AXE, bow, 7.34 rad/s, with time steps of captures
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Figure 7.12: Time traces RANS CFD calculation, ESC, centre of gravity, 7.34 rad/s, with time steps of captures
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Figure 7.13: Time traces RANS CFD calculation, ESC, bow, 7.34 rad/s, with time steps of captures



8
Upscaling

In this thesis all the data that has been presented originated from model tests, or computations of
these models. To be able to predict the jerk behaviour of a ship at full scale, the results of the model
scale have to be scaled up. In section 8.1 the generally used scaling laws will be described. Also the
implications of these laws on the scaling of jerk will be explained. In section 8.2 the difficulties that
might occur in the scaling of jerk will be described.

Unfortunately there was no data available to validate the scaling of jerk. Therefore the contents of this
chapter will only be a theoretical description.

8.1 Theory of scaling
To be able to test a ship before actually building it, usually model tests are performed. Model tests
are more easy and cheap to perform than full scale tests. Also the test conditions can be controlled
relatively easily. The model used in these tests has to be a good representation of the actual ship,
called the prototype here. Different similarities can be included to make this representation good. In
this section scale factors are used. These scale factors define the ratio between any prototype quantity
Xprototype and Xmodel, see equation 8.1.

Xprototype = αX · Xmodel (8.1)

8.1.1 Similarities
In the scaling usually three types of similarities are used [8, 27]: geometric similarity, kinematic similarity
and dynamic similarity. Geometric similarity means that all the dimensions of the model are a certain
(equal) ratio of the dimensions of the prototype. This ratio for the length, scale factor αL, is defined in
equation 8.2. The way the scale factor is defined means that αL ≥ 1.

αL = Lprototype

Lmodel
(8.2)

Kinematic similarity means that the velocities and accelerations in the model tests are with a consis-
tent scale factor equal to the prototype. Dynamic similarity is ensured if the forces are scaled with a
consistent scale factor.

8.1.2 Froude scaling
To ensure a certain similarity dimensionless numbers are used to derive the scale factors for for ex-
ample time or the velocity of the model. Dimensionless numbers give a ratio between certain physical
processes [8]. Two of the most commonly used dimensionless numbers in hydromechanics are the
Froude number and the Reynolds number. The Froude number gives the ratio between inertia forces
and gravity forces. The Reynolds number gives the ratio between inertia forces and viscous forces. For
ship motions and seakeeping the viscous forces are usually of less importance than inertia and gravity
forces. Therefore Froude scaling is used to define the scale factors.

To investigate the physical phenomena in scale, the Froude number should be the same both in proto-
type scale and model scale. The Froude number is defined as in equation 8.3. In this equation U is a
speed relevant for the scaling, for example the forward speed of the ship. Furthermore g is the gravita-
tional acceleration and L is a (relevant) length, for example the waterline length of a ship. The Froude
number can also be written as a function of scale factors, see equation 8.4.

81
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Fr = U√
g · L

(8.3)

αFr =
αU√αg · αL

(8.4)

As mentioned the Froude number should be the same in full scale and model scale, so αFr = 1. Also
the gravitational acceleration is the same in both scales (αg = 1). This is because the gravity cannot be
altered in the model tests. The scale factor for the velocity is then as derived and defined in equation
8.5 and equation 8.6.

1 = αU√
1 · αL

(8.5)

αU = √αL (8.6)

Now that the scaling factor for the velocity and the length are known, the scaling factor of time can be
determined, see equation 8.7 and equation 8.8.

αt =
αL

αU
(8.7)

αt =
√
αL (8.8)

Using this method the scale factors for all relevant parameters can be determined. These can be seen
in table 8.1 and table 8.2 in section 8.1.4.

8.1.3 Scaling of jerk
The theory applied in the previous section can also be used to determine the scaling factor for jerk. The
units of heave jerk are as defined in equation 8.9. This then leads to the scale factor αjz (according to
Froude scaling) in equation 8.10. This scale factor is also valid for surge jerk and sway jerk.

jz = [m]
[s3] =

z
t3 (8.9)

αjz = αL

α3
t

= 1
√αL

(8.10)

The scale factor for pitch jerk is different. The units of pitch can be seen in equation 8.11. The scale
factor for rotations is αθ = 1. The scale factor for pitch jerk αjθ (according to Froude scaling) is then
defined in equation 8.12. This scale factor is also valid for roll jerk and yaw jerk.

jθ = [rad]
[s3] = θ

t3 (8.11)

αjθ = αθ
α3

t
= 1
αL ·
√αL

(8.12)

What can be seen is that both the heave jerk and the pitch jerk are in model scale larger than in full
scale. This is contrary to the displacement and velocity, which are smaller in model scale than in full
scale. The accelerations are equal in model scale and in full scale.
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8.1.4 Overview of scaling factors
In table 8.1 an overview of the basic scaling factors, derived with Froude scaling, can be seen. In table
8.2 the scaling factors, derived with Froude scaling, for the ship motion response can be seen. All the
scale factors in these tables have been given as a function of the scale factor for the length αL. In the
tables this factor is abbreviated as α .

Table 8.1: Overview of basic scaling factors according to Froude scaling

Quantity Scale factor
Length α
Area α2

Volume α3

Forward speed
√
α

Time
√
α

Frequency 1/
√
α

Table 8.2: Overview of ship response scaling factors according to Froude scaling

Quantity Scale factor Quantity Scale factor
Heave displacement α Pitch displacement 1

Heave velocity
√
α Pitch velocity 1√

α

Heave acceleration 1 Pitch acceleration 1
α

Heave jerk 1√
α

Pitch jerk 1
α ·
√
α

8.2 Difficulties
There are certain difficulties surrounding the principle of scaling. In this section some of these difficul-
ties and their implications on the scaling of jerk are discussed.

8.2.1 Different scaling parameters
As mentioned in the previous section different dimensionless numbers can be used to determine the
scale factors. Another example is the Reynolds number, see equation 8.13. In this equation U is a
(relevant) speed, L is a (relevant) length and ν is the kinematic viscosity. The scaling factor of the
Reynolds number would then be as defined in equation 8.14.

Re = U · L
ν (8.13)

αRe = αU · αL

αν
(8.14)

Just like the gravitational acceleration, the kinematic viscosity cannot be scaled, since both in model
scale and full scale the (model) ship is sailing in the same fluid (water). Therefore αν = 1. Although only
indirectly present in this equation as part of the kinematic viscosity, another parameter that cannot be
scaled is the density ρ. Both full scale and model scale operate in water with roughly the same density,
so αρ = 1. The consequence of these unscalable parameters is that the scale factors, following from
different dimensionless numbers, do not match. For example, if the Reynolds number at model scale
would be the same as in full scale (thus αRe = 1), the scale factor for the velocity would be as derived
and defined in equation 8.15 and equation 8.16.
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1 = αU · αL

1 (8.15)

αU = 1
αL

(8.16)

The scale factor for velocity according to Reynolds scaling is thus different than the scale factor for
velocity according to Froude scaling. This means that the viscous effects are not scaled correctly when
Froude scaling is used to determine the scale factors for a model test. Furthermore it is practically very
difficult to use correct Reynolds scaling: if the length scale factor is 20, the model ship speed should be
20 times the full scale ship speed. In theory there could be a fluid with properties that ensures correct
Froude scaling and correct Reynolds scaling, but this does not exist (yet). To ensure correct Froude
scaling and Reynolds scaling simultaneously the scaling factor for the kinematic viscosity would have
to be as given in equation 8.17 and equation 8.18, using the scale factors for speed and length following
from the Froude scaling.

αν = αU · αL = √αL · αL (8.17)

αν = α 1.5
L (8.18)

As mentioned in the previous section, the ship motions are mostly dominated by inertia effects. To
scale the jerk it would thus probably be best to use the Froude scaling.

8.2.2 Scaling of slamming
In chapter 5 and chapter 6 it was established that slamming is the cause for the largest jerk values. In
Faltinsen [11] and in Thomas et al. [56] it is however established that the scaling of slamming is difficult,
since this is not purely a hydromechanic phenomenon. Scaling of the slamming forces from model
scale to full scale with Froude scaling thus leads to a conservative prediction [11, 56]. This is mainly
associated with the fact that in slamming the existence of gas pockets in the fluid has an influence on
the slamming pressures [11]. To correctly scale the compressibility of the gas pockets impact loads of
these air pockets the dimensionless Euler number must be equal in full scale andmodel scale [12]. This
is not possible in model tests and thus affects the slamming pressure in model scale.

It was concluded that Froude scaling leads to a conservative, thus overprediction, of the forces resulting
from slamming. In section 2.5 the forces resulting from slamming were linked to the jerk. So a predic-
tion of the slamming forces in full scale based on Froude scaling from the model scale thus probably
leads to an overprediction of the jerk following from slamming. These assumptions can however not
be validated in this research.
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Conclusions and recommendations

9.1 Conclusions
To finalise this thesis the conclusions to the research questions in chapter 1 are presented. The main
goal of was to determine and investigate the jerk in ship motions and see if jerk could give a different
perspective compared to accelerations when looking at the comfort and operability of ships. To answer
this question several research question were formulated, these will be answered in this section.

What is the influence of different physical phenomena on jerk?
In chapter 2 the ship motion response to waves was analysed in general. All the ship motions are non-
linear, but in certain cases the response can be described well by the linear approach. It was concluded
that when the response of a ship to the waves is (mostly) linear, the jerk is also a linear consequence of
the waves. If a ship then performs better than another ship when looking at the accelerations, it will also
perform better when looking at jerk. A difference can only come from non-linear behaviour. Therefore
also phenomena were identified that push a ship to more non-linear behaviour. From literature and
other research it was concluded that slamming is likely to cause large jerks. This is a highly non-linear
phenomenon that causes very sudden changes in acceleration due to the impact with the water. The
theoretical analysis of slamming using the Von Karman approach showed that the bow shape and the
speed of immersion of the bow are important parameters in the jerk it causes.

To analyse the jerk in ship motions measurement data from fast models in regular head waves was
used in chapter 5. Models of two different hull types, the axe bow concept (AXE) and the enlarged ship
concept (ESC), were tested in another research. The measurement data could be used in this research.
First the difference in response was analysed between the hulls. In most conditions a better perfor-
mance in accelerations meant the performance in jerk was also better. However in some conditions
the performance in accelerations was better at one hull, and the performance in jerk was better at the
other hull. It was also found that the non-linearity ratio of the generally better performing hull, the AXE,
was in almost all conditions lower than the non-linearity ratio of the ESC.

Also the influence of increasing wave steepness or increasing forward speed on the ship motion re-
sponse has been investigated. Both the effects increased the jerk responses of the ship. The non-
linearity ratio also increased with increasing wave steepness. With increasing forward speed the re-
sponse became however less non-linear.

Because the vertical accelerationsweremeasured at the centre of gravity and the bow the pitch acceler-
ation and pitch jerk could be determined, under the assumption that the model is rigid and the rotations
are relatively small. This way it could be analysed if the jerk behaviour mostly comes from heave or
pitch. The pitching of the ship was found to be the largest contributor to the overall jerk behaviour. The
optimisation of the bow shape of the AXE also showed up well here, the response was generally much
lower and less non-linear.

With the heave and pitch acceleration and jerk known the vertical acceleration and vertical jerk at any
longitudinal position on the model could be determined. This showed that in slamming conditions
the maximum acceleration around the centre of gravity is for a large extend dominated by the heave
acceleration. The maximum jerk at these positions is however mostly following from the pitch jerk due
to the slamming. The optimisation of the AXE showed in the fact that pitch acceleration and pitch jerk
are smaller and thus are dominating the maximum values at a smaller longitudinal part of the ship.

In chapter 6 the measurement data from the models in irregular waves was used to analyse the be-
haviour. First the hulls were compared again on their performance looking at accelerations and jerk.
The optimisation of the AXE showed well here. Especially in more severe conditions the response was
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significantly smaller than the response of the ESC. This was even more visible in the jerk. In chapter
5 was found that the heave response at the centre of gravity was relatively equal for both hulls. The
seakeeping behaviour in irregular wavesmust therefore for an important part be dominated by the pitch
motions.

Also the influence of increasing significant wave height and increasing forward speedwas investigated.
With increasing significantwave height the response became larger andmore non-linear. Themaximum
response thus increased more than proportional to the increase of wave height. For the response to
increasing forward speed the natural frequency of themodel ismost important. If with a certain forward
speed the peak of the energy spectrum of the waves is close to the natural frequency, the response is
relatively large and non-linear. If the speed increases more and the peak of the energy spectrum of the
waves is further away from the natural frequency, the response decreases.

With the acceleration and jerk known for the heave and pitch, the behaviour at any longitudinal position
can be determined. Since the behaviour is irregular, contrary to regular waves no single value can be
given for a longitudinal position. Therefore the probability of exceedance of a certain value at any posi-
tion is determined in the analysis over the length of the ship. It could be seen here that the distribution
of themoderate values, with 50% probability of exceedance, were comparable with the behaviour of the
models in moderate regular wave conditions. The more severe wave encounters with a probability of
exceedance of 10% or 1% were comparable with the more severe regular wave conditions where slam-
ming was present. The exact values of acceleration and jerk could not be predicted by comparing it
with the regular wave response, but that was also not the goal of this thesis.

The non-linearity ratio in irregular waves does not have the same meaning it has in regular waves. The
non-linearity ratio is however analysed, and it was found that the non-linearity of the response has
correlation with the severeness of the response in terms of maximum values. Also it could clearly
be seen that the optimisation of the AXE meant it responded more linear to the irregular waves. The
amount of non-linear energy in the energy density spectrum of the response was significantly lower for
the AXE than for the ESC in equal conditions.

How can the jerk in ship motions be determined from model tests and/or full scale tests?
Since there is currently no way to directly measure the jerk, the most viable option found was to differ-
entiate the acceleration measurements from accelerometers. In thesemeasurements noise is present.
This noise increases with a factor proportional to the sampling frequency when numerically differenti-
ated, so the signal first has to be filtered. In chapter 3 several methods of filtering were tested on their
influence on the measurement signal and the influence on the differentiated signal. The Butterworth
filter was chosen because the characteristics of this filter matched the best with the requirements on
a filter and the output from this filter was least sensitive for the settings of the filter. From literature
it followed that the cut-off frequency had to be chosen accordingly to the time scale of the shortest
event in a time series. From the data analysed in chapter 5 it could be estimated that the shortest time
scale was 0.05 seconds in certain slamming events, thus the cut-off frequency was set at 20 Hz. For
the numerical differentiation the central difference method was used.

To be able to make comparisons with a certain confidence level the uncertainty had to be defined. The
exact values of the jerk are not required for this research, since there are no comfort limits in ships
based on jerk yet. Therefore a rough approximation of the uncertainty in the maximum jerk values has
beenmade based on the 95% confidence interval from previous research. It was concluded that the jerk
values could be determined with enough certainty to be able to make useful qualitative comparisons.

The measurement data used in this thesis had a sampling frequency of 1000 Hz for the regular wave
measurements and 400Hz for the irregular wavemeasurements. This proved to bemore than sufficient
to be able to filter the data and determine the jerk. Therefore no exact sampling frequency minimally
required to accurately determine the jerk can be given. For full scale measurements the requirements
on the sampling frequency are less, since the time scale of all motions of the ship scaleswith the square
root of the scale factor of the length.

An important step in predicting the behaviour of a full scale ship is scaling the results from the model
tests to full scale. Since there was no full scale data available to validate the upscaled model test
measurements, only a theoretical description of scaling has been given in chapter 8. It was concluded
that with the most important scaling method for ship motions, Froude scaling, the jerk values in full
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scale would be smaller than in model scale. This is contrary to motions and velocities, which are larger
in full scale. Furthermore some difficulties that might occur in the scaling of jerk values have been
identified. The most important one is the fact that the largest jerk values come from the slamming
of the ship. From other research it followed that the scaling of slamming is difficult, since this is not
a purely hydrodynamic phenomenon. In slamming the trapping of air in the water plays an important
role. This effect is not scaled correctly when applying Froude scaling. This leads to an overprediction
of the slamming pressures in model scale, and might thus lead to an overprediction of the jerk.

How can the severeness of jerks in the ship motions be quantified?
To be able to investigate the jerk in ship motions, different procedures for quantifying the response of
a ship have been established in chapter 4. From literature it was found that the acceleration peaks are
now used for determining the motion comfort of a ship. Therefore also the peaks in jerk will be used
in the comparisons. For both the accelerations and jerk non-dimensional values have been introduced
besides the dimensional values. The acceleration and jerk could be observed in a translational motion
(surge, sway and heave) or a rotational motion (roll, pitch and yaw).

From other research it followed that the more optimised a ship is for seakeeping, the more linear the
response is. It was also shown that the amount of non-linear energy in the response increases expo-
nentially with increasing derivatives from the displacement. Since jerk is the third derivative from the
displacement, non-linear behaviour has a large contribution in the jerk. Therefore a way to quantify the
non-linearity in the ship response has been established in this thesis, in the form of the non-linearity
ratio. This ratio defines the ratio of energy from higher order responses in the energy density spectrum
to the total amount of energy in the spectrum. This method was proven to be the inverse of the coef-
ficient of determination of the sine fit through a regular wave response, which indicates how linear the
response is.

In regular waves one peak value describes the behaviour of a ship, since the response is the same with
every wave encounter. In irregular waves this is not the case, the response to every wave encounter is
different, since every wave is different. When the response cannot be approached linearly the response
to a wave is also dependent on the preceding wave encounters. In irregular waves the response is
therefore described using probabilities of exceedance of a certain value. If the response of the model
in a JONSWAPwave spectrumcan be approximatedwell with the linear approach the peaks and troughs
in the response will be Rayleigh distributed. The more the response is non-linear, the more it will divert
from the Rayleigh distribution. This can be visualised well in a so-called Rayleigh plot, where the axis
are altered so that a Rayleigh distribution will show up as a straight line. The non-linearity ratio can also
be determined for the response in irregular waves. But since no sine fit can be determined for irregular
waves and there is not a single excitation frequency, the ratio does not work according to the definition
in regular waves. It does however give an indication of how non-linear the response is.

How can the jerk in ship motions be predicted with sufficient accuracy?
The prediction of jerk in ship motions has been investigated in chapter 7. The distinction has been
made in terms of non-linearity of the methods. In previous research it was already found that weakly
non-linearmethods do not calculate the response in irregularwaveswell. The linear part of the response
was predicted quite accurately, but the non-linear part which is the main cause for the highest peaks in
acceleration and jerk was not. Especially since the jerk is highly non-linear in irregular waves, the jerk
values were significantly underpredicted when only the linear part of the energy density spectrum was
taken into account.

In this research the calculated response of the models in regular waves using RANS CFD calculations
was available. The RANS CFD predictions were found to have a very good similarity with the measured
response. The valueswerewithin the same order ofmagnitude predictedwell. Also the behaviour of the
simulatedmodel was similar to themodel tests in the towing tank, which was determined by comparing
the time traces. Calculations using RANSCFDgive thus a highly accurate result, but are computationally
expensive. Therefore predicting the behaviour in irregular waves might be costly, since long simulation
run times are required to obtain accurate results.

The prediction also depends on how ’sufficient accuracy’ is defined. With not fully non-linear codes the
values of the maximum jerk might not be predicted well, but there might be a difference in number of
slams that can be observed from these calculations. Since slamming was found to be the main cause
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for large jerk values, an indication of the amount of large jerk values can be given. This method has not
been investigated further in this research.

Overall
The overall conclusion that can bemade is that it is valuable to look into the jerk as well when determin-
ing the seakeeping behaviour of a ship. In this thesis only qualitative comparisons have been performed
to compare the seakeeping behaviour between different hulls or in different wave conditions. In some
cases the jerk gave a different perspective compared to a seakeeping analysis performed with accel-
erations. From this it can thus be concluded that a qualitative comparison is already useful to make.
Especially when in the future comfort or workability limits for jerk are available from physiological tests,
the jerk in the ship motions can give a different perspective by comparing if the jerk exceeds the com-
fort limit or not. Next to that the non-linearity can give additional information. In itself this ratio is not
a measure for the magnitude of the response, but it can be useful when used parallel to for example
peak values of acceleration and jerk. If the response is more non-linear, it might be that the sense of
discomfort of passengers is also larger.

The jerk can be determined well from accelerations signals, but is harder to predict using numerical
methods because of the highly non-linear nature. Methods with a higher non-linearity are thus required
for correct predictions of the jerk. This also applies to the non-linearity ratio.

9.2 Recommendations
Following from this research there are some recommendations for further research. These will be de-
scribed in this section.

• To be able to optimise a hull form for jerk a systematic series of hulls can be made to investigate
the influence of different parameters on the jerk. This will probably align with optimising the ship
to behave more linear in waves.

• Physiological research into the limits of what jerk levels are acceptable for passengers in terms
of comfort are required to make a real comparison between different hulls. In this research only a
qualitative analysis has been performed to assess whether one performed better than the other.
If there are limits then a quantitative analysis of the comfort and operability of a vessel can be
performed. Especially with the different distributions of maximum values over the length of the
ship jerk might give new insights.

• Also physiological research into the link between the non-linearity of motions and comfort levels
might give new insights. The non-linearity ratio of a response in itself does not reflect the mag-
nitude of the response, thus a combination with accelerations and/or jerk is required. It might be
that a response which is equal in terms of acceleration or jerk values but not equal in terms of
non-linearity might give a different comfort experience.

• Because of the highly non-linear nature of jerk the accuracy of determining it might increase when
jerk sensors become commercially available. Especially when from physiological research fol-
lows that jerk is an important factor in the comfort of passengers on a ship, direct measurements
of jerk in model tests might add value to the design of ships.

• Another way of determining the jerk more accurately when quantitative values are needed is im-
proving the uncertainty assessment. For this thesis only qualitative analysis was performed so
the exact value of the jerk was of less importance. This might become more important in the
future. Determining the uncertainty more accurately can be an alternative to using jerk sensors if
these are not available yet, are too expensive, or are too inaccurate.

• In this thesis it has been established that the weakly non-linear methods are not accurate enough
to predict the jerk in ship motions well. The RANS CFD method was found to be accurate enough,
but is computationally expensive. Investigating if theweak scatterer Rankine panel codes produce
accurate results might give an intermediate step between accuracy and computational costs.

• Anotherway of comparing the seakeeping behaviour of two different hulls is analysing the number
of slams using not fully non-linear codes. Since slamming was found to be the primary cause for
large jerk values, the number of slams might give an indication of the seakeeping behaviour.
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A
Link between sine fit & non-linearity ratio

The goal of this appendix is to prove that the non-linearity ratio (rnl), defined in chapter 4 is equal to one
minus the correlation between a time trace and the sine fit of this time trace, defined in the coefficient
of determination (the r2-value), see equation A.1.

rnl = 1− r2 (A.1)

This will be done by first analytically determining the sine fit and the coefficient of determination of this
sine fit, see section A.1. Then the non-linearity for the used function is derived in section A.2. The link
between the non-linearity and the coefficient of determination of the sine fit is given in section A.3.

A.1 Sine fit
A.1.1 Derivation
For the derivation of the sine fit the three parameter least squares sine fit algorithm described in the
guide of Institute of Electrical and Electronics Engineers [21] will be used. This method assumes that
the frequency of the sine fit is already known. The method described in the paper is for a discrete data
set.

The non-linear response of a ship to regular waves in one of the degrees of freedom (named yi) can be
defined as given in equation A.2. In this equation ω is the encounter frequency (in rad/s) of the ship
with the waves. The first part of the equation is the first order (linear) response, with amplitude A1 and
phase ε1. The higher order responses are defined in the sum in the right part of the equation. These
responses are at multiples of the encounter frequency and have their own amplitudes and phases.

yi = A1 · sin(ω · t + ε1) +
N∑

n=2

An · sin(nω · t + εn) (A.2)

The equation used to deliver this proof is a function consisting of two sine functions, see equation A.3.
So this is the first order response and one higher order response. For the derivation reported here the
phases of the sine components are assumed to be zero. Since the sine fit to the first order response is
desired, the required frequency input in the sine fit equations is the encounter frequency.

y = A1 · sin(ω · t) + A2 · sin(2ω · t) (A.3)

The equations defined in the paper used to determine the sine fit are sums from n = 1 to M, the amount
of (discrete) data points. These are replaced by an integral from 0 to a time T, see equations A.4 to A.11.
In these equations the integration constants are neglected.

f1 =
∫ T

0
y dt = −2A1 · cos(ω · T) + A2 cos(2ω · T)− 2 · A1 − A2

2ω (A.4)

f2 =
∫ T

0
α dt = sin(ω · T)

ω (A.5)

f3 =
∫ T

0
β dt = −1 + cos(ω · T)

ω (A.6)
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f4 =
∫ T

0
α · β dt = sin(ω · T)2

2ω (A.7)

f5 =
∫ T

0
α2 dt = cos(ω · T) · sin(ω · T) + ω · T

2ω (A.8)

f6 =
∫ T

0
β2 dt = −cos(ω · T) · sin(ω · T)− ω · T

2ω (A.9)

f7 =
∫ T

0
y · α dt = −4A2 · cos(ω · T)3 + 3A1 · cos(ω · T)2 − 3A1 − 4A2

6ω (A.10)

f8 =
∫ T

0
y · β dt = −−6A1 · ω · T + 3A1 · sin(2ω · T)− 6A2 · sin(ω · T) + 2A2 · sin(3ω · T)

12ω (A.11)

With:

α = cos(ω · t) (A.12)

β = sin(ω · t) (A.13)

Using these equations the following variables are determined, see equations A.14 to A.17. Because of
the size of these equations, they will not be fully displayed anymore.

AN = f7 − y · f2
f4 − β · f2

− f8 − y · f3
f6 − β · f3

(A.14)

AD = f5 − α · f2
f4 − β · f2

− f4 − α · f3
f6 − β · f3

(A.15)

BN = f7 − y · f2
f5 − α · f2

− f8 − y · f3
f4 − α · f3

(A.16)

BD = f4 − β · f2
f5 − α · f2

− f6 − β · f3
f4 − α · f3

(A.17)

With:

y = 1
T · f1 = 1

T ·
∫ T

0
y dt (A.18)

α = 1
T · f2 = 1

T ·
∫ T

0
α dt (A.19)

β = 1
T · f3 = 1

T ·
∫ T

0
β dt (A.20)

Then finally the equation of the sine fit to the data is determined using equation A.21. According to In-
stitute of Electrical and Electronics Engineers [22] the most accurate result is obtained when an integer
number of full cycles is used to calculate the sine fit, see also section A.1.3. Using this assumption T
can be replaced by any multiple of (2 · π)/ω. When the equations above are solved, the sine fit in equa-
tion A.25 is found. The assumptions were that there is one higher order component and no phases in
the harmonic components, but the method is also valid for more higher order components and with
non-zero phases.

y′ = A · cos(ω · t) + B · sin(ω · t) + C (A.21)
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With:

A = AN

AD
= 0 (A.22)

B = BN

BD
= A1 (A.23)

C = y − A · α − B · β = 0 (A.24)

So finally the equation of the sine fit is:

y′ = A1 · sin(ω · t) (A.25)

It can be concluded that the sine fit with a frequency equal to the encounter frequency results in a
response function that is equal to the first order response of the ship. This is true if an integer number of
cycles is sampled of all the components of the response function. Since the higher order responses are
at a multiple of the encounter frequency, these are always an integer number of higher order responses
in one cycle of first order response.

A.1.2 Coefficient of determination
The correlation between the sine fit, which is proven to be the first order of a non-linear response of a
ship to regular waves, and the entire non-linear response is expressed in the coefficient of determina-
tion. This coefficient is determined with equation A.26, as found in Olive [41].

r2 = SSR
SSTO (A.26)

Where SSR is the regression sum of squares, and SSTO is the total sum of squares, see equation A.27
and equation A.28. The equations in the cited book are discrete sums, but are again written as continu-
ous integrals. The same equations as in section A.1.1 are used for the determination of the coefficient
of determination.

SSR =
∫ T

0
(y′ − y)2 dt (A.27)

SSTO =
∫ T

0
(y − y)2 dt (A.28)

Another way to come to the r2-value is to use the SSE, the error sum of squares. See equations A.29
and A.30. This clearly shows that the r2-value is a measure for how good the correlation between the
sine fit and the entire response function is.

SSE =
∫ T

0
(y − y′)2 dt (A.29)

1− r2 = SSE
SSTO (A.30)

If equation A.26 is solved for an integer number of cycles, the coefficient of determination in equation
A.31 is found. If equation A.30 is solved, the result is equation A.32.

r2 = A2
1

A2
1 + A2

2
(A.31)

1− r2 = A2
2

A2
1 + A2

2
(A.32)
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A.1.3 Accuracy sine fit
As stated in section A.1.1 the sine fit is the most accurate if an integer number of cycles is used to
determine the sine fit. This is demonstrated in this section with a numerical example. The equation in
A.3 is plotted with the values A1 = 1 m, A2 = 0.5 m, and ω = 2π rad/s (= 1 Hz), see figure A.1. In this figure
also the sine fit of this function is plotted.

To prove that the sine fit function is the most accurate when determined from an integer number of cy-
cles, the sine fit has been determined in a range of cycles, including non-integer numbers of cycles. The
absolute error from the (analytically) known sine fit amplitude is then calculated as defined in equation
A.33. In figure A.2 the absolute error from the known sine fit amplitude (equation A.25) is shown. The
vertical dashed lines indicate the full cycles. For example: if 3.3 cycles would be used to calculate the
sine fit, the amplitude of this sine fit would have an error of 0.05 compared to the real sine fit.

Error = |Acalculated − A1| (A.33)

From the figure it can be concluded that indeed the accuracy is highest if full cycles are used to calculate
the sine fit, since the error is always zero here. Furthermore the errors per cycle decreases ifmore cycles
are used. To obtain the most accurate result it is thus best to calculate the sine fit over a number of
integer cycles. In Institute of Electrical and Electronics Engineers [22] aminimum of 5 cycles is advised.
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Figure A.1: Plot of the response function
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Figure A.2: Absolute error of the calculated sine fit from the real sine fit

A.2 Non-linearity ratio
The definition of the non-linearity ratio rnl is given in chapter 4. For the response function given in equa-
tion A.3 the non-linearity ratio is determined. The one-sided amplitude spectrum, obtained with the Fast
Fourier Transform, would in this case exist of two peaks: a peak with height A1 at frequency ω and a
peak with height A2 at frequency 2ω. These peaks are converted to the energy density spectrum with
equation 3.6. The total integral of the energy density spectrumm0,total and the integral of the higher order
(non linear) part m0,non linear are then as given in equations A.34 and A.35.
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m0,total =
∫ A2

1

2 · dωdω +
∫ A2

2

2 · dωdω = A2
1 + A2

2

2 (A.34)

m0,non linear =
∫ A2

2

2 · dωdω = A2
2

2 (A.35)

The non-linearity ratio is then calculated with equation A.36.

rnl = m0,non linear

m0,total
= A2

2

A2
1 + A2

2
(A.36)

A.3 Conclusion
After the derivations in this appendix it can be concluded that indeed the link between the non-linearity
ratio and the coefficient of determination as given in equation A.1. The non-linearity is equal to SSE as
defined in equation A.29. The non-linearity ratio is thus a measure of how non-linear the response is,
how different it is from an ideal (linear) response.

The coefficient of determination, r2, is then the opposite of the non-linearity ratio. This coefficient can
be seen as a measure of how much the response is dominated by the first order (linear) part, so how
linear the response is.





B
Filter comparison

As explained in chapter 3 the filtering has a significant influence on the acceleration signal and thus also
on the jerk signal. The effect of filtering will be tested on acceleration measurements for a model in
regular waves andmeasurements for a model in irregular waves. Two different data sets from different
test programs are used to test whether the effect of the filtering is comparable. For the regular waves
test a run from the FAST project phase 2 is used [7]. The run used was a run in head waves with the
enlarged ship concept (ESC). The sampling frequency used in this test is 1000 Hz. The model speed is
2.876m/s, which (with Froude scaling) compares to a full scale speed of 25 knots. The wave amplitude
ζ is 95 mm, the wave frequency ω is 4.02 rad/s. This leads to a wave length λ of 3.81 m, and the wave
steepness is 0.050. The wave steepness is defined as 2ζ/λ. In the chosen time frame from the data
set a large change in the acceleration due to a slam is visible.

For the irregular waves test a run from the FAST project phase 1 is used [7, 30]. The run used was a
run in head waves with the enlarged ship concept (ESC). The sampling frequency used in this test is
400 Hz. The model speed is 2.876 m/s as well. The waves were generated according to a JONSWAP
wave spectrum. The full scale wave spectrum parameters are given in the report. The significant wave
height Hs is 3 m, the peak period Tp is 6 s. The peak enhancement factor [19] γ is 3.3. The full scale
wave spectrum parameters are scaled to the model scale according to Froude scaling. In the chosen
time frame from the data set a change in the acceleration due to a slam is visible. Also the irregular
character of the acceleration is visible.

In each comparison in this appendix one filter setting will be varied to compare the influence on the
data. Each comparison consists of 8 (sub)figures. In subfigures (a) and (b) the frequency response
plot (respectively in unity and in decibel scale) will be given. Subfigure (c) shows the acceleration signal
of the regular waves data set, including the unfiltered signal. Subfigure (d) shows the acceleration for
the irregular waves data set, including the unfiltered signal. In subfigures (e) and (f) the jerk signal
is given for respectively the regular waves and the irregular waves data set. This jerk signal is the
differentiated acceleration signal, using the central difference formula. Finally in subfigure (g) and (h)
the energy density spectrum of the respectively regular and irregular jerk signal is plotted. This energy
density spectrum is based on the entire signal, not only the part shown in the subfigures above. For the
irregular waves themean energy density spectrum is used, which is the average spectrum of the energy
density spectra of parts of the signal. The y-axis of all the subfigures is the same in all comparisons,
except for the decibel frequency response plot. Since the attenuation in decibel is significantly different
between different filters and filter settings, it was found that details would be lost if all the plots would
have been with the same scale for the y-axis.

To apply the filters below (except the Savitzky-Golay filter) the digital method forward-backward filtering
is applied. The data is first passed forward through the filter, and then again in backward direction.
The advantage of this is that no phase lag is introduced in the filtered signal, which normally the case
when applying a low-pass filter. Since the data is passed through the filter twice, the order of the filter
is effectively doubled [34]. The orders documented in this report are the undoubled orders used to
determine the filter parameters used for the forward-backward filtering. The Savitsky-Golay filter does
not introduce a phase lag by design.
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Butterworth filtering
The Butterworth filter is a filter with a smooth transition between passband and stopband, without
ripples in each of these bands. The downside is that the roll-off is relatively low, espacially at lower
order filtering. The transition band can thus be relatively wide. The Butterworth filter has two input
parameters: the cut-off frequency and the order of filtering.

In table B.1 the details of the comparisons performed with Butterworth filtering can be found. First,
the influence of varying cut-off frequency with constant filter order is compared, then the influence of
varying order for a constant cut-off frequency is compared. The Butterworth filter is investigated more
than the other filters, since this filter has the smoothest frequency response and showedmost promise
in early investigations for this thesis.

Table B.1: Overview of Butterworth filter comparisons

Filter details Cut-off frequencies Figure Page
Butterworth, 2nd order 20 Hz, 25 Hz, 30 Hz B.1 104
Butterworth, 4th order 20 Hz, 25 Hz, 30 Hz B.3 106
Butterworth, 6th order 20 Hz, 25 Hz, 30 Hz B.5 108
Butterworth, 8th order 20 Hz, 25 Hz, 30 Hz B.7 110
Butterworth, 2nd order 5 Hz, 10 Hz, 15 Hz B.2 105
Butterworth, 4th order 5 Hz, 10 Hz, 15 Hz B.4 107
Butterworth, 6th order 5 Hz, 10 Hz, 15 Hz B.6 109
Butterworth, 8th order 5 Hz, 10 Hz, 15 Hz B.8 111
Filter details Orders Figure Page
Butterworth, cut-off frequency 10 Hz 2, 4, 6, 8 B.9 112
Butterworth, cut-off frequency 20 Hz 2, 4, 6, 8 B.10 113

Chebyshev filtering
Chebyshev filters are another type of digital filters. These filters have a smaller transition band than the
Butterworth filters, but there are ripples in the passband (Chebyshev I filter) or ripples in the stopband
(Chebyshev II filter) [38].

The inputs for the Chebyshev I filter are order of filtering, critical frequency and allowed ripple in the
passband. The critical frequency is the frequency in the transition band at which the amplitude gain
first drops below the allowed ripple. In table B.2 the details of the comparisons performed with Cheby-
shev I filtering can be found. The influence of allowed ripple, order of filtering and critical frequency is
compared.

The inputs for the Chebyshev II filter are order of filtering, critical frequency and minimum attenuation
in the stopband. In this case the critical frequency is the frequency at which the amplitude gain first
passes the minimum attenuation value. In table B.2 the details of the comparisons performed with
Chebyshev II filtering can be found as well. The influence of minimum attenuation, order of filtering and
critical frequency is compared.

Table B.2: Overview of Chebyshev filter comparisons

Filter details Order Critical frequency Allowed ripple in passband Figure Page
Chebyshev I 5 20 Hz 0.1 dB, 1 dB, 3dB B.11 114
Chebyshev I 3, 5, 7 20 Hz 1 dB B.12 115
Chebyshev I 5 10 Hz, 20 Hz, 30 Hz 1 dB B.13 116
Filter details Order Critical frequency Minimum attenuation in stopband Figure Page
Chebyshev II 5 30 Hz -20 dB, -40 dB, -60 dB B.14 117
Chebyshev II 3, 5, 7 30 Hz -40 dB B.15 118
Chebyshev II 5 20 Hz, 30 Hz, 40 Hz -40 dB B.16 119
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Savitzky-Golay filtering
To be able to compare the Savitzky-Golay method with the other filters, combinations of orders and
window lengths are determined that are found to have certain cut-off frequencies. The cut-off frequency
fc is defined as the frequency where the amplitude gain first passes -3 dB, or 0.707 (unity) amplitude
gain. This is also dependent on the sampling frequency of the data set. A full overview of the used
combinations of orders and window lengths, with resulting cut-off frequencies, can be found in table
B.4. The regular wave tests were performed a sampling frequency fs of 1000 Hz, the irregular wave
tests with a sampling frequency fs of 400 Hz. So different window lengths are used to get the same
frequency response of the filter for both data sets.

In table B.3 the performed comparisons are displayed. First, the influence of varying cut-off frequency
(thus varying window length) with constant filter order is compared, then the influence of varying order
for a constant cut-off frequency is compared.

Table B.3: Overview of Savitzky-Golay filter comparisons

Filter details Cut-off frequencies Figure Page
Savitzky-Golay, 3rd order 10 Hz, 15 Hz, 20 Hz B.17 120
Savitzky-Golay, 5th order 10 Hz, 15 Hz, 20 Hz B.18 121
Savitzky-Golay, 7th order 10 Hz, 15 Hz, 20 Hz B.19 122
Filter details Orders Figure Page
Savitzky-Golay, cut-off frequency 10 Hz 1, 3, 5, 7 B.20 123
Savitzky-Golay, cut-off frequency 15 Hz 1, 3, 5, 7 B.21 124
Savitzky-Golay, cut-off frequency 20 Hz 1, 3, 5, 7 B.22 125

Table B.4: Overview of Savitzky-Golay filter order and window length combinations for cut-off frequencies

Order Window length
fc = 10 Hz fc = 15 Hz fc = 20 Hz

fs = 400 Hz fs = 1000 Hz fs = 400 Hz fs = 1000 Hz fs = 400 Hz fs = 1000 Hz
1 17 45 11 29 9 23
3 43 107 29 71 21 53
5 67 171 45 113 35 85
7 93 235 63 155 47 117
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Butterworth filter, 2nd order
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Figure B.1: Comparison Butterworth filter, 2nd order, cut-off frequencies 20 Hz, 25 Hz, 30 Hz
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Butterworth filter, 2nd order
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Figure B.2: Comparison Butterworth filter, 2nd order, cut-off frequencies 5 Hz, 10 Hz, 15 Hz
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Butterworth filter, 4th order
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Figure B.3: Comparison Butterworth filter, 4th order, cut-off frequencies 20 Hz, 25 Hz, 30 Hz
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Butterworth filter, 4th order

0 10 20 30 40 50 60
Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

 g
ai

n

fc = 15 Hz
fc = 10 Hz
fc = 5 Hz

(a) Frequency response

0 10 20 30 40 50 60
Frequency [Hz]

80

60

40

20

0

Am
pl

itu
de

 g
ai

n 
(d

B)

fc = 15 Hz
fc = 10 Hz
fc = 5 Hz

(b) Frequency response (dB)

12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8
Time [s]

8

6

4

2

0

2

4

6

8

a z
 [m

/s
2 ]

Unfiltered
fc = 15 Hz
fc = 10 Hz
fc = 5 Hz

(c) Acceleration regular waves

134.9 135.0 135.1 135.2 135.3 135.4
Time [s]

15

10

5

0

5

10

15

a z
 [m

/s
2 ]

Unfiltered
fc = 15 Hz
fc = 10 Hz
fc = 5 Hz

(d) Acceleration irregular waves

12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8
Time [s]

200

100

0

100

200

300

400

500

j z 
[m

/s
3 ]

fc = 15 Hz
fc = 10 Hz
fc = 5 Hz

(e) Jerk regular waves

134.9 135.0 135.1 135.2 135.3 135.4
Time [s]

200

0

200

400

600

800

j z 
[m

/s
3 ]

fc = 15 Hz
fc = 10 Hz
fc = 5 Hz

(f) Jerk irregular waves

0 5 10 15 20 25 30
f [Hz]

0

2000

4000

6000

8000

10000

12000

S j z
 [m

/s
5 ]

fc = 15 Hz
fc = 10 Hz
fc = 5 Hz

(g) Energy density spectrum regular waves

0 5 10 15 20 25 30
f [Hz]

0

200

400

600

800

1000

S j z
 [m

/s
5 ]

fc = 15 Hz
fc = 10 Hz
fc = 5 Hz

(h) Energy density spectrum irregular waves

Figure B.4: Comparison Butterworth filter, 4th order, cut-off frequencies 5 Hz, 10 Hz, 15 Hz
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Butterworth filter, 6th order
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Figure B.5: Comparison Butterworth filter, 6th order, cut-off frequencies 20 Hz, 25 Hz, 30 Hz
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Butterworth filter, 6th order
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Figure B.6: Comparison Butterworth filter, 6th order, cut-off frequencies 5 Hz, 10 Hz, 15 Hz
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Butterworth filter, 8th order
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Figure B.7: Comparison Butterworth filter, 8th order, cut-off frequencies 20 Hz, 25 Hz, 30 Hz
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Butterworth filter, 8th order
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Figure B.8: Comparison Butterworth filter, 8th order, cut-off frequencies 5 Hz, 10 Hz, 15 Hz
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Butterworth filter, cut-off frequency 10 Hz
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Figure B.9: Comparison Butterworth filter, 2nd , 4th , 6th , 8th order, cut-off frequency 10 Hz
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Butterworth filter, cut-off frequency 20 Hz
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Figure B.10: Comparison Butterworth filter, 2nd , 4th , 6th , 8th order, cut-off frequency 20 Hz
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Chebyshev I filter, 5th order, critical frequency 20 Hz
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Figure B.11: Comparison Chebyshev I filter, 5th order, critical frequency 20 Hz, allowed ripple 0.1 dB, 1 dB, 3 dB
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Chebyshev I filter, critical frequency 20 Hz, allowed ripple 1 dB
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Figure B.12: Comparison Chebyshev I filter, 3rd , 5th , 7th order, critical frequency 20 Hz, allowed ripple 1 dB
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Chebyshev I filter, 5th order, allowed ripple 1 dB
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Figure B.13: Comparison Chebyshev I filter, 5th order, critical frequency 10 Hz, 20 Hz, 30 Hz, allowed ripple 1 dB
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Chebyshev II filter, 5th order, critical frequency 30 Hz
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Figure B.14: Comparison Chebyshev II filter, 5th order, critical frequency 30 Hz, minimum attenuation -20 dB, -40 dB, -60 dB
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Chebyshev II filter, critical frequency 30 Hz, minimum attenuation -40 dB
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Figure B.15: Comparison Chebyshev II filter, 3rd , 5th , 7th order, critical frequency 30 Hz, minimum attenuation -40 dB
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Chebyshev II filter, 5th order, minimum attenuation -40 dB
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Figure B.16: Comparison Chebyshev II filter, 5th order, critical frequency 20 Hz, 30 Hz, 40 Hz, minimum attenuation -40 dB
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Savitzky-Golay filter, 3rd order
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Figure B.17: Comparison Savitzky-Golay filter, 3rd order, cut-off frequencies 10 Hz, 15 Hz, 20 Hz
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Savitzky-Golay filter, 5th order
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Figure B.18: Comparison Savitzky-Golay filter, 5th order, cut-off frequencies 10 Hz, 15 Hz, 20 Hz
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Savitzky-Golay filter, 7th order
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Figure B.19: Comparison Savitzky-Golay filter, 7th order, cut-off frequencies 10 Hz, 15 Hz, 20 Hz
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Savitzky-Golay filter, cut-off frequency 10 Hz
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Figure B.20: Comparison Savitzky-Golay filter, 3rd , 5th , 7th order, cut-off frequency 10 Hz
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Savitzky-Golay filter, cut-off frequency 15 Hz
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Figure B.21: Comparison Savitzky-Golay filter, 3rd , 5th , 7th order, cut-off frequency 15 Hz
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Savitzky-Golay filter, cut-off frequency 20 Hz
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Figure B.22: Comparison Savitzky-Golay filter, 3rd , 5th , 7th order, cut-off frequency 20 Hz





C
Time traces regular waves

In this appendix some time traces of the model tests and calculations are shown to complement the
comparisons. The time traces for which heave displacement, velocity, acceleration and jerk are shown
can be seen in table C.1. The displacement was also measured, the velocity is obtained from the dif-
ferentiated displacement signal. In all these time traces it is indicated at what moment the maximum
acceleration and maximum jerk occur, to see what the displacement and velocity at that moment is. In
the energy density spectra the dotted line indicates the split between first order energy and higher order
energy.

Table C.1: Overview of time traces (heave displacement, velocity, acceleration, jerk)

Hull Location ω vs ωe κ ζa
Nr. [-] [-] [rad/s] [m/s] [rad/s] [-] [mm] Page
1 ESC CoG 4.02 2.876 8.76 0.017 32.00 128
2 AXE CoG 4.02 2.876 8.76 0.017 32.00 129
3 ESC CoG 4.02 2.876 8.76 0.050 95.00 130
4 AXE CoG 4.02 2.876 8.76 0.050 95.00 131
5 ESC Bow 4.02 2.876 8.76 0.017 32.00 132
6 AXE Bow 4.02 2.876 8.76 0.017 32.00 133
7 ESC Bow 4.47 2.876 10.33 0.017 26.00 134
8 ESC Bow 4.47 2.876 10.33 0.033 51.00 135
9 ESC Bow 4.47 2.876 10.33 0.050 77.00 136
10 AXE CoG 4.47 2.876 10.33 0.033 51.00 137
11 AXE CoG 4.02 4.026 10.65 0.033 63.00 138

In table C.2 the time traces for which the heave acceleration and jerk, and pitch acceleration and jerk
are plotted can be seen.

Table C.2: Overview of time traces (heave acceleration and jerk, pitch acceleration and jerk)

Hull ω vs ωe κ ζa
Nr. [-] [rad/s] [m/s] [rad/s] [-] [mm] Page
12 ESC 3.58 2.876 7.34 0.033 80.00 139
13 AXE 3.58 2.876 7.34 0.033 80.00 140

In table C.3 the time traces for which the heave acceleration and jerk, and pitch acceleration and jerk
from the RANS CFD calculations and the measurements are plotted can be seen.

Table C.3: Overview of time traces (RANS CFD calculations and measurements)

Hull ω vs ωe κ ζa
Nr. [-] [rad/s] [m/s] [rad/s] [-] [mm] Page
14 AXE 3.58 2.876 7.34 0.033 80.21 141
15 AXE 4.47 2.876 10.33 0.033 51.33 142
16 AXE 5.37 2.876 13.82 0.033 35.75 143
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Time trace 1: ESC, CoG, vs = 2.876 m/s, ωωωe = 8.76 rad/s, κκκ = 0.017
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Figure C.1: Time trace 1: heave displacement, velocity, acceleration and jerk
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Figure C.2: Energy density spectra of time trace 1
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Time trace 2: AXE, CoG, vs = 2.876 m/s, ωωωe = 8.76 rad/s, κκκ = 0.017
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Figure C.3: Time trace 2: vertical displacement, velocity, acceleration and jerk
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Figure C.4: Energy density spectra of time trace 2
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Time trace 3: ESC, CoG, vs = 2.876 m/s, ωωωe = 8.76 rad/s, κκκ = 0.050
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Figure C.5: Time trace 3: vertical displacement, velocity, acceleration and jerk
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Figure C.6: Energy density spectra of time trace 3

130



Time trace 4: AXE, CoG, vs = 2.876 m/s, ωωωe = 8.76 rad/s, κκκ = 0.050
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Figure C.7: Time trace 4: vertical displacement, velocity, acceleration and jerk
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Figure C.8: Energy density spectra of time trace 4
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Time trace 5: ESC, bow, vs = 2.876 m/s, ωωωe = 8.76 rad/s, κκκ = 0.017
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Figure C.9: Time trace 5: vertical displacement, velocity, acceleration and jerk
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Figure C.10: Energy density spectra of time trace 5
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Time trace 6: AXE, bow, vs = 2.876 m/s, ωωωe = 8.76 rad/s, κκκ = 0.017
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Figure C.11: Time trace 6: vertical displacement, velocity, acceleration and jerk
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Figure C.12: Energy density spectra of time trace 6

133



Time trace 7: ESC, bow, vs = 2.876 m/s, ωωωe = 10.33 rad/s, κκκ = 0.017
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Figure C.13: Time trace 7: vertical displacement, velocity, acceleration and jerk
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Figure C.14: Energy density spectra of time trace 7
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Time trace 8: ESC, bow, vs = 2.876 m/s, ωωωe = 10.33 rad/s, κκκ = 0.033
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Figure C.15: Time trace 8: vertical displacement, velocity, acceleration and jerk
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Figure C.16: Energy density spectra of time trace 8
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Time trace 9: ESC, bow, vs = 2.876 m/s, ωωωe = 10.33 rad/s, κκκ = 0.050
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Figure C.17: Time trace 9: vertical displacement, velocity, acceleration and jerk
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Figure C.18: Energy density spectra of time trace 9
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Time trace 10: AXE, CoG, vs = 2.876 m/s, ωωωe = 10.33 rad/s, κκκ = 0.033
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Figure C.19: Time trace 10: vertical displacement, velocity, acceleration and jerk
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Figure C.20: Energy density spectra of time trace 10
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Time trace 11: AXE, CoG, vs = 4.026 m/s, ωωωe = 10.65 rad/s, κκκ = 0.033
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Figure C.21: Time trace 11: vertical displacement, velocity, acceleration and jerk
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Figure C.22: Energy density spectra of time trace 11
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Time trace 12: ESC, vs = 2.876 m/s, ωωωe = 7.34 rad/s, κκκ = 0.033
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Figure C.23: Time trace 12: heave acceleration and jerk, pitch acceleration and jerk
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Figure C.24: Energy density spectra jerk of time trace 12
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Time trace 13: AXE, vs = 2.876 m/s, ωωωe = 7.34 rad/s, κκκ = 0.033
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Figure C.25: Time trace 13: heave acceleration and jerk, pitch acceleration and jerk
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Figure C.26: Energy density spectra jerk of time trace 13

140



Time trace 14: AXE, vs = 2.876 m/s, ωωωe = 7.34 rad/s, κκκ = 0.033
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Figure C.27: Time trace 14: RANS CFD calculations and measurements
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Figure C.28: Energy density spectra jerk of time trace 14
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Time trace 15: AXE, vs = 2.876 m/s, ωωωe = 10.33 rad/s, κκκ = 0.033
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Figure C.29: Time trace 15: RANS CFD calculations and measurements

0 20 40 60 80 100 120 140
 [rad/s]

0

20

40

60

80

100

S j
 [j

2 /(
ra

d/
s)

]

Measurements
RANS CFD

(a) Heave

0 20 40 60 80 100 120 140
 [rad/s]

0

25

50

75

100

125

150

175

200

S j
 [j

2 /(
ra

d/
s)

]

Measurements
RANS CFD

(b) Pitch

Figure C.30: Energy density spectra jerk of time trace 15

142



Time trace 16: AXE, vs = 2.876 m/s, ωωωe = 13.82 rad/s, κκκ = 0.033
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Figure C.31: Time trace 16: RANS CFD calculations and measurements
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Figure C.32: Energy density spectra jerk of time trace 16
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