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Abstract—Recently, the edge resource provisioning schemes
were defined considering the low-latency Mobile Edge Computing
(MEC) paradigm. Most of these models only consider battery-
powered devices like smart-phones, thus are agnostic to the
energy harvesting techniques that achieves a green MEC system.
Further, most of the studies on MEC assume unlimited edge
resources which is not the case as it is with the conventional
data-centers (public clouds). Hence, unrestricted use of edge
resources is not ideal. This work mainly considers two problems:
(1) the offloading of data traffic from the Internet of Things
(IoT) devices that rely on energy harvesting to the MEC entities
and (2) assignment of the resources at the MEC. The novelty
of this paper lies in the energy scavenging based architecture
that is developed over the Contiki OS. Secondly, saving the
energy for computations to maximize the lifetime of the sensing
nodes by performing the execution of the computationally-
intensive tasks at the edge which is a single hop away. The
proposed architecture uses the ambient triggers to form the
sensor network and establish links with computationally capable
resources located at the edge. Further, a mathematical model to
manage the resources at the edge is proposed. Finally, we evaluate
a threshold-policy for optimizing the resources participating in
an edge computation service for an IoT scenario and discuss the
improvements achieved.

Index Terms—Mobile Edge Computing, Integer Linear Pro-
gramming, Internet of Things, Sensor Network.

I. INTRODUCTION

The popularity of Mobile Cloud Computing (MCC) has

rapidly increased due to the exponential growth of mobile

devices and applications. However, in many scenarios, data

needs to be processed and decisions must be made in real

time. The established MCC paradigm is not able to meet

the latency requirements [1]. For example, it takes about 30-

100 ms round trip time (RTT) for an online gaming traffic

with high resource demands [1]. To overcome this, the concept

of Mobile Edge Computing – where the computing elements

are placed closer to the end user devices – is proposed [2].

Figure 1 shows the edge ecosystem with the computational

elements collocated with the mobile edge network. Owing to

the benefits of providing a faster service by a resource entity

closer to the mobile devices, edge computing and its varieties

like Mobile Edge Computing (MEC) have received much

attention from academic and industrial research communities.

In this work we focus on MEC.

Fig. 1. The Edge Ecosystem

According to [3], “MEC is specified to provide a multi-
tenant hosting environment for 4G RAN edge applications,
where MEC is collocated with the aggregated eNodeBs”.

Various implementations that tap into this association of

MEC servers with the Radio Access Networks for enabling a

proactive computation are described in [2]. Most of the current

research considers the presence of an all-powerful ”cloud-
like” entity at the edge of the network (like Cloudlets [4]).

Contrarily, an MEC server cannot be as resourceful as the

conventional cloud due to obvious reasons of limited capacity.

Most of the prior research, like [5] and [6] investigate the

execution cost at the edge cloud or assume a single edge cloud

usage without much deliberation on the life of the devices

during and after the computation. Further, as the edge services

are becoming increasingly important for the IoT ecosystems,

we have to also consider the limiting constraints of these

low-cost sensor devices. Apart from the limited storage and

computation capabilities, the most important constraint of low-

cost sensor nodes is the limited battery capacity. To overcome

this, energy harvesting sensor nodes are widely being used for

IoT applications such that a perpetual network operation can

be ensured. However, the stochastic nature of harvested energy

results in unreliable operation of EH-IoT nodes. Thus, it is

highly important that sensor data gathered at EH-IoT nodes978-1-4673-9944-9/18/$31.00 c© 2018 IEEE
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is offloaded to the MEC before the nodes die. In this paper,

we, focus on two challenging aspects considering EH-IoTs and

MEC as discussed via the use-cases below.

A. Problems

1) Computation Offloading and Communication: In typical

IoT applications, like triggering context events in crit-

ical areas [7], the precise context determination needs

large amount of computational resources to process the

data gathered from large scale deployment of sensors.

The individual sensor nodes are not suitable for such

computation as only partial information is available

at each node. The increased use of energy harvesting

(EH) sensor nodes further aggravate this problem as

the available node energy is highly fluctuating due to

the stochastic nature of energy harvesting process. In

case a sensor fails (due to lack of sufficient energy),

there is no actuation event that can be expected. The

computation capabilities offered by MEC can be of great

use to EH-IoTs as the computation can be offloaded

to MECs. Thus, end-to-end frameworks are needed that

integrate EH-IoTs into MEC environment. In this paper

we propose a framework for the EH-IoT nodes to offload

computations to edge nodes.

2) MEC Resource Utilization: Although MEC can provide

the needed computation resources for IoT applications, it

is important to optimize the MEC resources as: (i) unlike

traditional cloud data centers, MEC servers cannot have

unlimited resources as they are located at the mobile

edge where over-provisioning can only be facilitated to

a certain extent; and (ii) increased deployment of EH-

IoTs choosing MEC will eventually deplete the MEC

resources. Let us consider an EH-IoT application, that’s

executed at the edge. Let’s say a sequentially executed

scenario with an application divided into 5 tasks is

available. It should be noted that there is a dependence

of tasks on the CPU cycles [8]. Assuming each task

finds an edge node for execution, there will be total

5 edge nodes serving 5 tasks considering the state-

of-the art resource allocation mechanism [5]. On the

other hand, we propose a selective resource assignment

scheme where edge nodes are selected based on the task

dependencies on the CPU cycles. For example, consider

different CPU cycles required for execution of two of

these tasks, such that only 3 edge nodes are required

for the computation of the complete set of tasks. In this

case, we save 2 edge nodes for another service. By doing

this, we not only reduce computation units but also save

energy consumption for computation.

B. Contributions

• In order to address Problem 1, we propose a preliminary

architecture for unifying the EH IoT devices with the

mobile edge service nodes. We essentially look at real-

time actuation scenarios where the software component

trigger sensor network formation and acts in a way that

the latency critical traffic (for real-time actuation) is

routed towards the edge resources.

• As defined in Problem 2, the edge service node capac-

ities are limited and this limitation can be addressed

by following an optimal resource provisioning scheme.

Thus, we mathematically model a threshold policy based

service provisioning scheme that considers the energy,

the resource capacities (CPU, RAM and Storage) and the

stability of the edge nodes while deploying a service. We

believe these three factors impact the profit of edge cloud

service providers.

• Finally, we develop a heuristic algorithm to check the

usefulness of the last-mile computation and share the

insights we gathered by evaluating the threshold-policy.

The rest of this paper is structured to delineate the novelty

of the framework with a brief discussion about the state of

the art models in the related work in Section II, followed by

Section III, which discusses the system overview. In Section

IV, the system architecture is elaborated, and in Section V,

we evaluate the performance of our algorithm. Section VI

concludes this work and proposes potential future extensions.

II. RELATED WORK

Zhu et al. address the problem of sensor network integration

in Mobile Cloud Computing [9]. The authors define an algo-

rithm for intermittent data-sharing and connectivity to cloud.

However, this model ignores the possibility of facilitating edge

computing services. Sun and Ansari [10] consider an SDN-

assisted mobile edge computing framework called Edge-IoT

that allows the fog nodes to utilize the cloud or the edge

computing services depending on the application requirements.

Further, the authors outline a hierarchical fog computing ar-

chitecture and describe a method using VM service migration

to achieve a flexible application service deployment. However,

this work does not consider the challenges of an energy-aware

ecosystem.

Efforts in the past such as [5], [6] have looked at compu-

tation offloading in an MEC system while making decisions

based on CPU cycle, transmit power etc. However, the former

considers mobile device equipped with an energy harvesting

component with no real impact on actuation. The latter focuses

only on resource allocation of a single edge cloud. On the other

hand we consider optimizing the edge resource usage based on

a set requirement strategy coupled with the knowledge of the

energy signatures of the end-users and the actuator candidates

in real-time scenarios.

In [11], the authors propose a model for providing edge

services to latency-critical applications in an IoT environment.

The paper primarily proposes providing service nodes at the

network edges where the users directly connect. As this

follows a split cloud architecture by interconnecting edge

networks with data-center networks, it is called Edge Cloud.

Authors monitor traffic and based on the latency requirements

offload data to the cloud. This work ignores the challenges

put forth by Mobile Edge Computing in the IoT domain.

Therefore, by considering the relationship with the EH aware
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IoT devices and the Mobile Edge Cloud Computation we

propose a unified architecture and move towards a “Green-

IoT” ecosystem.

III. SYSTEM OVERVIEW

In this section the foundations, concepts and the integral

components on which the architecture is built is discussed.
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Fig. 2. Component Interaction

A. Foundations

Protocols like Low-power Wireless Bus [12] and Choco

[13] address the problem of routing data on sensor nodes

that have limited energy in a highly energy-efficient manner

and with very low latencies. We consider one such protocol

can be used to select a sink dynamically. However, these

protocols assume the computation to be already taken care

of at the application layer on the sensor nodes. Additionally,

these protocols are agnostic to the edge entities in the use

cases mentioned in [7], such as computing the context of a user

considering several ambient sensing technologies. The sensors

may be using different radio technologies as well. In such use

cases, a quick context computation is required despite a large

scale deployment of sensor nodes. Furthermore, computing

the context considering several sensor data make a perfect

example use case for using mobile edge cloud. In such cases,

communication and computation should be jointly considered

as both energy and latency are of prime importance. This

makes resource allocation in such environments challenging.

In the use case of computing context of the user, we men-

tioned that the sensors may use different radio technologies.

Framework such as EdgeIoT [10] propose to empower the

base-stations with all these technologies, which can be easily

integrated. However, one aspect that is not yet considered is

that the eNodeBs and the mobile edge cloud (MEC) will be

serving not only IoT but many other types of applications,

hence traffic, such as calls, video on-demand, and online

gaming. Therefore, it is required to consider a mobile network

where multiple classes of traffic flow, and hence prioritization

by QoS Class Identifiers (QCI) becomes essential. In mobile-

networks trying to disentangle one form of traffic from another

can intuitively provide positive results, a similar performance

gain can be achieved if the computational entity is aware of

the incoming requests. Motivated by this, we build the 2EA

framework to make the edge entities aware of the IoT traffic

and a traffic daemon that reduces response time by avoiding

needless traversal of packets through the core network.

B. Concepts

To design the 2EA framework, we continue the example of

computing the context of a user. We use the architecture from

[7] as a source of inspiration. In this work, the authors divide

the architecture into several layers including ambient context

providers, context interpreters and reasoners, above which is

the application layer. The computed context and actuation

information must then be disseminated to the actuators and

output devices.

In order to realize such a system that contains a large num-

ber of context providers (namely, wireless sensor networks,

LoRaWAN/NB-IoT based sensor devices, social networks,

etc.), it is impossible to compute context on any one sensor

node. To this end, the sensors must ‘offload’ their data to their

nearest MEC. Naturally, we consider the context interpreter

(not needed for energy-harvesting context-event triggered sys-

tems), and the context reasoner to be in the MEC.

A high-level view of the processes involved in obtaining

the information and the dependencies that need to be sat-

isfied is illustrated here. Context-event triggers, which can

be either based on event-based reporting or energy-harvesting

triggered [7], initiate the discovery module on the sensor OS

(for IEEE 802.15.4 and IEEE 802.15.1 devices) that finds

other sensors in the vicinity and forms a sensor network. Other

cellular IoT technologies will connect directly. We focus on the

WSNs here. Traditionally, in a sensor network, a sink acts as

a data aggregation point and other nodes report periodically

to the sink. Step 1 is the selection of the sink after which

other nodes submit the details along with their node ids.

Step 2 is the energy-aware routing and management with the

energy profiles of the sink. Concurrently, the energy database

is updated. Step 3 involves the topology controller (Manager

Module) managing the nodes in the sensor network. Once a

data packet is received the global buffer in the Contiki core

sends a reminder to the TCP/IP stack which in turn notifies

the software layer for scheduling the traffic. Step 4 involves

the aggregated data being sent to the computational entity with

an impregnated agent that makes the system edge aware on

one side and energy-aware on the other end. Once a sink is

selected, the sink node becomes the gateway for the WSN

traffic to send the data to the mobile network. Typically, in

an energy harvesting sensor network, the ambient energy is

used as an input for context determination. Similarly, in our

architecture, the harvested energy triggers the sensor network

formation module after which the sink is chosen.

Figure 2 shows the component interactions that occur dur-

ing this process. The Agent Inspection module determines

the sensor traffic (from both WSNs and other sensors) that

goes to a sensor network substrate after it separates the in-

network traffic based on the defined packet header classes. Our

approach resembles in part to [14] where the embedded agent

usage has been defined for virtual sensor networks (VSN).
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In Sensor Network Substrate, packet headers are sifted and

WSN traffic that is trapped is forwarded to the compute

location. This will be elaborated further in the following

section.

IV. SYSTEM ARCHITECTURE

In this section the details of the system architecture are

discussed. There are two integral parts to this system: (a)

Context providers where the sensor data generation happens

and (b) the MEC where the traffic and the resources must be

managed as to provide the required computational services as

required.

Fig. 3. 2(EA) Context Provider Architecture

A. Context Providers

We specifically focus on the energy-harvesting context-

event triggered systems. Figure 3 shows the system architec-

ture for the context providers. The architecture consists of the

following:

1) Device Layer- This layer has the context providers which

are essentially sensors that sense and collect the raw

data from the environment. These devices rely on energy

harvesting techniques which act as input trigger for

software components.

2) Software Layer- This is the operating system in the

sensor over which the architecture components are built.

We build our components on top of the Contiki operating

system [15]. These components are:

Sensor Network formation module: Once a context-

event has been triggered, the network formation module

is initiated. After this, nearby sensors are discovered and

the most capable sensor is selected as the sink. The

capability is dependent on the power usage effectiveness

(PUE) of the sensor. PUE for a sensor is the value of

how much energy is used by the computing element

in the sensor. These values are determined primarily to

decide the aggregation node (sink) that establishes edge

to sensing layer communication.

Energy Profiler: Energy profiler maintains the database

with power metrics, constants and information asso-

ciated with the WSN formed and the sink selected.

Even among energy harvesting nodes the energy profiles

of different nodes in a region will be different based

on its location. This profiler uses a couple of these

relevant information (sensor type, sensor port numbers,

IDs, operational report of on/off) which is then given to

the Management module.

Management Module: The Management module com-

prises of the Node Manager and the Energy Manager.

It correlates information obtained from the first two

modules, remembers the sink as the head and finds the

power consumed by the sink. A threshold is set below

which the sink status is demoted and another sink is

chosen based on the suggestions given by the manage-

ment module. The cases of constructive interference are

beyond the scope of this paper and will be considered

in the future. Energy profiles are gathered (for one hop

neighbours) by the energy manager and stored in the

database. Node Manager checks unused sensors and

switches to Sleep mode. The Node Management threads

are also running on the VMs such that the actuator nodes

are remotely controlled by the MEC.

Priority Traffic Scheduler: The prioritization algo-

rithms are run and a schedule is determined. For in-

stance, consider an MEC server as the edge service pro-

viding node, a part of the Management algorithm is run

to manage the two ends of the system. The collocation of

the MEC with the Mobile Network infrastructure ensures

the management module to figure out the topology of

the actuators and make appropriate decisions for the

actuator. Rightly so, the schedules are prepared with the

link usages from the memory of the MEC. Hereby, a

large part of the computation tasks are taken off from

the sensors. Further, if certain links fail a back-up path

is computed towards the actuators to realize a task at the

appropriate time. All of these tasks are determined by

the network substrate that remotely gathers information

from the WSN infrastructure as shown in Figure 4. It

should be noted that the threads running on the energy

harvesters are the ones that need sensing-event triggers

and acknowledgement of the edge aware traffic.

Fig. 4. 2EA Network Management Architecture
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B. Traffic Management

Network Interface Layer - This layer consists of the Wi-Fi

or 3G/4G/5G interface modules that are used to communicate

with the eNodeBs (or Access Points). When the sensors are

deployed around a cell site, the mobile network has a sensor-

network composition substrate module close at the eNodeBs

which inspects the incoming traffic. To address this, an agent

code inspects the multi-network traffic for usable sensor traffic

and forwards it to the Traffic Daemon. At the WSN Traffic

Trap Configuration module the headers are modified and the

traffic is moved to the MEC where the processing takes place.

As the actuating entities are already subscribed to the compute

services, the results are directly sent to those without any

delay.

C. Edge Resource Utilization

In this section we define threshold L based on which the

edge resources are labelled and made available to the end user.

The parameters on which L is dependent are normalized and

used for quantifying the edge nodes at the time of service

provisioning. Let T k
r = Total resource (CPU, RAM, storage)

and Qk
r = Resource Required (CPU, RAM, storage). Here ’k’

represents the kth node. Let Ωk
r = Energy consumption of the

kth edge node. Post execution of the task the new energy value

is defined as Ωk
o . Let Node Stability of the kth node is defined

by Sk which is the ratio of the number of requests that were

served by the node in the past to the total requests received

by the node. To this end we define the parameter L(k) given

by,

L(k) = α{(T k
r , Q

k
r ),Ω

k
r , S

k}. (1)

Here α is the weight given to a particular form of resource

at the time of subscription. As the value of L for a node

increases, the execution time decreases. As the number of

these nodes {1, 2, 3..n} goes on increasing, the choice of nodes

has to be made based on proper evaluation of tasks (j from

{j1, j2, ...jn}) to residual resources mapping. The resources

are modelled based on modified QoS class definitions in [16].

Example, when a request comes to the service provider the

QoS requirement for resources belonging to class r with r1 for

CPU, r2 for RAM, r3 for storage must be distinctly defined.

Total resource provided by that class is rt, with rt1 , rt2 ,

rt3 . Now for an L − value we have {(r/rt),Ωrn , Si}. We

restrict the range between (1, 4) ↔ L(k) for the experiments.

However, based on the service providers needs the range may

change. The objective is subject to the following constraint:

ykj =

{
1, if node k is used for execution of task j

0, otherwise
(2)

For reducing the number of edge resources used

min
∑
k∈n

∑
j∈J

ynj
ψk
j

L(k)
(3)

ψk
j represents the execution time for a task j being executed

on node k. Similarly, L represents the threshold value for

the node k. As the value of L begins to increase, the overall

execution time reduces. We need to figure out the dependence

of CPU utilization on computing energy at the edge node.

It is clear that lower the CPU utilization, lower would be the

energy consumption. This is because the computation energy is

directly proportional to the CPU utilization [5]. The challenge

here is to not only reduce the number of compute cores inside

one edge node but also to find out if the task acceptance and

reduction in the number of edge nodes can have a positive

impact on the system when viewed holistically.
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V. PERFORMANCE ANALYSIS

We have used a core 2 Duo CPU, with a 4GB RAM for this

experiment. We ignore CPU-induced delays, as the objective is

to find the conceptual feasibility of this model, using synthetic

workloads. As, the resources at the edge are limited compared

to the cloud, an optimal edge resource utilization is required.

Furthermore, as our focus is to evaluate the compute-resource

utilization parameters through this simulation, the interplay of

EH-devices with the Mobile Edge Cloud would be evaluated

as our future work. We use the Gurobi optimizer [17] to solve

this problem. As this problem formulation is NP-hard, we

use a greedy bin-packing algorithm to evaluate the following

metrics: (a) Drop Ratio - ratio between the number of total

dropped tasks to accepted tasks. (b) Total Tasks Accepted -

total scheduled-and-accepted tasks. (c) Utilization Efficiency

of the edge resources - (Qr/ Tr) (d) Time taken for task

acceptance - Time taken for Edge resource to process a set

of tasks.

A. Discussion

As it is observed, with any increase in the number

of scheduled tasks, the performance of the resource

selection improves. We synthetically introduce a set of

randomly distributed task arrivals at the Edge. However,

as the resources are gradually increased, more tasks

are accepted, and the drop ratio decreases. Further, an

irregularity was observed in the form of a sudden peak

in Figure 5, that is mainly attributed to a drastic change
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in data traffic, from 220 tasks to 180. Syntactically

the bin model is as follows: bins[nodes[k].nodeID] =
Bin(nodes[k].Lvalue,int(nodes[k].cpu),int(nodes[k].storage),
int(nodes[k].ram)) low =0.1 high =4.0

size =300. For every value in this range

float(”0:.1f”.format(random.uniform(low,high))) is evaluated.

In Figure 6, the average threshold score determines the edge

resources that will be chosen by utilizing the limited amount

of resources efficiently. The resources below the average

threshold line are rejected. The execution time reduces as

the number of resources increases. For a variety of tasks

requiring a specific number of resources, some nodes are used

irrespective of their requirements. The utilization remains

close to 89-91%, with the initial peak close to approximately

98%, owing to low traffic rates. Over 300 tasks and around

100 nodes were synthetically modelled, but only a part of the

results are shown for brevity. A major limitation of following

a random task scheme is that a real world data-trace would

probably behave in a very different manner. This would be

considered in the future along-with the inclusion of the task

deadlines.

VI. CONCLUSION & FUTURE WORK

In this work, we developed a preliminary Energy-Aware-

Edge-Aware architecture (2EA) that considers sensors that

rely on energy harvesting in IoT ecosystems. In this paper

we capitalize on the limited edge resources by providing

a threshold-based scheme that not only saves computational

energy consumption but also ensures optimal usage of re-

sources based on the task arrival process. Further, such a

system enables an energy aware IoT ecosystem. At the device

layer, where the context providers are placed, the computation

capabilities are limited. Therefore, to offer computation service

within one hop we consider the edge cloud. At the computation

points, we have evaluated the resource utilization in the

Edge by following an approach based on threshold policies.

There were some important insights gathered through this

work, for instance, the drop ratio goes on decreasing as the

workload fetches for resources in an incremental manner. The

edge resource utilization gives clarity about the importance

of managing the resources at the resource-limited-edge. A

detailed inspection of the random tasks arrival gave us some

valuable insights on the anomalies of following a synthetic

stochastic process using a greedy-algorithm. Next, we will

focus on studying the effect of degradation in the link quality

in critical scenarios that may lead to link failures.
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