812 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

Application-Directed Voltage Scaling

Johan Pouwelse, Koen LangendpAssociate Member, IEEENd Henk J. SipsAssociate Member, IEEE

Abstract—Clock (and voltage) scheduling is an important tech- of hardware can take some time, which affects performance
nique to reduce the energy consumption of processors that sup- (e.g., response time). Using simple power-down-when-idle

port voltage sc.alilng. It is difficult, hoyvever, to achieve good resglts techniques the processor's power consumption can be signifi-
using only statistics from the operating system level when applica-

tions show bursty (unpredictable) behavior. We take the approach cantly reduced. Power savings up to 66% have been reported
that such applications must be made power-aware and specify their [2].
average execution tim¢AET) and the deadline to the scheduler A further refinement is to make continuous tradeoffs between

controlling the clock speed and processor voltage. This paper de- performance and cost. Performance metrics are application de-

scribes ourenergy priority schedulingEPS) algorithm supporting S . .
power-aware applications. EPS orders tasks according to how tight pendent, but often a combination of response time and quality

their deadlines are and how often tasks overlap. Low-priority tasks 1S Used. Video decoding is used as a case study throughout this
are scheduled first, since they can be easily preempted to accommo-paper, and typical quality metrics are spatial/temporal resolu-

date for high-priority tasks later. The EPS algorithm does not al- tion, color depth, and distortion level. The user demand (per-

ways yield the optimal schedule, but has a low complexity. We have fofi _
implemented EPS on a StrongARM-based variable-voltage plat- formance) should be satisfied at the lowest cost (power con

form. We conducted experiments with a modified video decoder sumption) Voltage scalinds ‘?‘ method to tradeoff p.rocessorfre-
that estimates the AET of each frame. Measurements show that quency (performance) against power consumption. The power
application-directed voltage scaling reduces processor power con- consumption of a processor running at a high frequency and
sumption with 50% for the bursty video decoder without missing high voltage is much larger than running at a low frequency
any frame deadiines. - and low voltage. The power consumption of digital CMOS cir-

Ilndex Terlms—Adaptlve software, low power, power awareness, its can be modeled quite accurately by simple equatiBns (
voltage scaling.

96 Seang aCfV3p) [3], [4]

I. INTRODUCTION A. Voltage Scaling Implementations

OWER CONSUMPTION is becoming tHamiting factor In 1996, one of the first papers was published that describes
for the functionality of wearable devices, because advancgs actual hardware implementation using voltage scaling [5].
in battery technology are progressing slowly whereas computghis implementation applies voltage scaling to MPEG video
tion and communication demands are increasing rapidly. It fecoding on a DSP. The frequency and voltage are adjusted
therefore, important to utilize the available energy as efficiemd match the varying complexity of video frames. In [6], a
as possible. Energy preservation, or energy management, is figdicated cryptography processor is presented that uses voltage
ther translated into a low-power consumption of all parts ofgaling. When running at 50 MHz this processor requires a
wearable device. The initial response to the low-power demagdpply voltage of 2 V and consumes at most 75 mW; at 3
was to lower the supply voltage. For example, by reducing theHz, a supply voltage of only 0.7 V is required and the power
supply voltage from standard 5.0 to 3.3 V power was reducednsumption drops to a mere 528V.
by 56%. In 1998, the first experimental results on a general-purpose
Additional reductions can be obtained by selectively loweringrocessor were published [7]. The architecture of a R3900 RISC
the supply voltage of specific parts in either a discrete or copere was enhanced with a critical path replica to measure the
tinuous manner. An obvious candidate is the processor sincenihimal required supply voltage. The RISC core operates on
is responsible for a significant portion of the total power cont.9 Vv at 40 MHz and on 1.3 V at 10 MHz. All intermediate
sumption [1]. frequencies are also supported. This first general purpose im-
A discrete approach to voltage reduction is using powgfementation did not have a full chip-set and lacked an oper-
down features to minimize the power consumption of unuseging system. In 2000, Grunwatt al. presented experimental
hardware. For portable computers this means turning off thesults on a complete general-purpose platform, called Itsy, run-
hard disk, processor, screen, modem, sound, etc. Reactivahgiy the Linux operating system [8]. Itsy uses a standard com-
mercial StrongARM SA1100 processor that supports voltage
Manuscript received February 28, 2002; revised August 27, 2002. This wékaling. The savings by the Itsy are very modest because only

was supported by the Ubicom program under Delft University of Technologyyo voltage levels have been implemented, 1_5_\1_62 MHZ)

Delft Interdisciplinary Research Center (DIOC). The work of J. Pouwelse w; . . .
supported by the Dutch Organization for Applied Scientific Research (TNO%,%1d 1.23V «162 MHZ)' The resultlng difference in processor

Physics and Electronics Laboratory. power consumption between the two levels is only 15%. Better
The authors are with the Faculty of Information Technology and Systemgasults are obtained with the SmartBadge platform, which is

Delft University of Technology, The Netherlands (e-mail: pouwelse@g. ilar to the It Ext . t I-ti
ubicom.tudelft.nl; koen@ubicom.tudelft.nl; sips@ubicom.tudelt.nl). imifarto the ltSy. Exiensive power measurements on real-ime
Digital Object Identifier 10.1109/TVLSI.2003.814324 MP3 audio decoding and MPEG video decoding show that an

1063-8210/03$17.00 © 2003 IEEE

POUWELSEet al: APPLICATION-DIRECTED VOLTAGE SCALING

2.5

Processot voltage [V]

0.5

Destructive

Specified operation area

Not functional

1 1 1 1

103 133 162 192
Clock frequency [MHz]

221

251

1000

800

600

400

Power consumption [mW]

200

813

o.g---3--O--8--8"-
| |

T T T T
CPU intensive,
voltage scaling

CPU intensive,
fixed voltage

T

Idle mode

_g---8---8-7
] I

a-

133 162 192 221
Clock trequency [MHz]|

251

Fig. 1. Processor envelope. Fig. 2. Total-power consumption for idle and CPU-intensive workloads.

energy reduction of 40% is possible [9]. Burd and Pering dgiemory access, etc. Also, the wake-up sequence takes much
signed and implemented a voltage-scaling capable procegsmger than in halt mode compromising responsiveness.
based on an ARM8 core [10]. Their processor is fabricated inThe CPU-intensive workload consists of the Dhrystone
600—nm technology and uses aggressive power saving featubesichmark utilizing both the CPU and the cache. We first mea-
In high-performance mode, it runs at a speed of 80 MHz amsdred the effect of scaling the clock frequency while keeping
consumes 476 mW at 3.8 V. When running at 5 MHz and 1.2 #e voltage constant at 1.5 V. In this case, the power consump-
the processor only consumes 3.24 mW. Thus, power consurtipn increases linearly with the frequency, as is expected. Next,
tion is reduced with a factor of 147, while performance dropgse measured the power consumption when the core voltage is
with a factor 16. set to the minimal value reported in Fig. 1. The resulting curve
In parallel, with the above projects we have created our ovghows the expected quadratic increase of power consumption
portable platform for voltage scaling research [11]. It is som&hen the frequency is varied from 59 to 251 MHz.
what similar to Itsy; we also use a standard SA1100 processofFrom the power consumption at 59 MHz (105.8 mW) and
and run Linux. Our platform is called LART, and described imt 251 MHz (963.7 mW) it follows that an instruction at peak
detail in Section V-A. Fig. 1 shows the processor envelope fperformance consumes a factor 2.1 more energy than at lowest
the different frequencies that are supported by the StrongARMrformance. When we neglect the nonCPU subsystems of the
processor. The LART supports 128-different supply-voltadeART, which are supplied from &ixed 3.3 V, and focus on the
levels. A supply voltage of 0.79 V is sufficient when runningCPU, the power consumption is 33.1 mW at 59 MHz and 696.7
the processor at 59 MHz. A frequency of 251 MHz requirasW at 251 MHz (not shown). The raw CPU energy/instruction
1.65 V. These supply voltages are outside the manufacturdiference is thus, a factor 4.9.
specifications of 1.5 V. All processors we obtained were Voltage scaling is moving from the research field into the
able to run at these voltage and frequency combinations.cAmmercial market place of embedded and x86-compatible
switch between such combinations takes 140A number of processors. AMD has added voltage scaling capabilities to the
destructive tests indicated that the maximum frequency of tAdD K6 processor family in April 2000. The AMD-K6-111E
SA1100 processors is around 265 MHz, significantly beyorslipports clock frequencies from 200 to 500 MHz, the power
the official specified maximum of 190 MHz. consumption is 2.95 and 11.40 W, respectively. This means that
We measured the effect of voltage scaling on the power cdhe lowest frequency provides a power-efficiency improvement
sumption of the complete LART platform, including memoryper instruction of 55% versus the highest frequency. Transmeta
voltage conversion, etc. Fig. 2 shows the total power consungid Intel currently also provide processors with voltage scaling.
tion of the LART under two different workloads: idle and CPUDue to the rising importance of power consumption it is likely
intensive. that voltage scaling will soon become a standard feature for
The idle workload measures the background power coprocessors in the embedded and laptop market.
sumption of the LART, which is always spent regardless of the
processor load. The Linux scheduler puts the processor igo
halt mode when no processes are active. Halt mode stalls the
CPU, but other services of the embedded processor such as tHa this paper, we concentrate on a wearable platform con-
memory controller and internal timer are still operational [12kisting of a general-purpose processor with voltage-scaling ca-
All these services are driven by the processor clock, whigabilities, controlled by a general-purpose operating system,
explains why the power consumption in halt mode increasasd running multiple applications. Fig. 3 gives an overview of
with the frequency. The SA-1100 also supports a more powarch a system. The clock scheduler optimizes the processor fre-
efficient sleep mode, but this mode interrupts direct memoguency with respect to the workload to be serviced. The clock
access (DMA) transfers, stops the LCD controller, blockscheduler, part of the operating system (OS), must determine

System Architecture

814 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

pilers, real-time OSs, and general-purpose OSs. They differ in
the time of fixation of the clock schedule, the time at which

I clock scheduler ‘ schedL_JIing info_rmatio_n is av_ailable, and the amount and quality
oS of that information. With dedicated hardware the clock schedule

| device driver ‘ is determined at design time, usirgpriori information de-
rived from the application. A compiler, in contrast, can only
extract a limited amount of information from the source code

D/A | _ CPU of an application to determine the clock schedule. A real-time

vV DC/DC [— OS includes a task scheduler that takes into account start times,
o deadlines, and required cycles, allowing more flexible clock
Fig. 3. System overview. scheduling schemes. A general-purpose OS has to derive a clock

schedule from run-time statistics, such as the processor utiliza-

when the clock frequency needs to be changed and to what gy, in previous periods. In general, clock scheduling becomes
quency. This problem, known atock schedulings the central gimpler and more power efficient when more (accurate) infor-

problem addressed in this paper. The actual switch of the pfaaiion is available. An overview of the different approaches is
cessor clock frequency is handled by an OS device driver. Weown in Table 1. The first row lists the quality of the infor-
have implemented such a driver for the Linux OS (details can Reytion that is available to solve the clock scheduling problem,
found in [13]). The device driver adjusts the sup_ply vqltage %nging from very poot——) to very good(++). The second
the processor and adapts memory and bus configurations. N@J jists at what time workload information is available: during
that a change in frequency implies a corresponding changeigsign time, compile time, or at run time. In the sequel, we will

supply voltage. Our LART device driver has a hard-coded tablge the approaches in Table I to discuss related work.
of the frequency and voltage combinations, derived from Fig. 1.

The device driver sends the voltage setting to a D/A converty. Dedicated Hardware

This D/A converter in turn is connected to a voltage controlled When crafting dedicated hardware, for example, a global
dc/dc converter. On our LART platform, the switch offrequencgystem for mobile communication (éSM) speech’codec or
and voltage takes 140s, during which the system is Stalled'JPEG compressor, all possible workload details are known in

This _implies that settings can be changed frequently Withoé{&vance. Therefore, thaptimal clock schedule can often be
causing too much overhead. calculated with brute force at chip-design time [14]. This can
be costly since the nonpreemptive clock scheduling problem,
_ o where task cannot be interrupted, is NP complete [15]; Hong
In this paper, we argue that voltage scaling in a general-pt a|. present an effective heuristic yielding schedules that are
pose context can only be effective when applications cooperajgnin 2% of the optimum [15]. In the preemptive case, the

It is vital that applications communicate their (future) progntimal schedule can be computed with@fn log? n) offline
cessing needs to the OS, much like in real-time systems. Ol orithm [16].

then the OS can handle bursty (unpredictable) applications and
compute an optimal schedule. The general clock scheduliBg Compiler

problem itself is NP complete. We present a new heuristic\yhen 5 compiler is used to determine the clock schedule, the
scheduling algorithm callednergy priority schedulingEPS) 51465t problem is to deduce the appropriate information from
that uses workload descriptions to compute energy-efficigfly 5oy rce code. For example, deriving the execution time on the
schedules. We have implemented the algorithm as part (f et platform from the high-level program code is a nontrivial
the Linux OS and performed several experiments on Ofqk This forces the compiler to make conservative assump-
variable-voltage LART platform. In particular, we demonstratg, s ang yields low-quality scheduling information. If exten-
the ability to schedule a computational task with a bursty videQe profiling information is present, the scheduling techniques
playback task; the computational task is executed between §4p e icated hardware can be used. Otherwise, heuristics must
low-complexity video frames. _ be applied to identify code sections that can be executed at low
Section Il presents a general framework for the various atgbeeds. For example, Hetial. describe a system that is based
proaches to solve the clock scheduling problem. Section IIl ig;, identifying memory-bound loops [17]. Within such loops the
troduces the concept of power-aware applications e_md descripRik frequency can be reduced, since the memory subsystem
how we have added power-awareness to a H.263 video decofief, ,ch siower than the processor. This approach, however, can
Section IV describes our energy priority scheduling algorlthnanly be effective when memory-bound loops occur frequently

I.n Section V, we discuss the implementatiqn of the EPS_aIQth the cost of a frequency/voltage change is negligible relative
rithm and present power measurements. Finally, in Section MI the total execution time of a loop.

we conclude and indicate future research directions.

appl appl appl

C. Paper Outline

C. Real-Time OS

In the realm of real-time OSs, voltage scaling focuses on
\oltage scaling and clock scheduling have been investigatedhimizing power consumption of the system, while still
in the context of four main areas: dedicated hardware, comeeting strict task deadlines. Real-time tasks specify their

Il. APPROACHES ANDRELATED WORK

POUWELSEet al: APPLICATION-DIRECTED VOLTAGE SCALING 815

TABLE |
COMPARISON OFCLOCK SCHEDULING APPROACHES INSEVERAL AREAS

dedicated real-time OS general-purpose OS application

hardware | compiler | fixed | dynamic | hardware l interval l integrated directed

Quality ++ - +/- + - - +/- ++

Availability design compile | design run run run run run

starting time and deadline; tasks that must be repeated disiosome (artificial) workloads the look-ahead algorithm may
specify their period. In hard real-time systems, the worst cadefer tasks too aggressively and actually increase power con-
execution time (WCET) can often be obtained at softwasmption, as can be derived from their simulation results.
design time through static analysis, profiling, or direct mea-

surements [18], [19]. When all details of the workload ar®. General-Purpose OS

known and the Schedulability is verified at design time we Clock Schedu"ng in the context of a genera|_purpose OSis
classify such systems under “fixed real time.” When detail§ificult, since little information is known about the applica-
of the workload, such as WCET or even the tasks themselv@gns. Applications do not communicate deadlines or priorities
are only known at run time, we classify such systems undgythe OS, hence, all the clock scheduler can do is observe the
“dynamic real time.” For example, for multimedia servers thad that has been generated in the past and extrapolate into the
exact workload is only available at run time [20]. An admissiofyture. The clock scheduler measures the processor load in fixed
controller needs to determine if new tasks can be SChe‘dU'ﬁtbrvaB, for examp|e, every 20 ms. A common technique is to
and admitted. use two boundary values on the processor load to decide whether
An example of a scheduler for fixed real-time systems is the increase, decrease, or keep the current clock frequency in the
average rateun-time heuristic by Yaet al, which is proved to next interval. If the measured processor load drops below the
consume at most a factor of 8 more energy than the optimal pl@wver bound, the processor frequency is decreased. Similarly, if
emptive schedule [16]. Perirgg al. present a dynamic real-timethe processor load rises above the upper bound, the frequency is
system based oearliest deadline firstEDF) scheduling [21]. increased. This technique is called interval-based clock sched-
They assume that tasks specify no start times and, hence, canll¥®), or interval-scheduling for short.
executed at any moment. Measurements show that significanThe Transmeta Crusoe processor is the prime example of a
energy savings can be obtained (20% of peak power) for sof@rdware-based approach to interval-scheduling. It has built-in
applications. support for clock scheduling in the “microcode” of the processor
In both classes of real-time OSs, the WCET is used {&5]. Unfortunately, little information is made available about
check the schedulability and possibilities for reducing thihe exact workings of the “LongRun” technology, but it is clear
clock frequency in the schedule without violating deadlinethat it can operate in isolation, that is, without any help from the
For example, the algorithm in [15] initially schedules alDS or application [26]. The microcode has only a small aware-
tasks at maximum frequency. After that the task schedulerigss of the global system state, for example, it can not distin-
adjusted until no further reduction is possible without violatinguish OS foreground tasks from background tasks.
deadlines. The ratio between the actual execution time andMeiser et al. first presented the idea of interval-based
the WCET can be quite low: an average of 0.5 is reported feoltage scaling for a general purpose OS in 1994 [27]. Most
several hard real-time applications studied in [22]. When tleentributions regarding interval-based voltage scaling consist
WCET is not an accurate estimation of the execution timef theoretical analysis [4] and simulations [28]-[30]. The
the assigned clock frequencies to meet deadlines tend tosiulation studies show that interval-scheduling reduces power
too high (factor of 2 on average). Consequently, a task usuatignsumption considerably compared to running at full power.
finishes early, and an idle periods occurs. If another task There are, however, some fundamental problems. First, the
eligible for execution, however, the idle period can be used tptimal interval length is application dependent. Second, bursty
execute that task at a reduced speed, see [23]. applications with unpredictable workloads cannot be scheduled
A recent paper by Pillaet al. discusses an alternative ap-effectively at all. The simulations by Perirgt al. show that
proach to handle the conservative WCET rarely encounteredfie power consumption of their interval schedule for video de-
practice [24]. Their “look-ahead” clock scheduling algorithm isoding was 36% above the optimum. Recent measurements on
based on an EDF scheduler. The task with the earliest deadlamtual hardware by Grunwakt al. confirm these observations
is scheduled with the lowest possible processor speed that d@s
not violate its deadline. This forces other tasks to be scheduled atraditional interval scheduling based on processor load can
a high frequency to compensate. The assumption is that the thekimproved by incorporating other information (run-time sta-
is not likely to use its WCET and will finish early. When the taskistics) to estimate the processing requirements of applications.
finishes early, energy is saved and the next task with the earliSsich “integrated clock schedulers” require numerous modifi-
deadline is scheduled at its lowest possible frequency. Note thations to the OS. For example, Flautredral. [31] describe

816 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

an integrated scheduler that maintains processor usage statiecessing, games, video editing, and (wireless) web browsing
tics of every process, observes the communication pattern bee real-time (interactive) applications, yet their deadlines are
tween processes, keeps track of input/output device usagesbit. Users will tolerate (some) jitter in response times. This al-
processes, and tries to extract deadlines from periodic tasks. Tdves for an easy solution to the problems associated with the
simulations results are promising, but a comparison with a t/&*/CET. Applications may report their average execution time
ditional interval-scheduler is not included, so the advantage @ET), which is generally a much better estimator of the true
using additional information is still to be determined. Anothegxecution time, leading to more power-efficient clock sched-
aspect that needs additional study, is the effect of their schesles. This is the approach we take in this paper. Note the re-
uler on bursty and CPU-intensive applications, such as video demblance with the look-ahead algorithm from Pillai [24] (see
coding and speech recognition, because such applications weeetion II-C). The look-ahead algorithm is the only algorithm
not included in the simulations. known to us that also exploits the low likelihood of WCET oc-
User related timing characteristics are another useful sougrencedeforethe actual execution of a task.
of information for integrated clock scheduling [31], [32]. For The application-directed clock-scheduling algorithm pre-
example, Lorclet al.[32] exploit the observation that a reactiorsented in this paper can be applied in both a real-time and
time of 50 ms for interactive applications is below the perceptiaeneral-purpose OS context. The applications on a general-pur-
threshold of the user. Therefore, the application processing timese OS need to be modified to pass on intratask information
for, say, a mouse click can be increased to 50 ms (by slowingdates and indicate their AET.
down the CPU) without noticeable performance degradation.
Offline simulations show that the upper bound on the additional lIl. POWER-AWARE VIDEO DECODING
energy saving is in the order of 20%. It remains to be seen how

much energy can actually be saved in a real implementation. 10 exploit the power consumption reduction of voltage
scaling, we propose to make applications power-aware such

E. Application-Directed Clock Scheduling that bursty and cpu-intensive applications can decrease their
fower consumption by indicating their processor usage to the

Reliable, accurate information for solving the clock sche e . . .
. . o clock scheduler. We modified a video decoder to estimate its
uling problem can only be obtained from the applications thenj- .) :
T for each frame and communicate this requirement along

selves. When appllpat|ons Qperatmg ona geperal-purpose with the frame deadline to the clock scheduler. In this section,
are modified to register their processing requirements (cycles, | . : . .
deadlines, etc.) clock scheduling becomes simpler and morevg?-.b”e.ﬂy discuss H.263 vujeo compression, our T‘?ethOd for
fective. Application-directed clock scheduling holds two oppoF—S“mat'.ng the frame decoding time, and our modified H.263
. . . . a&Jpllcatlon.
tunities for further power savings compared with the integrate
clock scheduler. The first opportunity is to allow the updatin
of processing requirements. The second opportunity is to
average processing requirements instead of the worst case esfihe H.263 standard is created for low-bitrate video compres-
mates that are used in real-time systems. sion [34]. The standard is based on both H.261 and MPEG2.
We call the updating of task processing requirements #.263 frames are displayed at a fixed rate. Throughout this
application-directed schedulirigtratask information updates paper we use a framerate of 15 fps, which means a maximum
Intratask information updates are proposed in a recent paperd@coding time of 67 ms per frame. H.263 defines three types
Shin et al. [33]. They combine the compiler-based approactf frames: I-frames (intrapicture), P-frames (predicted picture),
with application-directed clock scheduling. Shét al. use and B-frames (bidirectional predicted picture). I-frames are self
source code analysis to extract the WCET and combine it witbntained images, similar to JPEG. P-frames encode the differ-
a run-time component. An MPEG 4 decoder is used as a casee from a previous | or P frame. B-frames contain references
study for their analysis tool. The tool calculates offline th&éo both preceding and succeeding frames. Because a B-frame
WCET updates for several points in the MPEG 4 frame deentains forward references, the succeeding frame must be de-
coding process. For example, at the start of the frame decodewgled prior to the B-frame itself. As a result the decoder must
process only the overall worst WCET of any frame type igrocess two frames in a single frame time. We use the PB-frame
known. When the frame type is determined, it is replaced ptation to indicate the frame in which two dependent consecu-
the WCET of that frame type. During the decoding of the framive frames are decoded.
even more information becomes available (such as motion vecA frame consists of a grid of blocks that measurex18.6
tors and macroblocks) and the WCET is updated and convergesels, called macroblocks. A macroblock in a P-frame consists
to the actual frame decoding time. This refinement techniquedéthe differences with a reference to the previous frame that is
guaranteed to meet hard real-time deadline requirements (idésplaced by a vector to compensate for motion. Motion com-
frame deadlines). The disadvantage is that the overall WCIp&nsation is used to decrease the difference from the previous
is not very likely to occur and consequently, the clock speedfimme. The pixels in each macroblock are efficiently encoded
set far too high at the beginning of every frame. using a discrete Cosine transform (DCT), which is a computa-
In contrast to real-time systems, applications operating ortianal intensive operation. The number of bytes for each mac-
general purpose OS are not time critical and deadlines may ogblock in the encoder output is variable. Macroblocks that con-
casionally be missed. Typical laptop applications such as wdain no information are not inserted into the compressed bit-

o H.263 Video Compression

POUWELSEet al: APPLICATION-DIRECTED VOLTAGE SCALING 817

20 T T T T T T T T T 200 | PB'frame @ 59 MHz

m Iframe O] ° E)
18 < P frame @ 59 MHz ~ + E
= 16k PBframe % | 180 | PBframe @ 221 MHz o o]
M P frame @ 221 MHz ~ x °
s 47 7 = 160 | g5 = &
%Q 12 - T E. 5] N 4+#:+ +
= B - o 140 a 2 S A i
2 g Y E e RSt
=) — _ = o T + 4
M o <R 1 g™ e I 1
° XX XX & % & o ¢ B 100 | s .
= 45 § %ﬁ@ 23 B Y T 3 v
> R % 4 B s o _]
| | ! d | | | | | o frame deadline
0 § eof g0 -
0 20 40 60 80 100 120 140 160 180 200 usi o © ® o ° o K
Vi rame ; L @ o0°°0° EREE 13 aa b J
ideo frame sequence number 40 » - TR I
Fig. 4. Frame size variation over time. 20T)
0 L 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

stream. The number of inverse DCTs required to decode t
macroblocks is, therefore, variable. This is the main cause for
the bursty behavior of both H.263 and MPEG2 decoders. VaFig. 5. Decoding time versus frame size and type.

able-length encoding (e.g., Huffman coding) is used to further

compress the macroblocks, the motion vectors, and the framd-ig. 5 plots the decoding time versus the frame size for the
header. Note that the type of the frame is only known to the déarphone test sequence on the LART platform. Two frequen-

Video frame length [Kb]

coderafter the variable-length decoding step. cies are used to decode frames of both P and PB type. The
o figure shows that video decoding is a demanding application:
B. AET Estimation at the lowest clock frequency of our LART platform none of

Predictions of decoding times are difficult to make due to tHée frames can be decoded within the required 67 ms (i.e., 15
wide variation in scenes (e.g., talking heads versus MTV). fRs). Furthermore, running the processor on a high speed (221
frame that is very similar to the previous frame results in feMHz) is only necessary for the largest PB-frames. The cost of
encoded macroblocks to capture the difference, hence, takésoding a two image PB-frame is consistently higher than a
little time to decode. Frames that differ considerably from thesingle image P-frame. Simple P-frames decode in roughly 75
predecessor result in longer decoding times. Fig. 4 shows thé at the lowest clock frequency, the most complex PB-frames
variation of the frame size for the well-known carphone testke almost 200 ms to decode at this speed, a significant vari-
sequence (190 frames), which was encoded using the TeleAdge. Measurements on more test sequences show that frame de-
H.263 encoder V2.0 with the following settings: qcif resolucoding times are independent of the content of the test sequence
tion, 15 fps, default quantization, unrestricted motion vectoréself; they only depend on the type and length [38]. Note that
syntax-based arithmetic coding, advanced prediction mode, @t@nging the spatial or temporal resolution keeps the linear re-
use of PB-frames. Note the large initial I-frame in the upper Igfaition between frame size and decoding time, but modifies the
corner. parameters. Fortunately, such resolution changes do not occur

Various methods have been developed to estimate the AETfgide normal video sequences. The characteristics of Fig. 5
a video frame. One method is to include a complete referenw#l be used to estimate the minimal processing requirements
decoder inside the encoder and measure the actual framefgeeach frame.
coding times. These decoding times are added to the compresselhe type of the video frame is indicated in the frame header.
video sequence. This method is proposed in [35], but requirdgfortunately, the frame length is not part of the header; so we
a reference decoder for each target platform. Using a genetnnot directly determine the most suitable AET. The frame
model of the frame decoding complexity eliminates this draiength can optionally be added to the header by using the H.263
back. Such a complexity model for MPEG4 (seven paramBEI (extra insertion information) header field. This requires
ters) is presented in [36]. They report accurate results (efrorchanging H.263 encoders to add the frame length information
5%). The drawback of their method, however, is the necessityt@ the header. A solution that modifies only the decoder is
modify MPEG4 encoders to include the complexity parametepgeferred. By using input buffering in the decoder it would also
in each frame header. be possible to determine the frame length before commencing

To ensure backward compatibility and general acceptan@éth the decoding. However, this approach would increase the
modification of video sequences (to include clock schedulirigcoding latency, which is a severe drawback for interactive
information) must be avoided whenever possible. Therefogplications such as video conferencing.
an interesting question is which property from the H.263 frame)
gives a good estimation of the AET of the frame decoding: 'MPlementation
process and can be obtained without being addimgknowl- We extended the Telenor H.263 decoder with an AET esti-
edge to the H.263 compressed bitstream. We found that thator based on the observed linear relation between frame size
combination of frame type and frame size yields an estimatiamd clock frequency for equal frame types (Fig. 5). Three modes
that is simple, yet accurate. A similar estimator for MPEG2 iare supported by our enhancementimal feed forward and
presented in [37]. feed backwardThe difference between the three modes is the

818 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

knowledge about the frame decoding times. The optimal mode TABLE I

usesa priori knowledge about the decoding requirements. By WORKLOAD DESCRIPTIONS
using offline analysis, the exact processing requirements are de- case 1 | case 2
termined for each video frame and made available to the de- ej | s;—d; | s;—d;
coder, similar to [35]. This mode provides a lower bound in Al2]10=-3]0-3
terms of power consumption for the clock schedule. The feed- B2 |0-6|0-6
forward mode usea priori knowledge about the frame length Cl1 4—-6

through the PEI header field. The feed backward mode does
not require any modifications to the encoder or compressed bit-
stream, and uses intratask information updates to adjust mispor‘e—'vIOd
dicted AETs. Our H.263 decoder communicates its processingrhis section defines a model for clock scheduling. The model
requirements for the next deadline with the EPS scheduler ormmanbines and enhances the models presented in [16] and [39].
per frame in both feed forward and optimal mode and twice iach real-time task is defined by:
feed backward mode. s; starting time;

The power-aware decoder in feed backward mode usesl; deadline time;
several heuristics to estimate the processing requirements ag execution time at highest speed.
accurately as possible. Frame statistics are kept by frame typbe execution interval of taskis [s;, d;]. The energy priority
Initially, the decoder requests the maximum processing c3cheduling algorithm is used to determine:
pacity for the first few frames of a sequence, until an estimation s(t) speed of the processor at tirtie
of the time-framelength relation becomes available (using leastun(t) task that is executed on the processor at time
squares fit). The best speed for the previous P-frame is usedgfurther define the following parameters:
a starting point for the current P-frame. When the upper half N;(tr) number of tasks overlapping with time region

el

of the video frame is decoded an intratask update is calculated besides task;

and send to the clock scheduler. The decoding time and sizéV; = Dircls;,a;) ltrll/(dj — s5))N;(tr) average

of the first 50% of the macroblocks is used to determine the number of other tasks besides tgsk

decoding progress. fj = e;/d; — s; flat processor rate of tagkusing the
The remaining 50% of the macroblocks must also be decoded least amount of energy;

in the same frame time. When the decoder is running aheadt; = the processor utilization currently scheduled in

or behind, the estimated time-framelength relation is used to time regiontr;.

calculate the new processing requirements. Unfortunately, the

complexity of the upper half of the image of a video frame iB- Algorithm

not always equal to the bottom half. To compensate for this, weBefore describing our algorithm, we first present two exam-
use the complexity ratio of the upper and lower half of the imagges that motivate the scheduling heuristic we employ. Table Il
from the previous frame to update the AET. We thereby assuigiges two simple workloads. The first case consists of just two
that the complexity ratio is a slow-changing parameter in a vidégsks (A and B). An incremental scheduler considers the tasks
sequence. one-by-one. Following th&verageRateheuristic by Yacet al.

Atthe start of a frame, the speed of the previous frame is orfty6] we simply add the minimum required flat processor rates
maintained if there is no frame type change. When a PB-franfigfor each task at time Thus, task A executes at speed 2/3 and
follows a P-frame, the speed of the last PB-frame is used [®at speed 1/3 (see Fig. 6).
cause the previous P-frame has a lower processing requiremertheaverage rateschedule is not optimal since A and B can be

The “frame_type_len” estimator from [37] also uses thecheduled back-to-back as shown in Fig. 7. (Running at a con-
type and length of the previous decoded frames to estimatant speed is more energy efficient than with a varying speed).
the decoding time of the current frame. For their calculations A first improvement to theverage rateheuristic, is to take
they require the offline calculated relation between frame-siiteto account the other tasks already scheduled. When scheduling
and decoding time. Our implementation is similar to tha next task, we can compute the (water) level above the current
frame_type_len estimator, but we created an online version teghedule (contour) to fit in the computational demands (area) of
uses intratask information updates. the task. Theask levelingdea is outlined in Fig. 8.

Applying task-leveling to the first example yields the op-

timum (Fig. 7) when scheduling task A first, followed by B.

IV. ENERGY PRIORITY SCHEDULING Scheduling B first and then A, however, still yields the inferior
schedule shown in Fig. 6.

In application-directed clock scheduling, applications specify Our second improvement is to account for overlapping tasks
their AET to the next deadline and use intratask information uthat can be pushed aside. Consider the second case in Table Il,
dates to increase the power efficiency of the clock schedule. Quitich adds a third task C to the optimal schedule in Fig. 7.
energy priority schedulgs an incremental online algorithm thatFirst note that task-leveling fails to find a suitable schedule in
dynamically adjusts the clock schedule when a new task entdhris case since C must be layered on top of B, raising the pro-
the system or an old task completes its execution. cessor utilization above 1. The following method does find the

POUWELSEet al: APPLICATION-DIRECTED VOLTAGE SCALING

2/3
u

183 L A B C

Fig. 6. Average Ratschedule for case 1.

1

2/3
u

173 A B

0 I L I 1
0 1 2 3 4 5 6

Fig. 7. Optimal schedule for case 1.

" RN NN

|]
s d

Fig. 8. Task leveling.

I b

213

u

819

the quality of the clock schedules. Further improvements can

be expected to also account for tasks that overlap with the over-
lapping tasks, etc. We do not pursue this direction, but rather ar-

range that tasks are scheduled in ascending priority. Tasks with
relaxed deadlinesf{ close to zero) and few overlaps (Ia¥;)

are ranked to be scheduled first, so they can easily be pushed
aside when more difficult tasks are scheduled later.

Algorithm 1 Energy Priority Scheduling

0 Given a set of tasks, each task with a starting
time, deadline time, and fastest execution time.
1 Partition intervals,in, dmax] iNto a set of time
regionstr;[start;, end;] wherestart; andend; are
start or deadline times @f, and there exists no
other start or deadline time withim,;.

2 For each task compute its priorigy; = f;N;.

3 RepeatT| times:

3.1 Select task that is not scheduled yet and has
lowestp;.

3.2 Repeat until taskis fully scheduled:

3.2.1 Determine intervals-; C [s;, d,] with lowest
scheduled processor utilizatiat

3.2.2 Determine overlapping task intervéits,

tr; C [s¢, di], Util(t, tr;) >0, t £ 5

3.2.3 Determine spill intervals, € {tr;} \ {tr;},
U = Uy

3.2.4 Define
uyp = lowest processor utilization oftr;} \ {try}
(or1if {tr;} \ {trx} = 0)

L= |trl

131 A B C
0 N el L= litrel
0 1 2 3 4 5 6 (. remair(e;
J min <uup — Uq, %)
Fig. 9. Optimal schedule for case 2. . !
5= if Ly =0

optimal schedule (an equal load of 5/6 across the efitirg] min < % ax <uup7 remam(q)) 3 uz>
interval). In step 1, we determine the maximum processor uti- Ly L;
lization u,.x ON the intervalsc, d¢], which is 2/3 (cf. interval . otherwise

[4, 6] in Fig. 7). In step 2, we fill up the free space below level 3.2.5 Set processor utilizationg to u; + § and

Umax ON iNnterval[s¢, d¢]; this has no effect in our example be-

reschedule tasks (including on ¢r; anditr;

cause there is no space available. In step 3, we determine all

overlapping tasks (the s&Y that overlap wittC'; T' equals{ B}.

accordingly

In step 4, we compute the water level (5/6) above the contour4 Regroup tasks spread across multiple intervals.

of T' 4+ C that accommodates the remaindercafFinally, we
reschedule tasks from the sEtto create space in the interval

[sc, dc]; see Fig. 9.

The details of our energy priority scheduler are pre-

Rescheduling in the final step is not always possible due $ented in Algorithm 1. step 2 calculates the priorities of the
deadlines regarding task3 in which case steps 4 and 5 mustasks. For example, in case 2 above the priorities are set to
be repeated. Dealing with overlapping tasks greatly enhanges = (2/3)((2/3) x 1), pg = (5/18)((2/6) x (5/6)), and

820 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

pc = (1/2)((1/2) x 1). Therefore, EPS will schedule task
B first, then C, and finally A. Note that this order is indepen-
dent of the actual task arrivals, which avoids the sensitivit
observed for the simpler heuristics discussed above. In ste
3.2, n a part of taskj is scheduled by raising the “water”
to the next level up. This level is to be found on the interval
that includes all overlapping tasks. The spill intervals are the
time regions of the overlapping tasks, not includisg, d;],
were the processor utilization is equaltpand the utilization
will be increased to make room for tagk Note that we only
consider overlapping tasks that are actually scheduletir-on
by including the “uti(¢, tr;) > 0” condition. If there are no
spill intervals [, = 0), for example, when scheduling the first
task, the remaining work of will be scheduled on top of the
tr; time regions. Otherwise, the work of the overlapping tasks
is spilled from thetr; intervals to ther, intervals. The actual
increase) is bound by the amount of work that can be spilleffig- 10. Low-power StrongARM embedded Linux platform (LART).

(L;u;), the remainder of that still needs to be scheduled, and

the step up«,, — ;). The incremental scheduling of tagk converted in up taw sporadic tasks and added to the taskiset
in steps 3.2 can be efficiently implemented by maintainingThe periodic task with the shortest repetition pernigg, bounds
the overlapping intervals as a sorted list (ascending proces#w intervall0, r,;,w] in which the periodic tasks are converted
utilization). Once the final schedule is determined, tasks teimto multiple sporadic tasks. For examgleéis extended with A

to be scattered over multiple intervals. To minimize the numbeér, = 5, e, = 2)and B ¢, = 9, e, = 3). Whenw = 10 the

of context switches, we regroup tasks in step 4 by swappiimgerval [0, 50] is scheduled with ten sporadic tasks A and six

workloads between intervals. sporadic tasks B.
The energy priority scheduling heuristic does not always
find the optimal schedule, since it only accounts for pushing V. RESULTS

aside tasks that directly overlap withIf nonoverlapping taskS 1o gemonstrate the effectiveness of application-directed
were also rescheduled in step &.2both the complexity and ¢jock scheduling we have performed power measurements on
the ability of EPS to find the optimal schedule would increasg. complete system consisting of variable-voltage hardware,

A heuristic such as EPS will fail to find the optimal schedulgyg griver. clock scheduling daemon and algorithm, and
in complex workloads with many tasks. For example, whesywer-aware video decoder.

modifying case 2 slightly by changing task B to start at time 2,

the insertion of task C will not raise the “water” above intervah . Experimental Platform
[0,2] as it could when realizing that B in turn should push task The embedded StrongARM processor board displayed in
A aside. Fortunately, such workloads are not common for Wt 14 forms the heart of the wearable augmented-reality
able devices where users typically run one or two concurr Er.ninal that we are developing within the UbiCom project
applications. The complexity of the heuristic depends on tleO].

ber of iterat ded t hedaldn th t The board, named LART, has a size of £07.5 cm, a
number ot iterations needed 1o schedyian the worst case, weight of 50 g, 32 MB of volatile memory, 4 MB of nonvolatile
each intervatr; causes one step up. The maximum numbe

rm ;
emory, a SA-1100 190 MHz processor, and various 1/O
intervals is2n — 1, leading to the upper bound 6f(n?) for £h P

o X)) capabilities. The LART has a programmable voltage regulator
the complete heuristic. In practice, one or two iterations of'_[qB control the voltage of the processor core. In Section I-A,

suffice and the number of overlapping tasks is small, loweringy 5iready discussed the relation between processor frequency
the complexity toO(nlogn). (59-236 MHz, steps of 14.7 MHz) and core voltage (0.79-1.5
The presented energy priority algorithm makes a complepg, see Fig. 1.
new schedule each time a new task arrives. When implementingrhe LART runs under control of the Linux operating system
this algorithm several additions must be made such as propgiirsion 2.4.0), which has been enhanced to support frequency
updating the task list’ when a new task arrives and the currerdnd voltage scaling. We added a kernel module that reads the re-
running task is not yet finished. For an incremental version gfiired frequency fronfproc , a Linux pseudo-filesystem used
the scheduling algorithm the following procedure is used: eagh a generic interface to kernel data structures, changes the clock
time a new taslj arrives, the set of intervals; is extended, frequency, and adjust the core voltage. It subsequently recali-
followed by one round of scheduling for tagkno looping over brates the kernel's internal delay routines, in particular those
all tasks in step 3). that busy-wait by counting instruction cycles. In addition, the
The energy priority algorithm must support sporadic tasksrnel module adjusts the memory parameters that control the
in a real-time OS context. The algorithm can support periodiitnings of the read/write cycles on the external bus. The code
tasks by adding a parametethat indicates the window size for has been structured such that it may be interrupted and does not
periodic task scheduling. Before step 0, every periodic tasksdgpend on external memory, which is temporarily unavailable

POUWELSEet al: APPLICATION-DIRECTED VOLTAGE SCALING 821

schedule needs to be adjusted or not. When the system load (pro-
cessor utilization) is close to 1, the CPU is running at the right
speed. Otherwise, the speed is adjusted: an overload<(ui)l

is handled by increasing the speed, an underload<udil5) is
handled by reducing the speed. In effect the interval scheduler
provides negative feedback to the speed schedule produced by
EPS. To ensure stability the interval scheduler uses relatively
------------------------------ long intervals in which EPS can issue multiple speed changes.
Therefore, the speed correction is applied as a delta (e.g., two
steps up) to the rapidly changing EPS schedule.

The interval scheduler itself is quite flexible and operates with
during a clock frequency change. The SA-1100 is not designagharametrized interval length (a multiple of 10 ms, the granu-
for on the fly clock frequency changes. All DMA transfers aréarity of Linux’s 100-Hz internal timer). This allows it to operate
interrupted during a change, causing problems for the DMgtand alone (i.e., without EPS); a short interval length should be
transfers of LCD video data. The LCD device driver needs to lised to be able to closely follow the changes in the workload.
informed of frequency changes and temporarily halt the DM#&o further improve the responsiveness of the system we em-
transfer. All LART design schematics and kernel modules apéoy the following heuristic. On consecutive speed increments
publically available [41]. we double the correction factor (exponential increase). On con-

To measure the power consumption of the LART, we usecutive speed decrements, however, we simply step down to
the configuration shown in Fig. 11. The unregulated power tiie next lower correction (linear decrease) since running at a
a battery is converted into a fixed 3.3 V for all the componenteo high speed does not impact responsiveness; only energy is
on the board, except the processor core (GPtlache) which wasted. The correction factor (delta) is applied to a fixed max-
is supplied by a variable voltage regulator. The fixed/variablsmum performance schedule (236 MHz).
voltage and current are sampled using a small sense resistor & modification of the power-aware video decoder was re-

a rate of 2.5 kHz. The standard deviation of the measuremeaqtsred to work around the poor granularity of the internal Linux
is within 2% of the mean. timer (100 Hz). The H.263 decoder has a simple rate control

We implemented a clock scheduler that mediates betwegechanism for displaying the frames at the specified rate (15
applications and the basic OS driver controlling the coffps): after decoding a frame it computes the time left until the
voltage and processor speed. To minimize implementatiorxt display deadline, and invokes the usleep() system call to
effort at the application level we designed the clock scheduleait for that time to pass before outputting the video frame.
to support both unmodified applications as well as power-awddsleep() may return up to 10 ms late due to the poor Linux
applications specifying their future needs (AET and deadling)mer granularity, which is a significant part of the frame time
We use a combination of interval-scheduling (for handlin(f7 ms). Each delay causes a frame deadline miss, and must be
unknown workloads) and energy priority scheduling (sugompensated for in the next frame to catch up. When running
porting power-aware applications). We call the combinett a constant high speed, this happens automatically by waiting
clock scheduleiPowerScale For convenience PowerScale isa bit shorter in the next frame. When scaling speeds, however,
implemented as a daemon process in user space, but it canvbenust explicitly account for the inaccuracy by overestimating
moved inside the kernel when the need arises. An applicatitve computational demand of each frame. We took a drastic ap-
connects to PowerScale using a UNIX socket and specifigewach and replaced the usleep() call with a busy-wait loop, in
its workload as a set of tasks with starting times, deadlineshich we read the clock until the next display deadline is met.
and processing needs (cycle count, minimum speed, or AET).
Before running the EPS algorithm, PowerScale empties gll
sockets to consider at once all tasks currently made available
by the power-aware applications. The computed schedule isNVe used the experimental setup discussed in Section V-A to
then executed in a loop, listening on the socket for new taskgasure the power consumption of our extended H.263 decoder
by invoking select() with a time-out value matching the time tgSection Il) on top of PowerScale.
the next speed change. The EPS algorithm may preempt taskJable 11l shows the average power consumption of the LART
PowerScale uses the Linux process scheduler for this purpptatform for decoding a test sequence for the three supported
and sends STOP and CONT signals to processes that musinueles of the decoder: feed backward (FB), feed forward (FF),
preempted and resumed, respectively. and optimal (opt). For comparison the “236” column shows the

The interval-based component of PowerScale serves two paverage power consumption with clock scheduling disabled and
poses 1) it supports traditional applications and 2) it corredising a fixed clock frequency of 236 MHz. The average power
for miss predicted workloads by power-aware applications. Tri&- computed by measuring the total energy consumed by the
ditional applications do not register their workload with EP3,ART and dividing that by the duration of the test sequence. The
hence, the speeds determined by EPS will be too low. Mispitest sequences are stored in the RAM-disk provided by Linux,
dicted workloads can cause EPS to determine a too low as wahce, little energy is needed to retrieve them.
as too high speed. The interval scheduler within PowerScaléThe measurements show that the FB mode reduces energy
monitors the Linux process scheduler statistics to see if the E&Sisumption considerably compared with running at 236 MHz,

processor

i SA1100
! | voltage regulator 0 e
+ e 0.6-23V
unregulated \
©
1

ower suppl
P PP }_1 voltage regulator @ e DRAM
33V FLASH

1
1
I other
1
1

Fig. 11. Measurement setup.

Video Decoder Modes

822 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

TABLE il 420 ' ‘ ' " Fixed frequency ——
AVERAGE POWER CONSUMPTION [MW] Interval scheduling ~ x
400 - Power-awareness x
total (core + fixed) % 380
Sequence 2361 FB | FF | opt || fixed g, 360 - |
Grandma || 404.6 | 244.5 | 243.1 | 242.2 || 209.6 8 20 ms
Salesman || 417.0 | 262.7 | 254.2 | 245.5 || 208.3 £ 340+ x I
Trevor 496.1 | 362.8 | 355.6 | 347.9 || 249.4 § 300 | 50 ms
Carphone || 556.5 | 368.7 | 357.4 | 351.2 || 263.5 g x
Foreman 571.6 | 389.7 | 380.3 | 374.7 || 283.5 g 80T
2 o0 | 133 MHz |
for example, the average power dissipated when decoding 260 r 1
Grandma sequence drops from 404.6 to 244.5 mW. The red 0 160 260 360 450 5('30 6(‘)0 700

tion for FB ranges from 1.37 (Trevor) to 1.66 (Grandma). Pr¢ Accumulated missed deadline times [ms]
viding the decoder with additional information (FF and optimal)

does indeed reduce energy consumption further, but the ghith 12. Power-quality tradeoff.

is limited. In the case of FF, the reduction ranges from 1.40

(Trevor) to 1.67 (Grandma). The optimal policy achieves redugt the end. With this quality measure it is possible to study
tions in the range of 1.43 (Trevor) to 1.70 (Salesman). the tradeoff between power and quality. Our accumulated miss
The differences between the various policies is small becaygfies metric is similar to the clipped-delay metric in the simu-
voltage scaling only reduces the power consumption of the pigtions by Pering [30].
cessor core. The last column in Table 11l presents the power conijg. 12 shows the power-quality tradeoff for application-di-
sumed by the components (memory, bus, etc.) supplied from f@ted clock scheduling, interval-scheduling, and decoding at
fixed 3.3 V. It shows that the fraction of the total power thafixeq speeds. Note that in all cases deadlines are missed. This
can be attributed to nonCPU subsystems is considerable. ROgzused by the initial I-frame in the carphone sequence that
example, when decoding the Grandma sequence at 236 MEiZanot be decoded within 67 ms, even at the highest frequency.
209.6 out of 404.6 mW are consumed by nonCPU subsystemfie solid line in Fig. 12 shows the effect of decreasing the
The fixed fraction of the total power consumption ranges fror@xed) frequency from 236 MHz (405 mW, 63 ms) down to 133
47.4% (Carphone) to 51.8% (Grandma). As a consequence, {}{z (278 mWw, 388 ms). The power consumption goes down at
maximum power reduction that can be obtained by controllinge expense of additional deadline misses since the number of
the processor speed and core voltage is limited to roughlyfr@mes that cannot be decoded within 67 ms increases when the
factor of two. We expect, however, that this limit can be ingjgck frequency lowers.
creased by optimizing the H.263 decoder to take the size of thqp jnterval-based mode, PowerScale performs worse than run-
cache, which is part of the scalable processor core, into aCCOHg at a fixed speed. For example, with a 20-ms interval setting
to rgduce the memory traffic. Eor.example, large look-up tableg,verscale operates with an average power of 337 mW and
are ineffective on the LART with its small data cache of 8 kByayses 400 ms of missed deadlines; running at a fixed speed of
and degrade performance. 192 MHz requires the same power, but reduces the missed dead-

When considering only the power consumed by the proces§fis to only 92 ms, while running at 133 MHz incurs a similar
core, FB achieves asigqificant reduction of 2.25 (Trevor) to 6.4gjss time, but requires less power (278 mW). The problem for
(Grandma). The reduction by FF ranges from 2.33 (Trevor) {fe interval scheduler, is that a short-time average is not a good
6.63 (Grandma), and the optimal policy results in a redUCtiFgfedictor for the speed at which to decode the next frame. In-
of 2.59 (Trevor) to 7.02 (Salesman). The relatively small ditsreasing the interval length makes the scheduler behave more
ference between the FB, FF, and optimal mode indicatesthafxe 3 fixed-speed scheduler; with a 50-ms interval the power
priori knowledge of frame length (FF) or complete processing,nsumption gap to the fixed schedules (solid line) is smaller
requirements (opt) provides only a small benefit. Thus, standafghn at 20 ms, but many more deadlines are missed. Without
H.263 video sequences can be decoded efficiently (power wiggjljitional knowledge an interval scheduler will never be able to
using the feedback mode. handle bursty workloads well.

Using the AET information from the power-aware video
decoder results in substantial power savings since the workload

To show the advantage of application-directed clock schedescription allows PowerScale (EPS mode) to select the right
uling over interval scheduling, we study the behavior of thedecoding speed in most cases. The decoding of the carphone
bursty video-decoding application in detail. We use the casequence requires only 304 mw (100 mwW CPU, 204 mW
phone test sequence since subsequent frames in this video ofi@mCPU), and misses just a few deadlines: 67 ms in total,
differ considerably in size and sometimes in type (see Fig. 4f which the largest fraction is caused by the too-demanding
Decoding a frame at a too high speed results in wasted enerigitial I-frame. For comparison, decoding at the fixed frequency
decoding at a too-low speed results in a missed deadline. @fr236 MHz consumes 405 mW (198 mwW CPU, 207 mW
modified H.263 decoder reports the accumulated miss timesn-CPU) and delivers the same quality: 63 ms of accumulated

C. Application-Directed Versus OS Scheduling

POUWELSEet al: APPLICATION-DIRECTED VOLTAGE SCALING 823

236 350 T T T T T T T

— 207 g 300
< 17 £ 250
—38 148 % 200
£ 118 £
= Zz 150
2 89 g
£ 59 S 100
] task 4
a =)
[=W
| | 1 | | 1 1 0 1 1 1 1 | 1
136 138 140 142 144 146 148 150 136 138 140 142 144 146 148 150
Video frame sequence number Video frame sequence number
Fig. 13. Clock schedules executed by PowerScale. Fig. 14. Processor power consumption of EPS.
700 T T T T

deadline misses. Thus, application-directed voltage scalil
reduces the power consumption of the processor core withz 600 |- 7
factor of two. The total system power, however, is only reduceZ sq .
by 25% because of the power consumed by the nonCFg

400 .
subsystems supplied by the fixed 3.3 V.

300 1]

D. Multiple Applications 200

100 [~

Power consumpt

We now demonstrate the ability of the EPS algorithm to corr . | ; | |
bine the processing needs of multiple applications and cree 0 136 138 140 142 144 146 148 150
a power-efficient clock schedule. In the following experiment Video frame sequence number
the carphone sequence is decoded in conjunction with a syn-
thetic application. The synthetic application is set to execut®"
for a short period (150 ms, 40 MHz) near the end of the video
sequence (frames 141-143). Both the video decoder and tbguires no computation and causes the processor to enter its
synthetic task register their processing requirements (AETs agjskcial idle-mode, the peak-to-bottom power ratio is around 6
cycle count, respectively) with the PowerScale scheduler. \{feame 136 : frame 135 271:43), the speed ratio is around
log the speed changes initiated by PowerScale during the @6 (221:89). This shows the effect of the quadratic relation
periment, and measure the power consumption of the processetiveen power and voltage. The exact time location of the
core. The solid line in Fig. 13 shows the actions of the Powesynthetic task is marked in Fig. 14. Its power consumption is
Scale scheduler for one second of the benchmark video (fran@gjer than that of its neighboring decoding tasks running at
135-150). The curve shows how the processor speed chan@lessame speed because the synthetic task does not reference
over time (each frame takes 67 ms). The shaded area showsiaén memory, hence, incurs no processor stalls when waiting
impact of the synthetic task on the EPS schedule: the spee¢bismemory accesses to complete.
raised to 207 MHz. For comparison the dotted line in Fig. 13 Fig. 14 shows the power dissipated by the CPU only. Fig. 15
shows the behavior of PowerScale when running in intervalhows the power dissipation of the 3.3 V part of our system
based mode. The resulting speed is either too low (e.g., fragdeemory, bus, etc.). Despite the clock speed changes induced
136) or too high (e.g., frames 144-150). by PowerScale, the system load in Fig. 15 shows a quite

We carefully crafted the combined workload to contain overegular pattern, except form frames 136, 137, and 142. The
lapping tasks. The synthetic task enters the system 25 ms afiecoding of frames 136 and 137 involves a PB sequence where
frame 141 starts and must finish 25 ms before frame 143 end#;computation is performed in the first frame (136), hence,
the start-stop interval is indicated in Fig. 13. The synthetic taglhe “zero” power consumption in frame 137. The drop to zero
thus overlaps with frames 141, 142, and 143. The EPS algoritimframe 142 is caused by the execution of the synthetic task
schedules the synthetic task first, because it has the lowest flait does not reference any memory, but only exercises the
processor rate (40 MHz), followed by 141 (148 MHz), 142 (162PU. The high peaks at the beginning of each frame are caused
MHz), and 143 (207 MHz). The final schedule raises the préay the video decoder performing the runlength decoding of
cessor speed during the decoding of frames 141 and 142 (itke compressed frame. This involves fetching data from the
the shaded area in Fig. 13). This effectively creates a 30 ms gdaM disk, where the carphone sequence is stored, into the
between frame 141 and 142, which contains enough cyclesctiche over the external bus. After this burst of memory traffic
run the synthetic task (38 207 > 150 x 40). the decoder starts processing the data, which requires more

The measured power dissipation of the processor (Fig. lehmputation, and the power dissipation of the memory sub-
shows a shape that is quite similar to the clock schedudgstem drops to a level around 200 mW. Note that the average
executed by PowerScale in EPS-mode (Fig. 13). Note, homenCPU power (202 mW) exceeds the average processor power
ever, that the peak-to-bottom power ratio is larger than tligl8 mW), which limits the overall effectiveness of voltage
corresponding speed ratio. Neglecting frame 137, whidtaling.

15. NonCPU power consumption of EPS.

824 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

applications applications applications applications
hardware hardware hardware hardware

() (b) (© (d)

Fig. 16. Four power management frameworks.

VI. CONCLUSIONS ANDFUTURE WORK power-aware video decoder competing with a computational

Clock (and voltage) scheduling is an important techniqL}%_Sk' The results show that EPS successfully schedules both ap-

to reduce the energy consumption of mobile devices equi ations and reduces the energy consumption of the processor
o p auip Wgch 50% when compared to running at full speed (236 MHz).

with a general-purpose variable-voltage processor. From the "~ onificant | i int | scheduli
hardware perspective the gains are impressive, for example,mﬁsf IS & significant improvement over interval scheduing
ieving 33% reduction. EPS achieves its reduction without

StrongARM SA1100 processor running at 251 MHz require"jlsC

five times more energy per instruction than when running at é@'SZ'Ir_'g de_z;glmes, unlike mtlerval scheduling t?at d??rsl nt“?SI
MHz. Fully utilizing these gains, however, has proven to b%ea Ines. The processor only consumes a portion of the tota
difficult system power. When compared with running at full speed, EPS

Various researchers have addressed the underlying clégQuceS the system power with 25%.
scheduling problem. We classified the different approachesOur future plans are to extend the application-directed
based on the quality and availability of information about th@ethod for controlling voltage scaling to power management
(future) workload, since that mainly determines the enerdfy general. Within the UbiCom program we are developing a
efficiency of the resulting clock schedules. The application-ditamework that is based on the explicit exchange of perfor-
rected approach has the best information on the workload, dR@nce and power consumption information between hardware
can create an energy-efficient clock schedule that meets fvices (CPU, hard disk, wireless link, etc.), OS, and appli-
demands of the applications while minimizing the requiregptions. The explicit exchange of information will allow us to
energy. perform intelligent and efficient power management for the
Application-directed clock scheduling in a general-purpos@mplete wearable Ubicom system.
OS context requires applications to become power-aware andrig. 16 shows four power management frameworks with
explicitly specify their processing requirements and deadlindkree different layers: hardware, OS, and application. Fig. 16(a)
In contrast to real-time systems, applications should specify the traditional framework without performance-power
their AET instead of the conservative WCET. This results ioonsumption exchange, the situation for interval-based clock
lower power consumption, since the AET is a better predictechedulers. In Fig. 16(b), applications specify their future
for the true execution time than WCET. Another advantagequirements to the lower layer and hardware devices can be
is that an application may update its processing requiremacheduled more efficiently, as shown in this paper. Fig. 16(c)
when its demand (AET) changes. In the case of video decodinigmonstrates interaction between applications and hardware.
we have shown that adding power-awareness can be d@éme example of such interaction would be a power-aware
effectively. Our AET estimator is both accurate and requires mideo decoder that meets almost all frame decoding dead-
a priori information. lines, yet misses the deadlines for the complex and power
This paper describes our EPS algorithm that combines thepensive frames. Such a decoder would extend the single
various task requirements (AEF deadline) and yields a power-awareness data point in Fig. 12 into a curve that is
clock schedule that is both energy efficient and meets tasiore power efficient than the fixed frequency curve. Fig. 16(d)
deadlines. The approach is to order tasks according to how tighids observers that log all application requests and try to
their deadlines are and how often tasks overlap with othemedict future requests for applications that do not specify their
We schedule low-priority tasks first, since they can be easihardware needs (similar to integrated schedulers). The purpose
pushed aside (preempted) to accommodate for high-priordf including observers is to improve the energy efficiency of
tasks scheduled later. EPS does not always yield the optiregjacy codes.
schedule, but has low complexity and can be used as arCurrently, we are working on an implementation of frame-
incremental online algorithm. work (d) [Fig. 16(d)] on our LART platform. The target applica-
To demonstrate the effectiveness of application-directéidn is wireless audio and video playback with a guaranteed bat-
clock scheduling we have actually built a complete systetary lifetime that is specified by the user. Using the power con-
consisting of variable-voltage hardware (StrongARM basedyumption information of the hardware devices (CPU, hard disk,
OS support (Linux driver), clock scheduling daemon (Powewireless link) and the application’s ability to scale the image
Scale), clock scheduling algorithm (EPS), and power-awaaed sound quality, we can infer the control settings that provide
application (H.263 video decoder). We measured and analyzbd best quality without draining the battery completely before
the effectiveness of EPS with a workload consisting of thibe user-defined target time.

POUWELSEet al: APPLICATION-DIRECTED VOLTAGE SCALING

ACKNOWLEDGMENT [22]

The authors would like to thank J. D. Bakker and E.Mouw
for providing them with an excellent low-power platform and [23!
assisting with the measurements and interpretation. They also
thank H. van Dijk for commenting on draft versions of this [24]
paper, and the three anonymous reviewers that provided them
with detailed comments enhancing the readability of the finaj,s,
paper.

[26]

REFERENCES 27]

[1] J.Lorch, “The complete picture of the energy consumption of a portable

computer,” M.S. thesis, Univ. California Berkeley, Dec. 1995.

[2] J. Lorch and A. Smith, “Scheduling techniques for reducing processof28]

energy use in MacOSWireless Networks1997.

[3] T.Burd and R. Brodersen, “Processor design for portable systens,”

VLSI Signal Processingiug. 1996. [29]

[4] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-

cally variable voltage processors,”lroc. Int. Symp. Low-Power Elec-

tronics Design (ISPLEQ)Aug. 1998. [30]

[5] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven signal

processing: an approach for energy efficient computingPiioc. Int. [31]

Symp. Low Power Electronics and Desigmug. 1996, pp. 374-352.

[6] A. P. Chandrakasan and J. Goodman, “An energy-efficient reconfig-

urable public-key cryptography processdEEE J. Solid-State Circuits ~ [32]

vol. 36, pp. 1808-1820, Nov. 2001.

[7] T.Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba,

(8]

Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama, “Vari{33
able supply-voltage scheme for low-power high-speed CMOS digital de-
sign,” IEEE J. Solid-State Circuits/ol. 33, pp. 454-462, Mar. 1998.

D. Grunwald, P. Levis, K. Farkas, C. Morrey, and M. Neufeld, “Policies [34]
for dynamic clock scheduling,” iProc. Symp. Operating Systems De-

sign and Implementation (OSD®an Diego, CA, Oct. 2000. [35]

[9] T.Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli, “Dy-

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

namic voltage scaling for portable systems,Piroc. Design Automation
Conf, 2001.

T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage
scaled microprocessor system,”mmnoc. Int. IEEE Solid-State Circuits
Conf, Feb. 2000, pp. 294-295.

J.-D. Bakker, K. Langendoen, and H. Sips, “LART: Flexible, low-power
building blocks for wearable computers,”Rroc. Int. Workshop Smart
Appliances and Wearable Computing (IWSAW&)ottsdale, AZ, Apr.
2001.

Intel StrongARM SA-1100 microprocessor developer’'s manual.
[Online]. Available: http://developer.intel.com/design/strong/man- [39
uals/278 088.htm.

J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic voltage scaling on

a low-power microprocessor,” iaroc. 7th ACM Int. Conf. Mobile Com-
puting and Networking (Mobicomirome, Italy, July 2001, pp. 251-259.
Y.-R. Lin, C.-T. Hwang, and A. C.-H. Wu, “Scheduling techniques for
variable voltage low-power designACM Trans. Design Automation
Electron. Syst.vol. 2, no. 2, pp. 81-97, Apr. 1997. [41]
I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivastava, “Power
optimization of variable voltage core-based systemsPrioc. 36th De-

sign Automation ConfJune 1998, pp. 176-181.

F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,” irProc. 36th IEEE Symp. Foundations Computer Science
Oct. 1995, pp. 374-382.

C. Hsu, U. Kremer, and M. Hsiao, “Compiler-directed dynamic fre-
guency and voltage scaling,” Proc. Workshop Power-Aware Computer
Systems2000.

M. G. Harmon, T. P. Baker, and D. B. Whalley, “A retargetable technique
for predicting execution time,” iffroc. IEEE Real-Time Systems Symp.
1992, pp. 68-77.

Y.-T. S. Li, S. Malik, and A. Wolfe, “Performance estimation of em-
bedded software with instruction cache modelirgg'sign Automation
Electron. Syst.vol. 4, no. 3, pp. 257-279, 1999.

H.-H. Chu and K. Nahrstedt, “A soft real time scheduling serverin UNI>
operating system,” ifProc. Interactive Distributed Multimedia Systems
and Telecommunication Servi¢d997, pp. 153-162.

T. Pering, T. Burd, and R. Brodersen, “Voltage scheduling in the IpARN
microprocessor system,” Proc. Int. Symp. Low-Power Electronics and
Design (ISPLED)July 2000. ﬁ

(38]

[40]

825

R. Ernst and W. Ye, “Embedded program timing analysis based on path
clustering and architecture classification,’Rroc. Int. Conf. Computer-
Aided DesignNov. 1997, pp. 598-604.

Y. Shin and K. Choi, “Power conscious fixed priority scheduling for
hard real-time systems,” iRroc. Design Automation Confl999, pp.
134-139.

P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,Pioc. 18th ACM Symp. Oper-
ating Systems Principle2001.

Transmeta-corporation. The technology behind the Crusoe pro-
cessor. [Online]. Available: http://www.transmeta.com/crusoe/down-
load/pdf/crusoetechwp.pdf.

L. Geppertand T. S. Perry, “Transmeta’s magic sho®EE Spectrum

vol. 37, no. 5, pp. 26-33, May 2000.

M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for re-
duced CPU energy,” iRroc. Operating Systems Design and Implemen-
tation (OSDI) Nov. 1994, pp. 13-23.

K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for dy-
namic speed-setting of a low-power CPU,”Rmoc. Int. Conf. Mobile
Computing and Networking (MobiConBerkeley, CA, Nov. 1995.

Y. Lee and C. Krishna, “Voltage-clock scaling for low energy consump-
tion in real-time embedded systems,”Rnoc. 6th Int. Conf. Real-Time
Computing Systems and Applicatipf898.

T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of
dynamic voltage scaling algorithms,” Rroc. ISPLED Aug. 1998.

K. Flautner, S. Reinhardt, and T. Mudge, “Automatic performance-set-
ting for dynamic voltage scaling,” iRroc. 7th ACM Int. Conf. Mobile
Computing and Networking (MobiconfRome, Italy, July 2001.

J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling al-
gorithms with pace,” irProc. Sigmetrics 20Q1Cambridge, MA, June
2001.

] D. Shin, S. Lee, and J. Kim, “Intra-task voltage scheduling for low-

energy hard real-time applicationdEEE Design Test ComputMar.
2001.

K. Rijkse, “H.263: Video coding for low-bit-rate communicatiohEEE
Commun. Mag.vol. 34, pp. 42-45, Dec. 1996.

L. O. Burchard and P. Altenbernd, “Worst-case execution times analysis
of MPEG-decoding,” irProc. 10th Euromicro Conf. Real Time Systems
(WRTS) 1999.

36] M. Mattavelli and S. Brunetton, “Implementing real-time video de-

coding on multimedia processors by complexity prediction techniques,”
IEEE Trans. Consumer Electrarvol. 44, pp. 760-767, Aug. 1998.

37] A. C. Bavier, A. B. Montz, and L. L. Peterson, “Predicting MPEG exe-

cution times,” inProc. Measurement and Modeling Computer Systems
(SIGMETRICS)June 1998, pp. 131-140.

J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips, “Power-aware
video decoding,” inProc. 22nd Picture Coding SymSeoul, Korea,
Apr. 2001.

] A. Manzak and C. Chakrabarti, “Variable voltage task scheduling for

minimizing energy or minimizing power,” ifProc. IEEE Int. Conf.
Acoustic, Speech, and Signal Processing (ICASSPXje 2000, pp.
3239-3242.

J. Pouwelse, K. Langendoen, and H. Sips, “A feasible low-power aug-
mented-reality terminal,” ifProc. 2nd IEEE/ACM Int. Workshop Aug-
mented Reality (IWAR'99Ban Francisco, CA, Oct. 1999, pp. 55-63.
J.-D. Bakker, J. A. K. Mouw, and M. A. H. G. Joosen. Linux
advanced radio terminal design page. [Online]. Available:
http://www.lart.tudelft.nl/.

Johan Pouwelsaeceived the M.Sc. degree in com-
puter science from Delft University of Technology,
Delft, The Netherlands, in 1998. He is currently
working toward the Ph.D. degree at the same
university.

His research interests include power awareness for
software, voltage scheduling, wireless link protocols,
quality of service reservations, and power manage-
ment APIs and has written several papers in these
areas.

826 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO.5, OCTOBER 2003

Koen Langendoen (M'95-A'96) received the
M.Sc. degree in computer science from the Vrije

degree in computer science from the Universiteit vai
Amsterdam in 1993.

He is currently an Assistant Professor with the Fac
ulty of Information Technology and Systems, Delft
University of Technology, The Netherlands. His re-
search interests include system software for paralle
processing, wearable computing, embedded systen
and wireless sensor networks.

Universiteit, Amsterdam, in 1988 and the Ph.D. &§

Henk J. Sips (A'78) was born in Amsterdam, The
Netherlands, on October 14, 1950. He received the
M.Sc. degree in 1976 in electrical engineering and the
Ph.D. degree in 1984 from Delft University of Tech-
nology, Delft, The Netherlands.

Currently, he is a Professor of Computer Science at
the Delft University of Technology. His research in-
terests include parallel systems, distributed systems,
mobile systems, and low-power systems.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

