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Abstract—Clock (and voltage) scheduling is an important tech-
nique to reduce the energy consumption of processors that sup-
port voltage scaling. It is difficult, however, to achieve good results
using only statistics from the operating system level when applica-
tions show bursty (unpredictable) behavior. We take the approach
that such applications must be made power-aware and specify their
average execution time(AET) and the deadline to the scheduler
controlling the clock speed and processor voltage. This paper de-
scribes ourenergy priority scheduling(EPS) algorithm supporting
power-aware applications. EPS orders tasks according to how tight
their deadlines are and how often tasks overlap. Low-priority tasks
are scheduled first, since they can be easily preempted to accommo-
date for high-priority tasks later. The EPS algorithm does not al-
ways yield the optimal schedule, but has a low complexity. We have
implemented EPS on a StrongARM-based variable-voltage plat-
form. We conducted experiments with a modified video decoder
that estimates the AET of each frame. Measurements show that
application-directed voltage scaling reduces processor power con-
sumption with 50% for the bursty video decoder without missing
any frame deadlines.

Index Terms—Adaptive software, low power, power awareness,
voltage scaling.

I. INTRODUCTION

POWER CONSUMPTION is becoming thelimiting factor
for the functionality of wearable devices, because advances

in battery technology are progressing slowly whereas computa-
tion and communication demands are increasing rapidly. It is,
therefore, important to utilize the available energy as efficient
as possible. Energy preservation, or energy management, is fur-
ther translated into a low-power consumption of all parts of a
wearable device. The initial response to the low-power demand
was to lower the supply voltage. For example, by reducing the
supply voltage from standard 5.0 to 3.3 V power was reduced
by 56%.

Additional reductions can be obtained by selectively lowering
the supply voltage of specific parts in either a discrete or con-
tinuous manner. An obvious candidate is the processor since it
is responsible for a significant portion of the total power con-
sumption [1].

A discrete approach to voltage reduction is using power
down features to minimize the power consumption of unused
hardware. For portable computers this means turning off the
hard disk, processor, screen, modem, sound, etc. Reactivation
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of hardware can take some time, which affects performance
(e.g., response time). Using simple power-down-when-idle
techniques the processor’s power consumption can be signifi-
cantly reduced. Power savings up to 66% have been reported
[2].

A further refinement is to make continuous tradeoffs between
performance and cost. Performance metrics are application de-
pendent, but often a combination of response time and quality
is used. Video decoding is used as a case study throughout this
paper, and typical quality metrics are spatial/temporal resolu-
tion, color depth, and distortion level. The user demand (per-
formance) should be satisfied at the lowest cost (power con-
sumption).Voltage scalingis a method to tradeoff processor fre-
quency (performance) against power consumption. The power
consumption of a processor running at a high frequency and
high voltage is much larger than running at a low frequency
and low voltage. The power consumption of digital CMOS cir-
cuits can be modeled quite accurately by simple equations (

) [3], [4].

A. Voltage Scaling Implementations

In 1996, one of the first papers was published that describes
an actual hardware implementation using voltage scaling [5].
This implementation applies voltage scaling to MPEG video
decoding on a DSP. The frequency and voltage are adjusted
to match the varying complexity of video frames. In [6], a
dedicated cryptography processor is presented that uses voltage
scaling. When running at 50 MHz this processor requires a
supply voltage of 2 V and consumes at most 75 mW; at 3
MHz, a supply voltage of only 0.7 V is required and the power
consumption drops to a mere 525W.

In 1998, the first experimental results on a general-purpose
processor were published [7]. The architecture of a R3900 RISC
core was enhanced with a critical path replica to measure the
minimal required supply voltage. The RISC core operates on
1.9 V at 40 MHz and on 1.3 V at 10 MHz. All intermediate
frequencies are also supported. This first general purpose im-
plementation did not have a full chip-set and lacked an oper-
ating system. In 2000, Grunwaldet al. presented experimental
results on a complete general-purpose platform, called Itsy, run-
ning the Linux operating system [8]. Itsy uses a standard com-
mercial StrongARM SA1100 processor that supports voltage
scaling. The savings by the Itsy are very modest because only
two voltage levels have been implemented, 1.5 V (162 MHz)
and 1.23 V ( 162 MHz). The resulting difference in processor
power consumption between the two levels is only 15%. Better
results are obtained with the SmartBadge platform, which is
similar to the Itsy. Extensive power measurements on real-time
MP3 audio decoding and MPEG video decoding show that an
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Fig. 1. Processor envelope.

energy reduction of 40% is possible [9]. Burd and Pering de-
signed and implemented a voltage-scaling capable processor
based on an ARM8 core [10]. Their processor is fabricated in
600–nm technology and uses aggressive power saving features.
In high-performance mode, it runs at a speed of 80 MHz and
consumes 476 mW at 3.8 V. When running at 5 MHz and 1.2 V,
the processor only consumes 3.24 mW. Thus, power consump-
tion is reduced with a factor of 147, while performance drops
with a factor 16.

In parallel, with the above projects we have created our own
portable platform for voltage scaling research [11]. It is some-
what similar to Itsy; we also use a standard SA1100 processor
and run Linux. Our platform is called LART, and described in
detail in Section V-A. Fig. 1 shows the processor envelope for
the different frequencies that are supported by the StrongARM
processor. The LART supports 128-different supply-voltage
levels. A supply voltage of 0.79 V is sufficient when running
the processor at 59 MHz. A frequency of 251 MHz requires
1.65 V. These supply voltages are outside the manufacturers
specifications of 1.5 V. All processors we obtained were
able to run at these voltage and frequency combinations. A
switch between such combinations takes 140s. A number of
destructive tests indicated that the maximum frequency of the
SA1100 processors is around 265 MHz, significantly beyond
the official specified maximum of 190 MHz.

We measured the effect of voltage scaling on the power con-
sumption of the complete LART platform, including memory,
voltage conversion, etc. Fig. 2 shows the total power consump-
tion of the LART under two different workloads: idle and CPU-
intensive.

The idle workload measures the background power con-
sumption of the LART, which is always spent regardless of the
processor load. The Linux scheduler puts the processor into
halt mode when no processes are active. Halt mode stalls the
CPU, but other services of the embedded processor such as the
memory controller and internal timer are still operational [12].
All these services are driven by the processor clock, which
explains why the power consumption in halt mode increases
with the frequency. The SA-1100 also supports a more power
efficient sleep mode, but this mode interrupts direct memory
access (DMA) transfers, stops the LCD controller, blocks

Fig. 2. Total-power consumption for idle and CPU-intensive workloads.

memory access, etc. Also, the wake-up sequence takes much
longer than in halt mode compromising responsiveness.

The CPU-intensive workload consists of the Dhrystone
benchmark utilizing both the CPU and the cache. We first mea-
sured the effect of scaling the clock frequency while keeping
the voltage constant at 1.5 V. In this case, the power consump-
tion increases linearly with the frequency, as is expected. Next,
we measured the power consumption when the core voltage is
set to the minimal value reported in Fig. 1. The resulting curve
shows the expected quadratic increase of power consumption
when the frequency is varied from 59 to 251 MHz.

From the power consumption at 59 MHz (105.8 mW) and
at 251 MHz (963.7 mW) it follows that an instruction at peak
performance consumes a factor 2.1 more energy than at lowest
performance. When we neglect the nonCPU subsystems of the
LART, which are supplied from afixed3.3 V, and focus on the
CPU, the power consumption is 33.1 mW at 59 MHz and 696.7
mW at 251 MHz (not shown). The raw CPU energy/instruction
difference is thus, a factor 4.9.

Voltage scaling is moving from the research field into the
commercial market place of embedded and x86-compatible
processors. AMD has added voltage scaling capabilities to the
AMD K6 processor family in April 2000. The AMD-K6-IIIE
supports clock frequencies from 200 to 500 MHz, the power
consumption is 2.95 and 11.40 W, respectively. This means that
the lowest frequency provides a power-efficiency improvement
per instruction of 55% versus the highest frequency. Transmeta
and Intel currently also provide processors with voltage scaling.
Due to the rising importance of power consumption it is likely
that voltage scaling will soon become a standard feature for
processors in the embedded and laptop market.

B. System Architecture

In this paper, we concentrate on a wearable platform con-
sisting of a general-purpose processor with voltage-scaling ca-
pabilities, controlled by a general-purpose operating system,
and running multiple applications. Fig. 3 gives an overview of
such a system. The clock scheduler optimizes the processor fre-
quency with respect to the workload to be serviced. The clock
scheduler, part of the operating system (OS), must determine
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Fig. 3. System overview.

when the clock frequency needs to be changed and to what fre-
quency. This problem, known asclock scheduling, is the central
problem addressed in this paper. The actual switch of the pro-
cessor clock frequency is handled by an OS device driver. We
have implemented such a driver for the Linux OS (details can be
found in [13]). The device driver adjusts the supply voltage of
the processor and adapts memory and bus configurations. Note
that a change in frequency implies a corresponding change in
supply voltage. Our LART device driver has a hard-coded table
of the frequency and voltage combinations, derived from Fig. 1.
The device driver sends the voltage setting to a D/A converter.
This D/A converter in turn is connected to a voltage controlled
dc/dc converter. On our LART platform, the switch of frequency
and voltage takes 140s, during which the system is stalled.
This implies that settings can be changed frequently without
causing too much overhead.

C. Paper Outline

In this paper, we argue that voltage scaling in a general-pur-
pose context can only be effective when applications cooperate.
It is vital that applications communicate their (future) pro-
cessing needs to the OS, much like in real-time systems. Only
then the OS can handle bursty (unpredictable) applications and
compute an optimal schedule. The general clock scheduling
problem itself is NP complete. We present a new heuristic
scheduling algorithm calledenergy priority scheduling(EPS)
that uses workload descriptions to compute energy-efficient
schedules. We have implemented the algorithm as part of
the Linux OS and performed several experiments on our
variable-voltage LART platform. In particular, we demonstrate
the ability to schedule a computational task with a bursty video
playback task; the computational task is executed between two
low-complexity video frames.

Section II presents a general framework for the various ap-
proaches to solve the clock scheduling problem. Section III in-
troduces the concept of power-aware applications and describes
how we have added power-awareness to a H.263 video decoder.
Section IV describes our energy priority scheduling algorithm.
In Section V, we discuss the implementation of the EPS algo-
rithm and present power measurements. Finally, in Section VI
we conclude and indicate future research directions.

II. A PPROACHES ANDRELATED WORK

Voltage scaling and clock scheduling have been investigated
in the context of four main areas: dedicated hardware, com-

pilers, real-time OSs, and general-purpose OSs. They differ in
the time of fixation of the clock schedule, the time at which
scheduling information is available, and the amount and quality
of that information. With dedicated hardware the clock schedule
is determined at design time, usinga priori information de-
rived from the application. A compiler, in contrast, can only
extract a limited amount of information from the source code
of an application to determine the clock schedule. A real-time
OS includes a task scheduler that takes into account start times,
deadlines, and required cycles, allowing more flexible clock
scheduling schemes. A general-purpose OS has to derive a clock
schedule from run-time statistics, such as the processor utiliza-
tion in previous periods. In general, clock scheduling becomes
simpler and more power efficient when more (accurate) infor-
mation is available. An overview of the different approaches is
shown in Table I. The first row lists the quality of the infor-
mation that is available to solve the clock scheduling problem,
ranging from very poor to very good . The second
row lists at what time workload information is available: during
design time, compile time, or at run time. In the sequel, we will
use the approaches in Table I to discuss related work.

A. Dedicated Hardware

When crafting dedicated hardware, for example, a global
system for mobile communication (GSM) speech codec or
JPEG compressor, all possible workload details are known in
advance. Therefore, theoptimal clock schedule can often be
calculated with brute force at chip-design time [14]. This can
be costly since the nonpreemptive clock scheduling problem,
where task cannot be interrupted, is NP complete [15]; Hong
et al. present an effective heuristic yielding schedules that are
within 2% of the optimum [15]. In the preemptive case, the
optimal schedule can be computed with an offline
algorithm [16].

B. Compiler

When a compiler is used to determine the clock schedule, the
largest problem is to deduce the appropriate information from
the source code. For example, deriving the execution time on the
target platform from the high-level program code is a nontrivial
task. This forces the compiler to make conservative assump-
tions and yields low-quality scheduling information. If exten-
sive profiling information is present, the scheduling techniques
for dedicated hardware can be used. Otherwise, heuristics must
be applied to identify code sections that can be executed at low
speeds. For example, Hsuet al.describe a system that is based
on identifying memory-bound loops [17]. Within such loops the
clock frequency can be reduced, since the memory subsystem
is much slower than the processor. This approach, however, can
only be effective when memory-bound loops occur frequently
and the cost of a frequency/voltage change is negligible relative
to the total execution time of a loop.

C. Real-Time OS

In the realm of real-time OSs, voltage scaling focuses on
minimizing power consumption of the system, while still
meeting strict task deadlines. Real-time tasks specify their
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TABLE I
COMPARISON OFCLOCK SCHEDULING APPROACHES INSEVERAL AREAS

starting time and deadline; tasks that must be repeated also
specify their period. In hard real-time systems, the worst case
execution time (WCET) can often be obtained at software
design time through static analysis, profiling, or direct mea-
surements [18], [19]. When all details of the workload are
known and the schedulability is verified at design time we
classify such systems under “fixed real time.” When details
of the workload, such as WCET or even the tasks themselves,
are only known at run time, we classify such systems under
“dynamic real time.” For example, for multimedia servers the
exact workload is only available at run time [20]. An admission
controller needs to determine if new tasks can be scheduled
and admitted.

An example of a scheduler for fixed real-time systems is the
average raterun-time heuristic by Yaoet al., which is proved to
consume at most a factor of 8 more energy than the optimal pre-
emptive schedule [16]. Peringet al.present a dynamic real-time
system based onearliest deadline first(EDF) scheduling [21].
They assume that tasks specify no start times and, hence, can be
executed at any moment. Measurements show that significant
energy savings can be obtained (20% of peak power) for some
applications.

In both classes of real-time OSs, the WCET is used to
check the schedulability and possibilities for reducing the
clock frequency in the schedule without violating deadlines.
For example, the algorithm in [15] initially schedules all
tasks at maximum frequency. After that the task schedule is
adjusted until no further reduction is possible without violating
deadlines. The ratio between the actual execution time and
the WCET can be quite low: an average of 0.5 is reported for
several hard real-time applications studied in [22]. When the
WCET is not an accurate estimation of the execution time,
the assigned clock frequencies to meet deadlines tend to be
too high (factor of 2 on average). Consequently, a task usually
finishes early, and an idle periods occurs. If another task is
eligible for execution, however, the idle period can be used to
execute that task at a reduced speed, see [23].

A recent paper by Pillaiet al. discusses an alternative ap-
proach to handle the conservative WCET rarely encountered in
practice [24]. Their “look-ahead” clock scheduling algorithm is
based on an EDF scheduler. The task with the earliest deadline
is scheduled with the lowest possible processor speed that does
not violate its deadline. This forces other tasks to be scheduled at
a high frequency to compensate. The assumption is that the task
is not likely to use its WCET and will finish early. When the task
finishes early, energy is saved and the next task with the earliest
deadline is scheduled at its lowest possible frequency. Note that

for some (artificial) workloads the look-ahead algorithm may
defer tasks too aggressively and actually increase power con-
sumption, as can be derived from their simulation results.

D. General-Purpose OS

Clock scheduling in the context of a general-purpose OS is
difficult, since little information is known about the applica-
tions. Applications do not communicate deadlines or priorities
to the OS, hence, all the clock scheduler can do is observe the
load that has been generated in the past and extrapolate into the
future. The clock scheduler measures the processor load in fixed
intervals, for example, every 20 ms. A common technique is to
use two boundary values on the processor load to decide whether
to increase, decrease, or keep the current clock frequency in the
next interval. If the measured processor load drops below the
lower bound, the processor frequency is decreased. Similarly, if
the processor load rises above the upper bound, the frequency is
increased. This technique is called interval-based clock sched-
uling, or interval-scheduling for short.

The Transmeta Crusoe processor is the prime example of a
hardware-based approach to interval-scheduling. It has built-in
support for clock scheduling in the “microcode” of the processor
[25]. Unfortunately, little information is made available about
the exact workings of the “LongRun” technology, but it is clear
that it can operate in isolation, that is, without any help from the
OS or application [26]. The microcode has only a small aware-
ness of the global system state, for example, it can not distin-
guish OS foreground tasks from background tasks.

Weiser et al. first presented the idea of interval-based
voltage scaling for a general purpose OS in 1994 [27]. Most
contributions regarding interval-based voltage scaling consist
of theoretical analysis [4] and simulations [28]–[30]. The
simulation studies show that interval-scheduling reduces power
consumption considerably compared to running at full power.
There are, however, some fundamental problems. First, the
optimal interval length is application dependent. Second, bursty
applications with unpredictable workloads cannot be scheduled
effectively at all. The simulations by Peringet al. show that
the power consumption of their interval schedule for video de-
coding was 36% above the optimum. Recent measurements on
actual hardware by Grunwaldet al.confirm these observations
[8].

Traditional interval scheduling based on processor load can
be improved by incorporating other information (run-time sta-
tistics) to estimate the processing requirements of applications.
Such “integrated clock schedulers” require numerous modifi-
cations to the OS. For example, Flautneret al. [31] describe
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an integrated scheduler that maintains processor usage statis-
tics of every process, observes the communication pattern be-
tween processes, keeps track of input/output device usage by
processes, and tries to extract deadlines from periodic tasks. The
simulations results are promising, but a comparison with a tra-
ditional interval-scheduler is not included, so the advantage of
using additional information is still to be determined. Another
aspect that needs additional study, is the effect of their sched-
uler on bursty and CPU-intensive applications, such as video de-
coding and speech recognition, because such applications were
not included in the simulations.

User related timing characteristics are another useful source
of information for integrated clock scheduling [31], [32]. For
example, Lorchet al.[32] exploit the observation that a reaction
time of 50 ms for interactive applications is below the perception
threshold of the user. Therefore, the application processing time
for, say, a mouse click can be increased to 50 ms (by slowing
down the CPU) without noticeable performance degradation.
Offline simulations show that the upper bound on the additional
energy saving is in the order of 20%. It remains to be seen how
much energy can actually be saved in a real implementation.

E. Application-Directed Clock Scheduling

Reliable, accurate information for solving the clock sched-
uling problem can only be obtained from the applications them-
selves. When applications operating on a general-purpose OS
are modified to register their processing requirements (cycles,
deadlines, etc.) clock scheduling becomes simpler and more ef-
fective. Application-directed clock scheduling holds two oppor-
tunities for further power savings compared with the integrated
clock scheduler. The first opportunity is to allow the updating
of processing requirements. The second opportunity is to use
average processing requirements instead of the worst case esti-
mates that are used in real-time systems.

We call the updating of task processing requirements in
application-directed schedulingintratask information updates.
Intratask information updates are proposed in a recent paper by
Shin et al. [33]. They combine the compiler-based approach
with application-directed clock scheduling. Shinet al. use
source code analysis to extract the WCET and combine it with
a run-time component. An MPEG 4 decoder is used as a case
study for their analysis tool. The tool calculates offline the
WCET updates for several points in the MPEG 4 frame de-
coding process. For example, at the start of the frame decoding
process only the overall worst WCET of any frame type is
known. When the frame type is determined, it is replaced by
the WCET of that frame type. During the decoding of the frame
even more information becomes available (such as motion vec-
tors and macroblocks) and the WCET is updated and converges
to the actual frame decoding time. This refinement technique is
guaranteed to meet hard real-time deadline requirements (i.e.,
frame deadlines). The disadvantage is that the overall WCET
is not very likely to occur and consequently, the clock speed is
set far too high at the beginning of every frame.

In contrast to real-time systems, applications operating on a
general purpose OS are not time critical and deadlines may oc-
casionally be missed. Typical laptop applications such as word

processing, games, video editing, and (wireless) web browsing
are real-time (interactive) applications, yet their deadlines are
soft. Users will tolerate (some) jitter in response times. This al-
lows for an easy solution to the problems associated with the
WCET. Applications may report their average execution time
(AET), which is generally a much better estimator of the true
execution time, leading to more power-efficient clock sched-
ules. This is the approach we take in this paper. Note the re-
semblance with the look-ahead algorithm from Pillai [24] (see
Section II-C). The look-ahead algorithm is the only algorithm
known to us that also exploits the low likelihood of WCET oc-
currencesbeforethe actual execution of a task.

The application-directed clock-scheduling algorithm pre-
sented in this paper can be applied in both a real-time and
general-purpose OS context. The applications on a general-pur-
pose OS need to be modified to pass on intratask information
updates and indicate their AET.

III. POWER-AWARE VIDEO DECODING

To exploit the power consumption reduction of voltage
scaling, we propose to make applications power-aware such
that bursty and cpu-intensive applications can decrease their
power consumption by indicating their processor usage to the
clock scheduler. We modified a video decoder to estimate its
AET for each frame and communicate this requirement along
with the frame deadline to the clock scheduler. In this section,
we briefly discuss H.263 video compression, our method for
estimating the frame decoding time, and our modified H.263
application.

A. H.263 Video Compression

The H.263 standard is created for low-bitrate video compres-
sion [34]. The standard is based on both H.261 and MPEG2.
H.263 frames are displayed at a fixed rate. Throughout this
paper we use a framerate of 15 fps, which means a maximum
decoding time of 67 ms per frame. H.263 defines three types
of frames: I-frames (intrapicture), P-frames (predicted picture),
and B-frames (bidirectional predicted picture). I-frames are self
contained images, similar to JPEG. P-frames encode the differ-
ence from a previous I or P frame. B-frames contain references
to both preceding and succeeding frames. Because a B-frame
contains forward references, the succeeding frame must be de-
coded prior to the B-frame itself. As a result the decoder must
process two frames in a single frame time. We use the PB-frame
notation to indicate the frame in which two dependent consecu-
tive frames are decoded.

A frame consists of a grid of blocks that measure 1616
pixels, called macroblocks. A macroblock in a P-frame consists
of the differences with a reference to the previous frame that is
displaced by a vector to compensate for motion. Motion com-
pensation is used to decrease the difference from the previous
frame. The pixels in each macroblock are efficiently encoded
using a discrete Cosine transform (DCT), which is a computa-
tional intensive operation. The number of bytes for each mac-
roblock in the encoder output is variable. Macroblocks that con-
tain no information are not inserted into the compressed bit-
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Fig. 4. Frame size variation over time.

stream. The number of inverse DCTs required to decode the
macroblocks is, therefore, variable. This is the main cause for
the bursty behavior of both H.263 and MPEG2 decoders. Vari-
able-length encoding (e.g., Huffman coding) is used to further
compress the macroblocks, the motion vectors, and the frame
header. Note that the type of the frame is only known to the de-
coderafter the variable-length decoding step.

B. AET Estimation

Predictions of decoding times are difficult to make due to the
wide variation in scenes (e.g., talking heads versus MTV). A
frame that is very similar to the previous frame results in few
encoded macroblocks to capture the difference, hence, takes
little time to decode. Frames that differ considerably from their
predecessor result in longer decoding times. Fig. 4 shows the
variation of the frame size for the well-known carphone test
sequence (190 frames), which was encoded using the Telenor
H.263 encoder V2.0 with the following settings: qcif resolu-
tion, 15 fps, default quantization, unrestricted motion vectors,
syntax-based arithmetic coding, advanced prediction mode, and
use of PB-frames. Note the large initial I-frame in the upper left
corner.

Various methods have been developed to estimate the AET of
a video frame. One method is to include a complete reference
decoder inside the encoder and measure the actual frame-de-
coding times. These decoding times are added to the compressed
video sequence. This method is proposed in [35], but requires
a reference decoder for each target platform. Using a generic
model of the frame decoding complexity eliminates this draw-
back. Such a complexity model for MPEG4 (seven parame-
ters) is presented in [36]. They report accurate results (error
5%). The drawback of their method, however, is the necessity to
modify MPEG4 encoders to include the complexity parameters
in each frame header.

To ensure backward compatibility and general acceptance,
modification of video sequences (to include clock scheduling
information) must be avoided whenever possible. Therefore,
an interesting question is which property from the H.263 frame
gives a good estimation of the AET of the frame decoding
process and can be obtained without being addinganyknowl-
edge to the H.263 compressed bitstream. We found that the
combination of frame type and frame size yields an estimation
that is simple, yet accurate. A similar estimator for MPEG2 is
presented in [37].

Fig. 5. Decoding time versus frame size and type.

Fig. 5 plots the decoding time versus the frame size for the
Carphone test sequence on the LART platform. Two frequen-
cies are used to decode frames of both P and PB type. The
figure shows that video decoding is a demanding application:
at the lowest clock frequency of our LART platform none of
the frames can be decoded within the required 67 ms (i.e., 15
fps). Furthermore, running the processor on a high speed (221
MHz) is only necessary for the largest PB-frames. The cost of
decoding a two image PB-frame is consistently higher than a
single image P-frame. Simple P-frames decode in roughly 75
ms at the lowest clock frequency, the most complex PB-frames
take almost 200 ms to decode at this speed, a significant vari-
ance. Measurements on more test sequences show that frame de-
coding times are independent of the content of the test sequence
itself; they only depend on the type and length [38]. Note that
changing the spatial or temporal resolution keeps the linear re-
lation between frame size and decoding time, but modifies the
parameters. Fortunately, such resolution changes do not occur
inside normal video sequences. The characteristics of Fig. 5
will be used to estimate the minimal processing requirements
for each frame.

The type of the video frame is indicated in the frame header.
Unfortunately, the frame length is not part of the header; so we
cannot directly determine the most suitable AET. The frame
length can optionally be added to the header by using the H.263
PEI (extra insertion information) header field. This requires
changing H.263 encoders to add the frame length information
to the header. A solution that modifies only the decoder is
preferred. By using input buffering in the decoder it would also
be possible to determine the frame length before commencing
with the decoding. However, this approach would increase the
decoding latency, which is a severe drawback for interactive
applications such as video conferencing.

C. Implementation

We extended the Telenor H.263 decoder with an AET esti-
mator based on the observed linear relation between frame size
and clock frequency for equal frame types (Fig. 5). Three modes
are supported by our enhancement:optimal, feed forward, and
feed backward. The difference between the three modes is the
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knowledge about the frame decoding times. The optimal mode
usesa priori knowledge about the decoding requirements. By
using offline analysis, the exact processing requirements are de-
termined for each video frame and made available to the de-
coder, similar to [35]. This mode provides a lower bound in
terms of power consumption for the clock schedule. The feed-
forward mode usesa priori knowledge about the frame length
through the PEI header field. The feed backward mode does
not require any modifications to the encoder or compressed bit-
stream, and uses intratask information updates to adjust mispre-
dicted AETs. Our H.263 decoder communicates its processing
requirements for the next deadline with the EPS scheduler once
per frame in both feed forward and optimal mode and twice in
feed backward mode.

The power-aware decoder in feed backward mode uses
several heuristics to estimate the processing requirements as
accurately as possible. Frame statistics are kept by frame type.
Initially, the decoder requests the maximum processing ca-
pacity for the first few frames of a sequence, until an estimation
of the time-framelength relation becomes available (using least
squares fit). The best speed for the previous P-frame is used as
a starting point for the current P-frame. When the upper half
of the video frame is decoded an intratask update is calculated
and send to the clock scheduler. The decoding time and size
of the first 50% of the macroblocks is used to determine the
decoding progress.

The remaining 50% of the macroblocks must also be decoded
in the same frame time. When the decoder is running ahead
or behind, the estimated time-framelength relation is used to
calculate the new processing requirements. Unfortunately, the
complexity of the upper half of the image of a video frame is
not always equal to the bottom half. To compensate for this, we
use the complexity ratio of the upper and lower half of the image
from the previous frame to update the AET. We thereby assume
that the complexity ratio is a slow-changing parameter in a video
sequence.

At the start of a frame, the speed of the previous frame is only
maintained if there is no frame type change. When a PB-frame
follows a P-frame, the speed of the last PB-frame is used be-
cause the previous P-frame has a lower processing requirement.

The “frame_type_len” estimator from [37] also uses the
type and length of the previous decoded frames to estimate
the decoding time of the current frame. For their calculations
they require the offline calculated relation between frame-size
and decoding time. Our implementation is similar to the
frame_type_len estimator, but we created an online version that
uses intratask information updates.

IV. ENERGY PRIORITY SCHEDULING

In application-directed clock scheduling, applications specify
their AET to the next deadline and use intratask information up-
dates to increase the power efficiency of the clock schedule. Our
energy priority scheduleris an incremental online algorithm that
dynamically adjusts the clock schedule when a new task enters
the system or an old task completes its execution.

TABLE II
WORKLOAD DESCRIPTIONS

A. Model

This section defines a model for clock scheduling. The model
combines and enhances the models presented in [16] and [39].
Each real-time task is defined by:

starting time;
deadline time;
execution time at highest speed.

The execution interval of taskis . The energy priority
scheduling algorithm is used to determine:

speed of the processor at time;
task that is executed on the processor at time;

We further define the following parameters:
number of tasks overlapping with time region
besides task;

average
number of other tasks besides task;

flat processor rate of task,using the
least amount of energy;

the processor utilization currently scheduled in
time region .

B. Algorithm

Before describing our algorithm, we first present two exam-
ples that motivate the scheduling heuristic we employ. Table II
gives two simple workloads. The first case consists of just two
tasks (A and B). An incremental scheduler considers the tasks
one-by-one. Following theAverageRateheuristic by Yaoet al.
[16] we simply add the minimum required flat processor rates

for each task at time. Thus, task A executes at speed 2/3 and
B at speed 1/3 (see Fig. 6).

Theaverage rateschedule is not optimal since A and B can be
scheduled back-to-back as shown in Fig. 7. (Running at a con-
stant speed is more energy efficient than with a varying speed).

A first improvement to theaverage rateheuristic, is to take
into account the other tasks already scheduled. When scheduling
a next task, we can compute the (water) level above the current
schedule (contour) to fit in the computational demands (area) of
the task. Thetask levelingidea is outlined in Fig. 8.

Applying task-leveling to the first example yields the op-
timum (Fig. 7) when scheduling task A first, followed by B.
Scheduling B first and then A, however, still yields the inferior
schedule shown in Fig. 6.

Our second improvement is to account for overlapping tasks
that can be pushed aside. Consider the second case in Table II,
which adds a third task C to the optimal schedule in Fig. 7.
First note that task-leveling fails to find a suitable schedule in
this case since C must be layered on top of B, raising the pro-
cessor utilization above 1. The following method does find the



POUWELSEet al.: APPLICATION-DIRECTED VOLTAGE SCALING 819

Fig. 6. Average Rateschedule for case 1.

Fig. 7. Optimal schedule for case 1.

Fig. 8. Task leveling.

Fig. 9. Optimal schedule for case 2.

optimal schedule (an equal load of 5/6 across the entire
interval). In step 1, we determine the maximum processor uti-
lization on the interval , which is 2/3 (cf. interval

in Fig. 7). In step 2, we fill up the free space below level
on interval ; this has no effect in our example be-

cause there is no space available. In step 3, we determine all
overlapping tasks (the set) that overlap with ; equals .
In step 4, we compute the water level (5/6) above the contour
of that accommodates the remainder of. Finally, we
reschedule tasks from the setto create space in the interval

; see Fig. 9.
Rescheduling in the final step is not always possible due to

deadlines regarding tasks, in which case steps 4 and 5 must
be repeated. Dealing with overlapping tasks greatly enhances

the quality of the clock schedules. Further improvements can
be expected to also account for tasks that overlap with the over-
lapping tasks, etc. We do not pursue this direction, but rather ar-
range that tasks are scheduled in ascending priority. Tasks with
relaxed deadlines ( close to zero) and few overlaps (low )
are ranked to be scheduled first, so they can easily be pushed
aside when more difficult tasks are scheduled later.

Energy Priority Scheduling

0 Given a set of tasks, each task with a starting

time, deadline time, and fastest execution time.

1 Partition interval into a set of time

regions where and are

start or deadline times of, and there exists no

other start or deadline time within

2 For each task compute its priority:

3 Repeat times:

3.1 Select task that is not scheduled yet and has

lowest

3.2 Repeat until task is fully scheduled:

3.2.1 Determine intervals with lowest

scheduled processor utilization

3.2.2 Determine overlapping task intervals

util

3.2.3 Determine spill intervals

3.2.4 Define

lowest processor utilization on

or if

remain

if

otherwise
3.2.5 Set processor utilizations to and

reschedule tasks (including) on and

accordingly

4 Regroup tasks spread across multiple intervals.

The details of our energy priority scheduler are pre-
sented in Algorithm 1. step 2 calculates the priorities of the
tasks. For example, in case 2 above the priorities are set to

, , and
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. Therefore, EPS will schedule task
B first, then C, and finally A. Note that this order is indepen-
dent of the actual task arrivals, which avoids the sensitivity
observed for the simpler heuristics discussed above. In step
3.2, a part of task is scheduled by raising the “water”
to the next level up. This level is to be found on the interval
that includes all overlapping tasks. The spill intervals are the
time regions of the overlapping tasks, not including ,
were the processor utilization is equal toand the utilization
will be increased to make room for task. Note that we only
consider overlapping tasks that are actually scheduled on
by including the “util ” condition. If there are no
spill intervals ( ), for example, when scheduling the first
task, the remaining work of will be scheduled on top of the

time regions. Otherwise, the work of the overlapping tasks
is spilled from the intervals to the intervals. The actual
increase () is bound by the amount of work that can be spilled
( ), the remainder of that still needs to be scheduled, and
the step up ( ). The incremental scheduling of task
in steps 3.2. can be efficiently implemented by maintaining
the overlapping intervals as a sorted list (ascending processor
utilization). Once the final schedule is determined, tasks tend
to be scattered over multiple intervals. To minimize the number
of context switches, we regroup tasks in step 4 by swapping
workloads between intervals.

The energy priority scheduling heuristic does not always
find the optimal schedule, since it only accounts for pushing
aside tasks that directly overlap with. If nonoverlapping tasks
were also rescheduled in step 3.2., both the complexity and
the ability of EPS to find the optimal schedule would increase.
A heuristic such as EPS will fail to find the optimal schedule
in complex workloads with many tasks. For example, when
modifying case 2 slightly by changing task B to start at time 2,
the insertion of task C will not raise the “water” above interval
[0,2] as it could when realizing that B in turn should push task
A aside. Fortunately, such workloads are not common for wear-
able devices where users typically run one or two concurrent
applications. The complexity of the heuristic depends on the
number of iterations needed to schedule. In the worst case,
each interval causes one step up. The maximum number of
intervals is , leading to the upper bound of for
the complete heuristic. In practice, one or two iterations often
suffice and the number of overlapping tasks is small, lowering
the complexity to .

The presented energy priority algorithm makes a complete
new schedule each time a new task arrives. When implementing
this algorithm several additions must be made such as properly
updating the task list when a new task arrives and the current
running task is not yet finished. For an incremental version of
the scheduling algorithm the following procedure is used: each
time a new task arrives, the set of intervals is extended,
followed by one round of scheduling for task(no looping over
all tasks in step 3).

The energy priority algorithm must support sporadic tasks
in a real-time OS context. The algorithm can support periodic
tasks by adding a parameterthat indicates the window size for
periodic task scheduling. Before step 0, every periodic tasks is

Fig. 10. Low-power StrongARM embedded Linux platform (LART).

converted in up to sporadic tasks and added to the task set.
The periodic task with the shortest repetition period bounds
the interval in which the periodic tasks are converted
into multiple sporadic tasks. For example,is extended with A
( ) and B ( ). When the
interval is scheduled with ten sporadic tasks A and six
sporadic tasks B.

V. RESULTS

To demonstrate the effectiveness of application-directed
clock scheduling we have performed power measurements on
a complete system consisting of variable-voltage hardware,
OS driver, clock scheduling daemon and algorithm, and
power-aware video decoder.

A. Experimental Platform

The embedded StrongARM processor board displayed in
Fig. 10 forms the heart of the wearable augmented-reality
terminal that we are developing within the UbiCom project
[40]. The board, named LART, has a size of 107.5 cm, a
weight of 50 g, 32 MB of volatile memory, 4 MB of nonvolatile
memory, a SA-1100 190 MHz processor, and various I/O
capabilities. The LART has a programmable voltage regulator
to control the voltage of the processor core. In Section I-A,
we already discussed the relation between processor frequency
(59–236 MHz, steps of 14.7 MHz) and core voltage (0.79–1.5
V), see Fig. 1.

The LART runs under control of the Linux operating system
(Version 2.4.0), which has been enhanced to support frequency
and voltage scaling. We added a kernel module that reads the re-
quired frequency from/proc , a Linux pseudo-filesystem used
as a generic interface to kernel data structures, changes the clock
frequency, and adjust the core voltage. It subsequently recali-
brates the kernel’s internal delay routines, in particular those
that busy-wait by counting instruction cycles. In addition, the
kernel module adjusts the memory parameters that control the
timings of the read/write cycles on the external bus. The code
has been structured such that it may be interrupted and does not
depend on external memory, which is temporarily unavailable
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Fig. 11. Measurement setup.

during a clock frequency change. The SA-1100 is not designed
for on the fly clock frequency changes. All DMA transfers are
interrupted during a change, causing problems for the DMA
transfers of LCD video data. The LCD device driver needs to be
informed of frequency changes and temporarily halt the DMA
transfer. All LART design schematics and kernel modules are
publically available [41].

To measure the power consumption of the LART, we used
the configuration shown in Fig. 11. The unregulated power of
a battery is converted into a fixed 3.3 V for all the components
on the board, except the processor core (CPUcache) which
is supplied by a variable voltage regulator. The fixed/variable
voltage and current are sampled using a small sense resistor at
a rate of 2.5 kHz. The standard deviation of the measurements
is within 2% of the mean.

We implemented a clock scheduler that mediates between
applications and the basic OS driver controlling the core
voltage and processor speed. To minimize implementation
effort at the application level we designed the clock scheduler
to support both unmodified applications as well as power-aware
applications specifying their future needs (AET and deadline).
We use a combination of interval-scheduling (for handling
unknown workloads) and energy priority scheduling (sup-
porting power-aware applications). We call the combined
clock schedulerPowerScale. For convenience PowerScale is
implemented as a daemon process in user space, but it can be
moved inside the kernel when the need arises. An application
connects to PowerScale using a UNIX socket and specifies
its workload as a set of tasks with starting times, deadlines,
and processing needs (cycle count, minimum speed, or AET).
Before running the EPS algorithm, PowerScale empties all
sockets to consider at once all tasks currently made available
by the power-aware applications. The computed schedule is
then executed in a loop, listening on the socket for new tasks
by invoking select() with a time-out value matching the time to
the next speed change. The EPS algorithm may preempt tasks.
PowerScale uses the Linux process scheduler for this purpose
and sends STOP and CONT signals to processes that must be
preempted and resumed, respectively.

The interval-based component of PowerScale serves two pur-
poses 1) it supports traditional applications and 2) it corrects
for miss predicted workloads by power-aware applications. Tra-
ditional applications do not register their workload with EPS,
hence, the speeds determined by EPS will be too low. Mispre-
dicted workloads can cause EPS to determine a too low as well
as too high speed. The interval scheduler within PowerScale
monitors the Linux process scheduler statistics to see if the EPS

schedule needs to be adjusted or not. When the system load (pro-
cessor utilization) is close to 1, the CPU is running at the right
speed. Otherwise, the speed is adjusted: an overload (util1)
is handled by increasing the speed, an underload (util0.5) is
handled by reducing the speed. In effect the interval scheduler
provides negative feedback to the speed schedule produced by
EPS. To ensure stability the interval scheduler uses relatively
long intervals in which EPS can issue multiple speed changes.
Therefore, the speed correction is applied as a delta (e.g., two
steps up) to the rapidly changing EPS schedule.

The interval scheduler itself is quite flexible and operates with
a parametrized interval length (a multiple of 10 ms, the granu-
larity of Linux’s 100-Hz internal timer). This allows it to operate
stand alone (i.e., without EPS); a short interval length should be
used to be able to closely follow the changes in the workload.
To further improve the responsiveness of the system we em-
ploy the following heuristic. On consecutive speed increments
we double the correction factor (exponential increase). On con-
secutive speed decrements, however, we simply step down to
the next lower correction (linear decrease) since running at a
too high speed does not impact responsiveness; only energy is
wasted. The correction factor (delta) is applied to a fixed max-
imum performance schedule (236 MHz).

A modification of the power-aware video decoder was re-
quired to work around the poor granularity of the internal Linux
timer (100 Hz). The H.263 decoder has a simple rate control
mechanism for displaying the frames at the specified rate (15
fps): after decoding a frame it computes the time left until the
next display deadline, and invokes the usleep() system call to
wait for that time to pass before outputting the video frame.
Usleep() may return up to 10 ms late due to the poor Linux
timer granularity, which is a significant part of the frame time
(67 ms). Each delay causes a frame deadline miss, and must be
compensated for in the next frame to catch up. When running
at a constant high speed, this happens automatically by waiting
a bit shorter in the next frame. When scaling speeds, however,
we must explicitly account for the inaccuracy by overestimating
the computational demand of each frame. We took a drastic ap-
proach and replaced the usleep() call with a busy-wait loop, in
which we read the clock until the next display deadline is met.

B. Video Decoder Modes

We used the experimental setup discussed in Section V-A to
measure the power consumption of our extended H.263 decoder
(Section III) on top of PowerScale.

Table III shows the average power consumption of the LART
platform for decoding a test sequence for the three supported
modes of the decoder: feed backward (FB), feed forward (FF),
and optimal (opt). For comparison the “236” column shows the
average power consumption with clock scheduling disabled and
using a fixed clock frequency of 236 MHz. The average power
is computed by measuring the total energy consumed by the
LART and dividing that by the duration of the test sequence. The
test sequences are stored in the RAM-disk provided by Linux,
hence, little energy is needed to retrieve them.

The measurements show that the FB mode reduces energy
consumption considerably compared with running at 236 MHz,
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TABLE III
AVERAGE POWER CONSUMPTION[mW]

for example, the average power dissipated when decoding the
Grandma sequence drops from 404.6 to 244.5 mW. The reduc-
tion for FB ranges from 1.37 (Trevor) to 1.66 (Grandma). Pro-
viding the decoder with additional information (FF and optimal)
does indeed reduce energy consumption further, but the gain
is limited. In the case of FF, the reduction ranges from 1.40
(Trevor) to 1.67 (Grandma). The optimal policy achieves reduc-
tions in the range of 1.43 (Trevor) to 1.70 (Salesman).

The differences between the various policies is small because
voltage scaling only reduces the power consumption of the pro-
cessor core. The last column in Table III presents the power con-
sumed by the components (memory, bus, etc.) supplied from the
fixed 3.3 V. It shows that the fraction of the total power that
can be attributed to nonCPU subsystems is considerable. For
example, when decoding the Grandma sequence at 236 MHz,
209.6 out of 404.6 mW are consumed by nonCPU subsystems.
The fixed fraction of the total power consumption ranges from
47.4% (Carphone) to 51.8% (Grandma). As a consequence, the
maximum power reduction that can be obtained by controlling
the processor speed and core voltage is limited to roughly a
factor of two. We expect, however, that this limit can be in-
creased by optimizing the H.263 decoder to take the size of the
cache, which is part of the scalable processor core, into account
to reduce the memory traffic. For example, large look-up tables
are ineffective on the LART with its small data cache of 8 kB,
and degrade performance.

When considering only the power consumed by the processor
core, FB achieves a significant reduction of 2.25 (Trevor) to 6.45
(Grandma). The reduction by FF ranges from 2.33 (Trevor) to
6.63 (Grandma), and the optimal policy results in a reduction
of 2.59 (Trevor) to 7.02 (Salesman). The relatively small dif-
ference between the FB, FF, and optimal mode indicates thata
priori knowledge of frame length (FF) or complete processing
requirements (opt) provides only a small benefit. Thus, standard
H.263 video sequences can be decoded efficiently (power wise)
using the feedback mode.

C. Application-Directed Versus OS Scheduling

To show the advantage of application-directed clock sched-
uling over interval scheduling, we study the behavior of the
bursty video-decoding application in detail. We use the car-
phone test sequence since subsequent frames in this video often
differ considerably in size and sometimes in type (see Fig. 4).
Decoding a frame at a too high speed results in wasted energy;
decoding at a too-low speed results in a missed deadline. Our
modified H.263 decoder reports the accumulated miss times

Fig. 12. Power-quality tradeoff.

at the end. With this quality measure it is possible to study
the tradeoff between power and quality. Our accumulated miss
times metric is similar to the clipped-delay metric in the simu-
lations by Pering [30].

Fig. 12 shows the power-quality tradeoff for application-di-
rected clock scheduling, interval-scheduling, and decoding at
fixed speeds. Note that in all cases deadlines are missed. This
is caused by the initial I-frame in the carphone sequence that
cannot be decoded within 67 ms, even at the highest frequency.
The solid line in Fig. 12 shows the effect of decreasing the
(fixed) frequency from 236 MHz (405 mW, 63 ms) down to 133
MHz (278 mW, 388 ms). The power consumption goes down at
the expense of additional deadline misses since the number of
frames that cannot be decoded within 67 ms increases when the
clock frequency lowers.

In interval-based mode, PowerScale performs worse than run-
ning at a fixed speed. For example, with a 20-ms interval setting
PowerScale operates with an average power of 337 mW and
causes 400 ms of missed deadlines; running at a fixed speed of
192 MHz requires the same power, but reduces the missed dead-
lines to only 92 ms, while running at 133 MHz incurs a similar
miss time, but requires less power (278 mW). The problem for
the interval scheduler, is that a short-time average is not a good
predictor for the speed at which to decode the next frame. In-
creasing the interval length makes the scheduler behave more
like a fixed-speed scheduler; with a 50-ms interval the power
consumption gap to the fixed schedules (solid line) is smaller
than at 20 ms, but many more deadlines are missed. Without
additional knowledge an interval scheduler will never be able to
handle bursty workloads well.

Using the AET information from the power-aware video
decoder results in substantial power savings since the workload
description allows PowerScale (EPS mode) to select the right
decoding speed in most cases. The decoding of the carphone
sequence requires only 304 mW (100 mW CPU, 204 mW
non-CPU), and misses just a few deadlines: 67 ms in total,
of which the largest fraction is caused by the too-demanding
initial I-frame. For comparison, decoding at the fixed frequency
of 236 MHz consumes 405 mW (198 mW CPU, 207 mW
non-CPU) and delivers the same quality: 63 ms of accumulated



POUWELSEet al.: APPLICATION-DIRECTED VOLTAGE SCALING 823

Fig. 13. Clock schedules executed by PowerScale.

deadline misses. Thus, application-directed voltage scaling
reduces the power consumption of the processor core with a
factor of two. The total system power, however, is only reduced
by 25% because of the power consumed by the nonCPU
subsystems supplied by the fixed 3.3 V.

D. Multiple Applications

We now demonstrate the ability of the EPS algorithm to com-
bine the processing needs of multiple applications and create
a power-efficient clock schedule. In the following experiment,
the carphone sequence is decoded in conjunction with a syn-
thetic application. The synthetic application is set to execute
for a short period (150 ms, 40 MHz) near the end of the video
sequence (frames 141–143). Both the video decoder and the
synthetic task register their processing requirements (AETs and
cycle count, respectively) with the PowerScale scheduler. We
log the speed changes initiated by PowerScale during the ex-
periment, and measure the power consumption of the processor
core. The solid line in Fig. 13 shows the actions of the Power-
Scale scheduler for one second of the benchmark video (frames
135–150). The curve shows how the processor speed changes
over time (each frame takes 67 ms). The shaded area shows the
impact of the synthetic task on the EPS schedule: the speed is
raised to 207 MHz. For comparison the dotted line in Fig. 13
shows the behavior of PowerScale when running in interval-
based mode. The resulting speed is either too low (e.g., frame
136) or too high (e.g., frames 144–150).

We carefully crafted the combined workload to contain over-
lapping tasks. The synthetic task enters the system 25 ms after
frame 141 starts and must finish 25 ms before frame 143 ends;
the start-stop interval is indicated in Fig. 13. The synthetic task
thus overlaps with frames 141, 142, and 143. The EPS algorithm
schedules the synthetic task first, because it has the lowest flat
processor rate (40 MHz), followed by 141 (148 MHz), 142 (162
MHz), and 143 (207 MHz). The final schedule raises the pro-
cessor speed during the decoding of frames 141 and 142 (i.e.,
the shaded area in Fig. 13). This effectively creates a 30 ms gap
between frame 141 and 142, which contains enough cycles to
run the synthetic task (30 207 150 40).

The measured power dissipation of the processor (Fig. 14)
shows a shape that is quite similar to the clock schedule
executed by PowerScale in EPS-mode (Fig. 13). Note, how-
ever, that the peak-to-bottom power ratio is larger than the
corresponding speed ratio. Neglecting frame 137, which

Fig. 14. Processor power consumption of EPS.

Fig. 15. NonCPU power consumption of EPS.

requires no computation and causes the processor to enter its
special idle-mode, the peak-to-bottom power ratio is around 6
(frame 136 : frame 135 271 : 43), the speed ratio is around
2.5 (221 : 89). This shows the effect of the quadratic relation
between power and voltage. The exact time location of the
synthetic task is marked in Fig. 14. Its power consumption is
larger than that of its neighboring decoding tasks running at
the same speed because the synthetic task does not reference
main memory, hence, incurs no processor stalls when waiting
for memory accesses to complete.

Fig. 14 shows the power dissipated by the CPU only. Fig. 15
shows the power dissipation of the 3.3 V part of our system
(memory, bus, etc.). Despite the clock speed changes induced
by PowerScale, the system load in Fig. 15 shows a quite
regular pattern, except form frames 136, 137, and 142. The
decoding of frames 136 and 137 involves a PB sequence where
all computation is performed in the first frame (136), hence,
the “zero” power consumption in frame 137. The drop to zero
in frame 142 is caused by the execution of the synthetic task
that does not reference any memory, but only exercises the
CPU. The high peaks at the beginning of each frame are caused
by the video decoder performing the runlength decoding of
the compressed frame. This involves fetching data from the
RAM disk, where the carphone sequence is stored, into the
cache over the external bus. After this burst of memory traffic
the decoder starts processing the data, which requires more
computation, and the power dissipation of the memory sub-
system drops to a level around 200 mW. Note that the average
nonCPU power (202 mW) exceeds the average processor power
(118 mW), which limits the overall effectiveness of voltage
scaling.
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Fig. 16. Four power management frameworks.

VI. CONCLUSIONS ANDFUTURE WORK

Clock (and voltage) scheduling is an important technique
to reduce the energy consumption of mobile devices equipped
with a general-purpose variable-voltage processor. From the
hardware perspective the gains are impressive, for example, the
StrongARM SA1100 processor running at 251 MHz requires
five times more energy per instruction than when running at 59
MHz. Fully utilizing these gains, however, has proven to be
difficult.

Various researchers have addressed the underlying clock
scheduling problem. We classified the different approaches
based on the quality and availability of information about the
(future) workload, since that mainly determines the energy
efficiency of the resulting clock schedules. The application-di-
rected approach has the best information on the workload, and
can create an energy-efficient clock schedule that meets the
demands of the applications while minimizing the required
energy.

Application-directed clock scheduling in a general-purpose
OS context requires applications to become power-aware and
explicitly specify their processing requirements and deadlines.
In contrast to real-time systems, applications should specify
their AET instead of the conservative WCET. This results in
lower power consumption, since the AET is a better predictor
for the true execution time than WCET. Another advantage
is that an application may update its processing requirement
when its demand (AET) changes. In the case of video decoding,
we have shown that adding power-awareness can be done
effectively. Our AET estimator is both accurate and requires no
a priori information.

This paper describes our EPS algorithm that combines the
various task requirements (AET deadline) and yields a
clock schedule that is both energy efficient and meets task
deadlines. The approach is to order tasks according to how tight
their deadlines are and how often tasks overlap with others.
We schedule low-priority tasks first, since they can be easily
pushed aside (preempted) to accommodate for high-priority
tasks scheduled later. EPS does not always yield the optimal
schedule, but has low complexity and can be used as an
incremental online algorithm.

To demonstrate the effectiveness of application-directed
clock scheduling we have actually built a complete system
consisting of variable-voltage hardware (StrongARM based),
OS support (Linux driver), clock scheduling daemon (Power-
Scale), clock scheduling algorithm (EPS), and power-aware
application (H.263 video decoder). We measured and analyzed
the effectiveness of EPS with a workload consisting of the

power-aware video decoder competing with a computational
task. The results show that EPS successfully schedules both ap-
plications and reduces the energy consumption of the processor
with 50% when compared to running at full speed (236 MHz).
This is a significant improvement over interval scheduling
achieving 33% reduction. EPS achieves its reduction without
missing deadlines, unlike interval scheduling that does miss
deadlines. The processor only consumes a portion of the total
system power. When compared with running at full speed, EPS
reduces the system power with 25%.

Our future plans are to extend the application-directed
method for controlling voltage scaling to power management
in general. Within the UbiCom program we are developing a
framework that is based on the explicit exchange of perfor-
mance and power consumption information between hardware
devices (CPU, hard disk, wireless link, etc.), OS, and appli-
cations. The explicit exchange of information will allow us to
perform intelligent and efficient power management for the
complete wearable Ubicom system.

Fig. 16 shows four power management frameworks with
three different layers: hardware, OS, and application. Fig. 16(a)
is the traditional framework without performance-power
consumption exchange, the situation for interval-based clock
schedulers. In Fig. 16(b), applications specify their future
requirements to the lower layer and hardware devices can be
scheduled more efficiently, as shown in this paper. Fig. 16(c)
demonstrates interaction between applications and hardware.
An example of such interaction would be a power-aware
video decoder that meets almost all frame decoding dead-
lines, yet misses the deadlines for the complex and power
expensive frames. Such a decoder would extend the single
power-awareness data point in Fig. 12 into a curve that is
more power efficient than the fixed frequency curve. Fig. 16(d)
adds observers that log all application requests and try to
predict future requests for applications that do not specify their
hardware needs (similar to integrated schedulers). The purpose
of including observers is to improve the energy efficiency of
legacy codes.

Currently, we are working on an implementation of frame-
work (d) [Fig. 16(d)] on our LART platform. The target applica-
tion is wireless audio and video playback with a guaranteed bat-
tery lifetime that is specified by the user. Using the power con-
sumption information of the hardware devices (CPU, hard disk,
wireless link) and the application’s ability to scale the image
and sound quality, we can infer the control settings that provide
the best quality without draining the battery completely before
the user-defined target time.
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