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Abstract

Monitoring software behaviour is being done in various ways. Log messages are
being output by almost any kind of running software system. Therefore, learning how
software behaves from doing analysis over log data can lead to new insights about the
system. However, the number of log messages in a computer system grow fast, and
analysing the log data by hand is a time-consuming job.
The objective of this study is to propose and implement a scalable architecture for do-
ing real-time log analysis. Log data is structured so that analysis can take place, and
the solution is horizontally scalable in every module so that the approach can scale
with an ever-growing software solution. The focus of the study is on scalability, and
ease-of-use of the implementation of the proposed approach.
The proposed solution can scale horizontally and the test set up showed that reporting
features for anomalies remained instantaneous when processing 1.2 million log lines
per minute. The usability of the proposed approach is tested in a case study at Weave,
where bugs were found by running the proposed solution in a controlled environment.
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Chapter 1

Introduction

Monitoring software behaviour is essential when dealing with small and large systems. Re-
trieving insights on software relies on monitoring to understand how the system behaves
in production. Companies are emerging in the industry focusing on monitoring log data
from software [18] [19], proof there exists a growing demand for tools giving insight into
software running in production.

Software monitoring can be done in several ways, e.g. keeping track of resources used
up by the software by using metrics of CPU utilisation, RAM usage and network throughput.
It can also be done in a more specific way, namely monitoring Key Performance Indicators
(KPI) of software when they are exported. Typical KPI’s for database systems are the num-
ber of transactions and queries active, or average performance measured in the duration of
queries. When those KPI’s are not enough and more knowledge of processes in the software
are required, almost all software solutions use logging.

Logging means that the software outputs messages when running that can be useful
as they describe the state of process execution in the system at that moment in time. Log
messages can be targeted at different goals, problems or warnings about specific situations,
detection of security issues or even more general information on ongoing processes. Dur-
ing system development, log messages can be used for debugging purposes such as trou-
bleshooting for detected errors or critical situations, but also for monitoring the system’s
execution flows when running in production.

However, computer systems often generate enormous amounts of logs, which in turn
hold high volumes of possibly interesting and useful information. When computer systems
get larger, possibly scaled to multiple nodes on a cluster or consisting of various parts log-
ging their output messages, manually going through logs to extract relevant data becomes
difficult and useful information can be overseen. While the fact that a log message alone can
tell what the system is doing at that exact moment, in combination with other log messages,
it could also explain more about the processes the system is executing in order.

Therefore finding a way to structure log data can help identify latent factors which will
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1. INTRODUCTION

enable better analysis over the running system. When dealing with large amounts of log
data coming from multiple sources; however, structuring the data is not straight-forward.
And enabling analysis in real-time will require ever-growing hardware resources that are
not always accessible.

There are existing solutions like Dapper [41], Jaeger [12] and Zipkin [27], created by
Google, Uber and Twitter, respectively. All of them focus much more on network traffic
and heavily rely on dependencies like an API or library that needs to be used. The proposed
solution will focus on having the least amount of requirements to still work with any kind
of log data produced by systems and will do nothing with network calls directly. Though
the existing solutions are not equal to what this thesis will offer, they show there exists a
need of analysis tools based on data produced in real-time that can be analysed, which the
proposed solution will also provide.

A solution for dealing with large amounts of log data, structuring it and enabling a real-
time analysis on the data is therefore proposed in this study. The proposed solution works in
a distributed system, while the goal of this study is to prove there is a scalable way in which
large amounts of log data can be handled and analysed. A cluster is set up as part of this
study, together with an overview of all the parts in the architecture needed to create a scal-
able solution for dealing with large amounts of log data. Next to self-developed tools, out-
of-the-box components are used that can be installed on the cluster, like Prometheus [21]
and Grafana [10]. The log data is structured by using a prefix tree, which is furtherly dis-
cussed in the background and approach chapter. The prefix tree enables the log data to
be structured into a graph which can act in a DFA-like manner in which analysis can be
conducted. In this study, simple computations will be done on the graph in real-time like
measuring the time between log messages in a trace and comparing them against a previous
modelled graph for performance degradation. Also, new paths will be discovered in real-
time when compared to the previous modelled graph.

The goal of this study is to validate the performance of the proposed approach on ac-
curacy and scalability, where the proposed solution organises and structures large amounts
of log data in real-time so it can be analysed in real-time or at a later point in time. Rep-
resenting software as a state machine opens up the ability to use already existing analysis
algorithms, but existing tools do not scale and therefore, do not work in real-time. In this
study, we pose the following questions which help assess the performance of the proposed
solution. Beginning with what different aspects of log data impact performance of mod-
elling the graph and how does the approach perform with varying quantities of log data.
We look at what kind of computational resource metrics give insight on how performant the
approach is and if these metrics indicate when the approach should be scaled horizontally.
The last question is if performance degrades over a more extended period.

The results of this study are promising as they prove the fact that log data can be struc-
tured and analysed in a real-time manner in terms of CPU-utilization. The experiments
conducted in a small kubernetes [14] cluster are already handling 1.2 million log messages
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a minute. Heavier analysis computational-wise can be added in the future while log mes-
sages can be distributed amongst multiple deployments of the solution proposed making
it horizontally scalable. The reporting features of the proposed solution like performance
degradation and new paths found are still instantaneously reported when being read from
the message stream.

This work makes the following contributions:

• A scalable approach for real-time log analysis by presenting an architectural solution
for dealing with large amounts of log data

• An empirical study showing how the solution deals with varying inputs of log data

• A case study at Weave showing how well the solution integrates with existing soft-
ware and how it helps the developer

An implemented prove of concept can be found on github [23].

The thesis is structured as follows: first off background information on the software log
data and passive learning is discussed by using existing related work. The data structure
used, the prefix tree, is explained and why it is used in the proposed solution. Next, the
approach of cluster setup is discussed in detail as well as the implementation used for the
experiments. The methodology chapter indicates the research questions and which experi-
ments are conducted to provide results to answer the research questions. The results of the
experiments itself can be found in the appendix and are explained in detail in the Results
chapter. Finally, conclusions about the solutions are provided in the final chapter, together
with future work recommendations on how to improve the proposed solution.
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Chapter 2

Background

In this chapter, the background is given for aspects this thesis is expanding on. These aspects
consist of log data, data structures, passive learning, distributed systems and detection of
anomalies. We assess the state of research in these different categories here and discuss
them in this chapter. The research done here is used and resulted in the proposed solution.

2.1 Logging

Nowadays, computer systems provide large amounts of log data; therefore, manual analysis
becomes unfeasible. Automating log analysis does come with a multitude of challenges;
one of them is while application logs are largely readable for humans, it is not always inter-
pretable for automated systems.

To overcome this challenge methodologies are proposed like log parsing, log clustering
and graph construction. This way, log data can be interpreted by automated systems and
handled generically to finally extract latent factors that could lead to useful insights. To
implement any methodology first needs to be determined what data should be logged at all.

Computer systems log messages in various ways. Often, there is not a single format in
which logs are structured. Mostly a log message model consists of a timestamp, the type
of the log (e.g. INFO, ERROR) and a message containing parameters instantiated by the
context of the running code. To analyse the log data, a generic structure can be thought of
to model the messages, so that the constant parts can be divided from dynamically changing
parameters. Log parsing is used to transform log messages into these structured models
so log data can be effectively processed in the same manner. When the log structure is
changed, the log parsing model should also change and adapt, methods proposed by Xu et
al [49] infer models from parsing the source code to overcome this challenge. He et al [32]
and Lin et al [37] both researched what kind of data should be in log messages to make
them effective in terms of resolving issues by reviewing log data. They both propose that an
event identifier should be incorporated to make it possible to cluster log messages together
that are initiated by the same event; these could also be added without changing the source
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2. BACKGROUND

code. This identifier can be used in the proposed solution as an identifier to create traces of
log messages that originate from the same event or process.

For the proposed solution, traces of log messages could reveal more latent factors, how-
ever, it is not trivial on where to log in the source code, and more log output could also
mean less performant. Research done in the field of what to log exactly in terms of vari-
ables and where in the process should be logged is mainly determined by the rate in which
failures are logged by a system so that they can be handled. Cinque et al [30] found that by
injecting faults into the software and trying different patterns for putting log statements in
the source code, the developer greatly impacts the potential effectiveness of log data. By us-
ing simplistic patterns, e.g. log statements after certain branching in the source code, up to
60% [30] [39] of failures could be left undetected, whereas Cinque et al. also describe that
when log statements are thought out in the design this resulted in 92% of failures covered.

2.2 Data structures

Clustering of log messages can be used to merge correlating log messages together as an ex-
tra abstraction layer. Log messages that correlate with each other could possibly be pointing
to the same event happening in the code. Therefore if these messages are combined, it could
provide new insights when analysing them together. Clustering techniques are applied, like
using word frequency count in log data [38] [46] or transforming log data in heuristic fea-
ture vectors [40]. When it comes to finding sequences attached to an event with temporal
features, graph construction is used.

Graph construction for log messages is done to create a relation between multiple log
messages; this provides an extra dimension for log analysis to extract features from. If
a graph is constructed, it opens up a broad spectrum of available algorithms to use for
analysing the logs. Sun et al [44] for example proposes a technique where a CFG is con-
structed after using the Log Parsing Approach with Fixed Depth Tree [33]. A CFG is a
Time-weighted control flaw graph and is constructed to see what log templates follow each
other and in what time interval this happens. Yu et al. [15] give a different approach to
graph construction; the log messages are not fully related here by a temporal feature but
by co-occurring events. The first action that is required is representing the events and their
connections in a model; then a method is needed to extract events similar enough into a
pattern set. The graph in the proceeding is constructed in such a way that events that are
happening shortly after one another are represented with a shorter graph distance. Both
solutions just described focus on finding similarity between log messages; however, for the
proposed solution, this can already be deduced when an event or trace identifier is added to
the log message.

A directed acyclic graph (DAG) would therefore be what we need to achieve a Deter-
ministic Finite Automaton (DFA) like data structure for the log data. To be able to convert
incoming traces into a graph, we can use the unique identifier from a log message to create
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2.3. Passive learning

(a) Non-existing path creation
(b) Prefix tree

nodes and create edges amongst them. The first challenge here comes from the fact that
our solution should incorporate a directed acyclic graph so it would look like a decision
tree. Meaning the graph should depict and distinguish paths that can be created from traces
so that they are formed in a way that every path that can be extracted from the output of a
system to a resulting graph path. The most simple form would be creating nodes for every
log identifier and then create edges based on some shared generic information that can later
be analysed.

However, if we take a look at the following two traces simplified as ordered log events,
creating nodes and edges will result into paths that never existed in the output of the original
system as can be seen in 2.1a. The path A B C D is never seen in the original output but is
now created in the DAG.

A B C
A C D

To overcome the problem of creating non-existing paths, the data structure prefix tree
is chosen [25]. In this data structure, the edges are based on keys, usually, strings, which
take into account every part or character in the string and goes a level deeper in the graph.
Nodes only point to metadata; the edges define where the data is stored. An example with
the same trace events is shown in 2.1b where the edges are defined based on the identifiers
of the log lines. Working with the prefix tree data structure does result in correctly created
paths; however, it can create large graphs. Paths that end in the same node or have side
tracks which do return into an already existing path are separate, unlike a directed acyclic
graph. Merging these nodes without introducing non-existing paths is a heavy job in graph
theory and in this study is chosen not to do this merging while the result of this Trie holds
enough information and most importantly is valid to do analysis on.

2.3 Passive learning

Passive learning is about inferring graph models on the behaviour of the system [47]. In this
specific case, this will be done log data, by structuring log data into traces and model them
into a graph. The resulting graphs can then be analysed for multiple types of analysis like
automation of anomaly detection or measuring performance. Passive learning differs from
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2. BACKGROUND

active learning through the fact that active learning means that a systems model is actively
queried to get the responses to different inputs, and that inferred machines are verified
against that system. Passive learning relies on acquired observations and can be compared
against newly acquired observations. The work of Wieman et al. [48] introduces three
different tools that are in the same line of work of this study. First, the tool Synoptic [28] is
discussed which infers a state diagram from log files for debugging purposes. Next from the
same authors InvariMint [29] is discussed which models log lines on the edges, more like
a prefix tree. And last DFASAT [34], a work of Heule et al. is described, which also uses
a prefix tree-like structure to model log traces. All of the above have in common that the
models are inferred from historical log data that can be processed later on and try to merge
traces in the graph while still retaining unique paths in the graph. These works show that
structuring log data into a graph can be used effectively for analysis, and finding a way to
model a graph in a scalable way could benefit the industry even more.

2.4 Distributed systems

There are already existing and well-known technologies commonly used in the field of log-
ging and logging analysis. To be able to deal with large amounts of data, multiple kinds
of existing technologies can be used. Zhengmin et al. [52] provide, for example, a detailed
description of a scalable, high throughput distributed log stream processing system. It im-
mediately sums up many of the most used technologies in the different literature already
mentioned. For example Apache Kafka [35], Spark [51], Hadoop [11] and Storm [24] are
used by [38] [50] [40] and [52]. The common denominator here is especially the fact that
for large amounts of log data, a horizontally scalable and performing solution must be taken
into account. Another common factor is that software from Apache is widely used in the
research environment.
Dealing with large amounts of log data means using resources effectively when the goal is
to process the logs in real-time when the computer system is up and running, it may not
disrupt the workings of the system. In the literature is found a clear distinction being made
in terms of real-time and post-processing. Mainly because of the fact that some algorithms
are heavier to run than others. As already mentioned, algorithms can be resource hungry,
and without the necessary precautions, it may be damaging your healthy computer system.

An example of a scalable, high throughput distributed log stream processing system
was already mentioned, but it did not yet detect or predict anomalies. Yagoub et al. [50]
do provide a high performing anomaly detection system based on Apache Hadoop. It uses
machine learning to create time series (Microsoft Time Series algorithm [16]) to not only
detect anomalies but also to make a forecast and predict them. The content of the logs is
barely used in this log processing method, it uses the time series with MapReduce over
logs to monitor KPIs of the system, like disk and CPU usage and creates an anomaly index
based on the max and average usage. However, in the end, if an anomaly is found by a
sudden change in the anomaly index, it is able to trace it back to the log messages. Not
only performance is a challenge in real-time log analysis systems, as already mentioned in
both [44] and [42]. Sukmana et al [42] however uses a temporal feature to detect whether

8



2.5. Anomalies

logs correlate with each other. In a real-time system, this means the sliding border problem
becomes even more difficult to handle while not all information is known and a decision
must be made how big of a window is used to process the logs from.

2.5 Anomalies

This section focuses on anomaly detection and is divided into four subsections. This is
because in the field of log analysis literature focuses mainly on one or maybe two of these
aspects at once. The different methods used for anomaly detection derive different kinds
of anomalies; this section will describe what those different anomalies are and how they
are detected. The first subsection describes temporal anomaly detection, meaning the pri-
mary part of anomaly detection comes from the timing of log messages. The second one is
anomaly detection on performance measurements. The third focuses on the actual content
of the application logs. And the last one is visualisation which differs from the previous
three sections while it is not automated but requires manual labour to see anomaly trends.

Temporal anomaly detection is based on events occurring within time intervals; this can
be two or more related events happening within a certain interval. This interval can then be
a threshold or automatically calculated based on previous events. Proceedings that based
its anomaly detection this way are the already mentioned [49], [44], [45]. Not only related
events are time-boxed however, also frequencies of one kind of log model can be counted in
a certain interval like [40], [31] and [36] do. Kubacki et al. [36] creates three types of time
series, Pulse (p), Series of pulses (SP) and a period group of pulses (PGP). Where (SP) is
a sequence of (P) in a certain interval and the same for (SP) in (PGP). In combination with
correlation analysis, the anomaly in the time series can be traced back to the root cause in
the application logs, this was not fully evaluated yet, but the proceeding did show that the
application logs were synergetic with the time series. Creating time series are popular in
the world of log analysis while it is an easy concept to understand and makes sense when
working with timestamped data. The challenge here is also the already mentioned, sliding
window, and where to cut the borders when comparing your current logs against the subset
selected. Notice that any type of log parsing methodology can be chosen for this type of
anomaly detection, as long as the temporal factor is taken into account this will be a valid
option for log analysis trying to detect anomalies or failures. The proposed solution will
also heavily rely on the ordered log traces and by passively learning the graph model, the
time frame becomes an important factor on how valid the observations will be when com-
paring real-time log data against the built model.

Anomaly detection can also be done by checking the performance logs from a com-
puter system. Sudden changes in resource usage can indicate that something failed and by
time boxing this and correlating it with the application logs several works like in the works
of [50] and [36]. This way of detecting anomalies could be applied in almost any computer
system while this kind of system logs are very common. Although it may be too late when
the resource usages change, it is a method that can extend existing methods of anomaly
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2. BACKGROUND

detection and prevent future failures by analysing the result of these methods. In a way,
the proposed solution will also reveal performance issues in terms of comparing the time
between log messages in a trace, which could also indicate high resource usage.

Anomaly detection based on the content of application logs is the most resource-hungry.
Modelling log templates can be quite difficult in terms of changing structure. Using a sliding
window is taking less information into account, but it is a tradeoff that could be worthwhile
if carefully chosen. It is also hard to predict when the content of a message is malicious.
In-depth knowledge must be known about the context of the parameters in a log model. Al-
varez et al. [38] tried to score log models using LogCluster, but there were too many outliers
to detect outliers accurately. The proposed solution will therefore retain selected parts of
the log messages, but purely for later manual analysis.

Visualisation is a non-automated process, but anomalies can be detected through manual
labour. Visualisation is still applicable in the way that possible anomalies can be represented
visually. Suman et al. [43] focused on visualising the logs in such a way that anomaly
detection could be done manually. This was done by first parsing logs on topic and then use
Term frequency and finally making an intertopic distance map plus a bar graph. This makes
manual labour easier when dealing with large amounts of log data. In the proposed solution
a visual representation of the graph or parts of the graph will also be taken into account,
where a developer is helped to deal with the large structure that is built and still be able to
make decisions about it.

2.6 Existing solutions

Golang [8] is chosen for the development of the proposed solution. Golang is a program-
ming language initially developed by Google and is also opensource. One of the reasons
golang is chosen as the language to do this experiment with is that it coincides with a cost-
effective way of working with a cluster and therefore being a good fit for scalable parts.
Another reason is that all of the current software built by Weave [26], the industry partner
for this thesis, is currently developed in Golang. Golang is created to be compiled to self-
contained binaries, which do not have library dependencies out of the box, which makes
docker [4] images to deploy small, namely 13MB for this current solution. Docker [4] can
be used for creating images called containers, that incorporate all required software com-
ponents to run a program. Essentially it can be seen as a tool to preconfigure and tailor an
operating system to provide all the needs for a certain deployment and then be able to vir-
tually run it on a machine. Next to the fact that Golang can run in small containers, Golang
also offers a very resource-effective method of multithreading called goroutines, built into
the runtime instead of being handled by the operating system. This enables running a gor-
outine for every incoming trace, which makes processing very fast and non-blocking for
large amounts of incoming traffic.

Similar solutions to the proposed solution are mainly found in the network monitoring
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field. Tools like Dapper [41] developed by Google, Jaeger [12] from Uber and Zipkin from
Twitter [27] show that big companies in the industry have the need for analysis tools based
on log data. All of the above are mainly in use for tracing network calls, and showing
metadata like overall performance and bytes transferred, status codes returned and so on.
Some of the tools like Jaeger also enables the developer to create traces inside the source
code by use of a specific library, which needs to be taken into account when developing
the system. By using the standard OpenTracing [20] spans can be created inside of your
program, which can then be traced by Jaeger in the same way it traces network calls. For
network traffic however it is not needed to adjust the source code, tools like Envoy [5] by
lyft can reroute HTTP and RPC traffic and adjust them, by for example adding the needed
headers for the tracing tools.

2.7 Conclusion

All of the research being done into log analysis shows there are valid methods of analysing
log data that can reveal important latent factors when developing or monitoring a system.
The fact that almost any computer system outputs log data makes this a research field which
can potentially benefit many in the industry. However, it can also be seen that there are no
solutions that are solely reliant on log data for real-time analysis, only for post-processing
or with the use of external libraries. This is mainly because of the challenges which arise by
analysing large amounts of log data produced and unstructured data is also more complex
to process. Existing tools do exist, but they do not scale or do not work in real-time, where
creating a scalable real-time log monitoring solution is the goal of this study. Therefore,
this study is an extension to the field of log analysis in such a way that it can provide a proof
of concept that real-time analysis can be done and potentially benefit the industry more than
existing techniques.
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Chapter 3

Approach

In this chapter, we describe the proposed solution in an abstract and generic way. Different
parts of the proposed solution are distinguished and defined as modules which are either
required or optional. For every part or module in the proposed solution, a definition will
be given and also the way it interacts with the other different parts of the system. Next,
the implementation of this described approach will be given in detail, like the technologies
and languages used and why they were chosen as a valid option to experiment with. The
proposed solution is based on a few preset requirements. This gives insight into what the
proposed solution is able to do and also describe the research that this study focuses on:

1. Collect log output of running systems

2. Model log messages in a structured manner

3. Form traces of collected log data

4. Process log traces in a distributed manner, so that horizontal scaling is an option

5. Create a DFA-like data structure from log traces which enables analysis

6. Able to store the state of the system as a modelled graph

7. Able to compare the current state of a system against a previously stored state in
terms of new paths

8. Able to detect performance degradation in real-time in terms of timing between
log messages in a trace

The proposed solution focuses on a distributed system which enables processing of a
large input of log data. Therefore the proposed solution depends on many other factors,
such as the environment it will run on and how the log lines and/or traces are being fed into
this solution. This chapter will, therefore depict a systematical diagram 3.1 of how all parts
of an environment should interact and explain how all these parts work in detail.
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Figure 3.1: Overview of all parts needed for distributed real-time log analysis

3.1 Architecture

Nowadays there are many systems in production that produce high amounts of log output
like systems of companies, e.g. Google, Facebook, Adyen, Amazon. When structuring
traces in real-time and performing real-time analysis on those traces, it requires scaling up
resources. If there is only one machine able to run a program for processing this stream
of traces, it means that the only option is to scale vertically, meaning more power to this
one machine in terms of CPU or RAM. Scaling up vertically can mean prices for the re-
quired resources can go very high, and eventually there will be a limit to what one machine
can take in terms of hardware. Another way of scaling is horizontal scaling, which requires
adding more machines that can process the same input, which will be cheaper in many cases
and the limit will depend on how many machines can be added. Therefore this architecture
focuses on every part to be horizontally scalable, which will make it easier to deal with large
amounts of log data.

There are many variations in which systems produce log output. It can be one program
on the machine producing the output to collect; it can be multiple programs on one ma-
chine or even multiple programs on multiple machines. While there are many variations,
all produced log output data should be collected in some generic way and from there it can
be further processed. In the proposed solution, this means having a central hub in the form
of a Pub/Sub queueing system in the environment, which still can be scaled horizontally.
A publish/subscriber system is able to receive all log lines and traces, after collecting it
is able to redistribute them using an algorithm like round-robin to subscribers which can
further process the data stream. Popular event queueing systems are Apache Kafka [35],
RabbitMQ [22], Apache ActiveMQ [1] and NATS [17].
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Figure 3.2: Sequence diagram data flow through system

There are multiple ways in which an existing program can interact with such a Pub/Sub
system. One way can be done without alterations to the existing codebase of a system by
implementing an exporter in the required environment. Figure 3.1 shows this by having
Machine one and two producing log data with an exporter sending it to the event queue
on the top left. Exporters such as LogStash [15] and Fluentd [7] gather logs in a system
based on set configurations and export those too, for example, an event queuing system also
based on configurations. Another way would be sending produced log data directly to the
queueing system. In figure 3.2, a sequence diagram can be seen that shows how log data
flows through the system.

The process continues after the collection by finding traces from the produced log lines,
which means transforming single log lines to merged ones which represent traces. In figure
3.1 this can be seen in the bottom left, where log lines are sent to the stream processor, and
the resulting traces are sent back to the pub/sub system. The proposed solution requires an
environment where these log lines can be time-windowed with the help of a data streaming
processor like Apache Flink [6] or Benthos [2]. A data streaming processor will need to
work with a sliding-window like mechanism to be able to process ever-growing incoming
data and bundle log lines together as one trace. With the help of data streaming processors,
we are able to divide log lines by time and by preconfiguring a time limit between log lines
a complete trace can be found. In the example diagram 3.3 this is made clear by a limit of
twenty seconds. It displays a logline with trace identifier ’A’ and ’B’ in the first time win-
dow. By not detecting trace identifier ’A’ in the next time window, by definition, this trace
is now finished and can be collected. In the end, this means that a trace will at maximum
be processed the preconfigured limit in seconds later than the last log line with its trace
identifier.

The last part of the data processing is the throughput of the traced log data to the child
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Figure 3.3: Logs divided into time windows of 20 seconds each

instances, as can be seen in the middle in figure 3.1, there are two parts in this final process.
One part, defined as the main instance from this point, is the overall state manager, which
is able to store the state, merge new states, export the entire state and able to handle spe-
cific requests. The other part, defined as child instances, are scalable units which are able
to receive traces, build a graph dynamically and be able to do real-time analysis on them.
Child instances subscribe themselves to the queue and can be deployed separately, all of
the childs retrieve traces based on a round-robin algorithm, so computational-wise the load
will be spread. Any number of childs can be deployed, which makes the complete solution
horizontally scalable and every child can do its own computations on the incoming trace,
built graph model and comparison to the previous base graph. The main instance then does
the merging of the partial trees of the children and offers API access, metric exposure and
export possibilities.

The scalable child deployments are able to do simple computations on traces, these can
be extended, but now are limited to:

• Computing time difference between log lines in a trace

• Comparing average time difference between loglines against the modelled base graph

• Reporting degradation in time difference between log lines

• Reporting new paths found compared to modelled base graph

• Reporting spikes in amount of specific path processed

• Reporting specific identifiers/payload in paths (e.g. following user identifier in log
data)

The main instance is therefore relieved of the above-mentioned computation responsi-
bilities and is just responsible for merging complete graph structures that it retrieves from
the child instances. It can then store or export its current state so it can become a new base-
line for the child instances to compare their computations with. However, there are a few
minor computations that the main instance is still responsible for, such as when the child
instaces find a new, it reports to the main instance, so it will only flag a new path once,
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Figure 3.4: Sequence diagram queue/child/main communication

instead of every child flagging it. These are very small operations; however, which only
account to exporting metrics which all the child parts are doing as well.

The child parts are stateless, and in fact, they reach out to the main instance when they
start up to retrieve a baseline. When retrieved, they run on their own by subscribing to the
trace queue. This means that child parts can be turned on and off at any moment and can
scale independently from the main deployment. The main instance can also reboot at any
time; it will only read in in the latest or preconfigured baseline, child parts will retry sending
their information if they won’t succeed. Figure 3.4 depicts how the different parts of the
system interact, starting with requesting the baseline, then subscribing to the trace queue
and afterwards processing every sent trace.

In summary, all the different parts of an ecosystem to deal with large amounts of log
data are now described. Starting with the programs or machines that output raw log data,
which are then collected by an exporter that sents the log data to a queueing system. From
there it is processed by scalable stream processors which merge the separate log lines to
time-windowed batches where traces can be extracted. Then these traces can be redis-
tributed to the scalable child deployments by the publish/subscribe queueing system. The
child deployments will do the computations and building of the graph structure, and the
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main deployment will receive the partial trees when a preconfigured condition is met and
will merge, store and potentially export them.

3.2 Log structure and parsing

Log data can vary in structure among every computer system and program out there, but
there are a few components in log data that are shared (standards) among many solutions
already in production. Therefore the proposed solution requires three different parts in a log
message to be able to infer a graph from them. The following properties are determined as
required for the proposed solution to be able to create a graph:

• Timestamp

• Static log ID

• Trace ID
The timestamp is needed to make sure logs can be sorted inside a trace based on exe-

cution timing while it is not known whether log lines will be delivered in the correct time
sequence. A static log ID is required to identify a log output in the systems codebase where
the message could differ every time based on dynamic value input. Lastly, a trace ID will
be needed to identify which log lines were put out by the same execution process or flow,
which eventually can be ordered on the timestamp and the result will be one execution path
in the graph. All other kinds of payloads like the message or maybe JSON [13] defined
fields can still be taken into account but are not needed to create an execution path graph.

The log lines below depict an example of the required properties together with a dynam-
ically created message on runtime. The lines are formed of timestamp, log identifier, trace
identifier and message part, respectively. It can be seen that there are two different traces
in this example while there are two different trace identifiers, furthermore, there are five
different log identifiers. The importance of the log identifier is shown by the two messages
’Retrieved 601 users’ and ’Retrieved 602 users’ which differ from each other in message
but are actually coming from the same place in the codebase. Hence the same log iden-
tifier ’bZRjxAwnwe’ which enables the graph to form a static path from log output in the
codebase instead of basing it upon dynamically changing messages.

[2019 −10 −28 1 0 : 0 5 : 0 1 : 7 3 6 ] {MRAjWwhTHc} { cdddbcdf } S t a r t e d Reques t [GET ] : / v1 / u s e r
[2019 −10 −28 1 0 : 0 5 : 0 2 : 1 2 6 ] {bZRjxAwnwe} { cdddbcdf } R e t r i e v e d 601 u s e r s
[2019 −10 −28 1 0 : 0 5 : 0 2 : 2 2 0 ] {MRAjWwhTHc} {6 ce65118 } S t a r t e d Reques t [GET ] : / v1 / u s e r
[2019 −10 −28 1 0 : 0 5 : 0 2 : 2 2 3 ] {TndUJHiQec} { cdddbcdf } Appended s t a t e s t o u s e r s s u c c e s f u l l y
[2019 −10 −28 1 0 : 0 5 : 0 2 : 2 8 9 ] {uXvgxEqdoX} { cdddbcdf } F i n i s h e d Reques t [GET ] : / v1 / u s e r
[2019 −10 −28 1 0 : 0 5 : 0 3 : 1 2 0 ] {bZRjxAwnwe} {6 ce65118 } R e t r i e v e d 602 u s e r s
[2019 −10 −28 1 0 : 0 5 : 0 3 : 1 2 0 ] { t C j y S f U r i e } {6 ce65118 } E r r o r append ing s t a t e t o u s e r X
[2019 −10 −28 1 0 : 0 5 : 0 3 : 1 6 0 ] {uXvgxEqdoX} {6 ce65118 } F i n i s h e d Reques t [GET ] : / v1 / u s e r

Both the traces in the example begin with the same log identifiers, but they follow differ-
ent paths in the codebase. Below in figure 3.5a and 3.5b a resulting graph is depicted from
these example log lines as traces and merged in one graph. It also shows the importance of
finding a correct data structure to hold this information and being able to quickly store and
access these parsed log lines and resulting traces. While the traces can be depicted as single
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(a) An example of separate traces as one path
and together in a graph

(b) An example of traces in a graph

paths in a tree, but ideally, the nodes of the graphs that are the same are merged when they
still depict the correct paths.

3.3 Building prefix trees

For structuring traces in a scalable way, implementation is needed for the prefix tree that can
be shared amongst multiple deployments of the solution. A prefix tree works via the creation
of paths in a graph on information stored in the edges. The nodes of a prefix tree can be seen
as a placeholder for data, but do not have true meaning in terms of the representation of the
graph. That means that an alphabet can be chosen as symbols for each edge in a prefix tree,
where for each symbol in the chosen alphabet, an edge is created with that symbol from the
previous symbol edge. Meaning that when structuring the prefix tree, a word in the chosen
alphabet will be extracted into symbols, and for each symbol read from the beginning of the
word, an edge will be created and the next symbol will be one level deeper. Figure 2.1b in
the background chapter already shows how a prefix tree is built when the words ’ABC’ and
’ACD’ are structured into a prefix tree.

Because this thesis is about processing large amounts of log messages and model them
into a prefix tree, the implementation is based on a thread-safe prefix tree structure. The
prefix tree implemented data structure works with mutual exclusion locks which make in-
serting new paths and accessing existing paths faster by the fact that is concurrently acces-
sible by multiple threads. Below is a pseudocode implementation 1 of the algorithm which
incorporates this data structure and works with mutually exclusive access:

3.4 Combining prefix trees

All the child deployments will build their own prefix tree based on the traces they receive.
Building the prefix tree, computing and adding metadata can get resource-hungry depending
on what kind of computations are done. However, the main deployment, which is respon-
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Algorithm 1 Process traces algorithm
1: procedure RETRIEVING TRACE

2: trace← queue
3: goroutine processTrace.
4: processTrace:
5: Sort trace by timestamp
6: for lineIndex in trace do
7: trace(lineIndex+1).Performance = delta(trace(lineIndex),trace(lineIndex+1))
8: start putLine trace(lineIndex).
9: end for

10: putLine:
11: node← trie
12: logIdentifier← line.static
13: for char in logIdenti f ier do
14: node.MutexLock
15: child← node.Children(char)
16: if child eq empty then
17: child = Node()
18: end if
19: node.MutexUnLock
20: node = child
21: end for
22: node.MutexLock . Extra computation can be done on node values here
23: node.Value = NewValue
24: node.MutexUnLock
25: end procedure

sible for creating the eventual prefix tree, based on the partial ones it receives over time, is
not scalable. Therefore the computational complexity of combining prefix trees must not be
high, in order to make the proposed solution a valid scalable way to process large amounts
of log data.

The main deployment will periodically receive partial prefix trees from its children.
Therefore a queue will be build to merge one at a time with the latest main tree known. To
combine the main tree with a received partial tree, a new prefix tree is created. Beginning
in the root of the main tree, all edges from the root will be checked if they are known in the
received partial tree, if not, the entire path from the root can immediately be inserted into
the new prefix tree. If the edge is found in the received partial tree, the computed variables
will be aggregated, and the edge will be inserted in the new prefix tree. From the mutual
edges the next edges, children, will go through the same process, if not found in the received
tree, immediately add the remaining path from that edge, otherwise aggregate.
The only remaining step is then adding the complete paths that are found in the received
partial tree, but not in the previous main tree. Adding these can be done by doing a second
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Figure 3.6: Architecture of the complete environment with interactions of the actual imple-
mentation

round over the received partial tree, without adding the mutual edges.

This means that in the worst-case scenario, you go over all the edges of the main tree
(Em) and traverse all the edges of the partial received tree (Ep), coming down to a complex-
ity of O(Em+Ep) to combine two prefix trees.

3.5 Implementation

The current implementation is created with focus on reproducibility. Everything required
to run the experiments detailed in the next chapter is available on Github [23]. This section
will describe what technologies are chosen to fulfil the described solution at the beginning
of this chapter. Every decision that is made in this process will be discussed in detail and
explained why this method was chosen. The complete overview of the architecture can be
seen in 3.6 where all subsequent interactions are described by a number following what
action is taking place between the different components of the system.

3.5.1 kubernetes

The first part of the ecosystem starts with kubernetes. Originally created by Google [9]
and now maintained by the Native Computing Foundation [3]. Kubernetes is a platform
for automated application deployment, scaling and management. Kubernetes works via
custom configuration resources which indicate how an application should be deployed, for
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Figure 3.7: Helm chart interaction with kubernetes cluster

example, which environment variables the application should have and what kind of hard
disk an application should be using. It is a widely used platform for exactly the kind of
challenges this study faces, namely deploying a lot of different components in one shared
cluster and being able to scale them up with configurations. These configurations can be
premade by using Helm charts, which are a sort of templates for deployments where you can
edit parameters in the template quite easily for changing your configurations easily. These
helm charts are also available for easy reproduction of the experiments and for later use of
the scalable logging analysis by deploying the proposed solution. In figure 3.7, a diagram
is shown how helm charts are created and how they interact with the kubernetes cluster.

3.5.2 Event queueing system

As already described there are various Event queueing systems available, while this imple-
mentation works with kubernetes the choice went to NATS [17] and NATS Streaming which
are very easy to deploy on kubernetes and have a self-developed and documented library
for Golang. Furthermore, the differences between various event queueing systems are not
important for this study while they all should be able to offer and achieve the same results
with minor differences in performance, depending on what is needed. For this solution a
combination between NATS and NATS Streaming is used, while NATS is used for At Most
Once Delivery and NATS Streaming is used for At Least Once Delivery. NATS handles the
load of the experiment and could be interchanged with NATS Streaming if a one hundred
percent guarantee is needed when delivering log lines, for the experiment, there were no
losses in log lines when using NATS. Therefore NATS is chosen for handling the deliver-
ance of the separate log lines while it is more performant. NATS Streaming is an extension
on NATS; NATS Streaming offers durable subscriptions and more options in the redistri-
bution of queue items. This is needed for the Round-Robin distribution of traces to every
child instance that subscribes to the trace queue.

3.5.3 Streaming processor

For the streaming processor, Benthos [2] was chosen while it is a light-weight single purpose
stream processor which can be extended by Golang code which makes it easier to integrate
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with the other parts in terms of programming. Benthos handles simple operations over data
streams from all kind of sources; simple operations include batching and merging multiple
objects into one on predetermined parts of a message like a trace identifier. This makes
Benthos a great candidate for batching and already pre-grouping log lines which belong to
each other in a trace. Additionally, a plugin is written, which takes two batches following
each other and outputs traces to one queue and keeps the remainder in memory until a new
batch comes in like described in the previous section.

3.5.4 Metrics

To keep track of all different parts of the proposed ecosystem, the system should be mon-
itored in a way that gives the user an overview of what is happening. This can give a grip
on which part is using what resources and bottlenecks can be determined. To monitor the
system, multiple metrics can shine a light on how well a system is interacting. Hardware
metrics are most common to monitor, but also the throughput, latency and other kinds of
custom software metrics can give better insight. One universally used solution for keeping
track of metrics in a kubernetes cluster is by using Prometheus [21]. There is a wide range
of exporters available for Prometheus, which measure all kinds of software and hardware
metrics and sends them to Prometheus. Prometheus offers a query language to get an in-
sight into collected metrics. Grafana [10] comes in to visualize these queryable metrics
from Prometheus, where dashboards can be created with multiple graphs to get an overview
of what is happening in a cluster in real-time.

In this solution, the main instance as well as the child instances export metrics to
Prometheus, like the amount of traces processed and new paths that are encountered. Fur-
thermore, exporters are installed for NATS so that throughput can be measured in real-time.

In the given implementation Grafana is included, and the dashboard keeps track of the
following metrics in real-time:

• New paths encountered against the baseline

• Deterioration of performance in specific paths

• Amount of traces processed

• Amount of log lines processed

• Test identifier counter

• NATS RTT

• NATS cluster network throughput

• NATS messages throughput

• NATS connection amount

A small example of how this dashboard looks can be found in figure 3.8
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Figure 3.8: Grafana metric visualization
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Chapter 4

Research methodology

This chapter will describe the goals, research questions and methodology of how the results
will be acquired and benefit the analysis. Every research question is described on how to
experiment and evaluate results so the research question can ultimately be answered.

4.1 Goal

The goal of this study is to validate the performance of the proposed approach on accuracy
and scalability, where the proposed solution organises and structures large amounts of log
data in real-time so it can be analysed in real-time or at a later point in time. To assess there
exists a way to structure a large amount of log data in real-time, distributed programming
patterns are used to be able to cope with scaling problems when limits in hardware resources
are reached. Dealing with log data in real-time means that the system should handle and
process log data quick enough so that no latency builds up.
This chapter, therefore, describes how implementing a distributed system to deal with log
data can overcome the challenge of running behind in processing log data. This results in
a system that models the data into a graph and can do simple computations on the graph in
real-time. Firstly the research questions will be listed and explained how they would give
insight into the performance of the developed solution. Then the methodology is described
on how to answer these research questions.

4.2 Research Questions

The research questions that will be approached or answered in this thesis are:

• RQ #1: What different aspects of log data impact performance of modelling the
graph?

• RQ #2: How does the approach perform with varying quantities of log data?

• RQ #3: What kind of computational resource metrics give insight on how performant
the approach is?
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• RQ #4: When and how much does the approach scale horizontally?

• RQ #5: Does the performance of the approach degrade over time?

All the above-mentioned questions will help conclude whether the proposed solution
will be successful in dealing with large amounts of log data and whether the proposed
solution actually scales when the log data size will get bigger.

4.3 Methodology

This section will describe the methodology which will be used to answer the questions
above. Using the implementation of the previous chapter, several metrics will be collected
and researched to report findings which will prove or disprove theories about the developed
system. The reasoning behind the choices made when implementing the system accompa-
nied by the findings on researching the performance of the system will eventually lead to a
conclusion on the ultimate goal, which is to find a scalable solution when dealing with large
amounts of log data.

4.3.1 What different aspects of log data impact performance of modelling
the graph?

It is essential to know which factors degrade performance while scaling up in resources
can be reduced by using efficient formatted log data. To determine what kind of factors
impact peformance when dealing with log data, the log data itself, the algorithm and data
structure are looked at. Parameters that describe log data and traces in a measurable fashion
are determined as follows:

• #1: The length of the static character part of the log identifier

• #2: The length of a path in a graph

• #3: The number of different paths in a graph

• #4: A combination of the number of paths and the length of paths

• #5: The amount of traces processed

To analyse the impact of these different aspects of log data, a number of tests will be
run with a varying input. These tests will be run on a single instance by running unit tests.
Results are measured in log lines processed each second and can be used when determining
how many instances need to be deployed, while results depict when the single instance
reaches its limits. The table 4.3.1 gives the varying input per experiment that is run.
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Exp Nr. Nr. of paths Depth of path Static part length Nr. of traces range

#1 1 10 10 - 1.000.000 100 - 1.000.000
#2 1 10 - 1000 10 100 - 1.000.000
#3 10 - 1000 10 10 100 - 1.000.000
#4 10 - 1000 10 - 1000 10 100 - 1.000.000

The length of the static character part of the log identifier is taken into account while
the prefix tree is using the characters of the static part in log data to construct the paths in the
graph. Expected is that when the static part of a logline becomes longer, the computation
to process and insert it into the graph will take longer as well. Measuring this can be done
by generating log lines with a fixed length static part and measuring how many lines will
be processed in a time range. This process will be repeated with different fixed lengths and
comparing the number of log lines processed per second for each of the procedures.

The length of a path in a graph is defined by the number of log lines in a trace. While
there can be reasoned about the amount of logging in production, there is no standard in
how much log lines a trace will contain. By constructing a test where the amount of log
lines in each trace is fixed, the number of log lines processed per time unit can be measured
again. Changing the amount of the log lines per trace in every repeated procedure will result
in gaining insight on what the depth of a path contributes to the improvement or degradation
of performance in processing log data.

The amount of different paths in a graph is defined by the number of different se-
quences in all traces processed. The number of different paths can be generated by creating
traces that have a fixed amount of different sequences in static log parts following each
other. By repeating this experiment multiple times for a growing number of different se-
quences, the output can again be measured in log lines processed per time range. While we
are testing the different amount of paths, it should be noteworthy that the experiment for
1.000 paths can only begin at 1.000 different traces.

The amount of traces processed will be measured for every experiment described
above. This will mean that every experiment will be run with a growing amount of traces
as input. To reduce the factor of input lag, all the traces will be generated before the exper-
iment and stored in Random Access Memory (RAM) and then be fed to the benchmarking
experiment. This will result in measurements that solely rely on processing traces instead
of creating the traces, and if there is degrading performance, it means it can only be blamed
on the processing part.

A combination of the number of paths and the length of paths will be experimented
with to get an overview of the performance when multiple factors are enlarged together.
This could mean it will result in the same performance, or it will degrade even faster.

All of these experiments are benchmarks which will be available in the codebase and
can be validated locally by running ’go test -v’.
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4.3.2 How does the approach perform with varying quantities of log data?

To test the scalability of the implemented solution, the approach will be tested against vary-
ing quantities of log data. This will be done in an environment that is set up with log data
generators, developed to output a specified amount of log messages with variable input pa-
rameters based on the described log data factors above. By feeding log data into the system
in a controlled way, the output can be measured in terms of log lines processed per minute
and reporting features can be controlled and measured in time to deduct latency of the im-
plemented solution.

4.3.3 What kind of computational resource metrics give insight on how
performant the approach is?

To obtain insight about the performance of the system, the cluster described in the previous
chapter will be set up. By doing this, Google Cloud Monitoring gives insight into CPU
usage time and utilisation accumulated per minute. Besides that, it will also provide bytes
used in Random Access Memory (RAM) and Disk usage. Furthermore the exporters for
Prometheus that will be set up provide additional information about the deployed NATS
cluster in terms of the number of messages received and sent, connections made, number
of bytes passing through the cluster and Round-Trip Time of messages. In addition, the
solution created will also export log lines, trace and new paths processed to Prometheus. In
the end, all of these metrics can be reviewed in either Google’s Cloud Console interface or
Grafana that visualises the metrics exported to Prometheus.

In summary, the following metrics will be reviewed to gain insight on what resources
are being used to indicate which parts of the cluster need to be scaled up at what point in
time to deal with large amounts of log data:

• CPU usage time

• CPU utilisation

• RAM usage

• Disk usage

• Log lines processed

• Traces processed

• New paths encountered

• NATS RTT

• NATS Network usage
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Primarily the focus for performance measurement will be on the self-created implemen-
tation, while other parts of the system are interchangeable with other solutions available in
today’s market. However it is important to keep in mind that these parts are crucial for
the end-to-end process of dealing with log data, so measurements will be done for these
parts, and they will be reviewed to decide whether they will become a bottleneck or not in
the entire pipeline. In the end, it must be pointed out that the architecture of the complete
pipeline is set up in a way that every module can be scaled up while they are all selected on
the capability to support distributed processing.

4.3.4 When and how much does the approach scale horizontally?

To measure the performance on how the system will handle the amounts of log data that
is fed into the system, the metrics in the previous subsection are used. While several
components like the stream processor and NATS are out-of-the-box solutions and can be
interchanged with other solutions in the field, the focus of the distributed programming ex-
periments will primarily focus on the solution implemented in this study. To focus on the
solution implemented in this study, the complete traces will be generated at once, instead of
separate log lines, to reduce the amount and size of the message that passes through NATS
and STAN. This will result in being able to handle more traces, and loglines by the solu-
tion implemented and therefore, will be a better indication of how the solution implemented
responds to large amounts of log data. To find out how the distributed methodology used
affects this performance, the child parts of the system are scaled individually. The metrics
like log lines processed each second but also all the aforementioned metrics can then be
reviewed individually per deployed instance and compared against each other. This enables
the system to provide information on whether log lines are distributed equally among the
individual instances and how this affects resource usage.

4.3.5 Does the performance of the approach degrade over time?

In this part, the system will be stress-tested as part of the experiment to see what amount
of log data the system can handle when running on the machines that are set up for this
experiment. By feeding as much traces as possible to the system, the data structure will
be enlarged, and performance degradation can be measured by using the aforementioned
metrics. Although the first research question will already be able to give insight on the most
significant performance measurements for dealing with log data, running and measuring it
in a full set up environment will be able to validate or invalidate previous findings.

In the current implementation, a few features are built in to get insight on latent factors
about the behaviour of the software. Investigating the Round-Trip-Time of log data being
fed into the solution until it results in structured data enables research on how well the solu-
tion is able to report anomalies in real-time. Currently one of the features is measuring the
performance in nanoseconds from node to node in the resulting graph, where new paths pro-
cessed can trigger reports on degrading performance. The Round-Trip-Time of a degraded
trace can then be defined by the delta of the exact moment of feeding the degraded trace
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and the exact moment of reporting back the metric. In addition to the prerequisites for this
experiment, one trace should be defined which differs in delta with a preconfigured bound-
ary in the delta between nodes When this is set up, the experiment can be done repeatedly
with a different amount of log lines being fed to the solution each time, to see whether the
Round-Trip Time degrades when handling larger amounts of log data.

Another feature is comparing the base graph to incoming traces in terms of new paths. In
this case, also the Round-Trip-Time of new traces being fed to the system can be measured
until it reports a new path. This will indicate again on how the system is dealing with log
data in real-time. The experiment can be conducted by using the prerequisites mentioned
above and sending traces with a different path compared to the base graph to the system.
This metric will enable the solution to report differences in software’s behaviour in a manner
that it can find changes in paths for different releases.
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Chapter 5

Results

In this chapter, results will be concluded from the conducted experiments. By comparing
and reviewing the gathered data, the research questions are tried to be answered.

5.1 Research questions

The following research questions were posed:

• RQ #1: What different aspects of log data impact performance of modelling the
graph?

• RQ #2: How does the approach perform with varying quantities of log data?

• RQ #3: What kind of computational resource metrics give insight on how performant
the approach is?

• RQ #4: When and how much does the approach scale horizontally?

• RQ #5: Does performance of the approach degrade over time?

5.1.1 RQ 1: What different aspects of log data impact performance of
modelling the graph?

It can be clearly seen in 5.1 that the depth of the paths in the graph has the most significant
impact in performance for the given approach. By enlarging the traces, the depth of the
graph gets bigger and more operations are done to build the graph. However, the input
that is processed is mostly the same paths which lock the data structure. When the input is
distributed amongst multiple deployments, the locking of the data structure becomes less of
a problem, and performance will go up again.
Next to the size of the traces, enlarging the static identifier results in the same performance
degradation. The Trie edges are built from the static parts, so this comes down to the same
issue as described above. In real-world scenarios, the static identifier will be chosen as
small as possible not to clutter the log data, so this will be an issue for the given approach.
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Figure 5.1: Performance at different input for specific log data factors, static identifier,
different paths and depth op paths respectively

In 5.1 it can also be seen that multiple paths do not impact the performance of the given
approach in processing speed, the graph does increase in size, so it results in more RAM
used. This, however, does not decrease the processing speed. Figures X to X in the appendix
support the results described here.

RQ1: The depth of the tree structure in the graph has the most significant impact in
performance. Longer traces result in heavier computational needs of resources. Differ-
ent traces, resulting in different paths in the data structure, do not cause the solution to
slow down.

5.1.2 RQ 2: How does the approach perform with varying quantities of log
data?

The performance does not degrade when more log data is being processed which can be seen
in 5.2. One child instance is depicted 5.2 in Grafana, which processes a growing number of
log data that is being fed into the approach. It shows that the number of log lines processed
per minute remains stable over time for any given input. The main deployment does more
merges when large quantities of log data are being processed, but merging is fast enough
to not be a factor in scaling the approach. Reporting of paths and anomalies show almost
no latency regardless of the amount of log data that is being processed. Figure 5.3 shows
round-trip-time (RTT) for messages passing through NATS and getting acknowledged. The
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Figure 5.2: Log lines processed per minute in grafana with one child deployment

Figure 5.3: STAN Round-Trip-Time request to client

amount of time it takes the approach to report anomalies are almost equal to the time-
window for batching messages and the given RTT, which means the deployments report
almost instantaneously.

RQ2: The performance does not degrade when more log data is being processed.
Processing log data remains stable at whatever quantity is fed into the proposed so-
lution. Reporting of paths and anomalies show almost no latency even for growing
quantities of log data fed into the solution.

5.1.3 RQ 3: What kind of computational resource metrics give insight on
how performant the approach is?

The kind of metrics that impact the cluster the most when dealing with large amounts of log
data is CPU usage time, RAM usage and disk usage for NATS/STAN. For every instance,
the CPU usage time and RAM memory used are gathered and compared to the number of log
lines processed per minute in the figures A.8 and A.9. The first instance that responds to the
log lines generated is the pipeline stream processor in combination with the tracer. Usage
of CPU is quite low, explained by the fact it does very little computation, corresponding
with the expectation. RAM usage doubles from 70k lines to 140k lines through to the fact
that the stream processor batches the number of incoming messages and then passes them
through to the tracer. The stream processor ’Benthos’ should be scaled up earlier than the
tracer itself but is not the computational heavyweight when we look at the other components
in the cluster.

NATS and it’s counter component STAN take far more resources of the cluster to handle
the log lines. NATS, however, is just a portal for message throughput without any complex
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Figure 5.4: RAM usage with two childs, l/m = logs per minute

control on the messages passing, while STAN takes persistence into account. A lot of the
CPU usage by NATS and STAN can be explained through the fact that limits are configured
for the amount of messages that are stored to disk and that it is constantly checked whether
to remove older messages. Both deployments are using far more disk I/O operations which
do not benefit performance in this specific cluster while disk operations are slow against the
disks mounted. Waiting for these operations to finish, explain parts of the higher amount of
CPU usage time.
The actual implementation of the trace structuring solution uses far fewer resources than
NATS. Results are shown in the figures A.8 and A.9 clearly indicate that the child deploy-
ment is doing the computational part, and the main instance is using very little resources
in the cluster. The child deployment, however, does use a lot more RAM than its main
counterpart, while it holds more information in run-time to be able to do computations on
performance measurement and path detection.

RQ3: CPU usage time is one of the metrics with the biggest impact on whether to
scale resources. The solution benefits from distributed workloads and uses little CPU to
do the standard computations to build the prefix trie structure. RAM usage stays equal
among the main instance and all child instances.
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5.1.4 RQ 4: When and how much does the approach scale horizontally?

It is difficult to pinpoint an exact trigger on when the approach has to scale up for perfor-
mance improvement; this also depends on the resources that are available. However, the
most important thing to notice is that RAM used is not distributed in the given approach 5.4
and every deployed instance, child and main, will have similar memory usage. It can also be
seen that the RAM usage is low, but theoretically, when doing more complex computations,
this could grow and must be taken into account when adding these computations.
CPU usage is almost evenly divided among the child deployments; child deployments
should scale up in terms of CPU usage quite easily when they reach a certain preconfig-
ured threshold. Another reason to scale up child deployments is when log data input is
largely the same in large amounts, multiple deployments can be faster in terms of less lock-
ing of the data structure in run-time. This will be a trade-off against the extra RAM the
deployments will be using. The main deployment doe not use up a lot of resources for the
merging of partial graphs, and is close to being a non-factor in terms of scalability of the
approach.

RQ4: CPU usage is almost evenly divided among the child deployments, RAM
usage is not divided. Automatic scaling can be set by taking account the CPU resource
limits of the machine a child deployment is running on. Another reason to scale up
child deployments is when log data input is largely the same in large amounts, while
this can speed up processing the log data.

5.1.5 RQ 5: Does the performance of the approach degrade over time?

Performance does not degrade over time while the data structure is released to the main in-
stance by preconfiguring, and it can keep up with incoming log data without using excessive
resources. In figureA.17 can be seen that when running for half an hour against 1.2 million
log lines per minute, which accounts for 10.000 unique nodes and 200 different paths in the
graph, the CPU resources required do not degrade over time. Figures A.18 and A.19 show
resources used by one of the four child deployments over time. It can be concluded that
the CPU resources required remain stable over time when the same amount of log lines are
processed per minute. RAM resources used stay even over time, while no new paths and
nodes are introduced while the traces processed stay the same over time. Therefore we can
conclude that software running in production will eventually reach a certain resource usage
in terms of log processing that can cover the highs and lows in the software usage itself. So
it is possible to find an optimal setup for a cluster to deal with the amount of logs software
in production outputs. Figures A.20 and A.21 show resource usage over time for the main
deployment. The main instance actually uses a bit more ram than the child deployments,
this while it stores multiple partial graph structures in memory for a short period of time
when merging, and therefore it allocates more memory. This behaviour can also be seen in
CPU resources used, while the CPU usage is very low, it uses bursts of CPU when partial
graph structures are received for the merging of the main graph and the partial graph ab-
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Figure 5.5: Example of resulting Trie structure

sorbed.
While in this experiment a cluster was used running NATS with a normal hard disk mounted,
it can be seen that the throughput of messages cannot be processed in time anymore in terms
of disk operations. Figure A.22 shows the RAM usage spiking suddenly when running al-
ready for 15 minutes.

In Grafana the metrics of log lines processed per minute A.23, and network throughput
A.24 were tracked, and it can be seen that after 25 minutes processing 1.2 million log
lines per minute it starts throttling because of STAN. However STAN can be configured
differently like with a Solid-State Drive (SSD) or a database to improve throughput, best
performance will be when NATS and STAN are running on dedicated machines and not in
a cloud cluster provided by Google while STAN especially is disk intensive.
By sending a specific trace multiple times when already processing 1.2 million log lines per
minute and have the main instance reporting the exact moment in time when it was received,
it was concluded that the average time between sending the trace and the report was 8ms.
Figure 5.3 explains why there is a small delay in sending and receiving messages, but it
indicates that even when dealing with large amounts of log data, the anomaly detection is
still near instantaneous when a trace is received by one of the child deployments running.

RQ5: Performance does not degrade over time. Running the solution for half an
hour against 1.2 million log lines per minute kept performances equal to the start.

5.2 Discussion

An example of a resulting graph can be reviewed in figure 5.5 where the nodes labelled with
the log message and the edges are annotated with the number of times connected and the
performance in time.

Looking at performance, namely processing log data per minute, the biggest impact
comes from the depth of the tree. Very deep paths also make the graph very tedious to work
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with and identify abnormalities. Both challenges could potentially be solved by transform-
ing the incoming traces in real-time. The given approach can do computations before and
after insertion in the graph. This means that a sequence of log lines can be transformed
into one predefined one, e.g. ’A,B,C,D’ could be transformed into ’Successful payment of
invoice’. Making it easier to understand the graph, while some sequence of events can be
translated into some understandable business ruling and making the graph less deep.

While executing the benchmarks for one instance, limiting the number of concurrent
threads impacted the results in a positive matter. In the figures A.2 and A.3 the same three
experiments are conducted. Respectively the traces from experiment one to three have 10,
100 or 1000 paths in the resulting tree. Again the performance is measured by processed
log lines per seconds. In the first figure A.2, the performance degraded harshly after the first
two input sizes. By locking the data structure using mutual exclusion and spawning a lot of
goroutines (threads), context switching becomes a relatively big overhead. By rate-limiting
the number of goroutines that can spawn by the number of CPU cores, the results improved
as can be seen in figure A.3. When more depth is added in the graph structure by lengthier
traces, there are more different nodes and edges in the data structure. Not every goroutine
touches the mutual-exclusive locks at the same time anymore, so setting a core limit has
less effect. This means that when you deal with large quantities of log data that often exists
from the same sequence of events, it can speed up the processing of log data by scaling the
child deployments at an early stage.

The given approach can scale at every part in the environment, the large data traffic over
the pub/sub system is one of the factors that need to be taken into account when imple-
menting the given approach. Also, when doing different kinds of computations in real-time
by the scalable deployments, RAM usage needs to be taken into account while memory is
not shared amongst the child deployments. Reporting features of the given approach give
feedback in real-time without noticeable latency, and performance does not degrade over
time.
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Chapter 6

Case study

Besides the scalability possibilities of the proposed solution, we also want to know if the
solution is usable in the industry. Therefore the solution is used in an existing project of our
industry partner in this thesis: Weave. In this chapter, the methodology of the case study
is explained, the findings of the developers are shared and the results are discussed. In the
end, the next two questions will be focused on in this case study.

• RQ #6: To which extend does structuring log data into a graph in real-time help giving
insight to software’s behaviour?

• RQ #7: How well does the proposed solution integrate with an existing project?

6.1 Weave

Weave is a company that develops custom software solutions for clients in all sorts of in-
dustries. It is a company that heavily relies on cloud-native solutions for deploying their
software, like Google cloud products and Kubernetes. Often the software that is written
uses a microservice architecture where the logs that are outputted are separated from each
other. At this point, Weave does not implement analysis over log data, however, they do
want a generic solution to keep track of a system’s health. Log data is a common denomi-
nator in all the projects, so the implemented solution deemed a perfect fit for Weave.
For this case study, an energy supplier platform which runs on top of kubernetes using about
20 different microservices is made available to deploy the solution in. The energy supplier
platform includes automated contract creation, invoicing, payments, usage retrieval, dy-
namic cost calculation and more. The platform is primarily used to automate onboarding
of new customers, give the customers insight about their energy usage and costs and help
them save money. The novel idea of the energy supplier is that you pay the exact same per
hour that energy costs on a specific hour on the energy market and only pay a subscription
fee each month. All the software is written in Golang and logging is done by one logging
library used by all microservices.
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6.2 Methodology

6.2.1 Setup

For the case study, we opted for a controlled environment where integration tests are run.
This is chosen because this makes the output more predictable and we can conclude fast
where changes are coming from. The integration test environment is also redeployed every
time integration tests are run, this also makes it easier to deal with cutting off a constant
stream of logs. By deploying the proposed solution in this environment, it also adds a layer
on top of the integration tests to give more context on what parts of the software are actu-
ally interacting when running certain scenarios. To experiment with the multiple features,
the proposed solution brings we deployed the solution in the environment and reran with
different steps to assess usability and accuracy of the solution.

The idea behind running the solution against the integration test environment is that
there is immediate feedback of added features to the codebase and how it differs from the
previous version of the software. We first run the integration tests with the proposed solution
integrated so it can passively learn and model the graph. This result is stored on a persistent
disk, and whenever new features and integration tests are released, it can rerun this against
the previously modelled graph. Rerunning the integration tests for this case study was done
for a week during active development of the platform.

• #1: Deploy the solution and run passively against the integration tests available

• #2: Save the created graph on a persistent disk

• #3: Review the created graph

• #4: Repeat integration tests with new features and integration tests that are being
released

• #5: Review the results reported by the proposed solution

To review the results reported by the proposed solution, a small tool is built as an ex-
tension that interacts with the solution. It visualises the complete graph, only the paths con-
taining error level log line messages or the reported new- and performance degraded paths
one-by-one. With the help of this visualisation tool and an active developer of the platform,
the accuracy of the created graph and reported paths are determined. In cooperation with a
developer of the platform, the initial base graph is reviewed as well as the reported paths in
following runs of the integration tests. The created graph will be reviewed briefly, while it
will be quite big, the focus will be on the paths containing error level messages. Then the
reported paths will be discussed and flagged as ”correct”, ”bug”, ”incident”. Correct can be
seen here as the correct/expected execution flow. A bug means that this specific path should
not have existed and an incident means the path is not the ideal or expected execution flow
but is acceptable for the developer.

With this tool also comes active learning, by the fact that the developer can accept
the reported paths when he or she feels like this is a correct change of the execution the
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software performs. Accepting the reported paths will store them on the persistent disk for
the following run of the integration tests.

6.2.2 Implementation

To be able to integrate the solution into the existing project’s environment, small changes
in the codebase are needed. First off the library that is used for logging is adjusted, so
it generates a trace identifier whenever there is none in the context of the execution path.
While NATS is already used in the environment, the logger is adjusted to immediately pub-
lish log messages to NATS. Third, the internal requests from microservice to microservice
are appended with a trace header including the trace identifier present in the context of the
execution path. Lastly, API middleware is added, so incoming requests are checked for the
trace header, if it is present, it puts it in the context of the execution path for the logger. This
enables traces to contain execution paths of multiple microservices that are run sequentially
and therefore, should provide more context of what the actual execution flow is.

6.3 Results

6.3.1 RQ 6: To which extend does structuring log data into a graph in
real-time help giving insight to software’s behaviour?

The structured model together with the reporting and visualisation tool helps to determine
the correct functionality of the platform. It can be used in a controlled environment to
quickly gather feedback on what changes in execution are happening by changes in the
source code. Reported paths containing an error message are often in need to be analysed in
more detail. Together with the merge request of the source code and the visualisation tool
for reported different paths, it helps to assess whether the new changes are acceptable.

Looking at the results of the case study, the findings are promising. Even when running
in a smaller controlled environment, bugs are detected and solved. The visualisation tool,
however, is required to make the solution usable for the developer. It provides an extra layer
of information which is easy to walk through and helped to determine in this case whether
feature branches change more than the expected flows.

The graph itself gets large very quickly and is not likely to be analysed by hand. Sug-
gestions here are that the graph could be queryable, like searching for some payload in the
log message, filtering by log level or by some condition between nodes, e.g. microservice
switch or performance. Most of the by hand analysis requires in-depth knowledge about
the system; the reported paths by the solutions are there to make the detection of anoma-
lies easier and more accurate. By reviewing the numbers, we can conclude new paths are
mostly correct but can indicate anomalies. By running the solution in the integration test
environment, there are not that many new paths per run, so it does not take too much time
of the developer to review them. Error paths almost always indicate a bug or an incident.
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Figure 6.1: Bug reported by visualization tool

Reviewing the modelled graph in its entirety is still a job what takes a lot of time. In
total, after running the integration tests, there are 362 different nodes, 254 edges with a total
of 114 different paths. Next to the ten error paths in the existing graph, 28 newly reported
paths are examined. From the ten error paths examined, nine of them were incidents only
happening in the controlled environment by missing optional data in the database; the re-
maining one was classified as a bug. The 28 newly reported paths were all found correct
but one classified as an incident, only happening because of a missing migration in the con-
trolled environment.

After modelling the graph for the first time with the integration tests that existed the
focus was on the paths that contained log lines with log level ”error”. There a bug was
found that was actually in the issue list of the project, that was occurring on production, but
still needed to be analysed. Figure 6.1 displays the found path as an incoming API request
internally calling a microservice which throws an error but still returned the correct result.

Therefore this flow was deemed correct by the integration tests, but still was behaving
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unexpectedly. By reviewing the path in the tree, the execution path was straight-forward,
and the bug came from newly imported objects from an external API that was not found
in the database of the platform yet. In the source code, this object was first tried to be
retrieved from the database, in which case it gave an error and then still inserted the new
object retrieved from the external API. This was then fixed by starting a transaction where
the insertion and retrieval were done to always return an object without logging an error.
In the end, two separate transactions are transformed into one which saves thousands of
database calls a day, and an error log message was removed while it was not actually break-
ing. By reviewing this in the visualisation tool, it became in his own words very easy for
the developer to fix, while the representation was straight-forward with the way the source
code was executing the software. Not only the execution in the API could be followed now,
but also from the API to the microservice it was calling.

Another finding by the log analysis solution was that after a release of a feature for
emailing reminders for settlement invoices, old invoices were picked up by the cron job.
This was actually not tested by the integration tests, but before the integration tests are
run, the database is seeded with data required for the integration tests. The invoices seeded
were not updated, and therefore the log analysis solution reported new paths that were un-
expectedly executed. The seeded invoices were therefore updated, but there was already a
migration for production, so this would not have happened on the production environment
altogether. Still, the solution gave extra information about what changes the feature actually
had brought with it, and the feedback the solution reported was actually found correct by
the developers.

Finally, the solution was set up to report degradation of performance when the time be-
tween nodes doubled or more, this was not a correct setting, while most of the nodes were
less than a millisecond apart. Therefore the log analysis solution reported many degraded
paths, while they were actually behaving correctly, within acceptable boundaries. When the
degradation threshold was preset, there were no more degraded paths reported.

Reviewing the execution path, not only in one component of the system but in the con-
text of multiple components, the analysis of unexpected execution paths becomes easier,
while more information is given. The user experience of the visualisation tool can still be
greatly improved, but in this minimal version, it already shows the developer accurate con-
text about execution throughout a microservice architectural platform. This made further
analysis of bugs and incidents easier, though they were missing the reference to the source
of the actual message in the codebase.

RQ6: Looking at the results of the case study, the findings are promising, bugs are
detected and solved. The visualisation tool, however, is required to make the solution
usable for the developer. Reviewing the modelled graph in its entirety is still a job what
takes a lot of time, reported paths create a smaller scope.
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6.3.2 RQ 7: How well does the proposed solution integrate with an existing
project

One of the objectives of the solution is that it can be integrated into existing platforms.
While almost all software projects work with log data, the solution should work by chang-
ing the source code as little as possible. The requirements of the log messages are already
given chapter 33, and at Weave this meant changing one logger that is universally used
within projects to output a trace identifier. The rest of the components were already in the
log messages, like timestamp and a static part.

Attaching a trace identifier to the log message is done by attaching an identifier to the
execution context whenever it is not present yet. In practice, this meant for the energy
supplier platform at Weave that all incoming API requests created a trace identifier in the
context, and when starting a cron job, a trace identifier is created. After that, the identifier
is passed through the execution path.

To also make chaining of execution paths in the graph possible between microservices,
also the middleware of the service call had to be adjusted. This is done through setting the
header with the trace identifier in the context, and the receiving microservice will put this
header into its execution context.

Integrating the solution into the energy supplier platform was, therefore, not that time-
consuming. However, when an existing project is using a different pub/sub system, a dif-
ferent tracer must be used and written.

RQ7: The proposed solution depends on a pub/sub system and log collection in a
kubernetes environment. The software to analyse only requires a logger that needs to be
set up with three required fields. Therefore making the solution work for the software
did not present problems and should not in many cases.

6.3.3 Controlled environment versus production environment

The proposed solution can be helpful in a controlled environment and work as a tool to
help developers understand changes made to the codebase and help identify unexpected be-
haviour when implementing new features. However, the proposed solution is built for being
scalable and be deployable in production environments. There are a few differences to con-
sider when comparing the case study to a production environment, namely the timeframe
in which to model the graph, deploying new releases, and analysis of reported paths. The
proposed solution works best when the modelled graph contains all execution paths at least
once. However, this is not a trivial action to perform.
A timeframe must be chosen in which the proposed solution will learn its initial graph, only
with in-depth knowledge of the system this timeframe can be chosen. Reported paths are
dependent on the modelled graph and will therefore be more accurate and useful when the

44



6.3. Results

modelled graph is complete. Also accepting new paths by the visualisation tool may be
time-consuming depending on how many paths are reported and why so more research will
be needed to conclude anything meaningful about the reported paths in a production envi-
ronment.
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Chapter 7

Conclusions and Future Work

Computer systems output enormous amounts of log statements, and the log statements con-
tain information about the state of a running system. Monitoring software behaviour is
essential, and in many cases, it can be learned from the log statements. Manually going
through logs to extract relevant data becomes difficult when the number of log statements
grows, and useful information can be overseen. Therefore a systematic way of dealing with
large amounts of log data is proposed in this thesis.
The approach given in this thesis is about scaling a solution that structures and models log
data so that further analysis is made available through distributed deployments. A complete
architecture is drawn to set up an environment where, together with the implemented solu-
tion log data analysis can scale horizontally to deal with large quantities of log statements.
The proposed architecture includes multiple parts, which are all horizontally scalable. The
implemented solution works via scalable units that all build a partial graph and can do com-
putations on them, and one main instance which periodically retrieves the partial graphs
and controls reporting of anomalies. Existing tools from the industry like Prometheus are
utilised to analyse statistics in a scalable way.

In the first part of the thesis, we pose research questions, beginning with, what different
aspects of log data impact performance of modelling the graph. We find that the depth of
the paths in the graph, which is equal to the length of the log traces, have the biggest impact
on the performance of processing log data. Longer traces result in heavier computational
needs of resources. Different traces, resulting in different paths in the data structure, do not
cause the solution to slow down.

The second research question we posed was, how does the approach perform with vary-
ing quantities of log data. The performance does not degrade when more log data is being
processed, processing log data remains stable at whatever quantity is fed into the proposed
solution. Also, latency for reporting remains within milliseconds.

The third question we posed was, what kind of computational resource metrics give in-
sight into how performant the approach is. We found that CPU- and disk utilisation for the
pub/sub system in the proposed architecture was the heaviest in resource usage. Child de-
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ployments of the implemented solution share CPU- usage when scaled horizontally, RAM
usage, however, is not, but memory usage, in general, is low for large graphs. When do-
ing more complex computations in the child deployments, RAM usage, however, should be
taken into account while it is not shared.

The fourth question, when and how much does the approach scale horizontally, depends
on the needs of your system. When large quantities of the same sequence of log statements
are being read, early scaling of the child deployments can reduce the latency of log process-
ing. In most cases, the most important metric to take into account is CPU- usage, and child
deployments could be scaled based on threshold.

The final question that we posed was, does performance of the approach degrade over
time. We found that the performance does not degrade over time when stress testing on the
relatively small cluster available, the pub/sub system was the first part of the architecture
that began throttling.

Next, to determine the usability and accuracy of the tool, a case study was done at
Weave, a company that builds custom cloud-native software solutions. With the help of a
developer and a visualisation tool findings in an actively developed energy platform were
discussed in a controlled environment. The case study resulted in an extra layer on top of
integration tests which helped give insight to what new and changed paths source code ad-
justments were leading to. The tool helped to trace back bugs and other findings and also
gave more detailed and more precise information than the integration tests by themselves.
Two questions were posed to determine the usability, the first one being, to which extend
does structuring log data into a graph in real-time help giving insight to software’s be-
haviour. Looking at the results of the case study, the findings are promising, bugs are de-
tected and solved. The visualisation tool, however, is required to make the solution usable
for the developer. Reviewing the modelled graph in its entirety is still a job what takes a lot
of time, reported paths create a smaller scope.

The second question we posed was, what kind of computational resource metrics give
insight on how performant the approach is. The proposed solution depends on a pub/sub
system and log collection in a kubernetes environment. The software to analyse only re-
quires a logger that needs to be set up with three required fields. Therefore making the
solution work for the software did not present problems and should not in many cases.

The proposed solution enables a scalable way of real-time log analysis on a graph. At
this point, however, only simple computations are done, and the output can still be hard to
understand by itself. The solution incorporates a reporting feature which helps to identify
anomalies in running software systems in a very generic way. To get a better understanding
of where anomalies may lie, an active developer of its system mostly has the best knowledge
for this. Dynamically adding computations and new reporting rules to the proposed solu-
tion can, therefore make this tool much more relevant in the industry. Not only reporting
anomalies but also statistics about a running system can be extracted from already existing
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log output by dynamically adding specific rules for a specific system.
Next, the graph itself can be smaller if paths are merged that are similar without creating
non-existing execution paths. Tools like DFASAT [34] already do this kind of merging,
but within the proposed solution this could potentially be done in a divide and conquer like
algorithm.
This could make it possible in real-time, and more existing analysis techniques will become
available.
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Appendix A

Experiment Results

Figure A.1: Three experiments are conducted, where each have a static part varying in size
appended on top of their respective static parts
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Figure A.2: Experiment with ranging path depth conducted without goroutine limit

Figure A.3: Experiment with ranging path depth conducted with goroutine limit based on
available cores/HT
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Figure A.4: Experiments with varying amount of paths

Figure A.5: Performance comparison 1 path vs 100 paths with path depth set to 100
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Figure A.6: Performance comparison 1 path vs 100 paths with path depth set to 1000

Figure A.7: Performance comparison 100 paths vs 500 paths with path depth set to 100
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Figure A.8: CPU metrics for cluster instances against lines processed per minute

Figure A.9: RAM metrics for cluster instances against lines processed per minute
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Figure A.10: CPU metrics STAN, one slave and master against lines processed per minute

Figure A.11: RAM metrics STAN, one slave and master against lines processed per minute
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Figure A.12: New paths encountered showing in grafana with one slave

Figure A.13: STAN cluster network metrics with 600k lines per second

Figure A.14: CPU core usage time with two slaves
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Figure A.15: Log lines processed per minute with two slaves

Figure A.16: Log lines processed per minute with two slaves
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Figure A.17: CPU core usage time with four slaves

Figure A.18: Google cloud provided CPU chart of one slave
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Figure A.19: Google cloud provided RAM chart of one slave

Figure A.20: Google cloud provided CPU chart of master
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Figure A.21: Google cloud provided RAM chart of master

Figure A.22: Google cloud provided CPU and RAM chart of STAN

Figure A.23: Throttling of STAN

Figure A.24: STAN network throughput with 1.2 million log lines per minute
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Figure A.25: New path reporting with 1.2 million log lines per minute
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