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Abstract

Imaging Mass Spectrometry (IMS) is a powerful technique capable of extracting unlabeled spatial
and chemical information from a biological tissue sample. Ever-increasing technological advance-
ments have resulted in rapid growth of IMS data set sizes, scaling quadratically with the increas-
ingly refined spatial resolution of its ion images. Dimensionality reduction techniques aim to make
large data sets practically approachable by reducing the number of dimensions in the data while
retaining as much information as possible. Nonlinear Dimensionality Reduction (NLDR) methods
attempt to uncover an underlying nonlinear manifold or structure in the data by constructing a
Low-Dimensional (LD) feature space with variables that are nonlinear combinations of the orig-
inal features (i.e. mass-to-charge ratio (m/z) bins in IMS measurements). The t-Distributed
Stochastic Neighbor Embedding (t-SNE) has been a common approach in NLDR methods, us-
ing force-directed graphs. Uniform Manifold Approximation and Projection (UMAP) works in a
similar manner, but leans on a more versatile mathematical foundation in topology, is generally
faster, and the method tends to scale better than t-SNE.

In this thesis, we introduce UMAPLUS, an extension of UMAP that takes not only spectral, but
also spatial information into account. Our experiments show that UMAPLUS is capable of ex-
tracting the structure of a synthetic IMS data set better than UMAP. Besides UMAP’s standard
spectral and random initializations, we introduce a new spatial initialization that provides more
intuitive insight into the LD embedding relative to the spatial image domain. Standard UMAP
entails several parameters that influence consistency, reliability, and quality of its LD embed-
ding. Thus far, the influence of these parameters on IMS data sets has been barely investigated,
and previous studies have consistently applied the default settings of UMAP. In this thesis, a
Data-Driven UMAP (DD-UMAP) is constructed, which includes optimization of UMAP param-
eters in a data-driven manner. Several distance metrics are investigated, with cosine similarity
providing the most robust results. A naive 1-D optimization procedure is compared to a multivari-
ate Bayesian optimization approach, capable of optimizing multiple parameters simultaneously.
Using an evaluation function partly based on the cost function of UMAP and the addition of
spatial information, DD-UMAP is able to estimate and utilize an optimized input parameter set
for UMAP in an unsupervised manner and on unlabeled IMS data sets. This is demonstrated
on generated synthetic data, and two real-world IMS data sets; a full mouse pup and a murine
kidney.
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Chapter 1

Introduction

Technological advancements in general have led to experiments with ever-increasing data set
size, with the idea that more information in the form of more measurements is linked to better
insights. However, storing large amounts of data becomes eventually problematic, and even
unworkable. Further developments on the computational power of workstations have relieved
these concerns slightly. Nevertheless, due to the rapid expansion and growing need for better
intuitive insights, extracting and retaining only the most important features from a data set
may offer a solution. Dimensionality reduction methods seeks a way to reduce the number
of features of the high-dimensional data, while trying to retain as much information of the
original features as possible [1]. With the reduced data, better interpretability due to clearer
visualizations also becomes more feasible.

Figure 1-1: Two examples of an ion image, both taken at different m/z values, which are usually
measured in Dalton (Da). The absolute intensity at a specific m/z bin is in arbitrary units [2].

Imaging Mass Spectrometry (IMS) is one such technology suffering from the incremental
data set size. In IMS, a biological tissue is sampled by a predefined virtual two-dimensional
grid defined on top of the surface, measuring its chemical content at each spatial location
((x, y) coordinates). Through multiple steps, which will be discussed in section 2-1, each
measurement contains a mass spectrum quantifying said chemical content. The presence of
the measured ions are characterized by a certain ion intensity value of a specific mass-to-
charge ratio (m/z). An ion image visualizes the ion intensity distribution at a specific m/z, as
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2 Introduction

can be seen in Figure 1-1. IMS data sets can easily consist of 103−106 pixels of each 104−106

m/z bins, reaching in the GBs for a single tissue-wide measurement [3]. Increasing spatial
resolution of newly developed IMS instruments cause the IMS data sets to scale quadratically
in the case of 2-D experiments [4].

In terms of unsupervised data mining of IMS (in cases where biomarkers are not known
a priori), a distinction between dimensionality reduction techniques can be made between
linear or nonlinear decomposition methods. A popular linear technique broadly used in IMS
is Principal Component Analysis (PCA), which aims to extract a new representation of a
measurement set using only a reduced number of features from the original high-dimensional
data, maximizing the variance in the Low-Dimensional (LD) space [5]. While this technique
is sufficient when the data mixes in a locally linear fashion [3], Nonlinear Dimensionality
Reduction (NLDR) techniques are superior in extracting an underlying nonlinear manifold (if
present). We define local linearity over a sufficiently small interval such that a tangent line
approximates the underlying nonlinear function.

For over 10 years, t-Distributed Stochastic Neighbor Embedding (t-SNE) has been intensively
used throughout the literature as a basis for NLDR techniques [6]. t-SNE is built upon its
predecessor Stochastic Neighbor Embedding (SNE) [7]. t-SNE uses a probabilistic approach,
and its clear separated clusters have made it attractive for visualisation purposes. However,
the algorithm has a computational complexity of O(N2) with N the number of data points,
resulting in long runtimes for large data sets. This process has been sped up by several
variations of t-SNE like Barnes-Hut SNE [8] and FIt-SNE [9], but one criticism has been that
the foundation of t-SNE is not well understood [10]. Uniform Manifold Approximation and
Projection (UMAP) aims to resolve this by introducing a method with a rather well founded
mathematically theory in topology, which is generally faster and scales better than t-SNE
[11].

UMAP introduces many parameters that influence the consistency, reliability and quality of
the produced LD embedding of the data. More influential parameters are called hyperpa-
rameters. In the literature, the default values of these hyperparameters are primarily used
without investigation of potential improvements to the LD embedding. Opt-SNE has been
the pioneer in nonlinear data-driven parameter optimization, built upon t-SNE [12]. Utilizing
its cost function (Kullback–Leibler divergence (KLD)), opt-SNE is able to calibrate the early
exaggeration parameter which has been fixed in the original version of t-SNE. A control
strategy for optimizing UMAP parameters is yet to be implemented, a main topic of this
thesis that will lead to Data-Driven UMAP (DD-UMAP). Since the parameters are assumed
to be dependent of each other, a multivariate Sequential Model Based Optimisation (SMBO)
framework will most likely be the more promising approach than applying sequential 1-D opti-
mization for the parameter search-space strategy. This, in combination with the unsupervised
scoring metric of LD embeddings, will be the main challenges.

With the acquired mass spectra, not only the chemical content of each pixel is known, we also
know the position of each individual pixel. Up until now, this spatial information is yet to
be incorporated into NLDR techniques. Maximum Autocorrelation Factorization (MAF) is
known to have maximum spatial autocorrelation as an objective function, however MAF is a
linear decomposition technique and insufficient to extract a latent LD nonlinear manifold
within High-Dimensional (HD) data (if present). This thesis will introduce UMAPLUS,
which is an extension to UMAP and aims to also utilize the spatial structure (e.g. the
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pixel coordinates) of an IMS data set. UMAPLUS introduces a new parameter λspatial to
the algorithm, which interpolates between the prioritization of applying forces on the LD
embedding based upon either spectral or spatial information.

Research objectives The introduction of DD-UMAP and UMAPLUS will be the main ex-
tensions of UMAP, and the consecutive objective of this thesis can be summarized in the
following statement:

Developing an effective framework to automatically estimate the hyperparameters of
Uniform Manifold Approximation and Projection (UMAP) for Imaging Mass Spectrom-
etry (IMS) data sets with maximum usage of the available information, adaptable to
different data sets, and therefore be able to extract the best possible LD embedding
from the given sample in terms of its underlying (biological) structure.

In order to solve this problem, the following four sub-questions arise. These will be investi-
gated in more detail to substantiate the main objective.

1. To what extent does the initialization phase have an effect on the produced embedding,
and is there a better way of initializing than the standard procedure of Uniform Manifold
Approximation and Projection (UMAP)?

2. How sensitive is UMAP to various parameter configurations? Can we classify whether
a produced embedding is considered "better" than another, possibly with a combination
of spectral and spatial information?

3. Is it possible to extend UMAP to incorporate spatial information during the opti-
mization of the LD embedding, and can a better LD embedding be achieved using
UMAPLUS? If so, what is the sensitivity of parameters n_neighbors_spatial and
λspatial?

4. Is Data-Driven UMAP (DD-UMAP) able to find the optimal hyperparameters and thus
produce the best possible embedding? What optimization method (1-D or Bayesian
optimization approach) is more suitable to find the global optimum in the defined pa-
rameter search-space? And how does DD-UMAP compare to traditional grid search?

Thesis outline This thesis will start with defining the fundamentals of Imaging Mass Spec-
trometry (IMS). Chapter 2 will summarize the many steps taken in an IMS workflow, as well
as the structure of IMS data sets. The fundamentals also include the explanation and mo-
tivation for Dimension Reduction (DR) techniques. In chapter 3, the methods of this thesis
will be discussed. First, we will go through the entire UMAP algorithm and the assessment of
the LD embedding applied for further optimization. Then, UMAPLUS and DD-UMAP are
introduced. A scoring metric is constructed, able to evaluate the produced LD embedding.
A complete overview of the parameters within UMAP will be constructed, along with possi-
ble optimization methods to determine the optimal parameter configuration. Each of the 4
sub-questions and the effect of UMAPLUS and DD-UMAP on synthetic and real-world IMS
data sets will be investigated in their own separate experiments before the presentation of
the results, discussion and recommendations for future work.

Master of Science Thesis S.T. Jansen
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Chapter 2

Fundamentals

2-1 Imaging Mass Spectrometry (IMS)

Imaging Mass Spectrometry (IMS) is a label free technique that makes it possible to analyze
the spatial distribution of the analytes as well as registering the molecular content of a given
tissue sample. IMS is a complex process, and multiple methods exist in obtaining the chemical
information from the tissue surface. An IMS data set is build up by the acquired mass
spectrum for every sampled pixel in the image. This will be more explained in more detail
with visual assistance in subsection 2-1-2. The mass-to-charge ratio (m/z) is measured by
the IMS instrument, which is equal to the mass of an ion divided by its charge. A single
ion image typically consist of 100k−500k pixels, each containing a spectrum with thousands
of m/z bins. When selecting a specific m/z bin over the whole image, an ion image can be
constructed as shown in Figure 1-1.

2-1-1 General IMS procedure

The main goal of IMS is to translate the analytical power of mass spectrometry to chemical
images illustrating the distribution of the molecules spatially, and display the intensity at the
corresponding m/z bins [13]. The minimization of the spatial resolution of the ion image is
a requirement that has been tried to improve throughout the years. The spatial resolution is
defined by a predefined 2-D array that is spread out over the tissue sample. At those discrete
spots, ionization takes place. Combining both molecular and spatial information, IMS is
capable of visualizing a wide range of molecules including lipids, peptides and proteins [14].

This section aims to explain the essence of IMS, why it is useful today, and go over most
of the steps taken in a typical IMS workflow (see Figure 2-1). First, several techniques
exist in the IMS field which obtain the mass spectra. These techniques will be discussed in
subsubsection 2-1-1-2. The form of the obtained IMS data set will shortly be described in
subsection 2-1-2. The raw data may contain biases or imperfections, which can partly be
corrected by preprocessing, as will be discussed in subsubsection 2-1-1-4.

Master of Science Thesis S.T. Jansen



6 Fundamentals

Figure 2-1: Visualisation of the workflow of IMS analysis which consist of three major steps. (A)
Sample preparation; After collection from the animal, the sample is embedded in a supporting
medium for sectioning onto slides. (B) Sample analysis; through ionization the analytes are
extracted from the tissue surface by IMS, acquiring a spectrum at each (x, y) grid point on
the tissue. Sophisticated software tools are used to process and visualize the data. (C) Data
processing; After preprocessing the data, the distribution of selected ions can be visualized. From
there on, identification of the m/z values, statistical analysis between different images, or image
co-registration with other image modalities can be executed [1].

2-1-1-1 Sample preparation

Prior to collecting data using IMS, the tissue sample has to be prepared in the correct way
for the corresponding instrument. Preparation of the biological tissue sample is necessary
in order to reduce degradation and diffusion of the ions across the tissue [1]. Swales et al.
stresses that in order to strive for reproducible sampling results, collection protocols exist to
maintain tissue integrity and minimize any endogenous or exogenous compound degredation
within the tissue [14]. Protocols for structurally preparing tissue samples have been described
for MALDI and SIMS [15].

This section will go over different methods to collect tissue samples, discuss the ideal storage
conditions to prevent long-term degradation, and explain the importance of cryo-sectioning
the tissue sample prior to data acquisition by IMS.

Collection/ storage Following necroscopy, the desired samples can be snap frozen or fixed
in formalin. By flash-freezing, the sample will typically be submerged in liquid nitrogen or
dry-iced chilled isopentane [14]. Depending on the size of the sample, the user has the freedom
to choose the appropriate technique. Liquid nitrogen has a slower cooling rate than dry-ice
chilled isopentane, and is therefore more suitable for smaller tissue samples. If the tissue is
considered fragile and less robust to fast cooling rates, an alternative that can be used for
large samples is isopropyl alcohol, which slows down the cooling rate [14]. The samples will
be cooled down to −80◦C, at which they are stored until sequential analysis like IMS. Tissue
samples can be stored at this temperature for at least a year before significant degradation
occurs [16].

S.T. Jansen Master of Science Thesis



2-1 Imaging Mass Spectrometry (IMS) 7

Formalin fixed paraffin-embedded (FFPE) tissue tries to prevent degradation and preserve
sample integrity, using a formalin fixation process which bounds to the sample and prevents
ionization [17]. Then the sample has to be decellularized, which means to remove cells from
the extracellular matrix (ECM) scaffold. This processes improves the signal of ECM [18].
Next, the sample can be sectioned in thin slices through a method called cryo-sectioning.
The slices are placed into a drying system (e.g. desiccator box) until they are used for IMS
analysis [1].

Cryo-sectioning Cryo-sectioning describes the part in the preparation pipeline where a thin
section with a thickness of around 10 − 20 µm will be dissected of the original sample [14].
Once separated, the slices are thaw mounted onto microscope slides (e.g. fixing the sliced
section to the sample plate) at a temperature of −20◦C. The microscope slides are made out
of conductive material like indium tin oxide coated glass [19]. Prior to thaw mounting, an
alternative approach is to stretch the sample homogeneously in two dimensions, spreading
out the sample over a larger surface for an increase in spatial resolution during IMS [19].

2-1-1-2 Tissue sampling

Multiple procedures exist to acquire IMS data sets: (i) synthetic data created by programs
like MATLAB or Python, (ii) sampling the tissue samples by the user through ionization or
(iii) using already existing databases (e.g. libraries which consist of well documented 2-D
and 3-D IMS data sets [20]). This section solely focuses on ionization of the sample and
subsequently obtaining the mass spectra.

Ionization takes place to make sure that the ions are extracted from the tissue and can be
detected by a analyzer in order to obtain the mass spectrum of each individual pixel. Com-
bining all pixels together, and taking their x and y coordinates into account, a complete image
can be made with the use of this IMS data. The rest of this section will dive more into one
specific ionization technique called Matrix Assisted Laser Desorption/Ionisation (MALDI).
Several others exist like Desorption electrospray ionization (DESI) [21, 22, 23] and SIMS [24],
but will not be discussed here.

Matrix Assisted Laser Desorption/Ionisation (MALDI) First usage of MALDI has been
reported in 1984, but the technique gained more attraction through the work of Caprioli et al.
in 1997 [25]. The popularity mainly manifested because of its high sensitivity of ion detection
and ability to ionise a wide range of molecular weights and species, especially for peptides and
proteins [26, 27]. MALDI-MS measures the chemical content in the form of a mass spectra at
discrete spatial points, effectively repeating this process for each pixels in the image, creating
a hyperspectral image [28]. A typical MALDI process can be seen in Figure 2-2.

After sample preparation, a chemical matrix will be deposited onto the tissue sample. This
allows ionization of the analytes in the sample surface. Using laser pulses each between 100−
200 µJ in a high vacuum (HV) or ultra-high vacuum (UHV) environment, the tissue sample
will be measured at these discrete points that are predefined [19]. The spatial resolution
depends heavily on the minimization of the laser diameter, which can be achieved by changing
the instrument’s geometry [1]. Typical spot sizes of the laser are in the range of 5− 300 µm
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8 Fundamentals

[19]. With a m/z range of up to 500 kDa, MALDI is able to easily ionise larger molecules like
proteins.

Figure 2-2: Visualisation of a typical MALDI-MS process. The application of the chemical matrix
can be seen together with the placement of the discrete spatial points determining the pixels of
the IMS image. Each pixels contains its own mass spectrum [28].

Since MALDI is label-free technology, it is possible to investigate a drug and its metabolites
during one and the same experiment [29]. MALDI is also able to detect lipids, as long as
it was prepared using the fresh frozen protocol, since other preservation processes deplete
the lipid population [29]. The property of being a label-free technique makes MALDI also
useful for discovery studies [28]. To that end, Balluff et al. successfully predicted the gene
HER2-status, a protein responsible for regulating the growth of breast cells, obtaining more
insight in breast cancer growth [30].

There exist other forms of MALDI, but not as widely implemented as regular MALDI. Some
examples are scanning microprobe MALDI (SMALDI), infrared MALDESI (IR-MALDESI)
and surface-assisted laser desorption/ionization (SALDI). As Schwamborn et al. point out
that MALDI does have a lot of potential to be distributed more broadly in a clinical setting,
but common sample preparation and measurement strategies between different laboratories
are not yet established [31].

Matrix selection/ deposition MALDI requires a matrix in order for proper ionization, which
slightly limits its applicability to larger proteins [1]. This matrix allows for ionization with
the analytes at the tissue surface, and usually consist of an organic solvent with two functions.
Firstly, analytes from the sample will be extracted using the organic solvent, and then co-
crystallize with the matrix compound [20]. Another function is that the matrix helps to softly
dissipate the energy coming from the laser to desorb and ionize intact analytes from the surface
of the sample [19, 20]. Furthermore, the matrix should absorb UV light at the appropriate
laser wavelength, sublimation should not be possible under HV or UHV conditions and the
solubility of the matrix should be at the same level as the solvent and analytes [14].

Choosing the correct matrix depends on the required application and what the researcher
wants to investigate. Typical matrices that are being used in pharmaceutical applications are
2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), 9-aminoacridine
(9AA) and 1,5-diaminonapthalene (DAN), because of their ability to extract and ionise small
endogenous metabolites, drugs and lipids [14].
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When applying the chemical matrix to the tissue sample, one should strive for homogeneous
application of the matrix, document the application steps as good as possible, provide suffi-
cient sensitivity and should be easy to use [19]. An heterogeneous application of the matrix
would lead to locally differences when measuring the mass spectra over the whole image.
These local differences are hard to detect. A well written documentation of the application of
the matrix will increase the reproducibility of the process, which will ultimately lead to better
comparisons by other laboratories. Interpretation errors will occur when multiple laborato-
ries use different protocols for preparation of the matrix [32]. On top of that, the size of the
matrix crystals determine the maximum spatial resolution that can be obtained [19]. Typical
matrix crystal sizes lay between 5 and 150 µm, and are mostly depended on the deposition
methods [14].

Several matrix deposition methods exist. Amstalden et al. mention briefly the principal
methods for matrix deposition methods in IMS: dried-droplet method, pneumatic nebuliza-
tion, chemical inkjet printer, automated vibrational spray coater, matrix sublimation and
dry-coating [19]. Swales et al. recognises these methods, and differentiate them as ’wet’
and ’dry’ methods [14]. Wet methods are dried-droplet method, pneumatic nebulization,
chemical inkjet printer and automated vibrational spray coater. These methods are being
called wet, since the matrix is applied in liquid state. Dry methods like matrix sublimation
and dry coating are possible as well, but the absence of liquid interface does limit the ex-
traction of analytes from the tissue surface into the matrix crystals [14]. Manual techniques
like dried-droplet method have the preference when experimenting, whereas more automated
techniques are favorable when scaling up the matrix deposition phase, reducing the room for
human errors.

The matrix can be sprayed or brushed upon the tissue sample using instructions from the
manufacturer of the matrix, which are often quite detailed in order to make the whole process
better reproducible [15]. McDonnell and Heeren point out that experiments with a high spatial
resolution are more sensitive to analyte redistribution during the step of applying the matrix
[33]. This is one of the reasons why the laser diameter will be relatively large, since then
chemical information is superior compared to using a smaller laser diameter [33].

Removing the matrix is possible by washing the tissue sample with a 70% ethanol solution
in order to dissolve the deposited matrix. Staining the remainder allows inspection by an
optical microscope and ensures accurate co-registration [14].
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2-1-1-3 Detection (mass analyzer)

Detection by the mass analyzer can be achieved using various instruments. According to
Rubakhin et al. [13], there are at least four types of mass analyzers that are being used in
IMS: (i) Time-of-Flight (TOF), (ii) Fourier transform ion cyclotron resonance (FTICR) mass
spectrometer, (iii) magnetic/electric sector, and (iv) quadrupole ion trap. These days, mass
analyzers using the magnetic/electric sector are less used than TOF instruments. Combining
multiple mass analyzers will create an hybrid or tandem mass analyzer, which can often
be found in commercially available IMS instruments today. Prior to choosing the correct
mass analyzer, it is important to have incorporated high mass accuracy to allow confident
identification of the desired molecules [1]. This subsection expands on TOF and FTICR
instruments only.

Time-of-Flight (TOF) A detector broadly used are Time-of-Flight (TOF) based instru-
ments. In essence, the simplest form of TOF mass spectrometers consist of an ion source
(e.g. tissue sample, from which the ions are extracted) which will be directed into a tube via
an electromagnetic field, and are being detected by the collector at the and of the tube [34].
See Figure 2-3 for an schematic overview of two possible modes for Time-of-Flight (TOF):
linear and reflector mode [35]. In linear mode, the extracted ions have free path between
the tissue sample and detector, whereas in the reflector mode the ions are deflected by ion
mirrors before detected, effectively creating a longer traveled path for the ion. By creating a
longer path for the ions to travel, distance between heavy and light ions will be magnified,
thus increasing the resolution of the mass analyzer [35].

Figure 2-3: Two modes of the Time-of-Flight (TOF) mass analyzer: linear and reflector mode
[35].

The potential of the electromagnetic field is known. When working out the energy balance
equation, since the potential energy( Ep = zU) will be converted into kinetic energy (Ek =
1
2mv

2) the following relation can be obtained:
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zU = 1
2mv

2

zU = md2

2t2

2t2 = md2

zU

t =

√
md2

2zU

(2-1)

with t the time-of-flight, m the mass of the ion, z the corresponding charge, d the distance
between the tissue sample and the detector and U the potential of the electromagnetic field.
In this equation, the distance d and the potential of the electromagnetic field U are know,
consequently the relationship between the time-of-flight t and the mass-over-charge m/z can
be found:

t ∝
√
m

z
(2-2)

This would mean that the m/z is quadratically dependent on the time-of-flight t [34]. Heavier
ions reach lower speeds, and thus have a larger time-of-flight, resulting in a higher m/z value.
TOF-MS has the ability to detect ions from a broad mass range of maximal m/z 100 kDa,
making it ideal for IMS [19]. The sensitivity of a TOF mass analyzer can be increased by
elongating the travelled path of the ions d, effectively causing a larger separation between
heavier and lighter ions.

Fourier transform ion cyclotron resonance (FTICR) ion cyclotron resonance (ICR) uses
the rotational orbital frequencies of the extracted ions to separate the the heavier ions from
the lighter ions. A combination of magnetic and electric field makes this separation possible
[35]. As can be seen in Figure 2-4a, all ions start in the middle of the mass analyzer, and
by applying a sequence of RF pulses to the excitation plates, ions with a certain m/z value
can be separated by the rest of the ions and are being detected by the detection plates. An
mass spectrum can be extracted by the mass analyzer by performing a thorough sweep across
a broad range of different frequencies, and applying a Fourier Transform to determine the
corresponding m/z at certain frequencies using the following equation [35]:

ω = zB

2πm (2-3)

with m the mass of the ion, z the corresponding charge, B the strength of the magnetic field
and ω the rotational orbital frequency.

Another method of using a ICR-type instrument like the Orbitrap [36], which is more compact
and operates slightly different compared to regular ICR (see Figure 2-4b). Ions are orbiting
around a central electrode, and the frequency in which the the ions are oscillating around this
electrode is related to the molecular weight in the following way:
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(a) (b)

Figure 2-4: Two types of mass analyzer encorporating an FTICR technique: (a) A standard setup
using ion cyclotron resonance (ICR), and (b) the more compact version applying ICR Orbitrap
[35].

ω =

√
kz

m
(2-4)

In this equation only m/z are unknown, and they can be easily computed by measuring the
field curvature k and angular frequency ω, depending on what position of the detector the
ions land.

Afterwards, a Fourier Transform is performed to obtain the final mass spectrum. FTICR
systems are known for the highest obtainable resolution, scaling linear with the strength of
the magnets being used within the mass analyzer [35].

2-1-1-4 Preprocessing

Once the samples have been scanned by the MS instrument, and the raw IMS data is obtained,
several preprocessing steps can be taken before data processing and visualisation, in order
to remove any flaws and biases in the measurements. Steps in the prepreocessing step may
include normalization, baseline correction, spectra recalibration, smoothing, and data com-
pression (unsupervised and supervised) [37]. All steps are optional, although normalization
is expected to be incorporated into data analysis [1]. These preprocessing steps help reducing
the variance within the data set. This section will go over several scaling and normalization
methods, as well as common techniques like spectral alignment and peak-picking.

Scaling Scaling can be confused with normalization. Scaling changes the whole range of
the data (e.g. all pixels at a specific m/z bin), while normalization changes the shape of the
distribution of the data (e.g. the entire mass spectrum at a specific pixel). Scaling usually
takes place after any other preprocessing step, as a final step before downstream analysis.
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Wolski et al. found that the distance measure, the intensity scaling and their interactions
mostly influenced the intensity based pairwise peak-list comparison [38]. They also found that
the combination of the Euclidean distance with vector norm scaling, the Manhattan distance
with Total Ion Count (TIC) and the sum of agreeing intensities with vector length scaling
produced the best results [38]. This was tested on both Positive Matrix Factorization (PMF)
and MS data sets.

Several scaling methods exist as pointed out by Verbeeck et al. [3]. A few examples are (i)
Auto-scaling [39], (ii) Poisson scaling, (iii) Filter Scaling and shift variance scaling and (iv)
intensity scaling to incorporate prior knowledge. It depends on the spectrum what type of
scaling should by used, but for example Auto-scaling suffers from the fact that noisy low-
signal m/z bins can have an increased impact on downstream analysis compared to the other
more prominent signals [3]. For data of inherently Poisson nature, it is better to scale the
data using Poisson scaling opposed to Auto-scaling before applying Principal Component
Analysis (PCA), as the result may be misinterpreted otherwise [40]. This is due to the way
PCA operates; the algorithm assumes that the data is normally distributed, which is not
usually the case with real-world data. PCA will be further discussed in section 2-2-2

Normalization Choosing the correct normalization algorithm is crucial, since in certain cases
some normalization algorithms may lead to possibly wrong conclusions, for example about
the potential biomarker distributions [41]. Deininger et al. stress that two cases have to be
considered in which the user can influence the intensity of signals in MALDI data sets. On a
local level, e.g. at specific m/z bins, specific ion suppression can happen. The two different
types of normalization distinguished by Vallejos et al. are (i) within-sample normalization
and (ii) between-sample normalization [42]. These types of normalization are capable of
removing intensity biases and adjust for small differences in for example the read counts
between measurements [42].

In this section, several forms of normalization will be discussed and their effect on real-life
data sets. The approaches in this section that will be discussed are normalization on Total
Ion Count (TIC), vector norm, median and by noise level. These effects can occur due to
several reasons, for example applying the matrix incorrectly, depth differences of ionization
or gene-specific biases due to adjusted setting of the IMS instrument [1, 32]. In general a
mass spectrum can be seen as a vector s with intensity values yi [41].

~s = y1, y2, · · · , yn (2-5)

Normalization is nothing more than dividing these intensity values by a factor f . This factor
is different for other normalization techniques. The normalized mass spectrum then takes the
following form:

~snormalized = 1
f
~s (2-6)
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Total Ion Count (TIC) The most commonly implemented method is the TIC normalization.
The normalization on TIC uses the so called p-norm with p=1, which has the following form:

f =
(∑

i

|yi|p
) 1

p

=
∑
i

|yi| (2-7)

The normalization will be based on the sum of all intensities in the mass spectrum [41].
Substituting this value for p into Equation 2-7, and then into Equation 2-6 to obtain the
normalized mass spectrum for TIC gives the following:

~sTIC = 1∑
i |yi|

~s (2-8)

TIC normalization is the most effective at recovering the linear behaviour of the spectrum,
and increasing the correlation coefficient [37]. It however is based on the assumption that the
total amount of signals is comparable in each mass spectrum. When this assumption is met,
the technique is easy to use and proven to be powerful.

Excluding mass ranges Prior to applying TIC and vector norm, manual adjusted mass
ranges can be excluded from the normalization [41]. This consideration depends on the region
of interest to the user. The intensities within a region are set to zero, such that they will
be ignored by the normalization algorithm. Applying this technique does expect supervision
from an expert, which is an extra step in the process and time consuming. However, Deininger
et al. found out that TIC with manual mass exclusion produced the best results [41]. TIC
normalization remains the popular option for normalization in IMS, but it is proposed to use
normalization on the median to spot artifacts caused by TIC normalization [41]. A visual
comparison of the normalization techniques which are partly discussed in this subsection can
be seen in Figure 2-5.
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Figure 2-5: Comparison of several normalization techniques. (A) No normalization, (B) vector
norm, (C) TIC, (D) TIC (mass exclusion), (E) normalization on the median and (F) normalization
by noise level [41].

Spectral realignment Before a fair comparison of a certain m/z value takes place, it is
necessary to be sure that the intensities of the m/z bins is correct over all measured mass
spectra [37]. The effect of an misaligned spectrum is less problematic for a spectrum with
wide peaks, compared to thin and sharp m/z peaks. Spectral realignment tool are able to
adjust for small deviations in the mass spectra between different pixels by shifting the whole
spectrum slightly to the left/right depending on the peak locations [36]. Tracy et al. used a
maximum likelihood method to detect peaks in the mass spectra, process the list of detected
peaks and alignment of the original peak list [43]. It was found that the precision of the mass
spectral data can be increased using this method.

(a) Raw mass spectra (b) Binned peaks (c) Realigned mass spectra

Figure 2-6: Spectral realignment process. (a) Original raw mass spectra, (b) the binned peaks
from the data set (categorized into bins, grouping peaks from similar ions), and (c) the resulting
realigned mass spectra [37].
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Peak-picking Peak-picking is can simply described by filtering the mass spectrum and regis-
tering the most prominent peaks, converting the mass spectrum to a discrete set of peaks [4],
removing the other signals below a certain chosen threshold. Peak-picking is not necessarily a
similar preprocessing technique as all the other techniques mentioned in this section so far. It
essentially is already a form of an dimensionality reduction method, a feature selection algo-
rithm to be exact (more on this in section 2-2). The IMS data will be compressed, therefore
causing information loss by throwing away the signals that did not reach the chosen threshold
[44]. A visualisation of a peak-picking algorithm can be seen in Figure 2-7.

Figure 2-7: Example of a peak-picking algorithm. Peaks above a certain threshold are being
detected, annotated with red dots [45].
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2-1-2 Structure of IMS data sets

As mentioned before, the IMS will be stored into a hyperspectral image or datacube [28]. A
visualisation of this 3-D datacube can be seen in Figure 2-8a. All pixels are stored in x and
y, where each pixels contains a mass spectrum which is stored in m, with a total number
of spectra M . Slicing this 3-D datacube orthogonal to the m axis (blue) gives a ion image,
see Figure 2-9b. Each pixel contains a mass spectrum (red), which can be seen in Figure 2-
9a. Prior to downstream analysis, this 3-D datacube is often flattened into a 2-D matrix
(Figure 2-8b). All pixels in x and y direction are stored underneath each other in n, with a
total number of pixels N .

(a) 3-D datacube (b) 2-D matrix

Figure 2-8: Visualisation of the hyperspectral image or datacube in which the IMS data is stored.
(a) shows the 3-D datacube. The pixels in x and y direction are stored, as well as their m/z
values in m. Ion images can be seen as the slices (blue) of this datacube, and the mass spectrum
(red) for every pixel of all images combined. (b) Flattening the 3-D datacube creates a matrix
of two dimensions, storing at total of N pixels in n, each containing a total of M mass spectra
in m. The ion image and mass spectrum can be distinguished by extracting a column (blue) or
row (red) from this 2-D matrix respectively. This representation is often be used for sequential
analysis instead of the datacube.

Technological improvements cause IMS data sets to expand throughout the years. The main
factors that influence the data size are depicted in Table 2-1. Extending the m/z range or
resolution only scales linear, since only one dimension of the 3-D datacube in Figure 2-8a
increases in size [4]. Increasing the spatial resolution (e.g. decreasing the laser diameter used
in MALDI or extending the measured tissue surface) has a quadratic impact on the data
size, since the 3-D datacube increases in both x and y dimension. The precision at which the
ion counts are stored is usually a few bytes, but depends on the data acquisition instrument.
Since this property is connected to the m/z value, increasing the precision would result in
linear scaling of the IMS data size. Raw IMS data can easily get in to GBs for a single
measurement, resulting in data containing 100k−500k pixels each with 104 − 106 m/z bins
[3]. Further technological advancements in the IMS field result in even larger data sets.
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(a) Mass spectrum (b) Ion image

Figure 2-9: Example of a mass spectrum and an ion image following the similar colors in Figure 2-
8. (a) An typical mass spectrum, showing all detected m/z values with arbitrary intensity. (b)
An ion image shows an false-color image of a certain m/z value.

Factor Scaling

1 Extent of the scanned mass range Linear
2 m/z resolution (m/z bin size) Linear
3 Extent of measured tissue surface area Quadratic
4 Spatial resolution (pixel size) Quadratic
5 Precision with which the ion counts are stored Linear

Table 2-1: Main factors influencing the IMS data size [4].

2-2 Dimensionality Reduction

IMS data sets have scaled throughout the years through advancements on a technological
level, causing an urgent need for better visual understanding [1]. Raw IMS data can easily
reach a few terabytes for a single experiment; a datacube containing 103 − 106 pixels each
with 104 − 106 m/z bins [3]. High-dimensional data can lead to problems; storage being the
first obvious obstacle. Preferably, the size of the datacube would be as minimal as possible
to fit entirely on the memory of the workstation. Subsubsection 2-2-1-1 will go more into
detail of the problems depending on data size regarding to storage, and subsubsection 2-2-1-2
will discuss the curse of dimensionality. This section goes over the motivation of applying
dimensionality reduction, as well as the different methods in which this LD embedding can
be obtained.

Dimensionality reduction seeks a way to reduce the number of features of the data, while
trying to retain as much information of the original data as possible. In the previous section,
the structure of IMS data is explained. Considering the two dimensional matrix of Figure 2-
8b, this high-dimensional data contains N measurements (pixels) with each M features (m/z
bins). A feature can be described as an individual measurable property of an observable
process [46]. The 2-D matrix can be mathematically described as being of dimension RN×M
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with the number of pixels N and number of dimensions (m/z bins) M . Dimensionality
reduction compresses the data along the "features" axis, reducing the data to RN×K with
K < M . This is visually displayed in Figure 2-10.

Figure 2-10: Visualisation of dimensionality reduction. The number of data points (pixels) N
remain constant, yet the number of features (m/z bins) will be reduced from M to K.

Reduction is useful for several reasons. Depending on the application, often a low-dimensional
structure is hidden within the high-dimensional data [47]. Belkin and Niyogi expand on this
statement with an example of gray scale images of an object taken by a camera under fixed
lighting conditions. While each image would contain N pixels, resulting in high-dimensional
data of RN , the intrinsic dimensionality of the space of all images of the same object is only
determined by the degree of freedom of the camera [47].

In terms of IMS data, it would mean that an underlying structure can be found of size K,
which is lower than the number of m/z bins M . This section will try to expand on several
other benefits of dimensionality reduction.

Feature selection Feature selection can be described as a selection process which efficiently
extracts an optimal subset of features from the original high-dimensional data while suppress-
ing any noise or irrelevant noise within the data [48]. The criterion of this selection process
is required to determine whether a certain feature can be added to the optimal subset of
features. Chandrashekar and Sahin mainly review three supervised feature selection methods
(e.g. applied in classification problems); (i) Filter methods, (ii) Wrapper methods and (iii)
Embedded methods [46].

Filter methods review each feature separately by only taking the data into account, using
statistical measures like the Pearson correlation coefficient or information theoretic ranking
criteria [46]. Filter methods are relatively computationally light, do not rely on learning al-
gorithms and avoids overfitting. Wrapper methods are more sophisticated, meaning there is
already some sort of predictor built into the method that is being used as a black-box for
classification. The predictor performance is being used as selection criterion and evaluation of
the variable subset of features [46]. Using either sequential or heuristic search algorithms the
sub-optimal subset can be found by determining the global maximum of the used predictor.
A drawback of this method is the increase in computation time due to reclassifying differ-
ent subsets. Embedded methods try to resolve this bottleneck by incorporating the feature
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selection process within the training process [46].

Opposed to supervised learning dimensionality reduction, there also exist examples of semi-
supervised learning and unsupervised learning methods in the literature. Where supervised
learning uses labels for its classification problems, semi-supervised learning uses labels only
partly during the duration of the algorithm. Unsupervised learning uses unlabelled data
through which the algorithm tries to find the hidden structure within the data by applying
for example clustering techniques to classify the data points [46]. In terms of IMS data,
unsupervised learning deals with the problem that the biological meaning of the m/z values
is unknown. Purely through data mining the aim is to reveal general data structure [28].
Similar to IMS, scRNA-seq data deals with high dimensionality as well, hence Andrews and
Hemberg applied feature selection to identify the underlying structure [49].

Feature extraction Besides feature selection, the field of feature extraction tries to reduce
the number of features by fusing features together by their most prominent properties. Similar
to feature selection, the high-dimensional of size RN×M will be reduced by feature extraction
to RN×K with K < M . Although now k contains not just a subset of the original features,
but the LD embedding has been transformed and is a new representation of the original
data. The features of the LD embedding can be a linear or nonlinear combination of the
high-dimensional features. The following part of this chapter will elaborate on the different
methods constructing this low-dimensional feature space in a linear or nonlinear procedure.
Another approach of classifying the different feature extraction methods would be methods
that mostly preserve global distance structure versus methods that maintain local structure
over global structure within the data [11].

2-2-1 Motivation

2-2-1-1 Size of the data

It has been mentioned that the raw IMS data can be stored into a datacube containing 103−
106 pixels each with 104− 106 m/z bins [3]. In subsection 2-1-2 the main factors determining
the size of the data size were discussed. Since the underlying structure of the tissue sample
most possibly will be smaller than the number of measured m/z bins, "compressing" the data
would result in less necessary storage for the datacube while retaining only the most valuable
information. Determining what part of the original data should be retained in a lower-
dimensional embedding is decided my dimensionality reduction techniques. For downstream
analysis, the whole data set is usually stored into the available RAM of the workstation. With
less dimensions to consider, further calculations would benefit from a substantial decrease in
runtime.

2-2-1-2 Curse of dimensionality

With increasing dimensionality of a data set, the volume of the space increases exponentially
resulting the variance in the distances between the data points to approach zero [44]. In terms
of IMS, the intended space is built up with each m/z being its own dimension. For IMS data
sets consist of thousands of m/z bins, large dimensions are reached for the original data. The
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reduction of the variance towards zero is referred to as the curse of dimensionality; especially
the Euclidean distance suffers from this effect [3]. Palmer et al. also argues that in order to
evaluate data properly, the necessary needed number of data points grows exponentially with
the number of dimensions. In high-dimensional space the data gets sparse, and traditional
algorithms which requires the distance metric between data points drop in efficiency and/or
effectiveness [50]. The sparsity is visible in Figure 2-11, visualizing the increased distance
between the same number of data points in higher dimensions. Scaling the dimensionality of
the data even further only creates more sparsity in the data. One should limit analysis to
lower dimensions due to this curse of dimensionality.

(a) (b)

Figure 2-11: Visualisation of the sparsity of high-dimensional data. Fifty data points have
been generated by a uniform distribution, plotted in (a) one dimension and (b) two dimensions.
Clearly the distances between the data points increases when scaling the dimensions, introducing
the concept of sparsity in the data [51].

2-2-2 Linear decomposition methods

Linear dimensionality reduction methods seek for a linear mapping from the high-dimensional
space to the LD embedding, by minimizing the explained variance of the data points. Mostly
this is done by matrix factorization. Various methods exist, like Principal Component Anal-
ysis (PCA) [52, 5], Independent Component Analysis (ICA) [53], Maximum Autocorrelation
Factorization (MAF) [54] and Non-negative Matrix Factorization (NMF) [55]. While these
methods have been used extensively, PCA has been applied most frequently, and is shortly
described in this section. Matrix factorizations are being widely used for a long time already,
and have been optimized in every common programming language (e.g MATLAB, Python).

An advantage of linear dimensionality reduction methods is the explainability of the LD
embedding. For PCA it holds that the axis show proportional how much explained variance
can be found in either direction of the axes [5]. Nonlinear dimensionality reduction methods
sand their interpretability will be discussed in subsection 2-2-3.
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Principal Component Analysis (PCA)

PCA [52, 5] is the most commonly known form of a linear Dimension Reduction (DR) tech-
nique, and is actively used as a processing step in linearly reducing the number of dimensions
[56, 57]. PCA aims to extract a new representation in a reduced number of features from the
high-dimensional data that maximizes the variance in the low-dimensional space. Visually,
PCA searches for a best fitted straight line through the data points, minimizing the variance
of all the data points w.r.t. that line [5], as can be seen in Figure 2-12. When this fit is
found, the next fit is constructed orthogonal to the last line using the same algorithm. This
process is repeated until the desired number of dimensions K is reached, with K < M . These
lines represent the directions of the eigenvectors of the principle components (PCs), which
are ranked by importance.

Figure 2-12: Construction of the PCs in a cluster of data points. The original axis are labeled as
x1 and x2. The direction of the eigenvectors, and also the first and second Principle Component,
are depicted as z1 and z2, respectively [5].

These steps can be written in the form of a matrix decomposition. In order to do so, first the
covariance matrix will be calculated.

cov(A,A) = E
[
(A− µA)> (A− µA)

]
(2-9)

With A the data matrix, and µA = E [A]. When the data matrix is zero mean and column
centered, the expression of the covariance matrix simplifies to the following:

cov(A,A) = A>A

n− 1 (2-10)

With n the number of data points. The eigenvectors, in other words the principle components
(PCs), can be computed in two ways; (i) applying an eigenvalue decomposition or (ii) compute
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the Singular Value Decomposition (SVD). Previous work has proven that SVD provides
superior numerical stability over eigenvalue decomposition [58], as has also been pointed out
by Verbeeck et al. [3]. The SVD can be performed for the data matrix A of dimensions m×m
as follows:

A = UΣV > (2-11)

With U ∈ m × m being a unitary matrix (UU∗ = UU> = I) containing the left singular
values of A, Σ a matrix of size m×n containing all the singular values on its diagonal and V >
also an unitary matrix (V V ∗ = V V > = I) of size n × n containing the right singular values
of A. Substituting Eq. (2-11) into Eq. (2-10) gives:

cov(A,A) = A>A

n− 1

= V ΣU>UΣV >

n− 1

= V
Σ2

n− 1V
>

(2-12)

In this expression, the matrix V contains all the eigenvectors and Σ2

n−1 all the corresponding
eigenvalues, in decreasing order. These eigenvectors with corresponding eigenvalues are equiv-
alent to the principle components ranked by importance. The desired number of dimensions
d of the LD embedding are the first d principle components. Determining the right amount
of PCs remains challenging [59]. To give more insight in the PCs, there are visual tools like
the Scree plot and the Pareto plot (see also Figure 2-13). These plots show the value of the
eigenvalue per PC and cumulative explained variance as a function of the number of compo-
nents, respectively. Within these plots, thresholds can be set in order to select the amount of
PCs with as objective a certain percentage of explained variance. In the literature, Deininger
et al. were able to distinguish the tumor from the non-neoplastic mucosa using PCA with
only the first 3 PCs, showcasing the useful applicability of PCA [60].

2-2-3 Nonlinear Dimensionality Reduction (NLDR)

A major drawback of linear decomposition methods like PCA is the inability of dealing with
the nonlinear structure hidden within the data. In the Pareto plot of Figure 2-13b it can be
seen that when using the only the first two PCs in order to plot the LD embedding, only 20%
of the explained variance in the data have been accounted for. Roughly 80% of the structure
within the data can not be visualized properly.
Nonlinear Dimensionality Reduction (NLDR) attempts to uncover the underlying nonlinear
manifold of the data (if present at all), by constructing the low-dimensional feature space by
variables that are nonlinear combination of the original features. A visualisation of how a
NLDR unpacks the lower dimensional structure from the high dimensional data can be seen
in Figure 2-14.
Although NLDR is superior in uncovering the underlying nonlinear manifold, if the data
behaves linear locally, the subspace can be clearly identified with the use of linear tech-
niques like PCA [3]. In order to find these nonlinear structures globally, several nonlinear

Master of Science Thesis S.T. Jansen



24 Fundamentals

(a) (b)

Figure 2-13: Examples of 2 different visualisations describing the output from a PCA process:
(a) the importance of the PCs in a Scree plot [5] and (b) displaying the cumulative explained
variance in a Pareto plot [61].

manifold learning methods exist. Some examples of NLDR methods are: Sammon mapping
[63], multidimensional scaling (MDS) [64], Self-Organizing Maps (SOMs) [65], Locally Lin-
ear Embedding (LLE) [62], Diffusion maps [66], Stochastic Neighbor Embedding (SNE) [7],
t-Distributed Stochastic Neighbor Embedding (t-SNE) [6] [67], LargeVis [68], Uniform Man-
ifold Approximation and Projection (UMAP) [11], Noise Contrastive Approach for Scalable
Visualization (NCVis) [69] and many others [70, 71].

This subsection will go more into SNE and its successful successor t-SNE [6]. The latter has
been the gold standard for NLDR techniques for the past decade. A few years ago UMAP has
been introduced [11], showing already promising results which will be thoroughly discussed.
Finally, the main comparison will be between the NLDR techniques t-SNE and UMAP.

Stochastic Neighbor Embedding (SNE)

SNE tries to optimally preserve local structure of the data by placing the similar data points
closer together and dissimilar points farther away. SNE achieves this by using a probabilistic
approach of mapping the data points from high-dimensional space to the LD embedding [7].
Mathematically, by centering a Gaussian on each data point i in the high-dimensional space
a probability distribution pij can be calculated between i and neighbor j.

pj|i =
exp

(
−d2

ij

)
∑
k 6=i exp

(
−d2

ik

) =
exp

(
−‖xi − xj‖2 /2σ2

i

)
∑
k 6=i exp

(
−‖xi − xk‖2 /2σ2

i

) (2-13)

With dij the distance between point i and j in high-dimensional space, the variance of the
Gaussian σi that is centered on data point xi, and k the number of effective neighbors or the
so called perplexity. In this expression the squared Euclidean distance function has already
been substituted. The value for the perplexity can be set by hand by the user. The Gaussian
probability σi is most likely not similar for each data point i, so this will be found using the
perplexity.
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(a) (b) (c)

Figure 2-14: Visualisation of a Nonlinear Dimensionality Reduction (NLDR) technique called
Locally Linear Embedding (LLE). (a) The original data set of a two dimensional plane within a
three dimensional space, commonly known as a ’Swiss roll’. (b) This Swiss roll has been sampled
to create the final input for the dimensionality reduction technique. (c) LLE is able to unfold the
LD embedding (2-D) from the high-dimensional data (3-D) [62].

Perplexity = 2H(Pi) = 2−
∑

j
pj|i log2 pj|i (2-14)

With H(Pi) being the Shannon entropy of Pi measured in bits [6]. Van der Maaten and
Hinton argues that SNE is robust for different values of perplexity, and that typical values
are somewhere between 5 and 50. For the LD embedding, a similar probability distribution
can be obtained, and this time the variance of the Gaussian is set to σ = 1√

2 . A fixed value
for σ only results in a rescaled version of the LD embedding.

qj|i =
exp

(
−‖yi − yj‖2

)
∑
k 6=i exp

(
−‖yi − yk‖2

) (2-15)

With yi and yj the representations of xi and xj in the LD embedding. By now, 2 different
probability distributions have been obtained: the probability in high-dimensional space pj|i
and in the LD embedding qj|i. pii and qii are set to zero, since only the pairwise interactions are
interesting for the optimization problem. The whole goal of SNE is finding the embedding that
represents the high-dimensional data the best. In this algorithm this is done by minimizing
a cost function: the Kullback–Leibler divergence (KLD).

CSNE =
∑
i

∑
j

pj|i log
pj|i
qj|i

=
∑
i

KL (Pi‖Qi) (2-16)

This cost function can be minimized using different methods. Steepest descent in which all the
data points are being optimized simultaneously is inefficient and would get stuck in poor local
minimum [7]. SNE minimizes the cost function using Gradient Descent (GD). In order to
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use Gradient Descent (GD), the gradient is needed to calculate the slope of the cost function
each step. Fortunately, this gradient has a relative simple expression.

δCSNE

δyi
= 2

∑
j

(yi − yj)
(
pj|i − qj|i + pi|j − qi|j

)
(2-17)

The term
(
pj|i − qj|i + pi|j − qi|j

)
can be interpreted as a spring system; an attractive or

repellent force between the data points yi and any yj in low-dimensional space. The amount
of force, and in which direction the force is applied, depends on the similarity of the two
probability distributions pj|i and qj|i. This force will be determined by the GD method. In
order to not get stuck into poor local minima, Gaussian noise is added in the early stages of
the optimization. The initialization of the LD embedding is random.

t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) is based on its similar named prede-
cessor SNE, but tries to overcome this "crowding problem" that emerges in data when being
in high-dimensional space. The crowding problem entails the difficulty in faithfully display-
ing data points that are far away from each other at similar ratios compared to closer by
data points. t-SNE tries to resolve this issue by using a Student t-distribution instead of a
Gaussian distribution to compute the similarity between data points in low-dimensional space
[6]. The difference between this two distributions can be seen in Figure 2-15. It basically
comes down to the longer tails Student t-distribution, spreading out further away than the
Gaussian distribution. Another modification that has been made is a symmetrization of the
cost function, which has already been addressed by Cook et al. [72].

Figure 2-15: Visualisation of the Student t-distribution compared to the Gaussian distribution.
Results are plotted using the numpy library in Python.

t-SNE adopts the same approach of minimizing the KLD, but now only a single KLD is
computed between a joint probability distribution P and Q in respectively high and low-
dimensional space, instead of every possible probability [6]. In this formula the approximate
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expressions for the probabilities in high and low-dimensional space have been substituted;
P (X) ≈ e−X2 and Q(Y ) ≈ 1

1+Y 2 respectively, followed by a derivation of Oskolkov [73].

Ct−SNE = KL(P (X)‖Q(Y ))

=
∑
i

∑
j

pij log pij
qij

= P (X) log
(
P (X)
Q(Y )

)
= P (X) logP (X)− P (X) logQ(Y )
≈ −P (X) logQ(Y )

= e−X
2 log(1 + Y 2)

(2-18)

The term P (X) logP (X) goes to zero for small and large distances between data points [73].
Similar to SNE, it holds that pii = qii = 0. Van der Maaten and Hinton refer to this form as
symmetric SNE, and it has the property that pij = pji and qij = qji for ∀i, j [6]. Then the
probability distribution of the LD embedding is stated as follows:

qij =
exp

(
−‖yi − yj‖2

)
∑
k 6=l exp

(
−‖yk − yl‖2

) (2-19)

In order to handle outliers in high-dimensional space better, t-SNE uses a different probability
distribution in low-dimensional space.

pij =
pj|i + pi|j

2N (2-20)

With N the number of data points. As mentioned in the original paper, the main advantage
of using this symmetric SNE is that the gradient gets simplified which results in a faster
computation and a overall speed-up of the algorithm [6].

δCt−SNE

δyi
= 4

∑
j

(yi − yj) (pij − qij) (2-21)

Alternative versions of t-SNE The computational complexity of t-SNE is O(N2), which is
far from ideal for large data [6]. Therefore, in the years after the invention of t-SNE, there
have been many attempts in speeding up the algorithm. Barnes-Hut t-SNE is an example
of that, which uses the Barnes-Hut algorithm [74] for approximating the forces between the
data points in the embedding [8]. This decreases the computational complexity to O(N logN)
which makes an huge improvements for large data sets, as is the case in the IMS field. Van
der Maaten also compared Barnes-Hut t-SNE to a version of t-SNE which uses a dual-tree
variant [75], but found that Barnes-Hut t-SNE only slightly outperforms dual-tree t-SNE due
to additional bookkeeping (e.g. needing more memory) that is required in dual-tree t-SNE
[8]. Linderman et al. managed to accelerate the algorithm even further with a version called
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FIt-SNE [9]. A computational complexity of O(∼ 2pN) has been achieved, with a small
number p of interpolation nodes that control the interaction between two data points [9].
Hierarchical Stochastic Neighbor Embedding (HSNE) aims to bridge the gap between ac-
curacy and interactivity, with a focus on reconstructing a representation of the hierarchical
data [76]. HSNE has been specifically introduced for analysis on mass cytometry data sets
[77]. Mass cytometry uses an inductively coupled plasma to ionize the tissue sample, causing
the ions to be detected by a type of mass analyzer. Nonlinear similarities were successfully
distinguished by HSNE, identifying rare cell populations that were previously missed due to
downsampling [77].
A faster algorithm is always desirable, but good interpretation of the data is just as impor-
tant. Determining appropriate parameters for a dimensionality reduction method remains
difficult, since the algorithms are being influenced by the data. Different data sets would
require a different parameter configuration. Opt-SNE tries to resolve this by automating the
parameter selection of t-SNE by monitoring the cost function in real-time [12]. By utilizing
the Kullback–Leibler divergence (KLD) evaluation, the early exaggeration phase can be cali-
brated. The early exaggeration phase of t-SNE will further be discussed in subsection 3-1-1.
Although Belkina et al. showed that the final LD embedding results in a lower value for the
KLD than the default settings of t-SNE, it is difficult to determine the correct value for the
stopping criterion of the algorithm.

2-3 Distance metric

A distance metric is used to measure the distances between data points in the space they lie
in. Clustering algorithms use these distances to compare the similarity between data points in
order to assign them to a cluster, hence the applied distance metric is of extreme importance
[3]. In IMS context, clustering algorithm aims to describe how similar or dissimilar the spectra
of each pixel and thus its chemical content are to those of the other pixels [78]. Changing
the way data points are described "similarly" by incorporating a certain distance metric, the
conclusions based upon those clusters can vary. The most widely used metric is the Euclidean
metric, but several others exist like Mahattan, Minkowski, Chebyshev, Cosine, Mahalanobis,
Poincaré distance, Pearson correlation and many more. New distance metrics can even be
created, like the Histomatch distance which has been applied to IMS data, since a distance
metric is merely an equation describing the relationship between data points within a certain
space [78]. Smets et al. found that Histomatch performs better than the Euclidean distance
metric, and almost similar as the Cosine distance in terms of spatial autocorrelation [78].
Mathematically, the formulas of several distance metrics being used in data processing can
be seen in Table 2-2.
Winderbaum et al. found that applying k-means clustering using the Cosine distance metric
yield superior results as opposed to using the Euclidean distance metric [79]. The Cosine
distance has also been used in UMAP to identifying hundreds of cell types and 56 trajectories
of 61 embryos [80]. Collectively, thousands of corresponding marker genes were defined. Qian
et al. have compared the Euclidean with the Cosine distance metric for nearest neighbour
queries in high dimensional space, and did not found noticable advantages of using the Cosine
distance over the Euclidean distance [81]. In another study, Sarkari et al. investigated k-
means clustering using four different distance metrics: Euclidean, Cosine, Manhattan and
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Distance Metric Equation

Minkowski d(x, y) =
(

n∑
i=1
|xi − yi|p

)1/p

Euclidean d(x, y) =

√√√√ n∑
i=1
|xi − yi|2

Chebyshev d(x, y) = max
i

(|xi − yi|)

Cosine d(x, y) = 1−
∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

Pearson Correlation d(x, y) = 1−
∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − y)2

Mahalanobis DM (~x) =
√

(~x− ~µ)TS−1(~x− ~µ)
With S being the covariance matrix.

Poincaré d(x, y) = arcosh
(

1 + 2 ‖x− y‖2

(1− ‖x‖2) (1− ‖y‖2)

)

Histomatch [78] d(x, y) = 1−
n∑
i=1

max (0,min (xi − yi))

Table 2-2: Overview of a few of the most used distance metrics in data processing and their
mathematical description. All representations calculate the distance d between data point x and
y.

Correlation distance. They evaluated the performance using the Calinski-Harabasz (CH)
index [82], and found that the Euclidean distance metric consistently achieved the highest
cluster quality in terms of the CH index [83]. As mentioned before, Aggarwal, Hinneburg
and Keim proved that a fractional distance metric provides better understanding from a
theoretical and empirical perspective, and can significantly speed up clustering algorithms
like k-means clustering [50].

The choice of distance metric is not always motivated. Artemenkov and Panov used the
Cosine similarity as distance function for their dimensionality reduction technique called
NCVis, without explanation or consideration of other metrics [69]. Also Campello et al.
applied Euclidean and Cosine distance on different data sets with no further discussion [84].
Verbeeck et al. argues that the choice of distance metric depends on the underlying structure
of the data [3].
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Chapter 3

Methods

3-1 Uniform Manifold Approximation and Projection (UMAP)

UMAP is a form of NLDR optimizing its LD embedding similarly to t-SNE, using force-
directed graphs. UMAP gained traction over the last years as it showed promising results for
a broad range of fields. Furthermore, UMAP consist of a well founded mathematical theory
in topology and the ability to scale up towards large real-world data sets [11]. UMAP builds
further on previous work of Belkin and Niyogi on Laplacian eigenmaps [47].

The UMAP algorithm consist in general of two important steps: (i) compute a probabilistic
(fuzzy) graphical representation of the local relationships in the data, and (ii) optimize the LD
embedding using Cross-Entropy (CE) as cost function by iterating using Stochastic Gradient
Descent (SGD) [11]. These two steps have been visualized in Figure 3-1. In this subsection,
both steps will be discussed separately considering their mathematical argumentation which
the t-SNE is somewhat lacking [10].

(a) (b)

Figure 3-1: Overview of the two general steps of UMAP. (a) Computing the kNN graph based
on the high-dimensional data and (b) optimizing the LD embedding that preserves the structure
of the original graph [85]. The initialization determines the initial positions of the data points in
low-dimensional space in the second step.
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Step 1: Constructing the fuzzy graph In order to construct the fuzzy graph, the main
assumption that UMAP makes, is that data is uniformly distributed on the manifold [11].
This is rarely the case with real-world data, but allowed when the manifold has a Riemannian
metric not inherited from the ambient space, then a metric can be found such that the data
is approximately uniformly distributed [11]. Therefore, the remaining assumption is that the
data is locally connected. The original paper mentions that the topological information can
be obtained by a translation of each metric space in the family into a fuzzy simplicial set. By
taking a fuzzy union across the entire family, all the incompatibilities of the different families
(different metrics used across the data set) can be smoothed out. What this means in practice
is that each data point has a fixed number of neighbors for the construction of the k-Nearest
Neighbor (kNN)-graph, resulting in some data point having larger lengths between their
neighbors than other data points. At a local level, the distances between nearest neighbors
is thus different throughout the entire data set. "Taking the fuzzy union" means that we
define far away neighbors of one data point be as far away as a data point having much closer
neighbors. This is essentially the basics of the abbreviation UMAP. The final result is a fuzzy
simplicial set that describes the underlying structure of manifoldM [11].

Intermezzo: k-Nearest Neighbor (kNN) graph In order to construct this weighted k-
Nearest Neighbor (kNN) graph, UMAP uses an algorithm developed by Dong et al., who
proposed an efficient construction of kNN graphs by applying nearest neighbour (NN)-descent
[86]. This approximates a kNN graph almost perfectly with only a few iterations, and uses the
intuition that "my neighbours’ neighbours are likely to be my neighbours" [68]. Computing
the exact kNN graph has an complexity of O(N2d) with N the number of data points and d
the number of dimensions. This computation is often too costly, which led to approximations
using 3 different approaches [68]: (i) space-partitioning trees, (ii) locality sensitivity hashing
techniques and (iii) neighbor exploring techniques. Space-partitioning divides the space into
different regions, organizing these regions can be done using different trees: k-d trees [87,
88], vantage point (vp) trees (also being used by t-SNE) [89], cover trees [90] and Random
Projection (RP) trees [91]. UMAP uses the RP trees for construction of its space-partitioning
tree, which have proven to be state-of-the-art in constructing kNN graphs [68]. Dasgupta
and Freund report an empirical complexity for the NN-descent of O(N1.14) [91]. The locality
sensitivity hashing techniques are being used to map data points into different buckets and
data points in the same buckets are likely to be similar to each other [68]. NN-descent falls
in the category of neighbour exploring techniques.
The probability distribution in high-dimensional space is exponentially defined as follows:

pi|j = exp
(−max (0, d (xi, xj)− ρi)

σi

)
, ρi = min

{
d
(
xi, xij

)
| 1 ≤ j ≤ k, d

(
xi, xij

)
> 0

}
,

(3-1)
with d(xi, xj) the distance metric between xi and xj in high-dimensional space and k the
number of nearest neighbours, which is one of the important hyperparameters of UMAP.
Parameter σ ensures a smooth approximation of the kNN-distance, and will be tuned such
that the following relationship is met:

k = 2
∑k

j=1 pi|j (3-2)
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A weighted directed graph G = (V,E,w) can be constructed with the vertices V = X (X
being a matrix containing distances between k nearest neighbours of Xi, and it holds that
Xi ∈ X), the directed edges are formed by E =

{(
xi, xij

)
| 1 ≤ j ≤ k, 1 ≤ i ≤ N

}
and the

weight w are equal to the probabilities in the high-dimensional space pi|j [11]. As mentioned
before, by taking the fuzzy union across the entire family, incompatibilities can be smoothed
out. Symmetrization aims to achieve this by gluing together all locally different distance
metrics, which can be written mathematically as follows:

pij = pi|j + pj|i − pi|j ◦ pj|i (3-3)

An important difference in the symmetrization step of UMAP compared to t-SNE is that
t-SNE normalizes over all data points at this step, which is assumed to be a computational
drawback and results in a slower run time [11]. The resulting weighted kNN graph G will be
optimized in the next step.

Step 2: Optimizing the LD embedding The probabilities in the LD embedding are given
by a family of curves which can be seen in Equation 3-4 [11]. This representation is virtually
identical to the Student t-distribution of t-SNE.

qij =
(
1 + a (yi − yj)2b

)−1
(3-4)

Parameters a and b are found through nonlinear least-square fitting with the use of hyperpa-
rameter min_dist.

(
1 + a (yi − yj)2b

)−1
≈
{

1 if yi − yj ≤ min_dist
e−(yi−yj)−min− dist if yi − yj > min_dist

(3-5)

Where t-SNE uses the KLD as cost function, UMAP is minimizing the CE. This CE can be
described by Equation 3-6 [11]. Similar to the KLD, this equation can be seen as a spring
system in which the first part of the equation is describing the attractive force and the second
part the repulsive force. Using the approximate representations of the probabilities in the low
and high dimension P (X) ≈ e−X2

, Q(Y ) ≈ 1
1+Y 2 , the CE can be rewritten in terms of only

the distances (assuming X is the distance between data points in the high-dimensional space
and Y in the LD embedding, and ignoring the constant terms with only P (X) [73]).

CE(X,Y ) =
∑
i

∑
j

[
pij log

(
pij
qij

)
+ (1− pij) log

(
1− pij
1− qij

)]

= P (X) log
(
P (X)
Q(Y )

)
+ (1− P (X)) log

(1− P (X)
1−Q(Y )

)

= e−X
2 log

[
e−X

2 (1 + Y 2
)]

+
(
1− e−X2) log


(
1− e−X2

) (
1 + Y 2)

Y 2


≈ e−X2 log

(
1 + Y 2

)
+
(
1− e−X2) log

(
1 + Y 2

Y 2

)
(3-6)
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The resulting penalization that is being imposed by the optimization algorithm has been
visualized by Oskolkov, giving an interpretation of the huge differences in the KLD of t-SNE
and CE of UMAP [73]. To this end, the visualization of the cost functions of t-SNE and
UMAP (Equation 2-16 and Equation 3-6, respectively) can be seen in Figure 3-2. For t-SNE,
it is shown in Figure 3-2a that when the distances in high-dimensional space X are small and
the distances in low-dimensional space Y are large, the forces imposed by the optimization
algorithm are stronger (local structure). There where the cost function is minimal (the
ground plane), it can be seen that the LD embedding is a near-perfect representation of the
high-dimensional data. Here, the distances in high and low-dimensional space are equal to
each other (Y = X), so no optimization will be conducted for those data points anymore.
Therefore, it can be seen in Equation 2-18 that when X is large, no optimization is happening
since it sees no difference in distances in Y . This describes the global structure which the
t-SNE algorithm is not using in its optimization step at all. A clear difference by UMAP can
be seen in Figure 3-2b, which also penalizes the LD embedding when the distances in Y are
small and in X are large. It is visualised that UMAP is better at preserving global structure
as opposed to t-SNE [73].

(a) (b)

Figure 3-2: Comparison of the cost function (a) Kullback–Leibler divergence (KLD) and (b)
Cross-Entropy (CE) that are used in t-SNE and in UMAP, respectively. Where both algorithms
preserve local structure, it can be seen that UMAP preserves the global structure of the data better
with the use of CE due to the increasing penalization when distances in the high-dimensional data
X are big and distances in the LD embedding Y are small. The penalization value on the z-axis
is arbitrary [73].

Intermezzo: Stochastic Gradient Descent (SGD) and Negative sampling (NEG) In order
to optimize the LD embedding, UMAP uses SGD with NEG [92] as opposed to the gradient
descent of t-SNE. This combination allows the LD embedding of UMAP to be of arbitrary
dimension K, unlike t-SNE which works only for two or three dimensions due to increasing
computational complexity with K [11]. NEG has previously also been applied by LargeVis
[68]. The definition of NEG by Mikolov et al. can be seen in Equation 3-7 [92]. A thorough
explanation and derivation of this expression can be found in a study by Goldberg and Levy
[93].
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log σ
(
v′wO

>vwI

)
+

k∑
i=1

Ewi∼Pn(w)
[
log σ

(
−v′wi

>vwI

)]
(3-7)

This equation uses the sigmoid function σ(x) = 1
1+exp−x . The first and second part of the

equation respectively models the observed and negative edges drawn from the noise distribu-
tion, with k the number of negative samples [70].

SGD can be parallelised, which could possible result in a decrease of computational time for
UMAP in the future [11]. This form is generally known as asynchronous SGD, and has proven
to be very efficient and effective in sparse graphs [94], and is useful for us since n_neighbors is
much smaller than the number of pixels N . Tang et al. discusses the implementation of SGD
for LargeVis as well, which is another NLDR technique [68]. Instead, they adopt an approach
called edge sampling from their previous work, in order to not influence the objective function
and learning process of LargeVis [70].

SGD requires the gradient in order to optimize the cost function, similarly to GD. The
gradient of the cost function of UMAP can be obtained by differentiating CE in Equation 3-6
and by filling in the expression of the LD embedding of Equation 3-5. The resulting gradient
of the CE can be seen in Equation 3-8. In practice, UMAP uses a force directed graph layout.
This LD embedding will be optimized by applying forces along the edges of the graph and
between randomly sampled nodes of the graph, described as attractive and repulsive forces,
respectively [11].

δCE

δyj
=

w ((xi, xj))
−2ab ‖yi − yj‖2(b−1)

2

1 + ‖yi − yj‖2
2︸ ︷︷ ︸

Attractiveforce

+ (1− w ((xi, xj))) b(
ε+ ‖yi − yj‖2

2

)(
1 + ‖yi − yj‖2

2

)
︸ ︷︷ ︸

Repulsiveforce

 (yi − yj)

(3-8)

In this equation, w((xi, xj)) are the probabilities between data points i and j of the high
dimensional space and ε is a small constant added to the equation in order to avoid division
by zero [11]. A clear distinction between the attractive and repulsive forces can be seen.
Parameters a and b are the nonlinear fitted parameters determined by the hyperparameter
min_dist, and the default settings of UMAP are a ≈ 1.929 and b ≈ 0.7915. With values
a = b = 1, the distribution would result in the Student t-distribution used in t-SNE [11].
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Alternative versions of UMAP While UMAP is relatively new, a few alterations have al-
ready been developed. Nolet et al. have successfully obtained speedups of up to 100x in
practice, by introducing cuML UMAP [95]. They found that a large part of the computa-
tion was constructing the kNN graph (26%), therefore cuML UMAP only computes the kNN
graph once. Nolet et al. also mention that more improvements can be made in adjusting
the hyperparameters correctly, although the original paper only applied a couple different
hyperparameter configurations [95].

Sainburg et al. proposed Parametric UMAP, which replaces the step of optimizing the em-
bedding with SGD with a deep neural network that learns a parametric relationship between
the high-dimensional space and LD embedding [85]. However, parameteric UMAP still uses
the default parameters of UMAP when starting the algorithm. They concluded that the per-
formances of the parametric embedding are similar to the non-parametric embedding, except
the added advantage of learned mapping by parametric UMAP [85]. However, there are still
parameters left for the user to adjust, which may require supervision by an expert. In general,
Parametric UMAP needs more time to achieve the same level of quality compared to regular
UMAP.

Existing approaches up until now often neglect the local density of the data. This may lead
to misleading interpretations and possibly missing underlying biological structure. Den-SNE
and densMAP aim to take the local density of the data into account by adding a term to the
cost functions, as can be seen in Equation 3-9 [56].

Lden-SNE = KLD
(
P t−SNE‖Qt−SNE

)
− λCorr

(
rt−SNE
o , rt−SNE

e

)
,

LdensMAP = CE
(
PUMAP‖QUMAP

)
− λCorr

(
rUMAP
o , rUMAP

e

)
,

With the correlation coefficient: Corr (re, ro) = Cov (re, ro)
(Var (re) Var (ro))1/2

(3-9)

Here, λ is a hyperparameter tunable by the user, based on how strongly the density-preservation
term should operate compared to the original cost function. Narayan et al. define ro (xi) :=
logRo (xi) and re (yi) := logRe (yi), with Ro and Re the radii respectively in the high and
low-dimensional space [56]. The additional information that was captured gave more biologi-
cal insight into immune cell transcriptomic variability in tumors, specialization of monocytes
and dendritic cells and temporally modulated transcriptomic variability across developmental
lineages of C. elegans [56]. Narayan et al. report that den-SNE and densMAP run approx-
imately 20% slower than their original counterpart. Only one hyperparameter configuration
was used, with the Euclidean distance metric.

3-1-1 Initialization phase

The initialization phase of the applied dimensionality reduction technique remains important
w.r.t. how fast a global optimum will be found, and whether this global optimum will be
found at all. Independent Component Analysis (ICA), a linear decomposition technique,
uses an iterative approach to converge towards a global optimum. Multiple runs, random
initialization and combining the results over these different runs are often applied to avoid
getting stuck in a local minimum [3].
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for the same reason, t-SNE is initialized by samples drawn from a isotropic Gaussian distri-
bution with a small variance centered around the origin added [6]. Additionally, t-SNE also
adds a large momentum term α to its gradient, which will decay throughout the iterations.
This not only avoids poor local minima, but also speeds up the optimization [6]. This practice
is also referred to as early exaggeration, and is proposed as a fixed factor of 4 in the original
algorithm of t-SNE (also visible in Equation 2-21). The early exaggeration ensures that data
points are spread out farther away at the start of the algorithm, allowing more space for the
data points to converge towards their global optimum. Linderman and Steinerberger point
out that the early exaggeration phase of t-SNE can be improved [10] since the original paper
on t-SNE of Van der Maaten provides no proof for the selection of this parameter [6]. They
also point out that it can be empirically checked that a higher value than one for the early
exaggeration phase improves the LD embedding. Belkina et al. attempted to calibrate the
early exaggeration by utilizing the KLD in real time in a data-driven way [12]. Consequently,
the resulting embedding achieved a lower value for the KLD as opposed to the default settings
of t-SNE, showing the importance of the correct parameter configuration for different data
sets.

NCVis employs the Power Iteration method during the initialization phase [69]. This method
ensures a more sophisticated approximation of the positions of the data points in the LD
embedding, by already taking the kNN-graph into account. This kNN-graph will be calculated
prior to the initialization.

UMAP also incorporates information from the kNN-graph, and assigns initial low-dimensional
coordinates through the Graph Laplacian [11]. The initial kNN-graph will be constructed
using matrix factorization, formally called the normalized Laplacian matrix [47].

L = D1/2(D −A)D1/2, (3-10)

where A is the adjacency matrix and D the degree matrix of graph G. Kobak and Linderman
stress that the main difference between t-SNE and UMAP lies within this initialization phase,
arguing that both algorithms would preserve global structure poorly if UMAP would be
initialized similar to t-SNE (random initialization) [96]. In previous work, Kobak claimed
that FIt-SNE is as quick as UMAP, and even up to four times quicker when applied to two
different data sets (while both algorithms are configured with default settings) [97]. This
claim is contradictory to findings of McInnes et al., who showed that UMAP outperformed
FIt-SNE in terms of runtime for every subsample of the full Google News data set [11].

Spatial initialization Besides the spectral and random initializations within UMAP, a third
initialization is proposed: the spatial initialization. This initialization utilizes the original
pixel locations as they are registered during the ionization of the tissue surface, and uses
these coordinates as initial coordinates of data points in the LD embedding. This means that
the LD embedding is being initialized in a 2-D plane due to the flat surface nature of most IMS
data sets. Therefore, the embedding cannot exist in a dimension higher than K = 2, since the
forces applied to the constructed kNN graph can only exist in the 2 dimensions and any other
dimension would be orthogonal to the first two dimensions. The spatial initialization is thus
dependent on the acquisition-dimension. With 3-D IMS data sets [20], this initialization can
be used as starting positions for data points in a 3-D LD embedding. Further investigation of
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this initialization and a comparison with the standard procedures of UMAP will be conducted
in a separate experiment, formulated in subsection 4-2-2.

3-1-2 Applications of UMAP

The fast algorithm, scalability to large data sets, mathematically well grounded theory and
interpretable visualizations make UMAP a good candidate for analyzing IMS data. Smets
et al. stress the fact that UMAP is able to capture all features irrespectively of the num-
ber of dimensions K spanning the LD embedding, which is important when visualizing the
data since the underlying manifold may not be restricted to 2-D or 3-D [98]. They applied
a bidirectional dimensionality reduction approach by taking both the spatial and spectral in-
formation into account. Based on this information, the m/z bins were ranked by importance
and the results produced by UMAP were confirmed using the spatial colocalization of the
identified ions. Results are likely to have biological meaning, allowing a better understanding
of the underlying biological activities [98].

When used in identification of protein-protein interactions, UMAP shows higher sensitivity
compared to traditional dimensionality reduction methods [99]. Dorrity et al. also mention
the ability of capturing local as well as global structure, which makes UMAP a valuable
addition to the identification of protein complexes, pathways, and novel interactions in tran-
scriptomic data sets [99].

While t-SNE and UMAP may not always be able to segregate data points into complete
clusters, at least they both surpass PCA in terms of identifying the underlying manifold [100].
In the same study, it was found that UMAP was able to extract the differentiation stage of T-
cells within each major cluster, while t-SNE was unable to make them easily identifiable due
to the absence of an perceptible structure [100]. In terms of speed, UMAP produces the LD
embedding the fastest, comparable with FIt-Stochastic Neighbor Embedding (SNE). Becht
et al. conclude that UMAP appears to be a robust method for dimensionality reduction,
capable of preserving both local and global structures [100].

As mentioned in section 2-3, Cao et al. investigated the transcriptional dynamics of mouse
organogenesis with single-cell RNA sequencing (scRNA-seq), then applied UMAP for con-
structing the LD embedding and identified hundreds of cell types and 56 trajectories of 61
embryos [80]. With this global view of mammalian organogenesis, it was shown that dy-
namical biological processes and trajectories could be identified. A detailed analysis of the
developmental trajectories of cells has been conducted by Packer et al., which also looked at
global scales [101]. A 3-D LD embedding obtained by UMAP was able to reconstruct the
developmental trajectories, spanning the timeline from mid-gastrulation to terminal differen-
tiation [101].

Bagger et al. applied a clustering technique called k-means clustering in a 10-D UMAP LD
embedding, in order to cluster unlabeled single cells and color-code the obtained clusters
[102]. The goal was to improve Bloodspot, a gene-centric database of mRNA expression
of haematopoietic cells. In an effort of combining multiple scRNA-seq data sets, Park et
al. developed batch balanced k-nearest neighbours (BBKNN) which succesfully connects cell
populations across multiple data sets [103]. UMAP is used to convert the distances in the
produced kNN graph by BBKNN to connectivities (for visualisation) [103].
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3-2 Quality control for Low-Dimensional (LD) embedding

Evaluating a produced embedding by any dimensionality reduction technique remains a dif-
ficult objective, and often requires supervised inspection by experts afterwards [104]. This
section will dive more into different methods of comparing a LD embedding to the high-
dimensional data.

3-2-1 Spectral comparison

During a spectral comparison, the spectral information of an IMS data set is evaluated against
the produced embedding. Effectively, the spectral information is utilized by UMAP in order
to construct a low-dimensional feature space by variables that are a nonlinear combination of
the original features.

3-2-1-1 Cross-Entropy (CE)

The Cross-Entropy (CE) is the measure that is minimized by UMAP following the procedure
described in section 3-1. Not the full CE is being computed during optimization of the
embedding, but shortcuts are made to compute a subset of the forces applied to the graph.
The attractive forces are based on n_neighbors of the kNN-graph, and the repulsive forces
are controlled by the negative sampling rate (only a fraction of the repulsive forces will be
computed at each epoch). The forces applied by UMAP are effectively the derivatives of the
CE, see Equation 3-8. To compute the full CE for evaluation, the following equation needs
to be solved:

CE = P log
(
P

Q

)
+ (1− P ) log

(1− P
1−Q

)
CE = P log(P )︸ ︷︷ ︸

constant

−P log(Q) + (1− P ) log(1− P )︸ ︷︷ ︸
constant

−(1− P ) log(1−Q)

CE = −(P log(Q) + (1− P ) log(1−Q)),

(3-11)

with P and Q the probabilities in high and low-dimensional space, respectively. Any constants
are removed from the equation, since we are interested in the minimum of the CE. From here,
two versions of the CE can be computed: the approximate or exact version, whose equations
can be seen in Table 3-1. Note that the approximate equations for A and Q are the exact
formulations with a = 1, b = 1, ρ = 0 and σ = 1. The approximation helps us visualize the
basic principles of the behaviour of the cost function, as the CE has been compared to the
Kullback–Leibler divergence (KLD) in Figure 3-2.

Somewhat underexposed in the original paper of UMAP, is the gluing back together prop-
erty of UMAP for the high-dimensional probabilities. The algorithm allows interpolation
between Union and Intersection of the high-dimensional probabilities with the parameter
set_op_mix_ratio with values of 1.0 (default) and 0.0, respectively. This symmetrization is
necessary to deal with the locally varying metrics found through parameter ρ. As a result,
an undirected weighted graph is constructed such that the weights between each data point
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CE approx CE exact

A = exp
(
−X2) exp

(
max(0,X2−ρ)

σ

)
Q = 1

1+Y 2
1

1+aY 2b

Table 3-1: Approximated and exact computation of the high and low-probability matrices A
and Q. Here, X and Y are the distances between the data points in high and low-dimensional
space, respectively. a, b, ρ and σ are parameters computed by UMAP. a and b are depended
on the UMAP parameters min_dist and spread. ρ and σ are depended on the used metric in
high-dimensional space and the UMAP parameter n_neighbors.

i and j are similar to weights between each data point j and i. The corresponding equation
is as follows:

P = set_op_mix_ratio(A+A> −A ◦A>) + (1− set_op_mix_ratio)A ◦A>

P = set_op_mix_ratio(A+A> − 2A ◦A>) +A ◦A>

set_op_mix_ratio = 1.0 Union−−−−→ P = A+A> −A ◦A>

set_op_mix_ratio = 0.0 Intersection−−−−−−−−→ P = A ◦A>

(3-12)

with ◦ the Hadamard (or pointwise) product [11]. The exact computation of the CE takes
the fuzzy topological representation of the data set into account [11]. Thus, for evaluation,
similar parameters should be considered for a fair comparison. Throughout this thesis, when
the CE is computed over the spectral domain, we mean the exact computation of CE.

3-2-1-2 Graph comparison

UMAP is constructing a graph in the high and low-dimensional space to discover relationships
between data points and optimize the resulting embedding, respectively. This is also referred
to as a graph embedding, which simply denotes the transformation of the high-dimensional
data to a set of vectors. The two graphs can be compared to each other in an unsupervised
way, as has been demonstrated by Kamiński et al. [104]. A divergence score is proposed to
estimate how similar an embedding is compared to the original graph. The Jensen–Shannon
divergence (JSD) is being used to compare the number of edges within and outside clusters
in the data set. The JSD can be seen as a smoothed version of the KLD [104]. However,
in order to run unsupervised, the algorithm requires a stable graph clustering algorithm to
classify whether multiple data points are similar to each other, and subsequently determine
which edges lay fully within the same cluster and which edges do not. Clustering becomes
problematic for high-dimensional spaces such as real-world IMS data sets due to the curse of
dimensionality, as has been discussed in subsubsection 2-2-1-2.

3-2-2 Spatial information

Besides the available chemical information of an IMS data set, the pixel coordinates are also
known. Slicing the 3-D datacube at a specific m/z value produces an ion image such as in
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Figure 2-9b. Spatial properties of data is used by algorithms like Maximum Autocorrelation
Factorization (MAF) to reduce noise and extract cleaner signals [54]. MAF does this by max-
imizing the spatial autocorrelation of neighbouring pixels (range = 1 pixel). It is found that
close-by measurement spots on IMS data sets show dependence on neighbouring pixels [105].
Since the dependency is based upon the pixel coordinates, this phenomenon is also referred
to as spatial autocorrelation. Smets et al. also expected a certain degree of spatial autocor-
relation, due to the spatial nature of IMS data, hence they applied a spatial-autocorrelation
function to evaluate obtained embeddings [78]. This subsection will discuss further two pro-
cedures to take spatial information into account: spatial autocorrelation and constructing a
spatial graph.

3-2-2-1 Spatial autocorrelation

Spatial autocorrelation describes the level of correlation between a single variable and vari-
ables positioned spatially close on a 2-D surface, resulting in data being not independent but
variables being tied together [106]. In IMS, the variables in this context are the pixels of the
image, which would mean that pixels influence their neighbouring pixels. Positive values for
the spatial autocorrelation would indicate in relatively large clusters in the image domain,
whereas negative values suggest that the pixels are dispersed. Spatial autocorrelation equal
to zero would mean that the pixels’ values are randomly distributed. This effect of spatial
autocorrelation in IMS has been evaluated by Cassese et al. [105]. The presence of autocor-
relation was assessed using Moran’s I [107, 108], which is a popular measurement for global
spatial autocorrelation due to its simplicity and fast runtime and will be separately discussed
in this section.

Global measure: Moran’s I Moran’s I takes the values of neighboring pixels into account to
determine whether the spatial structure is either negatively or positively spatially autocorre-
lated, or if the pattern is randomly distributed. Mathematically, the Moran’s I statistic can
be described using Equation 3-13 [107].

I = N

W

∑
i

∑
j wij (xi − x̄) (xj − x̄)∑

i (xi − x̄)2 , (3-13)

with N the number of pixels, x the expression value of the pixel of interest, x̄ the mean
expression value for the close-by pixels, wij a matrix of weights describing how far away a
neighbouring pixel is (zeros on the diagonal) andW the sum of all wij [80]. As can also be seen
in Figure 3-3, values for Moran’s I lie within [−1, 1]; with I = −1 being totally disperse, I = 0
denoting a random pattern and I = 1 showing a maximization of the spatial autocorrelation.
Cassese et al. found that IMS data does indeed suffer from autocorrelation, and that this
would only increase with decreasing pixel size. A Gaussian Conditional Autoregressive (CAR)
model was used successfully to correct for spatial autocorrelation in IMS data [105]. Spatial
autocorrelation has also been used by Cao et al. in order to identify genes with complex
trajectory-dependent expression [80].

While not solely aiming for a maximization of the spatial autocorrelation, the Moran’s I can
aid the spectral evaluation to find the optimum embedding. Here, the we utilize the findings
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Figure 3-3: Three examples of spatial autocorrelation and the corresponding Moran’s I value.
Left shows a disperse image with I ≈ −1. The middle image denotes a random pattern, hence
I ≈ 0. Finally, on the right the spatial autocorelation is maximized with 2 big clusters and I ≈ 1.

that IMS is spatial autocorrelated and the spatial information that is being accompanied and
yet to be implemented in Nonlinear Dimensionality Reduction (NLDR) techniques.

Local measure: Pearson correlation coefficient In order to compare different produced
embeddings to each other, Smets et al. diagonally shifted the embedding over a number
of pixels and computed the Pearson correlation coefficient between the started section and
the shifted section [78]. When both sections are identical, the coefficient would show R = 1,
where completely opposites would result in R = −1. The equation for the Pearson correlation
coefficient is as follows:

R = Cov(X,Y )√
Var(X) ·Var(Y )

, (3-14)

with X and Y the compared embeddings, Cov() and Var() the covariance and variance func-
tions, respectively. While this measure is not ideal to compare high-dimensional data with the
LD embedding, it is possible to compare the spatial structure between multiple embeddings
as shown by Smets et al [78].

3-2-2-2 Compute CE using spatial information

Moving away from spatial autocorrelation, it is also possible to consider the spatial informa-
tion of IMS data similar to the spectral information. Similarly to the construction of a graph
in the high-dimensional spectral data, a graph can be constructed between neighboring pixels
in the image domain. Figure 3-4 shows the neighboring pixels for varying thresholds around
one pixel. The Euclidean distance metric is being used to compute the spatial similarity
between pixels and construct the spatial kNN graph Gspatial.

Similar to how UMAP finds it parameters for the computation of the CE using spectral data,
these parameters can also be found following the same procedure for the spatial evaluation.
With ρspatial, σspatial, aspatial and bspatial the CE can be computed comparably to the deriva-
tion in subsubsection 3-2-1-1. Since the pixels are uniformly spread across the "HD data" (e.g.
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Figure 3-4: Comparison of the number of neighbors for varying thresholds (2, 4 and 6 pixels)
using the Euclidean distance metric. The distance between each pixel i and pixel (8, 8) is printed
within each pixel. The number of neighboring pixels grows exponential with increasing threshold.

2-D grid), the approximate computation of Aspatial and Qspatial as described in Table 3-1 is
sufficient and would only result in a scaled version of CEexact.

Where a minimization of the CE using spectral information would mean that pixels are similar
in chemical content, one could conclude that a low value of the CE using spatial information
indicates a preservation of the pixel’s relative locations. Neighboring pixels with relatively
large distance between each other are being penalized and will result into a higher value for
the CE. From now on, the CE using spectral and spatial information will be referred to as
CEspectral and CEspatial, respectively.

3-2-3 Combining spectral and spatial information

Evaluation of the produced embeddings uses mostly spectral information only, since the em-
beddings utilize this information to construct their low-dimensional feature space with vari-
ables that are (non)linear combinations of the original m/z bins. Scoring the embedding based
on their spatial properties would result in neglecting the spectral information, and is thus not
desirable. Possibly the evaluation phase of the embeddings can benefit from both spectral
and spatial information, if it were feasible to combine both measures. Both CEspectral and
CEspatial lie within [0, 1], where CE = 0 implies the best possible representation of the original
data. The spatial autocorrelation using Moran’s I produces values within [−1, 1]. In order to
combine the Moran’s I with CEspectral, the range is transformed to also fit within [0, 1]. Now,
I = 0 indicates fully positive spatial autocorrelation and I = 1 fully negative spatial autocor-
relation, since we are interested in finding a maximization of the spatial autocorrelation up
to a certain degree. The transformation can be written as follows.

CEspatial, Moran’s I = −I + 1
2 (3-15)
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Now, with both spectral and spatial scoring measures within the [0, 1] range, they can be
combined to evaluate an embedding produced by UMAP overall. While CEspatial, Moran’s I
is not exactly the measured cross-entropy, the notation is used to indicate the transformed
Moran’s I. Employing Moran’s I as a scoring metric would effectively work as a "smooth-
ing filter" across the produced embedding. The underlying spatial graph is very similar for
CEspatial, graph and CEspatial, Moran’s I. In experiment 2, we investigate what form of spatial
information should be used as complement for spectral information.

From here on, the spatial information will be referred to as CEspatial. In order to interpolate
between the importance of CEspectral and CEspatial, the yet to be introduced parameter λspatial
which belongs to the UMAPLUS implementation (subsection 3-3-1), will be included in the
scoring metric. In short, λspatial controls the importance between using spectral and spatial
information during the optimization of the LD embedding by UMAP. The importance of
spectral information is leading and will always be greater or equal than the spatial information
(CEspectral ≥ CEspatial). This decision is made since we are more interested in chemical content
than pixel locations. The intention is that the spatial information should merely help the
spectral information in further improving the LD embedding. Mathematically, the evaluation
function can be summarized in Equation 3-16.

CEcombined = 1
2 (1 + λspatial)CEspectral︸ ︷︷ ︸

Spectral component

+ 1
2 (1− λspatial)CEspatial︸ ︷︷ ︸

Spatial component

(3-16)

The resulting loss function CEcombined ∈ [0, 1] will be primarily used for embedding evaluation,
having both spectral and spatial information combined. Visually, the effect of varying λspatial
on the fraction of the spectral and spatial components can be seen in Figure 3-5.

Figure 3-5: The fraction of both spectral and spatial components are visualized for varying
λspatial. It can be seen that CEspectral will always be the most important scoring metric, and for
increased λspatial the importance of CEspectral grows whereas CEspatial shrinks towards zero for
λspatial = 1.0

We have chosen for a notation of CEcombined based on λspatial in order to not give too much
power to the spatial information during evaluation, since the spectral information is consid-
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ered more valuable. Other equations for CEcombined can be formulated. Let us consider the
following formulas, combining CEspectral and CEspatial without the involvement of λspatial.

CEcombined,euclidean =
√

(CEspectral)2 + (CEspatial)2

CEcombined,manhattan = 1
2CEspectral + 1

2CEspatial
(3-17)

The naming of these measures is based upon the usage of CEspectral and CEspatial. It is
effectively the distance from the origin in Figure 3-6a using the Euclidean and Manhattan
distance metrics, respectively. Except, the Manhattan distance has been divided by 2 in order
for CEcombined,manhattan to stay within [0, 1] (division does not matter for its optimum). The
minimum value for λspatial found by CEcombined, CEcombined,euclidean and CEcombined,manhattan
can be seen in Figure 3-6, applied to the synthetic data set with additive Gaussian noise
(σ = 10). Clearly visible is the lower value for λspatial as minimum for CEcombined, indicating
the fact of prioritizing CEspectral over CEspatial. In subsection 4-2-4, we will investigate the
effects of λspatial more in depth.

(a) (b)

Figure 3-6: Comparison between the optimal value for λspatial for different evaluation metrics
on the synthetic data set with additive Gaussian noise (σ = 10). See subsection 4-1-1 for more
information of the construction of these data set. (a) CEspectral is plotted against CEspatial, and
the minimums of the multiple evaluation measures are highlighted in their corresponding color.
(b) λspatial is varied between [0.0, 1.0], and the embedding has been evaluated using multiple
evaluation metrics.

Intermezzo: subsampling The distances in high and low-dimensional space X and Y re-
spectively, of both the spectral and spatial information domain, contain all distances between
data point i and j. These matrices are also known as the pairwise distance matrices of size
RN×N with N the number of data points, and thus scale quadratically with respect to the
number of data points. Common data types use floating point values float32 (4 bytes) or
float64 (8 bytes), where calculations with variables in float64 notation can be much faster on
64-bits operating systems.
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Assuming that a IMS data set contains 106 pixels, each represented by a float64 8 byte-
precision number, the resulting pairwise distance matrices take 2 ·64 ·106·2 = 1.28 ·1014bits =
1.6 · 1013bytes = 16.0TB of available RAM on the workstation. The sheer size of this single
matrix is often unfeasible on most workstations. As a solution, a subset of the total number
of pixels can be taken to reduce the size of the pairwise distance matrices X and Y . The
maximum number of data points possible for the evaluation of Equation 3-16 is based on the
physical constraints of the workstation (e.g. memory for calculation) in float64 precision, and
can be obtained using the following equation:

Nmax =
√

8 · nbytes,max
2 · 64 =

√
1
16nbytes,max = 1

4
√
nbytes,max (3-18)

Here, the factor 8 leads from the conversion of bytes to bits, 64 denotes the float64 precision,
the factor 2 comes from the fact that we both needX and Y matrices in memory and nbytes,max
is the maximum allowable memory size for evaluation. For a maximum allowable memory size
of 2.0 GB, only Nmax = 11, 180 ≈ 1.12 ·104 data points can be used. This is merely a fraction
of a realistic estimate of 106 data points of a real-world IMS data set. Subsection 4-2-1 will
explore the possibility of subsampling the data such that evaluation using Equation 3-16 is
still possible.

3-3 Extensions of UMAP

This section will propose two extensions of UMAP: (i) UMAPLUS; the original UMAP
algorithm with added optimization of the embedding using the spatial information of the
IMS data set, and (ii) Data-Driven UMAP (DD-UMAP); using a correct evaluation method,
DD-UMAP will assess the optimum parameter configuration of UMAP and thus produce the
best possible LD embedding according to the evaluation function.

3-3-1 UMAP with integrated spatial information (UMAPLUS)

Besides evaluating the embedding using spatial information, we can use the pixel coordinates
prior to dimensionality reduction and use this information during the optimization of UMAP.
In order to do so, a spatial kNN-graph Gspatial is constructed in the 2-D image domain between
pixels using the Euclidean distance metric. This graph is being optimized side-to-side with the
kNN graph based on the spectral information Gspectral. Here, we effectively force neighboring
pixels to "stick" together under the assumption that IMS data is subjected to a certain degree
of spatial correlation [78].

In order to interpolate between the importance of optimizing Gspectral and Gspatial, the pa-
rameter λspatial ∈ [0, 1] is introduced. This controls the fraction of forces applied on the data
points based on either spectral or spatial information during optimization. Mathematically,
the cost function of UMAPLUS will take the following form:

LUMAPLUS(X,Y ) =λspatial · CE (Pspatial (Xspatial) , Q (Y )) +
(1− λspatial) · CE (Pspectral (Xspectral) , Q (Y ))

(3-19)
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with Xspectral and Xspatial being the pairwise distance matrices using spectral and spatial
information, respectively. Please note that λspatial = 0 causes only optimization of Gspectral
and λspatial = 1 only optimization of Gspatial. This is not to be confused with the usage of
spectral and spatial information by the evaluation function in Equation 3-16. The default
number of neighbors for Gspatial will be 12. This will corresponds to a threshold of 2 resulting
in 12 neighboring pixels as described in Figure 3-4.

3-3-2 Data-Driven UMAP (DD-UMAP)

UMAP consist of many parameters that influence the produced embedding. Evaluating ev-
ery parameter combination using grid search will cause an experiment to consist of S =∏K
k=1

∣∣∣L(k)
∣∣∣ operations [109], with L the number of parameters and K the number of param-

eter evaluations. Cycling through every possible parameter configuration becomes unfeasible
for the number of parameters coded within UMAP. Hence, a smarter search method would
be beneficial. In this section, the parameters of UMAP are discussed, as well as optimization
techniques to search through the parameter space, leading up to the creation of DD-UMAP.

3-3-2-1 UMAP parameters

This subsection sums up the most significant parameters. A complete list of parameters used
by UMAP, with their default settings and short description, can be found in section A-1. The
authors of UMAP and numerous studies have highlighted the following hyperparameters to be
of greatest importance: n_components, n_neighbors, min_dist, n_epochs and metric [11].
In this subsection, these parameters and their effect on the LD embedding will be discussed
more thoroughly.

n_components The number of components determines the dimension of the LD embedding
K to which UMAP tries to reduce the number of features from the high-dimensional spaceM .
For visualisation purposes, this will usually be set to 2 or 3. The underlying manifold could
exist in an higher dimension, although visualizing such embeddings would become difficult.
The number of components must be smaller than the original number of features in the
high-dimensional data (K < M).

n_neighbors The number of neighbors determines the amount of neighbouring data points
during the construction of the kNN-graph in the high-dimensional space. This parameter
essentially balances the local versus global structure in the data. Low values of n_neighbors
will force UMAP to search at a local scale for the underlying manifold. Large values result
in more connections between data points in the kNN graph, and focus more on the global
structure of the data. The choice for n_neighbors may depend on the intention of the user,
and thus has a large impact on the interpretation of these results. Increasing n_neighbors
increases the non-zero values in a kNN-graph, and for relative high values it can result in a
long computational time of UMAP on large data sets.
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min_dist The minimal distance controls the desired separation between data points which
are positioned more closely in the LD embedding. Low values result in densely packed struc-
tures, but more likely to faithfully represent the underlying manifold. Larger values spread
out the data more evenly, which helps for visualisations since it prevents potentially overplot-
ting of data points. The authors of UMAP call this hyperparameter purely aesthetical [11],
although it could matter for clustering algorithms since the position of the data points will
be influenced.

n_epochs The number of epochs controls the number of training steps for optimizing the
LD embedding during SGD. In the original UMAP implementation, 500 epochs is used for
data sets with less than 10000 data points, and 200 epochs otherwise. Higher values result
in more function evaluations and thus a "better" embedding. However, as can be seen in
Figure 3-7, after a certain number of epochs, the LD embedding found its (global) optimum
and further optimization is unlikely. Continuing with evaluating the cost function would be
fruitless.

In order to produce a stable LD embedding, UMAP introduces the learning rate α, which
guarantees that the forces reach zero within a predefined number of epochs. The learning
rate α is essentially a multiplication of the forces applied by UMAP and decays linearly from
1.0 to 0.0 over the given number of epochs. The forces within UMAP will be reviewed in
subsection 4-2-3.

Figure 3-7: Evolution of the Cross-Entropy (CE) varying the number of epochs on the synthetic
data set with additive Gaussian noise (σ = 10).

metric This parameter determines what distance metric is used in the high-dimensional
embedding in the construction of the kNN-graph. The importance of the distance metric
and previous research done on the effect of different distance metrics on IMS data have been
discussed in section 2-3. UMAP has multiple distance metrics built in that can be viewed in
the documentation of UMAP, but it also support custom distance metrics. Several distance
metrics being used in literature are already discussed in section 2-3.
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3-3-2-2 Premature parameter selection for optimization

Not all parameters make sense to optimize, such as Boolean parameters like verbose or
metric_kwds, which is available for additional settings for the distance metric. A list of
parameters this thesis will focus can be seen in Table 4-2, as well as their allowable range.
Further experiments will check the sensitivity of the parameters. A final list of parameters to
optimize will follow from subsection 4-2-3, accompanied with the necessary motivation.

Parameter Value range [min−max] Data type
n_neighbors [2− 100] Integer

learning_rate [0.1− 10.0] Float
init ["spectral", "random", "spatial"] Categorical

min_dist [0.0− 1.0] Float
spread [1.0− 3.0] Float

set_op_mix_ratio [0.1− 1.0] Float
repulsion_strength [0.1− 10.0] Float

negative_sample_rate [1− 25] Integer
spatial_lambda [0.01− 1.0] Float

n_neighbors_spatial [4, 12, 28, 48, 80, 112, 148, 196] Categorical

Table 3-2: List of most influenceable parameters within UMAP (included UMAPLUS) w.r.t. the
produced LD embedding. The second column lists the allowable value range of the parameter.
However for parameters of the type Categorical, this indicates the multiple allowable binary states
of said parameter.

3-4 Optimization methods

3-4-1 Naive approaches

In this section, approaches that have been used for tuning the parameters of dimensionality
reduction methods and any given algorithm will be discussed. For now, mainly two naive
approaches can be distinguished; (i) grid search and (ii) random search. These simple ap-
proaches do not take any knowledge on the process that has to be optimized into account
(e.g., the cost function of dimensionality reduction method). A visualisation of grid search
versus random search can be seen in Figure 3-8 [109].

1-D optimization: Golden section search We assume the parameters of UMAP to be
multivariate, and thus that they are dependent on each other. In this case, solving the
parameter optimization one parameter at a time (e.g. 1-D optimization) is only allowed when
the optimum would not vary too much for one parameter when a second parameter is being
optimized. During optimization, all parameters except the examined parameter in the cycle
are set to their default value. Once a parameter is optimized, that value is used in subsequent
optimization cycles.

A simple framework for 1-D optimization can be constructed using the Golden section search.
The derivation of the Golden section search can be found in the work of Press et al. [110],
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Figure 3-8: Visual comparison of grid search versus random search for a cost function determined
by two hyperparameters; one is more important than the other, which is respectively shown in
green and yellow on the axes. In this particular example, it can be seen that grid search is unable
to detect the global optimum of the important (green) variable [109].

but the principles will be discussed here. The Golden section search does not require the
function’s gradient to find its optimum, only a specified interval is necessary. During every
function evaluation, this range is divided using the Golden ratio (≈ 0.382). Assume we start
in Figure 3-9 with bounds 1 and 2, the third point 3 is placed at fraction 0.382 between 1 and
2. This forms the triplet (1, 3, 2). Next, point 4 is placed between largest fraction (between 3
and 2) using the Golden ratio (0.382) and is evaluated using function evaluation f(x). Based
upon the function value of 4, the triplet will change. When f(4) is bigger than f(3), the new
triplet becomes (1, 3, 4). In the opposite case, when f(4) is smaller than f(3), the new triplet
becomes (3, 4, 2). This process will repeat itself until a stopping criterion is reached. In the
case of this thesis, the function evaluation is very costly since it requires evaluation of the LD
embedding consisting of thousands of pixels. Press et al. use a small constant as stopping
criterion, but such small value would lead to substantial runtimes of DD-UMAP. Therefore,
a more aggressive stopping criterion will be discussed in section 3-4-2.

The Golden section search finds a minimum within given bounds, but finding the global
optimum is not guaranteed [110]. This makes it dangerous to apply this method on functions
which contain many local minimums. A possible solution can be to apply multi-start Golden
section search. The parameters of UMAP can be influential to each other, possibly creating
local minimums. Experiment 4 will investigate whether Golden section search can be a
solution for parameter optimization of UMAP.

Grid search With grid search, the parameter space is systematically investigated by placing
a grid-like structure onto said space, subsequently plugging these values into the algorithm
connected to these parameters, and finally evaluating the output (as can be seen in Figure 3-
8) [109]. Evaluating every parameter combination will cause an experiment to consist of
S =

∏K
k=1

∣∣∣L(k)
∣∣∣ operations, with L the number of parameters and K the number of param-

eter evaluations [109]. For example, if the user would like to determine an ideal parameter
configuration of an algorithm with 6 different parameters, trying 10 possibilities per parame-
ter where each evaluation would take a second, the experiment would consist of 106 operations
and taking over 11 days on a single workstation. This can be sped up by performing the grid
search in parallel using multiple workstations, carefully registering each evaluated parameter
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Figure 3-9: Visualization of the first iterations of the Golden section search algorithm. The initial
bounds are marked by 1 and 2, and eventually this method will converge to a minimum.

configuration. The number of operations grows exponentially with the number of evaluated
parameters, which makes grid search suffer from the curse of dimensionality [111]. Therefore,
grid search would be only feasible on processes that are relatively fast to evaluate, and do not
have too many parameters involved.

Variational autoencoders (VAE) are a deep neural network approach capable of producing
a LD embedding from high-dimensional data by learning the underlying structure and com-
pression [112]. Way and Greene introduced a VAE called Tybalt that was trained on TCGA
pan-cancer RNA-seq data [112]. The parameters of Tybalt have been evaluated on synthetic
scRNA-seq data created by Splatter [113] using grid search, cycling through 4 parameters
of maximal 4 possibilities per parameter [114]. It was concluded that the optimized Tybalt
model even outperformed t-SNE and UMAP (although the latter two methods were not op-
timized, and configured with default parameters). It was pointed out that the sensitivity of
using different parameter settings is not widely reported in the literature [114]. The authors
also mention that an unbiased approach for comparing results and evaluation of the model is
important.
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Random search As opposed to systematically checking every possible parameter combina-
tion, random search places the evaluated points in the parameter space completely random
(see Figure 3-8). Bergstra and Bengio proved that when given the same computational bud-
get, random search finds better models in a large configuration space of the parameters as
opposed to grid search [109]. A practical benefit of random search is that it is parallelizable
without needing knowledge of other workstations, since it is not necessary to keep track of
which parameter configuration has been tested already [109]. Concluding; both grid and ran-
dom search can be run in parallel, but grid search requires documentation of used parameter
configurations while random search can be executed completely independently.

3-4-2 Sequential Model Based Optimisation (SMBO)

Using a naive optimization method can lead to unnecessary calculations in a domain of the
parameter space of which it is known that no further improvement will be possible. Ideally,
previous evaluations of the parameter space should be taken into account with subsequently
parameter configuration evaluations. Sequential Model Based Optimisation (SMBO), also
known as Bayesian optimization, takes previously taken evaluated parameter configurations
into account and uses this knowledge in choosing the configuration of parameters for the
next iteration. SMBO does this by optimizing an acquisition function α, trading off between
exploration (e.g. sampling from areas of high uncertainty) and exploitation (e.g. sampling
from areas which are likely to improve the existing model) of the parameter space, and trying
to maximize these two terms [115]. A model f̂ is constructed and extended with every newly
obtained function evaluation, and aims to approximate the underlying process containing the
computation of UMAP and the evaluation of the LD embedding. The model f̂ is also referred
to as the surrogate function.

These processes must be investigated carefully since too much exploration might cause the
optimization algorithm to get stuck in local optimum [116]. Mathematically, a Bayesian
optimization framework aims to find an input x∗ ∈ X to the cost function f : X −→ R such
that x∗ = arg minx∈X f(x). Here, we define the parameter search space X and the optimum
input parameter configuration x∗. Pseudo-code for a generic SMBO algorithm can be found
in Algorithm 1.

Algorithm 1 Basic pseudo-code for Bayesian optimization [117]
Place a Gaussian Processes (GP) prior on f
Observe f at n0 points according to an initial space-filling experimental design. Set n = n0.
while n ≤ N do . N : Total number of iterations

Update the posterior probability distribution on f using all available data . Updating
model f̂

Let xn be a minimizer of the acquisition function α over x, where the acquisition function
is computed using the current posterior distribution

Observe yn = f(xn)
Increment n

end while
return Either the point evaluated with the smallest function evaluation f(x), or the point
with the smallest posterior mean.
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Surrogate function Bergstra et al. applied two different SMBO versions to a hyperparam-
eter search (e.g. surrogate functions) on deep belief networks: (i) Gaussian Processes (GP)
and (i) Tree-structured Parzen Estimator (TPE) [118]. GP assumes a multivariate normal
distribution of a finite number of random variables, and in order to compute the GP exactly, it
unfortunately has computational complexity of O(S3) with S being the number of parameter
evaluations [115]. This follows from the inversion of the covariance matrix in the computation
of the mean and variance functions of the GP. The GP is made non-parametric by apply-
ing a positive definite kernel k on the input space X [119]. The default kernel used in the
Scikit-optimize library is the Matern kernel. Bardenet and Kégl state that with a predefined
GP with zero mean, any variable combination with function values f = (f(x1), . . . , f(xn))>
has a multivariate normal distribution (e.g. f ∼ N (0,K)) with the covariance matrix defined
as Kij := k(xi,xj) [119]. Then, the following mean and variance function of he GP can be
obtained.

µn(x) = k(x)>Kf
σ2
n(x) = k(x,x)− k(x)>K−1k(x)

(3-20)

In this equation, we can distinguish k(x) as the vector containing the covariance terms between
x and x1:n [115]. A GP and other Bayesian frameworks on several machine learning algorithms
(latent Dirichlet allocation, structured SVMs and convolutional neural networks) have proven
to surpass a human expert in selecting the hyperparameters on the CIFAR-10 data set [120].

Another strategy for the surrogate function is the Tree-structured Parzen Estimator (TPE),
which approximates p(x|y) and p(y) instead of the GP which models p(y|x) directly [118].
Then, the TPE defines p(x|y) in the following way:

p(x | y) =
{
`(x) if y < y∗

g(x) if y ≥ y∗ , (3-21)

with l(x) the density formed by using the different observations in the non-parametric densities
such that corresponding loss f(x) was less than y∗, and g(x) is the density formed by the
remaining observations [118]. It was found on Deep Belief Network (DBN) when exploring up
to 32 hyperparameters, that SMBO approaches finds noticeable better points than random
search and grid search by a human expert on toy data sets [118]. It has also been noted
that it depends on the data set which hyperparameters are more influential on the global
optimum [109]. Hyperopt [121] and Scikit-Optimize are Python libraries with several Bayesian
optimizations techniques at their disposal. Hyperopt implements random search, TPE and
adaptive TPE, whereas Scikit-Optimize is specialized in Sequential optimisation using decision
trees and Bayesian optimization using GP. The non-parametric properties of GP and intuitive
behaviour supports the choice of using GP as the surrogate function in for this thesis, using
Scikit-Optimize.
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Acquisition function The acquisition function α is used to score the surrogate function f̂
and determine the next input parameter configuration for the next iteration. Several types
of acquisition functions exist like Thompson sampling (TS), probability of improvement,
expected improvement (EI), upper confidence bounds and entropy search (ES) [115]. EI is a
popular choice for its intuitive and robust behaviour [118]. EI usually has the following form:

EIy∗(x) :=
∫ ∞
−∞

max (y∗ − y, 0) pM (y | x)dy (3-22)

with pM the posterior GP knowing the observation history, and y and y∗ respectively the
surrogate values for previous and next parameter configuration estimate. Three iterations
following a Bayesian optimization procedure can be seen in Figure 3-10. In this case the
global objective function is maximized and the acquisition function dictates the next input
parameter configuration.

Figure 3-10: Three iterations of a Bayesian optimization framework maximizing one parameter
resulting in a 1-D optimization. The observation history and probabilistic model of the objective
function are shown in black lines and blue shaded regions, respectively. The true objective function
is plotted as a striped curve, and will not be known in advance. It can be seen that the maximum
value for the acquisition function (green) determines the next input parameter configuration [115].
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Stopping criterion In order to stop the optimization algorithm in a finite amount of time, a
stopping criterion should be imposed. Here, stopping criteria for both 1-D and multivariate
optimization will be discussed.

In a previous study, Opt-SNE utilizes the cost function KLD of t-SNE to calibrate the early
exaggeration phase, and several other parameters [12]. When no further improvement is
possible, the computation is stopped. Similar stopping criterion can be implemented for the
1-D optimization framework using the Golden section search. The algorithm will switch to
another parameter value when the improvement of the cost function stays for a predefined
number of iterations within a predefined percentage. As the Golden section method converges
to a final value for parameter p, the differences between parameter values at each optimization
iteration becomes smaller and smaller. Comparing the latest values can determine when to
switch from parameter values, and dictate when to switch to another parameter for further
optimization. This process continues until all desired parameters are subsequently optimized.

For the SMBO approach, the number of iterations is fixed at the beginning of the algorithm.
The Scikit-optimize function gp_minimize does not allow a variable stopping condition. In
order to terminate the algorithm early, the parameter threshold controls the minimal number
of iterations where no improvement in the minimum obtained value for the evaluation function
CEcombined is found. Whether this stopping criterion is imposed will be discussed during the
construction of the experiments in chapter 4.
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Chapter 4

Experiments

4-1 Data sets

During this project, three data sets have been used: (i) a synthetic data set with known
spectral and spatial properties without and with additive Gaussian noise (σ = 10), (ii) a
real-world data set of a mouse pup, and (iii) a real-world data set of a murine kidney. The
construction of the synthetic data set will be discussed in subsection 4-1-1. The applied IMS
procedure in acquiring the real-world data set will be provided in subsection 4-1-2. Finally,
this section will conclude with a motivation of the chosen preprocessing steps in subsection 4-
1-3, prior to performing dimensionality reduction.

4-1-1 Synthetic data set

A synthetic data set offers the benefits of knowing the exact chemical consistency of the
mass spectra, and the added noise on top of these spectra. Our dimensionality reduction
technique should separate pixels with dissimilar mass spectra, and cluster similar mass spectra
(e.g. spectra with similar m/z intensity values). We define a spectrum Ps with a range of
m/z bins from 0 to 1, 000, with maximum values for the (arbitrary) intensity peaks of 100.
Each unique spectrum has 50 peaks with random locations along the spectral domain, and
random intensities. Around each peak, a Gaussian distribution is placed with a variance of
σ2 = 16

9 ≈ 1.78 in order to simulate a typical peak. An example of the indices with varying
intensities of spectrum Ps,0 can be seen in Figure 4-1a, alongside a close-up of a peak that
visualizes the isotopes in Figure 4-1b, and finally the full spectrum of Ps,0 in Figure 4-1c.
Besides each pixel possessing its own spectrum, a background spectrum has been added as
well, which is similarly constructed as Ps.

Two types of noise can be added when requested: Poisson and Gaussian noise. It is realistic
that IMS data contains Poisson noise [40], which will cause the peaks with higher intensity to
vary more than peaks with lower intensities. Furthermore, a Poisson distribution will never
allow spectra to reach negative values. The resulted spectra P will take the following form:
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P i,j = P i,js,k + Pb + Pn, (4-1)

with i, j the spatial pixel location on a 2-D grid, k ∈ [1, . . . ,K] for each unique mass spectrum
with a total number ofK regions with unique spectra and Pn either Poisson or Gaussian noise.
The background spectrum Pb and Pn are not assigned with pixel location indices, since these
will be distributed across all pixels. When applying Gaussian noise, caution should be taken
to not end up with negative values within the spectrum, since this would not be possible
physically. Therefore, after the Gaussian noise Pn is added on top of the generated spectra
Ps, negative values will be eliminated as follows.

P =
{
P , for P ≥ 0
0 , otherwise (4-2)

Similarly to real-world data sets, the spatial coordinates of the pixels are known. Since
IMS data tends to be spatial auto-correlated [40], in the synthetic data set the pixels with
similar chemical consistency are thus also placed nearby each other. Four circles are defined
spatially with each its own unique spectrum Ps,k added to the final spectrum. As can be seen
in Figure 4-2a, these circles will overlap with each other slightly. Within this overlapping
region, we would like to simulate nonlinear mixing by multiplying a randomized fraction
of the number of overlapping pixels instead of adding spectra together. In Figure 4-2b the
difference between addition and multiplication of two spectra can be seen. This multiplication
only affects the generated spectra Ps, Since both background spectrum Pb and the additive
noise Pn is applied over all pixels as a final step. In Equation 4-3 the difference between pixels
with linear and nonlinear mixing (e.g. addition and multiplication, respectively) can be seen
in the form of construction of the final spectrum P for the overlapping of circles 1 and 2.

P i,jadd = P i,js,1 + P i,js,2 + Pb + Pn

P i,jmul = P i,js,1 · P
i,j
s,2 + Pb + Pn

(4-3)

Finally, each circle is unique with its own combination of either a linear gradient in the
intensity of the spectrum throughout the circle, or a randomized layer affecting the whole
circle. A linear gradient causes intensities to vary between [1.0− α, 1.0 + α] with α a variable
that can be adjusted. For the random fluctuations of intensities, each pixel within a circle is
multiplied by a value drawn from an uniform distribution between [1.0− β, 1.0 + β] with β
again an adjustable parameter, with default settings α = 0.95 and β = 0.2. The final spectral
data P will be multiplied by the factors corresponding to the assigned circle. An overview of
the different configuration per circle can be seen in Table 4-1, and also visually in Figure 4-2a.
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Figure 4-1: Spectral properties of synthetic data set. From top to bottom a main spectra
Ps,0 is shown, with a zoomed in version of one peak to illustrate the effect of the ditributed
Gaussian to simulate isotopes. A background spectrum Pb is similarly constructed to Ps,k and
shown in magenta. Generated noise (Gaussian in this case, with variance σ2 = 100) is shown in
red. And finally the final spectrum P is shown in green with only positive values as described in
Equation 4-2. This shows the addition of spectra as described in Equation 4-1.
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(a) (b) (c)

Figure 4-2: Spatial attributes of the synthetic data set. (a) Four circles are drawn on a grid of
100×100 pixels (total number of pixels: N = 10, 000) with created overlap between nearby circles.
Each circle contains its own spectrum Ps,k. (b) Here, the overlapping pixels are shown, and also
whether the spectra are summed up together or multiplied by each other. The ratio of overlapping
pixels between addition and multiplication is summarized in a variable nonlinear_mixing_frac,
with is 0.5 in this case (−→ 50%). (c) The numbering of each unique circle as well as which
combination of intensity variation has been applied (see also Table 4-1)

Circle Linear gradient Random fluctuations

1 Yes, from right to left No
2 No No
3 Yes, from top to bottom Yes
4 No Yes

Table 4-1: Properties of factors influencing the intensity per circle.

4-1-2 Real-world data set

In this thesis, two real-world data sets are investigated. Both data sets are acquired using
prototype timsToF fleX mass spectrometer (Bruker Daltonik, Bremen, Germany) [122]. This
subsection explains the procedure in the acquisition of the mass spectra, and motivates the
taken prepossessing steps.

Mouse pup data set

The mouse pup data was acquired by Katerina Djambazova at Vanderbilt University under
the supervision of Jeffrey Spraggins PhD and Richard Caprioli PhD [123]. The mouse pup
images were acquired using a prototype Bruker timsToF fleX instrument (Bruker Daltonik,
Bremen, Germany) [122] in trapped ion mobility spectrometry (TIMS) mode of operation
with an ion transfer time of 100 µs, prepulse storage time of 8 µs, and a collision RF of 2, 000
Vpp, a TIMS funnel 1 (accumulation) RF of 450 Vpp, a TIMS funnel 2 RF (analysis) of 400
Vpp, a multipole RF of 400 Vpp, and a collision cell entrance (in) voltage of 300 V. Tissue
imaging data were collected at 50 µm pixel size, using 200 shots per pixel and 48% laser
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power. Data were collected in positive ionization mode from m/z 300 to 1, 200. The TIMS
scan time was set to 400 ms, with a reduced mobility (1/K0) range of 0.4− 1.9 Vs/cm2.

The mouse pup data was exported into a custom binary format optimized for storage and
speed of analysis of complex IMS data. Each frame/pixel contains between 10, 000− 100, 000
centroid peaks that span the acquisition mass range and ion mobility range with 221, 888 and
4, 001 bins in the mass spectrometry and ion mobility dimension, respectively. The processing
pipeline requires common dimensions along both axes, hence individual centroid peaks were
inserted at their correct bin positions along both dimensions whilst missing values were set
to zero. Following the conversion process, each mass spectrum and mobilogram were aligned
to remove systematic instrument drift. Subsequently, a mean mass spectrum was generated,
and peak picked. A total of 49 top features were selected and extracted to give the ion images
that were used throughout the thesis. The full mouse data set consist of 164, 808 pixels.

Kidney data set

The murine kidney data was acquired by Elizabeth Neumann at Vanderbilt University under
the supervision of Jeffrey Spraggins PhD and Richard Caprioli PhD. Rat kidney tissue was
purchased from PelFreeze Biologicals (Rogers, AR, USA), sectioned at 10 µm thickness and
thaw-mounted onto a conductive slide. Approximately 500 mg of DAN was sublimed at
130◦C and 24 mTorr for 3.5 minutes onto the tissue surface for a final density of ∼ 1.0
mg/cm2. The murine kidney images images were acquired using a prototype Bruker timsToF
fleX instrument (Bruker Daltonik, Bremen, Germany) in the Q-TOF mode of operation using
MALDI TIMS-IMS. Tissue imaging data were collected at 15µm spatial resolution, using 400
shots per pixel, and 35% laser power. Data were collected in positive ionization mode from
m/z 200 to 1, 500.

The murine kidney data was exported into a custom binary format as described above. Data
were acquired in the Q-TOF only mode, hence the ion mobility dimension is not present,
in which case we introduce a secondary dimension by enforcing the data set to contain one
ion mobility bin. This is carried out to ensure efficient storage and data processing without
having any impact on the actual data. Following the conversion process, each mass spectrum
was aligned to remove systematic instrument drift. Subsequently, a mean mass spectrum was
generated, and peak picked. By filtering the mass range between m/z 500 − 900, a total of
332 top features were selected and extracted to give ion images that were used throughout
the thesis. The full kidney data set consist of 591, 534 pixels.

4-1-3 Motivation preprocessing steps

Prior to dimensionality reduction and other downstream analysis, the importance of prepro-
cessing steps have been discussed in subsubsection 2-1-1-4. This section will discuss the steps
taken on the synthetic and real-world data set with added motivation.

Since lipids are mainly of interest in the IMS data sets explored here, introducing a mass
range can be useful. Lipids can be found in the region of m/z 500− 900 [19]. The mouse pup
already is almost completely within this range, but the kidney data set contains of values up
to 1600 m/z. The range of this data set will be limited to focus on lipids.
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The synthetic data set has been constructed from the ground truth, using the full range of
mass-to-charge ratio (m/z) bins. The assumption holds that all possible ions are measured
with the chosen spectral range. We can thus apply normalization technique across the whole
spectral range. The effects of difference normalization techniques have been investigated in
the past [41], of which Total Ion Count (TIC) normalization is being used most frequently in
the literature for its simplicity and robustness. For this reason, TIC normalization has been
applied to the synthetic data set. Besides normalization, the spectrum will also be scaled
using autoscaling which causes each variable to be subtracted by its mean and divided by
its standard deviation [39]. It has been noted that autoscaling can suffer from the fact that
noisy low-signal m/z bins can have an increased impact on downstream analysis compared to
the other more prominent signals [3].

For the real-world data sets, different conditions are applicable. Normalization is not similarly
possible due to the fact that the data set has been peak picked, extracting the most promi-
nent peaks from the raw IMS data. Peak picking is a common procedure, causes missing
information within mass spectra and rendering normalization often inaccurate. Therefore,
the real-world data set has only been subjected to autoscaling prior to further analysis. Nor-
malization and scaling are the last preprocessing steps, in that order.

4-2 Experiment setup

As a reminder, the thesis objective which has been formulated in chapter 1 is repeated:

Developing an effective framework to automatically estimate the hyperparameters of
Uniform Manifold Approximation and Projection (UMAP) for Imaging Mass Spectrom-
etry (IMS) data sets with maximum usage of the available information, adaptable to
different data sets, and therefore be able to extract the best possible LD embedding
from the given sample in terms of its underlying (biological) structure.

In order to solve this problem, the following four questions arise. These will be investigated
further in this chapter during their eponymous experiments in this chapter.

1. To what extent does the initialization phase have an effect on the produced embedding,
and is there a better way of initializing than the standard procedure of Uniform Manifold
Approximation and Projection (UMAP)?

2. How sensitive is UMAP to various parameter configurations? Can we classify whether
a produced embedding is considered "better" than another, possibly with a combination
of spectral and spatial information?

3. Is it possible to extend UMAP to incorporate spatial information during the opti-
mization of the LD embedding, and can a better LD embedding be achieved using
UMAPLUS? If so, what is the sensitivity of parameters n_neighbors_spatial and
λspatial?
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4. Is Data-Driven UMAP (DD-UMAP) able to find the optimal hyperparameters and thus
produce the best possible embedding? What optimization method (1-D or Bayesian
optimization framework) is more suitable to find the global optimum in the defined
parameter search-space? And how does DD-UMAP compare to traditional grid search?

Unless stated otherwise, all parameters of UMAP will be configured with the default values.
Before any experiments can take place, the subsampling of the pairwise distance matrices
during the evaluation of the LD embedding will be tested, with as constraint the physical
memory of the workstation. This will result in a numerical value CEcombined allowing scoring
the produced LD embedding. Formally, this will be called Experiment 0, and its findings will
be discussed in the next chapter before all other experiments.

4-2-1 Experiment 0: Subsampling

During evaluation of the LD embedding, the pairwise distance matrices X and Y are being
used. Since the size of these matrices scales quadratically with the number of data points N ,
this becomes problematic for large data sets (N = 104 requires 1.60 Gb of RAM, whereas
N = 106 requires 16.0 Tb of RAM). Since real-world IMS data sets can consist in the order
of 106 data points (e.g. pixels), the proposed evaluation method in Equation 3-16 would fail.
Therefore, this experiment explores the possibilities of subsampling the data in order to hold
the entire pairwise distance matrix in memory while preserving the reliability of using the
chosen evaluation method. Two types of constraints will be differentiated: (i) physical (such
as memory usage) and (ii) the total runtime of the evaluation method. The physical limitation
chosen for this thesis is a total memory usage of 2.00 Gb, which leads to Nmax = 11, 180 pixels.
This choice is based on the specifications of the workstation. Prior to this experiment, no
runtime constraints are added.

During this experiment, both synthetic data and the mouse pup are being used. Since the
synthetic data set contains N = 10, 000 data points, this falls within the memory constraints.
The mouse pups consist of N = 164, 808 pixels, and thus only up to Nmax = 11, 180 pixels
are being used. Using random subsampling with uniform distribution, a selection of the total
number of pixels is taken. n_iter_eval = 10 number of evaluations using their own unique
subsample of the data are being computed. The performance of the evaluation of the LD can
be measured by the standard deviation σ of multiple evaluations. Subsequently, the standard
deviation σmultiple can be expressed as a percentage of the average µmultiple, which will be
denoted as the confidence score φ. When φ is below a certain percentage, we can rely on the
produced value for µ (CEcombined), and it is used as scoring metric for every other experiment.

4-2-2 Experiment 1: Initialization phase

By default, UMAP initializes its LD embedding using init = "spectral", which indicates
the construction of the kNN graph with the normalized Laplacian matrix as described in
Equation 3-10. Besides the spectral initialization, the randomized initialization is available in
UMAP. The algorithm falls back to randomized initialization whenever the kNN graph is not
locally connected and the construction of the normalized Laplacian is not possible. Finally
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the spatial initialization is proposed using the original pixel coordinates. In subsection 3-1-1,
these different initializations have been described in more detail.

Kobak and Linderman argue that both t-SNE and UMAP would preserve global structure
poorly when both algorithms are randomly initialized, and that beside the initialization not
much separates both dimensionality reduction techniques [96]. In the study of Kobak and
Linderman, only the spectral and random initialization are considered. It raises the following
question:

To what extent does the initialization phase have an effect on the produced embedding, and is
there a better way of initializing than the standard procedure of Uniform Manifold Approxi-
mation and Projection (UMAP)?

This experiment will try to answer this question by subjecting UMAP to 3 types of initial-
ization: (i) spectral, (ii) random and (iii) spatial initialization. All parameters of UMAP will
be configured to their default settings, except n_components and n_epochs. When varying
the dimension of the LD embedding (e.g. n_components or K) for the spatial initialization,
all dimensions of K > 2 will be set to zero, since all IMS data sets being used in this thesis
are spatially 2-D and initializing in 1-D would not make sense. We would like to visualize the
evolution of UMAPs optimization phase over time for different initializations with varying K.

4-2-3 Experiment 2: Investigation of cost function and hyperparameter config-
uration

In subsubsection 3-3-2-1 the hyperparameters of the UMAP algorithm are summed up. The
complete list of parameters can be found in section A-1. The usual approach for most papers
incorporating UMAP is to use the default values for these parameters, or change at most
the distance metric. This leaves potential for further improvement of the LD embedding. It
raises the following question:

How sensitive is UMAP to various parameter configurations? Can we classify whether a
produced embedding is considered "better" than another, possibly with a combination of spectral
and spatial information?

This experiment aims to map the parameter space of UMAP to give recommendations for
which parameters to tune during experiment 4 in subsection 4-2-5, since not all parame-
ters within UMAP yield sufficient improvement on the LD embedding. The introduction
of UMAPLUS brings rise to λspatial, which has been proposed to be included into the loss
function to evaluate the LD embedding in Equation 3-16. The LD embedding will be visually
assessed to make sure CEcombined is operating properly and can be relied on in an unsuper-
vised manner. Visualization of the embedding for K = 2, 3 is possible with a continuous
RGB colormap. For higher dimensions of the LD embedding, cluster algorithms can assign
colors to the pixels. However, the assigned colors will be discrete; a continuous colormap will
not be possible for K > 3. For visualization purposes, the dimension of the LD embedding
will be kept at K = 2 during the semi-grid search, so we can identify the structures in the
embedding on a 2-D visualization. This will also motivate the usage of spatial information,
since this information can only be stored in two dimensions for most regular IMS data sets
which are acquired from sampling a tissue surface.
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The choice for the distance metric used for the construction of the kNN-graph Gspectral on
the original high-dimensional data remains a critical objective. During the semi grid search
the distance metric will be varied alongside the one parameter to observe changes with the
default Euclidean distance metric within UMAP. These changes can be registered visually
by investigating or comparing the LD embedding and the corresponding image domain, or by
plotting the CE.

When everything is operating properly, the ultimate goal of this experiment would be to rely
on the output value of some evaluation measure (such as CEcombined) for the evaluation of the
LD embedding produced by UMAP. We will investigate whether the addition of using spatial
information in the cost function is valuable, or if we should rely more on spectral information
only. A semi grid search will explore parameter space of UMAP on the synthetic data set
with additive Gaussian noise (σ = 10).

4-2-4 Experiment 3: Comparing UMAP with UMAPLUS, using spatial informa-
tion

In subsection 3-3-1 UMAPLUS has been introduced, a modified version of UMAP forcing
neighboring pixels to "stick" together based on a new adjustable parameter λspatial and the
number of neighbors n_neighbors_spatial for the construction of Gspatial. This experiment
will try to answer the following question rising along with the creation of λspatial:

Is it possible to extend UMAP to incorporate spatial information during the optimization of the
LD embedding, and can a better lower dimensional embedding be achieved using UMAPLUS?
If so, what is the sensitivity of parameters n_neighbors_spatial and λspatial?

Besides varying λspatial and n_neighbors_spatial, also the number of neighbors for the
construction of the kNN graph Gspectral will be varied. In UMAP, this parameter is called
n_neighbor, but will be referred to as n_neighbor_spectral during this experiment in order
to remove any confusion with n_neighbor_spatial.

4-2-5 Experiment 4: Automated searching of parameter space (DD-UMAP)

Finally, the results of previous experiments will be combined to formulate the optimization
method for DD-UMAP. During this thesis, two optimization methods have been described in
section 3-4: (i) 1-D optimization using Golden Section Search and (ii) a multivariate approach
described by a Bayesian optimization method. Each method came with its advantages and
disadvantages, but the following questions remain the central objective during this experiment.

Is Data-Driven UMAP (DD-UMAP) able to find the optimal hyperparameters and thus pro-
duce the best possible embedding? What optimization method (1-D or Bayesian optimization
approach) is more suitable to find the global optimum in the defined parameter search-space?
And how does DD-UMAP compare to traditional grid search?

First, a list of most prominent parameters have been discussed in subsubsection 3-3-2-2 and is
further investigated in subsection 4-2-3. The final list of parameters which will be optimized
during this experiment and their value range is empirically determined and distilled in Table 4-
2.
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Parameter Value range [min−max] Data type
spatial_lambda [0.01− 1.0] Float

n_neighbors [2− 100] Integer
n_neighbors_spatial [4, 12, 28, 48, 80, 112, 148, 196] Categorical

learning_rate [0.1− 10.0] Float
min_dist [0.0− 1.0] Float
spread [1.0− 3.0] Float

set_op_mix_ratio [0.1− 1.0] Float

Table 4-2: List of UMAP’s parameters which will be optimized during this experiment. The
second column lists the allowable value range of the parameter. However, for parameters of the
type Categorical, this indicates the multiple allowable binary states of said parameter.

1-D optimization The two possible optimization methods will both be applied in DD-UMAP.
The 1-D optimization method is finding its next optimal point using Golden section search,
as described in subsection 3-4-1. Using this technique, the parameters of UMAP will be in-
vestigated one by one, starting with the most prominent ones. All other parameters will be
configured to their default value. From here, we can make a few choices in the optimization
algorithm. We can use the found optimum value of the parameters, which has been optimized
during further evaluation steps, or we can start every search with all parameters at their de-
fault value. Starting from their default values would cause us the rely on the default choice
of the authors of UMAP for said parameter [11], and a potential optimum could be missed.

After every evaluation, UMAP can be initialized by 3 choices discussed in subsection 3-1-1,
or the produced embedding from the previous iteration can be plugged into UMAP again
for further optimization of the LD embedding with a different parameter configuration. The
latter can help less influential parameters fine tune the embedding better than starting from
scratch. However, since we aim to search through the parameter space in an organised matter
and remove as much dependencies as possible, the spectral initialization will be used at every
optimization cycle.

In order to stop the Golden section search in a finite amount of time, a stopping criterion
will be introduced as already discussed in section 3-4-2. Golden section search requires either
a set number of function evaluations n_iter or a threshold of deviation of the parameter
value θparam or the CE value θCE (e.g. percentage of improvement) in order to terminate its
search. For robustness, we expect these values to change minimally, and introduce a minimum
number of iterations ∆θ to be under these thresholds for the algorithm to finally terminate
and move on to the following parameter configuration. We define values for these thresholds
in Table 4-3.

The procedure of the Golden section search is explained in section 3-4-1. This method is
unable to deal with categorical data such as n_neighbors_spatial. Therefore, during the 1-
D optimization, this parameter will be considered as an integer with bounds between [4, 196].
This results in uneven circles of neighboring pixels. An even number of neighboring pixels
has been illustrated Figure 3-4.

Random search Next to a grid search, we introduced a random search through the selected
parameter space in section 3-4-1. Previous studies have proven to give similar or better results
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Parameter Value
n_iter 20
θparam 3%
θCE 5%

∆theta 3 iterations

Table 4-3: Settings for the 1-D optimization framework.

for the hyperparameter optimization with random search opposed to a grid search [109]. The
infeasibility of a grid search has been discussed, yet a random search provides the possibility
of exploring the entire parameter space. Practically, this implies that we initialize UMAP
with random parameter configurations within the range described in Table 4-2.

Bayesian optimization Lastly, the Bayesian optimization framework will be investigated.
This framework is utilizing Gaussian Processes (GP) for the construction of the surrogate
model f̂(x). Further choices for the construction of this framework have been discussed in
subsection 3-4-2. The Python library Scikit-Optimize will be used for construction of this
method, using a Matern kernel and the expected improvement (EI) as acquisition function.
The parameters as input of the optimization loop will be divided in 3 groups: (i) small,
(ii) medium and (iii) large. The small group will only optimize 1 parameter and can be
compared best with the naive 1-D optimization framework. The expectation is that the
Bayesian optimization approach performs equal or better than the 1-D optimization method.
The medium group will consist of 3 parameters: n_neighbors, n_neighbors_spatial and
λspatial. This parameter space is explored using grid search in experiment 2. Finally, all
parameters mentioned in Table 4-2 will be the input for the large framework.
The optimization will be initialized by a number of random function evaluation n_initial_points,
followed by a number of more intelligent iterations n_intelligent_points. The choice for
these settings is based on the number of parameters which we want to optimize, and will thus
vary based on the multiple groups with a different number of parameter in its optimization
framework.
Using the Scikit-optimize library, the optimization will always take a fixed amount of iterations
n_calls. This can be modified such that the algorithm will be terminated earlier when a
stopping criterion is met. The minimal value found during function evaluation is saved after
each iteration. When this value does not change for a variable number of iterations, ∆B.O.,
and n_calls is not reached, the optimization can be terminated. This eliminates wasting of
valuable computing power on iterations in parts of the parameter space that are unfruitful.
However, during this experiment, we are curious to see how long it will take to achieve
a better parameter configuration for long runs. Therefore, this stopping criterion will be
turned off during this experiment in order to observe the long term converge around the
optimal parameter configuration.

4-2-6 Case study: Assessment of real-world IMS data sets

In a separate case study, both UMAPLUS and DD-UMAP are applied to two real-world IMS
data sets: (i) a mouse pup and (ii) a murine kidney. These data sets contain substantially
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more pixels than the synthetic data set, as has been discussed in subsection 4-1-2. First,
subsections from the data sets will be considered. The brain in the mouse pup data set
showed already some interesting structure when inspecting the ion images, so this will be the
first considered subsection. The kidney data set contains less structure, which makes it more
difficult to place the subsection to visualize interesting elements. A study by Tideman et al.
identified three ROIs in the kidney data set; renal inner medulla, outer medulla, and cortex
[124]. The first subsection will be placed on the cortex. Since the structure of the kidney
data set is less present, we expect UMAPLUS to be more effective than regular UMAP.

Secondly, a larger part of the data set is considered. The whole mouse pup is investigated,
and the right half of the kidney data set containing all substructure (renal inner medulla,
outer medulla, and cortex). The number of pixel of the subsection is N ≈ 10, 000 and for
the larger sections N ≈ 160, 000. Computing the confidence score φ will motivate usage of a
subset of the data for evaluation.

Both the 1-D optimization method and the Bayesian approach are applied to the data sets.
The large framework is considered for optimizing 7 parameters of UMAP (see Table 4-2).
While we used the spectral initialization during Experiment 4, now the optimization methods
are also started with the spatial initialization. All combinations provide for a total of 4
evaluation scores and thus 4 parameter configurations per evaluated part of data.

Finally, the best version of either spectral and spatial initialization using both optimiza-
tion techniques are compared to several existing dimensionality reduction techniques: PCA,
t-SNE and UMAP with default settings. The resulting LD embedding and image domain are
visualized with a target dimension of 2 (K = 2), and using the RGB-colormap.
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(a) Full mouse pup data set (b) Subsection: Brain

(c) Full murine kidney data set (d) Subsection: Outer layer (e) Subsection: Right half

Figure 4-3: Visualization of the ion images corresponding to the two real-world data sets and
the selected subsection for further investigation. The ion images belonging to the mouse pup and
murine kidney are from m/z 783.590 and m/z 524.373, respectively.

Master of Science Thesis S.T. Jansen



70 Experiments

S.T. Jansen Master of Science Thesis



Chapter 5

Results and Discussion

This chapter will evaluate the described experiments in previous chapter.

5-1 Experiment 0: Subsampling

Before any experiment will be worked out, we make sure the evaluation function formulated in
Equation 3-16 is allowed to be used when subsampling the data. The standard deviation σ can
be expressed as a percentage of the average value µ over multiple evaluations (n_iter_eval)
using the same fraction, with each evaluation having its own unique subset of the data. This
shows merely the deviation of the produced evaluation function CEcombined. In order to rely
on µ, multiple runs are executed (n_iter_eval_multiple = 10), producing multiple µ giving
rise to µmultiple and σmultiple (the average and standard deviation of multiple µ). These values
are combined to form a confidence score φ.

Synthetic data set First, the synthetic data is considered with N = 10, 000. Different
fraction of the data with n_iter_eval = 10 are evaluated, and their values for µ, σ and
the time taken for the evaluation of that fraction are plotted in Figure 5-1. Whether the
produced value is correct is not the topic of this discussion. As more data is being used for
evaluation, the variance decreases, and is zero when all data is used. It can clearly be seen
that the evaluation runtime per fraction of the data grows exponentially with the increase of
fraction of the data.

Similarly to the runtime, the allocated memory size scales quadratically as can be seen in
Figure 5-1c and Figure 5-1d. Here the confidence score is defined as φ = σmultiple

µmultiple
1̇00%, with

10 times µ using different random_state as input data. The confidence score gives in this
context the reassurance of using a certain subset of the data and still relies on the produced
µ by CEcombined. The confidence score is not given as feedback during regular evaluation.
Going back to Figure 5-1c and Figure 5-1d, a CE percentage bound of 1% is considered good
enough. This motivates a choice to select only 10% of the synthetic data set with additive
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Gaussian noise for evaluation to still be adequately confident in the average CEcombined value
µ.

Two constraints can be predefined: (i) physical and (ii) runtime constraints. The physical
constraint is usually satisfied sooner, and is imposed as a hard constraint. The used memory
may not exceed 2.0 GB. The entire run using the synthetic data set fits within this limit, but it
becomes problematic for real-world data sets consisting of over 100, 000 pixels. The additional
benefit of the memory constraint allows the evaluation phase to speed up significantly; from
2.8 minutes using the entire data set to 1.6 seconds using 10% of the data. For now, the
runtime constraint is imposed as a soft constraint, e.g. shorter runtimes are more feasible. In
the future, weights may be added to the runtime in order to penalize longer runtimes.

Real-world data set; mouse pup Secondly, the entire mouse pup data set is evaluated on
subsampling for evaluation. This time, the physical constraint has been implemented since
N = 164, 808 > Nmax = 11, 180 and subsequently not all data can be used at once for
evaluation. The average values µ and standard deviation σ for different fractions of the data
have been plotted in Figure 5-2. It is impossible to evaluate 100% of the data using the
proposed evaluation method due to the required memory usage, so only up to 5% will be
evaluated. Following a similar procedure with the confidence score as on the synthetic data
set, not less than 1.25% of the data should be used for evaluation to be confident enough in
the produced µ as CEcombined. It can be concluded that subsampling makes it possible to
evaluate large IMS data sets without losing too much information through predefined bounds.
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(a) Zoomed in (b) Full range

(c) Zoomed in (d) Full range

Figure 5-1: Subsampling of the synthetic data with additive Gaussian noise (σ = 10) using
different fractions for evaluation of CEcombined. (a) & (b) Each fraction consist of 10 runs,
giving the average µ as final value for CEcombined with a variance expressed as the standard
deviation σ. The variance converges to zero when increasing the fraction of the data used for
evaluation. The runtime of all 10 runs combined is expressed in red, growing exponentially. (c)
& (d) The confidence score when running multiple evaluations (with each evaluation containing
10 runs) in order to motivate using a certain fraction of the data used for evaluation. A variance
bound of 1% is imposed to validate the usage of µ as CEcombined. The size required in memory
is plotted in green, scaling exponentially.
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(a) Zoomed in (b) Full range

(c) Zoomed in (d) Full range

Figure 5-2: Subsampling of the entire mouse pup data using different fractions for evaluation of
CEcombined. (a) & (b) Each fraction consist of 10 runs, giving the average µ as final value for
CEcombined with a variance expressed as the standard deviation σ. The variance converges to zero
when increasing the fraction of the data used for evaluation. The runtime of all 10 runs combined
is expressed in red, growing exponentially. (c) & (d) The confidence score when running multiple
evaluations (with each evaluation containing 10 runs) in order to motivate using a certain fraction
of the data used for evaluation. A variance bound of 1% is imposed to validate the usage of µ as
CEcombined. The size required in memory is plotted in green, scaling exponentially.
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5-2 Experiment 1: Initialization phase

With the justification for subsampling of the data in the previous experiment, we continue
to investigate the initialization phase. As explained during the last chapter, the spectral,
random and spatial initialization will be assessed.

Varying n_components and n_epochs

We define the number of computations within UMAP as the total amount of force applied to
the kNN-graph Gspectral during the optimization of the LD embedding. It has to be noted that
the number of computations within UMAP does only scale with the parameters n_neighbors
(since more vertices in graph Gspectral result in computation of more forces) and n_epochs.
When varying the dimension of the LD embedding (n_components or K), as will be executed
in this experiment, the number of computations remain constant. However, the degree of
freedom grows with increasing K. This allows relaxation on the underlying manifold in the
data.

Here, we compare the spectral and spatial component of Equation 3-16, as well as the com-
bined value (CEcombined). First, the synthetic data set will be evaluated with default settings
and additive Gaussian noise (σ2 = 10). In Figure 5-3a both spatial and spectral compo-
nents are visualized for a spectral initialization, as well as the combined values following
Equation 3-16.

No further improvement seems to occur for dimensions higher than K = 5, although the
difference is minimal. Due to the increase of the degrees of freedom but the stagnation of the
number of computations within UMAP, not much is gained by searching in higher dimensions.

This effect becomes strongly visible in Figure 5-3b, which visualized the random initialization.
For a low number of epochs, the necessary amount of computations for the optimization of the
LD embedding is not finalized for K > 5. The degree of freedom is simply too large for the
allowable number of computations. Interestingly, the spatial component shows improvement
at this point. It must be noted that the spatial information is not used by UMAP (e.g.
λspatial = 0). Comparing the spectral with the spatial initialization shows the more stable
performance of the LD embedding for K > 5 using the superior normalized Laplacian matrix
for the initial pixel locations compared to a naive random initialization.

Interestingly, the spatial component with the random initialization improves for a lower num-
ber of epochs. This comes from the fact that during a longer optimization, the formed clusters
in the LD embedding will become tighter. This is less feasible when the scoring metric is based
upon the pixel locations, which favors the data points in the embedding to be spread out.
This can be less favorable for extracting well defined structures from the embedding since
clusters of dissimilar chemical consistency will be closer to each other.

The performance of the spatial initialization can be seen in Figure 5-3c. Since all dimensions
above K = 2 are set to zero, increasing n_components is practically useless as no forces can
be applied in the direction of the null space. Subsequently, the performance over all K of the
LD embedding is very similar.

While choosing the correct K for the LD embedding is important for determining the degrees
of freedom of the underlying manifold, for visualization purposes the embedding is mostly
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(a) Spectral initialization

(b) Random initialization

(c) Spatial initialization

Figure 5-3: Visualization of spectral, random and spatial initialization for varying n_components
and n_epochs. Both separate values for the spectral and spatial component of Equation 3-16 are
visualized, as well as the full CEcombined. The filled in region resembles the standard deviation of
CEcombined.
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limited to 2 or 3 dimensions. In these dimensions, the added benefit is the visualization using
a continuous RGB colormap with K = 3 and a RG (red-green) colormap with K = 2.

Forces within UMAP

UMAP optimizes its LD embedding by placing forces on the edges of the constructed kNN-
graph Gspectral, as explained in section 3-1. A distinction is made between attractive and
repulsive forces, fattractive and frepulsive respectively. All forces computed by UMAP at each
individual epoch with n_epochs = 100 and metric = cosine have been summed up, and their
cumulative value can be seen in Figure 5-4. Clearly, the biggest impact on the kNN comes
from fattractive, which follows from the default setting of the ratio of attractive/repulsive
sampling rate (negative_sample_rate). It takes UMAP a few epochs to get to full power,
after which the learning rate α forcefully pushes all forces to zero, thus creating a stable LD
embedding. As can be seen in Figure 5-4b, the amount of forces scales linearly with n_epochs.
Figure 5-4c shows that the normalized forces does not increase with n_components. In this
case, the forces scale with the number of dimensions of the LD embedding.

(a) Single cycle of UMAP (b) Varying n_epochs (c) Varying n_components

Figure 5-4: Visualization of the forces applied by UMAP, cumulatively added per iteration. Data
set: synthetic with additive Gaussian noise (σ = 10). (a) The truly computed forces are plotted
in striped lines, but the learning rate α forces them to zero in a predefined number of epochs;
n_epochs. (b) Varying n_epochs does not show an increase in the total amount of forces applied
to the kNN-graph. (c) This subplot shows the normalized cumulative forces per n_components
for varying n_components.

Comparing LD embedding and image domain

First, the synthetic data with additive Gaussian noise (σ = 10) is considered. During spectral
initialization in Figure 5-5b, the nonlinear mixing is clearly visible and shows the multiplied
spectra positioned close to each other in the LD embedding, indicating that the spectral
initialization renders these pixels similar. However, we know that the overlapping multiplied
pixels are not similar to each other, but are indeed very different from the additive overlapping
pixels. During random initialization, the nonlinear mixing is not handled any better. A more
intuitive visualization can be seen with the spatial initialization since the LD embedding and
image domain are conveniently aligned. In the LD embedding, the 4 circles of the synthetic
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data set are positioned identically to the positions in the image domain. Even the overlapping
pixels are close together and where we expect them in the LD embedding, and even in these
clusters we can identify the additive and multiplied pixels clearly. This shows the strength of
the spatial initialization; for K = 2, the LD is intuitive and creates a clear explanation of the
data.

Secondly, the noiseless synthetic data set is considered, which is visualized for different ini-
tializations in Figure 5-5a. Since this time the gradient in the left circles is not overruled
by the additive noise, a clear separation of the vertical lines can be seen. The spectral ini-
tialization is preserving the gradient in the upper left circle adequately, but the bottom left
circle is having trouble in exposing its gradient due to the additive noise in this circle. The
random initialization performs far below average with a gradient of the upper left circle being
unrecognizable and the other circles being very noisy. Again, the spatial initialization shows
superiority with a clear gradient in both circles. The image domain is the most clean of
the three initializations, and the LD embedding is once again recognizable. The connection
with the noisy data set is that both image domain plots using spatial initialization are posi-
tioned at similar positions in the LD embedding, and thus consist of a similar colormap. This
makes comparison of the different embeddings more practical than any other initialization,
and works since the data exhibits a clear spatial structure.
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(a) Synthetic data set with additive Gaussian noise (σ2 = 10).

(b) Synthetic data set without noise.

Figure 5-5: Comparison of three different initializations: (i) spectral, (ii) random and (iii) spatial.
In both subfigures, the top row resembles the LD embedding in 2-D (e.g. K = 2) and the bottom
row shows the image domain with a continuous colormap based upon the positions of the pixels
in the LD embedding.

Master of Science Thesis S.T. Jansen



80 Results and Discussion

5-3 Experiment 2: Investigation of cost function and hyperparam-
eter configuration

UMAP comes with more parameters that is reasonable to adjust manually. A complete grid
search over the entire parameter space, with only a couple variations per parameter, will take
multiple workstations too much time and thus is infeasible. This brings rise to the following
question, which is at the heart of this discussion:

How sensitive is UMAP to various parameter configurations? Can we classify whether a
produced embedding is considered "better" than another, possibly with a combination of spectral
and spatial information?

In the quest of an intelligent search through the parameter space, first a semi-grid search is
conducted to give a better idea of the sensitivity of the parameter within UMAP. Due to
the lack of space, the full results of this search can be found in subsection A-2-1. However,
interesting parts of this search will be highlighted during this discussion.

Distance metric evaluation

First, we would like to highlight the major differences in choosing the correct distance metric.
In combination with the number of neighbors n_neighbors for the construction of Gspectral,
this imposes arguably the largest influence on the LD embedding. For that reason, the
results of the semi-grid search for n_neighbors have been partly copied to this section for
the Euclidean and Cosine distance metrics and can be seen in Figure 5-6. Along with the
LD embedding and the image domain in Figure 5-6a and Figure 5-6b, also the evolution of
the CE has been plotted in Figure 5-6c. Following these CE plots, the Euclidean distance
metric indicates for the spectral as well as the spatial information that the best possible
embedding can be found for a low value for n_neighbors. However, when observing the
LD embedding and the corresponding image domain, the clusters appear more dispersed and
the image domain is noisy. The individual circles are more distinguishable with lower values
of n_neighbors using the Euclidean distance, where for larger values the nonlinear mixing
dominates the separation of the clusters.

Moving over to the Cosine distance metric, the optimum of CEspatial can be found at the lowest
possible value for n_neighbors. This is intuitive, since CEspatial penalizes pixel locations and
strives for one large 2-D plane with the data points at their acquired positions. Here, the
clusters are large and very spread out. This results in some visible noise in the image domain
in Figure 5-6b. The minimum of CEspectral lies more around n_neighbors = 15 (the default
value of UMAP). The four circles remain clearly visible for all tested values of n_neighbors,
indicating the robustness of the Cosine distance metric.

While the parameter λspatial is discussed more in depth during Experiment 3 in section 5-4, we
would like to note the importance of the correct distance metric while using said parameter.
Taken from Figure A-11, in Figure 5-7 a concise comparison between the Euclidean and
Cosine distance metrics has been visualized. Having more spatial information in the mix
during the optimization of the Low-Dimensional (LD) embedding raises multiple interesting
angles, although here the main focus will lie on the CE plot in Figure 5-7c. This indicates
that the optimum for the Euclidean distance lies at λspatial = 1.0, by both CEspatial and
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(a) LD embedding

(b) Image domain

(c) CE plot

Figure 5-6: Varying n_neighbors for metric = euclidean, cosine. (a) LD embedding, (b) the
corresponding image domain and (c) plotting CEspectral, CEspatial and CEcombined.
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CEspectral. Although, when considering the LD embedding and corresponding image domain
in Figure 5-7a and Figure 5-7b, we can clearly not distinguish the circles at λspatial = 1.0
since all data points are blended into each other. Only the spatial information is used here
during optimization. However, even CEspectral implies this embedding to be ideal. Moving to
the Cosine distance, we obtain information that is more intuitive. The CEspatial is still lowest
at λspatial = 1.0 as expected, and CEspectral rises quickly at the same value for λspatial. These
findings can also be seen in the image domains, since the circles are still very well defined for
λspatial ≤ 0.8. These results show the intuitive and expected responses of using the Cosine
distance metric, being robust on the synthetic high-dimensional data used in this experiment.

Other distance metrics While the Euclidean and Cosine distance metric are mostly com-
pared with each other, also the following metrics have been used and can be found in subsec-
tion A-2-1: Manhattan, Chebyshev, correlation, Histomatch and Poincaré. It can be seen that
the Manhattan, Euclidean and Chebyshev distance all perform similar while executing the
semi-grid search. This is to be expected, since these distance metrics are inherently derivatives
from the Minkowski distance with different p-values Table 2-2 (Manhattan: p = 1, Euclidean:
p = 2, Chebyshev: p = ∞). A relationship between the Cosine and Correlation distance
metrics can also be found, since these belong to the so called angular distance metrics family.
Again, the performance of these metrics is very similar as can be seen in subsection A-2-1.

The Histomatch distance is said to perform similarly to the Cosine distance by its authors
[78]. However, a stronger relation to the Euclidean distance is found during the semi-grid
search indicated by our scoring measurement for CEspectral and CEspatial.

Runtime The runtime of UMAP fluctuates under different distance metrics. Here, the num-
ber of optimization iterations n_epochs will be varied, as well as the number of neighbors
n_neighbors for the construction of the kNN-graph Gspectral. These findings have been sum-
marised in Figure 5-8. All investigated distance metrics except Histomatch scale comparable
for increased n_epochs. This can be caused by the fact that our implementation of Histomatch
is not yet fully optimized for performance (this can be obtained to cache the distance func-
tion in machine code). Similar scaling resemblance can be seen when increasing n_neighbors.
However, more deviation between the distance metrics is visible, with the Cosine distance be-
ing able to handle the largest amount of neighbors the quickest.

Given the results found in this experiment, the Minkowski-like distances are not fit for evalu-
ating and/or comparing the produced LD embedding since we can not rely on the produced
CE. This unfortunately also applies to the Histomatch metric. This leaves us with the angu-
lar distance metrics, of which the Cosine distance is being used most extensively throughout
the literature, and will thus also be used for subsequent experiments.
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(a) LD embedding

(b) Image domain

(c) CE plot

Figure 5-7: Varying spatial_lambda for metric = euclidean, cosine. (a) LD embedding, (b)
the corresponding image domain and (c) plotting CEspectral, CEspatial and CEcombined.
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(a) (b)

Figure 5-8: Runtime comparison for various distance metrics on the synthetic data set with
additive Gaussian noise (σ = 10) for varying (a) n_epochs and (b) n_neighbors.

Mapping sensitive parameters Finally, with the chosen Cosine distance metric, the CE for
all varied parameters is plotted in Figure 5-9. Similarly to low values for n_neighbors causing
large clusters in the LD embedding, large values for min_dist establish large clusters as well
in the embedding. This is in fact the configuration which is most favourable by CEspatial, as
is also indicated in Figure 5-9. While more subtle, increasing spread increases the cluster
sizes as well. Conjointly, the decline of CEspatial means an increase in CEspectral since the
clusters become less defined.

Large values for parameters such as negative_sample_size and repulsion_strength ap-
pear to be optimal in terms of the evaluation function CEcombined. This indicates more
optimization iterations at every epoch, and thus more forces are applied to the kNN-graph.
In the current scoring scheme, the runtime of UMAP is not taken into account. It remains
difficult to add weights to the time UMAP is allowed to optimize its LD embedding, an ob-
jective that lies outside the scope of this thesis. A less steep decrease of CE can be seen
for negative_sample_size and repulsion_strength in Figure 5-9. A possible modification
could be to monitor the percentage of improvement for increased value of said parameters,
and stop increasing when no significant improvement can be obtained. Since these bounds
can not be defined right now, we choose not to optimize these parameters.

In Figure 5-9, besides CEcombined also CEcombined,euclidean and CEcombined,manhattan are plot-
ted to indicate the course of these evaluation functions for varying the parameters of UMAP.
While all used evaluation functions have similar minima, our implementation in the form of
CEcombined is more favourable to the spectral information since too much optimization us-
ing only spatial information is undesired and thus we decided to penalize the usage of too
much spatial information. The default value for λspatial is set to 0.3, which is the reason for
CEcombined and CEcombined,manhattan to not completely overlap for varying n_neighbors_spatial.
When performing the semi-grid search for the mouse pup data set (subsection; brain), The
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Figure 5-9: Varying numerous parameters of UMAP, and plotting CEspectral, CEspatial,
CEcombined, CEcombined,euclidean and CEcombined,manhattan (see subsection 3-2-3) for the cor-
responding parameter configuration. While performing the semi-grid search, all other parameters
of UMAP are configured to their default settings, except metric = cosine, random_state = 100
and n_epochs = 100. CEcombined is essentially CEcombined,manhattan for λ = 0.0, which is the
reason why CEcombined,manhattan is plotted over CEcombined for any other parameter evaluation
than spatial_lambda and n_neighbors_spatial.
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choice for CEcombined over CEcombined,manahattan is once again motivated in Figure A-14. For
varying spatial_lambda, CEcombined,manahattan points λspatial = 1.0 to be the perfect em-
bedding, this optimization cycle uses only spectral information and completely neglecting
spectral information. The resulted image domain is one blur, as will be seen in the upcoming
experiment.

The final list of parameters of UMAP, consisting of preset and adjustable parameters and
their range, which will be the input for the optimization frameworks in section 5-5 can be
seen in Table 5-1.

Parameter (preset) Fixed value
img_shape shape image domain data set (height × width)

spatial_pixel_order pixel order of data set D (N, )
random_state 42

n_epochs 100
metric "cosine"

n_components 2

Parameter (optimizable) Value range
n_neighbors [2− 100]

learning_rate [0.1− 10.0]
min_dist [0.0− 1.0]
spread [1.0− 3.0]

set_op_mix_ratio [0.1− 1.0]
spatial_lambda [0.01− 1.0]

n_neighbors_spatial [4, 12, 28, 48, 80, 112, 148, 196]

Table 5-1: Overview of preset and parameters of UMAP which will be optimized. All un-
listed parameters will be configured to their default value. When optimizing spatial_lambda,
spatial_flag will be set to True.
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5-4 Experiment 3: Comparing UMAP with UMAPLUS, using spa-
tial information

In subsection 3-3-1 UMAPLUS is introduced, which brings rise to the question how to choose
λspatial and n_neighbors_spatial. The parameter λspatial ∈ [0, 1] interpolates between the
usage of spectral and spatial information during the optimization of the LD embedding.
λspatial = 1.0 would be undesirable, as only the pixel locations will be optimized en the
spectral information will be completely ignored. We want to investigate whether using a
percentage of the spatial information would help the optimization of LD embedding opposed
to only using spectral information. It must be noted that the chosen parameters are configured
to their default values in section A-1, unless mentioned otherwise. Evaluation of λspatial is
visualized in Figure 5-10. Here, the nonlinear mixing in the overlapping parts of the circles
is clearly visible with λspatial = 0.0, which gets quickly smoothed out for increasing λspatial
until only the pixel locations are considered and in K = 2 resulting in one 2-D plane.

Figure 5-10: LD embedding and image domain with varying λspatial for n_neighbors_spectral
= 10 and n_neighbors_spectral = 28.

The effect of varying λspatial, n_neighbors_spectral and n_neighbors_spatial is plotted
against each other in the form of a heatmap in Figure 5-11, using the spectral component, mul-
tiple spatial components and CEcombined as described in Equation 3-16 for both spatial com-
ponents. It becomes clear that the spectral and spatial components are opposites and favor a
small and large value for λspatial, respectively. It was noted that the number of computations
within UMAP scales with the number of neighbors of the construction of graph G. Increasing
n_neighbors_spectral thus results in a longer optimization of Gspectral, and will be favored
for the spectral component in Figure 5-11. Similarly, increasing n_neighbors_spatial results
in longer optimization of Gspatial, and is favored by the spatial components.
For the computation of spatial graph (exact) the CE is similarly constructed as in Table 3-
1, using σspatial and ρspatial. It is noticeable that the range while comparing CEspatial and
CEMoran′sI is different. The difference between both spatial components are the pursuit for
conservation of pixel location and the maximum spatial autocorrelation, respectively. Due
to the relatively simplistic data set, large areas consist of similar spectral properties (e.g.
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Figure 5-11: Visualization of the spectral component, several spatial components and combina-
tion of both components in the form of CEcombined for varying λspatial, n_neighbors_spatial
and n_neighbors_spectral. For each scoring measure the minimum is highlighted in red.
n_epochs = 100.
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the four circles and the background). As previously explained, striving for maximum spatial
autocorrelation might not be the best approach when considering the spatial information.
The result of combining spatial components with the spectral component can be seen in
Figure 5-11, and more details in the minimization of the grid search are recognisable with low
values for λspatial using the evaluation method CEcombined. The aim for preservation of pixel
location over maximum spatial autocorrelation and the broader range of the spatial graph
makes it a better option for the evaluation function in Equation 3-16 as CEspatial,Moran′sI .

The obtained minima in Figure 5-11 are highlighted with a red square. The corresponding
LD embedding and image domain can be seen in Figure 5-12. The optimal LD embedding
pointed out by CEspectral clearly has the nonlinear mixing present in the image domain. Using
the spatial graph evaluation method, this does not construct the 2-D plane as can be seen for
the minimum using the Moran’s I, but in fact produces strange sharp artifacts in the image
domain. The parameters for this minimum are λspatial = 1.0, n_neighbors_spectral =
15 and n_neighbors_spatial = 4. First of all, it is more difficult for the optimization
within UMAP to converge to a perfect 2-D plane due to the initialization, which is configured
to init = "spectral" in this case. Moreover, the low number of n_neighbors_spatial is
the more specific reason for the sharp artifacts in the image domain. Since the number of
neighbors controls the number of computations within the UMAP algorithm, it can be seen
as the glue that holds the data points together (e.g. the forces applied on the graph G). When
this value is too low, the algorithm optimizes its embedding on a local level, this has also
been pointed out in the original paper [11]. We can vary the number of neighbors for the
construction of Gspatial and see a better convergence of a 2-D plane in Figure 5-13 for higher
values of n_neighbors_spatial.

Figure 5-12: LD embedding and image domain of obtained minimum found by grid search using
different measures in Figure 5-11. The spatial graph approximation has not been plotted due to
the similarity with the exact computation of spatial graph.
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Figure 5-13: Varying the number of neighbors for the construction of the kNN-graph Gspatial

in order to show the increment in forces converging to a 2-D plane for higher values of
n_neighbors_spatial. n_epochs = 100.

The convergence to a 2-D plane of Gspatial can also be seen when we plot this graph within
the LD embedding in Figure 5-14. For n_neighbors_spatial = 12, a large part of the pixels
in the LD embedding are positioned at the pixel locations relative to the neighboring pixels.
However, we can see the structure of the graph "tearing apart" in the middle, indicating
not enough force is applied during optimization of the LD embedding. For higher values of
n_neighbors_spatial, the 2-D plane is fully connected and focuses more on the orientation
of the image domain (e.g. top and bottom pixels in the LD embedding are the top and bottom
pixels in the image domain). It must be noted that spectral initialization is used, choosing
initial positions based upon the spectral information.

We can conclude that CEcombined is capable to filter the nonlinear mixing in the synthetic
data set from the image domain by increasing λspatial. Caution must be taken not to increase
λspatial too much, since only spatial information is used when λspatial = 1.0, which is unde-
sirable. Increasing n_neighbors_spatial effectively brings neighboring pixels in the image
domain closer to each other in the LD embedding.
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Figure 5-14: Visualization of Gspatial for varying n_neighbors_spatial. The visualized con-
nections are between the k nearest neighbors in the image domain. More nearest neighbors causes
more force to applied for optimizing the LD using (spatial) information, and thus a 2-D array is
constructed. n_epochs = 100, λspatial = 1.0.

S.T. Jansen Master of Science Thesis



5-5 Experiment 4: Automation searching parameter space (DD-UMAP) 93

5-5 Experiment 4: Automation searching parameter space (DD-
UMAP)

Finally, this section will apply the proposed optimization frameworks described in section 3-4
on the synthetic and real-world IMS data sets in order to optimize the parameters by UMAP.
The research question that is at the center of this experiment is:

Is Data-Driven UMAP (DD-UMAP) able to find the optimal hyperparameters and thus pro-
duce the best possible embedding? What optimization method (1-D or Bayesian optimization
approach) is more suitable to find the global optimum in the defined parameter search-space?
And how does DD-UMAP compare to traditional grid search?.

The generated synthetic data set with additive noise (σ = 10) is used throughout this exper-
iment.

1-D optimization

The 1-D optimization utilizes the Golden section search to find the optimum parameter con-
figuration. Taking this approach, the parameters of UMAP can only be optimized in an
sequential manner (e.g., one parameter at a time).

Small framework

To see how the algorithm finds its optimum, only spatial_lambda is being optimized with
range [0.0, 1.0]. The first 8 iterations of the search have been plotted in Figure 5-15. The
input configuration of the first 2 iterations are determined prior, based on the golden section
ratio. From iteration 3, the algorithm is started and, as can be seen, the minimum of the
underlying cost function can be found. The true function is unknown in practice, but in this
case is achieved through an extensive grid search with 100 iterations.

Plotting the x-axis values (λspatial) and the y-axis values (CE) separately, we can visualize
the convergence of the CE and parameter value in Figure 5-16a and Figure 5-16b. Every
iterations takes 100 epochs, so over time this has been depicted with the cumulative number
of epochs by UMAP.

Two types of stopping conditions are monitoring the Golden section search. The algorithm will
be terminated when either the parameter change (θparam = 3%) or change in CE (θCE = 5%)
is within a percentage bound, and these values stay within these bounds for a number of
iterations (∆theta = 3). This active observation is visualized in Figure 5-16c. In this case,
the CE change is within the given limits given prior to the algorithm, thus the reason for
terminating any further iterations. In this case, the algorithm is terminated based upon CE
change. An adequate value for λspatial is obtained, with an error of 0.711

0.7 × 100 ≈ 1.6%.
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Figure 5-15: The first 8 iterations of the Golden section search algorithm, optimizing parameter
spatial_lambda on the synthetic data set with additive Gaussian noise (σ = 10). The true
function is plotted in red striped and is unknown prior to the start of the algorithm.
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(a) CE convergence (b) Parameter convergence

(c) Percentage change evolution

Figure 5-16: Visualization of the CE and parameter convergence executed by the Golden section
search, optimizing λspatial.
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Medium framework

Next, multiple parameters will be considered for this optimization. We can restart from the
default settings of UMAP with every parameter switch, and this would result in finding the
minimum in the function approximated with the semi-grid search in Figure 5-9. However,
saving the optimum value for the optimized parameter and use these values for subsequent
parameter searches is more interesting. In this case, the order may be important since not the
complete parameter space will be explored and only one parameter is varied at a time (and
the values of all other parameters are locked into place). We will optimize spatial_lambda,
n_neighbors and n_neighbors_spatial. The order will be different, thus creating 6 possible
combinations in order to investigate whether the order in which the parameters are optimized
does matter. The findings of all framework using the 1-D optimization can be found in
Table A-4.
In the independent case, the parameters are not set to their optimized value but reset to
their default settings. While most end-values for CEcombined are similar, outliers do exist
for certain parameter orders. the parameters spatial_lambda is highly influential for ev-
ery other parameter it will be optimized with, since λspatial is integrated in the evaluation
function CEcombined. With these settings, n_neighbors and n_neighbors_spatial achieve
consistently 4 and 12, respectively. Apparently the value for λspatial has its optimum either
at 0.333 or 0.711. The independent case achieves a similar parameter configuration as the
cases with different orders, although CEcombined is larger. Since the computed minima of the
parameters are not taken into account for subsequent optimization cycles, we restrict parts of
combinations which could lead to a better optimum. Neither approach is ideal, since for the
independent case we rely on default values of the parameters close to the optimum to achieve
an LD embedding close to the global minimum. It remains difficult to choose the correct
order beforehand. And even if we could, a large part of the parameter space will be restricted
since we are optimizing parameters one at a time while fixating the remaining parameters.
Caution must be taken when the underlying function has multiple local minima. This is
not the case during the semi-grid search on the synthetic data with additive Gaussian noise
(σ = 10) in Figure 5-9, but this can be observed in Figure A-14. Here, a semi-grid search
using a subsection of the brain of the mouse pup data set for varying n_neighbors_spatial
shows a local minimum for CEcombined around n_neighbors_spatial = 112. A method such
as 1-d optimization using Golden section search could potentially be stuck at this minimum,
since the algorithm has no exploration term found in the acquisition function α belonging
to the Bayesian optimization. The global minimum at n_neighbors_spatial = 4 will could
potentially not be found. A multi-start Golden section search or changing the outer bounds
of the search-interval can neutralize this risk.

Large framework

In the large framework, all parameters mentioned in Table 4-2 will be considered. As discussed
in the previous subsection, the order of optimizing the parameters influences the obtained
CEcombined. Checking all possible order combinations for 7 parameters would lead to 7! =
5, 040 algorithm starts. This is simply infeasible, so we will only check the independent
case again, and several random cases. These findings have been summarized in Table A-4.
Interestingly, the parameter values stay relatively stable, independently from the order in
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which they are optimized. The value for spatial_lambda is low for most parameter orders.
A value for λspatial close to zero means less impact by optimization of Gspatial, rendering the
choice for n_neighbors_spatial negligible, while a high value for n_neighbors_spatial
does increase the runtime substantially. Such runtime-constraint can potentially be taken
into account in future work.

Random search

Secondly, a random search is performed due to its simplicity and possibility to be performed
in parallel. Random search also relinquish the execution of going through every possible
configuration (grid search), avoiding long runtimes. However, one can not be certain that
the optimum is found after only one executed run. Therefore, multiple runs are performed,
with the best possible combination using the small, medium and large framework all bundled
together in Table A-5.

Bayesian optimization

Lastly the Bayesian framework is applied to our parameter optimization problem. A similar
division between a small, medium and large framework will be discussed.

Small framework

Similar to the Golden section search, the small framework only optimizes one parameter:
λspatial. We start the algorithm with 2 random searches, and perform 5 iterations following the
Bayesian rules. In total 7 iterations have been plotted in Figure 5-17. It can be seen that the
maximum value for the acquisition function determines which input parameter configuration
(e.g. value for λspatial) will be used for the next iteration. The acquisition function trades
between exploitation and exploration. The uncertainty of the underlying unknown function for
λspatial is indicated with a green-filled region, officially noted as the Gaussian Processes (GP).
Larger bands of the GP depict larger uncertainty of that region and thus will lead to high
values for the acquisition function, making this region interesting for further investigation.
Iteration 5 and 6 show the exploitation: areas with large uncertainties are being sampled.
When most uncertainties are lifted, iteration 7 shows exploration: investigation of areas
that are yet unknown. Since the true function can be seen in Figure 5-17, we know that
λspatial = 1.0 is infeasible. This will be seen by the Bayesian optimization method as well
starting from iteration 8, moving quickly to the region around λspatial ≈ 0.7. All together,
a good approximation of the underlying true function for λspatial can be found in only 7
iterations (3 random and 4 intelligent searches). Multiple runs show that most obtained
values for spatial_lambda stay within a few percent from the (through an intensive grid
search obtained) true minimum.
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Figure 5-17: Visualization of the first 7 iterations of optimizing λspatial following a Bayesian
framework. The 7 iterations consist of 2 random searches and 5 intelligent searches by maximizing
the acquisition function α. The underlying true function for λspatial is plotted in red-striped and
is unknown in practice.
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Medium framework

For a well defined comparison between the previous parameter optimization methods, the
parameters spatial_lambda, n_neighbors, and n_neighbors_spatial will be investigated
here as well. The evolution of CEcombined and the parameter configurations throughout the
optimization phase can be seen in Figure 5-18. The number of random starts are highlighted
by a red bar, after which the Bayesian optimization framework is determining the next op-
timal parameter configuration based upon the maximization of the acquisition function α.
Introducing a threshold is discussed but not applied during this experiment. Prior to the
parameter search it is unknown how many iterations are needed. No threshold is applied,
which could potentially terminate the algorithm before it has had the chance of exploring the
parameter space thoroughly. During the individual parameter evolution in Figure 5-18, once
a better LD is found at iteration 34, the n_neighbors stays at this value while the algorithm
is tuning the other buttons (spatial_lambda and n_neighbors_spatial). After a preset
number of iterations, unfortunately no further improvement can be found.

Large framework

In the large framework, all parameters mentioned in Table 4-2 will be considered. Similarly
to the 1-D optimization and the random search, the minimum obtained value is lower when
adding more parameters to the optimization procedure. Some parameters vary more than
others for different optimum parameter configurations. Parameters such as min_dist and
spread and set_op_mix_ratio stay relatively consistent around a certain value, even for
multiple runs. In the semi-grid search executed in subsection 4-2-3 (specifically Figure 5-
9), we have seen that these parameters have their minima at the same values found by the
Bayesian optimization approach. This, in combination with the constant values found by
the 1-D optimization approach gives rise to the conclusion that the parameters are not as
multivariately interconnected as initially assumed.
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(a) CE evolution

(b) Individual parameter evolution.

Figure 5-18: Bayesian optimization applied to the synthetic data set with additive Gaussian
noise (σ = 10), optimizing spatial_lambda, n_neighbors, and n_neighbors_spatial. (a)
CEcombined is plotted at every iteration at the top subplot, while the lower subplot show the
minimum CEcombined over all previous iterations. (b) The input configuration . This specific run
has 9 random searches, and 15 intelligent searches following the Bayesian optimization framework
through maximization of the acquisition function α, leading up to 24 total iterations.
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Final remarks

All information of this experiment (the variation in the minimum obtained value for CEcombined,
elapsed runtime and optimal parameter configuration) is combined in Figure 5-19. Interest-
ingly, the 1-D optimization method is outperforming both random search and the Bayesian
approach for the small and large framework. In terms of runtime, all methods perform simi-
larly for the small framework, but when scaling to 3 or 7 parameters the difference becomes
substantial. It must be noted that the random search and Bayesian optimization are allowed
to take more iterations, although the biggest difference comes from exploring high values
of n_neighbors and n_neighbors_spatial, leading to considerable average runtimes. The
1-D optimization does find optimal values for n_neighbors and n_neighbors_spatial at
low values, and uses partly the default values for these parameters, which are also relatively
low (see section A-1). Once the optimal value for this parameter (pointed to by the evalua-
tion function) would be higher, the difference in runtime would be smaller between different
optimization methods. The expectation was that a multivariate approach such as Bayesian
optimization would perform equal to or better than the 1-D optimization method. The fact
that the opposite is true could be explained by the fact that the Bayesian optimization did
not receive enough iteration steps to explore the vast parameter space. Large spaces will not
necessarily result in much improvement, yet these areas will also be partly explored due to the
exploration property of the acquisition function. Large deviation in the values for the large
framework using the Bayesian optimization can indicate that more iterations are necessary
to find the global minimum (see Table A-6). The 1-D optimization using the Golden section
search merely focuses on obtaining the minimum value. Also, the parameters are perhaps not
as multivariately interconnected as initially assumed.

The final optimized LD embeddings found by each optimization method for varying frame-
work size can be seen in Figure 5-20. the default settings shows the nonlinear mixing, and
will be resolved in basically every framework, except for DD-UMAP using the 1-D optimiza-
tion (Figure 5-20f) and the Bayesian optimization (Figure 5-20h) using the large framework.
Apparently, a large value for λspatial is less beneficial given the available parameters left for
optimization. During the semi-grid search in experiment 2, parameters such as min_dist,
spread and n_neighbors have different values than used in the embedding in Figure 5-20f
and Figure 5-20h.

Master of Science Thesis S.T. Jansen



102 Results and Discussion

(a) Small framework (1 parameter) (b) Medium framework (3 parameters)

(c) Large framework (7 parameters)

Figure 5-19: Comparison of the three types of optimization methods: 1-D optimization using
Golden section search, random search and Bayesian optimization. Three frameworks are visu-
alized; (a) small framework with 1 parameter, (b) medium framework with 3 parameters and
(c) large framework with 7 parameters. The information contains the best obtained value for
CEcombined (denoted as CEmin), the runtime it took to execute the search/optimization and fi-
nally the variation of the optimal parameter configuration, based on multiple runs of the mentioned
optimization methods. The values behind these figures can be found in Table A-4, Table A-5 and
Table A-6.
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(a) UMAP with default settings (b) DD-UMAP, small framework

(c) DD-UMAP, 1-D optimization, medium framework (d) DD-UMAP, random search, medium framework

(e) DD-UMAP, Bayesian optimization, medium framework (f) DD-UMAP, 1-D optimization, large framework

(g) DD-UMAP, random search optimization, large framework (h) DD-UMAP, Bayesian optimization, large framework

Figure 5-20: Optimized LD embeddings. Produced from the minimum CEcombined found over
multiple runs (see section A-3).
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5-6 Case study: Assessment on real-world IMS data sets

In this case study, two real-world IMS data sets are subjected to UMAPLUS and DD-UMAP:
a mouse pup and murine kidney data set. In Experiment 0 in subsection 4-2-1, we have
motivated the subsampling for the full mouse pup data in order to evaluate the LD embedding.
The results for the computation of the confidence score φ on the data sets used in this section
can be seen in Table 5-2. Interestingly, less data points are necessary for the kidney data
set compared to the mouse pup data set. This can be explained due to the less prominent
structure. In Figure 5-21 and Figure 5-22, the difference in structure in the data is clearly
visible; the mouse brain has clear separation, whereas the subsection of the kidney shows a
homogeneous pattern. More details within each data set between the different dimensionality
reduction techniques is discussed in separate subsections. When applying DD-UMAP, the
large optimization framework is considered, optimizing 7 parameters mentioned in Table 4-
2. Some LD embeddings produced by DD-UMAP are transformed such that the resulted
colormap is sufficiently similar to regular-UMAP, making comparison possible.

Data N Percentage used Nsubset Confidence score φ (%)
for evaluation (%) (lower is better)

Mouse pup, brain 8174 10 817 0.380
Mouse pup, full 164808 1.3 2142 0.787

Kidney, outside layer 10000 1 100 0.832
Kidney, right-half side 168886 0.1 168 0.847

Table 5-2: Overview of the percentage used for evaluation by CEcombined with the corresponding
real-world data set. In order to use a certain percentage of the data, we state that the confidence
score φ must be below 1%. DD-UMAP is not applied to the full mouse pup, but the confidence
score is computed to highlighted the scaling of the necessary percentage of the data set for
evaluation by CEcombined between the mouse pup and the murine kidney.
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Mouse pup data set (subsection; brain)

First, a subsection from the mouse pup data set containing the brain is considered. In Fig-
ure 5-21, first an ion image with m/z value = 836.634 is shown. With only one ion image,
some structure can be seen already. A single ion image tells us much about a certain m/z
value, but not about the total chemical consistency across the entire spectral domain. A
PCA decomposition with 2 target dimensions shows already 72.95% of explained variance.
The resulting LD embedding does not contain well-defined clusters, showing a vague structure
in the image domain, but not clearly visible. The LD embedding produced by t-SNE and
UMAP are adequately similar, with the UMAP embedding producing even better defined
clusters (more compact). Two types of optimization methods (1-D optimization with Golden
section search and a Bayesian approach) are compared with spectral and spatial initializa-
tion. Noteworthy is the relatively larger cluster size in the LD embedding for all versions of
DD-UMAP, especially when using spatial initialization. This potentially can be explained
due to the part of the evaluation function CEcombined that favors not only spectral, but also
spatial information, causing the data points in the LD embedding to spread out more evenly.
Larger cluster size results in less defined structure in the image domain, as can be seen in the
PCA decomposition in Figure 5-21b.

Not all parameter configurations produced by DD-UMAP are plotted here, but 1-D opti-
mization chooses a low value for n_neighbors (4), whereas the Bayesian approach finds an
optimum at n_neighbors = 14. A lower value for n_neighbors in dispersed clusters, see
Figure 5-21. Also, finer structure becomes visible in the left side of the image domain for
lower values of n_neighbors, which is not visible in the embedding produced by UMAP using
default settings. Overall, higher contrast is created by DD-UMAP in the image domain, dif-
ferentiating the different regions more strongly than regular-UMAP. DD-UMAP finds even
more structure between the trenches of the cerebellum. In regular-UMAP, two spots in the
down left corner of the image domain are barely visible, since the spots are green against
a green background. DD-UMAP does detect these spots (best visible in Figure 5-21f), thus
indicating dissimilarity of these spots compared to the background.
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(a) Ion image of subsection (m/z value = 783.590) (b) PCA (explained variance ratio = 72.95%)

(c) t-SNE (d) UMAP

(e) DD-UMAP, 1-D optimization, init=spectral (f) DD-UMAP, 1-D optimization, init=spatial

(g) DD-UMAP, Bayesian optimization, init=spectral (h) DD-UMAP, Bayesian optimization, init = spatial

Figure 5-21: Comparison of multiple dimensionality reduction techniques on a subsection (brain)
of the mouse pup data set. DD-UMAP is configured with both 1-D optimization and Bayesian
optimization methods, and spectral and spatial initialization.metric = cosine, n_epochs = 100.
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Kidney data set (subsection; outer layer)

A subsection in the kidney data set from the outside layer (cortex) is investigated. In Fig-
ure 5-22, an ion image of this subsection is visualized (with m/z value = 524.373). The PCA
decomposition has more trouble in extracting the information compared to the subsection
of the mouse brain, showing an explained variance ratio of 27.69% and a scattered LD em-
bedding with two vaguely visible clusters. t-SNE shows unexpected behaviour by means of
a few outliers, causing the colormap to only contain red-black values. Finer detail is lost.
UMAP produces most details so far, visualizing 4 clusters defining the structure in the image
domain. Similarly to the PCA decomposition, two clear regions are visualized (black under
and green above). Besides these 2 regions, finer structure in the form of red-yellow make up
the remainder of the image domain.

DD-UMAP has a reduced parameter range for n_neighbors (= [2, 30]) and n_neighbors_spatial
(= [4, 12, 28]) since in all previous experiments, not better values for CEcombined are obtained
using high values. Moreover, the runtime decreases drastically for low values of these param-
eters, which becomes a crucial part for data sets of this size. Similar structures in the LD
embeddings produced by DD-UMAP can be seen compared to regular-UMAP. The larger
cluster size in Figure 5-22f causes a more subtle difference between the yellow-orange cluster,
which has the red cluster as background in the image domain. Regular-UMAP in Figure 5-
22d has a slightly different colormap, with the green cluster as background for the yellow
and red cluster. This embedding indicates that the red and yellow cluster are more different
from each other. The difference between the importance of dissimilarity can be brought down
to the difference in initialization. Here, the spatial initialization places pixels closer to each
other based upon spatial properties. Spatial initialization can be useful for pixels which may
be similar, are close by each other, but the similarity is more difficult to extract from only
spectral information.
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(a) Ion image of subsection (m/z value = 524.373) (b) PCA (explained variance ratio = 27.69%)

(c) t-SNE (d) UMAP

(e) DD-UMAP, 1-D optimization, init=spectral (f) DD-UMAP, 1-D optimization, init=spatial

(g) DD-UMAP, Bayesian optimization, init=spectral (h) DD-UMAP, Bayesian optimization, init = spatial

Figure 5-22: Comparison of multiple dimensionality reduction techniques on a subsection (outside
layer) of the kidney data set. DD-UMAP is configured with both 1-D optimization and Bayesian
optimization methods, and spectral and spatial initialization.metric = cosine, n_epochs = 100.
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Kidney data set (subsection; right half)

Finally, the complete right half of the kidney data set containing all large ROIs (renal inner
medulla, outer medulla, and cortex) is explored. An ion image at m/z 524.373 in Figure 5-
23a shows the indication of these layers already, but the differentiation becomes better visible
in the PCA decomposition in Figure 5-23a with only 43.11% of explained variance. t-SNE
has more difficulties with the separation, and the colormap is distorted due to the large
amount of outliers. Although, now t-SNE finds an extra layer within the cortex. This
layer is even more distinguishable in the image domain corresponding to regular-UMAP.
More structure in the direction perpendicular to the radial curvature of the kidney is clearly
present. The DD-UMAP using 1-D optimization and the spectral initialization finds a very
similar embedding compared to regular-UMAP. Using spatial initialization in Figure 5-23f,
similar effects seen in the smaller subsection of the kidney-cortex can be observed; the black
accentuation of the cortex in Figure 5-23d and Figure 5-23e is less clearly visible due to
the initial positioning of the pixels belonging to the cortex at close by positions in the LD
embedding. The cluster corresponding to this accentuation is closer to other data points
(when examining the LD embedding in Figure 5-23f). Both 1-D and Bayesian optimization
methods produce comparable LD embeddings for similar initialization settings. Overall, the
clusters produced by DD-UMAP are less separated compared to regular-UMAP, but are not
substantially different from each other. This could indicate that the default settings for UMAP
are sufficiently close to the optimum parameter configuration for this specific subsection of
the data set.
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(a) Ion image of subsection (m/z value = 524.373) (b) PCA (explained variance ratio = 43.11%)

(c) t-SNE (d) UMAP

(e) DD-UMAP, 1-D optimization, init=spectral (f) DD-UMAP, 1-D optimization, init=spatial

(g) DD-UMAP, Bayesian optimization, init=spectral (h) DD-UMAP, Bayesian optimization, init = spatial

Figure 5-23: Comparison of multiple dimensionality reduction techniques on a subsection (right
half) of the kidney data set. DD-UMAP is configured with both 1-D optimization and Bayesian
optimization methods, and spectral and spatial initialization.metric = cosine, n_epochs = 100.
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Chapter 6

Conclusions

6-1 Main conclusions

This thesis aims to take first steps in exploratory research on unsupervised dimensionality
reduction techniques, and to provide evaluation tools for spatially structured data to take
not only spectral but also spatial information into account. Two extensions of a NLDR
technique titled UMAP [11] are proposed: UMAPLUS and DD-UMAP. UMAPLUS is able
to take spatial location into account while optimizing its LD embedding, interpolating between
spectral and spatial information through a variable parameter λspatial. Secondly, DD-UMAP
optimizes the parameters of UMAP using either a 1-D optimization framework using Golden
section search to find its optimum (one parameter at a time), or a multivariate Bayesian
optimization approach capable of tuning multiple parameters at once. This chapter will go
over the main conclusions extracted from the experiments conducted in this thesis.

Evaluation function CEcombined Data used in this thesis is unlabelled, providing a challenge
to detect any structure. In order to evaluate the produced LD embedding, an evaluation
function is created to take both spectral and spatial information into account. The pairwise
distance matrices in high-dimensional space and LD embedding are used to compared the loss
of information. Unfortunately, these matrices scale exponentially with the number of data
points. Using the full pairwise distance matrices is unworkable due to the sheer amount of
memory needed on the workstation. Therefore, subsampling is used to employ a subset of
the data for evaluation, which has proven to be sufficient by a confidence score φ. Through a
newly defined confidence score, the percentage of data used for subsampling is justified and
used for every other subsequent experiment.

Using only CEspectral as evaluation scoring metric is possible, but unable to deal with the
nonlinear mixing artificially added to the synthetic data set, rendering all multiplied spec-
tra similar. On the other hand, using only CEspatial is completely undesirable, since the
optimum LD embedding would be a 2-D plane with the shape of the the sampled tissue
surface as basis, completely ignoring the chemical content of the pixels. Options such as
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CEcombined,euclidean and CEcombined,manhattan have shown to favor spatial information more
than desired. CEcombined has been constructed, incorporating λspatial to add more weights to
the importance of spectral compared to spatial information.

Distance metric The Cosine distance metric has proven to be the most robust distance
metric for the construction of the kNN-graph. Though a semi-grid search, it is shown that
parts of the scoring metric CEcombined (CEspectral and CEspatial) produce the expected values
when simultaneously inspecting the LD embedding and image domain as well.

Initialization Previous studies have argued the importance of the initialization phase of
UMAP compared to t-SNE [96]. The initialization phase has therefore been reviewed, and
besides the spectral and random initialization available within UMAP, the spatial initializa-
tion is proposed. This type of initialization showed similar results compared to the spectral
initialization. On the synthetic data set without additive noise, the gradient is undetectable
using the random initialization, better distinguishable using the spectral initialization, al-
though the spatial initialization is able to recover the gradient the best. The added benefit
is the alignment between the spectral and spatial domain; all elements found in the image
domain can be directly mapped to the LD embedding. This becomes more clear on the
synthetic data set with additive Gaussian noise (σ = 10), which clearly shows the expected
positions of the nonlinear mixing in the LD embedding; between the circles where they were
placed (overlapping pixels). The only downside would be that the spatial initialization is only
possible for a 2-D LD embedding due to the nature of most IMS data sets (acquired from a
2-D tissue surface).

UMAPLUS and λspatial UMAPLUS introduced λspatial and the kNN-graph Gspatial con-
structed in the spatial domain, keeping track on the pixel locations with a predefined number
of neighbors; n_neighbors_spatial. The effects of UMAPLUS on the LD embedding have
been evaluated in experiment 3. Increasing n_neighbors_spatial effectively increases the
number of forces used in the optimization of the LD embedding by UMAP of Gspatial, thus
causing a better connection between neighboring pixels in the image domain. The importance
between optimizing the LD embedding using spectral and spatial information can be achieved
through interpolation of λspatial; higher values cause larger forces using spatial information.
This thesis aimed to find a balance between both sources of information. Using CEcombined,
the desired balance can be achieved and it has resulted in a representation of the LD em-
bedding smoothing out the nonlinear mixing in the overlapping regions of the synthetic data
set.

DD-UMAP Lastly, a maximum number of 7 parameters have been optimized (5 from the
original UMAP algorithm and 2 from UMAPLUS) using either a 1-D optimization method
using Golden section search or a multivariate Bayesian optimization approach. Divided into 3
groups (small, medium and large framework), the optimization has been evaluated. The small
framework only optimizes one parameter, which is partly done to showcase the working of
both optimization methods. Both methods easily find the minimum while optimizing λspatial.
The medium framework imposed more difficulties for both frameworks. Since the 1-D opti-
mization method only optimizes one parameter at a time, a large part of the parameter search
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space remained undiscovered. The assumption was that the order of the parameters has a
substantial effect on the found optimum parameter configuration. However, for the parame-
ters in the medium framework (evaluated in experiment 4), only one order was substantially
different from the rest (spatial_lambda −→ n_neighbors −→ n_neighbors_spatial). This
resulted in almost a doubled value for CEcombined compared to all other parameter sequences.
This makes it difficult to rely on a single run produced by the 1-D optimization method,
as it lacks robustness. Another disadvantage of the Golden section search is that it could
potentially get stuck in a local minimum. This is shown in the semi-grid search of a sub-
section containing the brain of the mouse pup data set, varying n_neighbors_spatial (see
Figure A-14). However, the speed of the 1-D optimization method compared to the Bayesian
approach is a considerable reason to choose for the Golden section search.
The Bayesian optimization method also deviates slightly with multiple short runs, but remains
more robust (compared to 1-D optimization) and can be relied on using only a single opti-
mization cycle. Larger deviation between the optimum parameter configuration is observed
in the large framework, which could indicate that the optimal LD embedding is not found yet
and that more iterations are necessary. The vast parameter space results in lots of exploration
by the Bayesian optimization method (e.g. sampling from areas of high uncertainties), which
costs valuable iterations.
During the case study where real-world IMS data sets are investigated, DD-UMAP does
extract more structure from the data compared to UMAP using default settings. In our
experiments, λspatial and n_neighbors_spatial corresponding to UMAPLUS were configured
to a minimal value by DD-UMAP. The newly found structure mostly followed from a low value
for n_neighbors, and high values for min_dist and spread. The low value for n_neighbors
indicates that DD-UMAP favors local structure over global structure, as this results in a lower
values for CEcombined.

6-2 Future work

This thesis proposed tools for utilizing spatial information in IMS, or any spatially structured
data, and constructed a framework for optimizing multiple parameters in a sequential or
multivariate unsupervised manner for dimensionality reduction by UMAP. Further extensions
could potentially include:

• Generate a common evaluation function capable of numerically comparing LD embed-
dings produced by other dimensionality reduction techniques like PCA or t-SNE. The
current approach utilized parameters computed by UMAP as building blocks of the
evaluation function.

• Apply spatial initialization on 3-D IMS data sets, and subsequently UMAPLUS.

• An adjustable constraint on the parameter range during optimization could potentially
expand the parameter search space, since spread must be bigger or equal to min_dist,
therefore limiting further investigation.

• Interpolation between different types of initialization (e.g. spectral-spatial) allows a
more local approach of forcing a subset of pixels to be placed near each other in the LD
embedding, since they are spatially neighbors of each other.
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• Investigate the necessary amount of iterations that the Bayesian optimization method
needs for finding the optimal Low-Dimensional (LD) embedding, since the current im-
plementation uses a fixed number of iterations scaling linear with the number of param-
eters.

• Apply multi-start or varying parameter bounds for the Golden section method in order
to not get stuck in local minima during optimization.

• Apply weights to the runtime of the algorithm to limit the Bayesian optimization method
from exploring regions of the parameter space that result in substantial runtimes.
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Appendix

A-1 Parameters UMAP

Parameter name Default
value

Description

n_neighbors 15 Number of neighbours used per data point for constructing
the kNN graph.

n_components 2 Dimension of the LD embedding.
metric ’euclidean’ Distance metric used in the high-dimensional space.
metric_kwds None Additional input argument for the ditance metric (e.g., the

p-value for Minkowski distance)
output_metric ’euclidean’ Distance metric used in the low-dimensional embedding.
output_metric_kwds None Additional input argument for the distance metric (e.g., the

p-value for Minkowski distance)
n_epochs None Number of training epochs for optimizing the low-

dimensional embedding. In the UMAP source code, 500
epochs will be used for data sets with less than 10000 data
points, and 200 epochs otherwise.

learning_rate 1.0 Initial learning rate for SGD.
init ’spectral’ Initialization of the LD embedding.
min_dist 0.1 Effective minimum distance between the data points in the

low-dimensional embedding.

Table A-1: List of all parameters used by UMAP. Table continues: (1/3).
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Parameter name Default
value

Description

spread 1.0 Effective scale of the data points in the low-dimensional em-
bedding.

low_memory True Save memory during construction of kNN graph, by using
more approximations in finding the nearest neighbors.

n_jobs -1 The number of jobs to run in parallel. All cores are used for
n_jobs = −1

set_op_mix_ratio 1.0 Symmetrization: ratio between (fuzzy) union and intersec-
tion. 1.0 result in fuzzy union, 0.0 result in pure fuzzy in-
tersection.

local_connectivity 1.0 Number of nearest neighbors that should be assumed to be
connected at a local level.

repulsion_strength 1.0 Weighting applied to the negative samples in optimizing the
low-dimensional embedding.

negative_sample_rate 5 Number of negative samples to select for each positive sam-
ple during the optimization phase.

transform_queue_size 4.0 Controls how aggressively to search for nearest neighbors on
new data, appended to the already trained model.

a None Models the distance probabilities in the LD embedding.
This parameter followed from nonlinear least-square fitting
by min_dist and spread, but also can be set manually.

b None Models the distance probabilities in the LD embedding.
This parameter followed from nonlinear least-square fitting
by min_dist and spread, but also can be set manually.

random_state None Seed that is used by the random number generator. For
reproducible results, users should use one value throughout
their research.

angular_rp_forest False Whether to use an angular random projection forest to ini-
tialise the approximate nearest neighbor search

target_n_neighbors -1 The number of nearest neighbors to use to construct the
target simplicial set. target_n_neighbors = −1 uses the
n_neighbors value.

target_metric ’categorical’ Distance metric used on the target data during supervised
dimensionality reduction.

target_metric_kwds None Additional input argument for the target distance metric
(e.g., the p-value for Minkowski distance)

target_weight 0.5 Weighting factor between the existing data topology and
(desired) target topology.

transform_seed 42 Random seed used for the stochastic aspects of the transform
operation.

transform_mode ’embedding’ Returns either the embedding or kNN graph during trans-
formation of the data.

Table A-2: List of all parameters used by UMAP. Table continues: (2/3).
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Parameter name Default
value

Description

force_approximation_algorithm False Calculate subset of the forces applied by UMAP for data
with less than 4096 data points.

verbose False Whether to print status data during the computation.
unique False Controls whether to remove duplicate data points from the

data before computing LD embedding.
densmap False Specifies whether the additional density preserving term will

be incorporated into the cost function. True will lead to
Equation 3-9.

dens_lambda 2.0 Controls the density preservation term of densMAP.
dens_frac 0.3 Controls the fraction of epochs that are being used for

densMAP. The first 1− dens_frac epochs will be used for
regular UMAP.

dens_var_shift 0.1 A small constant added to the variance of local radii in the
embedding when calculating the density correlation objec-
tive to prevent numerical instability from dividing by a small
number.

output_dens False Returns local radii of the final LD embedding when set to
True, computed by densMAP.

disconnection_distance 0.3 Disconnect any vertices of distance greater than or equal to
disconnection_distance when approximating the mani-
fold by construction of the kNN graph.

Table A-3: List of all parameters used by UMAP. Table continues: (3/3).
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A-2 Semi grid search through parameters UMAP

This section will provide extensive visualizations of the LD embedding obtained by UMAP
and the corresponding image domain, using a semi grid search varying one parameter for
various distance metrics for the construction of the kNN-graph Gspectral while keeping all
other parameters at their default configurations. Some parameters have been overridden: the
pixel_order and img_shape have been updated based on the input data, random_state = 42
and n_epochs = 100. The LD embedding and image domain with default settings for UMAP
should produce identical results. But, since Gspectral is not locally connected for the synthetic
data set using the Euclidean distance metric, the spectral initialization may not work as
expected. These results in an unrepeatable optimization of UMAP. The cosine distance is
fully connected, hence resulting in reproducible results.
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(a) (b)

Figure A-1: Varying n_neighbors, (a) LD embedding and the corresponding image domain for
various distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined (lower
values are better).
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(a) (b)

Figure A-2: Varying learning_rate, (a) LD embedding and the corresponding image domain
for various distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined (lower
values are better).
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(a) (b)

Figure A-3: Varying init, (a) LD embedding and the corresponding image domain for various
distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined (lower values
are better).
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(a) (b)

Figure A-4: Varying min_dist, (a) LD embedding and the corresponding image domain for
various distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined (lower
values are better).
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(a) (b)

Figure A-5: Varying spread, (a) LD embedding and the corresponding image domain for various
distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined (lower values
are better).
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(a) (b)

Figure A-6: Varying set_op_mix_ratio, (a) LD embedding and the corresponding image do-
main for various distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined

(lower values are better).
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(a) (b)

Figure A-7: Varying repulsion_strength, (a) LD embedding and the corresponding image do-
main for various distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined

(lower values are better).
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(a) (b)

Figure A-8: Varying negative_sample_rate, (a) LD embedding and the corresponding im-
age domain for various distance metrics, and (b) The evolution of CEspectral, CEspatial and
CEcombined (lower values are better).
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(a) (b)

Figure A-9: Varying dens_lambda, (a) LD embedding and the corresponding image domain for
various distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined (lower
values are better).
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(a) (b)

Figure A-10: Varying dens_frac, (a) LD embedding and the corresponding image domain for
various distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined (lower
values are better).



A-2 Semi grid search through parameters UMAP 129

(a) (b)

Figure A-11: Varying spatial_lambda, (a) LD embedding and the corresponding image domain
for various distance metrics, and (b) The evolution of CEspectral, CEspatial and CEcombined (lower
values are better).
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(a) (b)

Figure A-12: Varying n_neighbors_spatial, (a) LD embedding and the corresponding im-
age domain for various distance metrics, and (b) The evolution of CEspectral, CEspatial and
CEcombined (lower values are better).



A-2 Semi grid search through parameters UMAP 131

A-2-1 Fixed distance metric (cosine)

Figure A-13: Semi grid search on the synthetic data set without additive noise over the most
important parameters of UMAP (lower values are better). Fixed variables: metric = cosine,
n_epochs = 100 and random_state = 42.
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Figure A-14: Semi grid search on a subsection of the brain of the mouse pup data set over the
most important parameters of UMAP (lower values are better). Fixed variables: metric = cosine,
n_epochs = 100 and random_state = 42.
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A-3 Results of optimization methods on different parameter frame-
works
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List of Acronyms

IMS Imaging Mass Spectrometry
TOF Time-of-Flight
FTICR Fourier transform ion cyclotron resonance
ICR ion cyclotron resonance
TIMS trapped ion mobility spectrometry
Q-TOF Quadrupole Time of Flight
PMF Peptide Mass Fingerprinting
ROI region of interest
TIC Total Ion Count
scRNA-seq single-cell RNA sequencing
m/z mass-to-charge ratio
FFPE Formalin fixed paraffin-embedded
ECM extracellular matrix
HV high vacuum
UHV ultra-high vacuum
MALDI Matrix Assisted Laser Desorption/Ionisation
SMALDI scanning microprobe MALDI
IR-MALDESI infrared MALDESI
SALDI surface-assisted laser desorption/ionization
DESI Desorption electrospray ionization
SIMS Secondary Ion Mass Spectrometry
PCA Principal Component Analysis
PCs principle components
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SVD Singular Value Decomposition
MAF Maximum Autocorrelation Factorization
ICA Independent Component Analysis
NMF Non-negative Matrix Factorization
PMF Positive Matrix Factorization
UMAP Uniform Manifold Approximation and Projection
SNE Stochastic Neighbor Embedding
t-SNE t-Distributed Stochastic Neighbor Embedding
HSNE Hierarchical Stochastic Neighbor Embedding
MDS multidimensional scaling
LLE Locally Linear Embedding
SOMs Self-Organizing Maps
NCVis Noise Contrastive Approach for Scalable Visualization
DR Dimension Reduction
NLDR Nonlinear Dimensionality Reduction
HD High-Dimensional
LD Low-Dimensional
KLD Kullback–Leibler divergence
JSD Jensen–Shannon divergence
CE Cross-Entropy
GP Gaussian Processes
TPE Tree-structured Parzen Estimator
GD Gradient Descent
SGD Stochastic Gradient Descent
EI Expected Improvement
SMBO Sequential Model Based Optimisation
NEG Negative sampling
DBN Deep Belief Network
TS Thompson sampling
EI expected improvement
ES entropy search
CH Calinski-Harabasz
kNN k-Nearest Neighbor
CAR Gaussian Conditional Autoregressive
vp vantage point
RP Random Projection



151

NN nearest neighbour
BBKNN batch balanced k-nearest neighbours
VAE Variational autoencoders
DD-UMAP Data-Driven UMAP
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