

Delft University of Technology

Continual prune-and-select: class-incremental learning with specialized subnetworks

Dekhovich, Aleksandr ; Tax, David M.J.; Sluiter, Marel H.F.; Bessa, Miguel A.

DOI
10.1007/s10489-022-04441-z
Publication date
2023
Document Version
Final published version
Published in
Applied Intelligence

Citation (APA)
Dekhovich, A., Tax, D. M. J., Sluiter, M. H. F., & Bessa, M. A. (2023). Continual prune-and-select: class-
incremental learning with specialized subnetworks. Applied Intelligence, 53(14), 17849-17864.
https://doi.org/10.1007/s10489-022-04441-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10489-022-04441-z
https://doi.org/10.1007/s10489-022-04441-z

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Applied Intelligence
https://doi.org/10.1007/s10489-022-04441-z

Continual prune-and-select: class-incremental learning
with specialized subnetworks

Aleksandr Dekhovich1 ·David M.J. Tax2 ·Marcel H.F Sluiter1 ·Miguel A. Bessa3

Accepted: 28 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The human brain is capable of learning tasks sequentially mostly without forgetting. However, deep neural networks (DNNs)
suffer from catastrophic forgetting when learning one task after another. We address this challenge considering a class-
incremental learning scenario where the DNN sees test data without knowing the task from which this data originates. During
training, Continual Prune-and-Select (CP&S) finds a subnetwork within the DNN that is responsible for solving a given
task. Then, during inference, CP&S selects the correct subnetwork to make predictions for that task. A new task is learned
by training available neuronal connections of the DNN (previously untrained) to create a new subnetwork by pruning, which
can include previously trained connections belonging to other subnetwork(s) because it does not update shared connections.
This enables to eliminate catastrophic forgetting by creating specialized regions in the DNN that do not conflict with each
other while still allowing knowledge transfer across them. The CP&S strategy is implemented with different subnetwork
selection strategies, revealing superior performance to state-of-the-art continual learning methods tested on various datasets
(CIFAR-100, CUB-200-2011, ImageNet-100 and ImageNet-1000). In particular, CP&S is capable of sequentially learning
10 tasks from ImageNet-1000 keeping an accuracy around 94% with negligible forgetting, a first-of-its-kind result in class-
incremental learning. To the best of the authors’ knowledge, this represents an improvement in accuracy above 10% when
compared to the best alternative method.

Keywords Continual learning · Class-incremental learning · Sparse network representation · Catastrophic forgetting

1 Introduction

Despite significant progress, deep learning methods tend to
forget old tasks while learning new ones. This is known
as catastrophic forgetting in neural networks [2, 3]. In the
conventional setting, a machine learning model has access
to the entire training data at any point in time. Instead, in
continual learning or lifelong learning [4] data for a given
task comes in sequentially at a specific learning moment,
and then new data associated with another task comes in
at a different moment. Continual learning aims at creating
deep learning models that do not forget previously learned

� Miguel A. Bessa
miguel bessa@brown.edu

Extended author information available on the last page of the article.

tasks while being able to learn new ones, i.e. addressing
catastrophic forgetting. Classification continual learning
problems can be separated into two scenarios [5]: task-
incremental learning (task-IL), where the task being solved
is known both during training and inference; and class-
incremental learning (class-IL) [6], where the task-ID is
known only during training but unknown during testing.
The class-IL problem is notably more challenging than
task-IL. There are also incremental learning approaches
for object detection [7, 8] and semantic segmentation [9,
10]. However, to the best of our knowledge, there are no
examples in the literature of combining different types of
learning tasks. Addressing current challenges in incremental
learning brings the community one step closer to mimicking
the abilities of the human brain. Recently, a brain-inspired
replay method [11] was proposed to generate an internal
feature representation in order to reduce forgetting. The idea
behind this technique is to be able to generate features of
old data, imitating memory mechanisms in the brain.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04441-z&domain=pdf
http://orcid.org/0000-0002-6216-0355
mailto: miguel_bessa@brown.edu

A. Dekhovich et al.

There is evidence from neuroscience [12–14] that
humans have special regions in the brain that are responsible
for the recognition of specific patterns. Moreover, several
studies show that the human brain encodes information
in a sparse representation with an optimal fraction of
active neurons of 1%-4% at the same time [15, 16].
Motivated by this observation, we propose a class-IL
algorithm for image classification based on two steps:
creating a subnetwork for a given task during training
and selecting a previously obtained subnetwork during
inference to make predictions. The first stage is achieved via
iterative pruning that propagates input patterns through the
network and eliminates the least useful connections. During
inference, we first predict the current task when selecting
the appropriate subnetwork from a small batch of test
samples, and only then make a prediction with the selected
subnetwork. We allow overlaps between subnetworks in
order to induce knowledge transfer during training of
new tasks. However, previously trained weights are not
changed. Parameter update only occurs when training
available neuron connections, which become part of a new
subnetwork associated with the new task.

Our contribution To the best of our knowledge, we propose
for the first time a general strategy to create overlapping
subnetworks of neuronal connections that share knowledge
with each other for the class-IL scenario. In doing so,
we achieve a strategy with negligible forgetting, unlike
other works to date. Importantly, the choice of methods
for subnetwork creation and for subnetwork selection can
be different from the ones considered herein. Our goal
is to propose a simple working paradigm for class-IL
problems, where firstly some connections are assigned to a
specific task during training that can then be selected during
inference without knowing the task-ID.

This paper starts discussing state-of-the-art methods
for continual learning, their differences and fundamental
assumptions (Section 2). Then, the proposed CP&S
strategy is presented (Section 3), and evaluated (Section 4)
on class-incremental learning scenarios constructed from
various datasets, including CIFAR-100 [17], ImageNet-100,
ImageNet-1000 [18], and CUB-200-2011 [19]. In Section 5,
additional experiments are provided showing limitations of
CP&S approach and opening avenues for the conclusions
and future directions (Section 6).

2 Related work

Class-incremental learning As previously mentioned, con-
tinual learning problems are usually classified according to
whether or not the task-ID is available during inference. We
focus on the class-IL scenario where the task ID is absent

during inference since it is the most realistic and challeng-
ing scenario of continual learning. All class-IL methods are
usually divided into three categories [20]: regularization
[21–26], rehearsal [6, 27–29] and architectural [30–32].

Purely regularization-based methods introduce an addi-
tional term in the loss function to prevent forgetting. Some
approaches [21, 25, 26, 33] estimate the importance of con-
nections for a given task and penalize the model for gradient
updates during training for the next tasks. Learning without
forgetting (LwF) [22] adds a term in the loss function that
penalizes changes in old output heads for new data while
training new output heads on new data. Regularization-
based methods have the advantage of not storing past data in
memory nor needing network expansion, but they perform
worse compared to other approaches [5].

Rehearsal methods replay small amounts of old classes
[6] or generate synthetic examples [34] to be able to predict
previously seen classes. iCaRL uses the nearest class mean
[35] (NCM) classifier together with fixed memory of old
data to mitigate forgetting. Bias-correction methods [27, 36,
37] aim to tackle the tendency of class-IL algorithms to be
biased towards classes of the last tasks, which arises due
to class imbalance at the latest stages [5]. PODNet [29]
has multiple terms in the loss function using old data from
the memory of a fixed size, penalizing signal deviations
not only in the output layer but also in intermediate ones.
AFC [38] uses knowledge distillation by estimating the
importance of each feature map. The estimation is based
on the increase of loss function from changing channels’
parameters in the feature maps. The obvious limitation of
rehearsal methods is the need to keep past data, which is
often not desirable in practical applications due to privacy
issues as mentioned by [8].

Architectural methods follow a different strategy where
the network architecture is modified to avoid forgetting.
For example, the Dynamically Expandable Network (DEN)
[30] expands the network architecture in an online manner,
increasing network capabilities, and introducing a regu-
larization term to prevent forgetting. However, due to the
expansion of the network, the final number of parame-
ters is greater than for the original architecture, which
increases the memory costs. Supermasks in Superposition
(SupSup) [31] and SpaceNet [32] find subnetworks for
every task. SpaceNet assigns parameters to one task only,
without sharing knowledge between tasks which limits its
allocation capabilities for long sequences of tasks. In addi-
tion, SpaceNet requires to pre-define the sparsity level for
each task. SupSup uses a randomly weighted backbone [39]
instead of pruning to obtain a task-related subnetwork. Dur-
ing inference, SupSup predicts the correct subnetwork for
the given test data, using all data points in the batch. In the
provided experiments, the batch size is equal to 128 images
which may not be applicable to real-life problems. DER [40]

Continual prune-and-select: class-incremental learning...

dynamically expands the feature extractor by introducing
new channels and freezes old feature representation while
learning a new task. Later, DER uses a small portion of old
data and current data to finetune the network for all tasks.
To stop the growth of the number of parameters, DER uses
a pruning strategy, however, the final number of parameters
is unpredictable. Similarly, FOSTER [41] introduces a new
module with a feature map to learn new classes. However,
it uses a knowledge distillation strategy inspired by gradi-
ent boosting instead of pruning to compress the model. As
a result, the outcome of FOSTER is a single fixed-sized
backbone network.

A Meta-Learning approach for class-IL is proposed by
iTAML [42]. The algorithm for updating parameters for all
old tasks also needs fixed-sized memory, but iTAML uses
a momentum-based strategy for meta-updates to overcome
catastrophic forgetting. At the test stage, iTAML starts
by predicting the task associated with that sample using
a given test batch, and then adapts its parameters to the
predicted task using data from fixed memory. Finally, with
the adapted model and predicted task-ID, iTAML makes
a prediction. Overall, iTAML uses samples from previous
tasks to prevent forgetting, and the batch of test data to
predict task-ID, making it the most demanding algorithm
out of consideration. Also, the model adaptation to the
predicted task makes it computationally more expensive
than other state-of-the-art methods.

Iterative pruning for continual learning Typically, neural
network pruning is used for model compression such that
it reduces memory and computational costs. The pruning
pipeline consists of three steps: network pretraining,
deleting the least important connections or neurons based on
some criterion, and network retraining. Iterative pruning is
characterized by repeating the second and third steps several
times. There are numerous approaches to pruning, namely
magnitude pruning [43–45], data-driven pruning [46–49]
and sensitivity-based pruning [50–53]. Iterative pruning has
been recently applied in the context of task-IL but not in the
more challenging class-IL scenario, where the task-ID is not
known a priori. Unsurprisingly, pruning has been shown to
lead to simplified neural networks with a small fraction of
the original parameters. This can facilitate the accumulation
of knowledge for new tasks, as demonstrated by task-IL
methods based on iterative pruning, namely PackNet [54]
that uses magnitude connections pruning [43], and CLNP
[55] that uses data-driven neurons pruning [47]. Piggyback
[56] learns the mask for every task, as well as CPG [57]
which also expands a network in the ProgressiveNet manner
[58]. The performance of these algorithms is strong for task-
IL, but they have the significant limitation of requiring to
know the task-ID.

We are interested in developing a class-IL method that
contains the benefits of iterative pruning connections to
obtain sparse network representations while being capable
of selecting tasks without knowing the task-ID. To this
effect, we developed a pruning strategy called NNrelief
[49] that aims at leaving as many connections as possible
available for future tasks, leading to sparser networks when
compared to other pruning methods. The algorithm’s idea
is to propagate signal through the network, compute a
metric called importance score for each connection which
estimates its contribution to the signal of the following
neuron, and then prune the least contributing connections
incoming to the neuron.

Task selection Currently, there are few strategies for
task selection in class-incremental learning. For example,
iTAML [42] and SupSup [31] use similar ideas for
task identification class-IL applied to image classification
problems, and neither method uses pruning as a means to
create space for new knowledge. The underlying assumption
is that if a classifier network is well-trained, the highest
output signal in the neuron of the output layer corresponds
to the class belonging to the correct task. So, iTAML sums
the largest output values of every task-related output in
that layer over every test image in the batch, and then
finds the layer with the highest total sum. SupSup relies
on the entropy of the signal in each of the heads, in the
hope that the model is confident in its prediction when it
is in the correct head, meaning that the entropy of signal
within the head should be smaller than in other heads. Note
that both methods use batches of test samples to select the
correct task: iTAML varies the batch size from 20 to 150
depending on the dataset, while SupSup uses 128 images in
their experiments. A different strategy is pursued by Kim
et al. [59], where an autoencoder is associated with a task
during training. In the test stage, the reconstruction loss is
computed for every autoencoder with the given test image,
and the one with minimum reconstruction loss is chosen
to make predictions. Subsequently, a classification model
makes a prediction with the given predicted task-ID. It was
shown that in the case of LwF [22] and LwM [23] this
task-selection procedure improves classification accuracy.
However, this task-selection approach requires training an
autoencoder for every task which is impractical.

Limitations of class-IL approaches State-of-the-art class-IL
methods have simplified training by replaying old data
[6, 27, 29, 39], doing inference with a batch of images
to determine the current task [31, 42] and by performing
adaptation before inference [42]. Table 1 summarizes
these assumptions for each method. In rehearsal methods,
examples of previous classes are stored (with fixed or

A. Dekhovich et al.

Table 1 Assumptions used by different types of class-IL methods (“bs” means batch size)

Methods Replay old data test bs > 1 Adaptation

SI, MAS, LwF, LwM, SpaceNet no no no

iCaRL, BiC, PODNet, DER, AFC, FOSTER yes no no

iTAML yes yes yes

CP&S (ours) no yes no

growing memory), which makes them inappropriate when
images should not be kept for a long time. Similarly, the
adaptation of a model for a given batch of test data before
making a prediction (as in iTAML) is only possible when
having examples in memory. Furthermore, the need for a
significant number of images in a batch during inference
arises from the difficulty of identifying the task-ID correctly
with one image only. These can be strong model constraints
when considering real-life applications.

3 Proposedmethod

Our method (CP&S) is based on training a subnetwork for
each given task and then selecting the correct subnetwork
when doing inference for new data with an unknown task-
ID. We start by training a regular neural network for
a specific task (Fig. 1(a)), iteratively pruning it to find
a subnetwork with good performance (Fig. 1(b)). This
creates a trained subnetwork capable of performing that
particular task, leaving the remaining network free for future
tasks (Fig. 1(c)). Importantly, when a new task comes in
(Fig. 1(d)), the corresponding new subnetwork is found by
iteratively pruning the entire original network – including

all free neuronal connections and all existing subnetworks
found for other tasks (Fig. 1(e)). This is possible by freezing
the parameters of previously found subnetworks (avoiding
to forget past tasks associated with the corresponding
subnetworks), updating all the remaining parameters of the
network, and then pruning the entire network until the
corresponding subnetwork is found. This way, the new
subnetwork (Fig. 1(f)) can contain connections from other
subnetworks but it does not affect their performance on past
tasks because it did not update the parameters of shared
connections – it only updated the parameters of unshared
connections. This allows to have the transfer of knowledge
from one task to another without forgetting (Fig. 1(g)).

The new strategy proposed herein can be implemented
with different pruning algorithms to create each subnet-
work, and with different task selection algorithms to find
the correct subnetwork for inference. As long as the prun-
ing and selection strategies have reasonable performance,
we expect this strategy to outperform previous continual
learning methods in the class-IL scenario because (1) it
avoids forgetting if the task is selected correctly (unlike
iTAML); (2) it allows knowledge transfer among tasks
(unlike SpaceNet). Also, CP&S (3) does not need to replay
old data (unlike iCaRL, RPS-net, BiC, LUCIR, PODNet,

Fig. 1 The overview of
Continual Prune-and-Select
(CP&S) training procedure. In
stages (a)–(c), the first task is
learned; in (d)–(f) the network
learns task 2; the final outcome
is in (g), where the network is
trained for both tasks

Task 1
Task 2

Available
connections

(g)

(c)

Initial state Pruning Assigning
weights to the task

Ta
sk

 1
Ta

sk
 2

Task 1 & Task 2

(a) (b)

(d) (e) (f)

Continual prune-and-select: class-incremental learning...

AFC); (4) The backbone architecture is fixed and never
changes during training (unlike DER), or requires additional
temporary modules (unlike FOSTER).

Without loss of generality, we use our recently devel-
oped NNrelief [49] pruning algorithm because it promotes
sparser networks when compared to the state of the art,
and it creates a renormalization effect in the network that
distributes the importance of neuronal connections. Con-
cerning task selection (in our case subnetwork selection), we
considered different strategies, including the one proposed
in the literature that applies to our method (see iTAML [42]
and SupSup [31]).

Formally, denoting our classification network as N and
considering T tasks, then:

N = ∪T
t=1N t , (1)

where N t is the subnetwork for task t , with t = 1, 2, . . . , T .
Each subnetwork N t is found with our NNrelief pruning
algorithm that determines the most important parts of
the main network for solving a given task t . This
algorithm estimates each connection’s contribution to the
total signal of a receiving neuron when compared to the
other connections that are incoming to that neuron. This
contribution is computed by the importance score (IS) of
every connection:

sij (x1, x2, . . . , xN) = |wijxi |
∑m

k=1|wkjxk| + |bj |
, (2)

for the input signal X = {x1, . . . , xN } with N data
points, xn = (xn1, . . . , xnm) ∈ R

m for m neurons in
that layer, where |wijxi | = 1

N

∑N
n=1|wijxni | and with

wij being the weight of the connection between neurons
i and j , where bj is the bias in neuron j . Then NNrelief
prunes the connections entering the neuron with the lowest
contribution to the importance score whose sum is less
than (1 − α)

∑m
i=1sij , where α is the hyperparameter of the

algorithm, 0 ≤ α ≤ 1. More details are given in our original
article [49].

Algorithm 1 Pseudocode for CP&S training procedure.

In the context of class-IL we receive datasets
X1,X2, . . . ,XT sequentially. The pruning algorithm
then creates masks M1,M2, . . . ,MT for every task
t = 1, 2, . . . , T , where Mt = (mt

ij)i,j ,

mt
ij =

⎧
⎨

⎩

1, if there is an active connection
between neurons i and j,

0, otherwise

and corresponding importance scores S1, S2, . . . , ST , St =
(st

ij)i,j .
Once the subnetworks are created during training,

selecting the correct subnetwork given a batch of test data
becomes essential to do inference. In this article, we define
a test batch of size s as Xtest = {xtest

1 , xtest
2 , . . . , xtest

s }, and
can simplify the notation to cases where the fully connected
part of the network consists of one layer since we run all
our experiments on ResNet architectures. However, there
are no restrictions to apply this approach to any other type
of architecture. We define the convolutional part for task
t as θ t , θ t : R

3×H×W → R
d (H, W are the height and

width of an input image and d is the length of an output
feature vector), and the fully connected layers as ϕt : Rd →
R

num classes .
Similarly to the selection of the pruning algorithm

for subnetwork creation, we can also adopt different
strategies to identify the correct subnetwork associated with
a particular task. In order to establish a fair comparison with
the literature, we focus on the maximum output response
(maxoutput) strategy that is used by other methods (e.g. [31,
42]), but we also show that other task selection methods can
lead to good results (see Appendix for a strategy based on
Importance Scores).

The maxoutput strategy for task prediction is simply
formulated as:

t∗ = arg max
t=1,2,...,T

s∑

i=1

max ϕt (θ t (xtest
i)). (3)

This does not require data storage. There are no memory
costs associated with this prediction.

Algorithm 2 Pseudocode for CP&S inference procedure.

Complexity analysis We estimate this separately for the
training and inference stages. In the training stage for
one task, we perform initial training and then the prune-
retrain steps over k iterations. For retraining, we use a
smaller number of epochs. Therefore, if we initially train

A. Dekhovich et al.

the network with N epochs, then we define the number
of retraining epochs as N1 with N1 < N . Overall, we
have N + kN1 < (1 + k)N epochs. In practice, we use
k ≤ 3, so the total number of training epochs for one task
can be estimated as O(N). During inference, the maxoutput
approach requires propagating input signal through every
created subnetwork. That means if T tasks are learned, we
need T inference operations.

4 Experiments

We compare CP&S with different methods available in
the literature. Aiming to establish a fair comparison,
we use different measurements of accuracy during the
learning process, namely average multi-class accuracy
(ACC), backward transfer metric (BWT) [60] and average
incremental accuracy (AIA) [6]. These metrics can be
written assuming that a model learned T tasks and denoting
Rt2,t1 as the accuracy for task t1 after learning up to task t2
(inclusive, i.e. t2 ≥ t1):

ACC(T) = 1

T

T∑

t=1

RT,t (4)

BWT(T) = 1

T − 1

T −1∑

t=1

Rt,t − RT,t (5)

AIA(T) = 1

T

T∑

t=1

ACC(t) (6)

The idea of the BWT is to measure the forgetting
of the incremental-learning models, evaluating how much
information about previous tasks is lost after learning a new
one. We evaluate all methods using several class orderings
to obtain robust results, as recommended in [5].

Datasets We evaluate CP&S on three datasets: ImageNet-
1000, including its subset ImageNet-100 [18]; CUB-200-
2011 [19]; and CIFAR-100 [17]. We also consider different

task construction scenarios. For completeness, the datasets
are briefly described as follows:

• ImageNet-1000 consists of 1,281,167 224 × 224 RGB
images for training and 50,000 images for validation
of 1000 classes. We split both ImageNet-100 and
ImageNet-1000 in 10 incremental steps of equal size,
similarly to the literature;

• CUB-200-2011 consists of 11,788 224 × 224 RGB
images of 200 classes with 5,994 training and 5,794 for
testing images;

• CIFAR-100 consists of 60,000 32 × 32 RGB images of
100 classes with 6k images per class. There are 50,000
training samples and 10,000 test samples;

We start our experiments with ImageNet-100 (the first
100 classes of the ImageNet-1000 dataset) and with CIFAR-
100 before considering more challenging datasets such as
ImageNet-1000 and CUB-200-2011. For all datasets, we
use the ResNet-18 architecture, as considered by previous
methods. For ImageNet-100/1000 datasets, we split them
into 10 tasks of the same size (each task having 10 classes).
We compare CP&S with other state-of-the-art models,
namely iCaRL [6], EEIL [36], BiC [27], RPS-net [39],
iTAML [42], DER [40] and FOSTER [41]. In addition, we
provide a comparison with the case of Finetuning, when
no anti-forgetting actions are performed, and a network
sequentially learns new tasks one by one. For comparison
with other works, we either reproduce the results from
the official GitHub repository using the hyperparameters
mentioned in the original articles or report the results
from the original works when available. See the details in
Appendix A.

ImageNet-100 Figure 2 shows that CP&S outperforms
state-of-the-art methods for this dataset, even when con-
sidering two different optimizers – Stochastic Gradient
Descent (SGD) and Adam [61]. We use a learning rate of 0.1
for SGD and 0.01 for Adam, dividing it by 10 on epochs 30
and 60, and we consider weight decay of 10−4 for both opti-
mizers. Figure 2(a) shows our predictions using a smaller

Fig. 2 Results on ImageNet-100
and comparison with other
approaches. Notation: “bs”
refers to the test batch size;
“task-IL” refers to the task-IL
scenario where the task-ID is
known, providing an upper
bound to the results. The
pruning parameter of CP&S is
αconv = 0.9 for both optimizers,
SGD and Adam. The class
ordering is generated by seed
1993 (iCaRL seed)

Continual prune-and-select: class-incremental learning...

Fig. 3 Comparison with iTAML on CIFAR-100 split in 5, 10 and 20 tasks. Notation: “bs” refers to the batch size during inference, “task-IL” refers
to the task-IL scenario where the task ID is known, providing an upper bound to the results. Five different class orderings are used

batch size than iTAML – 20 samples instead of 50 – and
compares them with other methods. Figure 2(b) clarifies the
influence of considering different test batch sizes in CP&S
method, where it is demonstrated that even when using 5
or 10 samples per batch we still perform better. The same
figure also shows that when using Adam we identify the
correct subnetwork in 100% of the cases because we reach
the upper bound provided in the task-IL scenario, i.e. where
the task-ID is known and subnetwork selection is not nec-
essary. For SGD, we observe a slight drop in accuracy after
task 8 compared to the task-IL scenario, although it still out-
performs iTAML even though the latter uses 50 images for
task identification and requires keeping images in memory.
Overall, CP&S reaches 98.38% accuracy with Adam and
92.62% with SGD, translating into improvements for this
dataset beyond 8% and 2.5% when compared to next best
method, and even larger when compared to other methods
after all classes are learned.

We note that using Adam [61] is advantageous for CP&S
due to the higher level of sparsity that is produced after
pruning with NNrelief when compared with other opti-
mizers [49]. Note that pruning makes neuron connections

available for creating new subnetworks associated with
future tasks. If the number of available connections is small,
then new subnetworks may not be sufficiently expressive
to reach high accuracy for a given task. A similar effect is
expected if the number of tasks is large, as shown in the next
experiments for CIFAR-100.

CIFAR-100 Before considering more challenging datasets
such as ImageNet-1000 and CUB-200-2011, we focus on
CIFAR-100 where we split its 100 classes by a different
number of tasks: 5, 10 and 20 tasks composed of 20, 10
and 5 classes, respectively. For iTAML, we followed the
original implementation with hyperparameters described in
the paper including the test batch size equal to 20, and
using ResNet-18(1/3) [60] which is a modified version of the
standard ResNet-18 architecture where the number of filters
is divided by three. For CP&S, we use Adam for training
using 70 epochs and starting with the learning rate 0.01
which is then divided by 5 every 20 epochs. We use αconv =
0.9 and 3 pruning iterations as the pruning parameters of
NNrelief.

Fig. 4 CIFAR-100 divided into
20 tasks of 5 classes each.
Task-selection accuracy with
maxoutput (left) and accuracy
by task (right)

A. Dekhovich et al.

Figure 3 shows that when considering 5 or 10 tasks
CP&S significantly outperforms iTAML with the same
batch size. However, for twenty tasks our performance
drops sharply after the eleventh task, even in the ideal
case where the task-ID is given (task-IL scenario). Despite
being able to alleviate this drop by considering a larger test
batch size, or by considering a different strategy for task
(subnetwork) selection based on Importance Scores (see
Appendix A), we observe this drop occurs approximately
at the same number of tasks, independently of the class
ordering used. Figure 4(left) provides an explanation of
what occurs for the 20 tasks case by showing a heatmap
with the task-selection accuracy by row for every task after
a new task is learned. We also evaluate the prediction
accuracy for each task when the task-ID is known (task-
IL scenario) so that we can isolate the effect of not being
able to appropriately select the subnetwork of interest for
a given task and the effect of achieving low accuracy for
a specific task. We observe that even in this case, the
accuracy for each new task after the eleventh also drops
(see Fig. 4 (right)). Therefore, our method performs well
until we reach a saturation point when there are not enough
neuron connections available to create a sufficiently large
subnetwork to achieve high prediction accuracy for a new
task. This is a logical conclusion, as one can only learn new
tasks while sufficient neuronal connections remain available
for training. Increasing the size of the original architecture
eliminates this issue.

In addition, note that we do not keep data in memory (no
replay), nor do we need to use adaptation to estimate the
task before making a final prediction, unlike the methods
reviewed above. We also use smaller test batch sizes than
iTAML, despite using the same task selection strategy. The
following experiments show that this conclusion holds for
more challenging datasets.

ImageNet-1000 Focusing now on a more challenging
dataset, we split ImageNet-1000 into 10 tasks of 100
classes. To evaluate CP&S, we train ResNet-18 with 90
epochs and SGD with a learning rate equal to 0.1 dividing

Table 2 Average incremental accuracy on ImageNet-1000

Method Top-1 AIA

iCaRL [6] 38.4

DER [40] 66.73

FOSTER [41] 68.3

CP&S (ours) 79.08

Bold numbers indicate the best performance

it by 10 every 30 epochs. Figure 5(a) shows that CP&S
performs better than the state-of-the-art, exhibiting more
than 10% higher Top-5 accuracy than the next best method,
which is DER [40] and more than 20% improvement over
the second best BiC [27]. We found this result to be
particularly striking, since the prediction accuracy remains
around 94% with virtually no forgetting for the first time in
the literature, to the best of our knowledge. Figure 5(b) also
shows results for different test batch sizes for determining
the task-ID and corresponding subnetwork. Once again, a
batch size of 20 provides a good trade-off between accuracy
and sample size. Interestingly, prediction accuracy is better
for CP&S method than others even when using only 5
test samples in the batch. With 20 images in the test
batch, we can almost reach the upper bound of the task-IL
scenario, completely reaching it when using 50 images (i.e.
identifying the task-ID correctly in 100% of the cases).

In addition, we provide a comparison on the ImageNet-
1000 dataset calculating Top-1 accuracy. In Table 2, we
observe that CP&S outperforms the two most recent state-
of-the-art methods, DER and FOSTER, by more than 10%.

CUB-200-2011 We split CUB-200-2011 dataset into four
tasks with 50 classes in each of the tasks. For testing,
we take standard ResNet-18 pretrained on ImageNet-1000
[18] and fine-tuned with SGD. For iTAML, we also use
pretrained weights and use the same hyperparameters for
fine-tuning that are used in the original paper for other
large-scale datasets. The pruning parameter for CP&S is
αconv = 0.95 and only one pruning iteration is used.

Fig. 5 Results obtained for
ImageNet-1000 dataset and
comparison with other
approaches (a) and different
batch sizes (b). Notation: “bs”
refers to the test batch size;
“task-IL” refers to the task-IL
scenario (upper bound obtained
when task ID is known). The
pruning parameter is
αconv = 0.9 for CP&S. Class
ordering is generated by seed
1993 (referring to iCaRL’s seed)

Continual prune-and-select: class-incremental learning...

Fig. 6 Comparison with iTAML
on four tasks constructed from
CUB-200-2011. Notation:
“memory” is the number for
images from previous tasks;
“task-IL” refers to task-IL
scenario as an upper-bound for
our approach

Figure 6 presents the accuracy and BWT history with
20 test images per batch, once again using maxoutput
as the task-selection strategy. For 20 test images, it
can be observed that CP&S once again exhibits almost
no forgetting of information about previous tasks while
learning new ones. However, iTAML even though it keeps
2000 images in memory, continuously forgets previous
tasks. In addition, note that 2000 images represent 1/3 of
the CUB-200-2011 dataset, and that we see a dramatic loss
of performance for iTAML when using 1000 images (which
is still 1/6 of all the images). In the case of 5 images
per test batch, we obtain similar forgetting as iTAML with
2000 images in memory but still a better forgetting metric
than iTAML with 1000 images in memory. A more detailed
comparison can be found in Appendix C.

In summary, CP&S outperformed the state-of-the-art for
all datasets considered with the exception of CIFAR-100
when considering a large number of tasks. We demonstrate
that we can perform better for small-scale and large-scale
datasets (ImageNet-1000) where the second best methods
are different. We considered scenarios where each task has
a small or a large number of classes, including cases where
there is a small number of training examples (CUB-200-
2011) without keeping them in memory.

5 Further analysis

CP&S method’s performance degrades if there are too many
tasks because the number of available neuron connections
is not enough to create an expressive subnetwork and to
select the correct task. This was shown for CIFAR-100 when
considering 20 tasks (see Fig. 3). In addition, there are
scenarios where task selection during inference should be
performed by a different strategy instead of maxoutput. For
example, when there is an imbalanced number of classes
within the tasks we note that using the modification of
Importance Scores (IS) to select tasks is advantageous.

Focusing on fully connected layers, for the given dataset
X = {x1, x2, . . . , xs} we can compute:

ŝt
ij =wij · mt

ij · θ t
i (X)=

⎧
⎨

⎩

wij · θ t
i (X), if there is an active connection

between neurons i and j

0, otherwise,
,

(7)

where wij · θ t
i (X) = 1

s

∑s
k=1wij · θ t

i (xk) and θ t
i are the

feature extractor layers of task t .
Suppose we have importance scores S1, S2, . . . , ST

obtained from the training set, we can estimate the
importance scores of these connections based on Xtest

for every subnetwork t = 1, 2, . . . , T , and denote these
estimations as Ŝ1, Ŝ2, . . . , ŜT .

Assuming that importance scores should be similar for
train and test data for the true task-ID, we can formulate the
decisive rule as:

t∗ = arg min
t=1,2,...,T

√∑

i,j

(st
ij − ŝt

ij)
2, (8)

where st
ij and ŝt

ij are the elements of matrices St and Ŝt

respectively, t = 1, 2, . . . , T .
We consider the case where the first task consists of 50

classes, and 10 classes are in each of the following tasks,
providing the comparison with iCaRL [6], LUCIR [27],
PODNet [29] and AFC [38] (see Table 1 to recall different
assumptions for each method). However, we also show that
when using IS for task selection we require a larger batch
size to improve task identification (60 test samples).

The maxoutput strategy does not work well in this case
because most of the parameters are assigned to the first task
(with 50 classes). As a result, this strategy predicts the first
task when considering the last tasks for almost every batch,
as shown in Appendix A.

As a final comment, we also investigated an alternative
solution when we have a first task that is significantly
larger than the following ones. This can be solved by

A. Dekhovich et al.

Fig. 7 Accuracy history for
ResNet-32 trained with CP&S
and state-of-the-art. The pruning
parameter is αconv = 0.9 for
CP&S strategy, and “task-IL”
refers to the same upper bound
mentioned in the previous
figures. Three different class
orderings are used

pretraining convolutional weights with the first task and
training only the task-specific parts in the network. We
denoted this last strategy as “CP&S-frozen” since we
pretrain all convolutional parameters with the first 50
classes, and, for the next tasks we train task-related batch
normalization parameters and the fully connected part that
is task-specific by construction. So, in this last strategy
each subnetwork consist of a common convolutional part
(pretrained on the first task), batch normalization layers and
output classification head. We present an additional task-
selection accuracy comparison between IS and maxoutput
in Appendix A. We again observe poor performance for
maximum output response strategy. The final results can be
seen in Fig. 7 and Table 3.

We believe this knowledge transfer strategy might be
interesting to explore in the future, where the first heads
of the network specialize in selecting tasks and the deeper
layers specialize in class prediction for each task.

Knowledge transfer Let us explore how many parameters
are used by every task in the case of ResNet-18 on
ImageNet-1000. We consider the union and the intersection
of all masks as sets. In Fig. 8(a) we show how the union

Table 3 Comparison between algorithms by average incremental
accuracy and backward transfer metric at the end of all tasks

Method AIA (%) BWT (%)

iCaRL [6] 61.63 ± 0.25 12.77 ± 0.30

LUCIR [27] 63.29 ± 0.36 10.09 ± 0.12

PODNet-CNN [29] 64.56 ± 0.28 11.90 ± 0.04

PODNet-NME [29] 65.07 ± 0.44 1.18 ± 0.16

AFC [38] 65.73 ± 0.09 7.46 ± 0.38

CP&S (bs=60, IS) 64.97 ± 4.23 11.68 ± 0.20

CP&S-frozen (bs=60, IS) 70.55 ± 5.05 4.90 ± 2.35

Mean values and standard deviation are computed using three different
orderings

Bold numbers indicate the best performance

and intersection are distributed across parameters after the
last task is learned in the case of ResNet-18 on ImageNet-
1000. From the union, we observe that the last layers are
almost fully occupied in contrast to the first layers. From
the intersection, it can be seen that a significant fraction of
parameters is shared between each of the tasks across all
layers. At the same time, about 85% are assigned to two
and more tasks (Fig. 8(b)). Notably, 35% of parameters are
shared across all ten tasks and about 50% of parameters are
used for nine and more tasks. From these figures, we can
conclude that almost all parameters are occupied at the end,
having significant overlaps between subnetworks. However,
looking at Fig. 5, we see that performance remains stable,
without drops. This allows us to conclude that subnetworks
share knowledge between tasks, which helps to assimilate
new patterns.

6 Conclusion

To overcome the problem of catastrophic forgetting while
learning new tasks, we propose a continual learning
algorithm that trains subnetworks for each task. During
training of a task, weights are pruned and then fixed,
such that future tasks cannot destroy the weights in this
subnetwork, while still being able to use them for other
subnetworks. During evaluation of new data, the correct
task-ID and associated subnetwork have to be inferred
from a small batch of samples. We describe existing task-
prediction approaches and propose a new one based on
the neural connection strength. Although the task-ID needs
to be inferred, no memory is needed to store examples
from previous tasks, unlike alternative approaches. The
main drawback of the current implementation of the CP&S
strategy is the need to have a small batch of test data due
to the difficulty of determining the correct task-ID – a
limitation also observed in the best-performing methods in
the literature. Notwithstanding, our work demonstrates that
combining subnetwork creation and subnetwork selection
methods into one paradigm provides a general approach

Continual prune-and-select: class-incremental learning...

Fig. 8 Visualization of
employed masks and shared
parameters for ResNet-18 on
ImageNet-1000

to solve class-IL problems. We believe the proposed
strategy can be further improved by developing better
task-prediction strategies that do not need a batch of test
data. CP&S outperforms all state-of-the-art methods on
a variety of datasets. For ImageNet-1000, we show an
improvement of more than 10% accuracy when compared to
previous algorithms. Even though we apply CP&S to image
classification tasks, no additional limitations are foreseen
when applying it to other machine learning problems.

Appendix A: Additional information
on CIFAR-100 experiments

Task-selection We present CP&S results with different test
batch sizes and task-selection strategies in Fig. 9.

Also, we provide an additional comparison between
maxoutput and IS strategies in Figs. 10 and 11. In both
cases, we observe the advantage of importance scores (IS)
over maxoutput strategy in the case of imbalanced tasks.

Fig. 9 The performance of
CP&S with different batch sizes
and task-selection strategies

A. Dekhovich et al.

Fig. 10 Task-selection accuracy
using Importance Scores (IS)
(left) as opposed to maxoutput
(right) on CIFAR-100 with
class imbalance (50 classes in
the first task and 10 classes in
each of the following five tasks)
for CP&S. The test batch size is
60 images in both cases

Fig. 11 Task-selection accuracy
using Importance Scores (IS)
(left) as opposed to maxoutput
(right) on CIFAR-100 with
class imbalance (50 classes in
the first task and 10 classes in
each of the following five tasks)
for CP&S-frozen. The test batch
size is 60 images in both cases

Table 4 Hyperparameters for (ResNet-18)/3 training on CIFAR-100 (5/10/20 tasks)

Method # epochs Optimizer LR LR scheduler Weight decay

iTAML 70 RAdam [62] 0.01 on epochs 20, 40, 60 multiply LR by 0.2 0

CP&S (ours) 70 Adam 0.01 on epochs 20, 40, 60 multiply LR by 0.2 0.0005

Table 5 Hyperparameters for ResNet-32 training on CIFAR-100 (6 tasks)

Method # epochs Optimizer LR LR scheduler Weight decay

iCaRL 70 SGD 2.0 on epochs 49 and 63 multiply LR by 0.2 0.00005

LUCIR 160 SGD 0.1 on epochs 80, 120 multiply LR by 0.1 0.0005

PODNet 160 SGD 0.1 on epochs 80, 120 multiply LR by 0.1 0.0005

AFC 160 SGD 0.1 on epochs 80, 120 multiply LR by 0.1 0.0005

CP&S (ours) 160 Adam 0.001 on epochs 80, 120 multiply LR by 0.1 0.0005

Continual prune-and-select: class-incremental learning...

Training hyperparameters In Table 4, we show the hyper-
parameters that we used for experiments on CIFAR-100 in
Section 4. For iTAML, all the parameters are taken from
the original work and the results were reproduced using the
official GitHub repository. Memory buffer contains 2000
training samples to mitigate forgetting. For CP&S, we used
3 pruning iterations, 1000 training samples per task to estimate
importance scores in NNrelief and αconv = 0.9. For retrain-
ing (after pruning sep), we use 40 epochs with Learning
Rate (LR) 0.01 multiplied by 0.2 on epochs 15, 25 and 40.

In Table 5, we present the training hyperparameters
for experiments in Section 5. To reproduce the results,
we use PODNet and AFC GitHub repositories using the

hyperparameters from the original works. All the previous
works use 2000 training samples in the fixed-size memory
buffer to mitigate forgetting. For CP&S, we used 1
pruning iteration, 1000 training samples per task to estimate
importance scores in NNrelief and αconv = 0.9. For
retraining (after the pruning step), we use 50 epochs with
LR 0.001 multiplied by 0.1 on epochs 20 and 40.

Appendix B: ImageNet-100/1000 results

For ImageNet-100/1000, we present exact numbers from
which the plots are constructed for CP&S in Tables 6 and 7.

Table 6 ImageNet-100 results with different test batch sizes and task-IL scenario trained with SGD and Adam

Optimizer Batch size 1 2 3 4 5 6 7 8 9 10

Adam 20 98.20 98.80 98.67 98.50 98.48 98.60 98.63 98.63 98.50 98.38

10 98.20 98.80 98.67 98.41 98.25 98.15 97.90 97.94 97.23 97.00

5 98.20 98.02 97.03 95.86 94.23 92.51 92.08 92.12 90.53 89.39

task-IL 98.20 98.80 98.67 98.50 98.48 98.60 98.63 98.63 98.50 98.38

SGD 20 99.00 98.90 98.67 98.60 97.90 98.09 98.05 98.25 94.20 92.62

task-IL 99.00 98.90 98.67 98.60 98.20 98.33 98.26 98.43 98.20 98.06

Table 7 ImageNet-1000 results with different test batch sizes and task-IL scenario trained with SGD

Optimizer Batch size 1 2 3 4 5 6 7 8 9 10

SGD 50 94.38 94.96 94.52 94.42 94.40 94.45 94.40 94.16 93.88 93.77

20 94.38 94.96 94.52 94.42 94.40 94.40 94.34 94.12 93.77 93.66

10 94.38 94.96 94.42 94.09 93.91 93.70 93.40 92.92 92.19 91.97

5 94.38 94.31 92.74 91.53 90.41 89.24 88.07 86.59 84.82 83.92

task-IL 94.38 94.96 94.52 94.42 94.40 94.45 94.40 94.16 93.88 93.77

A. Dekhovich et al.

Appendix C: CUB-200-2011 additional
comparison

In this section, we provide an additional comparison for
ResNet-18 on CUB-200-2011 dataset using 5 test images
per batch to predict the task-ID in Fig. 12.

Fig. 12 Comparison with
iTAML on four tasks
constructed from CUB-200-
2011. Notation: “memory” is the
number for images from
previous tasks; “task-IL” refers
to task-IL scenario as an
upper-bound for CP&S

Acknowledgements The authors would like to thank SURFsara for
providing the access to Snellius HPC cluster. A preprint version of
this work is published on arXiv under the CC BY license: Dekhovich,
A., Tax, D. M., Sluiter, M. H., & Bessa, M. A. Continual Prune-
and-Select: Class-incremental learning with specialized subnetworks.
arXiv preprint arXiv:2208.04952 (2022).

Author Contributions Not applicable

Funding Not applicable

Data Availability Not applicable

Code Availability PyTorch [1] implementation of the code is available
at: https://github.com/adekhovich/continual prune and select

Declarations

Conflict of Interests The authors have no conflicts of interest to
declare.

Ethics approval Not applicable

Consent to participate Not applicable

Consent for Publication Not applicable

References

1. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch:
an imperative style, high-performance deep learning library. In:
Advances in neural information processing systems, vol 32

2. French RM (1999) Catastrophic forgetting in connectionist
networks. Trends Cognit Sci 3(4):128–135

3. Goodfellow IJ, Mirza M, Xiao D, Courville A, Bengio Y
(2014) An empirical investigation of catastrophic forgetting in
gradient-based neural networks. In: 2nd International conference
on learning representations, ICLR

4. Thrun S (1998) Lifelong learning algorithms. In: Learning to
learn. Springer, Boston. MA, pp 181–209

5. Masana M, Liu X, Twardowski B, Menta M, Bagdanov AD,
Van De Weijer J (2020) Class-incremental learning: survey and
performance evaluation on image classification. IEEE Trans
Pattern Anal Mach Intell

6. Rebuffi S-A, Kolesnikov A, Sperl G, Lampert CH (2017)
icarl: incremental classifier and representation learning. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 2001–2010

7. Shmelkov K, Schmid C, Alahari K (2017) Incremental learning of
object detectors without catastrophic forgetting. In: Proceedings of
the IEEE international conference on computer vision, pp 3400–
3409

8. Zhang J, Zhang J, Ghosh S, Li D, Tasci S, Heck L, Zhang
H, Kuo C-CJ (2020) Class-incremental learning via deep
model consolidation. In: Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pp 1131–1140

9. Michieli U, Zanuttigh P (2019) Incremental learning techniques
for semantic segmentation. In: Proceedings of the IEEE/CVF
international conference on computer vision workshops

10. Yan S, Zhou J, Xie J, Zhang S, He X (2021) An em framework
for online incremental learning of semantic segmentation. In:
Proceedings of the 29th ACM international conference on
multimedia, pp 3052–3060

11. Van De Ven GM, Siegelmann HT, Tolias AS (2020) Brain-inspired
replay for continual learning with artificial neural networks.
Nature Commun 11(1):1–14

12. Lerner Y, Honey CJ, Silbert LJ, Hasson U (2011) Topographic
mapping of a hierarchy of temporal receptive windows using a
narrated story. J Neurosci 31(8):2906–2915

13. Zadbood A, Chen J, Leong YC, Norman KA, Hasson U
(2017) How we transmit memories to other brains: constructing
shared neural representations via communication. Cerebral cortex
27(10):4988–5000

http://arxiv.org/abs/2208.04952
https://github.com/adekhovich/continual_prune_and_select

Continual prune-and-select: class-incremental learning...

14. Huttenlocher PR (1990) Morphometric study of human cerebral
cortex development. Neuropsychologia 28(6):517–527

15. Lennie P (2003) The cost of cortical computation. Current Biol
13(6):493–497

16. Attwell D, Laughlin SB (2001) An energy budget for signaling in
the grey matter of the brain. J Cerebral Blood Flow Metabolism
21(10):1133–1145

17. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of
features from tiny images

18. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009)
Imagenet: a large-scale hierarchical image database. In: 2009
IEEE conference on computer vision and pattern recognition. Ieee,
pp 248–255

19. Wah C, Branson S, Welinder P, Perona P, Belongie S (2011) The
caltech-ucsd birds-200-2011 dataset. Tech Report CNS-TR-2011-
001, California institute of technology

20. Delange M, Aljundi R, Masana M, Parisot S, Jia X, Leonardis
A, Slabaugh G, Tuytelaars T (2021) A continual learning survey:
defying forgetting in classification tasks. IEEE Trans Pattern Anal
Mach Intell

21. Zenke F, Poole B, Ganguli S (2017) Continual learning through
synaptic intelligence. In: International conference on machine
learning. PMLR, pp 3987–3995

22. Li Z, Hoiem D (2017) Learning without forgetting. IEEE Trans
Pattern Anal Mach Intell 40(12):2935–2947

23. Dhar P, Singh RV, Peng K-C, Wu Z, Chellappa R (2019)
Learning without memorizing. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 5138–
5146

24. Liu X, Masana M, Herranz L, Van De Weijer J, Lopez AM,
Bagdanov AD (2018) Rotate your networks: better weight
consolidation and less catastrophic forgetting. In: 2018 24th
International conference on pattern recognition (ICPR). IEEE,
pp 2262–2268

25. Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins
G, Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska
A et al (2017) Overcoming catastrophic forgetting in neural net-
works. Proc National Acad Sci 114(13):3521–3526

26. Aljundi R, Babiloni F, Elhoseiny M, Rohrbach M, Tuytelaars T
(2018) Memory aware synapses: learning what (not) to forget.
In: Proceedings of the European conference on computer vision
(ECCV), pp 139–154

27. Hou S, Pan X, Loy CC, Wang Z, Lin D (2019) Learning a
unified classifier incrementally via rebalancing. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pp 831–839

28. Belouadah E, Popescu A (2019) Il2m: class incremental learning
with dual memory. In: Proceedings of the IEEE/CVF international
conference on computer vision, pp 583–592

29. Douillard A, Cord M, Ollion C, Robert T, Valle E (2020) Podnet:
pooled outputs distillation for small-tasks incremental learning.
In: Computer vision–ECCV 2020: 16th European conference,
Glasgow, UK, 23–28 Aug 2020, proceedings, Part XX 16.
Springer, pp 86–102

30. Yoon J, Yang E, Lee J, Hwang SJ (2018) Lifelong learning
with dynamically expandable networks. In: 6th International
conference on learning representations, ICLR

31. Wortsman M, Ramanujan V, Liu R, Kembhavi A, Rastegari M,
Yosinski J, Farhadi A (2020) Supermasks in superposition. In:
Advances in neural information processing systems

32. Sokar G, Mocanu DC, Pechenizkiy M (2021) Spacenet: make free
space for continual learning. Neurocomputing 439:1–11

33. Chaudhry A, Dokania PK, Ajanthan T, Torr PH (2018) Rieman-
nian walk for incremental learning: understanding forgetting and
intransigence. In: Proceedings of the European conference on
computer vision (ECCV), pp 532–547

34. Shin H, Lee JK, Kim J, Kim J (2017) Continual learning with deep
generative replay. In: Advances in neural information processing
systems

35. Mensink T, Verbeek J, Perronnin F, Csurka G (2012) Metric
learning for large scale image classification: generalizing to new
classes at near-zero cost. In: European conference on computer
vision. Springer, pp 488–501

36. Castro FM, Marı́n-Jiménez MJ, Guil N, Schmid C, Alahari K
(2018) End-to-end incremental learning. In: Proceedings of the
European conference on computer vision (ECCV), pp 233–248

37. Wu Y, Chen Y, Wang L, Ye Y, Liu Z, Guo Y, Fu Y (2019) Large
scale incremental learning. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 374–
382

38. Kang M, Park J, Han B (2022) Class-incremental learning by
knowledge distillation with adaptive feature consolidation. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp 16071–16080

39. Rajasegaran J, Hayat M, Khan S, Khan FS, Shao L (2019) Random
path selection for incremental learning. In: Advances in neural
information processing systems

40. Yan S, Xie J, He X (2021) Der: dynamically expandable
representation for class incremental learning. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pp 3014–3023

41. Wang FL, Zhou D-W, Ye H-J, Zhan D-C (2022) Foster: feature
boosting and compression for class-incremental learning. In:
European conference on computer vision

42. Rajasegaran J, Khan S, Hayat M, Khan FS, Shah M (2020)
itaml: an incremental task-agnostic meta-learning approach. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp 13588–13597

43. Han S, Pool J, Tran J, Dally WJ (2015) Learning both weights and
connections for efficient neural networks. In: Advances in neural
information processing systems, pp 1135–1143

44. Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2017) Pruning
filters for efficient convnets. In: 5th international conference on
learning representations, ICLR

45. Frankle J, Carbin M (2019) The lottery ticket hypothesis: finding
sparse, trainable neural networks. In: 7th International conference
on learning representations, ICLR

46. Hu H, Peng R, Tai Y-W, Tang C-K (2016) Network trimming:
a data-driven neuron pruning approach towards efficient deep
architectures. arXiv:1607.03250

47. Huang Z, Wang N (2018) Data-driven sparse structure selection
for deep neural networks. In: Proceedings of the European
conference on computer vision (ECCV), pp 304–320

48. Luo J-H, Wu J, Lin W (2017) Thinet: a filter level pruning method
for deep neural network compression. In: Proceedings of the IEEE
international conference on computer vision, pp 5058–5066

49. Dekhovich A, Tax DM, Sluiter MH, Bessa MA (2021) Neural
network relief: a pruning algorithm based on neural activity.
arXiv:2109.10795

50. LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In:
Advances in neural information processing systems, pp 598–605

51. Hassibi B, Stork DG, Wolff GJ (1993) Optimal brain surgeon and
general network pruning. In: IEEE international conference on
neural networks. IEEE, pp 293–299

52. Hassibi B, Stork DG (1993) Second order derivatives for
network pruning: optimal brain surgeon. In: Advances in neural
information processing systems, pp 164–171

53. Lebedev V, Lempitsky V (2016) Fast convnets using group-
wise brain damage. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 2554–2564

54. Mallya A, Lazebnik S (2018) Packnet: adding multiple tasks to
a single network by iterative pruning. In: Proceedings of the

http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/2109.10795

A. Dekhovich et al.

IEEE conference on computer vision and pattern recognition,
pp 7765–7773

55. Golkar S, Kagan M, Cho K (2019) Continual learning via neural
pruning. In: NeurIPS workshop on real neurons & hidden units

56. Mallya A, Davis D, Lazebnik S (2018) Piggyback: adapting a
single network to multiple tasks by learning to mask weights.
In: Proceedings of the European conference on computer vision
(ECCV), pp 67–82

57. Hung C-Y, Tu C-H, Wu C-E, Chen C-H, Chan Y-M, Chen
C-S (2019) Compacting, picking and growing for unforgetting
continual learning. In: Advances in neural information processing
systems, vol 32

58. Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J,
Kavukcuoglu K, Pascanu R, Hadsell R (2016) Progressive neural
networks. arXiv:1606.04671

59. Kim ES, Kim JU, Lee S, Moon S-K, Ro YM (2020)
Class incremental learning with task-selection. In: 2020 IEEE
international conference on image processing (ICIP). IEEE,
pp 1846–1850

60. Lopez-Paz D, Ranzato M (2017) Gradient episodic memory for
continual learning. In: Advances in neural information processing
systems, vol 30, pp 6467–6476

61. Kingma DP, Ba J (2015) Adam: a method for stochastic
optimization. In: 3rd International conference on learning
representations, ICLR

62. Liu L, Jiang H, He P, Chen W, Liu X, Gao J, Han J (2020)
On the variance of the adaptive learning rate and beyond. In: 8th
International conference on learning representations, ICLR

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Affiliations

Aleksandr Dekhovich1 · David M.J. Tax2 · Marcel H.F Sluiter1 · Miguel A. Bessa3

1 Department of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, Delft, 2628 CD,
The Netherlands

2 Pattern Recognition and Bioinformatics Laboratory, Delft
University of Technology, Van Mourik Broekmanweg 6,
Delft, 2628 XE, The Netherlands

3 School of Engineering, Brown University,
184 Hope St., Providence, RI 02912, USA

http://arxiv.org/abs/1606.04671
http://orcid.org/0000-0002-6216-0355

	Continual prune-and-select: class-incremental learning...
	Abstract
	Introduction
	Our contribution

	Related work
	Class-incremental learning
	Iterative pruning for continual learning
	Task selection
	Limitations of class-IL approaches

	Proposed method
	Complexity analysis

	Experiments
	Datasets
	ImageNet-100
	CIFAR-100
	ImageNet-1000
	CUB-200-2011

	Further analysis
	Knowledge transfer

	Conclusion
	Appendix A A: Additional information on CIFAR-100 experiments
	Task-selection
	Training hyperparameters

	 B: ImageNet-100/1000 results
	Appendix B B: ImageNet-100/1000 results
	 C: CUB-200-2011 additional comparison
	Appendix C C: CUB-200-2011 additional comparison
	Declarations
	References
	Affiliations

