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Transition zones in high-speed railways suffer from abrupt stiffness variations that induce irregular dynamic
responses and accelerate infrastructure deterioration. This study presents a surrogate-assisted multi-objective
optimization framework that combines finite element (FE) simulations, a neural network-based surrogate model,
and the NSGA-II algorithm to address this challenge. A validated 3D FE model of prefabricated epoxy asphalt
cured track beds (PEACT) was used to generate 341 layout scenarios covering 13 response parameters. These
data were used to train a neural network, which served as a static surrogate predictor for evaluating layout
performance during the optimization process. The results show that module layout has a limited effect on peak
responses but significantly improves smoothness, with three categories of optimal configurations identified.
Compared with direct FE-based optimization, the proposed framework achieves substantial computational ef-
ficiency and provides data-driven design guidance for PEACT transition zones. This framework exemplifies the
potential of hybrid data—simulation approaches to enhance adaptive and efficient railway infrastructure design.

Introduction

The rapid development of high-speed railway (HSR) worldwide has
revolutionized modern transportation, enabling faster, more efficient,
and more comfortable travel over long distances. However, as train
speeds increase, the dynamic interaction between vehicles and track
structures becomes significantly sensitive to local discontinuities, espe-
cially vertical stiffness variations in the longitudinal direction [1-3].
One critical section is the transition zones, which occur while the track
support changes, either between different types of track structures, such
as between ballasted track and bridges [4], tunnels [5], or slab tracks
[6], or even within the same type of track when laid on different sub-
structures. In HSR lines, these transition zones are particularly vulner-
able to stiffness mismatches, which can cause abrupt changes in
structural responses as trains pass through.

With the increasing use of longer bridges, extended slab tracks, and
higher train speeds, the importance of effective transition zone design
has become more pronounced. In response, various transition structures
have been developed to accommodate changes in track stiffness,
including the use of new materials [7,8] and innovative structure con-
figurations [4]. Solutions such as elastic layers or damping materials,
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including geogrids [9] and polyurethane [10], have demonstrated
benefits in reducing stiffness discontinuities. Meanwhile, structural ap-
proaches like graded sleeper spacing [11], variable ballast thickness
[12], and under-sleeper pads [13] offer further performance improve-
ments. However, these measures are often optimized for specific design
conditions and may face challenges in adapting to evolving operational
requirements or diverse site environments. This highlights the value of
exploring complementary design schemes that integrate material and
structural considerations to enhance adaptability, ease of construction,
and long-term performance under various working conditions.

In response to the challenges, the pre-cast epoxy asphalt cured track
(PEACT) has been developed as an innovative solution [8-11]. PEACT
combines prefabricated modular blocks made of dry-mixed rubberized
epoxy asphalt mixtures (DREAMs) with a concrete base to form a semi-
rigid track structure. As shown in Fig. 1(a) and Fig. 1(b), these blocks are
cast and cured off-site [9] and then transported to the construction site
for rapid installation [12]. This approach offers high structural integrity
and stable damping characteristics [13]. Moreover, by adjusting the
rubber content in the DREAMs, the dynamic stiffness and damping
properties of each block can be flexibly tailored, allowing for a
customized vertical stiffness profile along the transition zone [8]. Such
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modular adaptability makes PEACT particularly suited for mitigating
stiffness mismatches under diverse engineering conditions.

PEACT has been extensively evaluated through experimental and
numerical studies, consistently demonstrating excellent performance.
Shi et al. [9] first proposed PEACT to reduce substructure vibrations in
HSR trackbeds while maintaining high performance and adaptability.
The basic unit design, dimensions (Fig. 1(a) and Fig. 1(b)), gradation of
DREAMs, and methods of incorporating crumb rubber were introduced
in their study, with the final design methodology established in Ref. [14]
using the volumetric mix-design method (V-S method) [15,16]. Subse-
quently, DREAMs with four rubber contents (i.e., EA-6 CR, EA-4 CR, EA-
2 CR, and EA-0 CR, corresponding to rubber contents of 6 %, 4 %, 2 %,
and 0 %, respectively) were developed and tested. Laboratory tests
under repeated train loads showed cumulative deformation below 1.5
mm, confirming their long-term durability [9]. Additional evaluations
characterized DREAMs as highly resilient materials with excellent
cracking resistance, as well as outstanding high- and low-temperature
performance [9,11]. To meet on-site construction requirements (e.g.,
the lifting process in Fig. 1(a)), special asphalt mortars were developed
[12,17], and the mechanical behavior during installation was assessed
through numerical simulations [12], confirming structural integrity
during handling and long-term service. The dynamic behaviors [8-10]
and vibration attenuation ability [14] of DREAMs were further investi-
gated using 3D finite element (FE) simulations. Results showed that the
inclusion of crumb rubber reduced train-induced stress, strain, and vi-
bration, thereby protecting the substructure while preserving material
performance. Specifically, 3D FE simulations in Ref. [8] demonstrated
that adjusting the type, number, and arrangement of blocks significantly
improves longitudinal stiffness distribution and smooths dynamic re-
sponses across the transition zone compared to polyurethane-based
transitions, which have been used in practice [18-22]. In addition,
compared to traditional slab or ballasted transition zones, PEACT offers
greater design flexibility, enabling stiffness gradation through fixed,
variable, or stepped stiffness block configurations.

Despite these advantages, existing research has primarily focused on
material behavior and basic performance validation. A critical gap re-
mains in the systematic optimization of block layouts, particularly in
achieving balanced performance across multiple objectives and ac-
counting for dynamic responses in various track components. To fully
exploit the potential of PEACT in transition-zone applications, a
surrogate-assisted, data-driven optimization framework is needed that

EA-6 CR EA-4 CR

General track
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can efficiently explore design alternatives within a feasible computa-
tional cost.

In recent years, optimization algorithms have gained increasing
prominence in engineering design. For example, Emil et al. [6] applied
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize
stiffness and sleeper spacing in a ballasted-slab track transition zone,
aiming to reduce wheel-rail forces and base pressures. Shen et al.
[23,24] developed a digital twin approach for real-time monitoring and
adjustment of track stiffness, covering the entire lifecycle from design to
maintenance. These studies highlight the potential of combining ma-
chine learning with an optimization algorithm for designing transition
zones. This potential is particularly relevant for systems like PEACT,
whose modular reconfiguration and tunable material properties enable
flexible configuration.

Building on this concept, the present study proposes a proof-of-
concept surrogate-assisted optimization framework that integrates FE
simulations, a neural-network-based surrogate model, and the NSGA-II
algorithm to optimize the performance of the PEACT transition zone.
The neural network is trained using FE-generated data and then
employed as a static surrogate predictor to efficiently evaluate candidate
configurations during the optimization process, thus integrating existing
numerical and data-driven methods into an application-oriented
framework for a newly developed track system, i.e., the PEACT transi-
tion zone.

The paper is organized as follows: Section 2 introduces the back-
ground and methodology, including the problem definition, FE
modeling, and overall optimization framework. Section 3 details the
data preparation procedures. Section 4 presents the optimization pro-
cess using back propagation (BP) neural networks and NSGA-II algo-
rithms. Section 5 discusses potential improvements and possible
extensions. Section 6 summarizes the study and highlights its practical
implications for designing transition zones.

Methodology
Problem statement

The ultimate objective of this study is to minimize dynamic response
variations within the PEACT transition zone. As a case study, we focus

on the transition from a general track section to a bridge section, as
illustrated in Fig. 1(c). Following the approach in Ref. [8], variations in

Unit: mm *

EA-2CR EA-0CR

T

Transition zone

Fig. 1. Schematic of (a) basic unit of PEACT, (b) DREAM blocks, and (c)

(c)

combination approaches of DREAMs when applied to PEACT transition zone.
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dynamic responses along the longitudinal direction of PEACT are
characterized using fitting equations. These equations have no direct
physical interpretation; instead, they serve solely to quantify the degree
of variation. For this reason, linear fitting equations are adopted [25], as
their parameters (i.e., slope k and fitting coefficient of determination R?)
provide an intuitive means of assessing smoothness.

Within this framework, the optimization objectives are the slopes k;
and coefficients of determination R?; for different dynamic responses.
The goal is to minimize k; while maximize R?;, as expressed in Eq. (1)
and Eq. (2):

Mineepk; (%),1=1,2,-,13;j = 1,2,3,4# €y
max,epR?i (%), i =1,2,,13;j = 1,2, 3, 4% (2)

For each k and R?, their value can be calculated by Eq. (3) ~ Eq. (5):

Yj:Fi(x17x25x37x4vlj)sj:172:"'750# 3
k — 21‘5:01 lej B nE?J 4)
S8 —nl)
L Y;
50 50 50

R Zj:llej —n j:li j:l# 4

N2 2\ 2 (5)

g -a(znd) | |2 -a(zy) |

Here, Y; denotes the value of the i-th dynamic response at the j-th cross-
section in the PEACT transition zone, and F;(-) is the mapping from the
number and the arrangement of asphalt blocks to the i-th dynamic
response, as determined by the numerical model (Section 2.2). The term
I represents the distance from the j-th cross-section to the general track,
and n = 50 is the total number of cross sections (see Fig. 2(a)), corre-
sponding to the cross-sections in the numerical model.

The variables x7,x2, x3,x4 denote the number of DREAM blocks of
types EA-6CR, EA-4CR, EA-2CR, and EA-OCR, respectively (following
Ref. [8]). From the general track section (softer side) to the bridge
section (stiffer side), the baseline arrangement is general section — EA-
6CT — EA-4CR — EA-2CR — EA-OCR — bridge section. The exact
numbers x; x4 are determined via optimization. For brevity, the general
track section is modeled with EA-6CR material.

The notation x; —x2 —x3 —x4 describes the sequence of DREAM block
counts from the softer side to the stiffer side. For example:

e 10-20-10-10: 10 EA-6CR, 20 EA-4CR, 10 EA-2CR, 10 EA-OCR
blocks.

e 5-5-5-5: 5 of each DREAM type, leaving 30 general track sections
before the EA-6CR section.

If the total number of DREAM blocks is less than 50, the remaining xo
blocks are modeled as general track sections of the softer side, with the
following physical constraint:

(6)

Xo+ X1 +X2+X3+X4=n
X1,X2,X3,X4 €N
For each configuration x; —x, —x3 —X4, the slopes k; and R?; are evalu-
ated, forming a typical multi-objective optimization problem. The
dataset used for optimization comprises 13 structural dynamic response
parameters, computed using the FE model for 341 different cases (see
Section 3.2).
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FE model of PEACT

Brief introduction of model settings

Fig. 2 illustrates the basic configuration of the proposed numerical
model, comprising the dynamic model (Fig. 2(a)), an overview of the
model (Fig. 2(b)), and a typical cross-section (Fig. 2(c)). The DREAM
blocks are modeled using the generalized Maxwell model [26], imple-
mented in ABAQUS via the Prony series representation [27-29]. In the
dynamic models, this layer is equivalent to a series of springs and
dampers, as shown in Fig. 2(a). Detailed model settings, such as DREAM
gradation, Prony series coefficients, geometric dimensions, and solution
parameters, are provided in Ref. [8].

Compared with the model in Ref. [8], several modifications were
introduced to improve both accuracy and computational efficiency:

e Model domain selection. Previous studies [1,8] showed that train

direction has minimal influence on the dynamic response of the

PEACT transition zone. Therefore, only the track section labeled “3"

in Fig. 2(b) is used for subsequent analysis.

Boundary condition. Viscous boundaries are applied to the softer

side of the model (general track section) to minimize artificial wave

reflections from the model boundaries [30].

Contact modeling. A penalty contact formulation is adopted for the

interfaces between track components, as described in Ref. [1].

e Model damping. The Raleigh damping is used for DREAMs, with
coefficients @ and g calculated from the damping ratio ¢, which is
given in Ref. [31]. Damping of other solid elements is excluded.

Model validation

Since PEACT has not yet been implemented in engineering practice,
validation of the numerical model is conducted using field measurement
data from pre-cast polyurethane trackbeds. These trackbeds have been
successfully applied on the Yinchuan-Xi’an (Yin-Xi) HSR line, which
operates at speeds up to 300 km/h, and have demonstrated excellent in-
service performance [10]. The only distinction between the pre-cast
polyurethane trackbed and PEACT lies in the material properties. Ac-
cording to Chen et al. [32], the mechanical behavior of polyurethane can
also be represented by a generalize Maxwell model, making it directly
compatible with the modeling framework used for DREAM blocks.

Model validation is performed by comparing the simulated results
with field measurements of (i) track stiffness, as shown in Fig. 3(a), and
(ii) the peak values of vertical stress at the surface layer, as shown in
Fig. 3(b). Track stiffness measurements follow the procedure specified in
TB 10082-2017 [33], with further details available in Ref. [8].

The trackbed stiffness measured in the field is approximately 89.90
kN/mm, while the numerical simulation yields 93.75 kN/mm, a differ-
ence of less than 5 %. For dynamic response comparison, the simulation
is configured to match the actual conditions of the Yin-Xi HSR, with all
track blocks modeled as polyurethane (Prony series parameters from
Ref. [32]) and a train speed of 300 km/h. The simulated maximum
vertical stress at the top of the bottom layer of the pre-cast polyurethane
trackbed is 17.8 kPa, differing by only 4.49 % from the measured value
of 17.0 kPa. These results confirm that the numerical model is reliable
and can be confidently applied to further analyses by replacing poly-
urethane parameters with those of the four DREAM types.

Optimization process

The overall optimization process is illustrated in Fig. 4. First, the
numerical model is employed to generate a dataset covering multiple
design cases. For each case, dynamic responses are collected at 50 cross
sections in the transition zones. The longitudinal variation of these re-
sponses fits with a linear equation, establishing the relationship between
the parameter vector x = (X1, X2, X3, X4) and the corresponding k;, R?;. In
parallel, the same dataset is used to develop a base neural network
(denoted as NN-I thereafter) for predicting dynamic response, serving as
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Fig. 2. Schematic of (a) dynamic model of PEACT transition zone, (b) overview of PEACT transition zone FE model, and (c) typical cross-section of PEACT with

DREAM blocks.
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Fig. 3. Schematic of (a) comparison between simulated track stiffness and measured stiffness, and (b) simulated dynamic response (taking vertical stress at the top of

the bottom layer as an example).
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Fig. 4. Workflow of optimization process.

the data source for NSGA-II optimization. A six-layer BP neural network
is selected for its proven applicability in engineering problems and its
ability to update numerical parameters [34], with detailed settings
provided in Section 4.2. However, NN-I's generalization capability is
limited because key training parameters, such as the number of neurons
per hidden layer, training sample size, and learning rate, are not phys-
ically guided. To address this, the NSGA-II algorithm (see Appendix A) is
applied to optimize these parameters, producing an NSGA-II-optimized
BP neural network (denoted as NN-II thereafter). NN-II is then used as
the data source for the final NSGA-II-based optimization of the PEACT
transition zone design. Finally, the numerical model compares the dy-
namic responses of the DREAM block arrangements before and after
optimization, evaluating the feasibility and effectiveness of the proposed
scheme.

Data preparation

As a novel track structure, PEACT transition zones currently lack
standardized regulations for characterizing their dynamic behavior. To
address this, and considering structural behavior and material perfor-
mance, the relevant Chinese regulations [33], and key parameters from
pavement engineering [35], this study selects 13 dynamic response

parameters to provide the most comprehensive possible description of
PEACT behavior under train loading. These parameters and their ab-
breviations are listed in Table 1. Accordingly, the slope vector is
expressed as k = (kn) and the coefficient-of-determination vector as
R* =
selected parameters reflect four complementary aspects of the PEACT

(R%y,), where m corresponds to the parameters in Table 1. The

Table 1
Selected parameters for describing the dynamic characteristics of PEACT.
Structural layer ~ Response location = Response Abbreviation
Rail Top Vertical acceleration R_A2
Vertical displacement ~ R_U2
Sleeper Top Vertical acceleration S_A2
Surface layer Top Vertical acceleration SL_A2
Vertical stress SL_S22
Vertical displacement ~ SL_U2
DREAM blocks Top Vertical acceleration AB_T A2
Vertical stress AB_T S22
Vertical displacement =~ AB_T_U2
Bottom Vertical stress AB_D S22
Vertical acceleration AB_D A2
Lateral strain AB D_LE11
Longitudinal strain AB_D_LE33
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transition zone:

e Dynamic performance. Vertical acceleration and displacement at
the rail top are included, as they represent the vibration transmitted
from the vehicle to the track.

e Vibration attenuation capability. Accelerations at five key layers
(rail, sleeper, top and bottom of asphalt blocks, and top of the surface
layer) are considered to evaluate the energy dissipation and damping
performance of DREAMs.

e Structural safety of DREAM blocks. Longitudinal and lateral
strains at the bottom of asphalt blocks are used to assess the potential
for cracking or fatigue, in accordance with pavement engineering
practice [35].

e Serviceability and deformation control. Displacements at the top
of the rail, asphalt block, and surface layer are analysed to verify
compliance with allowable limits in Chinese railway standards [33].

Influence of design schemes on the transition zone

Longitudinal distribution characteristics of track parameters

As a preliminary study, Ref. [8] systematically examined the longi-
tudinal variation of dynamic responses in the PEACT transition zone
using quadratic curves. However, these quadratic equations lack phys-
ical interpretation, and the study only considered a single block
arrangement, namely 10-20-10-10. In this section, the same arrange-
ment (10-20-10-10) is used to illustrate the feasibility of applying linear
fitting equations to the PEACT transition zone. As shown in Fig. 5 and
Table 2, vertical stresses at different layers and strains at the bottom of
asphalt blocks as examples to demonstrate how linear fitting can effec-
tively capture the variation trends.

Fig. 5(a) shows the longitudinal variation of vertical stresses at three
locations: the top of the asphalt block, the bottom of the asphalt block,
and the top of the surface layer. All three exhibit a gradual increase
along the longitudinal direction, with the steepest rise occurring at the
top of the asphalt blocks. This suggests that uneven stress distribution in
the PEACT transition zone is concentrated within the asphalt blocks
themselves, rather than in the surface layer of the embankment, as is
typical for conventional ballast or ballastless trackbeds. As shown in
Fig. 5(b), the strain at the bottom of the asphalt blocks increases with
higher rubber content, further emphasizing the importance of consid-
ering the mechanical behavior of asphalt blocks when optimizing the
smoothness of the PEACT transition zone.

It should be noted that the viscous boundary condition assumes zero
dynamic response at the boundary elements. As a result, computed
values near this boundary may be inaccurate. To avoid such errors, the
results from the three cross-sections closest to the boundary were
excluded from subsequent analyses.

280 T T T
~*= Top of asphalt block 1 1
240
~*= Bottom of asphalt block : :
§ 200 r—*— Top of surface layer | 1
=
2 EA-6 CR' EA-4 CR ! EA-0 CR
£ 160 | |
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]
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40
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Table 2
Summary of fitting lines of track parameters.
Parameter Location Fitting R? WSI
equation
Maximum vertical Top of the y = 0.8793  0.9196
stress asphalt block 7611x —2715
Bottom of the y= 0.8193  0.9941
asphalt block 2871x—167.5
Top of the y = 0.0856  0.9833
surface layer 302x —33346
Maximum lateral Bottom of the y = —0.224x + 0.1572  0.8473
strain (LE11) asphalt block 20.3
Maximum Bottom of the y = —0.174x + 0.1217  0.9388
longitudinal strain asphalt block 121
(LE33)

Table 2 summarizes the fitting results for the five dynamic responses.
For vertical stresses, the R? values decrease with the measurement depth
in the track structure. However, this does not invalidate the use of linear
fitting in this study. The numerical model is subjected to high-speed
train loads containing multiple frequency components [8,36,371,
causing substantial variation in the loads experienced by different cross-
sections as the train passes. The vibration attenuation of the asphalt
blocks amplifies these relative variations, making deeper measurement
points more sensitive to uneven distribution. Nevertheless, the slope of
the fitted line still reflects the overall trend. Moreover, due to the
attenuation effect, stresses in the surface layer are more evenly distrib-
uted on both sides of the fitted line. This is quantitatively supported by
the high Weighted Symmetry Index (WSI) values in Table 2, calculated
using Egs. (7)~(9):

S, 5|

WSI=1— m# )
S+ = Zr,->ori2’s+ = Zr,-<0ri2# (8)
n=Yi— 91-# &)

where y; is the simulated value from the numerical model. y; is the fitted
value. r; is the residual. S, and S_ are the sums of squared residuals in
the positive and negative sides of the fitted line, respectively. WSI values
range from O to 1, with values close to 1 indicating a balanced distri-
bution of residuals, and values close to 0 indicating a strong bias.

For the strains (LE11 and LE33), the behavior is different. As shown
in Fig. 5(b), two junctions appear (at EA-6CR to EA-4CR and EA-4CR to
EA-2CR) due to notable stiffness differences between these materials. No
clear junction is observed from EA-2CR to EA-OCR because of their
similar mechanical properties [8,31]. Consequently, the R? and WSI
values for these two parameters are lower than those for vertical
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Fig. 5. Longitudinal distribution characteristics of (a) maximum vertical stress, (b) lateral and longitudinal strain at the bottom of the asphalt block (taking 10-20-

10-10 as an example).
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stresses. Nonetheless, the linear fitting still captures the overall variation
trend and provides a useful reference for defining “smooth change”.

Influence of the number of asphalt blocks

This section exams how the number of asphalt blocks (corresponding
to the length of the transition zone) affects the dynamic responses. Seven
working conditions are evaluated, as listed in Table 3, where the general
track section is denoted as EA-6 CR’.

The maximum values of each dynamic response for the considered
cases are listed in Table 4, with units of m/s? for acceleration, Pa for
stress, pe for strain, and mm for displacement. Results show that varying
the number of asphalt blocks has a negligible influence on these
maximum values, suggesting that each type of DREAM performs inde-
pendently in the transition zone, largely unaffected by its position
within the structure. When dynamic response values in the transition
zone are relatively high, some variation is observed in the maximum
vertical stress. Specifically, as the total number of asphalt blocks in the
last four sections decreases, the maximum vertical stress also tends to
decrease. This indicates that, from a stress-reduction perspective,
shorter transition zones are preferable. However, a reduction in the
number of blocks also leads to an increase in maximum strain at the top
of the asphalt blocks, implying that shorter transition zones subject the
blocks to greater deformation loads. Overall, both longer and shorter
transition zones yield dynamic response levels within acceptable limits.
Therefore, optimizing transition zone design solely to minimize these
response levels offers limited benefits, and alternative design strategies
should be explored.

For assessing the overall longitudinal variation trend, k and R? are
used to evaluate each design scheme. To eliminate the influence of ab-
solute values, normalization is first applied to each case for better
comparison, as shown in Eq. (10):

, x — min(x)

X =——— (10)

max(x) — min(x)

where X' is the normalized k or R2. x, min(x), and max(x) are original,
minimum, and maximum values, respectively.

Taking the accelerations at five locations as an example, Fig. 6 il-
lustrates the influence of the number of asphalt blocks. Only the k and R?
values of vertical acceleration at the top of the rail increase consistently
as the transition zone length decreases, indicating a stronger linear trend
but with a steeper slope. In contrast, k and R? for other locations show no
clear relationship with the transition zone length. To achieve smooth
dynamic response changes, the slope k of the fitted line should be as
small as possible, ensuring both smooth train passage and effective
protection of the trackbed. However, the results show that for the seven
tested configurations, maximizing R? often coincides with an increase in
k. This trade-off makes it challenging to determine an optimal transition
zone length based on the current results. Therefore, a comprehensive
comparison is required to select a design that minimizes the k while
maximizing R2.

Table 3

Working conditions affected by the number of asphalt blocks.
Type of asphalt EA-6 EA-6 EA-4 EA-2 EA-
block CR’ CR CR CR 0 CR

(x0) (1) (x2) (23) (x4)

I 2 12 12 12 12
I 6 11 11 11 11
111 10 10 10 10 10
v 14 9 9 9 9
\ 18 8 8 8 8
VI 22 7 7 7 7
VI 26 6 6 6 6
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Influence of the arrangement method of asphalt blocks

In addition to the transition zone length, the arrangement method is
another key factor in the optimization process. This section examines
four working conditions with different arrangement configurations, as
summarized in Table 5.

Similar to the discussion on the influence of transition zone length, this
section first examines the effect of arrangement patterns on the maximum
dynamic response values, as summarized in Table 6. The results indicate
that, like the effect of the number of asphalt blocks, the arrangement
pattern does not significantly influence the maximum dynamic response.
However, unlike the variation observed with different transition zone
lengths, the differences between arrangement patterns are almost negli-
gible. This can be explained by the load transfer mechanism in the track
structure: train loads are primarily distribution over approximately five
adjacent sleepers and then transmitted to the lower layers [38]. In all four
arrangement patterns considered, each type of DREAM is laid over at least
10 consecutive sections. As a result, every section contains multiple seg-
ments that accurately reflect the mechanical properties of its corre-
sponding DREAM type, resulting in similar maximum dynamic response
values across the different arrangement patterns.

Furthermore, the normalized k and R? values for the five acceleration
measurement locations are presented in Fig. 7. Similar to findings for
maximum dynamic responses, neither k and R? shows a clear correlation
with the arrangement pattern. Nonetheless, arrangement I, i.e.,
20-10-10-10, yields the highest k and R? values at most positions,
suggesting that the longitudinal variation of dynamic responses is rela-
tively smooth under this configuration. An exception is observed at the
top of the asphalt block, where arrangement I produces the lowest k and
R? values. This indicates that, while Arrangement I performs well
overall, it does not provide uniformly ideal results across all measure-
ment points. Therefore, to achieve balanced performance for all five
acceleration parameters, a tailored arrangement strategy for the four
DREAM types is necessary, even when the total number of asphalt blocks
is fixed.

Step O: Data set

Integrating the analysis in Section 3.1, it is evident that neither the
total number of asphalt blocks nor their arrangement pattern shows a
significant correlation with the trends in variation of dynamic responses.
Moreover, the preceding sections considered only five acceleration pa-
rameters out of the 13 dynamic response parameters. When all 13 pa-
rameters are included, identifying a design scheme that achieves
uniformly smooth transitions across all responses becomes more chal-
lenging. This complexity suggests that, for design purposes, the variation
patterns of these 13 parameters should be treated as a “black box”, with
optimization carried out based on sufficiently large and representative
datasets.

To this end, 341 randomly generated working conditions satisfying
Eq. (6) were simulated using the numerical model. Each condition yields
13 dynamic response parameters, producing 26 output values (k and R?
for each parameter). By contrast, the model’s input space consists of
only four variables representing the number of each type of asphalt
block. This imbalance between a small set of input variables and a large
set of output targets poses two challenges: (1) fitting a neural network
would require a substantial dataset to achieve adequate accuracy, and
(2) directly using all outputs as objectives in NSGA-II optimization
would increase computational complexity and reduce optimization ef-
ficiency [39].

To address this, the dataset was first grouped according to the
characteristics of the 13 dynamic response parameters, as summarized
in Table 7. For each group, a separated neural network was trained for
each parameter. To maintain generalization capability, the 341 cases
were randomly split into training and validation sets with a 7:3 ratio in
each training session.
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Table 4
Effect of the number of asphalt blocks on the maximum value of the track parameters in the transition zone.
SL_A2 SL_U2 SL_S22 AB_T_A2 AB_T_S22 AB_T_U2 AB_D_A2 AB_D_S22 AB_D_LE11 AB_D_LE33
I 17.40 0.48 52861.50 22.79 192678.75 0.52 17.84 53310.93 27.00 25.04
I 17.40 0.48 53321.55 22.79 185316.00 0.52 17.84 53314.06 27.00 25.07
juis 17.55 0.48 53318.70 22.79 172650.75 0.52 17.84 53323.46 27.00 25.05
v 17.55 0.48 53319.00 22.82 172649.25 0.52 17.85 53335.44 27.00 25.07
v 17.55 0.48 53296.20 22.90 172649.25 0.52 17.97 53317.83 27.00 25.04
VI 17.55 0.48 53936.70 22.90 172643.25 0.52 17.97 53313.14 27.45 25.04
ViI 17.55 0.48 53937.23 22.90 169181.25 0.52 17.97 53282.69 27.45 40.93

(e)

Fig. 6. Slope and R? of longitudinal change in acceleration after normalization the influence of the number of asphalt blocks (a) at the top of rail (R_A2), (b) at the
top of sleeper (S_A2), (c) at the top of asphalt blocks (AB_T_A2), (d) at the bottom of asphalt blocks (AB_D_A2), and (e) at the top of surface layer (SL_A2).

Optimization process of four neurons (x; x4) and an output layer of two neurons (k and R?).

The four hidden layers contain 32, 64, 128, and 32 neurons, respec-
Step 1: Pre-training for predicting dynamic responses in the transition zone tively. A hyperbolic tangent (tanh) function is used as the activation
(NN-D function for all layers, and the learning rate is set to 0.01. The training

process terminates when either the loss function falls below 0.001 or the
The core of NN-Iis a six-layer BP neural network, with an input layer number of training iterations exceeds 2000. Taking four dynamic re-
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Table 5
Working conditions affected by the arrangement method of asphalt blocks.
Number of asphalt 10 10 10 10 10
blocks (x0) (x1) (x2) (x3) (x4)
I EA-6 EA-6 EA-4 EA-2 EA-
CR CR CR CR 0 CR
I EA-6 EA-4 EA-4 EA-2 EA-
CR CR CR CR 0 CR
I EA-6 EA-4 EA-2 EA-2 EA-
CR CR CR CR 0 CR
v EA-6 EA-4 EA-2 EA- EA-
CR CR CR 0 CR 0 CR

sponses as examples, the corresponding loss curves are shown in Fig. 8.

The loss curves of all individual dynamic response prediction net-
works converge to relatively small values (approximately 0.01) after a
limited number of iterations, but fail to meet the preset target of 0.001.
This necessitates further verification of their predictive accuracy. Fig. 9
compares the predicted and actual values of NN-I on the validation set.
While some responses, such as AB_ D_A2 and AB_T U2, show good
agreement with the fitted R? values of 0.88 and 0.91, others, such as
R_A2 and SL_S22, perform poorly, with R? values of only 0.47 and 0.44,
respectively. The fitted R? values for all remaining networks are listed in
Table 8.

The results indicate that using fixed, pre-set training parameters
cannot achieve consistently high accuracy across all dynamic response
predictions. Similar to FE model calibration, manually tuning neural
network parameters for each case would require substantial computa-
tional effort and still might not yield optimal settings. Therefore, the
enhance NN-I before applying it to the PEACT transition zone optimi-
zation, this study employs NSGA-II to automatically optimize the key
training parameters, as detailed in Section 4.2.

Step 2: Establish the NSGA-II-BP network (NN-II)

To mitigate the risk of overfitting given the moderate dataset size
(341 FE samples), the 13 response parameters were not modeled using a
single high-dimensional network. Instead, they were divided into three
independent groups (as detailed in Table 7) and learned using three NN-
II surrogates. This strategy significantly reduces the output dimension-
ality per model and limits the total number of trainable parameters,
improving training stability and generalization.

When optimizing NN-I with NSGA-II, the goal is to tune six training
parameters (i.e., the number of neurons in each of the four hidden
layers, the sample size for each training session, and the learning rate,
denoted as x; Xe, respectively). The optimization aims to simultaneously
minimize the training time to reach the target loss value of 0.001 (F;)
and maximize the prediction accuracy in terms of R? (F,), as formulated
in Egs. (11) ~ (12):

MinepFy (x;),i=1,2, -, 64 an
maxxeDFz(xi),i: 1.2,,6# (12)
Here D represents the feasible domain of the training parameters:

e For x; x4 (neurons in hidden layers), x; € [4,16] and x; € N.
e For x5 (sample size per training), xs € [8,64] and x5 € N.
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e For x¢ (learning rate), x¢ € [0.001,0.01].

Since NSGA-II minimizes objective functions, Eq. (12) is reformu-
lated as:

Minyep|Fa(x;) — 11],i=1,2,3,4# 13)

In the NSGA-II framework, each individual encodes a complete set of
training parameters for NN-I and represents a fully trained neural
network. In this study, each generation contains 200 individuals,
evolving over 50 generations, resulting in a total of 200 x 50 = 10000
network trainings. The number of neurons in each hidden layer is
treated as a tunable parameter within the range of 4-16. Under these
settings, each NN-II contains on the order of 10° trainable parameters,
which is modest relative to the available training data volume and
consistent with common practice in surrogate-assisted engineering
optimization [6]. To further control model complexity and avoid over-
fitting, the dataset is divided into training and validation subsets with a
proportion of 7:3. The loss curves in Fig. 8 indicate that NN-I converges
to a stable value within 500 iterations. Therefore, for efficiency, each
NN-I in the optimization process is trained for 500 iterations rather than
until the full convergence threshold of 0.001 is met. Under these set-
tings, NSGA-II was applied to optimize the neural networks predicting
changes in four representative parameters, i.e., R_A2, AB D A2,
AB_T_U2, and SL_S22. The results are presented in Fig. 10.

As shown in Fig. 10, the Pareto fronts progressively converge toward
the origin over generations, indicating stable convergence of the NSGA-
II optimization under the adopted parameter settings. In addition,
several independent runs with different random seeds were performed,
and similar Pareto fronts and optimal solutions were consistently ob-
tained, indicating that the optimization results are not sensitive to sto-
chastic initialization.

After applying NSGA-II to optimize NN-I, the Pareto front of the
population gradually converges toward the origin of the coordinate
system, indicating the existence of parameter sets that simultaneously
minimize NN-I training time and maximize prediction accuracy. In
principle, any individual near this origin in the final generation can
serve as an optimal solution, and its parameters can be adopted to
establish NN-II. Four representative examples of such ideal solutions are
shown in Fig. 10. It should be emphasized that, in multi-objective
optimization, every point on the Pareto front is theoretically optimal.
However, in this study, the primary objective is to enhance NN-I's pre-
dictive accuracy for dynamic responses, even if this requires sacrificing
some training time. Accordingly, individuals with higher fitting accu-
racy, as illustrated in Fig. 10(d), are prioritized.

Following this approach, NSGA-II is applied to each NN-I, and the
most suitable individual from the final generation is selected as the basis
for NN-II. The corresponding optimized training parameters are then
used to retrain the networks. Comparable training and validation errors
were observed for all NN-II models, indicating satisfactory generaliza-
tion capability, as detailed in Table 9, in which R? and R2 are training
errors and validation errors, respectively. It should be emphasized that
NN-II is employed to capture relative trends and ranking among
different design schemes under consistent modeling assumptions, rather
than to provide exact absolute predictions of physical quantities. The
final optimal configurations identified through surrogate-assisted opti-
mization are subsequently verified using direct FE simulations, as
detailed in Section 4.4, thus ensuring the reliability of the design

Table 6
Effect of the arrangement method of asphalt blocks on the maximum value of the track parameters in the transition zone.
SL_A2 SL_U2 SL_S22 AB_T A2 AB_T_S22 AB_T_U2 AB_D_A2 AB_D_S22 AB_D_LE11 AB_D_LE33
I 1488.48 1.87 34.43 17.84 0.48 53318.70 22.79 172650.75 0.52 17.55
I 1488.43 1.87 34.44 17.84 0.48 53318.55 22.79 172650.00 0.52 17.40
III 1488.80 1.87 34.44 17.72 0.48 52868.85 22.70 172650.00 0.52 17.40
v 1488.80 1.87 34.44 17.72 0.48 52868.85 22.70 172695.25 0.52 17.40




Y. Wu et al. Transportation Geotechnics 57 (2026) 101879

e

1.0

0.8

0.6 ‘

K|

04F

(e)

Fig. 7. Slope and R? of longitudinal change in acceleration after normalization under the influence of arrangement method of asphalt blocks (a) at the top of rail
(R_A2), (b) at the top of sleeper (S_A2), (c) at the top of asphalt blocks (AB_T_A2), (d) at the bottom of asphalt blocks (AB_D_T2), and (e) at the top of surface

layer (SL_A2).
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Table 7
Categories of track parameters.
Category Track parameters Basis of
number classification
1 AB_D_LE11, AB_T S22, AB_T_U2, SL_S22, Structure condition
SL_U2
I AB_D_LE11, AB_D_LE33, AB_D S22, Asphalt block
AB_T S22, AB_.T_U2 condition
il AB_D_A2, AB T A2, R_.A2, S A2, SL_A2 Track vibration
decisions.

Step 3: Optimize the design scheme of the transition zone

Once the NN-IIs are established, they can efficiently predict longi-
tudinal variations in the dynamic response of PEACT transition zones for
various asphalt block arrangements. This capability allows NSGA-II to
generate individuals directly from NN-II predictions, thereby avoiding
the need for repeated FE simulations.

The optimization problem for the arrangement method was intro-
duced in Section 2.1. Since NSGA-II seeks to minimize objective func-
tions, Eq. (2) is reformulated as:

maxeep|R%(x) —1|,i=1,2,-,13;j =1,2,3,4% a4

For each dataset, the NSGA-II is run with a population size of 50 for
10,000 generations. The optimization objectives comprise ten targets:
ki(i=1,2,3,4,5) and R%(i = 1,2,3,4,5), denoted as F; Fs and f; fs,
respectively, in accordance with Table 7.

Fig. 11 shows the final-generation population distributions for three
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datasets, using F; vs. F3, and F3 vs. Fs as examples, with their Pareto
fronts and optimal points marked. After evolution, individuals cluster
into three distinct regions, revealing three Pareto fronts that reflect
trade-offs among objectives. As discussed in Section 3.1, smaller objec-
tive values indicate smoother dynamic response transitions, making the
first Pareto front the optimal solution set. To avoid solutions at the
extreme edge of the set, which may be sensitive to small perturbations,
this study selects individuals near the center of the first Pareto front, and
their corresponding asphalt block arrangements are adopted as the final
design scheme.

The Pareto fronts in Fig. 11(c1) and Fig. 11(c2) are less distinct than
in the previous four cases, indicating that optimizing the five dynamic
response parameters in Category III using NSGA-II is more challenging.
Moreover, the Pareto fronts shown in Fig. 11 are not strictly single-level
fronts, but rather collections of multi-level Pareto fronts with slight
differences. Given that each category has ten optimization objectives,
non-dominated sorting occurs in a ten-dimensional space, which not
only increases computational load but also complicates visualization.

When projecting the population onto the two-dimensional planes in
Fig. 11, an individual may appear on the Pareto front in one plane but
fall to a lower-level front in another. This phenomenon is evident when
comparing Figs. 11(a), 11(b), and 11(c). Therefore, in screening for
optimal solutions, an individual doesn’t need to lie on the Pareto front in
every two-dimensional projection, meaning that being on the Pareto
front in most projections is sufficient. Following this principle, the
asphalt block arrangements selected for each of the three categories are
summarized in Table 10. These arrangements correspond to design
priorities focusing on structural working conditions, asphalt block
working conditions, and vibration-damping performance, respectively.

0.2

0 500 1000 1500 2000
Iteration times

(b)

0.75

Loss
(=]
i

v

0 500 1000 1500 2000
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Fig. 8. Loss curves of a typical track parameter, taking (a) R_A2, (b) AB_D_A2, (c) AB_T_U2, and (d) SL_S22 as examples.
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Fig. 9. Accuracy of a typical neural network without optimization, taking the normalized slope of (a) R_A2, (b) AB_D_A2, (c) AB_T_U2, and (d) SL_S22 as examples.

Table 8
Summary of the accuracy of each network before optimization.
AB_D A2 AB_D LE11 AB_D_LE33 AB_D S22 AB_T A2 AB_T S22 AB_T U2 R_A2 R_U2 SL A2 SL_S22 SL_U2 S_A2
R? 0.88 0.73 0.43 0.81 0.72 0.65 0.91 0.47 0.23 0.29 0.44 0.51 0.39

The performance of these three design schemes is evaluated in the
following section.

Step 4: Evaluate the optimization results

It should be noted that all optimized design schemes discussed in this
section are evaluated using direct FE simulations, ensuring that the re-
ported improvements are independent of surrogate-model approxima-
tion errors. To evaluate the three optimized design schemes, the
arrangement method from Ref. [8] (10-20-10-10) is adopted as the
control case. Corresponding FE models are established for each scheme,
and their performance is assessed according to the three design priorities
defined in Table 7: structural working conditions (Category I), asphalt
block working conditions (Category II), and vibration control (Category
I1D).

The stiffness distributions before and after optimization are shown in
Fig. 12. In all cases, the track stiffness increases gradually along the
longitudinal direction. Due to material differences, the stiffness values
for EA-OCR, EA-2CR, EA-4CR, and EA-6CR cross-sections are approxi-
mately 87.76, 95.01, 98.89, and 101.21 kN/mm, respectively. The
stiffness within each section fluctuates around these values, producing
“plateaus” in the overall trend, while the interfaces between materials
exhibit 5 ~ 6 sections of transition.

If plateaus and rising segments alternate frequently, the stiffness
change becomes less smooth, potentially impairing train ride quality.

12

Ideally, the distance between two plateaus should be maximized, or the
stiffness should rise continuously with minimal plateau areas. As shown
in Fig. 12, Category I achieves smoother stiffness transitions by maxi-
mizing the spacing between plateaus. At the same time, Category III
shortens plateau lengths to complete stiffness changes over the smallest
possible distance. Category II shows no clear advantage in stiffness
alone. However, stiffness improvement is not the sole design goal: each
category must also be evaluated according to its specific optimization
priority, which will be discussed in the following subsections.

Fig. 13 illustrates the effects of the three optimized schemes using
AB_T_ U2, AB_D_S22, and S_A2 as representative examples. For clarity,
the dynamic response distributions are shown at specific time points:
0.045 s for Categories I and II (train load above the 9-th cross-section)
and 0.139 s for Category III (train load above the central cross-section).

Category I targets the working condition of the entire structure. In
the control case, when the train load exceeds the 9th section, the
displacement at the top of the asphalt blocks spreads unevenly from the
4th to the 11th block, with irregular peaks between the 10th and 11th
blocks. This dispersed pattern indicates uneven load transfer and pro-
longed structural loading, which may accelerate damage accumulation.
In contrast, Category I concentrates the response within blocks 7 ~ 10,
showing a smooth rise and fall pattern. This reflects a more uniform load
distribution and a reduction in localized unevenness, thereby improving
the overall working condition of the structure.

Category II focuses on the working conditions of the asphalt blocks
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Fig. 10. Establishment of NSGA-II-BP network, taking (a) R_A2, (b) AB_D_A2, (c¢) AB_T_U2, and (d) SL_S22 as examples.
Table 9
Summary of the accuracy of each network after optimization.
AB_D_A2 AB_D_LE11 AB_D_LE33 AB_D_S22 AB_T_A2 AB_T_S22 AB_T_U2 R_A2 R_U2 SL_A2 SL_S22 SL_U2 S_A2
R? 0.98 0.93 0.94 0.91 0.95 0.94 0.93 0.93 0.93 0.92 0.94 0.95 0.92
R2 0.96 0.92 0.94 0.91 0.92 0.93 0.93 0.92 0.90 0.92 0.91 0.95 0.91

themselves. In the control group, vertical stress at the block bottoms is
unevenly distributed from the 3rd to the 11th block, indicating pro-
longed and dispersed stress exposure. With the Category II design, stress
is concentrated mainly within blocks 9 ~ 11, reducing the extent of
unevenness and potentially slowing damage accumulation within the
asphalt blocks.

Category III aims to improve vibration characteristics. Here, accel-
eration distributions before and after optimization show only minor
numerical differences, with slightly lower peak accelerations in the
optimized case. This suggests that, for the current PEACT configuration,
arrangement optimization has limited influence on vibration reduction,
and the achievable improvements are modest compared to structural or
material-focused optimizations.

To further illustrate the optimization effects, the maximum values of
SL_U2, AB_D S22, and S_A2 at various cross-sectional time intervals are
compared for the three optimized schemes and the control group, as
shown in Fig. 14. As seen in Fig. 14(a) and Fig. 14(b), the optimized
schemes do not produce significant reductions in the absolute levels of
dynamic response. This is expected, as rearranging the asphalt blocks
does not alter their intrinsic material properties; under identical loading
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conditions, peak response magnitudes remain similar.

However, a clear benefit of the optimized arrangements lies in the
smoothness of the longitudinal response variations. Compared with the
control group, Categories I and II achieve markedly smoother changes.
When fitting the longitudinal response variations using the method
described in Section 3.1, the R? values for Categories I and II reach 0.842
and 0.901, respectively, substantially higher than the control group’s
0.252 and 0.819 for the same cases. These results confirm that the
optimized arrangements effectively promote continuous, gradual
changes in dynamic response across the PEACT transition zone.

By contrast, the difference between Category III and the control
group in terms of vertical acceleration is negligible, reinforcing the
earlier finding that vibration-focused optimization has a limited impact
under the present design constraints. Overall, for transition zone design,
arrangement optimization should prioritize structural stress-strain
performance. Between the two viable schemes, Category I is recom-
mended as the final choice, as it not only improves response smoothness
but also achieves continuous stiffness transitions along the track.

Finally, the three optimized design schemes are further evaluated
using non-linear indicators as a robustness check. Although the opti-
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Fig. 11. Optimizing the arrangement method of PEACT, taking (al) category I-F; F3, (a2) category I-F5Fs, (b1) category II-F; F3, (b2) category II-F3Fs, (c1) category

III-F, F3, (c2) category III-F3Fs as examples.

Table 10
Optimized arrangement methods of asphalt block in PEACT.
Category EA-6 CR EA-4 CR EA-2 CR EA-0 CR Sum
(x1) (x2) (x3) (x4)
I 6 15 15 14 50
I 6 13 16 13 48
juis 6 7 16 10 39

mization framework is formulated based on linear smoothness in-
dicators, non-linear fitting methods are introduced here for post-hoc
evaluation. Specifically, a third-order polynomial approximation is
applied to the longitudinal distributions of representative response pa-
rameters shown in Fig. 14, and the corresponding coefficients of deter-
mination are calculated, as summarized in Table 11, in which R? and R2
denote the goodness of fit obtained from linear and third-order poly-
nomial fitting, respectively. The results show that, for all examined
cases, the optimized schemes consistently exhibit higher smoothness
levels than the control configuration under both linear and non-linear
evaluations. More importantly, the relative ranking between
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(c2)

Fig. 13. Evaluation based on dynamic response (a) taking Category I and AB_T_U2 as an example, (b) taking Category II and AB_D_S22 as an example, and (c) taking
Category III and S_A2 as an example (al, b1, c1: control subject, a2, b2, c2: optimized category).

optimized and control schemes remains unchanged when non-linear
indicators are adopted. This consistency confirms that the linear in-
dicators used in the optimization process do not mislead the design
decisions and are sufficient for identifying improved transition-zone
layouts under the present modeling assumptions.
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It is also noted that for vibration-related parameters such as S_A2,
both linear and non-linear fitting yield low coefficients of determination
for all schemes. This reflects the limited sensitivity of these parameters
to DREAMs arrangement under the simplified moving-load excitation
adopted in this study, as discussed earlier, and does not affect the overall
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Fig. 14. Evaluation based on longitudinal distribution of track parameters,
taking (a) category I and SL_U2, (b) category II and AB_D_S22, and (c) category
III and S_A2, as examples.

Table 11
Comparison of linear and nonlinear smoothness indicators for the design
schemes.

Parameter Design scheme R? R2
SL_U2 Control subject 0.252 0.248
Category I 0.842 0.654
AB_D S22 Control subject 0.819 0.946
Category II 0.901 0.974
S_A2 Control subject 0.104 0.108
Category IIII 0.104 0.108
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conclusions regarding layout optimization.
Conclusions

In this study, a performance-driven and data-assisted multi-objective
optimization framework is proposed for designing railway transition
zones, using the PEACT as an example. A validated 3D FE model is
employed to generate a dataset of dynamic responses for multiple
asphalt block arrangement schemes. The longitudinal variation of 13
selected dynamic response parameters is quantified with linear fitting
indices (k and R?). Subsequently, a series of NN-IIs is developed to
predict the longitudinal variation of each dynamic response, and their
training parameters are further optimized with NSGA-II to enhance ac-
curacy. The NN-IIs are then integrated with NSGA-II to optimize the
design scheme of the PEACT transition zone. The main findings can be
summarized as follows:

e The number and arrangement of asphalt blocks have a limited in-
fluence on the peak values of dynamic responses in the transition
zone. Still, they can markedly improve the smoothness of their lon-
gitudinal variation.

Three optimized schemes were obtained, targeting: (i) structural
working conditions (Category I), (ii) asphalt block working condi-
tions (Category II), and (iii) vibration reduction (Category III).
Both Category I and Category II schemes achieved substantial
improvement in the smoothness of longitudinal dynamic responses
compared with the control group (10-20-10-10), with the coefficient
of determination R? increasing from 0.252 to 0.842 (Category I) and
from 0.819 to 0.901 (Category II), respectively.

Category I also improved the continuity of longitudinal stiffness
distribution by reducing the frequency and extent of stiffness plat-
forms and is therefore recommended as the most balanced design
scheme for PEACT transition zones under the conditions considered
in this study.

Optimization based solely on vibration reduction (Category III)
showed limited improvement, suggesting that vibration-related ob-
jectives may require additional design variables beyond asphalt
block arrangement.

The proposed framework enables efficient exploration of the com-
plex design space of transition zones without excessive FE computations,
offering a transferable approach for other systems similar to the PEACT
transition zone design. Future work will focus on refining the selection
of dynamic response parameters to better align with railway engineering
practices, incorporating wheel-rail interaction into the FE model to
improve vibration prediction accuracy, and exploring alternative ma-
chine learning and optimization techniques better suited for small
datasets.
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Appendix

Algorithm of NSGA-IL

NSGA-II was first proposed by Deb et al. [40], an updated version of NSGA-I, which was introduced in 2002. NSGA-II introduces an elite strategy to
address issues such as high computational complexity, loss of satisfactory solutions, and over-reliance on shared radii in the original NSGA. For
example, the complexity of NSGA-II is O(MN?), and for NSGA, its complexity is O(MN?) [40]. The core of NSGA-II lies in sorting non-dominated
solutions in the Pareto space through Pareto non-domination sorting and crowding degree comparison, ultimately yielding the optimal feasible so-
lution set.

The multi-objective optimization problem can be described as

minF(x) = (fy(x). fo(x), - fn(X) ) (A1)

where x = (x1,X2, -+, Xy) is the decision vector. Q@ C R" is the feasible region. fi (x) represents the k th objective function.
The Pareto dominance is defined as follows:
A solution x, dominates x3 (xq < Xxp) if

vie {1727 "'7m}7fi(xﬂ) Sfi(xb)andajvﬁ(xa) <fi(xb)# (A2)

A solution is Pareto optimal if no other solution in Q dominates it. The set of all Pareto optimal solutions forms the Pareto front, as shown in Fig. A.1(a).
Fig. A.1(a) also exhibits the non-dominating sorting process. For each individual p, let n, be the number of individuals dominatingp

n, = |{qlq <p}|# (A3)

let S, be the set of individuals dominated by p
Sy = Halp < g} |# (A9

If n, = 0, p belongs to the first front F;. Subsequent fronts F,, F3, ... are identified iteratively.
For individuals within the same front Fi, crowding distance d; measures the density of solutions around i to maintain diversity, as denoted in
Fig. A.1(b).

di = ZLJW# (AS)

where f,(i+1) and fi,(i—1) are the neighboring solutions in the sorted list for the objective m.

Through non-dominated sorting and crowding distance calculation, all individuals in a given generation can be ranked according to their supe-
riority or inferiority, and individuals for the next generation can be selected through an elite strategy.

Let P, be the parent population and Q, the offspring population. Merge

R, =P U Qt# (A6)

Perform non-dominated sorting to obtain fronts. F;, Fs, .... Fill P;.; from F; onward until reaching the population size N. If adding Fy exceeds N, select
the most widely spaced solutions using crowding distance.

In this study, the above NSGA-II framework is applied to optimize the training parameters of NN-I, and design the scheme of PEACT transition zone,
where the objective functions (fi, f1, ...,f) correspond to the accuracy and efficiency of NN-I, or k and R? Corresponding to the linear fitting equation
of each dynamic response in each category, respectively. The optimization variables are the number of four types of DREAM blocks in the transition
zone, as described in Sections 2.1, 3.2, and 4.2.
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Fig. Al. Schematic of (a) non-dominated sorting, and (b) crowding distance calculation
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