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A B S T R A C T

Transition zones in high-speed railways suffer from abrupt stiffness variations that induce irregular dynamic 
responses and accelerate infrastructure deterioration. This study presents a surrogate-assisted multi-objective 
optimization framework that combines finite element (FE) simulations, a neural network-based surrogate model, 
and the NSGA-II algorithm to address this challenge. A validated 3D FE model of prefabricated epoxy asphalt 
cured track beds (PEACT) was used to generate 341 layout scenarios covering 13 response parameters. These 
data were used to train a neural network, which served as a static surrogate predictor for evaluating layout 
performance during the optimization process. The results show that module layout has a limited effect on peak 
responses but significantly improves smoothness, with three categories of optimal configurations identified. 
Compared with direct FE-based optimization, the proposed framework achieves substantial computational ef
ficiency and provides data-driven design guidance for PEACT transition zones. This framework exemplifies the 
potential of hybrid data–simulation approaches to enhance adaptive and efficient railway infrastructure design.

Introduction

The rapid development of high-speed railway (HSR) worldwide has 
revolutionized modern transportation, enabling faster, more efficient, 
and more comfortable travel over long distances. However, as train 
speeds increase, the dynamic interaction between vehicles and track 
structures becomes significantly sensitive to local discontinuities, espe
cially vertical stiffness variations in the longitudinal direction [1–3]. 
One critical section is the transition zones, which occur while the track 
support changes, either between different types of track structures, such 
as between ballasted track and bridges [4], tunnels [5], or slab tracks 
[6], or even within the same type of track when laid on different sub
structures. In HSR lines, these transition zones are particularly vulner
able to stiffness mismatches, which can cause abrupt changes in 
structural responses as trains pass through.

With the increasing use of longer bridges, extended slab tracks, and 
higher train speeds, the importance of effective transition zone design 
has become more pronounced. In response, various transition structures 
have been developed to accommodate changes in track stiffness, 
including the use of new materials [7,8] and innovative structure con
figurations [4]. Solutions such as elastic layers or damping materials, 

including geogrids [9] and polyurethane [10], have demonstrated 
benefits in reducing stiffness discontinuities. Meanwhile, structural ap
proaches like graded sleeper spacing [11], variable ballast thickness 
[12], and under-sleeper pads [13] offer further performance improve
ments. However, these measures are often optimized for specific design 
conditions and may face challenges in adapting to evolving operational 
requirements or diverse site environments. This highlights the value of 
exploring complementary design schemes that integrate material and 
structural considerations to enhance adaptability, ease of construction, 
and long-term performance under various working conditions.

In response to the challenges, the pre-cast epoxy asphalt cured track 
(PEACT) has been developed as an innovative solution [8–11]. PEACT 
combines prefabricated modular blocks made of dry-mixed rubberized 
epoxy asphalt mixtures (DREAMs) with a concrete base to form a semi- 
rigid track structure. As shown in Fig. 1(a) and Fig. 1(b), these blocks are 
cast and cured off-site [9] and then transported to the construction site 
for rapid installation [12]. This approach offers high structural integrity 
and stable damping characteristics [13]. Moreover, by adjusting the 
rubber content in the DREAMs, the dynamic stiffness and damping 
properties of each block can be flexibly tailored, allowing for a 
customized vertical stiffness profile along the transition zone [8]. Such 
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modular adaptability makes PEACT particularly suited for mitigating 
stiffness mismatches under diverse engineering conditions.

PEACT has been extensively evaluated through experimental and 
numerical studies, consistently demonstrating excellent performance. 
Shi et al. [9] first proposed PEACT to reduce substructure vibrations in 
HSR trackbeds while maintaining high performance and adaptability. 
The basic unit design, dimensions (Fig. 1(a) and Fig. 1(b)), gradation of 
DREAMs, and methods of incorporating crumb rubber were introduced 
in their study, with the final design methodology established in Ref. [14] 
using the volumetric mix-design method (V-S method) [15,16]. Subse
quently, DREAMs with four rubber contents (i.e., EA-6 CR, EA-4 CR, EA- 
2 CR, and EA-0 CR, corresponding to rubber contents of 6 %, 4 %, 2 %, 
and 0 %, respectively) were developed and tested. Laboratory tests 
under repeated train loads showed cumulative deformation below 1.5 
mm, confirming their long-term durability [9]. Additional evaluations 
characterized DREAMs as highly resilient materials with excellent 
cracking resistance, as well as outstanding high- and low-temperature 
performance [9,11]. To meet on-site construction requirements (e.g., 
the lifting process in Fig. 1(a)), special asphalt mortars were developed 
[12,17], and the mechanical behavior during installation was assessed 
through numerical simulations [12], confirming structural integrity 
during handling and long-term service. The dynamic behaviors [8–10] 
and vibration attenuation ability [14] of DREAMs were further investi
gated using 3D finite element (FE) simulations. Results showed that the 
inclusion of crumb rubber reduced train-induced stress, strain, and vi
bration, thereby protecting the substructure while preserving material 
performance. Specifically, 3D FE simulations in Ref. [8] demonstrated 
that adjusting the type, number, and arrangement of blocks significantly 
improves longitudinal stiffness distribution and smooths dynamic re
sponses across the transition zone compared to polyurethane-based 
transitions, which have been used in practice [18–22]. In addition, 
compared to traditional slab or ballasted transition zones, PEACT offers 
greater design flexibility, enabling stiffness gradation through fixed, 
variable, or stepped stiffness block configurations.

Despite these advantages, existing research has primarily focused on 
material behavior and basic performance validation. A critical gap re
mains in the systematic optimization of block layouts, particularly in 
achieving balanced performance across multiple objectives and ac
counting for dynamic responses in various track components. To fully 
exploit the potential of PEACT in transition-zone applications, a 
surrogate-assisted, data-driven optimization framework is needed that 

can efficiently explore design alternatives within a feasible computa
tional cost.

In recent years, optimization algorithms have gained increasing 
prominence in engineering design. For example, Emil et al. [6] applied 
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize 
stiffness and sleeper spacing in a ballasted-slab track transition zone, 
aiming to reduce wheel-rail forces and base pressures. Shen et al. 
[23,24] developed a digital twin approach for real-time monitoring and 
adjustment of track stiffness, covering the entire lifecycle from design to 
maintenance. These studies highlight the potential of combining ma
chine learning with an optimization algorithm for designing transition 
zones. This potential is particularly relevant for systems like PEACT, 
whose modular reconfiguration and tunable material properties enable 
flexible configuration.

Building on this concept, the present study proposes a proof-of- 
concept surrogate-assisted optimization framework that integrates FE 
simulations, a neural-network-based surrogate model, and the NSGA-II 
algorithm to optimize the performance of the PEACT transition zone. 
The neural network is trained using FE-generated data and then 
employed as a static surrogate predictor to efficiently evaluate candidate 
configurations during the optimization process, thus integrating existing 
numerical and data-driven methods into an application-oriented 
framework for a newly developed track system, i.e., the PEACT transi
tion zone.

The paper is organized as follows: Section 2 introduces the back
ground and methodology, including the problem definition, FE 
modeling, and overall optimization framework. Section 3 details the 
data preparation procedures. Section 4 presents the optimization pro
cess using back propagation (BP) neural networks and NSGA-II algo
rithms. Section 5 discusses potential improvements and possible 
extensions. Section 6 summarizes the study and highlights its practical 
implications for designing transition zones.

Methodology

Problem statement

The ultimate objective of this study is to minimize dynamic response 
variations within the PEACT transition zone. As a case study, we focus 
on the transition from a general track section to a bridge section, as 
illustrated in Fig. 1(c). Following the approach in Ref. [8], variations in 

Fig. 1. Schematic of (a) basic unit of PEACT, (b) DREAM blocks, and (c) combination approaches of DREAMs when applied to PEACT transition zone.
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dynamic responses along the longitudinal direction of PEACT are 
characterized using fitting equations. These equations have no direct 
physical interpretation; instead, they serve solely to quantify the degree 
of variation. For this reason, linear fitting equations are adopted [25], as 
their parameters (i.e., slope k and fitting coefficient of determination R2) 
provide an intuitive means of assessing smoothness.

Within this framework, the optimization objectives are the slopes ki 

and coefficients of determination R2
i for different dynamic responses. 

The goal is to minimize ki while maximize R2
i, as expressed in Eq. (1)

and Eq. (2): 

minx∈Dki
(
xj
)
, i = 1, 2, ⋅⋅⋅,13; j = 1, 2,3, 4# (1) 

maxx∈DR2
i
(
xj
)
, i = 1, 2, ⋅⋅⋅,13; j = 1,2, 3,4# (2) 

For each k and R2, their value can be calculated by Eq. (3) ~ Eq. (5): 

Yj = Fi
(
x1, x2, x3, x4, lj

)
, j = 1,2, ⋅⋅⋅,50# (3) 

ki =

∑50
j=1ljYj − nljYj
∑50

j=1l2j − nlj
2 # (4) 

R2
i =

∑50
j=1ljYj − n

∑50
j=1

lj
n
∑50

j=1
Yj

n̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑50

j=1l2j − n
(
∑50

j=1
lj
n

)2
][

∑50
j=1Y2

j − n
(
∑50

j=1
Yj
n

)2
]√

√
√
√

#
(5) 

Here, Yj denotes the value of the i-th dynamic response at the j-th cross- 
section in the PEACT transition zone, and Fi(⋅) is the mapping from the 
number and the arrangement of asphalt blocks to the i-th dynamic 
response, as determined by the numerical model (Section 2.2). The term 
lj represents the distance from the j-th cross-section to the general track, 
and n = 50 is the total number of cross sections (see Fig. 2(a)), corre
sponding to the cross-sections in the numerical model.

The variables x1, x2, x3, x4 denote the number of DREAM blocks of 
types EA-6CR, EA-4CR, EA-2CR, and EA-0CR, respectively (following 
Ref. [8]). From the general track section (softer side) to the bridge 
section (stiffer side), the baseline arrangement is general section → EA- 
6CT → EA-4CR → EA-2CR → EA-0CR → bridge section. The exact 
numbers x1 x4 are determined via optimization. For brevity, the general 
track section is modeled with EA-6CR material.

The notation x1 − x2 − x3 − x4 describes the sequence of DREAM block 
counts from the softer side to the stiffer side. For example: 

• 10–20-10–10: 10 EA-6CR, 20 EA-4CR, 10 EA-2CR, 10 EA-0CR 
blocks.

• 5–5–5–5: 5 of each DREAM type, leaving 30 general track sections 
before the EA-6CR section.

If the total number of DREAM blocks is less than 50, the remaining x0 
blocks are modeled as general track sections of the softer side, with the 
following physical constraint: 
{

x0 + x1 + x2 + x3 + x4 = n

x1, x2, x3, x4 ∈ N
# (6) 

For each configuration x1 − x2 − x3 − x4, the slopes ki and R2
i are evalu

ated, forming a typical multi-objective optimization problem. The 
dataset used for optimization comprises 13 structural dynamic response 
parameters, computed using the FE model for 341 different cases (see 
Section 3.2).

FE model of PEACT

Brief introduction of model settings
Fig. 2 illustrates the basic configuration of the proposed numerical 

model, comprising the dynamic model (Fig. 2(a)), an overview of the 
model (Fig. 2(b)), and a typical cross-section (Fig. 2(c)). The DREAM 
blocks are modeled using the generalized Maxwell model [26], imple
mented in ABAQUS via the Prony series representation [27–29]. In the 
dynamic models, this layer is equivalent to a series of springs and 
dampers, as shown in Fig. 2(a). Detailed model settings, such as DREAM 
gradation, Prony series coefficients, geometric dimensions, and solution 
parameters, are provided in Ref. [8].

Compared with the model in Ref. [8], several modifications were 
introduced to improve both accuracy and computational efficiency: 

• Model domain selection. Previous studies [1,8] showed that train 
direction has minimal influence on the dynamic response of the 
PEACT transition zone. Therefore, only the track section labeled “3″ 
in Fig. 2(b) is used for subsequent analysis.

• Boundary condition. Viscous boundaries are applied to the softer 
side of the model (general track section) to minimize artificial wave 
reflections from the model boundaries [30].

• Contact modeling. A penalty contact formulation is adopted for the 
interfaces between track components, as described in Ref. [1].

• Model damping. The Raleigh damping is used for DREAMs, with 
coefficients α and β calculated from the damping ratio ζ, which is 
given in Ref. [31]. Damping of other solid elements is excluded.

Model validation
Since PEACT has not yet been implemented in engineering practice, 

validation of the numerical model is conducted using field measurement 
data from pre-cast polyurethane trackbeds. These trackbeds have been 
successfully applied on the Yinchuan-Xi’an (Yin-Xi) HSR line, which 
operates at speeds up to 300 km/h, and have demonstrated excellent in- 
service performance [10]. The only distinction between the pre-cast 
polyurethane trackbed and PEACT lies in the material properties. Ac
cording to Chen et al. [32], the mechanical behavior of polyurethane can 
also be represented by a generalize Maxwell model, making it directly 
compatible with the modeling framework used for DREAM blocks.

Model validation is performed by comparing the simulated results 
with field measurements of (i) track stiffness, as shown in Fig. 3(a), and 
(ii) the peak values of vertical stress at the surface layer, as shown in 
Fig. 3(b). Track stiffness measurements follow the procedure specified in 
TB 10082–2017 [33], with further details available in Ref. [8].

The trackbed stiffness measured in the field is approximately 89.90 
kN/mm, while the numerical simulation yields 93.75 kN/mm, a differ
ence of less than 5 %. For dynamic response comparison, the simulation 
is configured to match the actual conditions of the Yin-Xi HSR, with all 
track blocks modeled as polyurethane (Prony series parameters from 
Ref. [32]) and a train speed of 300 km/h. The simulated maximum 
vertical stress at the top of the bottom layer of the pre-cast polyurethane 
trackbed is 17.8 kPa, differing by only 4.49 % from the measured value 
of 17.0 kPa. These results confirm that the numerical model is reliable 
and can be confidently applied to further analyses by replacing poly
urethane parameters with those of the four DREAM types.

Optimization process

The overall optimization process is illustrated in Fig. 4. First, the 
numerical model is employed to generate a dataset covering multiple 
design cases. For each case, dynamic responses are collected at 50 cross 
sections in the transition zones. The longitudinal variation of these re
sponses fits with a linear equation, establishing the relationship between 
the parameter vector x = (x1, x2, x3, x4) and the corresponding ki, R2

i. In 
parallel, the same dataset is used to develop a base neural network 
(denoted as NN-I thereafter) for predicting dynamic response, serving as 
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Fig. 2. Schematic of (a) dynamic model of PEACT transition zone, (b) overview of PEACT transition zone FE model, and (c) typical cross-section of PEACT with 
DREAM blocks.
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the data source for NSGA-II optimization. A six-layer BP neural network 
is selected for its proven applicability in engineering problems and its 
ability to update numerical parameters [34], with detailed settings 
provided in Section 4.2. However, NN-I’s generalization capability is 
limited because key training parameters, such as the number of neurons 
per hidden layer, training sample size, and learning rate, are not phys
ically guided. To address this, the NSGA-II algorithm (see Appendix A) is 
applied to optimize these parameters, producing an NSGA-II-optimized 
BP neural network (denoted as NN-II thereafter). NN-II is then used as 
the data source for the final NSGA-II-based optimization of the PEACT 
transition zone design. Finally, the numerical model compares the dy
namic responses of the DREAM block arrangements before and after 
optimization, evaluating the feasibility and effectiveness of the proposed 
scheme.

Data preparation

As a novel track structure, PEACT transition zones currently lack 
standardized regulations for characterizing their dynamic behavior. To 
address this, and considering structural behavior and material perfor
mance, the relevant Chinese regulations [33], and key parameters from 
pavement engineering [35], this study selects 13 dynamic response 

parameters to provide the most comprehensive possible description of 
PEACT behavior under train loading. These parameters and their ab
breviations are listed in Table 1. Accordingly, the slope vector is 
expressed as k = (km) and the coefficient-of-determination vector as 
R2 =

(
R2

m
)
, where m corresponds to the parameters in Table 1. The 

selected parameters reflect four complementary aspects of the PEACT 

Fig. 3. Schematic of (a) comparison between simulated track stiffness and measured stiffness, and (b) simulated dynamic response (taking vertical stress at the top of 
the bottom layer as an example).

Fig. 4. Workflow of optimization process.

Table 1 
Selected parameters for describing the dynamic characteristics of PEACT.

Structural layer Response location Response Abbreviation

Rail Top Vertical acceleration R_A2
Vertical displacement R_U2

Sleeper Top Vertical acceleration S_A2
Surface layer Top Vertical acceleration SL_A2

Vertical stress SL_S22
Vertical displacement SL_U2

DREAM blocks Top Vertical acceleration AB_T_A2
Vertical stress AB_T_S22
Vertical displacement AB_T_U2

Bottom Vertical stress AB_D_S22
Vertical acceleration AB_D_A2
Lateral strain AB_D_LE11
Longitudinal strain AB_D_LE33
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transition zone: 

• Dynamic performance. Vertical acceleration and displacement at 
the rail top are included, as they represent the vibration transmitted 
from the vehicle to the track.

• Vibration attenuation capability. Accelerations at five key layers 
(rail, sleeper, top and bottom of asphalt blocks, and top of the surface 
layer) are considered to evaluate the energy dissipation and damping 
performance of DREAMs.

• Structural safety of DREAM blocks. Longitudinal and lateral 
strains at the bottom of asphalt blocks are used to assess the potential 
for cracking or fatigue, in accordance with pavement engineering 
practice [35].

• Serviceability and deformation control. Displacements at the top 
of the rail, asphalt block, and surface layer are analysed to verify 
compliance with allowable limits in Chinese railway standards [33].

Influence of design schemes on the transition zone

Longitudinal distribution characteristics of track parameters
As a preliminary study, Ref. [8] systematically examined the longi

tudinal variation of dynamic responses in the PEACT transition zone 
using quadratic curves. However, these quadratic equations lack phys
ical interpretation, and the study only considered a single block 
arrangement, namely 10–20-10–10. In this section, the same arrange
ment (10–20-10–10) is used to illustrate the feasibility of applying linear 
fitting equations to the PEACT transition zone. As shown in Fig. 5 and 
Table 2, vertical stresses at different layers and strains at the bottom of 
asphalt blocks as examples to demonstrate how linear fitting can effec
tively capture the variation trends.

Fig. 5(a) shows the longitudinal variation of vertical stresses at three 
locations: the top of the asphalt block, the bottom of the asphalt block, 
and the top of the surface layer. All three exhibit a gradual increase 
along the longitudinal direction, with the steepest rise occurring at the 
top of the asphalt blocks. This suggests that uneven stress distribution in 
the PEACT transition zone is concentrated within the asphalt blocks 
themselves, rather than in the surface layer of the embankment, as is 
typical for conventional ballast or ballastless trackbeds. As shown in 
Fig. 5(b), the strain at the bottom of the asphalt blocks increases with 
higher rubber content, further emphasizing the importance of consid
ering the mechanical behavior of asphalt blocks when optimizing the 
smoothness of the PEACT transition zone.

It should be noted that the viscous boundary condition assumes zero 
dynamic response at the boundary elements. As a result, computed 
values near this boundary may be inaccurate. To avoid such errors, the 
results from the three cross-sections closest to the boundary were 
excluded from subsequent analyses.

Table 2 summarizes the fitting results for the five dynamic responses. 
For vertical stresses, the R2 values decrease with the measurement depth 
in the track structure. However, this does not invalidate the use of linear 
fitting in this study. The numerical model is subjected to high-speed 
train loads containing multiple frequency components [8,36,37], 
causing substantial variation in the loads experienced by different cross- 
sections as the train passes. The vibration attenuation of the asphalt 
blocks amplifies these relative variations, making deeper measurement 
points more sensitive to uneven distribution. Nevertheless, the slope of 
the fitted line still reflects the overall trend. Moreover, due to the 
attenuation effect, stresses in the surface layer are more evenly distrib
uted on both sides of the fitted line. This is quantitatively supported by 
the high Weighted Symmetry Index (WSI) values in Table 2, calculated 
using Eqs. (7)~(9): 

WSI = 1 −
|S+ − S− |

|S+ + S− |
# (7) 

S+ =
∑

ri>0
r2
i , S+ =

∑

ri<0
r2
i # (8) 

ri = yi − ŷi# (9) 

where yi is the simulated value from the numerical model. ̂yi is the fitted 
value. ri is the residual. S+ and S− are the sums of squared residuals in 
the positive and negative sides of the fitted line, respectively. WSI values 
range from 0 to 1, with values close to 1 indicating a balanced distri
bution of residuals, and values close to 0 indicating a strong bias.

For the strains (LE11 and LE33), the behavior is different. As shown 
in Fig. 5(b), two junctions appear (at EA-6CR to EA-4CR and EA-4CR to 
EA-2CR) due to notable stiffness differences between these materials. No 
clear junction is observed from EA-2CR to EA-0CR because of their 
similar mechanical properties [8,31]. Consequently, the R2 and WSI 
values for these two parameters are lower than those for vertical 

Fig. 5. Longitudinal distribution characteristics of (a) maximum vertical stress, (b) lateral and longitudinal strain at the bottom of the asphalt block (taking 10–20- 
10–10 as an example).

Table 2 
Summary of fitting lines of track parameters.

Parameter Location Fitting 
equation

R2 WSI

Maximum vertical 
stress

Top of the 
asphalt block

y =

7611x − 2715
0.8793 0.9196

Bottom of the 
asphalt block

y =

2871x − 167.5
0.8193 0.9941

Top of the 
surface layer

y =

302x − 33346
0.0856 0.9833

Maximum lateral 
strain (LE11)

Bottom of the 
asphalt block

y = − 0.224x +

20.3
0.1572 0.8473

Maximum 
longitudinal strain 
(LE33)

Bottom of the 
asphalt block

y = − 0.174x +

12.1
0.1217 0.9388
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stresses. Nonetheless, the linear fitting still captures the overall variation 
trend and provides a useful reference for defining “smooth change”.

Influence of the number of asphalt blocks
This section exams how the number of asphalt blocks (corresponding 

to the length of the transition zone) affects the dynamic responses. Seven 
working conditions are evaluated, as listed in Table 3, where the general 
track section is denoted as EA-6 CR’.

The maximum values of each dynamic response for the considered 
cases are listed in Table 4, with units of m/s2 for acceleration, Pa for 
stress, µε for strain, and mm for displacement. Results show that varying 
the number of asphalt blocks has a negligible influence on these 
maximum values, suggesting that each type of DREAM performs inde
pendently in the transition zone, largely unaffected by its position 
within the structure. When dynamic response values in the transition 
zone are relatively high, some variation is observed in the maximum 
vertical stress. Specifically, as the total number of asphalt blocks in the 
last four sections decreases, the maximum vertical stress also tends to 
decrease. This indicates that, from a stress-reduction perspective, 
shorter transition zones are preferable. However, a reduction in the 
number of blocks also leads to an increase in maximum strain at the top 
of the asphalt blocks, implying that shorter transition zones subject the 
blocks to greater deformation loads. Overall, both longer and shorter 
transition zones yield dynamic response levels within acceptable limits. 
Therefore, optimizing transition zone design solely to minimize these 
response levels offers limited benefits, and alternative design strategies 
should be explored.

For assessing the overall longitudinal variation trend, k and R2 are 
used to evaluate each design scheme. To eliminate the influence of ab
solute values, normalization is first applied to each case for better 
comparison, as shown in Eq. (10): 

xʹ =
x − min(x)

max(x) − min(x)
# (10) 

where x́  is the normalized k or R2. x, min(x), and max(x) are original, 
minimum, and maximum values, respectively.

Taking the accelerations at five locations as an example, Fig. 6 il
lustrates the influence of the number of asphalt blocks. Only the k and R2 

values of vertical acceleration at the top of the rail increase consistently 
as the transition zone length decreases, indicating a stronger linear trend 
but with a steeper slope. In contrast, k and R2 for other locations show no 
clear relationship with the transition zone length. To achieve smooth 
dynamic response changes, the slope k of the fitted line should be as 
small as possible, ensuring both smooth train passage and effective 
protection of the trackbed. However, the results show that for the seven 
tested configurations, maximizing R2 often coincides with an increase in 
k. This trade-off makes it challenging to determine an optimal transition 
zone length based on the current results. Therefore, a comprehensive 
comparison is required to select a design that minimizes the k while 
maximizing R2.

Influence of the arrangement method of asphalt blocks
In addition to the transition zone length, the arrangement method is 

another key factor in the optimization process. This section examines 
four working conditions with different arrangement configurations, as 
summarized in Table 5.

Similar to the discussion on the influence of transition zone length, this 
section first examines the effect of arrangement patterns on the maximum 
dynamic response values, as summarized in Table 6. The results indicate 
that, like the effect of the number of asphalt blocks, the arrangement 
pattern does not significantly influence the maximum dynamic response. 
However, unlike the variation observed with different transition zone 
lengths, the differences between arrangement patterns are almost negli
gible. This can be explained by the load transfer mechanism in the track 
structure: train loads are primarily distribution over approximately five 
adjacent sleepers and then transmitted to the lower layers [38]. In all four 
arrangement patterns considered, each type of DREAM is laid over at least 
10 consecutive sections. As a result, every section contains multiple seg
ments that accurately reflect the mechanical properties of its corre
sponding DREAM type, resulting in similar maximum dynamic response 
values across the different arrangement patterns.

Furthermore, the normalized k and R2 values for the five acceleration 
measurement locations are presented in Fig. 7. Similar to findings for 
maximum dynamic responses, neither k and R2 shows a clear correlation 
with the arrangement pattern. Nonetheless, arrangement I, i.e., 
20–10–10–10, yields the highest k and R2 values at most positions, 
suggesting that the longitudinal variation of dynamic responses is rela
tively smooth under this configuration. An exception is observed at the 
top of the asphalt block, where arrangement I produces the lowest k and 
R2 values. This indicates that, while Arrangement I performs well 
overall, it does not provide uniformly ideal results across all measure
ment points. Therefore, to achieve balanced performance for all five 
acceleration parameters, a tailored arrangement strategy for the four 
DREAM types is necessary, even when the total number of asphalt blocks 
is fixed.

Step 0: Data set

Integrating the analysis in Section 3.1, it is evident that neither the 
total number of asphalt blocks nor their arrangement pattern shows a 
significant correlation with the trends in variation of dynamic responses. 
Moreover, the preceding sections considered only five acceleration pa
rameters out of the 13 dynamic response parameters. When all 13 pa
rameters are included, identifying a design scheme that achieves 
uniformly smooth transitions across all responses becomes more chal
lenging. This complexity suggests that, for design purposes, the variation 
patterns of these 13 parameters should be treated as a “black box”, with 
optimization carried out based on sufficiently large and representative 
datasets.

To this end, 341 randomly generated working conditions satisfying 
Eq. (6) were simulated using the numerical model. Each condition yields 
13 dynamic response parameters, producing 26 output values (k and R2 

for each parameter). By contrast, the model’s input space consists of 
only four variables representing the number of each type of asphalt 
block. This imbalance between a small set of input variables and a large 
set of output targets poses two challenges: (1) fitting a neural network 
would require a substantial dataset to achieve adequate accuracy, and 
(2) directly using all outputs as objectives in NSGA-II optimization 
would increase computational complexity and reduce optimization ef
ficiency [39].

To address this, the dataset was first grouped according to the 
characteristics of the 13 dynamic response parameters, as summarized 
in Table 7. For each group, a separated neural network was trained for 
each parameter. To maintain generalization capability, the 341 cases 
were randomly split into training and validation sets with a 7:3 ratio in 
each training session.

Table 3 
Working conditions affected by the number of asphalt blocks.

Type of asphalt 
block

EA-6 
CR’ 
(x0)

EA-6 
CR 
(x1)

EA-4 
CR 
(x2)

EA-2 
CR 
(x3)

EA- 
0 CR 
(x4)

I 2 12 12 12 12
II 6 11 11 11 11
III 10 10 10 10 10
IV 14 9 9 9 9
V 18 8 8 8 8
VI 22 7 7 7 7
VII 26 6 6 6 6
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Optimization process

Step 1: Pre-training for predicting dynamic responses in the transition zone 
(NN-I)

The core of NN-I is a six-layer BP neural network, with an input layer 

of four neurons (x1 x4) and an output layer of two neurons (k and R2). 
The four hidden layers contain 32, 64, 128, and 32 neurons, respec
tively. A hyperbolic tangent (tanh) function is used as the activation 
function for all layers, and the learning rate is set to 0.01. The training 
process terminates when either the loss function falls below 0.001 or the 
number of training iterations exceeds 2000. Taking four dynamic re

Table 4 
Effect of the number of asphalt blocks on the maximum value of the track parameters in the transition zone.

SL_A2 SL_U2 SL_S22 AB_T_A2 AB_T_S22 AB_T_U2 AB_D_A2 AB_D_S22 AB_D_LE11 AB_D_LE33

I 17.40 0.48 52861.50 22.79 192678.75 0.52 17.84 53310.93 27.00 25.04
II 17.40 0.48 53321.55 22.79 185316.00 0.52 17.84 53314.06 27.00 25.07
III 17.55 0.48 53318.70 22.79 172650.75 0.52 17.84 53323.46 27.00 25.05
IV 17.55 0.48 53319.00 22.82 172649.25 0.52 17.85 53335.44 27.00 25.07
V 17.55 0.48 53296.20 22.90 172649.25 0.52 17.97 53317.83 27.00 25.04
VI 17.55 0.48 53936.70 22.90 172643.25 0.52 17.97 53313.14 27.45 25.04
VII 17.55 0.48 53937.23 22.90 169181.25 0.52 17.97 53282.69 27.45 40.93

Fig. 6. Slope and R2 of longitudinal change in acceleration after normalization the influence of the number of asphalt blocks (a) at the top of rail (R_A2), (b) at the 
top of sleeper (S_A2), (c) at the top of asphalt blocks (AB_T_A2), (d) at the bottom of asphalt blocks (AB_D_A2), and (e) at the top of surface layer (SL_A2).
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sponses as examples, the corresponding loss curves are shown in Fig. 8.
The loss curves of all individual dynamic response prediction net

works converge to relatively small values (approximately 0.01) after a 
limited number of iterations, but fail to meet the preset target of 0.001. 
This necessitates further verification of their predictive accuracy. Fig. 9
compares the predicted and actual values of NN-I on the validation set. 
While some responses, such as AB_D_A2 and AB_T_U2, show good 
agreement with the fitted R2 values of 0.88 and 0.91, others, such as 
R_A2 and SL_S22, perform poorly, with R2 values of only 0.47 and 0.44, 
respectively. The fitted R2 values for all remaining networks are listed in 
Table 8.

The results indicate that using fixed, pre-set training parameters 
cannot achieve consistently high accuracy across all dynamic response 
predictions. Similar to FE model calibration, manually tuning neural 
network parameters for each case would require substantial computa
tional effort and still might not yield optimal settings. Therefore, the 
enhance NN-I before applying it to the PEACT transition zone optimi
zation, this study employs NSGA-II to automatically optimize the key 
training parameters, as detailed in Section 4.2.

Step 2: Establish the NSGA-II-BP network (NN-II)

To mitigate the risk of overfitting given the moderate dataset size 
(341 FE samples), the 13 response parameters were not modeled using a 
single high-dimensional network. Instead, they were divided into three 
independent groups (as detailed in Table 7) and learned using three NN- 
II surrogates. This strategy significantly reduces the output dimension
ality per model and limits the total number of trainable parameters, 
improving training stability and generalization.

When optimizing NN-I with NSGA-II, the goal is to tune six training 
parameters (i.e., the number of neurons in each of the four hidden 
layers, the sample size for each training session, and the learning rate, 
denoted as x1 x6, respectively). The optimization aims to simultaneously 
minimize the training time to reach the target loss value of 0.001 (F1) 
and maximize the prediction accuracy in terms of R2 (F2), as formulated 
in Eqs. (11) ~ (12): 

minx∈DF1(xi), i = 1,2, ⋅⋅⋅,6# (11) 

maxx∈DF2(xi), i = 1, 2, ⋅⋅⋅,6# (12) 

Here D represents the feasible domain of the training parameters: 

• For x1 x4 (neurons in hidden layers), xi ∈ [4, 16] and xi ∈ N.
• For x5 (sample size per training), x5 ∈ [8,64] and x5 ∈ N.

• For x6 (learning rate), x6 ∈ [0.001,0.01].

Since NSGA-II minimizes objective functions, Eq. (12) is reformu
lated as: 

minx∈D|F2(xi) − 1 |, i = 1,2, 3,4# (13) 

In the NSGA-II framework, each individual encodes a complete set of 
training parameters for NN-I and represents a fully trained neural 
network. In this study, each generation contains 200 individuals, 
evolving over 50 generations, resulting in a total of 200 × 50 = 10000 
network trainings. The number of neurons in each hidden layer is 
treated as a tunable parameter within the range of 4–16. Under these 
settings, each NN-II contains on the order of 103 trainable parameters, 
which is modest relative to the available training data volume and 
consistent with common practice in surrogate-assisted engineering 
optimization [6]. To further control model complexity and avoid over
fitting, the dataset is divided into training and validation subsets with a 
proportion of 7:3. The loss curves in Fig. 8 indicate that NN-I converges 
to a stable value within 500 iterations. Therefore, for efficiency, each 
NN-I in the optimization process is trained for 500 iterations rather than 
until the full convergence threshold of 0.001 is met. Under these set
tings, NSGA-II was applied to optimize the neural networks predicting 
changes in four representative parameters, i.e., R_A2, AB_D_A2, 
AB_T_U2, and SL_S22. The results are presented in Fig. 10.

As shown in Fig. 10, the Pareto fronts progressively converge toward 
the origin over generations, indicating stable convergence of the NSGA- 
II optimization under the adopted parameter settings. In addition, 
several independent runs with different random seeds were performed, 
and similar Pareto fronts and optimal solutions were consistently ob
tained, indicating that the optimization results are not sensitive to sto
chastic initialization.

After applying NSGA-II to optimize NN-I, the Pareto front of the 
population gradually converges toward the origin of the coordinate 
system, indicating the existence of parameter sets that simultaneously 
minimize NN-I training time and maximize prediction accuracy. In 
principle, any individual near this origin in the final generation can 
serve as an optimal solution, and its parameters can be adopted to 
establish NN-II. Four representative examples of such ideal solutions are 
shown in Fig. 10. It should be emphasized that, in multi-objective 
optimization, every point on the Pareto front is theoretically optimal. 
However, in this study, the primary objective is to enhance NN-I’s pre
dictive accuracy for dynamic responses, even if this requires sacrificing 
some training time. Accordingly, individuals with higher fitting accu
racy, as illustrated in Fig. 10(d), are prioritized.

Following this approach, NSGA-II is applied to each NN-I, and the 
most suitable individual from the final generation is selected as the basis 
for NN-II. The corresponding optimized training parameters are then 
used to retrain the networks. Comparable training and validation errors 
were observed for all NN-II models, indicating satisfactory generaliza
tion capability, as detailed in Table 9, in which R2

1 and R2
2 are training 

errors and validation errors, respectively. It should be emphasized that 
NN-II is employed to capture relative trends and ranking among 
different design schemes under consistent modeling assumptions, rather 
than to provide exact absolute predictions of physical quantities. The 
final optimal configurations identified through surrogate-assisted opti
mization are subsequently verified using direct FE simulations, as 
detailed in Section 4.4, thus ensuring the reliability of the design 

Table 5 
Working conditions affected by the arrangement method of asphalt blocks.

Number of asphalt 
blocks

10 
(x0)

10 
(x1)

10 
(x2)

10 
(x3)

10 
(x4)

I EA-6 
CR

EA-6 
CR

EA-4 
CR

EA-2 
CR

EA- 
0 CR

II EA-6 
CR

EA-4 
CR

EA-4 
CR

EA-2 
CR

EA- 
0 CR

III EA-6 
CR

EA-4 
CR

EA-2 
CR

EA-2 
CR

EA- 
0 CR

IV EA-6 
CR

EA-4 
CR

EA-2 
CR

EA- 
0 CR

EA- 
0 CR

Table 6 
Effect of the arrangement method of asphalt blocks on the maximum value of the track parameters in the transition zone.

SL_A2 SL_U2 SL_S22 AB_T_A2 AB_T_S22 AB_T_U2 AB_D_A2 AB_D_S22 AB_D_LE11 AB_D_LE33

I 1488.48 1.87 34.43 17.84 0.48 53318.70 22.79 172650.75 0.52 17.55
II 1488.43 1.87 34.44 17.84 0.48 53318.55 22.79 172650.00 0.52 17.40
III 1488.80 1.87 34.44 17.72 0.48 52868.85 22.70 172650.00 0.52 17.40
IV 1488.80 1.87 34.44 17.72 0.48 52868.85 22.70 172695.25 0.52 17.40
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Fig. 7. Slope and R2 of longitudinal change in acceleration after normalization under the influence of arrangement method of asphalt blocks (a) at the top of rail 
(R_A2), (b) at the top of sleeper (S_A2), (c) at the top of asphalt blocks (AB_T_A2), (d) at the bottom of asphalt blocks (AB_D_T2), and (e) at the top of surface 
layer (SL_A2).
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decisions.

Step 3: Optimize the design scheme of the transition zone

Once the NN-IIs are established, they can efficiently predict longi
tudinal variations in the dynamic response of PEACT transition zones for 
various asphalt block arrangements. This capability allows NSGA-II to 
generate individuals directly from NN-II predictions, thereby avoiding 
the need for repeated FE simulations.

The optimization problem for the arrangement method was intro
duced in Section 2.1. Since NSGA-II seeks to minimize objective func
tions, Eq. (2) is reformulated as: 

maxx∈D
⃒
⃒R2

i
(
xj
)
− 1

⃒
⃒, i = 1,2, ⋅⋅⋅,13; j = 1, 2,3, 4# (14) 

For each dataset, the NSGA-II is run with a population size of 50 for 
10,000 generations. The optimization objectives comprise ten targets: 
ki(i = 1,2, 3,4, 5) and R2

i(i = 1, 2, 3, 4, 5), denoted as F1 F5 and f1 f5, 
respectively, in accordance with Table 7.

Fig. 11 shows the final-generation population distributions for three 

datasets, using F1 vs. F3, and F3 vs. F5 as examples, with their Pareto 
fronts and optimal points marked. After evolution, individuals cluster 
into three distinct regions, revealing three Pareto fronts that reflect 
trade-offs among objectives. As discussed in Section 3.1, smaller objec
tive values indicate smoother dynamic response transitions, making the 
first Pareto front the optimal solution set. To avoid solutions at the 
extreme edge of the set, which may be sensitive to small perturbations, 
this study selects individuals near the center of the first Pareto front, and 
their corresponding asphalt block arrangements are adopted as the final 
design scheme.

The Pareto fronts in Fig. 11(c1) and Fig. 11(c2) are less distinct than 
in the previous four cases, indicating that optimizing the five dynamic 
response parameters in Category III using NSGA-II is more challenging. 
Moreover, the Pareto fronts shown in Fig. 11 are not strictly single-level 
fronts, but rather collections of multi-level Pareto fronts with slight 
differences. Given that each category has ten optimization objectives, 
non-dominated sorting occurs in a ten-dimensional space, which not 
only increases computational load but also complicates visualization.

When projecting the population onto the two-dimensional planes in 
Fig. 11, an individual may appear on the Pareto front in one plane but 
fall to a lower-level front in another. This phenomenon is evident when 
comparing Figs. 11(a), 11(b), and 11(c). Therefore, in screening for 
optimal solutions, an individual doesn’t need to lie on the Pareto front in 
every two-dimensional projection, meaning that being on the Pareto 
front in most projections is sufficient. Following this principle, the 
asphalt block arrangements selected for each of the three categories are 
summarized in Table 10. These arrangements correspond to design 
priorities focusing on structural working conditions, asphalt block 
working conditions, and vibration-damping performance, respectively. 

Table 7 
Categories of track parameters.

Category 
number

Track parameters Basis of 
classification

I AB_D_LE11, AB_T_S22, AB_T_U2, SL_S22, 
SL_U2

Structure condition

II AB_D_LE11, AB_D_LE33, AB_D_S22, 
AB_T_S22, AB_T_U2

Asphalt block 
condition

III AB_D_A2, AB_T_A2, R_A2, S_A2, SL_A2 Track vibration

Fig. 8. Loss curves of a typical track parameter, taking (a) R_A2, (b) AB_D_A2, (c) AB_T_U2, and (d) SL_S22 as examples.
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The performance of these three design schemes is evaluated in the 
following section.

Step 4: Evaluate the optimization results

It should be noted that all optimized design schemes discussed in this 
section are evaluated using direct FE simulations, ensuring that the re
ported improvements are independent of surrogate-model approxima
tion errors. To evaluate the three optimized design schemes, the 
arrangement method from Ref. [8] (10–20-10–10) is adopted as the 
control case. Corresponding FE models are established for each scheme, 
and their performance is assessed according to the three design priorities 
defined in Table 7: structural working conditions (Category I), asphalt 
block working conditions (Category II), and vibration control (Category 
III).

The stiffness distributions before and after optimization are shown in 
Fig. 12. In all cases, the track stiffness increases gradually along the 
longitudinal direction. Due to material differences, the stiffness values 
for EA-0CR, EA-2CR, EA-4CR, and EA-6CR cross-sections are approxi
mately 87.76, 95.01, 98.89, and 101.21 kN/mm, respectively. The 
stiffness within each section fluctuates around these values, producing 
“plateaus” in the overall trend, while the interfaces between materials 
exhibit 5 ~ 6 sections of transition.

If plateaus and rising segments alternate frequently, the stiffness 
change becomes less smooth, potentially impairing train ride quality. 

Ideally, the distance between two plateaus should be maximized, or the 
stiffness should rise continuously with minimal plateau areas. As shown 
in Fig. 12, Category I achieves smoother stiffness transitions by maxi
mizing the spacing between plateaus. At the same time, Category III 
shortens plateau lengths to complete stiffness changes over the smallest 
possible distance. Category II shows no clear advantage in stiffness 
alone. However, stiffness improvement is not the sole design goal: each 
category must also be evaluated according to its specific optimization 
priority, which will be discussed in the following subsections.

Fig. 13 illustrates the effects of the three optimized schemes using 
AB_T_U2, AB_D_S22, and S_A2 as representative examples. For clarity, 
the dynamic response distributions are shown at specific time points: 
0.045 s for Categories I and II (train load above the 9-th cross-section) 
and 0.139 s for Category III (train load above the central cross-section).

Category I targets the working condition of the entire structure. In 
the control case, when the train load exceeds the 9th section, the 
displacement at the top of the asphalt blocks spreads unevenly from the 
4th to the 11th block, with irregular peaks between the 10th and 11th 
blocks. This dispersed pattern indicates uneven load transfer and pro
longed structural loading, which may accelerate damage accumulation. 
In contrast, Category I concentrates the response within blocks 7 ~ 10, 
showing a smooth rise and fall pattern. This reflects a more uniform load 
distribution and a reduction in localized unevenness, thereby improving 
the overall working condition of the structure.

Category II focuses on the working conditions of the asphalt blocks 

Fig. 9. Accuracy of a typical neural network without optimization, taking the normalized slope of (a) R_A2, (b) AB_D_A2, (c) AB_T_U2, and (d) SL_S22 as examples.

Table 8 
Summary of the accuracy of each network before optimization.

AB_D_A2 AB_D_LE11 AB_D_LE33 AB_D_S22 AB_T_A2 AB_T_S22 AB_T_U2 R_A2 R_U2 SL_A2 SL_S22 SL_U2 S_A2

R2 0.88 0.73 0.43 0.81 0.72 0.65 0.91 0.47 0.23 0.29 0.44 0.51 0.39
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themselves. In the control group, vertical stress at the block bottoms is 
unevenly distributed from the 3rd to the 11th block, indicating pro
longed and dispersed stress exposure. With the Category II design, stress 
is concentrated mainly within blocks 9 ~ 11, reducing the extent of 
unevenness and potentially slowing damage accumulation within the 
asphalt blocks.

Category III aims to improve vibration characteristics. Here, accel
eration distributions before and after optimization show only minor 
numerical differences, with slightly lower peak accelerations in the 
optimized case. This suggests that, for the current PEACT configuration, 
arrangement optimization has limited influence on vibration reduction, 
and the achievable improvements are modest compared to structural or 
material-focused optimizations.

To further illustrate the optimization effects, the maximum values of 
SL_U2, AB_D_S22, and S_A2 at various cross-sectional time intervals are 
compared for the three optimized schemes and the control group, as 
shown in Fig. 14. As seen in Fig. 14(a) and Fig. 14(b), the optimized 
schemes do not produce significant reductions in the absolute levels of 
dynamic response. This is expected, as rearranging the asphalt blocks 
does not alter their intrinsic material properties; under identical loading 

conditions, peak response magnitudes remain similar.
However, a clear benefit of the optimized arrangements lies in the 

smoothness of the longitudinal response variations. Compared with the 
control group, Categories I and II achieve markedly smoother changes. 
When fitting the longitudinal response variations using the method 
described in Section 3.1, the R2 values for Categories I and II reach 0.842 
and 0.901, respectively, substantially higher than the control group’s 
0.252 and 0.819 for the same cases. These results confirm that the 
optimized arrangements effectively promote continuous, gradual 
changes in dynamic response across the PEACT transition zone.

By contrast, the difference between Category III and the control 
group in terms of vertical acceleration is negligible, reinforcing the 
earlier finding that vibration-focused optimization has a limited impact 
under the present design constraints. Overall, for transition zone design, 
arrangement optimization should prioritize structural stress–strain 
performance. Between the two viable schemes, Category I is recom
mended as the final choice, as it not only improves response smoothness 
but also achieves continuous stiffness transitions along the track.

Finally, the three optimized design schemes are further evaluated 
using non-linear indicators as a robustness check. Although the opti

Fig. 10. Establishment of NSGA-II-BP network, taking (a) R_A2, (b) AB_D_A2, (c) AB_T_U2, and (d) SL_S22 as examples.

Table 9 
Summary of the accuracy of each network after optimization.

AB_D_A2 AB_D_LE11 AB_D_LE33 AB_D_S22 AB_T_A2 AB_T_S22 AB_T_U2 R_A2 R_U2 SL_A2 SL_S22 SL_U2 S_A2

R2
1 0.98 0.93 0.94 0.91 0.95 0.94 0.93 0.93 0.93 0.92 0.94 0.95 0.92

R2
2 0.96 0.92 0.94 0.91 0.92 0.93 0.93 0.92 0.90 0.92 0.91 0.95 0.91
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mization framework is formulated based on linear smoothness in
dicators, non-linear fitting methods are introduced here for post-hoc 
evaluation. Specifically, a third-order polynomial approximation is 
applied to the longitudinal distributions of representative response pa
rameters shown in Fig. 14, and the corresponding coefficients of deter
mination are calculated, as summarized in Table 11, in which R2

1 and R2
2 

denote the goodness of fit obtained from linear and third-order poly
nomial fitting, respectively. The results show that, for all examined 
cases, the optimized schemes consistently exhibit higher smoothness 
levels than the control configuration under both linear and non-linear 
evaluations. More importantly, the relative ranking between 

Fig. 11. Optimizing the arrangement method of PEACT, taking (a1) category I-F1F3, (a2) category I-F3F5, (b1) category II-F1F3, (b2) category II-F3F5, (c1) category 
III-F1F3, (c2) category III-F3F5 as examples.

Table 10 
Optimized arrangement methods of asphalt block in PEACT.

Category EA-6 CR 
(x1)

EA-4 CR 
(x2)

EA-2 CR 
(x3)

EA-0 CR 
(x4)

Sum

I 6 15 15 14 50
II 6 13 16 13 48
III 6 7 16 10 39
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optimized and control schemes remains unchanged when non-linear 
indicators are adopted. This consistency confirms that the linear in
dicators used in the optimization process do not mislead the design 
decisions and are sufficient for identifying improved transition-zone 
layouts under the present modeling assumptions.

It is also noted that for vibration-related parameters such as S_A2, 
both linear and non-linear fitting yield low coefficients of determination 
for all schemes. This reflects the limited sensitivity of these parameters 
to DREAMs arrangement under the simplified moving-load excitation 
adopted in this study, as discussed earlier, and does not affect the overall 

Fig. 12. Track stiffness under different arrangement methods.

Fig. 13. Evaluation based on dynamic response (a) taking Category I and AB_T_U2 as an example, (b) taking Category II and AB_D_S22 as an example, and (c) taking 
Category III and S_A2 as an example (a1, b1, c1: control subject, a2, b2, c2: optimized category).
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conclusions regarding layout optimization.

Conclusions

In this study, a performance-driven and data-assisted multi-objective 
optimization framework is proposed for designing railway transition 
zones, using the PEACT as an example. A validated 3D FE model is 
employed to generate a dataset of dynamic responses for multiple 
asphalt block arrangement schemes. The longitudinal variation of 13 
selected dynamic response parameters is quantified with linear fitting 
indices (k and R2). Subsequently, a series of NN-IIs is developed to 
predict the longitudinal variation of each dynamic response, and their 
training parameters are further optimized with NSGA-II to enhance ac
curacy. The NN-IIs are then integrated with NSGA-II to optimize the 
design scheme of the PEACT transition zone. The main findings can be 
summarized as follows: 

• The number and arrangement of asphalt blocks have a limited in
fluence on the peak values of dynamic responses in the transition 
zone. Still, they can markedly improve the smoothness of their lon
gitudinal variation.

• Three optimized schemes were obtained, targeting: (i) structural 
working conditions (Category I), (ii) asphalt block working condi
tions (Category II), and (iii) vibration reduction (Category III).

• Both Category I and Category II schemes achieved substantial 
improvement in the smoothness of longitudinal dynamic responses 
compared with the control group (10–20-10–10), with the coefficient 
of determination R2 increasing from 0.252 to 0.842 (Category I) and 
from 0.819 to 0.901 (Category II), respectively.

• Category I also improved the continuity of longitudinal stiffness 
distribution by reducing the frequency and extent of stiffness plat
forms and is therefore recommended as the most balanced design 
scheme for PEACT transition zones under the conditions considered 
in this study.

• Optimization based solely on vibration reduction (Category III) 
showed limited improvement, suggesting that vibration-related ob
jectives may require additional design variables beyond asphalt 
block arrangement.

The proposed framework enables efficient exploration of the com
plex design space of transition zones without excessive FE computations, 
offering a transferable approach for other systems similar to the PEACT 
transition zone design. Future work will focus on refining the selection 
of dynamic response parameters to better align with railway engineering 
practices, incorporating wheel–rail interaction into the FE model to 
improve vibration prediction accuracy, and exploring alternative ma
chine learning and optimization techniques better suited for small 
datasets.
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Fig. 14. Evaluation based on longitudinal distribution of track parameters, 
taking (a) category I and SL_U2, (b) category II and AB_D_S22, and (c) category 
III and S_A2, as examples.

Table 11 
Comparison of linear and nonlinear smoothness indicators for the design 
schemes.

Parameter Design scheme R2
1 R2

2

SL_U2 Control subject 0.252 0.248
Category I 0.842 0.654

AB_D_S22 Control subject 0.819 0.946
Category II 0.901 0.974

S_A2 Control subject 0.104 0.108
Category IIII 0.104 0.108
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Appendix 

Algorithm of NSGA-II.
NSGA-II was first proposed by Deb et al. [40], an updated version of NSGA-I, which was introduced in 2002. NSGA-II introduces an elite strategy to 

address issues such as high computational complexity, loss of satisfactory solutions, and over-reliance on shared radii in the original NSGA. For 
example, the complexity of NSGA-II is O

(
MN2), and for NSGA, its complexity is O

(
MN3) [40]. The core of NSGA-II lies in sorting non-dominated 

solutions in the Pareto space through Pareto non-domination sorting and crowding degree comparison, ultimately yielding the optimal feasible so
lution set.

The multi-objective optimization problem can be described as 

min
x∈Ω

F(x) = (f1(x), f2(x), ⋅⋅⋅, fm(x) )# (A1) 

where x = (x1, x2, ⋅⋅⋅, xn) is the decision vector. Ω ⊆ Rn is the feasible region. fk(x) represents the k th objective function.
The Pareto dominance is defined as follows:
A solution xa dominates xb (xa ≺ xb) if 

∀i ∈ {1,2, ⋅⋅⋅,m}, fi(xa) ≤ fi(xb)and∃j, fj(xa) < fi(xb)# (A2) 

A solution is Pareto optimal if no other solution in Ω dominates it. The set of all Pareto optimal solutions forms the Pareto front, as shown in Fig. A.1(a). 
Fig. A.1(a) also exhibits the non-dominating sorting process. For each individual p, let np be the number of individuals dominatingp 

np = |{q|q ≺ p} |# (A3) 

let Sp be the set of individuals dominated by p 

Sp = |{q|p ≺ q} |# (A4) 

If np = 0, p belongs to the first front F1. Subsequent fronts F2, F3, … are identified iteratively.
For individuals within the same front Fk, crowding distance di measures the density of solutions around i to maintain diversity, as denoted in 

Fig. A.1(b). 

di =
∑M

m=1

fm(i + 1) − fm(i − 1)
fmax
m − fmin

m
# (A5) 

where fm(i+1) and fm(i − 1) are the neighboring solutions in the sorted list for the objective m.
Through non-dominated sorting and crowding distance calculation, all individuals in a given generation can be ranked according to their supe

riority or inferiority, and individuals for the next generation can be selected through an elite strategy.
Let Pt be the parent population and Qt the offspring population. Merge 

Rt = Pt ∪ Qt# (A6) 

Perform non-dominated sorting to obtain fronts. F1, F2, …. Fill Pt+1 from F1 onward until reaching the population size N. If adding Fk exceeds N, select 
the most widely spaced solutions using crowding distance.

In this study, the above NSGA-II framework is applied to optimize the training parameters of NN-I, and design the scheme of PEACT transition zone, 
where the objective functions (f1, f1, …,fm) correspond to the accuracy and efficiency of NN-I, or k and R2 Corresponding to the linear fitting equation 
of each dynamic response in each category, respectively. The optimization variables are the number of four types of DREAM blocks in the transition 
zone, as described in Sections 2.1, 3.2, and 4.2.

Fig. A1. Schematic of (a) non-dominated sorting, and (b) crowding distance calculation
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