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Abstract 
The Dutch highway network contains more than 3.000 kilometers of roads. Along these roads are 
thousands of overhead objects such as viaducts and traffic sign gantries. It is essential to have 
recent and accurate data on the clearances under these objects. This data is important for 
maintenance and routing oversized transports. Obtaining clearance measurements can be time 
consuming, costly and in involves a lot of manual labor. The aim of this study is to develop a 
method that automatically estimates vertical and horizontal clearances of highway viaducts and 
gantries from Mobile Laser Scanning (MLS) point clouds. The proposed method takes a point cloud 
of an infrastructure object as input, and as output provides the user with a concise overview of 
the estimated horizontal and vertical clearances under the object. 

A point cloud of a highway viaduct or gantry is segmented into different clusters relevant for 
determining the clearances. The discrete points in these clusters are then used to approximate 
their corresponding surfaces with B-splines. Subsequently the minimal clearances can be 
estimated. These clearances are estimated at certain pre-specified locations according to 
guidelines from the highway authority, Rijkswaterstaat. To validate the proposed method a case 
study is performed on two sections of Dutch highway containing a total of 20 viaducts and 50 
gantries. For the viaducts and gantries along these highway sections there are clearance 
measurements available from third-party contractors. After processing the point clouds in the 
case study, the obtained clearance estimations are compared to the third-party measurements. 
This comparison gives a quantitative analysis of the estimated clearances and shows that the 
proposed method produces similar results to the third-party measurements. On average the 
proposed method overestimates the vertical clearances and underestimates the horizontal 
clearances. A sensitivity analysis is performed to confirm that the proposed method can produce 
consistent results. When performing clearance estimations on a different dataset containing 
point clouds with an up to 20 times higher point density, the estimation differences with the 
third-party measurements become even smaller.  
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1. Introduction 

 

1.1 Highway infrastructure clearance measurements 
The Dutch highway network contains more than 3.000 kilometers of highways (Rijkswaterstaat, 
2021). It is essential to have accurate data on the vertical and horizontal clearances at overhead 
objects along these roads. ‘Objects’ in this case could refer to via-, eco- or aqueducts, tunnels, or 
gantries wielding traffic signs or lane control signs. This data can be used for determining routes 
for oversized transports, infrastructure reconstruction after accidents, maintenance and 
preventing or settling legal claims after an incident. Oversized transports rely on the assumption 
they receive valid clearance data when routing their cargo. When the provided clearance data is 
inaccurate it can have great (financial) consequences for either the cargo or highway 
infrastructure.  
  
For all overhead structures along the Dutch highway network the clearances are documented 
according to specifications issued by the executive organization of the Dutch ministry of 
Infrastructure and Waterways: Rijkswaterstaat. These specifications describe at what locations 
under an overhead infrastructure object and with what margin of error the clearances should be 
measured. 
 
Traditionally these measurements are taken in the field with usage of geodetic measurement 
devices such as a rangefinder, theodolite, total station or laser scanner. The measurements and 
processing of the data is usually executed by third party contractors and subsequently validated 
by Rijkswaterstaat. Since the documentation process of the measurements involves a lot of 
manual work it is important that this validation process occurs thoroughly. Currently this 
validation process is meant to prevent blunders in the documented clearances. One of the tools 
available for validation is a large point cloud dataset covering all the highways in the Netherlands. 
The validation occurs by manually selecting points that approximately restrict the clearance in 
either horizontal or vertical direction whereafter the distance between those points is calculated. 
This is not a thorough procedure as it is prone to user error. Furthermore, it is difficult to obtain 
reproducible results this way since no solid workflow is in place.  
 
This research uses an independent point cloud dataset that offers great potential for developing 
an automated process that can validate clearance data provided by third party contractors. Point 
clouds contain a lot of (geo-)information and therefore provide a well-suited environment for 
validating real world measurements. However, it is important that these validations are 
accompanied by a quality assessment to make sure the validation verdict is sound. 
 
With the fast-paced development of point cloud technology, clearance measurement validation 
can greatly benefit from the automatic segmentation, classification and surface estimation of 
available point cloud datasets. Since the available data is so abundant, the goal is to achieve a 
method that is applicable to a large variety of situations that can be encountered on the road. 
Different types of viaducts, different road layouts and different types of traffic gantries.  
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1.2 Research objective 
The main objective for this study is to develop a method for validating vertical and horizontal 
clearance measurements of highway infrastructure with use of LiDAR point cloud data. The 
method should take a point cloud of an infrastructure object as input, and as output provide the 
user with a concise overview of the horizontal and vertical clearances of the object (Figure 1.1). 
Since the method should fit into the workflow Rijkswaterstaat uses for validating clearance 
measurements, it is important that the output is analogous with currently used clearance reports. 
 
A point cloud of an overpass or gantry should first be segmented into the different components 
relevant for determining the clearances. Geometric models will then be fitted to these segmented 
clusters after which the clearances can be computed. These clearances should be calculated at 
certain pre-specified locations according to Rijkswaterstaat’s guidelines. 
 
 

 
Figure 1.1: A simplification of the tool to be developed in this research. A point cloud of a traffic gantry is taken as input 

and processed. The result is a visualization of the horizontal and vertical clearances. 
 
 
 
 

1.3 Research questions 
Taking the previously mentioned objectives in consideration, the following main research question 
is defined: 
 

- How to improve the approach for validating clearance measurements of highway 
infrastructure with the usage of LiDAR point clouds? 

 
To find an answer to this main research question a method will be developed to automatically 
estimate the clearances of a viaduct or gantry from available point clouds. This method involves 
multiple steps which can help to answer the following sub-questions: 
 

- How to segment and classify different viaduct and gantry components from the point 
cloud data? 

- How to obtain the highway lane boundaries from the point cloud data? 
- What objects restrict the horizontal clearances under a gantry or viaduct and how can 

they be segmented from the point cloud? 
- What are the geometric characteristics of a structure’s components that determine the 

clearances? 
- How to estimate and locate the minimal vertical and horizontal clearances from the point 

clouds? 
- How to assess the quality of the inferred clearances and what is the quality difference 

between data providers? 
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1.4 Thesis outline 
 
This thesis is structured as follows: 
 
Section 2 presents background information about the current requirements for clearances on 
Dutch highways, related research, and an overview of some point cloud processing techniques 
that are used in this research. Section 3 gives a summary on the characteristics of the point 
clouds dataset that were used in this research. Section 4 explains the workflow of the proposed 
method for estimating clearances under viaducts and gantries. A step-by-step guide is provided 
with intermediate results. Section 5 presents the case study on a selection of viaducts and gantries 
and their results. These results are compared with third-party measurements that were obtained 
by contractors. In Section 6 some problems with the data and the applicability of the method are 
discussed. Finally, in Section 7 the research is concluded and the research questions from Section 
1.3 are answered one-by-one. Several recommendations are provided for potential future 
research. 
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2. Background  

Section 2.1 covers the current requirements that apply to clearance measurements. Following is 
Section 2.2 that introduces laser scanning and point clouds. Section 2.3 presents a selection of 
related research on estimating clearances under overhead infrastructure objects. Lastly, Section 
2.4 covers the clustering, detection and approximation principles used in the proposed method. 

2.1 Current standards for determining clearances 
This subsection gives an overview of the requirements for clearance measurements as composed 
by Rijkswaterstaat. It covers the definitions that are important to understand what is meant by a 
minimal clearance. The information here is based on the product specifications for clearance 
measurements (Rijkswaterstaat, 2019). 

2.1.1 Vertical clearance 
The vertical clearance is a measurement perpendicular to the road surface between an object 
and the underlying pavement. The minimal vertical clearance is found where this distance is the 
smallest. Objects are defined as highway bridges, wildlife bridges, navigable aqueducts, tunnels, 
and road sign gantries. For this thesis the focus will be on highway bridges and road sign gantries. 
These are also the most common objects. 
 
The vertical clearance measurements must meet the following requirements: The precision 𝜎𝜎 
should be ≤ 1.0 𝑐𝑐𝑐𝑐 and the measurements should be presented with 3 decimals. The locations of 
the clearance heights have different requirements for viaducts and traffic gantries.  
 

2.1.1.1 Highway viaducts 
For a highway viaduct the following applies: 

- The vertical clearance should be determined on each lane marking. 
- For each driving direction two clearance cross sections should be provided. The first one 

at beginning of the object and the second one at the rear of an object. The location of 
the front is determined by in what direction the hectometer signs along the road are 
increasing in value. This is illustrated in Figure 2.2. 

- Double highway bridges less than 3 meters apart are seen as one object. When the gap 
in between the two viaducts is larger than 3 meters, both bridges are seen as individual 
objects. 

 
The vertical clearances must be determined at: 

- The road markings such as: 
o Continuous lines 
o Dashed lines 
o Block markings 

- 1 meter outside from the edge of the continuous markings (edge markings). This is only 
needed when this location is still on the pavement. 

- The edges of the asphalt. 
- Suspended signage on the structure if these signs hang lower than the structure itself. 

 
Many highway bridge superstructures have a bridge deck with decreasing thickness towards the 
sides. For these bridges the vertical clearances should be determined at lines AA’ and BB’ as 
shown in Figure 2.2. 
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Figure 2.2: Cross sections along which the vertical clearances should be determined for a highway bridge with a non-

constant deck thickness. 
  

2.1.1.2 Traffic sign gantries 
For these structures the minimal vertical clearances should be determined per lane including rush 
hour lanes, entry or exit lanes and emergency lanes. If there is no road sign or lane control sign 
directly above a lane the vertical clearance is determined from the pavement to the gantry’s 
suspension superstructure. 
 

2.1.1.3 Important difference between viaducts and gantries 
The approach in determining the minimal clearances under a viaduct and a gantry is different. 
For viaducts Rijkswaterstaat requires that the vertical clearance is determined on the location of 
each road marking that is intersecting cross sections AA’ and BB’ in Figure 2.2. For gantries this 
is not the case since here the minimal clearance should be determined for each lane which can 
be located on the edge, in the middle of somewhere in between. The location for this minimal 
clearance greatly depends on the signage that is suspended above.  
 

2.1.2 Horizontal clearance 
 
The horizontal clearance is the minimal horizontal distance perpendicular to the driving 
direction between obstacles that are positioned alongside the pavement. Obstacles here are 
defined as objects or vegetation that can cause severe damage or injuries to a vehicle or 
passengers when a collision occurs.  
 
The horizontal clearance measurements must meet the following requirements: The precision 𝜎𝜎 
should be ≤ 5.0 𝑐𝑐𝑐𝑐 and the measurements should be presented with 2 decimals. For the location 
of the horizontal clearance the following applies: 

- The horizontal clearance must be determined at a height between 0.5 𝑐𝑐 and 1.0 𝑐𝑐 above 
the pavement. The height of the guardrail should fall within this range. 

- In case there is no guard rail on one or either side of the road, the width of the roadway 
cannot always be clearly defined. If the boundary of the passage width on one or both 
sides of the road cannot clearly be indicated, for instance due to the absence of 
obstacles as stated previously, the edge of the pavement is taken as the boundary. 

 
  

BA

B’A’

profile 2

profile 1

increasing mileage
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2.1.3 Final clearance product 
 
The final product containing the obtained clearance measurements consists of one or more 
photographs depicting evaluated structure with the clearance dimensions visualized and indicated 
by the red and yellow arrows. An example is given in Figure 2.3. The photograph is accompanied 
by metadata that gives information about the road name, the direction, the location, the 
measurement date, the asset number of the gantry or viaduct and the minimal clearance. The 
figure shows a gantry with five lanes (four regular lanes and an emergency lane). The horizontal 
clearance here is bounded by the guard rails that are present on both sides of the road. 
 

 
Figure 2.3: Example of the final product containing the clearance measurements in meters. 
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2.2 Point clouds and laser scanners 
A point cloud is a collection of data points in 3D space with each point defined separately in a 
coordinate system. Since point clouds are well suited to describe structures and its surface 
properties, they are used widely in metrology or other forms of infrastructure inspections. General 
methods for obtaining point clouds are either using 3D laser scanners or photogrammetry. 
 
When using a 3D laser scanner to obtain a point cloud of an object, each point in the cloud 
represents a real point on the surface of the scanned object. The scanner calculates a coordinate 
for each point based on the vertical and horizontal angle of the scanner combined with the time 
of flight of the laser pulse it sends out for each point (Figure 2.4). This technique is also called 
LiDAR (Light Detection And Ranging).  
 

 
Figure 2.4: A schematic overview of a laser pulse reflecting on a guard rail 

 
Mobile LiDAR presents multiple benefits (Puente et al., 2013): data is captured at high speed, 
measurements can be performed remotely, the obtained datasets have a much higher point 
density compared to traditional measurement techniques and the abundance of data and 3D 
visualizations can provide added confidence that the mapped objects correspond to the actual 
existing conditions.   
 
Besides the laser scanner, a mobile LiDAR system also includes several other subsystems: a digital 
camera to map colors, an Inertial Measurement Unit (IMU), a Global Navigation Satellite System 
(GNSS) receiver and a control unit that ensures that all subsystems acquire synchronized data 
and data is recorded (Heikkilä et al., 2010).  
 
A LiDAR uses a laser to obtain range and angle measurements. Currently there are two different 
techniques that are used in mobile laser scanning systems for range measurements: time-of-
flight (TOF) and phase shift based systems (Figure 2.5). A TOF system measures the time 
difference between an emitted and a received laser pulse. The distance 𝑑𝑑 (see Figure 2.4) can be 
calculated as: 
 

𝑑𝑑[𝑐𝑐] =
𝑐𝑐𝑐𝑐
2

 
( 1 ) 

 
where 𝑐𝑐[𝑐𝑐/𝑠𝑠] is the speed of light and 𝑐𝑐[𝑠𝑠] is the time in seconds the laser pulse takes to travel 
from the laser source via the reflecting surface into the sensor. Phase based laser scanners 
determine the range as the difference between the emitted and received backscattered signal of 
an amplitude modulated continuous wave (Puente et al., 2013). This technique uses a continuous 
signal, which enables a much higher measurement frequency since the scanner does not need to 
wait for the return signal before sending a new pulse as is the case with TOF scanners. Phase 
based systems achieve in general a better accuracy but their range is shorter compared to TOF 
systems (Soudarissanane, 2016). The relationship between the phase shift Δ𝜙𝜙 and range 𝑑𝑑 is 
provided in the following equation: 
 

Sensor

Laser source

d
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𝑑𝑑[𝑐𝑐] =
Δ𝜙𝜙
2𝜋𝜋

𝜆𝜆
2

+
𝜆𝜆
2𝑛𝑛 

( 2 ) 
 
Here 𝜆𝜆 is the modulation wavelength and 𝑛𝑛 is the unknown number of full wavelengths between 
the system sensor and the reflecting object. The measurement of the phase difference can be 
ambiguous when there is an uncertainty in the number of periods 𝑛𝑛 that is measured. This 
ambiguity can be avoided by measuring the phase difference of multiple signals with different 
wavelengths. 
 

 
Figure 2.5: Distance measurement principle of time-of-flight laser scanners and phase based laser scanners. The red signal 

is the emitted signal, and the green signal is the received signal. 
 
The point density or resolution of a point cloud is mainly dependent on how many laser pulses 
per second the laser scanner can transmit. Scanners can generate hundreds of thousands of 
points per second which comes at the downside that the file sizes of the generated point clouds 
can get out of hand quickly. To make the point cloud data easier to manage ‘down sampling’ can 
be used to reduce the number of points to an arbitrary amount. 
 
For this research point clouds with different resolutions are used. Low- and high-resolution point 
clouds each have their own advantages and disadvantages. A tradeoff is made between storage 
size and point cloud detail. 
  

Phase-based

Time-of-flight

ΔPhase

t0t1

t1+Δt1t0+Δt0

ObjectLaser Scanner
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2.3 Estimating clearances of highway bridges from point cloud data 
Multiple researches have already been successful in estimating clearances along highways from 
point cloud data. This section presents recent research on clearance estimations as well as some 
other closely related recent research. 
 

2.3.1 Trajectory definition 
Both the vertical and horizontal clearances are dependent on the orientation of the road axis. The 
horizontal clearance is determined perpendicular to the road axis in the horizontal plane and the 
vertical clearance is determined perpendicular to the road axis in the vertical plane. Hence, 
determining the orientation of the road is an important first step.  
 
When a point cloud is obtained from a Mobile Laser Scanner (MLS)-system, often the angle of the 
scanner is also recorded as an attribute for each point in the cloud alongside intensity, time, etc. 
With this information it is possible to find points parallel to the road’s axis by removing all points 
that fall out of the nadir plane of the MLS (Gargoum et al., 2018). It is important to note that this 
method works best when the point cloud consists of one continuous scan. If the point cloud is 
constructed from multiple co-registered scans, multiple trajectories can be found. The trajectory 
only gives information on the trajectory of the MLS and this will not necessarily follow the road 
axis. This means the MLS vehicle should remain in the same lane while scanning or the obtained 
trajectory will not give a good estimation of the road axis. 
 
This method does not give any information on the number of lanes and width of the road surface. 
This information is necessary since vertical clearances must be determined for every lane. 
 

2.3.2 Road marking detection 
A second method for determining the trajectory of a road involves the segmentation of road 
markings. There are several methods to detect road markings from LiDAR data. These methods 
can be roughly divided into two categories: real-time detection and non-real-time detection. Real-
time detection is mainly used for car safety systems and asks for lightweight code whereas the 
other category gives room to sacrifice some processing time for improved detection accuracy. 
 
Prochazka et al. (2019) propose a method that processes a point cloud obtained from LiDAR 
measurements and provides an output file with vectors containing the road lane polygons, 
specifically dashed and continuous markings. Initially the segmentation of the point cloud starts 
based on reflectance values and after this step a ground detection algorithm (Landa et al., 2013) 
is applied. With use of standard Euclidean distance segmentation, the extracted ground points 
are further segmented. Points that satisfy an empirically determined limit of maximal distance 
between points are considered as belonging to a single segment. The resulting segments are 
filtered based on four conditions: the minimal number of points in a segment, the maximal number 
of points in a segment, the maximal size of an enveloping rectangle in x or y direction and a 
minimal percentage of planar points using RANSAC algorithm. 
 

2.3.3 Vertical bridge clearance estimation with terrestrial laser scanning 
In Zhang et al. (2013) a method is proposed to estimate vertical bridge clearances by using static 
terrestrial laser scanners (TLS). The study introduces an approach to reduce data noise caused 
by passing and obstructing the laser scanner. The filtered point cloud is used to manually infer 
the vertical clearances from. The proposed method is validated in a case study of a large 
interchange. However, no detailed accuracy assessment is provided. 
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2.3.4 Railway tunnel clearance estimation 
Railway tunnel clearance is directly related to the safe operation and freight capacity of trains. In 
(Zhou et al., 2017) a tunnel clearance inspection approach is presented based on 3D point clouds 
obtained by a mobile laser scanner system. A dynamic coordinate system for railway tunnel 
clearances is introduced. By using a 3D linear fitting algorithm on a segmented point cloud, the 
rail line can be extracted and is used to seamlessly connect all rail segments. Based on the rail 
alignment and the clearance coordinate system different types of clearance frames are introduced 
to perform the tunnel clearance inspection. The claimed precision reaches 0.03 m. 
 

2.3.5 Impact of point density reduction 
Point clouds often contain differences in point density. This variation is expected to affect the 
quality of the information that is inferred from the point clouds. Gargoum & El-Basyouny (2022) 
investigates the impacts of point density reduction on the extraction and assessment of different 
geometrical features. The different geometrical features were extracted from a point cloud at 
varying levels of point density and on a selection of different Canadian highway segments. It was 
found that clearance assessments on viaducts had low sensitivity to reductions in point density. 
Reductions to 10% of the original data yielded comparable results to what was obtained at 100% 
point density. A possible explanation for this could be that the clearance estimation procedure 
involves rasterizing the point cloud, which uses a collection of points that fall within a raster cell 
to estimate the surface elevation properties at that location. Even when the number of points that 
fall within a raster cell is greatly reduced, the elevation estimate of that cell is not impacted 
significantly. 
 
Low point density can however cause an inability to detect accurate clearances under short span 
overhead objects e.g. power cables or gantries. The proposed method for short span overhead 
objects does involve any form of surface reconstruction. As a result, the vertical clearance only 
depends on the single lowest point in a segmented overhead object.  
 

2.3.6 Review of mobile mapping and surveying technologies 
In Puente et al. (2013) an analysis is introduced on the performance of some modern mobile 
terrestrial laser scanning systems. The study presents an overview of the positioning, scanning 
and imaging devices used in these systems. A systematic comparison of the navigation and LiDAR 
specifications from the manufacturers is provided. Based on the accuracy requirements for a 
mapping or surveying project a best solution is found considering all scanner specifications.  
 

2.3.7 Vertical clearance estimation of highway bridges 
An approach for estimating the vertical clearance under highway bridges is to segment an initial 
point cloud of the road plus the bridge into two segments. One segment representing the road 
surface and one segment representing the underside of the bridge. The vertical distance between 
these point clouds represents the vertical clearance. A problem with point clouds however is that 
often there is no point available at the exact location where a clearance should be estimated. A 
laser scanner only samples physical surfaces at random locations. Even more, scanned data can 
contain a variety of deficiencies and therefor it could be beneficial to use a multiple of nearby 
points to estimate a surface at a given location. 
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Clearance estimation with B-Splines 
An example for a surface approximation method is using B-splines. This method is relatively 
simple to implement, gives generally good results and not too computationally intensive (Kineri 
et al., 2012). Truong-Hong et al. (2022) propose a cubic B-spline method that firstly divides the 
area of the surface of interest (road or bridge) into 5x5 meter patches and subsequently applies 
third degree B-splines to obtain cubic splines. Next a least squares problem should be solved for 
each patch to obtain a final surface approximation. Since a B-spline approximation usually results 
in a, to a certain degree, smoothened surface, the approximated surface can have some 
inaccuracies at locations with rough surface features. For example, locations on the bridge surface 
where cement leaked during construction or local asphalt imperfections on the road surface.  
 
Cell based clearance estimation 
Another method that calculates the vertical distance between a specific point p on the road and 
the underside of the bridge approximates a section around point p as a plane. The normal of this 
reference plane is then projected on the bridge surface (Kretschmer et al., 2002). This approach 
can be complemented with another method that subdivides a point cloud into 2D cell-grids with 
a certain cell size and determines the vertical clearance for each individual cell (Paffenholz et al., 
2008). Truong-Hong et al. (2022) uses a similar approach to this based on the assumption that 
the road and bridge surfaces can be represented by multiple local planes for each cell in a 2D cell-
grid. The distance between the local road and bridge planes is the vertical clearance. 
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2.4 Clustering, detection and approximation principles  
This paragraph will show some insight into different algorithms that are widely used for different 
clustering, detection and approximation purposes.  

2.4.1 DBSCAN 
The Density-Based Spatial Clustering of Applications with Noise or DBSCAN (Ester et al., 1996) is 
a widely used clustering algorithm. It is an unsupervised machine learning method that can 
identify distinctive clusters in a, in this application, geo-spatial dataset or point cloud. It is based 
on the concept that clusters in the data space are represented as a contiguous regions of high 
point density separated by regions of low point density. The algorithm takes two input 
parameters: The maximum distance between two points to have them considered as being in 
each other’s neighborhood (𝜖𝜖) and the number of points in a neighborhood for a point to be 
considered as a core point (min_pts). It then starts at an arbitrary point in the dataset and looks 
how many other points are in its neighborhood. If the number of points in the neighborhood is 
larger than min_pts (including the original point itself) all points in the neighborhood are 
considered to be part of a cluster. This cluster is expanded by recursively checking the 
neighborhoods of the newly added points. Once there are no more points to be added to the 
cluster the algorithm picks a new arbitrary point that has not previously been assessed and 
repeats the process. It can however be that the neighborhood of a point contains fewer than 
min_pts points. If the point is not already part of a cluster this point will be considered as a ‘noise’ 
point and thus is not assigned to a cluster.  
 

 
Figure 2.6: Example of DBSCAN algorithm with min_pts = 3. 

 
Figure 2.6 shows a simple example of the DBSCAN algorithm applied to a small set of points. The 
red points serve as core points and all of them have at least three other points within their 
neighborhood as illustrated by the red circular borders. All red points belong to a single cluster. 
The green points contain fewer than 3 points in their neighborhood, but they are part of the 
neighborhood of another red core point. This makes the green points also part of the main cluster. 
The blue points have fewer than 3 points in their neighborhood, but they do not belong to the 
neighborhood of another red core points. Hence, the blue points are classified as noise. 
 
A disadvantage of DBSCAN is that it can give bad results when the data contains clusters of 
varying density. Point clouds do however sometimes spatially vary in density since the point 
clouds are usually composed of different co-registered scans. MLS point clouds can also 
experience temporary occlusions by traffic that passes the laser scanner. This often causes 
spatially varying point densities. 
 
  

Core

BorderNoise

eps
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2.4.2 Principal component analysis (PCA) 
Principal component analysis is a technique applied for multivariate analysis. PCA is widely used 
in classification problems to project data on a new orthonormal basis in the direction of the largest 
variance (Bellekens et al., 2015). The principal components of a cluster of points in a ℝ3 coordinate 
space give information on the orientation of the group of points. The principal components are 
the eigenvalues and eigenvectors of the covariance matrix of the data where the largest 
eigenvector corresponds to the direction of the largest variance. The magnitude of this variance 
is defined by the corresponding eigenvalue. 
 
PCA is often performed with use of singular value decomposition (SVD) as is the case in scipy’s 
implementation of PCA (Pedregosa et al., 2012). The singular value decomposition is a 
factorization of a real or complex matrix. For a real matrix 𝑿𝑿 the SVD is a factorization of the 
from: 
 

𝑿𝑿 = 𝑼𝑼𝚺𝚺𝑽𝑽𝑇𝑇 
( 3 ) 

 
Here 𝑼𝑼 and 𝑽𝑽 are both orthogonal matrices. The columns of 𝑼𝑼 are called the left-singular vectors 
of 𝑿𝑿 and the columns of 𝑽𝑽 are called the right-singular vectors of 𝑿𝑿. 𝑼𝑼 and 𝑽𝑽 contain the principal 
components or eigenvectors of 𝑿𝑿𝑿𝑿𝑻𝑻 and 𝑿𝑿𝑻𝑻𝑿𝑿 respectively.  𝚺𝚺 is a diagonal matrix containing the 
singular values or eigenvalues of 𝑿𝑿.  
 
 

2.4.3 Straight line Hough transform 
The Hough transform (Hough, 1962) in its simplest explanation is a procedure for detecting  
straight lines in pictures. The original patent for this method uses slope-intercept parameters to 
define a straight line as 𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 with slope 𝑎𝑎 and intercept 𝑏𝑏. However, the problem with this 
approach is that when defining a vertical line the slope 𝑎𝑎 will go to infinity. Duda & Hart (1972) 
propose a method where the vertical line is defined with use of angle-radius parameters where 
vertical lines do not cause a problem. The line is now defined in the Hesse normal form 𝑟𝑟 = 𝑎𝑎 cos𝜃𝜃 +
𝑦𝑦 sin𝜃𝜃 where 𝑟𝑟 is the length of a line from the origin perpendicular to the line 𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏. 𝜃𝜃 is the 
angle between the 𝑎𝑎 axis and the line through the origin perpendicular to the line 𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏. This 
is illustrated in Figure 2.7. 
 

 
Figure 2.7: Relation of r and θ parameters to the line y=ax+b in red. 

 
 
The parameter space of the Hough transform is constructed as an 𝑐𝑐 ∗ 𝑛𝑛 matrix for an arbitrary 
amount 𝑐𝑐 different values of the radius 𝑟𝑟 and 𝑛𝑛 different values for the angle 𝜃𝜃. Every combination 
of 𝑐𝑐 and 𝑛𝑛 represents a line in the image space and the amount of non-zero pixels each individual 
line intersects in the image space decides the intensity of the pixel (𝑐𝑐,𝑛𝑛) in the parameter space. 
This is carried out recursively. The final plot of the Hough space shows many sinusoids which 
intersect in different knots. These knots represent the strongest signals and thus represent the 
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detected lines. A threshold can be set to remove lines that are detected with only a weak signal. 
This is illustrated in Figure 2.8. 
 

 
Figure 2.8: Example of a Hough transform. Left: an input image containing empty (black) and non-empty (white) pixels. 
Middle: The Hough parameter space with on the x and y-axis the distance rand angle θ. Right: The image space containing 
the input image with the detected lines superimposed. 
 
 
This method relies on a 2D-image as input which means that it cannot take a 3D point cloud 
directly as input. The point cloud should first be projected to a 2D image to serve as input for the 
Hough transform. 
 

2.4.4 Alpha shape 
The alpha shape, first defined by Edelsbrunner et al. (1983), is a generalization of the convex hull 
of a finite set of points. The convex hull of a set of points 𝑆𝑆 may be defined as the intersection of 
all closed halfplanes that contain all points of 𝑆𝑆 (Edelsbrunner et al., 1983). The convex hull can 
be visualized as the shape of a rubber band that is stretched to enclose 𝑆𝑆. Figure 2.9 shows a 
visualization of this rubber band analogy in blue. The alpha shape has a comparably more detailed 
and rougher surface. The general idea behind the alpha shape is that a circle with radius 1/𝛼𝛼 is 
moved inwards until it is obstructed by two points. These two points then form part of the alpha 
shape edge. This then continues recursively until an enclosed polygon is obtained. When the 
radius 1/𝛼𝛼 goes to infinity, the alpha shape will have an identical shape to the convex hull. 
 

 
Figure 2.9: A convex hull and alpha shape polygon of an identical set of points in 2D.  

Convex hull

1/α

Alpha shape
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2.4.5 B-spline 
A spline in the general sense is a function consisting of multiple pieces of smooth functions that 
are seamlessly concatenated. A large variety of spline species exists, where the most popular 
splines are piecewise algebraic polynomials (Kunoth et al., 2017). When working with splines it is 
important to find an efficient and suitable basis for their representation. B-splines, sometimes 
called basis splines, are among the most useful spline basis functions since they have several 
properties are important from both theoretical and computational point of view. The B-spline 
function is a combination of flexible bands that passes through a number of knots or control points 
(Talebitooti et al., 2015). It is a piecewise polynomial that is differentiable up to a prescribed 
degree. The simplest example is a 1st degree piecewise linear spline. Other examples are a 2nd 
degree piecewise spline or a 3rd degree piecewise cubic spline. The degree determines the degree 
of the polynomial pieces. Examples of simple B-splines are given in Figure 2.10. The 𝑗𝑗𝑡𝑡ℎ basis 
function for a set of knots 𝜉𝜉 and degree 𝑝𝑝 is recursively defined by Equation ( 4 ) from Kunoth et 
al. (2017): 
 

𝐵𝐵𝑗𝑗,𝑝𝑝,𝜉𝜉(𝑎𝑎) ≔
𝑎𝑎 − 𝜉𝜉𝑗𝑗

𝜉𝜉𝑗𝑗+𝑝𝑝 − 𝜉𝜉𝑗𝑗
𝐵𝐵𝑗𝑗,𝑝𝑝−1,𝜉𝜉(𝑎𝑎) +

�𝜉𝜉𝑗𝑗+𝑝𝑝+1 − 𝑎𝑎�
𝜉𝜉𝑗𝑗+𝑝𝑝+1 − 𝜉𝜉𝑗𝑗+1

𝐵𝐵𝑗𝑗+1,𝑝𝑝−1,𝜉𝜉(𝑎𝑎),  

( 4 ) 
 
 
Starting with 
 

𝐵𝐵𝑖𝑖,0,𝜉𝜉(𝑎𝑎) ≔ �1, if 𝑎𝑎 ∈ [𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖+1),
0, otherwise.  

( 5 ) 
 
 
The splines are fit to the data by solving a constrained optimization problem, where a smoothing 
term is minimized while keeping the residual error under a specified value (Dierckx, 1982). A 
smoothing condition of 𝑠𝑠 = 0 would correspond to the splines passing exactly through all points in 
the original data. A B-spline with degree 𝑝𝑝 = 3 is used to obtain a cubic spline. 𝑘𝑘 is the number of 
total segments the B-spline has. This gives the number of B-splines equal to: 
 

𝑛𝑛 = (𝑘𝑘 + 𝑝𝑝) 
( 6 ) 

 

 
Figure 2.10: Spline functions of degree (p) 1, 2 and 3 through the knots 𝜉𝜉0, … , 𝜉𝜉𝑚𝑚. 

 
 
In this research scipy’s function splprep (Virtanen et al., 2020) was used to fit the B-splines.  
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2.4.6 Image processing  
Morphological transformations are common operations based on the shape of an image. It is 
usually performed on a binary image with only empty and full pixels. As input, two items are 
needed: a binary image and secondly a kernel or structuring element. This kernel will decide the 
nature of the transformation.  
 
Erosion and dilation are two basic morphological operations. Erosion of an image involves the 
removal of pixels around the edges of an object in the image. Dilation does the opposite in the 
sense that it grows out from the boundary of an object. Through combinations of these two 
processes, it is possible to remove noise from images or clean up their edges. This is visualized 
in Figure 2.11. 
 

 
Figure 2.11: A combination of erosion and dilation operations on a raster image. Red pixels are removed, and green pixels 

are added. The final image is cleared from noise. A 1x1 kernel is used. 
 
A TopHat operation is used to extract small elements and details from a given image. Figure 2.12 
shows that narrow parts and small details from the original image are preserved. The result from 
this operation can also be described as the difference between the input image and opening of 
the image. 

 
Figure 2.12: A TopHat operation. The red pixels are removed from the image. 

 
To detect edges in an image a Canny edge detector (Canny, 1986) can be applied. This is an 
algorithm that detects edges based on the intensity gradients in an image. The algorithm consists 
of noise reduction and threshold steps, but the fundamental part is the gradient calculation. The 
gradient calculation detects the intensity of an edge and the direction by calculating a local 
gradient. The gradient will return a high value when there is an edge present and a low value if 
there is no significant change in intensity (Figure 2.13). 

 
Figure 2.13: A Canny edge detection operation. The final image only contains the edges of the original image. 

Original image Erosion Dilation Dilation Erosion Final image

Opening Closing

Original image Tophat filtering Final image

Kernel

Original image Canny operation Final image

High gradient
Low gradient
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3. Data 

This chapter presents the properties of the data that is used in this project. A description of the 
different datasets is given along with a subsection dedicated to the difference in average point 
density between the datasets. 

3.1 Data description 
 
For this study the focus is on using point clouds from a database that contains all Dutch highways 
and has a temporal resolution of 1 year. This data is referred to as dataset A. The point clouds 
are obtained using a Velodyne HDL-32E TOF LiDAR sensor which can generate 695.000 points per 
second with a claimed relative accuracy of ±2 cm (Velodyne, n.d.). GNSS combined with an 
Intertial Measurement Unit is used to present the xyz-coordinates in the RD-New (EPSG:28992) 
reference frame. The point cloud is stored as a .laz file and for all points it contains five attributes: 
intensity, number of returns, return number, GPS time and RGB color. Figure 3.14 shows the 
layout of the mobile mapping system used to acquire the point clouds. Point clouds of a road 
section are obtained from only a single pass. While scanning, the road is open to other traffic 
users. 
 

 
Figure 3.14: A mobile mapping system from Cyclomedia 1.  

 
 
The different attributes that are available in the point cloud dataset can give different information. 
The intensity value gives information about the reflectivity of the scanned point. A road marking 
has a higher reflectivity, even so a higher intensity, compared to the surrounding asphalt which 
makes them clearly distinguishable in the right illustration in Figure 3.15. Furthermore, traffic 
signs also have very reflective surfaces which is visible in the figure. The laser scanner measures 
the return strength of the laser pulse to obtain a relative value for the intensity. This can be 
considered a very important attribute since it reveals important information in complex scenes. 
  

 
1 Image source: https://www.cyclomedia.com/us/capturing-and-processing-data 

GNSS antenna 
LiDAR scanner 

Camera sensor

https://www.cyclomedia.com/us/capturing-and-processing-data
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Figure 3.15: A typical point cloud of a traffic gantry. Left: RGB values. Right: Intensity values 

 
 
 
The number of returns attribute stores information on the number of reflected signals that were 
recorded for a single pulse. On solid surfaces the laser scanner will generally only record a single 
backscattered signal, but semitransparent thin surfaces such as foliage can cause multiple 
backscattered signals for a single pulse. The return number is similar to the number of return 
attributes but here the order of the returns is stored. The first return is flagged as return number 
one, the second as return number two, and so on. GPS time is a time stamp at which the pulse 
was emitted from the laser scanner. This time is stored in GPS seconds of the week. This is also 
useful when segmenting point clouds that contain multiple passes from the mobile laser scanner. 
PointsourceID is an attribute that is present when a point cloud consists of multiple co-
registered scans. This is a useful addition to the GPS time attribute when a scanning system 
contains multiple scanners. Then only the GPS time is not sufficient anymore to distinguish the 
different scans. The Scan angle stores the angle of the laser scanner with respect to the nadir 
at the instance the pulse was emitted from the laser scanner. The RGB color attribute stores the 
red, green and blue value for a point. These color values are usually derived from 360° panoramic 
images captured simultaneously with the LiDAR point cloud on a separate sensor. An overview of 
the attributes for each dataset is shown in Table 1. 
 
For validation of the method proposed in this research there are point clouds available of 10 
highway gantries with a much higher point density. These point clouds are obtained with a 
StreetMapper IV mobile mapping system and referred to as dataset B. This system has a claimed 
relative accuracy of 5 mm (StreetMapper, n.d.) and used two laser scanners to obtain a combined 
measurement rate of 2.000.000 point per second. Just like the first system the StreetMapper IV 
uses GNSS and a IMU to georeferenced the obtained point cloud in a RD-New (EPSG:28992) 
reference frame. The data is stored as a .laz file and each point contains multiple attributes: 
intensity, pointsourceID, scan angle, number of returns, return number, GPS time and RGB color. 
When a road section is scanned, the MLS makes 5 passes. The data obtained from these 5 passes 
is then coregistered into a single point cloud. The road is closed for other traffic during the 
scanning. 
 
 

Table 1: Overview of the characteristics of each dataset. 
Attribute Dataset A 

 
Dataset B 

Intensity X X 
Number of returns X X 

Return number X X 
GPS time X X 

PointsourceID  X 
Scan angle  X 
RGB Color X X 

Typical gantry1 ±700.000 points ±10.000.000 points 
Typical viaduct1 ±1.100.000 points -2 

  
1this includes points on the asphalt. 

2Dataset B contains only traffic gantries 
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3.2 Point density 
Dataset A has a significantly lower point density than dataset B. This is illustrated for a gantry 
superstructure in Figure 3.16. The figure shows that even when dataset B is subsampled to 20% 
of the original point cloud, it still contains almost 6 times more points. In the top image the 
separate scanlines of the laser scanner are just visible, but the bottom image does not show this 
separation between points. Nonetheless both datasets seem to cover all structural elements.  
 
Both point clouds have been acquired with a different purpose in mind. The point clouds in dataset 
A can be considered as ‘general purpose’ data since they were not obtained with a specific purpose 
in mind. The point clouds in dataset B were specifically obtained with the purpose of obtaining 
clearance measurements. Spatially, dataset A has a great advantage since it covers all roads in 
the Netherlands, whereas dataset B only has coverage of the specific gantries for which clearance 
measurements needed to be taken. 
 

 
Figure 3.16: Difference in point density when looking at the same gantry superstructure. 

 

Dataset A
~11.000 points

Dataset B
~60.000 points*

*subsampled from ~280.000 points (20% subset)
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4. Method 

This section will give a step-by-step explanation of the method that is developed for this thesis. 
Figure 4.17 shows a schematic overview of the method. To estimate the clearances under a 
viaduct or gantry, the proposed method is divided into three components: (i) Horizontal clearance 
estimation, (ii) vertical clearance estimation under a highway viaduct and (iii) vertical clearance 
estimation under a traffic gantry. All three components require the location and orientation of the 
road markings. Therefore, the segmentation of the road surface and the classification of the road 
markings is the first step. The first subsection in this chapter covers the extraction of the 
horizontal surfaces in a point cloud. Following is a section on road marking classification, and the 
subsections from there on will cover the three horizontal and vertical clearance components. 
 

 
Figure 4.17: A schematic with all individual steps needed to estimate the clearances under a gantry or viaduct. 
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4.1 Horizontal surface segmentation 
 
The workflow for extracting the road surface consists of multiple steps. Three assumptions are 
made: 
 

Assumption 1: The road surface has a minimal width of 5.7 𝑐𝑐 (approximately 2 lanes). 
Assumption 2: The underside of the bridge superstructure can be planar or curved but a 
small area of the surface can be approximated by a plane 
Assumption 3: Vertical clearance is only estimated in areas that contain both road and 
bridge surfaces. The distance between the road and the bridge is larger than a predefined 
arbitrary height; 3.25 𝑐𝑐. 

 
1. Quadtree representation 

A Quadtree representation (Truong-Hong & Lindenbergh, 2022) aims to reduce the 
complexity of the initial point cloud. The quadtree is carried out to recursively subdivide 
the initial point cloud into increasingly smaller 2D cells. This is carried out until the 
termination criterion is reached that is triggered when a subdivided cell contains fewer 
points than a predefined threshold. Since a cell is only useful if it contains both the road 
surface and the underside of the bridge surface, all cells must have a minimal height 
according to Assumption 3. Cells that do not satisfy this requirement are discarded (Figure 
4.18). 
 

 
Figure 4.18: Quadtree subdivision. [Source: Truong-Hong & Lindenbergh, 2022] 

 
2. Local surface extraction 

For all remaining cells the local surfaces are extracted. When the input point cloud 
contains a viaduct, the remaining cells can contain multiple horizontal surfaces; the road 
pavement and the bridge superstructure. Since the surfaces are expected to be 
concentrated in different groups in vertical direction, a kernel density estimation (KDE) 
(Truong-Hong & Lindenbergh, 2022) is used to establish the location of the local surfaces. 
These local surfaces are assumed to be nearly horizontal. 

3. Cell-based region growing (CRG) 
In this step planes are fitted to the different surfaces in each cell. Cell-based region 
growing (Truong-Hong & Lindenbergh, 2022) is applied to group the planes from the 
different patches that belong to the same surface. Some additional patch filtering is 
applied to obtain appropriate surface edges. 

4. Surface classification 
Now that multiple surfaces have been extracted it is necessary to classify them with the 
correct class. Road and bridge surfaces are extracted from the set of surfaces derived in 
the previous step. 
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When an input point cloud contains a traffic gantry, the output for the horizontal surface 
segmentation will only contain a single horizontal surface: the asphalt. When the input point cloud 
contains a highway bridge, the surface extraction will result in two segmented horizontal surfaces: 
the road surface and the bottom of the bridge superstructure. This is shown in Figure 4.19. 
 

 
Figure 4.19: Classified road and viaduct surfaces. 

  

Viaduct point cloud Classified bridge and
road surface

Isolated bridge and
road surface
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4.2 Road marking classification 
 
The locations of the different road markings are important because they specify at what location 
the clearance measurements should be inferred as explained in Section 2.1. Road markings are 
located on the asphalt surface, which means this step will disregard all other points but the 
segmented road surface from the previous section. A step-by-step explanation will be given in 
this subsection. 
 
With the asphalt surface segmented from the point cloud, the next step is to segment and classify 
the road markings. The lane markings are generally very visible in the point cloud since the points 
that are located on the road markings have a much higher intensity than the points on the dark 
asphalt. Three different types of road markings are classified: 
 

1. Dashed lines 
2. Blocked markings 
3. Continuous lines 
4. The edge of the asphalt 

 
The asphalt edge is technically not a painted-on road marking, but it often defines the outside 
border of an emergency lane. To find the minimal clearance on the emergency lane, under a 
gantry, it is thus important that the location of the asphalt edge is known. For viaducts it is 
explicitly demanded that the vertical clearance should be determined on the asphalt edge. 

4.2.1 Dashed lines 
The road markings in the point cloud have high intensity values. With an intensity filter most of 
the darker asphalt can be filtered out. Remaining is a point cloud with most of the black asphalt 
removed. This remaining point cloud is very well suited to deploy a DBSCAN algorithm on. The 
algorithm will remove noise and assign each remaining point to a cluster.  
 
After the DBSCAN algorithm is finished, the resulting point cloud can still contain irrelevant 
clusters. It is needed to setup a Cluster-based feature filter that can remove the irrelevant clusters 
from the dataset. The features for this filter are created using PCA. The filter is intended to remove 
all clusters that do not contain a road marking. Different features are calculated for each cluster 
and from there the clusters with features exceeding predefined thresholds are removed. Several 
PCA features have already been proposed (West et al., 2004 and Hackel et al., 2016). The 
following geometrical features are selected and can give information whether a cluster is 
potentially a dashed line: 
 

- Orientation: With the assumption that all road markings are parallel (only small 
sections of road are considered at once) all markings should have the same orientation. 
The orientation is defined by the first eigenvector corresponding to the largest 
eigenvalue 𝜆𝜆1. 

- Length: The largest eigenvalue 𝜆𝜆1 of a cluster gives information about the variance in 
the direction of the first eigenvector. Dashed lines as well as block markings have 
generic dimensions which should suggest that all dashed markings and all block 
markings should have similar characteristics. 

- Width: Similar to the length, the second eigenvalue 𝜆𝜆2 gives information about the 
variance in the direction of the second eigenvector perpendicular to the first 
eigenvector.  

- Roughness/height: The third eigenvalue 𝜆𝜆3 gives information about the variance in 
the direction of the third eigenvector. Since road markings usually 2D planes on the 
road surface, the variance in the direction of the third eigenvalue should be very small 
(𝜆𝜆3 ≪ 𝜆𝜆1). 
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- Linearity: The linearity of a cluster is a geometrical feature that can be derived from 
the eigenvalues. To describe the linearity of a cluster: 

 

linearity =
𝜆𝜆1 − 𝜆𝜆2
𝜆𝜆1

 

- Planarity: The planarity is a cluster is described as: 
 

planarity =
𝜆𝜆2 − 𝜆𝜆3
𝜆𝜆1

 

 

4.2.2 Block markings 
The segmentation of block markings has a similar approach to the segmentation of the dashed 
markings in the previous section. The PCA filter uses similar features, but different thresholds are 
set since a block marking has different geometrical characteristics compared to a dashed line. 
 

4.2.3 Continuous lines 
For continuous lines it would also be possible to segment and classify them from the point cloud 
using a similar method to the method explained for the dashed and block markings. However, an 
approach using the Hough transform for detecting lines is simpler and gives more reliable results. 
The Hough method takes as input a 2D image. The point cloud itself is a collection of points in 3D 
space, so some preprocessing must be done to obtain a 2D projection of the point cloud that can 
be used as input for the Hough algorithm. 
 
To obtain a 2D image that is suitable for the Hough transform algorithm, the 3D point cloud is 
ideally project into a 2D binary image with full and empty pixels. The road surface point cloud is 
first converted to a 2D image by projecting it from a bird’s eye perspective. To remove some 
noise from the image a few basic image processing steps are taken. An overview of the processing 
steps is shown in Figure 4.20. The individual morphological transformations are explained in 
Section 2.4.6. 
 

 
Figure 4.20: The morphological transformations applied to an input image. The operations are performed in order from left 

to right. These operations improve the visibility of the road markings. The green area shows vegetation which could be 
mistaken for a road marking.  

 
The goal of the morphological transformations applied in Figure 4.20 is to improve the visibility 
of the road markings and to decrease the visibility of vegetation. This workflow is robust and will 
also work on point clouds where the road markings have a varying point density when the road 
markings are (partly) occluded from the MLS system by a passing vehicle. 
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Hough Transform 
Now that the input image has been preprocessed, the Hough transform algorithm will attempt to 
find straight lines for a given intensity threshold in the Hough feature space (Figure 4.21). This 
threshold is arbitrary and can be tuned based on trial and error. The lower the threshold, the 
higher the number of detected lines. When detecting road markings, the assumption can be made 
that the detected lines should be parallel since they belong to the same section of road. Another 
boundary condition that applies to the solid road markings is that there should be at least two 
detected lines. Using these two conditions increases the chance that the correct lines are detected. 
The detected lines in Figure 4.21 are roughly vertical with an angle of approximately 180 degrees. 
This is also visible in the Hough feature space. 
 

 
Figure 4.21: (left) The input image for the straight-line Hough transform. (middle) The Hough feature space. The knots of 

the detected lines are circled in red. (right) The detected lines superimposed on the input image. 
 
 
When the Hough transform would be applied on the left input image from Figure 4.20, the green 
circled vegetation area would also show up as a knot in the Hough feature space. Figure 4.22 
shows three detected lines instead of two. The extra line compared to Figure 4.21 does not 
represent an actual road marking in reality. It represents vegetation alongside the pavement 
which just like road markings contains high intensity values in the point cloud.  
 

 
Figure 4.22: The result of the Hough transform on an input image with no preprocessing. 
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4.2.4 Asphalt edges 
To find the edges of the asphalt, a similar approach to the previous section is taken. The 
preprocessing of the input 2D image now focusses on making the asphalt edges clearly visible. 
The individual processing steps are shown in Figure 4.23. The opening and closing steps are used 
to remove noise and road markings from the image. The erosion step is used to make sure that 
the asphalt outline in the last step lies on the asphalt and not adjacent to the asphalt. This 
satisfies the standards for determining vertical clearances as explained in Section 2.1. 
 
The Canny operation in the last preprocessing step is necessary since the Hough transform 
algorithm detects lines and not edges. By applying the Canny edge detection the outline of the 
asphalt surface remains. This outline however also includes the edge of the asphalt along the 
point cloud border perpendicular to the side edges. An example is circled in light blue in Figure 
4.24. This knot in the Hough feature space has an angle perpendicular to the other two asphalt 
edges circled in red. Since the two red lines return a higher intensity value in the Hough space 
than the line circled in blue, a threshold can be set to exclude the blue circled line.   

 

 
Figure 4.23: The morphological transformations applied to an input image. These operations improve the visibility of the 

asphalt edge and remove other features such as road markings from the image. 
 

 
 

 
Figure 4.24: (left) The input image for the straight-line Hough transform. (middle) The Hough feature space. The knots of 

the detected lines are circled in red. The light blue circle also highlights a knot for a detected line at a different angle. 
(right) The image space containing the detected lines superimposed on the input image. 
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4.2.5 Lane identification 
Individual dashed and block markings do not give sufficient information needed for constructing 
the lane borders. All separate markings need to be grouped to reconstruct the lane borders. To 
identify which markings belong to the same border a similar version of a spanning tree algorithm 
from Prochazka et al. (2019) is used. A first random individual road marking is selected, and its 
end points are connected to all end points of the other remaining markings. The link that has the 
smallest angle and the smallest distance is then connected to the initial road marking. This process 
continues until all road markings are connected. Figure 4.25 gives a visualization of this process. 
This process is similar for block markings. 
 

 
Figure 4.25: The operations used to identify the different lane borders. (a) Connecting the initial road marking to all other 
markings. (b) The connection with the lowest distance and angle is selected. (c) The operation continues and the next road 
marking is connected to the remaining markings. (d) All road markings belonging to the same lane border are connected. 

 
 

4.2.6 Final detected lines 
All different road markings can now be represented as a straight line as is shown in Figure 4.26. 
Each marking was classified correctly here. The road marking information is stored in an array 
with attributes for the slope and intercept parameters and the line type. The slope parameters 
give information on the orientation of the road, which becomes useful information later on when 
the road name and location are determined. 
 
 

 
Figure 4.26: Example of a road section with different classes of detected lines. 
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4.3 Gantry vertical clearance estimation 
This paragraph is intended to explain the method for segmenting the gantry superstructure from 
the input point cloud. The segmentation of the gantry superstructure aims to discard the irrelevant 
points. This way only the relevant points for determining the vertical clearance remain. 
 

4.3.1 DBSCAN 
To extract the superstructure of the gantry from the point cloud the following assumption is used: 
 
Assumption 1: The superstructure of the gantry is at a height of more than 3 𝑐𝑐 above the road 
surface. 
 
This assumption already removes a lot of the irrelevant points and gives a good starting point for 
the DBSCAN algorithm. DBSCAN removes most of the noise and is very suitable to segment the 
gantry structure from the point cloud. Figure 4.27 shows the input point cloud, the input point 
cloud after the height threshold and the results of the DBSCAN clustering algorithm.  
 
 

 
Figure 4.27: Initial clustering of the point cloud to obtain the gantry superstructure after a height threshold is applied. 

 

4.3.2 Gantry orientation 
By performing a Hough transform on a 2D projection of the segmented gantry it is possible to 
estimate its orientation in the horizontal plane. With this information a local reference frame can 
be constructed for the gantry. This local reference frame makes it easier to process the data. 
Figure 4.28 shows the result of the Hough transform on the 2D projection of the gantry cluster.   

 

 
Figure 4.28: Detected line by a Hough transform. The angle of the detected line is the orientation of the gantry in the 

horizontal plane. 
 

 
 
 
  

Original point cloud Z threshold DBSCAN clustering
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4.3.3 Probability density function of z-values 
The columns at either end of the gantry structure are not relevant when determining the vertical 
clearances. Therefor they are removed from the cluster by removing 0.5 𝑐𝑐 from both ends. The 
suspension structure of a gantry can be characterized as an extruded triangle with the point facing 
downwards (See Figure 4.29). Along the extruded edges there are steel tubes. The bottom steel 
tube is often the lowest point of a gantry whenever there are no road signs mounted to the 
superstructure. 
 

 
Figure 4.29: Superstructure of a traffic gantry mounted on a temporary column. 

 [source: https://www.gsbirkhoff-staalwerken.nl/projecten/78-tijdelijke-ondersteuning-verkeersportaal] 
 
A kernel density estimation, or KDE (Truong-Hong & Lindenbergh, 2022), is used to identify the 
approximate location of the bottom steel tube. This location corresponds to a local maximum in 
the probability density function (PDF) of the z-values of the points in the gantry superstructure. 
This PDF should have a distinguishable peak at the height of the bottom tube since this tube is 
generally well represented by points in the point cloud. The points above the bottom tube are 
removed from the cluster. The remaining cluster contains all points on and below the bottom 
tube. These points are shown in red in Figure 4.30. 
 

 
Figure 4.30: Left image: The PDF of the KDE showing a peak at the height (z) of the bottom tube. Right image: The gantry 

superstructure with the columns on each end removed (right). 
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4.3.4 Alpha shape 
The alpha shape enables the possibility to find the edge points of the remaining cluster. When 
computing the alpha shape of a set of points it is important to choose a suitable 𝛼𝛼 parameter. 
This can be any arbitrary value. Here it is important to obtain a single alpha shape that encloses 
the entire point cluster. Figure 4.31 (top illustration) shows that a too high value for 𝛼𝛼 will result 
in multiple alpha shape polygons. These alpha shapes are very rough and do not exclusively 
include points that are on the edge of the gantry structure. When choosing a lower value for 𝛼𝛼 
the obtained polygons will have fewer cavities and protrusions and an overall smoother edge. A 
good value for 𝛼𝛼 results in a single alpha shape polygon. 
 

 
Figure 4.31: Alpha shapes for two different values of 𝛼𝛼. A larger 𝛼𝛼 value will result in more rough edges and multiple 

separate polygons. 
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4.3.5 B-spline approximations 
 
Bottom edge of the gantry superstructure 
The obtained alpha shape polygon describes the bottom edge of the gantry, but this alpha shape 
is defined in ℝ2 whereas the gantry superstructure in reality spans 3D space, ℝ3. The points along 
the edge of the alpha shape represent the bottom of the gantry superstructure. The first step is 
to cluster the edge points of the alpha shape in 3D space using DBSCAN. The resulting clusters 
are shown in Figure 4.32.  
 

 
Figure 4.32: Along the x-axis the separate-colored clusters define a continuous line, but in the y direction this line is not 

continuous. 
 
The remaining point clusters represent the bottom of the gantry superstructure. These are 
however discrete points where in reality this should be a continuous line. In an effort the estimate 
the superstructure’s bottom edge a B-spline is introduced to obtain a continuous approximation. 
For each individual cluster in Figure 4.32 a B-spline is computed. The final B-spline is shown in 
Figure 4.33. This B-spline is defined in ℝ3. A smoothing parameter of 𝑠𝑠 = 0.005 was used which 
results in a B-spline knot approximately every 10 𝑐𝑐𝑐𝑐. 
 

 

 
Figure 4.33: Gantry superstructure with the B-spline approximation of the bottom edge. 

 
 
  

Clustered gantry bottom edges in 3D
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Road surface 
The road surface can also be approximated with B-splines but in this instance bivariate B-splines 
will be used to approximate the road surface as a slightly curved plane. It is not necessary to 
approximate the entire the road surface present in the point cloud. Only the surface directly under 
the gantry is of importance. The segmented road surface points from Figure 4.34 are used to 
estimate the road surface with B-splines. A smoothing parameter of 𝑠𝑠 = 0.05 was used which 
results in a B-spline knot approximately every 50 𝑐𝑐𝑐𝑐. Since the road surface is very smooth it is 
not necessary to have the knots as close as is the case with the bottom of the gantry. Opting for 
a larger smoothing parameter can improve the performance significantly.  
 

 
Figure 4.34: The red polygon encloses the superstructure of the gantry. All road points inside the red polygon are 

segmented from the road surface and used for the B-spline estimation. 
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4.3.6 Vertical clearance estimation 
To estimate the vertical clearances under a gantry, three components are needed: 
 

- The bottom edge estimation of the gantry 
- The road surface estimation 
- The location of the road markings 

 
The road markings represent the lane borders. Since the minimal vertical clearance should be 
determined for each lane, a loop iterates over each lane and estimates the minimal vertical 
distance between the sections of the gantry edge and road surface that are located inside the 
evaluated lane. The vertical clearance 𝑐𝑐𝑉𝑉 is minimal distance ⊥ between the road surface and the 
gantry bottom edge. A visualization of the estimated vertical clearances is presented in Figure 
4.35. 

 
Figure 4.35: The estimated vertical clearances for a traffic gantry. The road has four lanes (3 + 1 emergency lane), so four 

clearances are estimated. 
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4.4 Viaduct vertical clearance estimation 
The steps described in Section 4.1 describe how the horizontal surfaces can be segmented from 
a viaduct point cloud. This results in two horizontal surfaces: the road and the bottom surface of 
the viaduct superstructure. In this section the process on how to infer the vertical clearances from 
these two surfaces is described. 

4.4.1 Viaduct convex hull 
The vertical clearances under a viaduct must be determined on the intersections of the detected 
road markings and the edge of the viaduct superstructure. Finding the intersection between a set 
of lines, the road markings, and a set of points, the viaduct, can be computationally intensive if 
the bridge surface consists of many points. A good solution here is to first compute the convex 
hull of the viaduct (Figure 4.36). This convex hull describes the edge of the bridge as if the cluster 
of points was enclosed by a rubber band. Since this convex hull is a polygon, it is possible to 
compute the intersections with all road marking lines. These intersections give a location in the 
horizontal plane with a x and y coordinate where the vertical clearance should be estimated. To 
estimate the heights of the road surface and the viaduct at the intersections both horizontal 
surfaces are estimated with a B-spline and the obtained B-splines are evaluated on the locations 
of the intersections. 
 

 
Figure 4.36: Convex hull of the viaduct superstructure that bridges the highway. The noisy shaded area inside the polygon 

is the segmented viaduct bottom surface. The convex hull represents the edge of the bridge superstructure. 
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4.4.2 Vertical clearance estimation 
To estimate the vertical clearances under a viaduct, three components are needed: 
 

- The estimation of the viaduct bottom surface 
- The estimation of the road surface 
- The location of the road markings 

 
The road markings represent the lane borders. Since the vertical clearance should be determined 
on each lane border, each lane border is processed recursively and ethe vertical distance 𝑐𝑐𝑉𝑉 
between the road surface and the viaduct surface is estimated. This distance ⊥ is determined 
twice for each lane border as illustrated in Figure 2.2. A visualization of the estimated vertical 
clearances is presented in Figure 4.37. The figure shows that the location on the hectometer signs 
(215.9) is increasing in the North direction. This indicates that the clearances at the bottom of 
the figure represent profile number one and the top clearances represent profile number two. 
 

 

 
Figure 4.37: Estimated clearances under a viaduct. The dark shaded area represents the projection of the viaduct bottom 

surface convex hull on the road. 
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4.5 Horizontal clearance estimation 
When determining the horizontal clearance, it is necessary to determine what objects or locations 
serve as a boundary. The type of boundary for is determined by following schematic in  
Figure 4.38. When the boundary is determined on each side of the road, the horizontal clearance 
can be estimated. 
 
 

 
 

Figure 4.38: Path that is followed when determining what the boundary is for the horizontal clearance. 

 

4.5.1 Location 
The horizontal clearance is estimated at the same location as the vertical clearance estimations. 
Most often there are guard rails present on both sides of the road meaning that the horizontal 
clearance is defined as the distance between the guard rails that are parallel to the road surface. 
Under a gantry a single horizontal clearance is estimated, but under a viaduct the horizontal 
clearance is determined twice: once at the front and once at the back of the viaduct (see the two 
profiles in Figure 4.37). 
 

4.5.2 Segmentation of guard rails 
Guard rails are predictable structures. Their height relative to the road surface and distance from 
the asphalt border does not vary a lot. A first step in segmenting the guard rails from the point 
cloud is by using the DBSCAN clustering algorithm. Before using the clustering algorithm a few 
assumptions are applied to the point cloud: 
 

- Assumption 1: The guard rail is located at a height of at least 20 𝑐𝑐𝑐𝑐 above the road 
surface. 

- Assumption 2: Points more than 2 𝑐𝑐 above the road surface are not considered for the 
horizontal clearance. 

- Assumption 3: The road surface is already classified in the lane detection step. These 
points can be disregarded when searching for the guard rails. 

 
The clustering algorithm can do a good first segmentation step, but often the clusters potentially 
containing the guard rails also contain a lot of vegetation. This is not odd since vegetation can 
easily grow high enough to make it difficult for the clustering algorithm to find a border between 
the guard rail and the vegetation. To resolve this problem some knowledge of the dimensions of 
standard guard rails is used. 
 
A candidate cluster possibly containing a guard rail and some grass noise is divided into multiple 
sections with a length of approximately 25 𝑐𝑐𝑐𝑐. For each section a Kernel Density Estimation (KDE) 
is performed of the z-values with a Top-hat filter (Figure 4.39). This Top-hat filter has a total 
bandwidth of 30 𝑐𝑐𝑐𝑐. Since the height of a guard rail bumper is also 30 𝑐𝑐𝑐𝑐 the KDE should give the 
highest signal on a height equal to the center of the bumper which is represented by the peak of 
the probability density shape (PDS). 
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Figure 4.39: PDS of the KDE along the z-axis with a Top-hat filter for a single section of a guard rail cluster containing 

vegetation. 
 
This information on the approximate center of the guard rail bumper can be used to improve the 
clustering results for the guard rails. The guard rail clusters in Figure 4.40 still contain some 
unwanted points from vegetation. When performing the KDE for each guard rail cluster and 
removing all points that fall outside the Top-hat filter centered at the peak of the PDS, the 
vegetation is mostly removed. The black points in the right panels are discarded. When high grass 
is present in a point cloud, it must be removed since it can influence the horizontal clearance 
estimation. Not removing the grass can cause the algorithm to use the grass as the bound for the 
horizontal clearance. 
 

 
Figure 4.40: (left) A bird’s eye view of the road section with the classified guard rails. (right) The individual guard rail 
clusters. The black cross-markings indicate the approximate center of the rail bumper. The remaining black points are 

filtered out by using the KDE. 
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4.5.3 Horizontal clearance estimation 
To estimate the horizontal clearance between the guard rails a small section of 10 𝑐𝑐𝑐𝑐 of a guard 
rail on each side of the road is extracted at the location where the horizontal clearance needs to 
be estimated. The minimal clearance is then estimated as the minimal horizontal distance 
perpendicular to the driving direction between the guard rails. The minimal clearance should be 
determined between a height of 0.5 𝑐𝑐 and 1.0 𝑐𝑐 above the asphalt according to the regulations. 
This area is green shaded in Figure 4.41. The figure shows that there are guard rails present on 
both sides of the road. The final horizontal clearance is estimated parallel to the road surface. 
 

 
Figure 4.41: The result for a horizontal clearance estimation between two guard rails. The green shaded area indicates 

where the minimal horizontal clearance is estimated. 

4.5.4 Clearance estimation without guard rails 
Guard rails are not always present alongside the road under viaducts or traffic gantries. In these 
situations, there are often other objects that bound the horizontal clearance. Objects such as 
bridge columns, gantry columns or concrete barriers. If there is no guard rail present on the side 
of the road, the DBSCAN algorithm is used in the area next to the road to find a cluster of points 
that can serve as an alternative boundary for the horizontal clearance. Figure 4.42 shows two 
situations where there is only a guard rail present on the right side of the road. 
 

 
Figure 4.42: Two situations where a guard rail is missing on the left side of the road. 
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Once an alternative object has been identified at the side of the road that is missing a guard rail, 
the minimal horizontal clearance is again estimated between 0.5 𝑐𝑐 and 1.0 𝑐𝑐 above the asphalt. 
Figure 4.43 shows that on the left there is no guard rail present but instead a column of a gantry. 
If the DBSCAN clustering algorithm cannot find an object bounding the horizontal clearance within 
10 meters from the asphalt edge, the horizontal clearance is bound by the edge of the asphalt. 
In the situation of Figure 4.44 no object restricting the clearance could be found on the left side 
of the road. Now the edge of the asphalt on the left and the guard rail on the right are used as 
the two objects restricting the horizontal clearance. 
 

 
Figure 4.43: Horizontal clearance between a gantry column (left) and a guard rail (right) 

 
 

 
Figure 4.44: Horizontal clearance between the asphalt edge (left) and a guard rail (right) 
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4.6 Road information classification 
The point clouds used for this research contain coordinates in the RD-New (EPSG:28992) 
reference frame. This information is used to find the nearest hectometer sign to the road section 
that is being processed. The hectometer sign in Figure 4.45 shows that the sign is located on the 
A32 highway, at 62.5 kilometers and the direction is ‘Re’ or right.   
 

 
Figure 4.45: A hectometer sign. The signs are placed every 100 meters along the highways. ‘Re’ stands for right and ‘Li’ 

stands for left. 
 
A .shp shapefile with the location of all hectometer signs along the Dutch highway network is used 
as a look up table for the nearest sign. With the Nearest Neighbor implementation in scikit-learn 
(Pedregosa et al., 2012) the nearest hectometer sign is found. This is often enough to classify the 
correct road name, but near highway intersections an extra step is needed to obtain the correct 
road information. When estimating clearances on a road A under a viaduct it should be taken into 
account that there is also a road B crossing overhead. To make sure that the correct road name 
is determined, it is also important to determine the orientation of road A. The orientation can be 
estimated from the road markings that were classified in Section 4.2. 
 

 
Figure 4.46: The components needed to find the nearest hectometer sign. 
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5. Case study and results 

In this section the proposed method will be applied to a selection of gantries and viaducts. This 
case study will give insight into the quality of the estimated clearances. The estimated values will 
be compared to the measurements that were independently obtained by third party contractors. 
 

5.1 Case study area 
For the case study two sections of highway in the Netherlands are selected (see Figure 5.47). The 
reason these two sections are selected is that they fulfill two requirements: 
 

- The section has recently (<1 year) undergone major maintenance, i.e., a new asphalt 
layer was applied. After the maintenance is completed, the contractor must take new 
clearance measurements under all gantries and viaducts. 

- The most recent point clouds that are available for these sections were obtained after 
the maintenance was completed. As such, the scanned scene in the point cloud is 
identical to the scene when the clearance measurements were taken by the contractor. 

 
Combined, the two sections of highway contain 50 gantries and 20 viaducts. The point clouds for 
these objects are all obtained from dataset A. For 10 gantries along the A50 highway there are 
also point clouds available from dataset B. These will also be included in the case study. 
 

 
Figure 5.47: Overview of the highway sections selected for the case study. 
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5.2 Estimated clearances for a single structure 
The purpose of this section is to give insight into how the proposed method presents its output to 
the user. First the clearance estimates for a single gantry are reviewed and subsequently the 
clearance estimates for a single viaduct are reviewed. 

5.2.1 Gantry 
 

5.2.1.1 Vertical clearance 
In the top panel of Figure 5.48 the input point cloud for a single gantry from dataset A is presented 
with annotations for the different objects that are visible. On the left side of the superstructure a 
section of the high-density dataset B is superimposed. In the bottom panel the three traffic signs 
that are mounted to the superstructure are displayed along with the bottom edge that was 
estimated. The bottom edge of sign A is estimated correctly, but the bottom edge of sign B seems 
unrealistic. The estimated bottom edge follows the contour of the data nicely, but in reality this 
traffic sign probably has a straight bottom edge. The estimated bottom edge of sign C looks better 
compared to sign B since this sign has a more realistic horizontal edge.  
 

5.2.1.2 Horizontal clearance 
The horizontal clearance in the example of Figure 5.48 is somewhat ambiguous. The left bound 
of the horizontal clearance is the guard rail that is next to the road. The right bound however 
could be either the bush/small tree or the column of the gantry. Section 2.1.2 gives the definition 
that obstacles that serve as a boundary for the horizontal clearance are defined as objects or 
vegetation that can cause severe damage or injuries to a vehicle or its passengers when a collision 
occurs. It is difficult to automate this assessment of whether an object will cause severe damage 
or injuries. The method that is currently proposed will use the small tree as the right boundary. 
To get the horizontal clearance between the guard rail and the column of the gantry the user can 
choose to alter the DBSCAN parameters that clusters the objects alongside the road or by simply 
removing the small tree from the input point cloud. This situation is however very rare as it 
occurred only once during the case study. 
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Figure 5.48: Example input point cloud of a gantry. The bottom panel shows the estimated bottom edges of the traffic signs 

attached to the gantry superstructure. 
 
Figure 5.49 shows the third-party clearance measurements together with the estimated clearance 
measurements by the proposed method. The comparison between the results is shown in Table 
2. This shows that the estimated vertical clearances 𝑐𝑐𝑉𝑉,1, 𝑐𝑐𝑉𝑉,2 and 𝑐𝑐𝑉𝑉,4 are an overestimation of the 
third-party measurements by approximately 2 𝑐𝑐𝑐𝑐. 𝑐𝑐𝑉𝑉,3 has much larger offset with the third-party 
measurements of almost 6 𝑐𝑐𝑐𝑐. A possible explanation for this large difference is incomplete 
sampling of the traffic sign by the laser scanner. The estimated horizontal clearance 𝐶𝐶𝐻𝐻 is an 
underestimation of the third-party measurement by 5 𝑐𝑐𝑐𝑐.  
 
 
Table 2: Difference between the third-party measurements and the gantry clearances that were estimated by the proposed 

method. 
 Third-party 

measurement [m] 
Estimated from point 
cloud [m] 

Difference [mm] 
(𝒄𝒄𝑽𝑽,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕−𝒑𝒑𝒑𝒑𝒕𝒕𝒕𝒕𝒑𝒑 − 𝒄𝒄𝑽𝑽,𝒆𝒆𝒆𝒆𝒕𝒕𝒕𝒕𝒆𝒆𝒑𝒑𝒕𝒕𝒆𝒆𝒕𝒕)  

𝑐𝑐𝑉𝑉,1 6.943 6.964 -21 
𝑐𝑐𝑉𝑉,2 6.873 6.852 -21 
𝑐𝑐𝑉𝑉,3 6.708 6.766 -58 
𝑐𝑐𝑉𝑉,4 6.859 6.875 -16 
𝑐𝑐𝐻𝐻 22.31 22.26 50 

 

x[m]

z[m
]
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Figure 5.49: The third-party clearance measurements (top) and the estimated clearances from the point cloud from dataset 

A (bottom). 
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5.2.2 Viaduct 
 

5.2.2.1 Vertical clearance 
The locations at which the vertical clearances under a viaduct are determined are shown in Figure 
5.50. The top image shows the third-party measurements for a single side of the viaduct and the 
bottom image shows the estimated clearances for an entire viaduct. The comparison between the 
clearances is shown in Table 3. The table shows that all estimated vertical clearances under this 
viaduct are an overestimation of the clearance measurements provided by the third-party 
contractor.  

5.2.2.2 Horizontal clearance 
Under the viaduct there are guard rails present on both sides of the road. These serve as the left 
and right boundary of the horizontal clearance. The horizontal clearance should be determined at 
the frond and the back of the viaduct hence the two annotations 𝑐𝑐𝐻𝐻,1 and 𝑐𝑐𝐻𝐻,2 in Figure 5.50. Both 
estimated horizontal clearances are an underestimation of the third-party measurements.  
 
 
Table 3: Difference between the third-party measurements and the viaduct clearances that were estimated by the proposed 
method. 

 Third-party 
measurement [m] 

Estimated from point 
cloud [m] 

Difference [mm] 
(𝒄𝒄𝑽𝑽,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕−𝒑𝒑𝒑𝒑𝒕𝒕𝒕𝒕𝒑𝒑 − 𝒄𝒄𝑽𝑽,𝒆𝒆𝒆𝒆𝒕𝒕𝒕𝒕𝒆𝒆𝒑𝒑𝒕𝒕𝒆𝒆𝒕𝒕)  

𝑐𝑐𝑉𝑉,1 4.871 4.950 -79 
𝑐𝑐𝑉𝑉,2 4.888 4.953 -65 
𝑐𝑐𝑉𝑉,3 5.034 5.065 -31 
𝑐𝑐𝑉𝑉,4 5.177 5.193 -16 
𝑐𝑐𝑉𝑉,5 5.297 5.327 -30 
𝑐𝑐𝑉𝑉,6 5.423 5.450 -27 
𝑐𝑐𝑉𝑉,7 5.152 5.200 -48 
𝑐𝑐𝑉𝑉,8 5.167 5.209 -42 
𝑐𝑐𝑉𝑉,9 5.328 5.365 -37 
𝑐𝑐𝑉𝑉,10 5.478 5.507 -29 
𝑐𝑐𝑉𝑉,11 5.615 5.634 -19 
𝑐𝑐𝑉𝑉,12 5.717 5.760 -43 
𝑐𝑐𝐻𝐻,1 17.84 17.78 60 
𝑐𝑐𝐻𝐻,2 17.85 17.80 50 
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Figure 5.50: Third-party clearance measurements for one side of the viaduct (top) and the estimated clearances from the 

point cloud (bottom). 
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5.3 Gantry vertical clearances 
This section covers the combined results of all gantries in the case study. The distribution of the 
vertical clearance estimations is presented here. The case study area contains 50 gantries. These 
are all gantries with varying traffic sign layouts. On average a gantry spans three lanes: two 
traffic lanes and an emergency lane. The largest gantries span up to six lanes, which will in that 
situation yield six vertical clearance estimations. In total the 50 gantries yield 177 clearance 
estimations. Each gantry was processed separately, and the estimated clearances were compared 
with the available third-party measurements. By calculating the difference between the third-
party measurements and the estimated clearances an offset is calculated. The distribution of these 
offsets gives a quantitative judgement on the quality of the results. The offset is calculated as: 
 
 

𝑒𝑒 = 𝑐𝑐𝑉𝑉,𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 − 𝑐𝑐𝑉𝑉,𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝𝑡𝑡𝑒𝑒𝑖𝑖 
 
Where 𝑐𝑐𝑉𝑉,𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 is the minimal vertical clearance of a lane as established by the third-party 
contractor and 𝑐𝑐𝑉𝑉,𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝𝑡𝑡𝑒𝑒𝑖𝑖 is the vertical clearance of a lane that was estimated from the point 
clouds of dataset A. The distribution shows that the median offset of the method is −23 𝑐𝑐𝑐𝑐. This 
implies that the method on average overestimates the minimal vertical clearance of a lane under 
a gantry. To make a robust assessment of the variability of the method the median absolute 
deviation (MAD) is introduced. The MAD gives a better estimation of the dispersion since it is not 
affected by outliers. The standard deviation of the offsets is 15 𝑐𝑐𝑐𝑐. The standard deviation is 
calculated as: 
 

𝜎𝜎 = 𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑘𝑘 
 
Where 𝑘𝑘 = 1.4826 is the scale factor that is needed to convert the MAD to a standard deviation for 
a normally distributed dataset. The distribution of the offsets is visualized in Figure 5.51.  
 
 

 
Figure 5.51: The histogram shows the difference between the third-party measurements and the estimated vertical 

clearances. 
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5.3.1 Vertical clearance estimations on high density validation point cloud 
As stated in Section 3, there are high-density point clouds from dataset B available. This dataset 
only contains 10 gantries but applying the proposed method to these gantries gives insight in how 
the point density of a point cloud impacts the offsets with the third-party measurements. The 10 
gantries are also present in dataset A, so a comparison between the results can be made. The 
high-density dataset B has a point density that is up to 20 times higher than dataset A. The 
estimated clearances from the high-density point clouds show a much lower median offset of 5 𝑐𝑐𝑐𝑐 
as well as a lower standard deviation of 9 𝑐𝑐𝑐𝑐 when comparing the results with dataset A. The 
distributions of the offsets for dataset A and dataset B are visualized in Figure 5.52. Both datasets 
have an equal population of 10 gantries, which translates to 30 vertical clearance estimations (3 
lanes or vertical clearances per gantry). 
 

 
Figure 5.52: The histogram shows the difference between the third-party measurements and the estimated vertical 

clearances. Dataset A and Dataset B are described in Section 3. 
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5.4 Viaduct vertical clearances 
The case study area contains 20 viaducts. This is less than half of the number of gantries that 
was processed. However, this deficit is compensated for two reasons: 

- Each vertical clearance should be estimated once at the front of the viaduct and once
at the back.

- Under viaducts the vertical clearance must be estimated for each road marking
instead of each lane. A road with two lanes should have three road markings.

These two factors combined compensate for the lower number of viaducts that were processed 
compared to the number of gantries. In total the 20 viaducts yield 246 vertical clearance 
estimations. By calculating the difference between the third-party measurements and the 
estimated clearances an offset can be calculated. The distribution of these offsets gives a 
quantitative judgement on the quality of the results. The offset is calculated as: 

𝑒𝑒 = 𝑐𝑐𝑉𝑉,𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 − 𝑐𝑐𝑉𝑉,𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝𝑡𝑡𝑒𝑒𝑖𝑖 

Where 𝑐𝑐𝑉𝑉,𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 is the vertical clearance above a road marking as established by the third-
party contractor and 𝑐𝑐𝑉𝑉,𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝𝑡𝑡𝑒𝑒𝑖𝑖 is the vertical clearance above a road marking that was estimated 
from the point clouds in dataset A. The distribution shows that the median offset of the method 
is −33 𝑐𝑐𝑐𝑐. This implies that the method on average overestimates the vertical clearance on a 
point under a viaduct compared to the third-party measurements. To make a robust assessment 
of the variability of the method the median absolute deviation (MAD) is calculated. By converting 
the MAD to a standard deviation, a 𝜎𝜎 of 13 𝑐𝑐𝑐𝑐 is found. The distribution of the offsets is visualized 
in Figure 5.53. 

Figure 5.53: The histogram shows the difference between the third-party measurements and the estimated vertical 
clearances. 
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5.5 Horizontal clearances 
The estimation of the horizontal clearance is not dependent on whether a gantry or a viaduct is 
processed. The estimated horizontal clearances from the 50 gantries and 20 viaducts can be 
combined and evaluated as a single set of results. For each gantry one horizontal clearance is 
estimated and for each viaduct two horizontal clearances are estimated. A viaduct yields two 
horizontal clearances since it is estimated at the front and at the back of the structure. By 
calculating the difference between the third-party measurements and the estimated clearances, 
an offset can be determined. The offset is calculated as: 

𝑒𝑒 = 𝑐𝑐𝐻𝐻,𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 − 𝑐𝑐𝐻𝐻,𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝𝑡𝑡𝑒𝑒𝑖𝑖 

Where 𝑐𝑐𝐻𝐻,𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 is the horizontal clearance under a gantry or viaduct as established by the 
third-party contractor and 𝑐𝑐𝐻𝐻,𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝𝑡𝑡𝑒𝑒𝑖𝑖 is the horizontal clearance that was estimated from the point 
clouds in dataset A. In Figure 5.54 these offsets are visualized with a probability density function. 
The distribution shows that the median offset of the proposed method is 30 𝑐𝑐𝑐𝑐. This implies that 
the method on average underestimates the horizontal clearances. The standard deviation 𝜎𝜎 here 
is 34 𝑐𝑐𝑐𝑐. This is calculated based on a population of 90 horizontal clearance estimations. 

Figure 5.54: The histogram shows the difference between the third-party measurements and the estimated horizontal 
clearances. 
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5.5.1 Boundary type 
When estimating the horizontal clearance, the proposed method considers three different types 
of boundaries: 
 

1. Guard rails 
2. Other objects (columns, other structural components or vegetation) 
3. The asphalt edge 

 
Under all viaducts and gantries that were processed there was at least a guard rail on one side of 
the road. Figure 5.55 shows the distribution of the horizontal clearance offsets (𝑒𝑒 = 𝑐𝑐𝐻𝐻,𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 −
𝑐𝑐𝐻𝐻,𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝𝑡𝑡𝑒𝑒𝑖𝑖)  for the different boundary classes. The figure shows that when guard rails are present 
on both sides of the road the distribution of the offsets is narrow and has a median around 0 𝑐𝑐𝑐𝑐. 
When the road edge is used as one of the boundaries, there seems to be a systematic 
underestimation in the horizontal clearance. When there is no guard rail present on one side, but 
a different object serves as a boundary for the horizontal clearance, the results are very diverse. 
The results at marker A and B in Figure 5.55 were caused when in reality there were guard rails 
on both sides of the road, but the clustering algorithm for segmenting the guard rails could only 
find one. In both cases the algorithm classified a different object as the boundary for the horizontal 
clearance. In case of situation C the column of a gantry was supposed to be a boundary for the 
horizontal clearance, but due to too much vegetation between the column and the road, a large 
bush was determined by the method to be the boundary of the horizontal clearance. 
 
 

 
Figure 5.55: Impact of the type of boundary on the horizontal clearance offset. In situation A and B on of the guard rails 
was not recognized and in situation C there was too much vegetation present which caused a large offset with the third-

party measurement. 
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5.6 Processing time 
The processing time is largely dependent on the size of the point cloud used as input. This section 
covers the relation between the size of an input point cloud and the processing time of the 
proposed method. Figure 5.56 visualizes this relation for estimating the clearances under a gantry. 
The figure shows a breakpoint just below 1.500.000 million points. This breakpoint can be found 
by using piecewise or segmented regression (Muggeo, 2003 and Pilgrim, 2021). This is a 
regression model where a change in gradient, the breakpoint, and the linear lines are fit 
iteratively. The general form of a model with one breakpoint according to Muggeo (2003) is: 
 

𝑦𝑦 = 𝛼𝛼𝑎𝑎 + 𝑐𝑐 + β(x − ψ)H(x − ψ) + ζ 
( 7 ) 

 
Where given some data 𝑎𝑎,𝑦𝑦 the goal is to estimate the gradient 𝛼𝛼 and intercept 𝑐𝑐 of the first 
segment, the change in gradient from the first to the second segment 𝛽𝛽 and the position of the 
breakpoint 𝜓𝜓. 𝐻𝐻 is the Heaviside step function and 𝜁𝜁 is a noise term. This non-linear function can 
be solved by performing a Taylor expansion with an initial guess for the breakpoint 𝜓𝜓0 to obtain 
a linear approximation: 
 

𝑦𝑦 ≈ 𝛼𝛼𝑎𝑎 + 𝑐𝑐 + β(𝑎𝑎 − 𝜓𝜓0)𝐻𝐻(𝑎𝑎 − 𝜓𝜓0) − β(ψ −ψ0)𝐻𝐻(𝑎𝑎 − 𝜓𝜓0) + 𝜁𝜁 
( 8 ) 

The linear relation can now be solved by using ordinary linear regression. This regression iterates 
until the solution is converged beyond an arbitrary stopping criterion. 
 

 
Figure 5.56: Processing time for estimating the clearances of a gantry for different point cloud sizes. 

 
In Section 5.2 the point clouds for obtaining the test results did not exceed a size of 1.000.000 
points, thus the breakpoint of 1.500.000 points was not exceeded. The processing times were 
obtained by using point clouds from dataset B which contains much higher point densities. By 
taking multiple random subsets of different point sizes from the same gantry point cloud, the data 
from Figure 5.56 was obtained. The processing times were obtained on a computer with an AMD 
Ryzen™ 5600u processor with 16GB memory. 
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6. Discussion 

6.1 Third-party measurement data 
When comparing the proposed method with existing third-party clearance measurements, it is 
assumed that these measurements comply with the requirement from Rijkswaterstaat. However, 
it cannot be guaranteed that the contractor responsible for these measurements has a waterproof 
approach when measuring the clearances. It can be difficult to judge to which extent the 
differences between the third-party measurements and the estimations from the point clouds are 
caused by the proposed method, quality issues with the point clouds or even the measurements 
from the contractor. A solution to this problem would be to obtain the validation measurements 
yourself. This way the third-party is taken out of the equation, but this is costly and time 
consuming.  
 
A clear benefit of the available validation third-party data however is that there are archived 
measurements available for every gantry and viaduct along the Dutch highway network. Since it 
is necessary to always take new measurements after maintenance, there should be data of the 
current situation of each viaduct and gantry in the country. This makes it possible to perform 
even more and larger case studies. 
 

6.2 Quality of the point cloud 
Of the point clouds that were used in this thesis only the 10 high-density point clouds of dataset 
B were specifically acquired with the purpose of clearance estimation. Therefore, the contractor 
responsible for performing the laser scans was aware of the requirements that apply to these 
measurements. Based on these requirements the measurement campaign was designed. 
 
The point clouds from dataset A can be described as a ‘general purpose’ point cloud. They have 
not been acquired with the clearance measurement requirements in mind. The point clouds are 
offered as a service and the customer can download the point cloud of an area of interest 
whenever and do whatever he wants with it. Each year there are new point clouds available for 
all roads in the Netherlands, and the old point clouds remain available as historic data. This 
approach has a much lower cost per scanned viaduct or gantry for the end user since all data is 
offered as a service to multiple customers. The downside however is that a single customer does 
not have any influence on how the measurement campaign is designed and what quality is desired 
from the point clouds. 

6.3 Occlusions in the point clouds 
A characteristic of the point clouds from dataset A is that they are for the most part obtained by 
only scanning a road section once. Moreover, the point clouds are collected without road closures 
which means that overtaking vehicles will obstruct the MLS system. When the laser scanner is 
obstructed by a small car for only a short duration, the obtained cloud is still usable but the point 
density in the occluded areas is significantly reduced. When the MLS passes a large truck, the 
occlusion is much more severe resulting in large empty areas in the point cloud (Figure 6.57). 
Even in less severe cases of laser scanner obstruction, the resulting point cloud can have a very 
inhomogeneous point density. This makes it difficult to deploy any density-based clustering 
algorithms such as DBSCAN since the results can be greatly affected by these irregularities.  
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Figure 6.57: Missing area in a point cloud because of an obstructed laser scanner. 

 
This occlusion problem occurs a lot since there are always other vehicles on the road passing or 
being passed by the MLS. Hence, when the MLS passes a viaduct or gantry it is not guaranteed 
that the scanner obtained a point cloud that is suitable for the developed method to estimate 
clearances. This is an expected limitation of the data since the scans are obtained on an open 
road with other road users. 
 
A less severe reduction in point density in Figure 6.58 shows that besides the reduction in points, 
the intensity of the road markings on the right side is also reduced. A possible explanation for this 
reduced intensity could be a consequence of a large incidence angle of the scanner with the 
scanned surface. The road markings circled in red were occluded by traffic when the MLS was 
alongside them, but from a distance the MLS was able to get a line of sight with these road 
markings. Scanning a horizontal plane from a large distance with a large incidence angle can 
greatly reduce the intensity. This incidence angle effect is already significant for incidence angles 
> 20° (Kukko et al., 2008). The road markings were still detected in the end, as can be seen in 
the right image, but the differences in point density and intensity for similar classes of road 
markings asks for forgiving detection parameters with a high bandwidth. These forgiving 
parameters cause more noise and can result in errors in the road marking detection. 
 

 
Figure 6.58: Reduces point density on the right lane makes road markings less visible. 
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6.4 Sensitivity analysis 
To make an assessment about how sensitive the method is to a point cloud with a reduced point 
density, a 50% random subset of a gantry point cloud is processed 100 times. By calculating the 
dispersion of the obtained clearances from these subsets a quantitative judgement can be 
presented about how important it is that the proposed method selects the correct edge points.   
 

 
Figure 6.59: Deviations from the median clearance for clearance estimations with a subset of 50% from the original data. 

Left: Vertical clearances, right: horizontal clearances. 
 
Figure 6.59 shows that if the clearances under a gantry are determined 100 times for a random 
subset of 50% of the original data, the standard deviation of the clearance offsets  
(𝑒𝑒 = 𝑐𝑐𝑉𝑉,𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 − 𝑐𝑐𝑉𝑉,𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑝𝑝𝑡𝑡𝑒𝑒𝑖𝑖) is 3 𝑐𝑐𝑐𝑐. For the horizontal clearances in the right plane, the 
distribution is even narrower. For 87 out of 100 horizontal clearance estimations the deviation 
was within 1 𝑐𝑐𝑐𝑐. This supports that the proposed method is stable and is not very sensitive to a 
homogeneous reduction in points. 
 

6.5 Incomplete laser scanner sampling 
When the point density of a sampled traffic sign is too low, it can occur that the line that estimates 
bottom edge of a sign is not an accurate representation of the reality. In Figure 6.60 it is clearly 
visible that the estimated bottom edge is very rough. Problems like this can have a significant 
impact on the vertical clearance estimation under signs that have a low point density. A possible 
solution here could be to only take the lowest point of a traffic sign and use that point to estimate 
the bottom edge as a horizontal line.  

 
Figure 6.60: A typical example of a bottom edge estimated on a low point density traffic sign. 
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6.6 Data noise 
To get a sense of the noise present in the point clouds of dataset A, a plane can be fitted to a 
small cutout of points representing a planar surface. This is done with three different 
object/material types: asphalt, concrete (viaduct) and traffic signs. The plane can be fitted with 
least squares and the root mean square (RMS) of the distance of all points to the fitted plane is 
shown in Table 4. The table shows that RMS is the lowest for the concrete of a viaduct and that 
the RMS is highest for a traffic sign mounted to a gantry. A visualization for distance to the fitted 
plane for each point on a traffic sign is presented in Figure 6.61. 
 

Table 4: Overview of the RMS for a plane fitted to a group of points from different objects. 
 Area [m2] Number of points RMS [mm] 

Asphalt 2.25 1387 7.4 
Viaduct bottom surface 2.25 1109 3.7 

Gantry sign 2.25 1177 9.2 
 
 

 
Figure 6.61: The cloud to plane distance for a plane fitted to a set of points in the orange outlined area. 

 

6.7 Applicability 
The method developed in this research focuses on Dutch highway infrastructure. Particularly 
viaducts and traffic gantries. Can the developed method also be applied to other infrastructure 
objects such as overhead traffic lights or tunnels? Will the method also be applicable to highways 
in other countries? 
 
A traffic light construction as visualized in Figure 6.62 has a very similar construction to the traffic 
gantry. It is also mandatory to obtain clearances under traffic light constructions. The proposed 
approach for segmenting the bottom edge of a traffic gantry should also be applicable to a traffic 
light construction. A potential issue however could occur when segmenting the road markings. 
Road markings near a traffic stop are often more complex with arrows or stop lines. This is not 
something that the method considers currently.   

1

Cloud to plane distance for a plane fitted with least squares [m]

2.25 m2
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Figure 6.62: The traffic light construction has similar structural characteristics to the traffic gantry. 

 
 
For tunnels the clearances are also measured and archived by Rijkswaterstaat and its contractors. 
The tunnel shares some structural characteristics with a viaduct, but they are not similar enough 
for the method to work. Tunnels often have installations for ventilation suspended from the ceiling 
which is not accounted for in the proposed workflow. Even more, tunnels don’t always have 
horizontal planar ceilings but can also have curved ceilings. 
 
Is the proposed method also applicable to highway infrastructure in other countries? This is a 
question that cannot be answered with certainty since there were no point clouds from other 
countries available but the Netherlands. In general, the viaducts and traffic gantries in other 
European countries look very similar to their Dutch counterparts. It can be assumed that, all be 
it with some tuning of different parameters, the proposed workflow can also be applied to 
infrastructure in other countries.  

80 80 80
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7. Conclusions and Recommendations 

This chapter will conclude this thesis. In Section 7.1 the research questions from Section 1.3 will 
be answered and Section 7.2 will present a recommendation for future research in the field of 
automatic clearance estimations of highway infrastructure from LiDAR point clouds. 

7.1 Conclusions 
In Section 1.3 the following main research question was stated: 
 

- How to improve the approach for validating clearance measurements of highway 
infrastructure with the usage of LiDAR point clouds? 

 
Currently, clearance measurements are validated by performing manual measurements in a point 
cloud. In this research a method is proposed that can automatically estimate vertical and 
horizontal clearances under gantries and viaducts from a point cloud. The clearances are 
estimated using an intuitive geometrical approach. Initially the road surface is segmented to 
classify the road markings, subsequently the bottom edge of the overhead structure, or the edge 
of the guard rails is segmented and finally the vertical and horizontal clearances are estimated. 
This approach gives the user a good understanding of how the different measurement estimations 
are obtained. The presentation of the results for a clearance estimation is according to the 
requirements issued by Rijkswaterstaat.   
 
The main research question is divided into 6 sub-questions. They are answered below: 
 

1. How to segment and classify different viaduct and gantry components from the 
point cloud data? 
The bottom surface of the viaduct is segmented from the point cloud using a series of 
operations involving a quadtree representation of the input point cloud, a local surface 
extraction method by using a kernel density estimation and subsequently cell-based 
region growing to obtain the bottom surface of the superstructure. The convex hull of this 
segmented surface is computed to obtain the edges. 
 
The gantry superstructure is segmented from the point cloud using DBSCAN with PCA and 
the assumption that the superstructure should be located at least 3 meters above the 
road surface. The bottom edge of the superstructure is extracted by computing the alpha 
shape. This yields a set of edge points in ℝ3 that can be clustered using DBSCAN to obtain 
the separate clusters representing the bottom edge of the different signs and structural 
beams that are part of the superstructure. 

2. How to obtain the highway lane boundaries from the point cloud data? 
A similar approach to extracting the viaduct bottom surface is used to extract the road 
surface from the point cloud. A combination of DBSCAN with PCA and the Hough transform 
for straight lines is used to obtain the different classes of lane boundaries. The input for 
the Hough transform is first preprocessed with some common image processing steps to 
increase the robustness of the line detection. 

3. What objects bound the horizontal clearances under a gantry or viaduct and how 
can they be segmented from the point cloud? 
Generally, the horizontal clearance under a gantry or viaduct is bounded by guard rails 
that are present alongside both road edges. With the assumptions in Section 4.5 and 
DBSCAN the guard rails can be segmented from the point cloud. These clusters can still 
contain noise from high vegetation but since the guard rails have a predictable size and 
location, this information can be used to filter out the grass and other noise with help of 
a kernel density estimation. When no guard rail is present a different cluster of points 
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that bounds the horizontal clearance is sought for. Since these other clusters containing 
objects such as columns, beams or even fences have less predictable characteristics, 
there is a higher chance that this clusters contains vegetation that is not filtered out. 
When there is no object restricting the horizontal clearance within 10 meters of the road 
edge, the edge of the asphalt is used as the boundary where the horizontal clearance is 
truncated. 

4. What are the geometric characteristics of a structure’s components that 
determine the clearances? 
For a viaduct the vertical clearances are restricted by the road surface and the bottom of 
the bridge superstructure. These are both horizontal planar surfaces. For gantries the 
bottom edge is a bit more complex since it is dependent on the layout of the mounted 
traffic signs on the gantry superstructure. In general, a gantry bottom edge is composed 
of separate edges from the individual traffic signs. The bottom edge is best described by 
a set of B-splines. 

5. How to estimate and locate the minimal vertical and horizontal clearances from 
the point clouds? 
To estimate the clearances between two segmented point clusters, for instance a road 
surface and the bottom edge of a traffic sign mounted on a gantry, B-splines are used to 
approximate the collections of discrete points as a continuous surface or edge. The 
information about the location of the road markings is then used to determine at what 
location or between which boundaries the clearances should be estimated. The continuous 
surfaces and edges now make it possible to estimate the clearance at every location 
instead of only at the locations of the discrete points in the point cloud. 

6. How to assess the quality of the inferred clearances and what is the quality 
difference between data providers? 
To make an assessment about the quality of the proposed method a case study was 
performed. The study area contained 50 gantries and 20 viaducts. The proposed method 
was used to estimate all clearances for these structures and the results were compared 
with clearance measurements performed by third party contractors. The clearances 
inferred from the low-density point cloud, dataset A, show a median overestimation of 
the vertical clearance of 23 mm under the gantries and 33 mm under the viaducts. The 
horizontal clearances show a median underestimation of 30 mm. A comparison with higher 
density point clouds, dataset B, was made by using a point cloud dataset containing 10 
gantries. These point clouds were specifically obtained with the purpose of estimating 
clearances and had an approximately 20 times higher point density in some areas 
compared to dataset A. The median vertical clearance estimation offset in these point 
clouds was an underestimation of 5 mm. The clearances estimated from dataset B also 
had a lower level of dispersion compared to when the same gantries were processed from 
dataset A: a standard deviation of 9 𝑐𝑐𝑐𝑐 vs 14 𝑐𝑐𝑐𝑐. 
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7.2 Recommendations 
The proposed method can be used for determining clearances of highway viaducts and gantries. 
Still, there are several aspects that could be improved upon or could be investigated in future 
research: 
 
Investigation into the origin of the estimation offsets 
The estimated clearances from the proposed method seem to have systematic offset with the 
third-party measurements. The origin of this offset might lay in the data itself, but there could 
also be explanation for this difference in the proposed method. The cause is unclear. A further 
investigation could seek to explain this offset and use that understanding to improve the 
estimated clearances. 
 
Optimization of Python code and batch processing 
The code behind the proposed method was written in Python. The processing time for a single 
point cloud was covered in Section 5.6 but there certainly are performance gains that can be 
achieved to improve the processing time. This can become especially beneficial when the goal is 
to process a large set of gantries and viaducts for future case studies. Currently the code only 
processes a single point cloud and when it is finished the user must manually edit and run the 
code again for a new point cloud. It should however not be a major challenge to implement batch 
processing. 
 
Using large point clouds from other data providers 
If the method is used for point clouds with a much higher point density compared to the point 
clouds used for the case study, it is advisable to investigate a suitable down sampling technique 
that gives the best ratio between performance and the preservation of the geometric properties 
of the scanned object. Random subsampling is fast and efficient, but it comes at the tradeoff that 
it also removes points that are very useful for estimating the clearances. Many more subsampling 
techniques exist, so exploring other options can be interesting. Even with the point clouds from 
dataset A it was proven that consistent clearance estimations can be achieved with a random 
subset of 50% of the data. Here it could also be interesting to investigate other down sampling 
techniques. 
 
Updating the clearance requirements 
The current clearance requirements issued by Rijkswaterstaat are updated every two years or so. 
However, they only mention requirements for accuracy and the location of the measurements. A 
lot of contractors already use point clouds to estimate the clearances from, but each contractor 
might use point clouds with completely different characteristics. Since Rijkswaterstaat can also 
request these point clouds from the contractors to perform an in-house validation of the 
measurements, it can be difficult to process all these different point clouds with a single tool. 
Point clouds are not mentioned in the requirements, though it might be a good addition in future 
releases to put some sort of standard in place. 
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ABSTRACT:

This paper introduces a method to automatically estimate vertical and horizontal clearances of highway viaducts and gantries
from Mobile Laser Scanner (MLS) point clouds. It is essential to have accurate data on the vertical and horizontal clearances of
overhead infrastructure objects along the highway. Accurate clearance data is used for routing oversized transports, infrastructure
reconstruction, maintenance and settling legal claims after incidents. The proposed method takes a point cloud of an infrastructure
object as input, and as output provides the user with a concise overview of the horizontal and vertical clearances of the object. A
point cloud of a highway overpass or gantry is segmented into the different clusters relevant for determining the clearances. The
discrete points in these clusters will then be used to approximate their surfaces with B-splines. Subsequently the minimal clearances
can be estimated. These clearances are estimated at certain pre-specified locations according to guidelines from the highway
authority. The paper also includes a comparison of the inferred clearances from the point clouds with archived measurements
performed by third party contractors. For this case study, a Dutch highway section containing 50 gantries and 20 viaducts is
selected. Along this stretch of highway the clearances are estimated. The estimated clearances for each structure are then compared
with archived in situ measurements. This will give a quantitative analysis of the quality of the estimated clearances. The estimated
vertical clearances have an overestimation of 20-30 mm compared to the validation data. The horizontal clearances show a median
underestimation of 20 mm.

1. INTRODUCTION

The Dutch highway network contains more than 3.000 kilomet-
ers of roads (Rijkswaterstaat, 2021). Spanning these roads are
thousands of viaducts and traffic sign wielding gantries (Figure
1). It is essential to have accurate data on the vertical and ho-
rizontal clearances under these objects. This data is used when
routing oversized transport, carrying out maintenance or set-
tling legal claims after an incident with oversized transport.

Figure 1. A typical traffic sign gantry on a Dutch highway with
in the background a highway viaduct. The horizontal clearance
is restricted by guard rails on both sides of the road. (Source:

Rijkswaterstaat, 2006)

For all overhead structures along the highway network the
clearances are documented according to specifications issued

∗ Corresponding author

by the executive organisation of the Dutch ministry of Infra-
structure and Waterways: Rijkswaterstaat. These specifications
(Rijkswaterstaat, 2019) describe at what locations under a struc-
ture and with what margin of error the clearances should be
measured.

Traditionally these measurements are taken in the field with
usage of geodetic devices such as a total station, rangefinder
or laser scanner. Measurements and documentation are usu-
ally performed by a third party contractor and involve a lot of
manual work. To guarantee the quality of this data the measure-
ments need to be validated. For the validation of measurements
yearly Mobile Laser Scanner (MLS) point clouds are available
for the complete Dutch highway network.

This study introduces a method to automatically estimate clear-
ances under viaducts and gantries from MLS-point clouds with
a geometric approach (Figure 2). The paper is structured as fol-
lows. In the section Background information will be given on
related research and guidelines for determining clearances. The
section Method will show a step by step workflow for estimat-
ing the vertical and horizontal clearances. In the section Case
Study and Results the method will be validated on two sections
of highway in the Netherlands.

2. BACKGROUND

This section gives some insight into related researches and also
provides information on the definition of a ’minimal’ clearance
used in this research.



Figure 2. A simplification of the tool to be developed in this
research. A point cloud of a gantry is taken as input and

processed. The result is a visualization with the estimated
clearances.

2.1 Related research

Gargoum et al. (2018) propose an algorithm whereby mobile
LiDAR data is used to assess vertical clearance at overhead ob-
jects on highways. The algorithm detects and classifies all over-
head objects on a highway segment. At each detected object the
minimal clearance is determined. This research mainly focuses
on vertical clearances under viaducts and power lines and does
not cover gantries. The location where the vertical clearance
should be determined is manually defined by the user. Differ-
ences between estimated clearances and conventional measure-
ments were up to 15 cm.

Point clouds often contain differences in point density. This
variation is expected to affect the quality of the information that
is inferred from the point clouds. Gargoum and El-Basyouny
(2022) investigates the impacts of point density reduction on
the extraction and assessment of different geometrical features.
The different geometrical features were extracted from a point
cloud at varying levels of point density and on a selection of
different Canadian highway segments. It was found that clear-
ance assessments on viaducts had low sensitivity to reductions
in point density. Reductions to 10% of the original data yielded
comparable results to what was obtained at 100% point density.
Low point density can however cause an inability to detect ac-
curate clearances under short span overhead objects i.e. power
cables or gantries.

In Zhang et al. (2013) a method is proposed to estimate vertical
bridge clearances by using terrestrial laser scanners. The study
introduces an approach to reduce data noise caused by nearby
traffic. The locations of the vertical clearances are determined
manually. No quantitative assessment was performed on the
accuracy of the estimated clearances.

Railway tunnel clearance is directly related to the safe operation
and freight capacity of trains. In Zhou et al. (2017) a tunnel
clearance inspection approach is presented based on 3D point
clouds obtained by a mobile laser scanner system. A dynamic
coordinate system for railway tunnel clearances is introduced.
By using a 3D linear fitting algorithm on a segmented point
cloud the rail line can be extracted and is used to seamlessly
connect all rail segments. Based on the rail alignment and the
clearance coordinate system different types of clearance frames
are introduced to perform the tunnel clearance inspection. The
claimed precision reaches 0.03 m.

In a review of mobile mapping and surveying technologies,
(Puente et al., 2013), an analysis is introduced on the perform-
ance of some modern mobile terrestrial laser scanning systems.
The study presents an overview of the positioning, scanning and
imaging devices used in these systems. A systematic compar-
ison of the navigation and LiDAR specifications from the man-
ufacturers is provided. Based on the accuracy requirements for

a mapping or surveying project a best solution is found taking
into account all scanner specifications.

2.2 Guidelines for clearances

There is not one universal method for documenting minimal
clearances under viaducts and gantries. In this research the
guidelines of the Dutch highway authority were used as a base
(Rijkswaterstaat, 2019).

The vertical clearance is a measurement perpendicular to the
road surface between a viaduct or traffic gantry and the under-
lying pavement. The minimal vertical clearance is found where
this distance is the smallest. The vertical clearance measure-
ments must meet the following requirements: The precision σ
should be ≤1.0 cm and the measurements should be presented
with 3 decimals. The locations of the clearance heights have
different requirements for each type of object.

For a highway viaduct the following applies:

• The vertical clearance should be determined on each lane
border road marking and on the asphalt edges.

• For each driving direction two clearance cross sections
should be provided. The first one at beginning of the object
and the second one at the rear of an object. The location
of the front is determined based on in what direction the
hectometer signs along the road are increasing in value.

• Double highway bridges less than 3 meters apart are seen
as one object. When the gap in between is larger than 3
meters both bridges are seen as individual objects.

For traffic sign gantries the minimal vertical clearances should
be determined for each lane including rush hour lanes, entry
or exit lanes and emergency lanes. If there is no road sign or
lane control sign directly above a lane the vertical clearance is
determined from the pavement to the gantry’s suspension struc-
ture.

The horizontal clearance is the minimal horizontal distance
perpendicular to the driving direction between obstacles that are
positioned alongside the pavement. Obstacles here are defined
as guardrails, bridge columns or gantry columns.

The horizontal clearance measurements must meet the follow-
ing requirements: The precision σ should be ≤5.0 cm and the
measurements should be presented with 2 decimals. For the
location of the horizontal clearance the following applies:

• The horizontal clearance must be determined at a height
between 0.5 m and 1.0 m above the pavement. The height
of the guardrail should fall within this range.

• In a situation where there is no guard rail on one or either
side of the road, the width of the roadway cannot always
be clearly defined. If the boundary of the clearance width
on one or both sides of the road cannot clearly be indic-
ated, for instance due to the absence of obstacles as stated
previously, the edge of the pavement is taken as the bound-
ary.



3. DATA

For this paper mobile mapping data two sections of highway
were selected. Along these two sections the clearances will be
estimated with the proposed method. In total 20 viaducts and 50
gantries will be processed. The MLS-point clouds that are used
are all obtained with similar equipment and thus have similar
characteristics.

The point clouds are obtained using a Velodyne HDL-32E
LiDAR sensor which generates 700.000 points per second with
a claimed relative accuracy of approximately 2 cm (Velodyne,
n.d.). GPS combined with an Inertial Measurement Unit is used
to present the xyz-coordinates in the RD-New (EPSG:28992)
reference frame. The point cloud is delivered as a .laz file and
for all points it contains five attributes; intensity, number of re-
turns, return number, GPS time and RGB color. The RGB val-
ues are derived from a separate 360◦ panoramic image sensor.

A typical gantry contains 40.000-50.000 points. This is consid-
erately less than a highway viaduct which contains on average
300.000-500.000 points. This is not including the asphalt.

4. METHOD

To estimate the clearances under a viaduct or gantry, the pro-
posed method is divided into three components: (i) Vertical
clearance estimation under a viaduct, (ii) vertical clearance es-
timation under a traffic gantry and (iii) horizontal clearance es-
timation. All three components require the location and orient-
ation of the road markings, therefore the segmentation of the
road surface and the road markings is the first step.

4.1 Step 1: Surface segmentation

The workflow for extracting the road surface consists of mul-
tiple steps briefly explained below:

1. A quadtree representation (Truong-Hong and Linden-
bergh, 2022) aims to reduce the complexity of the original
point cloud. The quadtree is carried out to recursively sub-
divide the initial point cloud into increasingly smaller 2D
cells. This is carried out until the termination criterion is
reached i.e. when a subdivided cell contains fewer points
than a predefined threshold.

2. For all cells the local surfaces are extracted. When the in-
put point clouds contains a viaduct, the remaining cells
can contain multiple horizontal surfaces; the road and
the bridge superstructure. Since the surfaces are expec-
ted to be concentrated in different groups in vertical dir-
ection, a kernel density estimation (KDE) (Truong-Hong
and Lindenbergh, 2022) is used to establish the location of
the local surfaces. These local surfaces are assumed to be
nearly horizontal.

3. In this step planes are fitted to the different surfaces in
each cell. Cell-based region growing (Truong-Hong and
Lindenbergh, 2022) is applied to group the planes from the
different patches that belong to the same surface. Some
additional patch filtering is applied to obtain appropriate
surface edges.

4. Now that multiple surfaces have been extracted it is ne-
cessary to classify them with the correct class. Road and
bridge surfaces are extracted from the set of surfaces de-
rived in the previous step.

When the input point cloud contains a traffic gantry, the output
of the road surface segmentation will only contain a single ho-
rizontal surface; the road surface. When the input point cloud
contains a highway bridge, the surface extraction will output
two surfaces; the road surface and the bottom of the bridge su-
perstructure.

4.2 Step 2: Road marking segmentation

Segmentation of the road markings gives information on the ori-
entation of the road and the location of the lane borders, which
are useful since the vertical clearance is determined for each
lane. This step distinguishes 4 types of markings: (1) dashed
markings, (2) block markings, (3) continuous markings and (4)
the asphalt edge. The asphalt edge is not a painted-on road
marking, but it often defines the right border of an emergency
lane. The workflow for segmenting the markings is as follows:

4.2.1 Dashed markings The dashed lines are very distin-
guishable from the dark asphalt surface in the point clouds. The
white paint that is used for applying the road markings give
points on these surfaces a much higher intensity value than the
surrounding asphalt. Applying a simple intensity filter on the
extracted road surface from step 1 and subsequently using the
DBSCAN clustering algorithm (Ester et al., 1996) yields a set
of clusters containing different kinds of road markings. To fil-
ter out only the dashed markings a cluster-based feature filter
is used with PCA features. Several features have already been
proposed by West et al. (2004) & Hackel et al. (2016). The fol-
lowing geometrical features are selected and give information
on what type of road marking a cluster potentially belongs to:

• Orientation: With the assumption that all road markings
are parallel (only small sections of road are considered at
once) all markings should have the same orientation. The
orientation is defined by the first eigenvector correspond-
ing to the largest eigenvalue λ1.

• Length: The largest eigenvalue λ1 of a cluster gives in-
formation about the variance in the direction of the first
eigenvector. Dashed lines as well as block markings have
generic dimensions which should suggest that all dashed
markings and all block markings should have similar char-
acteristics.

• Width: Similar to the length, the second eigenvalue λ2

gives information about the variance in the direction of the
second eigenvector perpendicular to the first eigenvector.

• Roughness/height: The third eigenvalue λ3 gives inform-
ation about the variance in the direction of the third eigen-
vector. Since road markings usually correspond largely to
2D planes on the road surface, the variance in the direction
of the third eigenvalue should be very small (λ3 ≪ λ1).

• Linearity: The linearity of a cluster is a geometrical fea-
ture that can be derived from the eigenvalues. To describe
the linearity of a cluster:

linearity =
λ1 − λ2

λ1
(1)

• Planarity: The planarity is a cluster is described as:

planarity =
λ2 − λ3

λ1
(2)



4.2.2 Block markings The segmentation of block markings
has a similar approach to the segmentation of dashed markings.
The PCA filters uses the same features with different thresholds
for the length, width and linearity.

4.2.3 Continuous lines For continuous lines it is also pos-
sible to segment and classify them from the point cloud using
a method similar to the method for dashed markings. How-
ever, an approach using a Hough transform (Hough, 1962) for
detecting lines is more simple and gives more reliable results.
The Hough method used here takes as input a 2D image. The
point cloud itself is a collection of points in 3D space, so some
pre-processing has to be done in order to obtain a 2D image of
the point cloud that can be fed to the Hough algorithm.

First the 3D point cloud is converted to a 2D image from a bird’s
eye perspective with full and empty pixels. Some basic opening
and closing morphological operations, (Vincent, 1993), are per-
formed to remove noise and improve the visibility of the painted
markings in the input image.

4.2.4 Asphalt edge The asphalt edge is not a painted road
marking but to detect it a similar approach to the continuous
line detection can be used with one extra pre-processing step.
After the opening and closing operations a silhouette of the as-
phalt remains. The edges of the asphalt need to be converted
to distinct lines. With a Canny filter, (Canny, 1986), an edge
detection algorithm, the asphalt silhouette is transformed into
an asphalt outline. This outline is detectable by the Hough al-
gorithm.

Figure 3. An overview of the pre-processing steps taken for the
detection of the asphalt edges. (1) is the original 2D image

obtained from the point cloud. (2) the result of a
closing-opening operation. (3) the final input image for the

Hough transform after applying the Canny operation overlapped
with the detected Hough lines.

4.3 Viaduct vertical clearance estimation

Assuming that step 1 yielded a surface for both the road and the
bottom of the bridge superstructure, it is now possible to ap-
proximate both surfaces with a 2D B-spline and infer the min-
imal vertical clearances for each lane from these B-splines. B-
splines are suitable to represent smooth, non-planar surfaces.
The goal here is to find the surface best approximating the
points in the segmented surface. By taking the tensor product
of two 1D sets of basis functions that describe the surface in the
x and y direction, a basis for the 2D polynomial describing the
2D surface is obtained. This is also known as the 2D bi-cubic
approximation method, see (De Boor, 1978).

The minimal vertical clearance is now estimated as the min-
imal vertical distance between the estimated bridge and road
surfaces. This clearance is estimated for each traffic lane.

4.4 Traffic gantry vertical clearance estimation

A gantry has a more complex shape than the bottom of a high-
way bridge, which means that a 2D B-spline is not suitable to
describe the bottom edge. This method will use multiple 1D B-
splines to describe the irregular bottom edge of the gantry su-
perstructure. Assuming that the road surface already has been
segmented in step 1, the steps to determine the vertical clear-
ance under a gantry are as follows:

1. A DBSCAN clustering algorithm is used to cluster the
point cloud remaining after the removal of the road sur-
face. To classify the gantry cluster correctly, PCA features
are calculated for all clusters similarly to Section 4.2.1.

2. By performing a Hough transform on a top-down 2D im-
age of the classified gantry cluster, the orientation can be
determined. Its orientation should be perpendicular with
the road trajectory in the xy-plane.

3. The skeleton of a gantry’s superstructure can be character-
ized as an extruded triangle with the point facing down-
wards. Along the extruded edges there are steel tubes. The
bottom steel tube is always present and defines the upper
limit of the bottom edge. A kernel density estimation of
the z-values in the remaining point cloud is used to identify
the location of the bottom tube. All points above this steel
tube are discarded since they are not relevant for estimat-
ing the bottom of the superstructure.

4. To identify the edge points of the remaining cluster, its al-
pha shape, (Edelsbrunner et al., 1983), is computed. The
bottom edge of this alpha shape contains all the points
needed for estimating the bottom of the gantry.

5. The remaining clusters (see Figure 4) are a collection of
edges from different signs and tubes. For each edge a B-
spline is computed that closely follows the points.

6. The vertical clearance is now estimated as the minimal ver-
tical distance between the 2D road B-spline surface and the
B-splines at the bottom of the gantry. The minimal vertical
clearance is determined for each traffic lane.

4.5 Horizontal clearance estimation

Most often the horizontal clearance under a viaduct or gantry is
restricted by guard rails on either side of the road. Hence, the
workflow for finding the horizontal clearance starts with look-
ing for guard rails. If there is no guard rail present the algorithm
will look for other objects restricting the horizontal clearance.
The process for finding the horizontal clearance is as follows:

4.5.1 Classification of guard rails Guard rails are predict-
able structures. Their height above the road surface and the
horizontal distance from the asphalt edge do not vary much. A
first step in segmenting the guard rails from the point cloud is
by using the DBSCAN clustering algorithm. Before using the
clustering algorithm a few assumptions are used:

1. Assumption 1: The guard rail is located at a height of at
least 30 cm above the road surface.

2. Assumption 2: Points more than 2 m above the road sur-
face are not considered for the horizontal clearance.

3. Assumption 3: The road surface is already classified in the
lane detection step. These points can be disregarded when
searching for the guard rails.



Figure 4. Each color/cluster represents part of the gantry bottom edge.

The clustering algorithm can do a good first segmentation step,
but often the clusters containing the guard rails also contain a
lot of grass. This is not odd since grass can easily grow high
enough to make it difficult for the clustering algorithm to find
a border between the guard rail and the grass. To resolve this
problem some knowledge of the dimensions of standard guard
rails is used.

A candidate cluster possibly containing a guard rail and pos-
sibly grass is divided into multiple sections along its main axis
with a length of approximately 25 cm. For each section a kernel
density estimation is performed of the z-values with a Top-hat
filter (Laefer and Truong-Hong, 2017). This Top-hat filter has
a total bandwidth of 30 cm. Since the height of a guard rail
bumper is also 30 cm the KDE should give the highest signal
on a height equal to the center of the bumper as shown in Figure
5. The information on the approximate center of the guard rail
bumper can now be used to remove grass from the guard rail
cluster candidates.

Figure 5. PDS of KDE along the z-axis with a Top-hat filter
moving in the z-direction.

4.5.2 Other objects restricting the horizontal clearance
If no guard rail is present on the side of the road, the algorithm
will look for other clusters of points located alongside the as-
phalt. Other objects restricting the horizontal clearance are
bridge columns, gantry columns, concrete barriers, etc. The
same assumptions from Chapter 4.5.1 are used.

4.5.3 Determining the minimal horizontal clearance As-
suming that an object restricting the horizontal clearance has
been found on either side of the road, the horizontal clearance
can now be estimated. The location of the estimated horizontal
clearance along the road trajectory is determined by the location
of the viaduct or gantry superstructure.

5. CASE STUDY AND RESULTS

The case study consists of a set of gantries and viaducts from
two separate Dutch highway sections (Figure 7). These sec-
tions have been selected since they have recent (<1 year) val-
idation data available. To analyze the accuracy of the estimated
clearances, the developed method is applied to an amount of 50
traffic gantries and 20 viaducts. Each gantry yields a single ho-
rizontal clearance and for each lane 1 vertical clearance ( Figure
9). A viaduct yields 2 horizontal clearances and for each lane 2
vertical clearances since the clearances are determined on both
sides of the bridge as seen in Figure 8. The highway location
sign on the right in green gives information on the road name,
the direction (’Re’ for Right and ’Li’ for Left) and the location
in kilometers. The white arrow on the sign indicates in what
direction the kilometer value is increasing. The results for the
clearance estimation errors are shown in Table 1.

Table 1. Statistics of the results [mm]

Median Error MAD

Vertical clearance gantry -23 10
Vertical clearance viaduct -33 7
Horizontal clearance 20 30
Vertical clearance gantry
(50% subset) 0 7
Horizontal clearance ganrty
(50% subset) 0 0

The median absolute deviation (MAD) is given instead of a
standard deviation since the MAD is a more robust estimator of
dispersion; it is not affected by outliers. The distribution of the
errors is shown in Figure 10. The results in Table 1 and Figure
10 show that the proposed method overestimates the vertical
clearances by 23-33 mm. However, the horizontal clearances
show a median underestimation of 20 mm.

The outliers of the vertical clearance errors in Figure 10 at
-80 and 40 mm are caused by an inaccurately detected asphalt
edge. If the detected asphalt edge line is not located on the
asphalt but instead just outside of the paved surface, there can
be a significant difference in the estimated vertical clearance.
Moreover, the road surface 2D B-spline also gives inaccurate
results (z-values) when evaluated outside of the road surface.

To assess the sensitivity of the method to a more sparse point
cloud a single gantry point cloud is randomly sub-sampled 100
times with 50% of the data. On these subsets the clearances
are determined. This shows a MAD of 0 mm for the horizontal
clearances and a MAD of 7 mm for the vertical clearances.

Figure 6 shows that the bottom edge of a sign is not always ac-
curately estimated. In this situation the MLS point cloud did not



cover the complete traffic sign surface leaving gaps in between
scan lines and a rough bottom edge. A possible explanation
could be occlusion by a passing vehicle or because the used
laser scanning device has a sparse scan line spacing. This sparse
scan line spacing is also apparent on other parts of the sign since
there are multiple ’empty’ areas visible in the figure.

Figure 6. An inaccurately estimated sign bottom edge in red.

6. CONCLUSION AND RECOMMENDATIONS

This paper presented a method for estimating clearances under
highway bridges and gantries with point clouds obtained from
a Mobile Laser Scanner. The relevant surfaces and edges that
determine the horizontal and vertical clearances are estimated
with B-splines. The results from the case study show an appar-
ent overestimation in the vertical clearances. This does assume
that the validation data is accurate and serves as a ground truth.

The overestimation could be a consequence of the relatively
sparse MLS point clouds that are used in this research. Gantries
and traffic signs are slender structures and it sometimes difficult
for the laser scanner to cover a bottom edge of an object that is
only a centimeter thick.

The horizontal clearances is not sensitive to a significant de-
crease in point density. Vertical clearances however seem more
sensitive. A possible explanation is that a gantry superstructure
is only sparsely represented in the MLS point clouds with in-
dividual points on the bottom edge of a gantry superstructure
often not covering the true bottom edge. Guard rails on the side
of the road are more densely covered in points and also have a
more constant profile.

There are a lot of parameters in this method that can be tuned
in order to achieve a higher clearance accuracy. A sensitivity
analysis on different parameters for the B-splines, DBSCAN,
Hough transform and PCA could give better surface and edge
estimation. This could yield better and more consistently accur-
ate clustering results.

The point cloud data used in this research has a limited density
and relative accuracy. It would be interesting to estimate and
validate the clearances on point clouds with a higher density and
relative accuracy. This higher relative accuracy can be reached
by using a more high end laser scanner.
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Figure 7. Overview of the selected sections for the case study.

Figure 8. Example of the estimated clearances under a viaduct. The vertical clearances are shown in red and the horizontal clearances
in yellow.



Figure 9. Example of the estimated clearances on a single gantry. The measurements are given in meters.

80 60 40 20 0 20 40
error [mm]

0.00

0.01

0.02

0.03

0.04

0.05

de
ns

ity
 [-

]

-2
3 

m
m

-3
3 

m
m

Vertical clearance: difference between in situ
 measurements and point cloud estimations

gantry estimation errors (n=177)
median error gantry
Gaussian: =10, =-23
viaduct estimation errors (n=200)
median error viaduct
Gaussian: =7, =-33

75 50 25 0 25 50 75 100
error [mm]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

de
ns

ity
 [-

]

20
 m

m

Horizontal clearance: difference between in situ
 measurements and point cloud estimations

horizontal estimation errors (n=80)
median horizontal error
Gaussian: =30, =20

Figure 10. Histogram of errors of the estimated clearances.
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