
Wave analysis of Airy beams

and Airy Pulsed Beams

Yan Kaganovsky† and Ehud Heyman‡
†Duke University, Dept. of Electrical and Computer Engineering,

Durham, NC 27708, USA, e-mail: yankagan@gmail.com

‡Tel Aviv University, School of Electrical Engineering,
Tel Aviv 69978, Israel

Abstract

The Airy beam (AiB) has attracted a lot of attention recently be-
cause of its intriguing features. We have previously provided a
cogent physical explanation for these properties by showing that
the AiB is, in fact, a caustic of rays that radiate from the tail of
the Airy function aperture distribution. We have also introduced a
class of ultra wide band (UWB) Airy pulsed beams (AiPB), where
a key step has been the use of a proper frequency scaling of the ini-
tial aperture field that ensures that all the frequency components
propagate along the same curved trajectory so that the wavepacket
of the AiPB does not disperse. An exact closed form solution for
the AiPB has been derived using the spectral theory of transients
(STT) which is an extension of the well know Cagniard–de Hoop
(CdH) method. In this paper we discuss the properties of the AiB
and AiPB, and use the present problem to discuss the relation be-
tween the CdH method and the STT.

1 Introduction

Recently, a class of Airy beam (AiB) solutions of the paraxial time-
harmonic wave equation was introduced [1–4]. Originally, these beams were
formulated in a 2D coordinate space, say (x, z), and were generated by set-
ting an Airy function as the initial field distribution in the aperture plane
z = 0. Later on, finite energy AiB’s were obtained by multiplying the Airy
function aperture distribution by exponential or Gaussian windows, leading
to closed form field solutions in [2] and [3], respectively.
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Figure 1: Ray description of the Airy beam plotted on a background of
the intensity of the Airy beam in (2) (see [6, Fig. 1]). The z and x axes
are normalized with respect to the Fresnel length zF and the beamwidth
W , respectively. As discussed in (7), the rays of species Û+ (solid lines)
radiate to the right with respect to the z-axis and converge to a caustic
that delineates the AiB propagation trajectory. Species Û− (dashed-dotted
lines) radiates to the left and diverges. As discussed in (8), species Û+

has additional set of rays that emerge from distant points in the aperture
(beyond the figure frame) and do not converge on that caustic. These rays
are shown in Fig. 2 but they have been removed here for clarity. Other
parameters that appear in this figures are used in [6] but are not used here.

The AiB’s attracted a lot of attention because of their intriguing fea-
tures, the most distinctive one is the propagation along curved trajectories
in free-space. These beams are also weakly diffractive along their trajecto-
ries, i.e., they retain their structure and remain essentially diffraction-free for
distances that are much longer than the conventional diffraction (Rayleigh)
length of Gaussian beams with the same width [2]. Another interesting fea-
ture, pointed out in [5], is the ability of the AiB to ‘heal’ itself, i.e., regenerate
itself if the main beam is obstructed.

A cogent physical description to the AiB’s and their intriguing properties
has been presented in [6]. In that paper we have shown that the AiB is not
generated by the main lobe of the Airy function in the aperture, but rather
it is a caustic of rays that emanate from the oscillatory tail of this function
and then focus on the caustic (Fig. 2). This also implies that the evolution
of the main lobe of the AiB along the curved trajectory is not described by
a local wave dynamics, and hence it cannot be regarded as a ‘beam field’
in that sense. These concepts were extended in [7] to construct an AiB
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in a 3D coordinate space, where the structure of the caustic is much more
complicated and requires the use of catastrophe theory.

The results of [6] have been utilized in [8] to introduce a class of ultra
wide band (UWB) Airy pulsed beams (AiPB) with frequency independent
ray skeleton, thus ensuring that all the frequency components of the AiB
propagate along the same curved trajectory and in the overall, the AiPB
wavepacket does not disperse. We also derived an exact closed-form TD so-
lution for the AiPB via the spectral theory of transients (STT) [9–12]. The
TD properties of the AiPB provide further insight into the wave mechanism
of the AiB. Finally, in [7] we extended the non dispersive AiB solution to
a 3D space where the caustic has the much more complicated structure of
a hyperbolic umbilic catastrophe that evolves into a parabolic umbilic catas-
trophe.

The STT is an extension of the celebrated Cagniard–de Hoop (CdH)
method [13–15] for the direct inversion into the TD of FD solutions that are
given as spatial-spectrum integrals. In the CdH method, the TD solutions
are recovered by manipulating the FD spectral integrals into a form from
which one may infer the TD solutions. In the STT, on the other hand, the
FD integrals are converted to the TD so that the TD fields are expressed as a
spatial-spectrum integral of transient plane waves. This STT integral can be
evaluated in a closed form, leading to results that are similar to those derived
via the CdH method in those cases where the latter is applicable. Yet the
STT provides a more flexible framework that may be used in cases where the
CdH cannot be applied, e.g., problems involving reflections and diffraction
of complex source pulsed beams (CSPB) [16, 17] (see STT solutions of 3D-
CSPB reflection and diffraction at plane dielectric interfaces [18] and at
wedges [19–21]). One of the main goals of the present paper is to discuss the
concepts of the STT in the context of the AiPB where the CdH approach in
not applicable.

The presentation starts in Section 2 with a wave-analysis of the AiB
in the FD. It presents the ray interpretation of the AiB and the frequency
scaling of the parameters such that the radiating field is non-dispersive in
the sense that the ray skeleton and the propagation trajectory are frequency
independent. The STT formulation and the derivation of the exact TD
solution (21) are then considered in Section 3, following some numerical
results that provide further insight into the wave mechanism of the AiB.
The exact solution describes the field everywhere as an implicit function of
space and time. One may derive explicit wavefront approximations for the
time windows near the pulse arrival. This topic and others are discussed
in [8].



4 Wave analysis of Airy beams and Airy Pulsed Beams

2 Non dispersive Airy beams – frequency domain
representation

The finite-energy non dispersive Airy beams (AiB) field Û(x, z) in the
half-space z > 0 of a 2D coordinate frame r = (x, z) is generated by the
aperture field distribution at z = 0

Û0(x
′;ω) = Ai(β−1/3k2/3x′)eαkx

′
(1)

where x′ referrers to points in the aperture, Ai is the Airy function, and the
exponential window is added in order to render the energy of this distribution
finite. Here and henceforth, an over hat denotes time-harmonic constituents
with harmonic time-dependence e−iωt, k = ω/c and a subscript 0 indicates
values in the z = 0 plane.

In (1) we used a specific frequency scaling of the parameters such that β
and α are frequency-independent parameters. This scaling, first introduces
in [7] in contradistinction to previous suggestions (e.g., [22]), ensures that
the radiating AiB is non-dispersive in the sense that it has a frequency inde-
pendent ray skeleton (see (7)) thus ensuring that all frequency components
propagate along the same ray trajectories and focus onto the same caustic
which delineated the AiB propagation trajectory (see (3)). We note that the
parameters β and α used here are related to the parameters x0 and α0 used
in the AiB literature (e.g., [2]) via x0 = β1/3k−2/3 and α0 = (kα)1/3.

The paraxial solution for the radiating AiB field due to the initial con-
ditions in (1) is [2]

Û(r;ω) = Ai
[
(kβ)2/3

(
x/β − (z/2β)2 + iαz/β

)]
×eik(z+xz/2β−z3/12β2+α2z/2)ekα(x−z2/β). (2)

One readily verifies that the beam envelope shifts transversely without change
along a parabolic trajectory (see Fig. 1)

x/β =
(
z/2β

)2
. (3)

Note that this trajectory is frequency-independent because of the frequency
scaling of the parameters in (1).

2.1 Ray representation

In order to facilitate ray analysis we use the asymptotic expression Ai(ξ) ∼
(−π2ξ)−1/4 sin

[
2/3(−ξ)3/2 + π/4

]
for ξ � −1 and decompose the aperture
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Figure 2: Local and global structures of ray species Û+. Note the scale
difference of the x axes in (a) and (b). All axes are normalized. (a) The
solid line rays radiate from the aperture at z = 0 and converge onto a
caustic (dashed line). The dashed line rays originate at distant points where
the aperture field is weak (see also (b)). They intersect the caustic at very
late times, beyond the pertinent time-window of the AiPB, and do not focus
there. These rays are not included in the paraxial solution of (2). Points
A = (x, z) = (0.023, 0.3)β and B = (0.067, 0.5)β are typical points on the
caustic where the field will be calculated in the sequel. (b) The global ray
picture described by the cusped caustic formed by the two grey caustics 2A
and 2B that merge into a cusp. This figure is taken from [7, Fig. 16]. That
reference deals with 3D Airy beams, where the caustic has a much more
complicated 3D structure of a hyperbolic umbilic catastrophe that evolves
into a parabolic umbilic catastrophe [26, Fig. 7.3]. Nevertheless, since this
figure depicts a cross sectional cut of the catastrophe in the symmetry plane,
the cusped caustic above referred to describes also the ray structure of the
2D problem considered here with β̃ = β and x̃ = x. It consists of two parts
2A and 2B that merge in a cusp. The solid lines are the corresponding rays.

field at x � −k−2/3β1/3 into a sum of two local plane wave constituents,
viz.

Û0(x
′) ≈ A+

0 exp
(
ikψ+

0

)
+A−

0 exp
(
ikψ−

0

)
≡ Û+

0 (x′) + Û−
0 (x′) (4)

where the initial phase and amplitude functions ψ±
0 and A±

0 are given by

kψ±
0 (x

′) = ∓
[
k(2/3)(−x′)3/2β−1/2 + π/4

]
(5)

A±
0 (x

′) = ±(i/2
√
π)
[
− xk2/3β−1/3

]−1/4
eαkx

′
. (6)

We assume here that α is sufficiently small so that it is included in the
amplitudes functions A±

0 and note in the phase ψ±
0 . This assumption will

be removed in the exact TD analysis in Section 3.
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The initial fields Û±
0 in (4) give rise to rays that emerge from points

x′ < 0 in the aperture at local angles (measured with respect to the z-axis)

θ±(x′) = sin−1
[
∂x′ψ±

0 (x
′)
]
= ± sin−1[(−x′/β)−1/2]. (7)

Ray species Û− emerges to the left with respect to the z axis and diverges
(dashed-dotted line rays in Fig. 1), giving rise to a weak contribution there.
Ray species Û+ emerges to the right (solid lines in Fig. 1) and converges
to a caustic that delineates the curved beam trajectory. The paraxially
approximated caustic is given in (3), but the exact caustic can be obtained
via a standard ray analysis as outlined in the Appendix of [8].

From (7), the exit points x′ of species Û+
0 (x) corresponding to a given

observation point r = (x, z) on the lit side of the caustic is found via

sin θ(x′) = (−x′/β)−1/2 = (x− x′)/ρ, ρ =
√

(x− x′)2 + z2, (8)

with ρ denoting the distance along the ray. This equation has three solu-
tions, denoted as x′1,2,3 in accord with their arrival times. Rays 1 and 2
converge onto the caustic such that ray 2 has touched the caustic before
reaching the observer while ray 1 has not (see Figs. 1 and 2(a)). The third
solution corresponds to rays that originate at distant points where the aper-
ture field is weak (dashed lines in Fig. 2(a)). They intersect the caustic at
very late times, beyond the pertinent time-window of the AiPB, and yield
weak contributions. By definition, these contributions are not included in
the paraxial solution of (2). Note that the paraxially approximated caustic
in (3) is obtained from (8) by replacing there ρ → z.

The complete (exact) ray structure calculated via (8) is described by
the cusped caustic in Fig. 2(a) consisting of two caustics 2A and 2B (grey
lines) that merge in a cusp (Fig. 16 from [7]). Caustic 2A is formed by the
convergence of rays 1 and 2, and describes the AiB propagation trajectory.
Caustic 2B is formed by the convergence of rays 1 and 3, and, as noted earlier,
it is irrelevant for the field near the AiB propagation trajectory. Note that
beyond the cusp, the field disperses and losses its beam shape. This limits
the AiB propagation range to a distance of order 0.6β (see Fig. 2(a)) hence
β should be chosen according to application. The range is also determined
by the parameter α which controls the decay rate along the beam axis.

The field of the AiB may now be calculated using ray techniques. A
uniform ray-based solution that is valid near the caustic where the standard
ray solution fails, has been derived in [6] via the the uniform geometrical
optics (UGO) [23, 24]. The UGO solution fully agrees with the paraxially
approximated AiB solution in (2) in the region where the latter is valid. This
ray solution provides a cogent physical description to the AiB and explains
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its intriguing properties. It is also more accurate than the solution in (2), in
particular at large ranges where (2) fails since the parabolic trajectory in (3)
deviates substantially from the true caustic obtained via the ray analysis.
We do not present the analysis here; this has been done in [7] in the context
of the more complicated 3D AiB (see Figs. 11,12 there).

3 Time domain solutions – Airy pulsed beams

As discussed in Section 2, the specific scaling of the initial field in (1)
ensures that all frequency components of the field are AiB that propagate
along the same curved trajectory (3). If the initial conditions are pulsed,
they generate a non-dispersive wavepacket that propagates along the curved
trajectory, henceforth denoted as Airy Pulsed Beams (AiPB).

The TD expression for the AiPB can be obtained by converting the FD
paraxial solution (2). Here, however, we use an alternative approach which is
based on an exact spectral representation in the TD via the spectral theory
of transients (STT) [9–12]. This approach leads to an exact closed-form
TD solutions for the AiPB and it does not suffer from the difficulties of the
paraxial approximation noted above.

The following section reviews the concepts of the STT in the context
of the AiPB. In Section 3.2 we construct the STT integral representation
of the time-dependent AiPB field, which is a spatial-spectrum integral of
transient plane waves. The general procedure for evaluating this integral is
discussed in Section 3.3, while Section 3.4 presents the details of the spectral
evaluation in the present case. Finally in Section 3.5 we present numerical
results for the AiPB that provide new insight into the wave mechanism of
the AiB.

3.1 Analytic signal formulation

Analytic signals are extensions of physical time signals that can accom-
modate a complex time variable. Therefore, they are a useful tool in TD
wave theory in applications involving complex propagation times delays, e.g.,
in complex-spectrum representations such as the STT, or in accommodating
the off-axis field of beams [16,17].

An analytic TD wave-function is related to the FD solution Û(r;ω) via
the one sided Fourier transform

+
u(r, t) =

1

π

∫ ∞

0
dωe−iωt f̂(ω)Û(r;ω), Im(t) � 0 (9)
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where Û is a frequency domain solution and f̂(ω) is an arbitrary temporal
spectrum. Since the integral converges for real t, it also converges for
all t ∈ C

−, the lower half of the complex plane, thus defining an analytic
function there. Here and henceforth analytic signals are denoted by an over
+ symbol. The physical signal field for real t is obtained by

u(r, t) = Re
[
+
u(r, t)

]
, Im(t) ↑ 0. (10)

Actually, multiplying
+
u by a complex parameter eiγ , γ ∈ [−π, π], one obtains

via (10) a real solution u(r, t) as a linear combination of Re
(

+
u
)
and Im

(
+
u
)
.

In (15) we make use of the convolution theorem for analytic signals.

Stated generally, given two analytic signals
+

f and
+
g, with spectra f̂ and ĝ,

the analytic signal
+
w corresponding to ŵ = f̂ ĝ is

+
w(t) =

1

π

∫ ∞

0
dωe−iωt f̂(ω) ĝ(ω) =

1

2

∫ ∞

−∞
dt′

+

f(t′) +
g(t− t′)

≡ 1

2

+

f(t)⊗ +
g(t), (11)

where Im(t) � 0 while the t′-integration is performed along the real axis.

3.2 STT integral representation of the AiPB

In order to derive the STT representation of the AiPB, namely its repre-
sentation as a spectrum of transient plane-waves, we start with the spectral
(plane-wave) representation of the FD aperture field (1) [25, Eq. (9.5.4)]

Û0(x
′;ω) =

ω1/3

2π

∫ ∞

−∞
dξ Aeiωτ0 (ξ) eiωξx

′/c, (12)

τ0(ξ) = β(ξ + iα)3/3c, A = (β/c)1/3 (13)

where eiωξx
′/c in (12) is identified as the Fourier kernel, and the spectral

variable ξ is normalized such that the frequency ω appears explicitly in this
kernel. With this normalization, ξ has a frequency-independent geometrical
interpretation that enables a closed form inversion of the spectrum to the
TD, as in (15).

The radiated field is obtained by adding the spectral propagator, viz.

Û(r;ω) =
ω1/3

2π

∫
C
dξ Aeiωτ(ξ), τ(ξ; r) = τ0(ξ) + ξx/c+ ζz/c (14)
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where ζ =
√

1− ξ2 is the spectral wave-number in the z-direction, chosen
with Im(ζ) � 0 for ω > 0, and the integration contour C extends along the
real ξ axis from −∞ to ∞, passing above and below the branch point ξ = ∓1
corresponding to ζ (Fig. 3). Equation (14) expresses the field as a spectrum
of plane-waves propagating at angles θ(ξ) = sin−1 ξ with respect to the z
axis.

The TD solution is obtained now by applying the analytic (one-sided)
Fourier transform (9), obtaining

+
u(r, t) =

1

2π2

∫ ∞

0
dωe−iωt ĝ(ω)

∫
C
dξ Aeiωτ(ξ) (15)

where, for simplicity, we use f̂(ω) = ω−1/3ĝ(ω).

The reasons for using the analytic signal formulation are:

• The non dispersive spectral integral in (14) has a different form for
ω > 0 and ω < 0 (e.g., for ω < 0, the square root of ζ in (14) should be
chosen with Im(ζ) � 0). Leaving out the negative frequencies simplifies
the analysis.

• The one sided transform allows using Im(t) � 0 and switching the order
of the ξ and ω integrations in (15). The latter can then be evaluated
in closed-form as in (16).

• Adding a small imaginary part to t displaces the location of the inte-
grand’s singularities in the complex ξ plane in a way that clarifies their
location with respect to the integration path (see (19)).

Following the discussion above, we switch the order of integrations in (15)
and evaluate the ω integration in a closed form, using also (11), obtaining

+
u(r, t) =

1

2

+
g(t)⊗ −i

2π2

∫
C
dξ

A

t− τ(ξ)
. (16)

The ξ-integral in (16), denoted as the STT integral, represents the field as a
spectrum of transient plane-waves. It is convenient at this point to change
the definition of the complex square root in ζ such that Re(ζ) � 0 on the
upper Riemann sheet [9, 10]. The resulting branch cuts of ζ extend along
the real ξ-axis from ∓1 to ∓∞, respectively (Fig. 3). This change has no
effect on the result of the integral.

There are several classes of signals for which the convolution above can
be evaluated in a closed-form. Here we use the class of analytic δ signals
whose spectral and temporal counterparts are given by

ĝ(ω) = eiγ(−iω)me−ωT ,
+
g(t) = eiγ

+

δ(m)(t− iT ) = eiγ∂m
t

1

πi

1

t− iT
(17)
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with m = 0, 1, 2.... The parameter T > 0 is proportional to the pulse length.
The amplitude parameter eiγ , where γ ∈ [−π, π], controls the balance be-
tween the real and imaginary parts of the analytic signal when one calculates

the physical signal via (10). The function
+

δ(m) is the m-th derivative of the
analytic δ function, having m oscillations for |t| < T and a t−m−1 decay rate
for |t| � T . In the example of Section 3.5 we use m = 2.

Using (17) and (11), Eq. (16) becomes

+
u(r, t) = ∂m

t

−ieiγ

2π2

∫
C
dξ

A

t− τ(ξ)− iT
. (18)

3.3 Evaluation of the STT integral

The integral in (18) has time-dependent poles ξ(t) in the complex ξ plane,
defined by

τ [ξ(t)] = β(ξ + iα)3/3c+ ξx/c+ ζz/c = t− iT. (19)

The solutions ξ(t) to (19) are generally found numerically via a search algo-
rithm. This search is simplified by using, as a starting point, the paraxial
approximation ζ ≈ 1 − ξ2/2, in which case (19) reduces to a third order
polynomial equation with a closed-form solution. These solutions are gener-
ally complex, and are located in the upper and in the lower Riemann sheets
(URS or LRS, respectively), where Re(ζ) ≷ 0. Further details are given in
Section 3.4 and Figs. 3 and 4.

The integral in (18) can be evaluated by closing the integration contour
at infinity about the lower or the upper half of the complex ξ-plane, thus
expressing the field as contributions from the poles ξ(t) lying in the respective
half plane, plus a contribution from the branch-cuts of ζ that extend along
the real ξ-axis,

+
u(r, t) = ∓

∑
p

∂m
t

Aeiγ

πτ ′
[
ξ(p)(t)

] + ∂m
t

−ieiγ

2π2

∫
I±
b

dξ
A

t− τ(ξ)− iT
(20)

� ∓
∑
p

∂m
t

Aeiγ

πτ ′
[
ξ(p)(t)

] (21)

where the upper and lower signs correspond to the upper or lower half-plane
closures, respectively. The first term in (20) represents the contribution of
all the poles ξ(p)(t) in the respective half plane with p being an index and
τ ′ = ∂ξτ . Referring, for example, to the ξ-plan configuration in Figs. 3
and 4 (see discussion in Section 3.4 below), choosing the upper or the lower
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Figure 3: The complex ξ plane of the STT integral (18) for a typical ob-
servation point on the lit side of caustic (specifically, this point is displaced
horizontally by Δx = −2.5 10−3β from point A in Fig. 2(a) that resides on
the caustic). Wiggly lines: branch cuts of ζ separating the upper Riemann
sheet (URS) where Re ζ > 0 from the lower Riemann sheet (LRS) where
Re ζ < 0. C: the integration contour in Eqs. (14) and (18). Square tags:
stationary points ξ1,2,3 corresponding to rays r = 1, 2, 3 in Fig. 1 (for clarity,
ray 3 is suppressed in Fig. 1 but it is shown in Fig. 2(a)). t1,2,3: ray arrival
times. Note that t1 ∼ t1, but t3− t1,2 � T . ξ(p)(t), p = 1, 2, ...6: trajectories
of the 6 poles ξ(t) of (19) as a function of t; poles on the URS and LRS are
denoted by solid or dashed lines, respectively. The tags on the trajectories
denote values of t there. The poles p = 1, 3 are always in the URS; p = 5, 6
are always in the LRS; p = 2, 4 are located first in the LRS and then cross
to the URS. In order to improve visibility, we displaced the poles from the
real ξ axis by choosing large T , T = 10−2β/c, but in the field calculations
we used T = 10−6β/c, yielding the poles map in Fig. 4. Here and in the
following figures we used α = 10−5.

half plane closure implies that the summation involves the pole p = 3 or the
poles p = 1, 2, respectively. The second term in (20) is the contribution of the
branch-cuts I±

b of ζ extending, respectively, along the real ξ-axis segments
ξ ∈ [1,∞) and ξ ∈ (−∞,−1] (wiggly lines in Fig. 3). In (21), the branch-
cut integrals have been neglected since they correspond to the evanescent
spectrum. Finally, we note that ∂t can be calculated in a closed-form by
noting from (19) that ∂tξ(t) = {τ ′[ξ(t)]}−1.

The result in (21) expresses the field everywhere as an implicit function
of space and time. As noted in the Introduction, wavefront approximations
near the rays arrival times, expressed explicitly in terms of the space-time
coordinates, have been derived in [8].
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Figure 4: Trajectories of the poles ξ(p)(t), p = 1, 2, 3 of (19) in the complex
ξ plane for observation points near point A of Fig. 2(a) that resides on the
caustic. The figure zooms on the spectral zone near the stationary points ξ1,2
of Fig. 3 (square tags) and the trajectories are marked by the same numbers
and tags as in Fig. 3. Pulse length parameter: cT/β = 10−6. (a) Observation
point on the lit side of the caustic; (b) on the caustic; (c) on the shadow side.
Specifically in this figure, the point in (a) is displaced horizontally from A
by Δx = −2.5 10−3β and the point in (c) is displaced by Δx = 2.3 10−4β.
On the caustic, the two stationary points coalesce to a 2nd order stationary
point ξc and both rays r = 1, 2 arrive at t = tc.

3.4 Spectral properties of the STT integral

We start with the properties of τ(ξ), referring to Fig. 3 which depicts
the ξ-plane for a given r on the lit side of the caustic (specifically, near
point A of Fig. 2(a) that resides on the caustic). τ(ξ) has three stationary
points, denoted by ξr, r = 1, 2, 3, shown in Fig. 3 as square tags. ξ1 = 0.208
and ξ2 = 0.104 correspond to rays 1 and 2 in Fig. 1, where ray 1 has not
touched the caustic yet while ray 2 has touched it. The aperture exit points
of these rays are x′1 = −0.043β and x′2 = −0.011β and the arrival times are
t1 = 0.3007β/c and t2 = 0.3009β/c.

The stationary point ξ3 = 0.951 corresponds to a ray that emerges from a
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very remote point x′3 = −0.9β in the aperture and propagates almost parallel
to the aperture(ξ3 � 1), reaching r at a later time t3 = 0.39β/c (note that
t1 ≈ t2 but t3 − t1,2 ≈ 0.09β/c � T where T is typically ∼ 10−6β/c). For
clarity, this ray is suppressed in Fig. 1 but it is shown in Fig. 2 where one
may see that, unlike rays 1 and 2, it intersects the caustic and does not
converge onto it. It also has a relatively weak contribution due to the ekαx

′

decay in the aperture (see (1)). This ray is not included in the paraxial
approximation (2).

Equation (19) has 6 roots ξ(p)(t), p = 1, . . . , 6, at any given t. Figure 3
depicts their trajectories in the complex ξ-plane as a function of t at the
point A referred above. The poles may be located either on the URS or the
LRS where they are denoted by solid or dashed trajectories, respectively.
The tags on the trajectories indicate the corresponding values of t. The
poles p = 1, 3 are located always on the URS, while p = 5, 6 are always on
the LRS. At a very early time, the poles p = 2, 4 are located in the LRS
and then cross to the URS at t = ∓tb, tb > 0, respectively, never crossing
to the LRS again. Note that the trajectories in Fig. 3 are calculated for a
wide pulse with cT = 10−2β in order to displace the poles from the real ξ
axis and to clarify their location with respect to the integration contour C.
In practice, however, T is much smaller: in Fig. 4 and henceforth we use
cT = 10−6β.

For t ≈ t1,2 near the pulse arrival time, the poles p = 1, 2, 3 converge to
the stationary points ξ1,2 in the URS. Figure 4 zooms in on this spectral zone
for three observation points: on the lit side of the caustic, on the caustic, and
in the shadow side. Each case is characterized by a different arrangement of
the stationary points and of the poles, as follows from the different spectral
properties of τ(ξ). One should note though that the overall poles-topology
is similar in all three cases, with poles p = 1, 2 being in the lower half of the
URS with respect to C, while pole p = 3 is in the upper half of the URS.
Thus, the field in (21) is described by the two poles p = 1, 2 if one chooses
a lower half plane closure, or by a single pole p = 3 if one chooses an upper
half plane closure. We also note that at a later time t = tb, the pole p = 4
crosses the branch cut and enters the URS near ξ3, never crossing to the
LRS again. However, as mentioned earlier, this contribution is weak and it
is beyond the pertinent time window.

3.5 The AiPB field

In view of the discussion in the preceding paragraph, we have calculate
the field by using an upper half plane closure in (21) so that the field is given
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Figure 5: The waveforms near the caustic: (a,b), (c,d) and (e,f) correspond
to points on the lit side of the caustic, on the caustic at point A, and on
the shadow side, respectively. They are calculated exactly via (21). The
temporal signal is (17) with m = 2 and γ = 0 in (a,c,e) or γ = −π/2 in
(b,d,f). Note that the waveforms for γ = −π/2 are Hilbert transforms of
those for γ = 0. The time axis is centered around tA, the arrival time to
A, and normalized with respect to T . The field is normalized such that
max |u| = 1 on the caustic in (c). Note also the different vertical scales.

by the single pole p = 3 in Figs. 3 and 4, viz.

+
u(r, t) = −∂m

t

Aeiγ

πτ ′
[
ξ(3)(t)

] . (22)



Y. Kaganovsky, E. Heyman 15

Figure 5 depicts the field at the 3 observation points considered in Fig. 4,
located near point A in Fig. 2. The temporal signal is given by (17) with
m = 2 and γ = 0 in (a,c,e) or γ = −π/2 in (b,d,f). The field is calculated
exactly via the real part of (22) (the case γ = −π/2 is the same as taking
the imaginary part of (22) for γ = 0, and it is a Hilbert transform of the
case γ = 0).

On the lit side of the caustic (Figs. 5(a,b)) there are two separate peaks
at t1,2, which are obtained when this pole passes near the stationary points
ξ1,2 where τ ′ vanishes so that τ ′

[
ξ(3)(t)

]
in the denominator of (22) is small.

On the caustic (Figs. 5(c,d)), these two peaks coalesce to a stronger peak,
obtained when the pole passes near the second order stationary point ξc in
Fig. 4(b). Finally, on the shadow side of the caustic (Figs. 5(e,f)), the pulse
evanesces, as follows also from the fact that the pole p = 3 in Fig. 4(c) passes
far away from the real ξ axis.

Figure 6 depicts snapshots of the field in the vicinity of points A and B
on the caustic, defined in Fig. 2(a). The snapshots are taken at the arrival
times at each point. The field on the lit side consists of wavefronts 1 and
2 corresponding to ray species r = 1 that converges toward the caustic and
ray species r = 2 that diverges away from it. Species r = 1 originate from
points x′ in the aperture that are further away from its center and therefore
arrive at larger angles with respect to the z-axis. The two species coalesce on
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Figure 6: Snapshots of the field near points A (a) and B (b) on the caustic.
The snapshots are taken at t = tA,B denoting the time of arrival at A and B,
respectively. The axes are centered around point A and B and are normalized
with respect to β. The temporal signal is given by (17) with m = 2, γ = 0,
T = 10−6β/c and α = 10−5. The logarithmic scale retains the sign of the
waveform (see the bar), and is normalized with respect to the maximal value
in (a). ‘Wavefronts 1,2’ corresponding to rays species r = 1, 2, respectively,
coalesce at the caustic with an evanescent contributions on the shadow side.
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the caustic generating the strong peak of the beam that follows the curved
trajectory. The field on the shadow side decays algebraically, as opposed to
the exponential decay in the time-harmonic case. Note also the wavefront
rotation as the pulse progresses along the caustic from point A to B, which is
due to the bending of the caustic and the fact that rays reaching the caustic
at longer ranges arrive at increasingly sharper angles (see Fig. 1).

The resolution of Fig. 6 fails to depict the narrow negative peak of the
wavefronts (see Fig. 5). We therefore depict in Figs. 7 cross sectional cuts of
the snapshot in Fig. 6(a). The cut in Fig. 7(a) passes exactly through point
A, demonstrating the strong peak at the caustic, as opposed to the peaks of
the rays in Fig. 7(b).
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Figure 7: Cross sectional cuts along z =constant lines in Fig. 6(a). (a) Cut
passing exactly through A (z − zA = 0); (b) cut along z − zA = 0.5 10−3β.

Figure 8 explores the effect of the parameter α that controls the exponen-
tial decay of the aperture field (see (1)). Increasing α affects essentially the
r = 1 ray species that arrives first, since this species originates from aper-
ture points x′ that are located further away from the center and are therefore
strongly affected by the exponential decay. Indeed, comparing Figs. 8(a,b)
with Figs. 6(a,b) one observes that the field of ‘wavefront 1’ is weaker and
has a longer pulse length. For the same reason, the field becomes weaker as
it propagates further away from point A to B.

4 Conclusions

In this paper we discussed the Airy Beams (AiB) and the ultra wide band
(UWB) Airy Pulsed Beams (AiPB). We discussed the physical properties of
these wave functions and the mathematical techniques that are involved
in calculating the solutions in the frequency domain (FD) and in the time
domain (TD).
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Figure 8: Snapshots of the field near points A (a) and B (b) on the caustic.
All parameters are the same as in Fig. 6, except for α = 10−3.

We started in Section 2.1 with a ray analysis of the FD solution. The
ray representation provides a cogent physical interpretation to the AiB and
explains its intriguing properties. The ray formulation, when applied judi-
ciously, is more accurate than the paraxial solution of (2), mainly due to the
growing deviation of the paraxial propagation trajectory (3) from the exact
trajectory obtained via ray analysis. In particular, the paraxial theory does
not predict the cusp in Fig. 2(b) beyond which the AiB disperses. The error
of the paraxial solution versus the exact ray solution is studied in [7, Figs. 11
and 12] in the context of the 3D AiB. Note that the error is obtained even
at a relatively short range z ∼ 0.16β.

The formulation of the UWB-AiPB solution is based on a frequency
scaling of the initial aperture field in (1). This scaling, first introduced
in [8], renders the FD AiB solution non-dispersive in the sense that the
ray skeleton of the field is frequency independent. This ensures that all
the frequency components are AiB’s that propagate along the same curved
trajectory, so that the TD wavepacket does not disperse due to the wide
frequency band.

An exact closed-form solution to the AiPB has been derived in Section 3
via the spectral theory of transients (STT). The STT synthesizes the field
as a spectral integral of time dependent plane waves. This integral is then
evaluated in a closed form and the final result in Eq. (21) expresses the field
compactly by tracking the time-dependent spectral poles of the integrand.
Actually, the AiPB is expressed in (21) by the contribution of a single pole.

The properties of the AiPB were explored in Section 3.5 via a detailed
numerical example. It has been shown that the AiPB indeed propagates
along a curved caustic while retaining its field structure. From Fig. 6 one
concludes that the AiPB consists of two propagating wavefronts that coalesce
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on the caustic, generating a strong peak there. The wave mechanism of the
AiPB is explained further in Fig. 8 where one may discern that the first
arriving wavefront is weaker than the second one. This is due to the fact
that this waveform is formed by rays originating from more distant points at
the aperture that are affected more strongly by the attenuation parameter
α. This demonstrates again that the AiB is, in fact, not a beam field in
the sense that it is not described by a local beam dynamics [6]. One also
observes that the STT solution applies uniformly through the caustic, from
the lit side to the shadow.

The emphasis in this paper has been placed on the exact spectral solution
via the STT, which is an extension of the Cagniard–de Hoop (CdH) method.
In the CdH approach, the TD solutions are obtained by manipulating the
FD spectral integrals into a form from which one may infer the TD solutions
‘by inspection’. Specifically, in that approach the integration contour of
the original FD spectral integral are deformed to a CdH contour which is
defined by the solution of (19) (with T →0) with t being a parameter along
the CdH contour that increases monotonically from some finite value, say t0,
to infinity. From the solution of Eq. (19) as a function of t shown in Figs. 3 or
4 one readily observes that it is impossible to find a simple deformation of the
original integration contour C to a path whereon the parameter t increases
monotonically as explained above. In the STT approach, this difficulty is
circumvented by formulating the field as a TD spectral integral and then
evaluating this integral by closing the integration contour C about all the
relevant singularities in the complex-spectrum plane. The present example
demonstrates that the STT is indeed a flexible reformulation of the CdH
method.
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