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Abstract
Motivation and problem statement

Airline fleet planning is the most strategic long-term consideration in airline planning and can
profoundly impact the airlines’ financial performance and operational flexibility. The fleet is de-
ployed over a long-term planning horizon over which uncertainty will materialize both on the
revenue side (e.g. stochastic demand) as well as on the cost side (e.g. fuel price volatility).
This makes the investment in a fleet of aircraft a highly capital-intensive long-term commitment,
which bears inherent risk. Consequently, there is a need for airlines to have a robust fleet that
is resilient and flexible to this uncertainty in terms of profit generating capability. This research
considers the long-term stochastic nature of demand in an attempt to capture the uncertainty
associated with demand realization.

From an academic point of view, the complexity of the problem is defined by the development
of a multi-year optimization model subject to uncertainty. Since both optimization models and
models that explore the evolution of stochastic variables tend to be computationally demanding,
the challenge is to combine these methodologies into one fleet planning modeling framework
that is capable to obtain meaningful results while ensuring reasonable computation times.

Research objective and methodology

The research objective is to develop an innovative airline fleet planning concept that is capable
to consider the long-term stochastic nature of air travel demand while generating meaningful
results in reasonable computation times. The proposed methodology aims to identify robust
fleets through the adoption of a portfolio of fleets (each of different size or composition) and a
three-step modeling framework.

First, the long-term stochastic nature of demand for each origin-destination pair under con-
sideration is modeled as a mean reverting Ornstein-Uhlenbeck process. The future evolution of
demand is explored using a Monte Carlo simulation and sampled into demand sample values.

Second, a weekly flight frequency aircraft type assignment optimization model is iterated for
each combination of fleet from the portfolio and demand sample value. Consequently a value
matrix is filled with operating profits per fleet, per time period, per demand sample value.

Third, scenarios are generated through the value matrix across the planning horizon using
discrete-time Markov chain transition probability matrices. Each scenario contains a sequence
of annual operating profits, which are discounted to a single net present value (NPV). By gener-
ating numerous scenarios, a distribution of NPVs is obtained based on the evolution of operating
profit across the planning horizon across the range of stochastic demand.

Results

Ultimately, the methodology generates two types of results with varying level of detail. The first
result is a distribution of NPVs of operating profit across the planning horizon across the range
of stochastic demand for each fleet in the portfolio. This provides insight in the magnitude and
uncertainty of NPVs across the multi-year planning horizon, and how they relate to the required
fleet investment.
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The second result is a large data table that contains all financial and non-financial perfor-
mance metrics per fleet, per time period, per demand sample value. This vast amount of both
financial and non-financial data can be used to unravel the underlying factors that drive the
distribution of profitability; what are the aircraft utilizations of the different aircraft types in the
fleet? What is the average network load factor? How many passengers are spilled? What is
the spilled revenue? How many OD pairs are served? What percentage of the passengers is
transported nonstop? What are the weekly operating cost and ownership cost? What is the
routing network? This vast amount of detailed information can be used for subsequent detailed
analysis.

The information that stems from these two types of results enables explicit comparison be-
tween fleets on both financial and non-financial performance metrics across different realiza-
tions of stochastic demand across the planning horizon. A case study is presented and serves
as proof of concept.

Results for a small case study are generated in less than one hour and it is estimated that
a real world case study requires a computation time of approximately 10 hours. Moreover, it is
made explicit how the computation time increases with increasing problem size.

Limitations and conclusions

Two major limitations are identified. First, the portfolio of fleets contains only a small subset of
the theoretically possible collection of different fleet sizes and compositions, and consequently
optimality cannot be guaranteed. Second, the impact of competition is neglected in the method-
ology due to the absence of a market share model and the assumption of fixed market shares
for each origin-destination pair over time.

It is concluded that the proposed methodology has the potential to identify robust fleet plans
by providing insight into the operating profit generating capability of different fleets in terms
of size and composition across a multi-year planning horizon under stochastic demand. Fur-
thermore, the fleets can be subject to explicit comparison using a vast amount of financial and
non-financial performance metrics. Moreover, it is estimated that the methodology can generate
results for a real world case study in approximately 10 hours. Consequently, it is concluded that
the proposedmethodology is capable to generate meaningful results in reasonable computation
times.
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H Set of airports that have a hub function
o, d airports - used for describing passenger flow between airports
h airports - used for describing airports that also have a hub function
i, j airports - used for describing aircraft flow between airports
Y Years in the planning horizon: 1, ..., Y
F Fleets in the portfolio: 1, ..., F
S Sample values: 1, ..., S
M Number of OD demand matrices per year: 1, ..., M
N Airports: 1, ..., N
H Hubs: 1, ..., N
Z Number of OD pairs under consideration: 1, ..., Z
K Aircraft types under consideration: 1, ..., Z
D Number of Monte Carlo simulation runs
B Number of scenarios

Abbreviatons
ANLF Average Network Load Factor
ASM Available Seat Mile
CASM Cost per ASM
DTMC Discrete-time Markov chain
FAM Fleet Assignment Model
FCP Fleet Composition Problem
GDP Gross Domestic Product
ILP Integer Linear Programming
LP Linear Programming
MILP Mixed Integer Linear Programming
NPV Net Present Value
OD Origin-Destination
OR Operations Research
Pax Passengers
QSI Quality Service Index
ROIC Return On Invested Capital
RPM Revenue Passenger Mile
TAT Turnaround time
WACC Weighted Average Cost of Capital
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1
Introduction

This document serves as a final report of the MSc. graduation thesis which is part of the cur-
riculum in Aerospace Engineering at Delft University of Technology. The research topic of this
thesis is an innovative methodology for robust airline fleet planning under stochastic demand.
This chapter serves as an introduction and details the historical financial performance of airlines,
the airline planning process and an introduction to the fleet planning problem.

Historical financial performance of airlines

Airlines are among the poorest performers when it comes to providing return on invested cap-
ital (ROIC). Between 2004 and 2011, North American airlines annually returned 4.1% to their
investors against an average weighted cost of capital (WACC) of 7.5% (Pearce, 2013), essen-
tially destroying value. In 2012, an average net profit per passenger of $2.26 remained from an
average revenue per passenger of $228.26 (Pearce, 2013), which results in a meager average
net profit margin of 1.1%.

Historically, airlines were government-owned for multiple reasons other than the rate of re-
turn on invested capital such as national economic development and job creation and security
(Gibson, 2010, p.110). Due to deregulation and the privatization of many airlines over the years,
the air transport market has commoditized and competition has increased significantly causing
price competition and downward pressure on profit margins (Pearce, 2013). Still, in despite of
the trend of deregulation, the airline industry continues to be one of the most ”regulated dereg-
ulated industries” (Belobaba et al., 2009).

A report by IATA (Pearce, 2013) attempts to unravel the underlying factors for the poor finan-
cial performance of airlines, with the help of Porter’s five forces (Porter, 1979). It is suggested
that the poor performance can be explained by a complex combination of multiple factors that
define the airline industry dynamics, such as; bargaining power of suppliers (i.e. aircraft and en-
gine manufacturers, labor unions), bargaining power of buyers (i.e. customers), relatively easy
market entrance conditions, regulation, commoditization of air transportation, a fragmented in-
dustry structure and problems with the air transport value chain (Pearce, 2013; Porter, 1979).
Moreover, the cyclical nature of demand causes cyclical profitability and since fuel cost form
a significant portion of airline operating cost, volatility in fuel prices can significantly impact the
evolution of year-to-year operating profits and could contribute to a critical financial state of the
airline or even bankruptcy (Carter et al., 2006). Furthermore, airline orders for new aircraft tend
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Figure 1.1: A schematic overview of the airline planning process adapted from Barnhart (2003)

to be synchronized with years of high profit, and due to the lead time between the order and
delivery of aircraft, these aircraft are often delivered in periods of downturn of the business cycle
which causes overcapacity (Clark, 2007; Gibson, 2010; Stonier, 1999). The combination of all
these factors results in a persistently low profit margin, an inability to meet return requirements
(i.e. ROIC lower than WACC), and a high risk of bankruptcy due to year-to-year volatility in
demand and fuel prices.

Because of the shift from government-owned to privatized airlines, there is a need to make
the airline industry attractive to investors by increasing the returns on invested capital to lev-
els at or above the average weighted cost of capital. Ultimately this boils down to increasing
and optimizing the effectiveness of the airline’s asset base (i.e. optimizing the fleet plan) to
produce the right level of operating profits, which could be realized by making use of complex
mathematical fleet planning optimization models.

Airline planning process

The airline planning process consists of multiple steps that are performed sequentially or in-
tegrally (Barnhart and Cohn, 2004; Lohatepanont and Barnhart, 2004). These steps can be
categorized based on the time span between the point of decision-making and the day of oper-
ations, which can range from long-term to mid-term and short-term. Alternatively, the different
steps can be categorized from a business perspective, with decisions having an impact on a
strategic, tactical and operational level. All the steps that are involved in airline planning are
visualized in Figure 1.1.

The fleet planning problem involves the management of the fleet size and composition of an
airline over time by deciding on matters such as: how many aircraft to acquire, which aircraft
types to acquire, when to acquire them, when to dispose them and decisions regarding leasing
or buying. Often, fleet planning decisions are closely tied to decisions on network development
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(Belobaba et al., 2009, p. 162), which deals with the question on which markets (i.e. origin-
destination pairs) to serve and which routing network to employ (e.g. hub-and-spoke or point-to-
point). The schedule planning step deals with decisions on the frequency offered on routes (i.e.
frequency planning), the departure and arrival times of flights (i.e. timetable development), the
assignment of aircraft types (i.e. fleet assignment), the assignment of specific aircraft (which are
specified by their tail numbers) to a series of flight legs to and from maintenance locations (i.e.
aircraft rotations). Crew assignment deals with assigning both cockpit and cabin crew to a series
of flight legs (i.e. crew scheduling). Decisions regarding pricing and revenue management are
concerned with setting price levels per fare class as well as trying to achieve the right balance
of accepting low fare, early booking leisure passenger while protecting enough seats for the
higher fare, later booking business passengers (Swan, 2002). Ultimately decisions have to be
made on the day of operations regarding disruptions and recovery (i.e. operations control).

Intuitively, it can be understood that making all the decisions regarding the fleet composition,
routing network and schedule design might be a tedious job, if not impossible, to do by hand.
Furthermore, it is even more difficult to tie all these decisions together in order to maximize profit
on an airline level. The size and complexity of these problems have driven advancements in op-
erations research (Barnhart and Cohn, 2004; Gabrel et al., 2014), which is a scientific research
field that aims to provide solutions to business problems by mathematically formulating them
as optimization models (Hillier and Lieberman, 2010). The extent to which these sophisticated
models have been developed in theory and used in practice differs per planning step. The holy
grail of a single tool in which each and every decision is combined from long-term to short-term
is yet to be developed.

The fleet planning problem

Fleet planning is the most strategic long-term consideration in airline planning and can pro-
foundly impact the airlines’ financial performance and operational flexibility. Investing in an air-
craft fleet is a highly capital-intensive long-term commitment which bears inherent risk because
the fleet is deployed over a long-term planning horizon over which uncertainty will materialize,
both on the revenue side (e.g. stochastic demand) as well as on the cost side (e.g. fuel price
volatility). Consequently there is a need for airlines to have a robust fleet that is resilient and
flexible to this uncertainty in terms of profit generating capability. Figure 1.2 presents numerous
measures that can be taken to achieve robustness.

There is an increasing trend towards aircraft leasing because of the flexibility benefits and
reduced up-front investment cost. Leasing comes at an operational cost for the airline however,
due to a compensation for the incurred risk that is transferred to the leasing company. Figure
1.2 also highlights that airlines can potentially avoid these flexibility cost by creating flexibility
in an alternative way: having the flexibility built into the fleet composition itself. This research
presents an innovative methodology that aims to achieve such robust fleets.

From a scientific perspective, mathematical optimization models have found successful real
world implementations in some areas of airline planning; e.g. the implementation of fleet assign-
ment models resulted in significant cost efficiency and operating margin improvements (Abara,
1989; Rushmeier and Kontogiorgis, 1997; Subramanian et al., 1994). However, there is scant
literature on detailed fleet planning optimization models predominantly because it is considered
very challenging to deal with the long-term uncertainty that is inherent to the long-term nature of
the fleet planning problem (Belobaba et al., 2009). It is postulated that a fleet planning method-
ology that is capable to appropriately consider the stochastic nature of demand could potentially
yield more robust airline fleets. The innovative methodology presented in this thesis aims to fill
that literature gap.

The motivation behind this fleet planning research project stems from the combination of its
elements; it is an optimization problem that spans a multi-year period and is subject to uncer-
tainty. These properties make it challenging to obtain meaningful results in reasonable compu-
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Figure 1.2: Robustness breakdown into resilience and flexibility (Clarke, 2004), and a further
breakdown provided by the author

tation times and therefore it is considered interesting to develop a new methodology to address
the problem and test its validity.

The research objective of this thesis is to develop a fleet planning concept that considers
the long-term stochastic nature of air travel demand and is capable to generate meaningful re-
sults in reasonable computation times. Results are considered meaningful if they allow for the
explicit comparison of both financial and non-financial performance metrics of different fleets.
To achieve this objective the proposed methodology adopts a portfolio of fleets and uses an
optimization model that simultaneously considers network development and frequency plan-
ning. This allows for the explicit comparison of the profit generating capability of each fleet from
the portfolio across a long-term planning horizon across numerous realizations of stochastic
demand.

Report structure

The state of the art in the body of knowledge of fleet composition and fleet assignment models
is presented in Chapter 2. A project plan, including a detailed problem statement, research
objective and project scope is detailed in Chapter 3. The overarching solution methodology is
presented in Chapter 4. It encompasses a detailed elaboration of the three models that together
shape the methodology; the stochastic demand forecasting model, the fleet assignment opti-
mization model and the scenario generation model. A case study serves as proof of concept
and is presented in Chapter 5. It contains an in-depth analysis of the results of each model and
synthesizes the results at the level of the overarching methodology. Chapter 6 present the ver-
ification and validation of the methodology. The conclusions, limitations and recommendations
for future work are presented in Chapter 7. The appendices contain input data and an extensive
collection of results.
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2
Literature review

The aim of this chapter is to assess the state of the art in the literature on the airline fleet planning
problem. The relations, gaps, advantages and disadvantages between different findings in the
body of knowledge are synthesized and used as a context in which the research project objective
is embedded.

The research fields of fleet planning problems and fleet assignment problems are both inves-
tigated. This is done because the goal of the research is to address the fleet planning problem
while the methodology that is used to address the problem contains a fleet assignment opti-
mization model that optimally assigns each fleet from the portfolio of fleets across the planning
horizon across the range of stochastic demand.

A historical overview and state of the art in fleet composition and fleet assignment models
is presented in Sections 2.1 and 2.2, respectively. Both sections elaborate on the different
models that were developed in the respective research fields, the methods that were used, the
way in which demand was modeled, the different objective functions and constraints that were
implemented and the optimization algorithms that were adopted. Section 2.3 aims to identify
useful insights from other research fields such as rail car and maritime fleet planning models,
while Section 2.4 provides an overview of best practices with regard to fleet planning in the
airline industry. Finally, Section 2.5 presents the conclusions of this chapter.

2.1 Fleet composition problems

This section aims to synthesize the body of knowledge on airline fleet planning models. Figure
2.1 provides a historical overview of some key contributions in this research field.

One of the earliest contributions to fleet planningmodels stem fromSchick and Stroup (1981)
and Shube and Stroup (1975), which developed amulti-year linear programmingmodel to obtain
optimal fleet compositions. The objective function aims to minimize operating cost, ownership
cost, cost associated with overcapacity and cost of acquisitions (i.e. debt), while satisfying a
set of constraints; demand satisfaction, minimum and maximum flight frequencies per route,
aircraft balance constraints and purchase constraints related to aircraft availability and maxi-
mum indebtedness. This approach of solving mathematical models using linear programming
was fairly new in the respective period and the main conclusions of Schick and Stroup (1981)
revolved about the relevance of such a computerized fleet planning model to the airline indus-
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Figure 2.1: Timeline of the most relevant literature in fleet composition problems

try. It is indicated that although the model returns solutions that are realistic, in the sense that
the fleet mix is planned over a multi-year period and satisfies demand and capacity constraints
as well as imposed frequency requirements, the question is if the airline industry, which tradi-
tionally tackled the fleet planning problem in a bottom-up manual approach, is ready for such a
top-down computerized approach using linear programming.

A basic fleet composition problem The starting point of a basic fleet planning problem is
to assume that future demand per route is known (i.e. deterministic). The goal is to decide
which aircraft to buy and how to optimally assign the aircraft to specific routes, considering the
demand per route and the specific aircraft characteristics such as ownership cost, cruise speed,
seating capacity and block times. The basic model for the fleet planning problem proposed by
Santos (2013) is presented below and has a profit maximizing objective function that is based
on revenue and ownership cost.

Sets
F Set of flights
K Set of aircraft
N Set of airports

Index
i Index for flights
k Index for aircraft fleet type
j Index for airport

Parameters
pki Revenue per flight i per aircraft type k
Ck Owning cost per aircraft type k
timeki Flight time per flight i per aircraft type k
BT k Block time per aircraft type k
Budget Aircraft investment budget

Decision variables
zki number of flights i per aircraft type k
ACk number of aircraft per aircraft type k

Objective function

Maximize
∑
k∈K

∑
i∈L

pki · zki −
∑
k∈K

Ck ·ACk (2.1)
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Subject to ∑
k∈K

zki = 1 for i ∈ F (2.2)

∑
i∈L

zki · timeki ≤ BT k ·ACk for k ∈ K (2.3)

∑
i∈arr(j)

zki =
∑

i∈dep(j)

zki for k ∈ K, j ∈ N (2.4)

∑
k∈K

Ck ·ACk ≤ Budget (2.5)

zki ∈ Z+ for i ∈ F, k ∈ K (2.6)

ACk ∈ Z+ for k ∈ K (2.7)

Where the objective function (Equation 2.1) maximizes profit by optimizing which aircraft to
buy and how to assign them to flights. Equation 2.2 is a flight coverage constraint that ensures
that one aircraft type is assigned per flight. The aircraft productivity constraint is given by Equa-
tion 2.3 and ensures that the operation hours per aircraft type do not exceed the given block
times. The set of flights that arrive at and depart from an airport j is given by arr(j) and dep(j),
respectively. The continuity constraint equation (Equation 2.4) ensures aircraft continuity by
equating the number of aircraft that arrive at and depart from an airport. An aircraft investment
budget constraint is represented by Equation 2.5. Equations 2.6 and 2.7 ensures that both de-
cision variables, zki and ACk, can take on only integer values. Again, it is noted here that the
presented mathematical formulation is a simplified example that can be extended for example
through introducing additional terms that account for operating cost and allow for passenger
flows through hubs.

Optimizing frequency Kanafani and Ghobrial (1982) presented a similar approach to Schick
and Stroup (1981), but with a focus on optimizing aircraft utilization through frequency assign-
ment by matching specific aircraft characteristics (e.g. small short-haul aircraft and large long-
haul aircraft) to the demand characteristics of a particular route network.

This focus on frequencies was expanded by Teodorović and Krčmar-Nožić (1989) who de-
veloped a multi-criteria nonlinear integer model that aims to return the optimal level of flight
frequencies when maximizing for profit, number of passengers flown and minimizing disrup-
tions. As part of the method a market share model is assumed that is dependent only on the
offered flight frequencies of competing airlines, and thereby fails to include other aspects such
as for example fare levels. Teodorović and Krčmar-Nožić (1989) notes that the problem is a
large combinatorial problem of which an optimal solution cannot be found; therefore a Monte
Carlo simulation is employed which randomly generates solutions and allows for choosing the
best solution among the feasible solutions.

Integer solutions A consideration in fleet planning models is whether or not to force the de-
cision variables to take on integer values (i.e. numbers without a fractional part) instead of
real values (i.e. numbers with a fractional part). Integer solutions, are more intuitive to under-
stand in practice and more realistic but also more demanding in terms of computing power and
computation times. In order to try to include the integrality constraint in a fleet management op-
timization model without significantly extending computation times, Powell and Carvalho (1997)
model the multi-commodity network flow problem as a dynamic control problem. The approach
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allows for heterogeneous fleet composition which expands one of their earlier contributions
that was restricted to optimizing for homogeneous fleets. It is argued that by using a logistics
queuing network (LQN) approach to arrive at integer solutions rather than applying linear re-
laxation to a linear programming problem, solutions are obtained that are on average within a
3.5% optimality gap. Moreover this approach has the capability to solve larger problems, which
better resemble reality, with smaller computation times. For a more thorough overview about
solution approaches for LP and MIP problems, such as branch-and-bound, branch-and-price,
branch-and-cut and column generation the reader is referred to dedicated literature provided by
Barnhart et al. (1994) and Barnhart, Johnson, Nemhauser, Savelsbergh and Vance (1998).

Buying versus leasing A major consideration in fleet planning is whether to buy or lease
aircraft in the fleet. Oum et al. (2000) address this aspect of the fleet composition problem
by focusing on the optimal lease/own mix for airlines that experience cyclical and stochastic
demand. A formulation is proposed for the cost trade-off between owning an aircraft, which
yields reduced capital cost and increased expected cost of overcapacity, as opposed to leasing
an aircraft. Through a case study on 23 airlines in the period 1986-1993 it is observed that the
optimal portion of leased aircraft with respect to all the aircraft in the fleet lies between 40% and
60%. It is concluded that by noting that aircraft lease contracts act as a means for risk sharing
between airlines, which have reduced risk by increased flexibility in capacity management while
they pay a risk premium to the leasing companies for the transfer of incurred risk.

Bazargan and Hartman (2012) approaches the fleet planning problem from the same per-
spective and proposes a binary-integer linear programming model for aircraft replacement strat-
egy. The objective function minimizes the total discounted cost of buying, leasing, operating and
maintaining aircraft over a certain planning horizon of 10 years. Moreover it includes a cost term
that represents additional costs associated with owning aircraft, such as spare parts, hangars
and crew training. Furthermore there is a term that accounts for the sale of aircraft. Five obser-
vations are made from the results, that apply to both of the case studies that were performed:
new aircraft are favored over old aircraft irrespective of buying/leasing decisions; solutions with
short-term leases are favored; old aircraft are to be sold; fleet diversity is discouraged; and
leasing is preferred over buying. The latter observation is consistent with other studies (Hsu, Li,
Liu and Chao, 2011; Oum et al., 2000). Although a method is proposed that incorporates quite
some terms in the objective function and constraints, the contribution fails to account for uncer-
tainty in demand or any other factor, rather a sensitivity analysis is performed on lease and buy
prices (plus or minus 50%). When analyzing the magnitude of these different cost terms it is
observed that operation and maintenance cost are the major cost drivers when evaluated over
the long term. The results of a case study indicate a strategy towards leasing new aircraft of
common aircraft types over the short term and moreover shows that aircraft with a higher pur-
chase price and a higher operating efficiency are preferred over aircraft that are less expensive
to acquire but more costly to operate.

Dynamic capacity allocation In an effort to account for stochastic demand in the fleet compo-
sition problem, Listes and Dekker (2005) proposes a two-stage stochastic programming model
for fleet composition optimization. In a proof-of-concept it is proposed to add robustness to the
fleet planning decision by including stochastic demand and using the concept of demand driven
dispatch, as introduced by Berge and Hopperstad (1993). The latter concept acknowledges the
existence of uncertainty in future demands when decisions about fleet compositions or initial
fleet assignments are made, and tries to accommodate that uncertainty by having aircraft of
different sizes within the same crew-compatible family in the fleet, so that they can be swapped
when more information about the actual demand becomes available close to the day of opera-
tion. Moreover, it is noted that when the stochastic model is solved with integrality constraints
the optimality gap is smaller than 0.5%, which is comparable to the order of magnitude of the
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optimality gaps that result from linear relaxation in deterministic models. Although Listes and
Dekker (2005) makes a profound step forward when it comes to considering for stochastic de-
mand in the fleet planning decision, the approach is limited due to a sole focus on short cycle
variations in demand that are to be solved using re-assignment. The approach fails to account
for the longer-term uncertainty in demand that is characteristic to fleet planning. Moreover, the
fleet assignment model in the second stage is based on deterministic demand. A scenario ag-
gregation solution algorithm is used to solve the fleet composition problem in the first stage.
The assumption is made that demand is independent and follows a normal distribution, which
is discretized into a set of scenarios using descriptive sampling.

Including competitive elements In an effort to capture the effect of the competitive element
of the airline industry on individual fleet planning decisions of airlines, Wei and Hansen (2007)
proposes a game theory model that aims to find the airline’s choices in terms of aircraft size
and frequency under a profit maximization objective. A duopoly market is assumed with only
non-stop city pair services in which airlines obtain market share through frequency share, but
neglect the effect of fare levels, which is detrimental to the approach of capturing competitive-
ness. Although this approach is not a full-fledged computerized LP optimization model, it does
provide insight in strategic considerations on competition that are also very important in fleet
planning decisions and are often not captured in mathematical optimization models. Wang et al.
(2015) approach the fleet planning problem from the same angle, aiming to include the effect
of competitive nature of the industry in aircraft size and frequency decisions. However it is
proposed to adopt a multi-objective, profit maximizing objective function and use Monte Carlo
simulation as a solution heuristic.

A manufacturers perspective Justin et al. (2010) provides insight in the fleet planning liter-
ature from yet another perspective. While airlines are seeking for the optimal set of aircraft to
have in their fleet, aircraft manufacturers are the developers and suppliers of this costly equip-
ment. Aircraft research and development programs are highly expensive, take a long time and
bear a high risk. Manufacturers inform themselves on three project critical elements on which
a project continuation will hinge (Justin et al., 2010): what is the value of a particular future air-
craft to the airline as a customer, what are the other aircraft that are available in the market (i.e.
competing products), and what will the R&D project cost? Ultimately, these three elements will
determine the profitability of a development program for the manufacturer. Justin et al. (2010)
perform the first mentioned analysis; an aircraft valuation performed by manufacturers through
the eyes of the future customers, i.e. the airlines. This airline perspective entails the evalua-
tion of aircraft over the entire network of routes, which is noted to be a contribution against the
traditional route-based analysis.

Stochastic programming Hsu, Li, Liu and Chao (2011) proposes an optimal replacement
schedule for airline fleets using a stochastic dynamic programming model which is solved using
backward computing. A grey topological forecasting method combined with Markov-chain is
used to model the stochastic demand on a market level and a market share estimation that is
only frequency dependent to calculate demand on an airline level. From the results it is observed
that high volatility in demand drives fleet planning decisions to favor leasing over buying. The
objective function minimizes the cost of three cost terms per period over a multi-period planning
horizon. These cost terms are operating cost, aircraft replacement cost and a penalty cost
which arises from the potential difference between forecasted and actually realized demand.
Operating cost are assumed to be dependent on aircraft status, which is defined as: aircraft
age, type and mileage travelled. A sensitivity analysis is performed on the aircraft age and
average lease cost. Although a profound step forward is made using the sophisticated demand
forecasting method that accounts for the cyclical demand, Hsu, Li, Liu and Chao (2011) note
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that this method still lacks the influence of non-cyclical (i.e. random) variations in demand as
result of terrorist attacks and aircraft accidents.

Khoo and Teoh (2013) also note the drawback of earlier attempts in literature to include the
cyclical nature of stochastic demand, which still neglect the presence of unexpected events,
which is referred to as ”the possibility of unexpected events that could take place unexpectedly”.
In order to capture the latter element it is proposed to formulate of a stochastic demand index
(SDI). This SDI is developed in multiple steps by identifying a range of possible unexpected
events such as disease outbreaks and natural disasters, as well as the probability distributions of
these situations based on their historical occurrence. Then the occurrence of all these uncertain
events is modeled using a Monte Carlo simulation and combined with a traditional demand
forecast that does not account for uncertain events in order to arrive at a single SDI for each
operating period, which is used as an input to a fleet management optimization model.

Strategic alliances Building on to an earlier contribution (Hsu, Li, Liu and Chao, 2011), Hsu,
Chao and Huang (2011) expands that model by applying it to fleet planning decisions that are
evaluated through the lens of strategic alliances. The research objective is to let the expected
profit of the strategic airlines converge to each other through interactive-bargaining negotiations
on their aggregate fleet planning decisions. In essence such collaboration is aimed at reducing
the cost associated with overcapacity by one airline under the assumption that the other airline
is interested in temporarily leasing that capacity from its strategic alliance partner at a discount
rate with respect to leasing companies. However, the results should be evaluated through the
context of the assumptions that were made. Aircraft purchase discounts and the second-hand
aircraft market were neglected in this study and could very well impact the solutions significantly.

An environmental perspective Although most of the literature is aimed at the financial as-
pect of fleet planning by maximizing revenue, minimizing cost, or both, some research is con-
ducted that also incorporates the environmental aspect of fleet planning. Rosskopf and Luetjens
(2012) and Rosskopf et al. (2014) try to balance the trade-off between optimizing economical
performance and environmental impact by proposing a fleet optimization model, which is called
FLOP, for fleet composition and assignment. The results of a case study indicate that a quanti-
fied trade-off could be made between a 6-7% reduction in emissions (NOx) at the cost of a 3%
loss in financial performance, predominantly realized by replacing old aircraft with new aircraft.

Khoo and Teoh (2014) include environmental performance that is related to noise, emissions
and fuel consumption in a single indicator which is called the Green Fleet Index (GFI). The
objective function minimizes both the GFI and maximizes for profit using a bi-objective dynamic
programming model. Furthermore a set of 8 constraints is included to reflect reality: budget,
demand, parking (i.e. based on aircraft geometry), sales of aircraft, order delivery, aircraft range,
fleet commonality, lead times and selling time constraints. It is noted that while both objectives
seem conflicting, they can be achieved simultaneously by increasing load factors.

Fuzzy logic Dožić and Kalić (2013) proposes a two-stage model for fleet planning. The ap-
propriate fleet mix is determined in the first stage with the use of fuzzy logic. The minimum level
of aircraft per type in order to cover a flight schedule is determined in the second stage using
both a sequential and a simultaneous heuristic algorithm for fleet assignment. As an assump-
tion all aircraft types are categorized in two classes: small and medium sized aircraft. Three
categories of stage length as well as three categories of demand patterns are adopted. Later,
Dožić and Kalić (2015) introduced a three-stage model for fleet planning. Again, fuzzy logic is
applied in the first stage to determine the fleet composition. The second stage determines the
minimum level of aircraft per type and in the third stage the even swaps method is applied for
aircraft type trade-off considerations.
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2.2 Fleet assignment models

The fleet assignment model (FAM) aims to match supply with demand by assigning aircraft
types of a given and fixed fleet to scheduled flights with the objective to maximize operating
profit or minimize operating cost.

While fleet composition problems are more of a strategic nature since they consider which
aircraft to buy, fleet assignment problems are more of a tactical nature since they aim to optimize
the utilization of a given fleet that consists of aircraft that already have been bought.

Inputs to the FAM are the demand forecast and the number and type of aircraft in the fleet.
These fleet assignment optimization models have been applied in an industry setting with pro-
found success stories with examples including a 1.4% increase in operating margin at American
Airlines (Abara, 1989), and operating cost savings of $15 million at US Airways (Rushmeier and
Kontogiorgis, 1997) and $100 million at Delta (Subramanian et al., 1994). Figure 2.2 provides a
brief historical overview of some key contributions to the body of knowledge of fleet assignment
models.

Levin  
(1971) 

Ferguson 
and Dantzig 

(1956) 

Abara 
(1989) 

Berge and 
Hopperstad 

(1993) 

Gu et al. 
(1994) 

Subramanian 
et al.    

(1994) 

Talluri et al. 
(1996) 

Clarke et al.
(1996) 

Hane et al. 
(1995) 

Gao et al.
(2009) 

Rushmeier 
& 

Kontogiorgis 
(1997) 

Barnhart et 
al. (1998) 

Jarrah et al. 
 (2000) 

Sherali et. al 
(2006) 

Sherali and 
Zhu (2008) 

Barnhart et 
al. (2002) 

Rosenberger 
et al.  

(2004) 

Pilla et al. 
(2008, 
2012) 

Figure 2.2: Timeline of the most relevant literature in fleet assignment models

A historical introduction Ferguson and Dantzig (1956) presented one of the earliest contri-
butions to FAM that are solved using linear programming. It employed a profit maximization
objective function to a combined problem of fleet assignment and aircraft routing under un-
certain demand, by assuming a hypothetical demand distribution. Abara (1989) proposed an
integer linear programming problem (ILP) and regards the FAM as a multi-commodity network
flow problem. The model has 4 basic constraints; flight coverage, continuity, schedule balance
and aircraft count, and a fifth constraint that can be modified based on the problem at hand. The
objective function can take on three forms, either minimizing cost, maximizing profit or maximiz-
ing aircraft utilization. The results from a case study at American Airlines include a reduction
in operating cost by 0.4%, a 1.4% increase in operating margin and an increased daily aircraft
utilization by one hour. It is noted that even small problems are of an extensive scale in terms
of the LP-matrix; a problem with 400 flights per day, 60 city-pairs and 3 aircraft types results in
a LP-matrix with 1.800 rows and 6.300 columns. In order to obtain integer solutions the prob-
lem was first solved using LP relaxation, followed by fixing of variables and then solved as a
mixed-integer program (MIP). Abara (1989) observed that the continuous (non-integer) solution
usually already consists of predominantly integer variables but that it could still take quite some
iterations to solve. It was found that computation times are dependent on the number of aircraft
types in the fleet and ranged between 2 to 60 minutes for 2 to 4 aircraft types, respectively.

Reducing computation times The high computational complexity of the FAM and the desire
for integer solutions drives the computation times and required computational power. In an effort
to tackle this problem, Hane et al. (1995) proposes a FAM that is solved with various methods
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with the goal of reducing computation times. These methods include an interior-point algorithm,
dual steepest edge simplex, cost perturbation, model aggregation, branching on set-partitioning
constraints and prioritizing the order of branching. When comparing the results with a traditional
branch-and-bound method it is found that the approach is able to obtain solutions more than
two orders of magnitude faster, while the results remain within a 0.2% optimality gap.

Sherali et al. (2006) provides an extensive literature review on FAM and note that two dif-
ferent approaches are used in the mathematical formulation of the flight network to which the
FAM is applied. Abara (1989) uses connection networks in which the arcs represent connec-
tions, whereas Hane et al. (1995) use a time-space network wherein arcs represent flight legs.
The advantage of the latter approach is that less decision variables are present in the model,
because the number of feasible flight legs is much less than the number of feasible connec-
tions, which makes the problem less demanding in terms of computational power or time. The
time-space network approach makes uses of three sets of arcs: ground arcs, flight arcs and
overnight arcs.

The basic FAM Hane et al. (1995) proposed a basic FAM which is based on a time-space-
network. A simplified version of the basic FAM (Bazargan, 2004) is presented below:

Sets
F Set of flights
K Set of fleet types
C Set of last-nodes, representing all nodes with aircraft

grounded overnight at an airport in the network
M Number of nodes in the network

Index
i Flight index
k Fleet type index
j Node index

Parameters
Ci,k Cost of assigning fleet type k to flight i
Nk Number of available aircraft in fleet type k

Si,j =

{
+1 if flight i is an arrival at node j
−1 if flight i is a departure from node j

Decision variables

xi,k =

{
1 if flight i is assigned to fleet type k
0 otherwise

Gj,k number of aircraft of fleet type k on ground at node j (integer)

Objective function

Minimize
∑
k∈K

∑
i∈F

ci,kxi,k (2.8)

Subject to ∑
k∈K

xi,k = 1 for i ∈ F (2.9)

C.A.A. Sa Final Report



Chapter 2. Literature review 13

Gj−1,k +
∑
i∈F

Si,jxi,k = Gj,k for j ∈ M, k ∈ K (2.10)

∑
j∈C

Gj,k ≤ Nk for k ∈ K (2.11)

xi,k ∈ {0, 1} for i ∈ F, k ∈ K (2.12)

Gj,k ∈ Z+ for j ∈ M, k ∈ K (2.13)

Where the objective function (Equation 2.8) minimizes the total cost of assigning the aircraft
types to the flights. The flight-cover constraint (Equation 2.9) ensures that each flight is covered
by one aircraft type. The aircraft balance constraint (Equation 2.10) ensures aircraft balance at
the nodes by summing the number of aircraft per type before the node (Gj−1,k) plus the number
of aircraft per type that arrive at the node (Si,j = +1) minus the number of aircraft per type that
depart from the node (Si,j = −1) and equating the sum of these with the number of aircraft per
type at the node (Gj,k). Equation 2.11 is the availability constraint and ensures that the sum
of the number of aircraft per type that are assigned does not exceed the number of available
aircraft per type in the fleet. Constraints 2.12 and 2.13 ensure that the decision variables xi,k
and Gj,k take on binary and positive integers values, respectively.

Improvements to the basic FAM Subramanian et al. (1994) proposes a model that is based
on the model provided by Hane et al. (1995). The objective function minimizes operational cost
and cost associated with spill. The model is named ”Coldstart”, to indicate the contrast with a
”Warmstart” approach that was used by Delta Airlines, which entailed amanual fleet assignment
by the fleet planners, that was optimized afterwards by performing local swaps heuristics. The
mixed-integer programming (MIP) model is rather large with 40.000 integer variables, 20.000
binary variables and 40.000 constraints. The impact of different solution techniques to this
large-scale problem is highlighted by noting that a monthly schedule was solved in 45 iterations
in 43 minutes when using the interior-point algorithm like Hane et al. (1995) while it took over
300 thousand iterations and 19 hours to solve the problem using a primal-simplex approach
on the same workstation. Another warm start approach is proposed by Talluri (1996), however
in the approach the initial fleet assignment is performed using a basic FAM as presented by
Hane et al. (1995). Then, to that initial assignment a swapping heuristic is introduced that
can be used to swap between different aircraft types at overnight stations while satisfying all
the (coverage/flow balance/aircraft count) constraints. Jarrah et al. (2000) identifies the similar
need of incrementally fine-tuning an initial assignment in order to include business judgment
calls in the assignment that could not be captured in the model, which is called re-fleeting. Gu
et al. (1994) elaborates the complexity of the FAM and shows that the problem is NP-hard when
three aircraft types are employed which means that the problem is computationally complex to
solve. This problem is addressed by Hane et al. (1995) through applying three preprocessing
steps that reduce the size of the flight network, thereby making the problem less computationally
demanding.

Extensions to the basic FAM Next to the efforts that aimed to overcome some of the compu-
tational difficulties associated with the FAM, other contributions in literature aimed at extending
the FAM by capturing more elements in the model, or extending it to other scheduling steps.
Clarke et al. (1996) extends the basic FAM by capturing maintenance and crew considera-
tions into the model. Barnhart, Boland, Clarke, Johnson, Nemhauser and Shenoi (1998) pro-
poses a string-based weekly FAM that simultaneously solves the fleet assignment and aircraft
routing problem, whereby strings refer to a sequence of flights between maintenance stations.
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A branch-and-bound solution approach is adopted that uses column generation to solve the
problem. In an effort to capture the network effects, by acknowledging that demand is origin-
destination (O-D) based instead of flight leg based, Barnhart et al. (2002) proposes an approach
which is called itinerary-based fleet assignment model (IFAM). A linear relaxation and a branch-
and-bound solution approach are applied to solve the ILP. Rosenberger et al. (2004) aims to
incorporate robustness into the FAM, by reducing schedule disruptions that stem from delays
and cancellations by having more flight strings that start and end at the same of hub. Gao et al.
(2009) proposes an integrated model for fleet assignment and robust crew scheduling. Crew
base purity and fleet purity are included in the approach and it is analyzed how these elements
relate to crew cost and schedule robustness to disruptions.

Coping with uncertain demand in the FAM One of the earlier contributions in which stochas-
tic demand is incorporated is provided by Jacobs et al. (1999), which presents a combined
model for FAM and revenue management which is solved as an MIP using Benders decompo-
sition method. Listes and Dekker (2005) also considers stochastic demand in the FAM, but by
making use of the concept of demand driven dispatch (Berge and Hopperstad, 1993). The aim
is however to use such an approach from a fleet planning perspective, therefore a review of this
contribution can be found in Section 2.1. A similar approach of introducing flexibility to cope
with demand uncertainty is proposed by Sherali and Zhu (2008). A two-stage stochastic MIP
for FAM (SPFAM) is used where family type fleet assignment is performed in the first stage and
aircraft types within a family are allocated in the second stage, which resembles the strategy
provided by Berge and Hopperstad (1993). A solution technique is used which is based on
Benders decomposition method and from the results a potential 1.7% increase in profits is ob-
served. Solution times may take as long as 4-12 hours. In a first contribution Pilla et al. (2008)
also proposes a two-stage stochastic programming approach for the FAM that makes use of
demand driven dispatch. The difficulty of solving a two-stage SP with the traditionally used
Benders decomposition method is noted however. The aim is to produce a more tractable so-
lution method by fitting a multivariate adaptive regression splines (MARS) approximation to the
expected profit function. Later, Pilla et al. (2012) builds on to the initial contribution by proposing
a cutting plane algorithm to optimize the MARS approximation function, which is referred to as
MARS-CP.

2.3 Insights from other research fields

This section provides insight to fleet planning literature in other industries than airline fleet plan-
ning, such as fleet management problems in the rail and maritime industries.

Maritime Jin and Kite-Powell (2000) investigates the fleet management problem with an ap-
plication to vessels by evaluating vessel utilization, acquisition of new vessels and disposal of
old ships. The contribution is based on evaluating the disposal of old vessels and acquisition
of new vessels separately by linking the trade-offs of these decisions to the vessel utilization.
This allows for solutions with varying fleet size over time. In an effort to introduce the theory of
robust optimization into the world of maritime planning, Wang et al. (2012) proposes a robust
optimization model for liner ship fleet planning in which both the expected value of profits as well
as the variance in these variables are evaluated, based on a given route network. In order to
capture the uncertainty of demand, a limited and discrete set of deterministic demand scenarios
with deterministic probabilities is assumed, which is comparable to the approach proposed by
Listes and Dekker (2005).

C.A.A. Sa Final Report



Chapter 2. Literature review 15

Rail car Bojović (2002) proposes a method that aims to find the optimal fleet size of rail freight
car, in terms of minimizing cost while satisfying demand. The demand is modeled by assum-
ing it is the sum of a deterministic demand component that follows a normal distribution and
stochastic demand component that is represented by a Gaussian random process (i.e. white
noise). Moreover, Bojović (2002) provides an extensive literature review on vehicle fleet sizing
problems.

Sayarshad and Ghoseiri (2009) also proposes an optimization model for the rail car fleet
sizing and allocation problem. A simulated annealing algorithm is used as solution heuristic
to solve the problem. Although deterministic demand and travel times are assumed, it hints
towards the relevance of future work that includes stochastic variables. In a later contribution,
Sayarshad and Tavakkoli-Moghaddam (2010) does just that by including stochastic demand in
the same rail car fleet sizing and allocation problem. Again, a simulated annealing heuristic is
used to solve the two-stage stochastic program. In a simple example case it is assumed that the
demand is normally distributed and 5 demand scenarios are employed, each with probability of
0.2. Another effort to include stochastic demand in the rail car fleet sizing and allocation is pro-
vided by Milenković and Bojović (2013), which proposes a fuzzy random linear dynamic model
as an alternative approach to the probability theory-based approach proposed by Sayarshad
and Tavakkoli-Moghaddam (2010). Milenković and Bojović (2013) notes that rail car demand
may fluctuate as much as 50% on a weekly basis and the uncertain demand is modeled as
fuzzy random variables.

Other Fleet sizing problems are considered in a whole range of industries other than airline,
rail or maritime. List et al. (2006) details a two-stage stochastic programming model for the
investment under uncertainty in equipment that is to be used for the transport of radio active
wastes from weapon factories to disposal sites. Three sources of uncertainty are identified;
uncertainty about the quantity of the waste, uncertainty about the waste processing rates and
uncertainty about the certification of packages. The first stage deals with the variables regarding
investments in transportation equipment (e.g. trucks, packages), while the second stage deals
with minimizing the operation cost of transportation. In order to unravel the difference between
a deterministic (expected value), stochastic programming and robust optimization approach all
three of these approaches are used. It is observed that with respect to the deterministic case,
stochastic programming results in solutions in which 27% more trucks are acquired, whereas
robust optimization yields a solution in which 54% more trucks are acquired with respect to
the deterministic case. Moreover two risk terms are introduced (financial risk and political risk)
in the robust optimization method so that these two risks can be part of a trade-off and the
effects of such a trade-off can be evaluated over the equipment investment decisions under
uncertainty. In an earlier contribution, List et al. (2003) provides a robust optimization approach
for fleet planning under uncertainty in which the trade-off between risk and investment is made
explicitly. It is noted that traditional robust optimization methods make use of a mean-variance
trade-off in the approach, while this could yield inefficient solutions when applied to fleet planning
models. Therefore, List et al. (2003) proposes to focus on a one-sided risk measure instead of
variance in an effort to control the likelihood that the objective function exceeds a certain value.
The latter value can be adjusted so that trade-offs between cost and risk can be explicitly made.

Another research that highlights the difference between a stochastic programming and ro-
bust optimization approach for a transportation problem under uncertainty is provided by Mag-
gioni et al. (2014). The problem deals with the transportation planning of a resource, gypsum,
from a set of supply points to a set of demand points. The objective is to minimize total cost
which is a function of transportation cost and buying cost, while accounting for uncertainty of two
variables: demand for gypsum by cement factories and buying cost from external sources. By
comparing the stochastic programming and robust optimization results it is observed that the ro-
bust optimization approach returns higher values for the objective function, while the stochastic
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programming requires a higher computational complexity. This is result is in line with the find-
ings of List et al. (2006) and also in line with the expectation about robust optimization, which
is a more conservative, risk-averse approach than stochastic programming and thus will yield
larger solution values in case of minimization problems.

Fleet sizing and resource allocation problems are also broadly discussed in the research
fields of road transportation, energy systems, production planning, supply chain analysis and a
plethora of other industry applications. A thorough review is considered out of scope.

2.4 Industry best practices

While scientific literature approaches the fleet planning problem in a rigorousmathematical man-
ner from an airline network point of view, it appears that airline decision making is predominantly
based on more practical and lower level trade-offs. It seems that airlines are not approaching
the fleet planning decisions from a perspective of what the optimal fleet composition would be to
cater a range of demands over the entire network. The main focus seems to be fleet renewal or
capacity expansion based on route-based analysis, as opposed to a network view. Airlines are
restricted to practical constraints such as aircraft purchase slots and delivery lead times which
are often not captured in scientific models. Moreover, the aircraft acquisition consideration is
mainly driven by availability of cash in the company (i.e. cash flow) or the option to raise cash
externally (i.e. debt).

Clark (2007, p.41) indicates that a whole range of commercial decision support tools is
available that can be broadly classified in two categories: tools that focus on ownership of a
certain fleet composition and tools that focus on optimizing the fleet deployment. Commercial
software is available from aircraft manufacturers, airline consulting firms and dedicated airline
planning software developers assist airlines in decision making with regard to fleet planning. It
seems however that the software does not contain sophisticated methods such as stochastic
programming in order to consider stochastic demand. It appears that airlines perform sensitivity
analysis with best, worst and base case demand scenarios in order to grasp the uncertainty of
stochastic demand.

2.5 Concluding remarks

Figure 2.3a and 2.3b provide an overview of the different perspectives and solution method-
ologies to the fleet composition problems and fleet assignment models in literature. Through
observing these contributions different methods and modeling techniques are identified from lit-
erature that could be used to optimize the fleet plan or fleet assignment and deal with stochastic
demand, with examples including; sensitivity analysis, Monte Carlo simulation, stochastic pro-
gramming, robust optimization, dynamic capacity allocation, real options analysis and value at
risk. On an aggregate level it could be observed that these techniques differ from each other
by providing a different balance in; which elements are captured in the model to get the de-
sired level of realistic solutions, the problem size and computational complexity of the resulting
problems and the solution techniques that are used to solve them, the balance between finding
(near-)optimal solutions in the feasibility space in reasonable computation times as well as the
search for a trade-off between risk and cost. Consequently it can be stated that there is a desire
to develop optimization models that are capable to capture elements that reflect the appropriate
level of reality, deal with the complexity that stems from that approach by having appropriate
solution techniques and to deliver optimal or near-optimal results in reasonable computation
times.

A trend to capture more realistic features in the fleet composition problem is characterized by
the trade-off between buying and leasing, game theory in a competitive market and the influence
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Figure 2.3: An overview of deterministic and stochastic fleet composition problems (FCP) and
fleet assignment models (FAM) in the body of knowledge

of strategic alliances on fleet planning. In the research field of fleet assignment models there
is a trend towards finding appropriate solution techniques to deal with integrality constraints,
reducing computation times and extending the FAM to other airline planning steps such as
crew assignment and aircraft routing.

Although the number of contributions that consider stochastic demand is not yet in the ma-
jority, a clear research trend can be identified that aims to find an effective way to deal with
uncertainty in reasonable computation times. This can be considered challenging however,
since the deterministic counterparts already are consuming in terms of computation power and
times.

As a vision, it can be formulated that when aiming to effectively consider stochastic demand
in long-term fleet planning models within reasonable computation times there are some consid-
erations to keep in mind; it is likely that the problem itself should be simplified; a small number
of scenarios should be adopted; the computation power of the computer has to be increased;
a new, quick and simple modeling technique has to be developed that effectively exploits the
topology of the mathematical model for these kinds of problems; or a combination of all the
aforementioned.

To conclude it can also be observed that with respect to fleet composition models there is
supposedly a significant gap between the sophisticated optimization models that are discussed
in literature and the relatively basic approach that is adopted by airlines in practice.
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3
Project plan

This chapter details the problem statement, research objective, scope, and contribution. It
is important to emphasize that the research project design was not laid out during a one time
brainstorming and project definition session but rather is the result of an iterative-parallel design
strategy that encompasses continuous redefinition of the project scope. The presented problem
statement and proposed solution method are the result of that iterative design strategy.

3.1 Problem statement

The problem statement is defined by describing it both from an industry perspective as well as
a scientific perspective.

• Industry perspective: the industry problem is defined by the poor financial performance of
airlines;

– Airlines have low operating and net profit margins and consistently fail to meet in-
vestors expectations in terms of return on invested capital (ROIC) with respect to
weighted average cost of capital (WACC).

– This poor financial performance ultimately is the result of a complex set of underlying
business characteristics that define airline profitability.

– As result of the low profit margins, airlines have a small margin for error when it comes
to operating their business profitably by balancing supply with demand through opti-
mally utilizing their asset base (i.e. aircraft fleet). This problem is severed by the fact
that airlines are subject to cyclicality and uncertainty on both the revenue side (i.e.
10 year business cycles, seasonality throughout the year) and on the cost side (i.e.
fuel price volatility), as well as the perishable nature of the product (i.e. an unsold
aircraft seat for a specific flight cannot be sold anymore after the flight has departed).

• Scientific perspective: from a scientific perspective the problem statement is defined as
the challenge to develop airline fleet planning optimization models that consider the evo-
lution of uncertainty across the long-term planning horizon. Airline fleet planning optimiza-
tion is particularly challenging because;
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– It spans a long-term planning horizon over which uncertainty materializes which has
the potential to profoundly impact the evolution of profitability across the planning
horizon. Simulation models that explore the uncertainty over time can be compu-
tationally demanding. The same holds for optimization models that optimize the
allocation of capacity to demand. This makes it challenging to combine these two
methodologies into one overarching solution methodology that deals with optimiza-
tion under uncertainty.

– Fleet planning decisions are closely tied to airline network decisions. This adds a
substantial layer of detail to fleet planning decisions since it requires the evaluation
of route profitability per aircraft type for all potential routes and all aircraft types under
consideration. An apparent real world example of the impact of the routing network on
the fleet composition is observed when comparing the fleets of low cost carriers that
operate a point-to-point network with one or two aircraft types (i.e. thereby exploiting
the benefits of fleet commonality) versus legacy carriers that operate a hub-and-
spoke network with a diverse fleet composition to cater the need for different capacity
levels in their network (Belobaba et al., 2009).

To summarize, from a scientific perspective it is a challenge to obtain meaningful results
in reasonable computation times in airline fleet planning optimization models that capture the
stochastic nature of demand across a long-term planning horizon. From an industry perspective
there is a need to improve the consistent poor financial performance of airlines.

3.2 Research objective

The formulation of the research objective is grounded in the problem statement, which is de-
tailed in Section 3.1. The research objective is;

To analyze the potential benefit of a portfolio-based airline fleet planning concept, by devel-
oping a model which considers the stochastic nature of air travel demand and aims to generate
meaningful results in reasonable computation times.

In order to define the methodology that is suitable to achieve the research objective, it is
important to demarcate the concepts of meaningful results and reasonable computation times
in the context of this research. Therefore, these two concepts are detailed over the next two
paragraphs.

Meaningful results During the demarcation of the project scope it is decided what kind of
results are consideredmeaningful. Ultimately, the goal is to identify which fleet displays themost
desired behavior across the uncertain planning horizon. What type of behavior is considered
desirable depends on the strategic vision the airline has with regards its network, the type of
business model it adopts as well as the risk profile it is seeking to pursue. In this research results
are considered to be meaningful if they allow for the (financial and non-financial) comparison
of the performance of different fleets across the planning horizon under stochastic demand.
Therefore, in the context of this research meaningful results are results that allow to:

• Compare how different fleets (both in size and composition) generate cash flow across
multiple years in the planning horizon across multiple realizations of stochastic demand.

• Compare non-financial performance metrics such as; network load factors, aircraft utiliza-
tion per aircraft type and metrics that describe the routing network (e.g. the number of
passengers that are transported using a nonstop flight or with a connecting flight through
a hub).
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Based on the premise that more informed decision making can be achieved when different
alternatives can be evaluated, especially acknowledging that not all elements of influence in
fleet planning can be captured in the model, it is considered meaningless if the result of the
methodology is a single output that states which fleet composition and size is supposedly opti-
mal, even if uncertainty is taken into account in order to arrive at that result. Consequently, the
methodology should be set up in such a way that it allows for these explicit comparisons to take
place. This is achieved by the adoption of a portfolio of fleets, each different in terms of size or
composition. The deployment of each fleet from the portfolio is evaluated across the planning
horizon across multiple realizations of stochastic demand, which allows for comparisons to take
place.

Reasonable computation times Since fleet planning is one of the most strategic long-term
decisions in airline planning, it is considered acceptable if solutions can be generated within two
hours to get some basic results for a limited set of OD pairs and fleets under consideration.

This view is extended by noting that the term reasonable is subject to interpretation. There-
fore it is considered valuable if the methodology harvests insight into how the meaningfulness of
results scales with computation times. Armed with that insight, fleet planning decision makers
in industry can make explicit trade-offs with regards to the level of detail they wish to consider
and the corresponding computation times to get to a solution. Below is a list of elements of
influence in fleet planning that impact both the meaningfulness and the computation times;

• number of different fleets in the portfolio

• number of different aircraft types in the portfolio

• number of OD pairs under consideration

• number of years (or any other discrete measure of time periods) in the planning horizon

• number of realizations of uncertainty per time period under consideration

Research framework The research framework provides a general indication of the steps that
need to be taken to achieve the research objective from the gathering of information, to the
demarcation of the research scope, formulation and implementation of the proposed solution
methodology to observation and analysis of the results and ultimately the drawing of conclu-
sions. A schematic visualization can be found in Figure 3.1.

Programming language and optimization software In this research, conducting experi-
ments is to be viewed from the perspective of a computer programming environment. The
proposed methodology and models are translated to computer code using a programming lan-
guage in order to numerically solve the problem. It is decided to use the Python programming
language since its high level abstraction enables relatively quick implementation of algorithms.
Moreover, its open source nature results in a large active online community that can be used
for rapidly increasing the necessary coding knowledge. For the optimization part it is decided
to use Gurobi, which is a commercial software package that is available at no cost to students,
it is fast and works intuitively with the Python programming language.

3.3 Scope

To achieve the objective within the available time, space and money it is important to demarcate
the research objective. Scoping has already partially taken place in the previous section by
detailing how the concepts of meaningful results and reasonable computation times are defined.
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Figure 3.1: Research framework

Essentially, through scoping the assumptions are set that together form the context in which the
experiment is going to be performed and as such is also the context in which the results should
be evaluated. Below is a list of project demarcations:

• The uncertainty that is associated to fuel price volatility is not considered.

• The goal is not to solve a fleet planning problem for a specific airline. The goal is to
demonstrate the proof of concept of a new fleet planning methodology that is generic and
can be applied to any specific airline, irrespective of its business model, routing network
or fleet planning preferences in terms of size and mix.

• The methodology is based on the premise that the poor airline profitability can be im-
proved by optimizing the asset base towards catering future uncertain demand. As such,
the underlying economic factors that drive poor profitability (e.g. competition, bargaining
power of suppliers, regulation, etc., see Chapter 1) are considered out of scope and are
not part of the solution methodology.

• The overall methodology is set up as a decision analysis approach that aims to provide
insight by comparing different fleets through simulation, optimization and scenario gener-
ation. It is not a stochastic programming approach that aims to return the single best fleet
given the distribution of uncertainty across the planning horizon.

• The uncertainty that is associated with the negotiation and deal making process is difficult
to capture into a mathematical optimization model (even in game theoretic models) in such
a way that it reflects reality. Examples include negotiations on aircraft purchase prices,
long-term spare parts contracts as well as long-term exclusivity agreements signed be-
tween airlines and aircraft manufacturers. The research objective and proposed method-
ology do not tackle this problem. However, since the methodology provides information
about the profitability of fleets across the planning horizon across stochastic demand, it
does allow for better understanding of the trade space when faced with these negotiations.
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• It is noted that focusing on computation times inherently includes the scientific field of
computer science. Computation times depend on howmany computers are used, the type
of computer used, working memory, processor, the number of cores in the processor, level
of abstraction of the programming language, efficiency of the used optimization algorithm,
whether use ismade of parallel computing or cloud computing, etc. The elements that from
a computer science research field perspective impact computation times are considered
out of scope for this research.

• The following important elements of impact to fleet planning do not fall within the scope of
this research: the timing of future orders and deliveries, lease/buy mix considerations as a
measure to increase flexibility and transferring the risk of mismatching supply with demand
under uncertainty, no game theoretic considerations (not on the airline competition side
and not on the deal making side), no market share-frequency considerations.

3.4 Impact and contribution

In Figure 3.2 the state of the art (i.e. status quo) and the contribution to that state of the art are
displayed both from a scientific perspective (i.e. the contribution to the body of knowledge) as
well from the industry perspective (i.e. the industry impact).

§  Deterministic airline fleet planning model 
(Bazargan, 2012) 

§  Two-stage stochastic programming 
approach to fleet planning problem 
assuming point-to-point network (List, 2003) 

§  Two stage stochastic fleet assignment 
models – dynamic capacity allocation 
(Listes & Dekker 2005, Pilla 2012)  

§  Value of fleet commonality (Brüggen & 
Klose, 2010) 

Fleet planning decisions are driven by: 
§  Route-based analysis 
§  Availability of cash 
§  Relatively simplistic demand scenarios 
 
 
 
Perspective: 
§  “Should we buy this 787 for this specific 

route based on these three simplistic 
demand scenarios?”  

§  Portfolio-based approach allows for the 
explicit comparison (financial and non 
financial) between different fleet sizes and 
compositions across the planning horizon 
across different realizations of stochastic 
demand 

§  Extensive consideration of stochastic 
demand per origin-destination pair by 
modeling it as a mean reverting Ornstein-
Uhlenbeck process and considering year-to-
year evolution of uncertainty using discrete-
time Markov transition probability matrices 

Fleet planning decisions are driven by: 
§  Network analysis 
§  Demand scenarios based on an extensive 

and in-depth consideration of stochastic 
demand 

 
Perspective: 
§  “What is the ideal fleet size and composition 

to have for the entire network under 
stochastic demand?” 
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Figure 3.2: Science and industry: status quo and contribution of the proposed methodology
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4
Methodology

4.1 The overarching solution methodology

This section provides a high level introduction to the overarching methodology, which will be
alternatively referred to as the modeling framework. In order to achieve the research objective
the overarching methodology must satisfy two requirements while ensuring reasonable compu-
tation times; consider the stochastic nature of demand and allow for the explicit comparison of
both financial and non-financial performance metrics of each fleet from the portfolio. Figure 4.1
presents how these requirements are grounded in the structure of the methodology and result
in the formulation of three models.

Requirements 

§  Consider the stochastic nature of air 
travel demand 

§  Compare how different fleets perform, 
both financially and non-financially, 
across different realizations of stochastic 
demand across the planning horizon 

Methodology 

§  Explore the range and evolution of 
numerous realizations of stochastic 
demand 

§  Investigate the performance of one fleet 
by optimally assigning that fleet given 
one realization of stochastic demand 

§  Compare the performance of different 
fleets by optimally assigning each fleet F 
from the portfolio, to each realization of 
stochastic demand M for each year Y 

§  Generate demand scenarios across 
years based on the realizations of 
stochastic demand 

Model 

Model 1 

Model 2 

Model 3 

Iterate model 2:  
F x M x Y times 

Stochastic 
demand 

forecasting 
model 

1 

Fleet 
assignment 
optimization 

model 

2 

Scenario 
generation 

model 

3 

Fleet 
assignment 
optimization 

model 

2 

F x M x Y 

Figure 4.1: The translation from requirements to methodology and models
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Table 4.1: Variable notation in the methodology

Notation Definition

F # Fleets in portfolio
Y # Years in planning horizon
D # Monte Carlo simulations
S # Sample values per year per OD pair
M # OD demand matrices per year
N # Airports under consideration
Z # OD pairs under consideration
H # Hubs under consideration
K # Aircraft types under consideration
B # Scenarios generated

A brief summary of each model

The variable notation that is used throughout the methodology is presented in Table 4.1. The
concept of an origin-destination (OD) demand matrix is used throughout the methodology; an
example OD demand matrix is presented in Table 4.2. Sections 4.2, 4.3 and 4.4 respectively
present the details of each of the three models that together form the overarching solution
methodology. However, to support the high level understanding of the overarching solution
methodology, a short summary of the working principles of each model is outlined below. Figure
4.2 presents how these models are connected.

Best fleet  Start! 

Historical annual passenger 
data for each of the Z OD pairs 

Stochastic 
demand 

forecasting 
model 

1 

Portfolio of F fleets. Each 
fleet is different in terms of  

size and composition 

M OD demand matrices per 
year for each of the Y years 

in the planning horizon 

Monte Carlo simulation 
observations from the 

stochastic demand 
forecasting model 

Scenario 
generation 

model 

3 

A distribution of NPV of 
accumulated profit for each 
of the F fleets in the portfolio 

Value matrix with annual 
operating profits. The value 
matrix has size F x M x Y 

Fleet 
assignment 
optimization 

model 

2 

F x M x Y 

Figure 4.2: The proposed solution methodology consists of three underlying models

Model 1 The stochastic demand forecasting model

• The goal of the stochastic demand forecasting model is to output a set of M OD de-
mand matrices per year for all Y years in the planning horizon, by exploring the evo-
lution of stochastic demand per OD pair. This is achieved by modeling the stochastic
nature of air travel demand as a mean reverting Ornstein-Uhlenbeck process and
running D Monte Carlo simulation runs across the Y years. The resulting D Monte
Carlo simulation observations per OD pair per year are sampled into S representa-
tive sample values which are then used to construct M OD demand matrices per
year for the Y years in the planning horizon. In totalM · Y OD demand matrices are
outputted by this model.
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Model 2 Fleet assignment optimization model

• The goal of the optimization model is to optimally allocate one fleet in terms of oper-
ating profit given one OD demand matrix. This is achieved by mathematically formu-
lating the optimization problem as an Integer Linear Programming (ILP) optimization
model based on a weekly flight frequency aircraft type assignment. The mathemati-
cal formulation consists of a profit maximizing objective function and a set of demand,
capacity, physical and integrality constraints. The formulation is such that it allows
for both point-to-point and hub-and-spoke network routing networks. A number of in-
puts are used for this optimization process: a given OD demand matrix, a given fleet
which is characterized by the number of aircraft per aircraft type K, the specific air-
craft characteristics of each aircraft type (seats, cruise speed, range, daily utilization,
turnaround times, fixed cost, variable cost), as well as yields and distances between
airports. The optimization model returns weekly operating profit which is multiplied
by 52 to arrive at annual operating profits. Besides financial results, the model also
returns non-financial performance metrics such as the average network load factor
and aircraft utilization. This optimization process is repeated for each fleet-OD de-
mand matrix combination. Consequently, the optimization model is run F · M · Y
times which results in an equal amount of annual operating profits that are stored in
a value matrix.

Model 3 Scenario generation model

• The goal of the scenario generation model is to generate numerous paths through
the value matrix across the planning horizon. By adopting the discrete-time Markov
Chain (DTMC), the D Monte Carlo simulation observations per year per OD pair
can be used to construct transition probability matrices which describe the year-to-
year transition behavior of Monte Carlo simulation observations. Such a transition
probability matrix is constructed for each consecutive year combination for each OD
pair, resulting in (Y −1) ·Z transition probability matrices. Then, for each consecutive
year combination, the OD-pair based transition probability matrices are aggregated
so that they essentially describe the transition behavior of an entire OD demand
matrix. As result, the number of transition probability matrices is reduced to (Y −
1). Using these aggregated transition probability matrices, B paths or scenarios are
generated throughout the planning horizon. Each path corresponds to a sequence
of Y annual operating profit values per fleet, which are discounted to a single net
present value (NPV) of accumulated profits. Subsequently, the output of this model
is a distribution of NPVs per fleet that is based on the evolution of stochastic demand
across the planning horizon.

Table 4.2: Example of an OD demand matrix

Destination
Airport 1 Airport 2 Airport 3

O
rig
in Airport 1 0 50 85

Airport 2 50 0 23
Airport 3 85 23 0
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4.2 Stochastic demand forecasting model

4.2.1 Introduction

This section thoroughly details the working principles of the stochastic demand forecasting
model. The goal of the model is to construct M OD demand matrices per year that represent
the range of uncertainty within each year, for all the Y years in the planning horizon. Figure 4.3
places the stochastic demand forecasting model in the context of the overarching methodology
and thereby highlights that each of the M · Y outputted OD demand matrices is used as input
to the fleet assignment optimization model.

Historical annual passenger 
data  for each of the Z OD pairs 

Stochastic 
demand 

forecasting 
model 

1 

M OD demand matrices per 
year for each of the Y years 

in the planning horizon 

3 2 

Figure 4.3: The stochastic demand forecasting model in the context of the overarching solution
methodology

4.2.2 The mean reverting Ornstein-Uhlenbeck process

In order to explore the evolution of uncertainty into the future, a representation of historical be-
havior of uncertainty needs to be captured in a mathematical expression. The chosen mathe-
matical expression is the mean reverting Ornstein-Uhlenbeck process. The rationale for choos-
ing this representation of uncertainty, its mathematical formulation and the estimation of its
model parameters are elaborated over the next three sections.

Rationale

The mean reverting process is a methodology that can be used to model the stochastic nature
of variables that tend to revert about a long run mean value. In this sense the mean reverting
process differs from random walk theory in that the latter assumes that variables are equally
likely to take on any random value, whereas the former assumes that in the long run it is more
likely that variables tend to revert about a certain long-term average value.

The mean reverting process has been successfully applied to model variables that tend
to be cyclical. Prime examples include the modeling of stock, commodity and option prices
(Bessembinder et al., 1995; Schwartz, 1997). Ultimately these variables tend to correlate to the
cyclical behavior of gross domestic product (GDP). In this research the mean reversion concept
is not applied to model the stochastic nature of stock prices, but of air travel demand. Although
modeling future stock prices is a different activity than modeling future air travel demand, the
underlying causes for the variation in these two variables share a common denominator, being
the variation in GDP. Since both stock price and air travel demand correlate with GDP and the
concept of mean reversion has been effectively applied to forecast future stock prices, it seems
promising to apply the same concept to forecast future air travel demand.
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An important consideration is to which specific air travel demand variable to apply the mean
reverting process: historical passenger data, historical passenger growth data, historical revenue-
passenger-mile (RPM) data or historical RPM growth data. All four of these variables have been
evaluated and the variable that exhibits the best goodness of fit was chosen; historical passen-
ger growth data. For the validation of this consideration the reader is referred to Section 6.1.1.

Mathematical formulation

The mean reverting process is represented by the following equation;

Xt+1 = Xt + λ(µ−Xt) + σdWt (4.1)

where Xt+1 is the to be forecasted future air travel demand growth rate between time t and
t = t + 1, Xt is the air travel demand growth rate between time t − 1 and t, λ is the speed of
mean reversion, µ is the long-term mean growth rate, σ the standard deviation of the historical
estimation error andWt a random shock with N∼(0,1). As can be seen from the λ(µ−Xt) term,
the expected corrective movement towards the long-term average growth rate at each point in
time depends on the speed of mean reversion λ and the difference between the demand growth
rate at that time t, Xt, and the long-term average demand growth rate, µ.

In physical terms, the process displays similar behavior as a spring; the larger the difference
between a passenger growth rate at a certain point in time and the average passenger growth
rate (i.e. the more a spring is stretched with respect to its equilibrium length), the higher the
tendency to revert back to the mean passenger growth rate in the subsequent point in time (i.e.
the higher the force with which the spring pushes back).

Furthermore the randomness of future demand is captured in the last term of the equation,
σdWt, which resembles a random error shock with mean 0 and standard deviation equal to the
standard deviation of the historical estimation error which is inherited from the estimation of the
model parameters.

Estimating the model parameters λ, µ and σ

The model parameters can be estimated by rewriting the mean reversion equation into a form
that is suitable for linear least squares regression;

y = a+ bx+ ϵ (4.2)

Xt+1 −Xt = λµ− λXt + σdWt (4.3)

So that, y = Xt+1 −Xt, x = Xt, a = λµ, b = −λ. When a linear regression is applied to y and
x, the regression coefficients for the intercept, a, and the slope, b, are returned. From these
regression coefficients the model parameters λ and µ can be derived in the following fashion;

λ = −b (4.4)

µ = −a

b
=

a

λ
(4.5)

In order to derive the standard deviation of the historical estimation error σ, the estimated
values of y, ŷ, are compared to the actual historical values of y and taking the root mean square
of the historical errors ϵ results in its standard deviation, with N being the number of historical
data points used in the regression;

ŷ = a+ bx (4.6)
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y = a+ bx+ ϵ (4.7)

y = ŷ + ϵ (4.8)

ϵ = y − ŷ (4.9)

σ =

√∑
(y − ŷ)2

N − 1
(4.10)

Knowing these three model parameters λ, µ and σ and the last available historical growth
rate Xt, the future demand growth rates can be calculated using:

Xt+1 = Xt + λ(µ−Xt) + σdWt (4.11)

The concept of mean reversion is applied to forecast future demand growth rates. However,
ultimately the goal is forecast future demand levels, which can be easily calculated using;

Dt+1 = Dt · (1 +Xt+1) (4.12)

where Dt+1 is the demand value at time t+ 1, Dt is the demand value at time t and Xt+1 is
the growth rate of demand between t and t+ 1.

4.2.3 Monte Carlo simulation and sampling

Monte Carlo simulation

Once the mean reverting model parameters λ, µ and σ are known, the mean reverting equation
is likely to return a different result every time it is run, due a different realization of uncertainty
which is brought about by the random error shock term Wt with N∼(0,1). In order to numeri-
cally explore the range of possible outcomes, the process is iterated D (e.g. 5000) times. This
process of iterating over an equation with different realizations of uncertainty in order to numer-
ically approximate the probability distribution of the stochastic variable is called a Monte Carlo
simulation. A visual example of a Monte Carlo simulation is shown in Figure 4.4.
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Figure 4.4: Example of a Monte Carlo simulation with D = 5000
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Defining the sampling strategy

This section details the relation between the number of realizations of uncertainty per year per
OD pairD, the number of sample values per year per OD pair S, the number of OD demand ma-
trices per year M and the overall computation time of the fleet assignment optimization model
CTmodel2. Although the models seem fairly isolated, it will be shown that the sampling process
in the stochastic demand forecasting model directly and significantly impacts the overall com-
putation time of the fleet assignment optimization model. Therefore the sampling process is a
key component when striving for an acceptable balance between meaningful results and rea-
sonable computation times. The overall computation time of the fleet assignment optimization
model is given by;

CTmodel 2 = F · Y ·M · CTO (4.13)

where F is the number of fleets in the portfolio, Y is the number of years in the planning
horizon,M is the number of OD demand matrices per year and CTO is the computation time of
a single optimization run. It can be observed that the computation time linearly scales with the
number of OD demand matrices per year M . Knowing the relation between CTmodel 2 and M ,
it is interesting to investigate how M is affected by the sampling process; M ?

= f(S,D,Z).
As result of the Monte Carlo simulation, D realizations of uncertainty (i.e. or Monte Carlo

simulation observations) are obtained per year per OD pair. However, these OD pair based
realizations of stochastic demand should ultimately be sampled and consolidated into OD de-
mand matrices that contain all OD pairs. The impact of the sampling strategy on the number of
OD demand matrices per year M is investigated through four example sample strategies;

Sampling strategy 1 The D number of realizations of uncertainty per year per OD pair are
consolidated into one sample value; essentially adopting a deterministic approach

• M = SZ = 1Z = 1

Sampling strategy 2 The number of sample values S is equal to the number of realizations of
uncertainty D

• M = SZ = DZ

Sampling strategy 3 The D realizations of uncertainty are represented by 10 sample values

• M = SZ = 10Z

Sampling strategy 4 The D realizations of uncertainty are represented by 10 sample values,
and OD pairs are assumed to be perfectly correlated with a value of +1 within a year

• M = S = 10

Of all four cases, sampling strategy 1 yields the lowest number of unique OD demand matri-
ces per yearM , but this comes at the cost of loss of information about uncertainty which makes
it a deterministic approach. Sampling strategy 2 is the identification of the upper bound on the
number of unique OD demand matrices M . It has both a variable in the base as well as in
the exponent of the equation which results in a very strong increase in the number of M with
increments of D and Z. Although the number of unique OD demand matrices M that result
from sampling strategy 3 is significantly lower than in sampling strategy 2, it still scales expo-
nentially with Z. Sample strategy 4 strikes an acceptable balance between meaningful results
and reasonable computation times; by assuming correlation between OD pairs within a year
the number of unique OD demand matrices per yearM greatly reduces and scales one-to-one
with the number of sample values S.
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Sampling different distributions in the same way

In the previous section it was identified that it is beneficial to sample the D Monte Carlo simula-
tion observations per year per OD pair into 10 (S=10) representative sample values. Reducing
the D observations into 10 representative sample values can be done in different ways. It is
important to keep in mind that this sampling procedure is not only performed for one set of D
observations for one OD pair and one year, but to all years and all OD pairs, that are likely to
all have a different distribution of observations.

The sample values should reflect the range and probability of observations inD, irrespective
of the specific distribution of D. In other words the goal is to reduce the D observations to 10
sample values, where each sample value is equally like to occur and in essence each sample
value represents 1/10 of the probability distribution.
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(a) A traditional histogram
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(b) An equal probability histogram

Figure 4.5: The difference between a traditional histogram and an equal probability histogram

A straightforward method for sampling would be distribute theD observations across 10 bins
and take the average of each bin as a sample value. However, this sampling strategy cannot
be performed with a traditional histogram because a non-uniform distribution will result in non-
equal bin heights and thus non-equal probabilities. In order to ensure that each bin represents
1/10th of theD dataset, equal probability bin histograms with 10 bins are adopted which set the
bin edges at the 0, 10th, 20th, ..., 100th percentiles. Subsequently each bin contains one tenth
of the total number of observations D and thus the equal probability property is satisfied. The
difference between the concepts of a traditional histogram and an equal probability histogram
is visualized in Figure 4.5. Each bin in Figure 4.5b contains 1/10th (i.e. D

S ) of the observations.
These observations are reduced to one sample value by taking the average.

It is noted that by basing the sample value on the average of all the observations in a bin,
the information regarding the range of uncertainty of observations within a bin is partially lost.
Alternatively, instead of taking the average of each bin it could also be decided to take the
median of each bin as sample value. In essence that would be equivalent to taking the sample
values equal to the observed values at 5, 15, 25, etc. percentiles. Rather than taking a single
observation as a sample value, it is considered a better approach to take the average value
of all the observations in a bin as a sample value since that value contains more information
regarding the spread an thus the uncertainty of observations.

To summarize, Figure 4.6 provides a visualization of the processes involved in the stochastic
demand forecasting model. The evolution of stochastic demand is explored per OD pair for
each of the Z OD pairs. Then, per OD pair, per year, S sample values are extracted. By
assuming perfect correlation between OD pairs, M OD demand matrices are constructed per
year (M = S); each OD demand matrix contains all OD pairs with demand sample values from
the same bin number.

4.2.4 Assumptions and their implications

• It is assumed that historical passenger data reflects historical demand data;
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Figure 4.6: A visualization of the stochastic demand forecasting process

– This essentially neglects the presence of demand-supply interactions at each point
in historical time

• The forecasting process is applied to forecast yearly demand;

– Consequently it does not consider seasonality or trend growth throughout the year

• A sample value is taken as the average of all observations in a bin

– Although all observations are used to calculate the average, there is some inher-
ent loss of information about the range of uncertainty in a bin when the average is
calculated

4.3 Fleet assignment optimization model

4.3.1 Introduction

This section thoroughly details the working principles of the fleet assignment optimizationmodel.
The goal of the model is to optimally assign one fleet in terms of operating profit given one
OD demand matrix and to iterate this optimization process for each OD demand matrix-fleet
combination. With F fleets in the portfolio,M OD demand matrices per year and Y years in the
planning horizon this amounts to F ·M · Y iterations over the optimization model.

Figure 4.7 places the fleet assignment optimization model in the context of the overarching
solution methodology. As input it takes the M · Y OD demand matrices from the stochastic
demand forecasting model and the F fleets from the portfolio of fleets. For each OD demand
matrix-fleet combination the model outputs both financial (e.g. operating profit, spill) and non-
financial performance metrics (e.g. load factor, aircraft utilization). The annual operating profits
are stored in a value matrix which is visualized in Figure 4.9. Figure 4.8 provides a visualization
of the steps involved in a single optimization run. The schematic picture of the optimization
model in the second step serves as a signpost to the math behind the optimization model; it
does not have the goal to represent the actual math. The formulation of the decision variables,
objective function and constraints is elaborated step by step in Sections 4.3.3, 4.3.4 and 4.3.5
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respectively. The mathematical formulation is based on Santos (2013) and can be found in its
entirety in Appendix C.1.

1 

Portfolio of F fleets. Each 
fleet is different in terms of  

size and composition 

M OD demand matrices per 
year for each of the Y years 

in the planning horizon 

3 

Value matrix with annual 
operating profits. The value 
matrix has size F x M x Y 

Fleet 
assignment 
optimization 

model 

2 

F x M x Y 

Figure 4.7: The fleet assignment optimization model in the context of the overarching solution
methodology
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Figure 4.8: A visualization of one run of the fleet assignment optimization model that is run for
each OD demand matrix-fleet combination

4.3.2 Problem definition and solution techniques

The fleet assignment optimization model is a typical optimization model in which scarce re-
sources (i.e. the aircraft in the fleet) need to be allocated to competing activities (i.e. the trans-
portation of passengers) in an optimal fashion.

The classical FAM: tail number assignment to a time-space network

A clarification is required with regards to the definition of the fleet assignment model (FAM). In
literature, the term FAM is usually adopted for models that allocate tail numbers (i.e. specific
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Figure 4.9: An example value matrix with F = 5, M = 10 and Y = 2015, ..., 2023; the value
matrix is filled with annual profit values based on assigning each fleet F to each of the OD
demand matrices M · Y

aircraft) to a time-space network. This means that a tail number is assigned to a specific flight
in a schedule, which forms a connection between one point in time-space to another point in
time-space. An example is the assignment of a Boeing 787 with tail number XY-1234 to a flight
which departs from ATL 6:30am and arrives in FLL at 7:55am. This type of detailed FAMs entail
tremendous problem sizes in terms of the LP-matrix (i.e. the number of decision variables and
constraints) and computation times (Abara, 1989; Lohatepanont and Barnhart, 2004). Such
a detailed FAM is typically used a couple of weeks or months before the day of operation to
optimally assign a fleet to a given schedule.

FAM based on weekly frequency aircraft type assignment

Although the tail number based FAMs are key to optimally assign each tail number in a fleet to a
timetable over a short-term planning horizon, the computation times that stem from this detailed
FAM are considered unsustainable when used for a multi-year year planning horizon.

Rather than assigning tail numbers to a time-space network, frequency planning can be
used as a FAM to determine the optimal deployment of a fleet by assigning aircraft types to
airport pairs based on a weekly flight frequency. To illustrate, this approach would yield results
such as the assignment of a Boeing 787 between ATL and FLL for 10 flights per week.

The advantage of this type of frequency based FAM is that the problem size is smaller
which results in lower computation times. However, because aircraft types are used as decision
variables instead of aircraft tail numbers, the capacity and utilization of the different tail numbers
of the same aircraft type are consolidated, resulting in potential aircraft utilization constraint
violations when a transition is made from aircraft type assignment to aircraft tail assignment
which is detrimental with regards to the reflection of reality.

Hub-and-spoke versus point-to-point

Another consideration in fleet assignment models is the type of routing network that is consid-
ered. Two distinct routing networks are identified, being the point-to-point and hub-and-spoke
routing networks. A vast amount of literature exists that investigates the advantages and disad-
vantages of both routing networks with regards to the impact on service, the ability to capture
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demand, competition and profitability. Because the overarching solution methodology is fo-
cused on providing an approach that is generalizable for any type of airline and thus any type
of routing network, the goal here is to set up the mathematical formulation in such a way that
both routing networks could be part of a solution.

A real world example

Consider a set of airports between which the demand is supposedly known, i.e. the OD demand
matrix is given. Consider a fleet that consists of a set of 3 aircraft types, and 3 specific aircraft
of each type totaling at 9 aircraft in the fleet. Each aircraft type has different characteristics in
terms of: number of seats, cruise speed, range, daily utilization, turnaround times, fixed cost
and variable cost. The optimization model should decide which OD demand to satisfy and how
to transport these passengers either nonstop or through a connecting service with which aircraft
type while optimizing for profit on an airline level.

Optimization algorithms

A feasible region is defined as the collection of feasible solutions, i.e. solutions for which all
the constraints are satisfied (Hillier and Lieberman, 2010). One can image that when a fleet
is considered with various aircraft types with different characteristics and a vast amount of OD
pairs is considered (e.g. 200) with various levels of demand and different yielding passengers
(both nonstop and connecting), a tremendous amount of feasible solutions exist. Finding the
optimal solution by first calculating all feasible solutions and then selecting the best feasible (i.e.
optimal) solution is not the most efficient optimization methodology and can be troublesome in
terms of computation time.

Fortunately, a specific research field is dedicated to these kinds of problems: operations
research. Depending on the problem, the search for the best solution can be performed by
exploiting the topology of the mathematical formulation. For linear programming (LP) problems
that have both a linear objective function as well as linear constraints, the Simplex optimization
algorithm can be used to solve the problem. An algorithm is simply defined as a sequence
of steps. The Simplex algorithm is a sequence of steps that, based on the structure of the
mathematical formulation, searches for an optimal solution using a series of matrix operations
that are based on two fundamental insights, being: an optimal solution must be a corner-point
feasible solution and, the mathematical formulation can be rewritten into a matrix form that can
be used for relatively quick matrix operations to get to a solution using a computer. For more
details about this elegant proof the reader is referred to dedicated literature (Bertsimas and
Tsitsiklis, 1997; Hillier and Lieberman, 2010).

The problem under consideration has decision variables that preferably can only take integer
values. For example, a model that returns that 7 flights per week need to be operated by
a Boeing 787 is a more intuitive result than a model that returns that 7.4 flights need to be
assigned per week.

Therefore the problem is not an linear program but an integer linear program (ILP). If some
but not all decision variables are integers, then the problem is referred to as a Mixed Integer
Linear Programming problem (MILP). The Simplex method is used to solve the linear relaxation,
i.e. the LP-problem without integrality constraints, and then a branch-and-bound method as well
as cutting-plane method are used to get to integer solutions. The Gurobi solver automatically
employs these optimization algorithms.

4.3.3 Decision variables

The goal of the optimization is to utilize the different aircraft types to transport passengers in
such a way that the highest profit is obtained. Consequently, the weekly flight frequency per
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airport pair per aircraft type as well as the weekly passenger flow per OD pair (both nonstop
and connecting flow) need to be determined. These are the decision variables of the problem.

Consequently, four types of decision variables are defined. Three decision variables repre-
sent the weekly passenger flow per OD pair and one decision variable represents the weekly
flight frequency per aircraft type per airport pair. The concept behind these decision variables
is briefly outlined below and illustrated in Figure 4.10.

• xod: Nonstop passenger flow between origin airport o and destination airport d

• yoh: Connecting passenger flow for passengers that are in the segment between the origin
airport o and the hub h, irrespective of their final destination airport d

• wh
od: Connecting passenger flow for passengers that originate from airport o and are in

the segment between the hub h and the final destination airport d

• zkij : Number of flights (i.e. flight frequency) between airport i and airport j operated by
aircraft type k

Figure 4.10: An illustration of the four decision variables of the optimization model

4.3.4 Objective function

The basic airline operating profit equation (Belobaba et al., 2009) is given by;

Operating profit = RPM · yield− ASM · unit cost (4.14)

where, RPM are the revenue-passenger-miles (the number of passengers transported times
their transported distance), yield is the operating revenue per RPM, ASM are the available-seat-
miles (i.e. the number of seats times their transported distance), and the unit cost is the cost per
ASM, often referred to as CASM. The CASM is assumed to include all operating cost associated
with the operation of an aircraft such a crew, fuel, maintenance, etc. CASMs can be estimated
by aggregating historical total operating cost data on an airline level and dividing it by the total
offered ASM.

Equation 4.15 is the objective function. It is based on the basic airline operating profit equa-
tion and expanded with an ownership cost term. It consists of four terms and aims to maximize
weekly operating profit on an airline level. The first term reflects operating revenue that stems
from nonstop passengers and is a function of the number of nonstop passengers between each
origin and destination xo,d, the nonstop yield yieldo,d and nonstop distance Do,d. Similarly, the
second term reflects operating revenue stemming from connecting passengers and is a function
of the number of connecting passengers between each origin and destination wh

o,d, the yield for
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connecting passengers yieldho,d and the nonstop distance Do,d. The third term reflects owner-
ship cost and is a function of the number of aircraft per type in the fleet ACk and the weekly
ownership cost per aircraft type Ck

fix. It is a simple multiplication of parameters and does not
contain any decision variables. The fourth term reflects operating cost and is a function of the
number of flights per aircraft type between each airport pair zki,j , the operating cost per aircraft
type Ck

var, the distance between two airports Di,j and the number of seats per aircraft type sk.

Maximize profit =
∑
o∈N

∑
d∈N

[yieldo,d ·Do,d · xo,d] +
∑
o∈N

∑
d∈N

∑
h∈H

[
yieldho,d ·Do,d · wh

o,d

]
−

∑
k∈K

[
ACk · Ck

fix

]
−

∑
i∈N

∑
j∈N

∑
k∈K

[
Ck
var ·Di,j · sk · zki,j

]
(4.15)

4.3.5 Constraints

Flow-demand constraints

Three constraints ensure that the assigned passenger flows cannot exceed the demand. These
constraints are represented by Equations 4.16, 4.17 and 4.18. The sum of all nonstop and con-
necting passenger flows leaving origin airport o should be smaller than or equal to the demand
leaving origin airport o. This constraint must hold for every origin airport o ∈ N , therefore the
number of constraints is: C = N .∑

d∈N
xo,d +

∑
d∈N

∑
h∈H

wh
o,d ≤ DLo ∀ o ∈ N (4.16)

The sum of all nonstop and connecting passenger flows arriving in destination airport d
should be smaller than or equal to the demand arriving in destination airport d. This constraint
must hold for every destination airport d ∈ N , therefore the number of constraints is: C = N .∑

o∈N
xo,d +

∑
o∈N

∑
h∈H

wh
o,d ≤ DAd ∀ d ∈ N (4.17)

The sum of all nonstop and connecting passenger flows between origin airport o and des-
tination airport d should be smaller than or equal to the demand between origin airport o and
destination airport d. This constraint must hold for every origin-destination pair in the network
o, d ∈ N, o ̸= d, therefore the number of constraints is: C = N2 −N .

xo,d +
∑
h∈H

wh
o,d ≤ Qo,d ∀ o, d ∈ N, o ̸= d (4.18)

Hub definition constraint

If airport j is not a hub, then the connecting passenger flow between i and j, yij must be
zero. Although this constraint seems trivial, it is the constraint that ensures there is a distinction
between airports that can be used as a hub, and airports that cannot be used as a hub.

While all the other constraints are explicitly implemented, this constraint allows for implicit
implementation by simply not initializing yij decision variables for connections between i and
j where j is not a hub. Therefore the number of explicitly implemented constraints is C =
0. In terms of the LP-matrix this implicit implementation reduces some rows (by not explicitly
implementing the constraint) and some columns (by not initializing the decision variables).

yi,j = 0 ∀ i ∈ N, j ∈ N\H, i ̸= j (if j is not a hub) (4.19)
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Passenger flow-capacity constraint

Equations 4.20a, 4.20b, 4.20c, 4.20d ensure that the passenger flow in a certain flight segment
between airport i and airport j must be smaller than or equal to the capacity offered between
airports i and j.

The capacity in a flight segment is a function of the number of flights per aircraft type be-
tween these airports zki,j and the number of seats per aircraft type sk. As such, the capacity is
essentially represented by the total number of seats offered between the two airports.

Focusing on a flight segment between two airports i and j, both of these airports can be
either a regular airport or act as a hub. Therefore, the passenger flow between the two airports
can consist of four different passenger flow mixes; merely nonstop passenger flow if both air-
ports are not a hub, a mix of nonstop and connecting passenger flow where airport i is used as a
hub, a mix of nonstop and connecting passenger flow where airport j is used as a hub, or a mix
of nonstop passenger flow and connecting passenger where both airport i and j act as a hub.
Because these four different passenger flow mixes could occur, the passenger flow-capacity
constraint is represented by the following four sub-constraints;

xi,j ≤
∑
k∈K

zki,j · sk ∀ i, j ∈ N\H, i ̸= j (if neither i or j is a hub) (4.20a)

xi,j +
∑
o∈N
o ̸=i,j

wi
o,j ≤

∑
k∈K

zki,j · sk ∀ i ∈ H, j ∈ N\H, i ̸= j (if i is hub) (4.20b)

xi,j + yi,j ≤
∑
k∈K

zki,j · sk ∀ j ∈ H, i ∈ N\H, i ̸= j (if j is hub) (4.20c)

xi,j +
∑
o∈N
o ̸=i,j

wi
o,j + yi,j ≤

∑
k∈K

zki,j · sk ∀ i, j ∈ H, i ̸= j (if both i and j are hubs) (4.20d)

The number of constraints is a function of the number of hubs H that are adopted and the
number of airports N under consideration resulting in the following 4 equations that represent
the number of constraints;

• Number of constraints for equation 4.20a: (N −H)2 − (N −H)

• Number of constraints for equation 4.20b: (N −H) ·H

• Number of constraints for equation 4.20c: (N −H) ·H

• Number of constraints for equation 4.20d: H2 −H

Consequently, the total number of passenger flow-capacity constraints is given by;

C = (N −H)2 − (N −H) + (N −H) ·H + (N −H) ·H +H2 −H (4.21)

Connecting passenger flow continuity constraint

Equation 4.22 represents passenger continuity at the hub by ensuring that all connecting pas-
sengers that arrive at a hub also leave the hub. This constraint also serves as a balance con-
straint between the two decision variables that both describe connecting passenger flow before
the hub yo,h and after the hub wh

o,d. For each hub H, this constraint must hold for all origin
airports minus that hub N − 1, therefore the number of constraints is: C = H · (N − 1).

yo,h =
∑
d∈N

wh
o,d ∀ o ∈ N\H,h ∈ H (4.22)
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Aircraft balance constraint

Equation 4.23 represents aircraft continuity; the total number of inbound flights per aircraft type
k that arrive at airport i from all airports j must be equal to the total number of outbound flights
per aircraft type k that depart from airport i to all airports j. This constraint must hold for every
airport i ∈ N and for every aircraft type k ∈ K, therefore the number of constraints is: C = N ·K.

∑
j∈N

zkj,i =
∑
j∈N

zki,j ∀ i ∈ N, k ∈ K (4.23)

Capacity-physical limits constraints

Equation 4.24 ensures per aircraft type that the total weekly operational time does not exceed
the weekly aircraft utilization. The aircraft utilization per aircraft type is not based on 24 hour
per day availability, rather it reflects the available hours to operation when considering the need
for scheduled and unscheduled maintenance.

The total weekly operational time is a function of the number of flights of each aircraft type
between each airport pair, the flight time, the taxi time and turnaround time. The flight time is
a function of the distance between two airports Di,j and the cruise speed of the aircraft type
vck; Di,j

vck
. The taxi times are airport dependent and depend on whether the flight is inbound

or outbound. The turnaround times range from 30 minutes to one hour and are based on the
assumption that larger aircraft have higher turnaround times.

This constraint must hold for every aircraft type k ∈ K, therefore the number of constraints
is: C = K.

∑
i∈N

∑
j∈N

zki,j ·
[
Di,j

vck
+ T dep

i + T arr
j + TAT k

]
≤ ACk · Uk ∀k ∈ K (4.24)

Aircraft range constraint

Each aircraft type is characterized by its maximum range. Equation 4.25 ensures that a flight
between two particular airports i and j can only be operated by a particular aircraft type k if the
range of the the respective aircraft type rangek is larger than the distance between two airports
Di,j . It is impossible to quantify the number of constraints at a higher level of abstraction be-
cause it depends on the specific characteristics of the aircraft types and the distances between
the airports under consideration.

zki,j = 0 ∀i ∈ N, j ∈ N, i ̸= j, k ∈ K if rangek < Di,j (4.25)

Integrality and non-negativity constraints

Equation 4.26 ensures that each decision variable can only take positive integer variables, as
such it is a combination of non-negativity and integrality constraints. As highlighted in Chapter
2, integrality constraints can have a profound impact on the computation time and can result
in intractability of the mathematical formulation (i.e. meaning that it is difficult or impossible to
get a solution). Per case study it can be investigated what the computation times are of the LP,
MILP or ILP formulation.

xo,d ∈ Z+, yo,h ∈ Z+, wh
o,d ∈ Z+, zki,j ∈ Z+ (4.26)
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4.3.6 Expanding the LP matrix

It is considered interesting to know how the size of the optimization problem scales with the
problem size, where the problem size is defined by the number of airports N , hubs H and
aircraft types K under consideration.

The size of the optimization problem can be characterized by its LP-matrix, where each
additional decision variable adds a column and each constraint adds a row. It is important to
note that it is difficult to directly relate the size of the LP matrix to the resulting computation time,
especially if some or all of the decision variables or subject to integrality constraints. This is
because the computation time depends on the topology of mathematical formulation and how
the algorithm exploits that topology. However, knowing the size of the LP matrix, experienced
operations researchers can make a rough estimate of the computation time and decide whether
or not to solve the problem first as a LP and investigate the ILP at a later stage.

Furthermore it is noted that many ILP andMILP problems in practical situations are NP-hard.
Extensive research has been done on NP-hardness, which refers to non-deterministic polyno-
mial time. This topic is a computer science perspective on optimization problems and deals with
how computation times scale with the problem size, given the currently available optimization al-
gorithms. In simple terms, polynomial time computation time scales with O(variableconstant) and
is therefore faster than exponential time computation time which scales with O(constantvariable).

Equations 4.27 and 4.28 highlight the relation between the number the number of airportsN ,
hubs H and aircraft types K to the number of rows (i.e. constraints) and columns (i.e. decision
variables) in the LP-matrix, respectively;

Rows = N +N +N2 −N + (N −H)2 − (N −H) + (N −H) ·H + (N −H) ·H
+H2 −H +H · (N − 1) +N ·K +K (4.27)
= 2N2 +NH −H +NK +K + x

where x is the number of aircraft range constraints.

Columns = N2 −N +H · (N − 1) +H ·
[
(N − 1)2 − (N − 1)

]
+ (N2 −N) ·K

= N2 −N − 2NH +H +N2H +N2K −NK (4.28)

4.3.7 Assumptions and their implications

• The optimization is based on a weekly frequency aircraft type assignment which results
in a weekly operating profit; it is not based on a (daily) aircraft tail number assignment to
a time-space network. This has the following implications;

– Aircraft utilization per tail number is not considered
– Maintenance cycles are not considered
– To derive weekly demand from the forecasted yearly demand, the latter is simply
divided by 52 weeks. As such, it is assumed that this average week is representative
of the demand throughout the year and thereby neglects seasonality as well as trend
growth throughout the year. The optimization returns weekly operating profit, which
is multiplied by 52 (i.e. weeks) to arrive at annual profit

• The mathematical formulation allows for both point-to-point and hub-and-spoke solutions

– Economies of scale at the hub are not considered
– Hub-and-spoke economics are implemented in a simplistic manner through a yield
ratio for nonstop and connecting passengers
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– The methodology does not optimize for the optimal location of the hub; it simply takes
hub locations as an input

• All costs are captured by two terms: operating cost and ownership cost

– A recommendation for future work would be to explicitly breakdown the cost such
as maintenance cost, fuel cost, insurance cost, infrastructure cost, ground-handling
cost, etc

• There is no recapture of spilled passengers

While the output of the fleet assignment optimization model, i.e. the value matrix, already
provides valuable information about the financial performance of different fleets, one additional
step can be taken which will yield more fundamental insight in the financial performance of the
different fleets across the planning horizon and under the uncertain demand; this additional step
is the scenario generation model.

4.4 Scenario generation model

4.4.1 Introduction

The goal of the scenario generation model is to generate paths through the value matrix. The
place of the scenario generation model in the context of the overarching methodology is vi-
sualized in Figure 4.11. As input it takes the value matrix outputted by the fleet assignment
optimization model as well as the Monte Carlo simulation observations from the stochastic de-
mand forecasting model.

1 

Monte Carlo simulation 
observations from the 

stochastic demand 
forecasting model 

Scenario 
generation 

model 

3 

A distribution of NPV of 
accumulated profit for each 
of the F fleets in the portfolio 

Value matrix with annual 
operating profits. The value 
matrix has size F x M x Y 

2 

Figure 4.11: The scenario generation model in the context of the overarching solution method-
ology

This section details two main elements of the model: how the random selection process for
scenario generation is based on the adoption of discrete-time Markov Chain (DTMC) transition
probability matrices as well as how the simulation of B scenarios is used to construct a distri-
bution of net present profit values per fleet, across the planning horizon across the range of
uncertainty. The methodology of the model can be represented by 4 steps;

Step 1 Based on the DTMC property, year-to-year transition probabilities are constructed for
each of the Z OD pairs, for each of the consecutive year combinations in the Y year
planning horizon. This results in Z · (Y − 1) transition probability matrices

Step 2 TheZ ·(Y −1)OD pair based transition probability matrices are aggregated and reduced
to (Y − 1) transition probabilities that represent the average behavior of all OD pairs in an
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OD demandmatrix. Thus, the (Y −1) transition probability matrices describe the transition
behavior of OD demand matrices

Step 3 B scenarios are generated through the value matrix by making use of the (Y − 1) tran-
sition probability matrices. Each scenario consists of a sequence of Y annual operating
profit values.

Step 4 The sequence of Y annual profit values within one scenario are reduced to one net
present value (NPV), resulting in B NPVs per fleet. The distribution of these B NPVs per
fleet are visualized in a histogram which allows for comparison between different fleets in
terms of cash flow generating capability across the years in the planning horizon across
the range of uncertainty

4.4.2 The discrete-time Markov chain transition probability matrix

A discrete-time Markov Chain (DTMC) is a stochastic process that satisfies the Markov prop-
erty with discrete time steps and a discrete state space. The Markov property describes the
memorylessness of the stochastic process: the probability of arriving in a future state only de-
pends on the present state. A transition probability matrix contains the transition probabilities
of transitioning from state i at time t to state j at time t+ 1. Based on the Markov property the
transition probability should be a square matrix (i.e. the number of states must remain constant
over time) and each row should add up to one (i.e. the total probability of arriving in any of the
states must be 1).

Translated to the context of this research, a DTMC can be used to model the stochastic pro-
cess of the evolution of Monte Carlo simulation observations that are outputted by the stochastic
demand forecasting model. D Monte Carlo simulation observations per year per OD pair are
equally distributed across S bins. These S bins are the discrete states in this research context.
Subsequently the transition probability matrix has size S × S.

Matrix of counted Monte Carlo simulation observation 
transitions between year t and year t+1 

bi
n 

1 

700 

200 

150 

100 

bin 1 

bin 2 

bin 3 

bin 4 

bi
n 

2 

300 

800 

300 

250 

bi
n 

3 

150 

200 

500 

250 

bi
n 

4 

100 

50 

300 

650 

Ye
ar

 t 

Year t+1 

Year t 

1 4 3 2 

Year t+1 

1 4 3 2 

Figure 4.12: An example of the transition process

Step 1: OD pair based transition probability matrices

To illustrate the formation of a transition probability matrix, consider 5000 Monte Carlo simula-
tion observations (D = 5000) and 4 bins (S = 4). Figure 4.12 provides a visualization of the
transition process; an observation can transition from any of the 4 states at time t to any of
the 4 states in t + 1 resulting in S2 possible transitions. The figure presents fictitious results
of the Monte Carlo simulation observation counting process. For example, 700 Monte Carlo
simulation observations transitioned from bin 1 in year t to bin 1 in year t + 1. Table 4.3 again
presents the counted Monte Carlo simulation observation transitions and Table 4.4 presents
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the derived transition probabilities based on those counts. Note that each row adds up to one,
which is effectuated by normalizing each row by the number of observations in that row. Since
use is made of equal probability bin histograms to equally distribute the D Monte Carlo sim-
ulation observations across S bins, each bin contains the same number of observations: D

S .
Consequently, rows are normalized by multiplying each element with;

1
D
S

(4.29)

which in this example boils down to 1
D
S

= 1
5000
4

= 1
1250 . Such a transition probability matrix

can be constructed in an analogues manner for each consecutive year combination Y − 1 in
the Y years of the planning horizon and for each OD pair Z under consideration, resulting in
Z · (Y − 1) transition probability matrices.

Table 4.3: 5000Monte Carlo simulation ob-
servation counts (D=5000) across 4 bins
(S=4)

1 2 3 4

1 700 300 150 100
2 200 800 200 50
3 150 300 500 300
4 100 250 250 650

Table 4.4: Transition probability matrix
based on the Monte Carlo simulation ob-
servations counts in Table 4.3

1 2 3 4

1 0.56 0.24 0.12 0.08
2 0.16 0.64 0.16 0.04
3 0.12 0.24 0.40 0.24
4 0.08 0.20 0.20 0.52

Step 2: OD demand matrix based transition probability matrices

As defined in Step 2 of this model, the OD pair based transition probability matrices must be
aggregated and reduced. This is required because the transition probability matrices are used
to generate paths through the value matrix, which contains annual operating profit values that
each are based on the assignment of a fleet to an OD demand matrix (and not on OD pairs).
Therefore there is the need to know the transition behavior of entire OD demand matrices as
opposed to the transition behavior of individual OD pairs.

For the construction of OD demand matrix based transition probability matrices the same
underlying principles of counting observations and transforming these to probabilities can be
used. However, the counting process is iterated for all Z OD pairs and therefore each row
contains Z · D

S observations. Consequently, rows are normalized by multiplying each element
with;

1
D
S · Z

(4.30)

It is noted that this aggregation is made possible by the decision presented in Section 4.2.3
to set the number of unique OD demandmatrices per year equal to the number of sample values
(M = S). As result of that decision, each OD demand matrix contains demand sample values
of different OD pairs that are based on the same bin number. Moreover, this aggregation is only
valid if the different OD pairs display similar transition behavior, which is validated in Chapter 6.

4.4.3 Scenario generation and a distribution of net present values

This section elaborates Step 3 and Step 4 of the scenario generation model; the generation
of B scenarios and the subsequent formation of a distribution of NPVs, for each fleet F in the
portfolio.
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Figure 4.13: An example scenario through the value matrix

Step 3: generating scenarios

Due to the memoryless property of the DTMC, a scenario can be generated throughout the
planning horizon Y by utilizing the Y −1OD demandmatrix based transition probability matrices.
The process of one scenario generation resembles a roulette process which is executed Y − 1
times in sequence using the known probabilities from the Y − 1 transition probabilities and
acknowledging that the first roulette is defined by a 0.1 probability for each state (i.e. bin number)
because use is made of equal probability bins.

A scenario is essentially a sequence of Y bin numbers; i.e. one bin number for each year in
the planning horizon. Because each bin number in each year can be related to one specific OD
demand matrix in each year that contains OD demand sample values that are based on that
bin number, a scenario can be related to a sequence of OD demand matrices. The sequence
of OD demand matrices can in turn be related to a sequence of annual operating profit values
using the value matrix. This process is visualized in Figure 4.13.

Ultimately, the generation of B scenarios results in B sequences of annual operating profits
each of length Y .

Step 4: a distribution of net present profit values

One scenario corresponds to a sequence of Y annual operating profit values. These Y values
can be reduced to a single monetary value; the so called net present value (NPV) in the following
fashion;

Y∑
i=1

annual profiti
(1 + r)i

(4.31)

where r is the discount rate and i is the year, with i = 1, ..., Y. When B scenarios are
generated the resulting B NPVs can be used to form a distribution of NPVs. Moreover, this
procedure is executed for each fleet F in the portfolio so that ultimately F distributions of NPVs
are outputted that can be used to compare the profit generating capabilities between fleets
across the planning horizon across the range of stochastic demand. It is noted that it is key that
each fleet is subject to the same set of scenarios to ensure fair comparison.
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4.4.4 Assumptions and their implications

• It is assumed that the aggregated set of OD demand matrix transition probabilities reflect
the same transition behavior as the transition probabilities of each OD pair.

– The validation of the aggregation of OD pair based transition probability matrices into
OD demand matrix based transition probability matrices is presented in Chapter 6

– This assumption only holds because each OD demand matrix in each year contains
OD demand sample values that are based on the same bin number

• Transition probabilities are derived by modeling year-to-year behavior of Monte Carlo sim-
ulation observations as a Markov process.

– Therefore, each year and each OD pair must be represented by the same number
of sample values.
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5
Case study

A case study serves as proof of concept of the proposed methodology. This chapter contains
four sections. Section 5.1 defines the characteristics of the case study. The case study specific
data and assumptions are listed in Sections 5.2 and 5.3, respectively. Section 5.4 provides a
detailed observation and analysis of the results.

5.1 Description and context

The variables that are used to describe the methodology in Chapter 4 are substituted by case
study specific values. These values are listed in Table 5.1.

Table 5.1: Case study specific variable values

Notation Definition Case study value

F # Fleets in portfolio 8
Y # Years in planning horizon 9
D # Monte Carlo simulations 5000
S # Sample values 10
M # OD demand matrices per year 10
N # Airports under consideration 10
Z # OD pairs under consideration 10
H # Hubs under consideration 1
K # Aircraft types under consideration 3
B # Scenarios generated 5000

The portfolio of fleets is presented in Table A.1. Each of the 8 fleets in the portfolio (F = 8) is
characterized by the number of aircraft per aircraft type. Fleets 1-5 have the same composition
ratios but a different total fleet size whereas fleets 5-8 have the same total fleet size but different
composition ratios.

The forecasting period consists of 9 years (Y = 9) with 2014 as the last historical year and
the following forecasting years: 2015, 2016, ..., 2023. This time span roughly coincides with
one business cycle (Pearce, 2013). It is decided to perform 5000 Monte Carlo simulation runs
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Table 5.2: OD pairs

OD pairs

ATL-FLL
ATL-MCO
DFW-LAX
JFK-LAX
JFK-SFO
LAS-LAX
LAX-ORD
LAX-SFO
LGA-ORD
ORD-SFO

Table 5.3: OD demand matrix

ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL x x
DFW x
FLL x
JFK x x
LAS x
LAX x x x x x
LGA x
MCO x
ORD x x x
SFO x x x

(D = 5000) because, as will be discussed in Section 6.1.3, it provides a well balanced trade-off
between the consistency of forecasted demand sample values and the resulting computation
time. The 5000 Monte Carlo simulation observations per OD per year are sampled into 10 de-
mand sample values (S = 10) and by assuming correlation between OD pairs this results in
10 OD demand matrices per year (M = 10). The rationale for these values is grounded in the
goal to adopt a meaningful sampling strategy that can be performed in reasonable computation
times. This discussion is introduced in Section 4.2.3 by investigating the relationship between
the sampling strategy and the number of unique OD demand matrices per year M . Here, the
discussion is completed with case study specific data by relating the sampling strategy to the
actual total computation time of the fleet assignment optimization model CTmodel2. If a compu-
tation time of 1s is assumed for a single optimization run CTo, and given that F = 8 and Y = 9,
the total computation time of the fleet assignment optimization model reduces to;

CTmodel 2 = F · Y ·M · CTO

= 8 · 9 ·M · 1
= 72 ·M (5.1)

Sample strategy 1 is disregarded because it was identified that it yields a deterministic ap-
proach, which is not in line with the research objective. Therefore, the three remaining sampling
strategies yield the following computation times;

Sample strategy 2 The number of sample values S is equal to the number of realizations of
uncertainty D

• M = SZ = DZ = 500010

• CTmodel 2 = 72 ·M = 72 · 500010 ≈ 2.23× 1031 years
• Analysis: a computation time of 2.23× 1031 years is clearly unacceptable

Sample strategy 3 The D realizations of uncertainty are represented by 10 sample values

• M = SZ = 10Z = 1010

• CTmodel 2 = 72 ·M = 72 · 1010 ≈ 2.28× 104 years
• Analysis: a computation time of 2.28× 104 years is an improvement compared to the
computation time of sampling strategy 2, however it is still unacceptable

Sample strategy 4 The D realizations of uncertainty are represented by 10 sample values,
and OD pairs are assumed to be perfectly correlated within a year
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• M = S = 10

• CTmodel 2 = 72 ·M = 72 · 10 = 720 s

• Analysis: assuming perfect correlation between OD pairs which results in a compu-
tation time of 720 s is considered an acceptable balance between the meaningfulness
of results and the resulting computation times

In this analysis CTo was assumed to be 1s. Actual values of CTo are of the same order of
magnitude and are presented in Section 5.4.2. As result of the adoption of the fourth sampling
strategy, the total number of generated OD demand matrices amounts to Y ·M = 9·10 = 90, the
total number of fleet assignment optimization model runs amounts to F ·Y ·M = 8 · 9 · 10 = 720
and therefore the total computation time of the fleet assignment optimization model is given by;

CTmodel 2 = F · Y ·M · CTO = 8 · 9 · 10 · CTO = 720 · CTO (5.2)
From a group of 10 different airports (N = 10), 10 OD pairs are selected for this case study

(Z = 10) and are presented in Appendix A. The OD pairs are selected based on 2014 air travel
data; they reflect the 10 most high-density OD connections in the total US domestic economic
passenger market in 2014. Because N = 10 and Z = 10, the OD demand matrix has size
10×10 and contains 20 nonzero elements. The OD pairs under consideration and the resulting
OD demand matrix structure are presented in Table 5.2 and 5.3, respectively.

The Atlanta airport (ATL) is selected to be a hub (H = 1) due to its relatively central location.
Consequently constraint 4.20d in the mathematical formulation of the optimization, which is
only active if two or more hubs are selected, remains unused. Three different aircraft types are
considered (K = 3) each with different characteristics; the Airbus A340-300, the Boeing 737-
800 and the Bombardier CRJ700. These aircraft are chosen because of their strong differing
characteristics in terms of seating capacities, range, purchase price, etc.

Based on Equations 4.27 and 4.28 which identified the relation between the problem size
and the size of the LP matrix, the number of decision variables and constraints for this case
study are given by;

# Constraints = 2N2 +NH −H +NK +K + x

= 2 · 102 + 10 · 1− 1 + 10 · 3 + 3 + 38 (5.3)
= 280

# Decision variables = N2 −N − 2NH +H +N2H +N2K −NK

= 102 − 10− 2 · 10 · 1 + 1 + 102 · 1 + 102 · 3− 10 · 3 (5.4)
= 441

where x is the number of aircraft range constraints, which amounts to 38 for this case study.
As presented in Section 4.4, the number of OD pair based transition probability matrices is

given by Z · (Y − 1) which amounts to 10 · (9 − 1) = 80. Likewise, the number of OD demand
matrix based transition probabilities is Y − 1 = 9 − 1 = 8 in this case study. The number of
scenarios generated by the scenario generation model is set at 5000 (D = 5000). Consequently,
each distribution of NPVs per fleet is based on 5000 data points.

5.2 Data

5.2.1 Demand data

The historical passenger data is extracted from the TranStats database of the Bureau of Trans-
portation Statistics (BTS), which is part of the United States Department of Transportation (US
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DOT). The underlying dataset that was used is the T-100 Domestic Market (U.S. Carriers) data
table that contains monthly scheduled US domestic passenger data based on a 10 percent
ticket sale information dataset, aggregated for all airlines for the period 1990-2014.

In order to be able to use a manageable dataset (e.g. small in size) with only the required
information for the specific purpose of this research, the extracted data has been subject to
some data mining and cleaning to eliminate unused data and restructure the data in the right
format. The dataset is reduced to contain the following: number of passengers per market per
year for the period 1990-2014.

ATL FLL JFK 

Pax in market FLL-JFK: 100 
Pax in market FLL-ATL: 50 
 
Pax in flight segment 1  
FLL-ATL: 150 

Pax in market FLL-JFK: 100 
 
 
Pax in flight segment 2  
ATL-JFK: 100 

Flight 1 Flight 2 

FLL 

ATL 

JFK 

FLL 

- 

0 

0 

ATL 

50 

- 

0 

JFK 

100 

0 

- 

OD Demand 
matrix 

Figure 5.1: A visualization of the difference between market data and segment data

At this point it is important to highlight the difference betweenmarket data and segment data.
Market data reflects the passenger data between an origin and destination airport (i.e. an OD
pair) irrespective of how a connection was made between those two airports. Segment data
reflects the number of passengers in a certain flight segment between two airports; however
these passengers could have different itineraries and therefore could use this flight segment as
part of different origin-destination connections. See Figure 5.1 for a visualization of these two
concepts.

5.2.2 Aircraft characteristics

Different aircraft types are differentiated by their characteristics, which are the number of seats,
cruise speed, range, daily utilization, turnaround time, variable cost, ownership cost and pur-
chase price. These characteristics are specified in Table A.3. The number of seats sk, cruise
speed vck, range rangek and purchase price (i.e. list price) are based on information provided
on the internet (AxleGeeks, 2016). Weekly utilization Uk, turnaround times TAT k and operating
cost Ck

var are virtual data and are based on the assumption that larger aircraft tend to have a
higher daily utilization, higher turnaround time and lower unit operating cost (Belobaba et al.,
2009). The yearly ownership cost Ck

fix are based on the aircraft purchase price and assuming
a 20 year linear depreciation period and residual value of 15% at the end of the depreciation
period which is based on an example depreciation scheme provided by Doganis (2002);

Yearly ownership cost =
Purchase price · (1− residual value)

Depreciation term in years
=

0.85 · Purchase price
20

(5.5)

5.2.3 Adjusting the OD demand matrices

Each of the 90 outputted OD demand matrices by the stochastic demand forecasting model
contains total yearly demand, which needs to be reduced to airline specific weekly demand.
This is achieved in two steps. First, each element in the OD demand matrix is multiplied with 1

52
to reduce the annual data to weekly data. Consequently, it is assumed that the demand matrix
reflects an average week of the year and thereby neglects seasonality or trend growth through-
out the year. Second, each element in the OD demand matrix is multiplied with a 20% market
share to arrive at airline specific demand. This market share reflects the share of total market
demand that can be potentially captured by the airline given its competitive characteristics. The
20% market share assumption is adopted for each OD pair.
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Weekly airline specific demand =
Annual market demand

Number of weeks per year
· Airline market share (5.6)

=
Annual market demand

52
· 0.2 (5.7)

5.2.4 Yields

Yield is defined as revenue per revenue-passenger-mile in 2014 US Dollar cents. The yields are
based on actual average fare data in 2014. This data stems from the BTS US DOT database
and the underlying dataset that was used is Table 1a Domestic Airline Airfare Report (2011 -
2014) which contains average fare data per OD pair per quarter for the period 2011-2014 for a
large set of OD pairs (but not all OD pairs) in the US. Yield data is calculated by dividing the fares
by their origin-destination distance. It is noted that the average fares that form the basis for this
dataset are not only averaged for the year 2014, but also reflect average fares as listed by all
airlines in the marketplace and irrespective of the offered service (i.e. nonstop or connecting).
Unfortunately the fare data was not available for all OD pairs under consideration in the case
study. Therefore the missing data has to be estimated. This is achieved by identifying the yield-
distance relationship for the OD pairs for which fare data is available through a power fit, and
using this relationship together with the known origin-destination distance to estimate fares and
subsequently yields for the OD pairs for which fare data was missing. The available fare data
and the fitted yield-distance relationship is shown in Figure 5.2. The yields can be found in Table
A.7.

The ratio between yields for nonstop and connecting passengers is set at 1.0 in the case
study, which results in the nonstop flow being more profitable. In practice, these yield ratios are
airline specific and highly depend on how an airline prioritizes nonstop or connecting flow per
OD pair in their revenue management models, based on the competitive environment.
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Figure 5.2: The yield-distance relationship

5.2.5 Airport characteristics

The taxi-in and taxi-out times stem from the BTS US DOT database. The underlying dataset
that was used is the Airline On-Time Statistics - Origin and Destination Airport dataset that
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provides 2014 data on taxi-in and taxi-out times in minutes per OD pair averaged for all airlines.
The taxi-out times and taxi-in times can be respectively found in Tables A.4 and A.5. The OD
distances can be found in Table A.6.

5.2.6 Inflation, discount rate and tax rate

Inflation is considered on the cost side (i.e. operating and ownership cost) and on the revenue
side (i.e. nonstop and connecting yields). In the case study the inflation is assumed to be 1.5%
per year for all the 9 years in the planning horizon. This number is calculated as the average
inflation in the US between 2010 and 2014 which is based on data from the US Bureau of Labor
Statistics (US BLS) and specifically the dataset provided in Table 24 Historical Consumer Price
Index for all Urban consumers (CPI-U).

For the NPV calculation, the discount rate r is set at the weighted average cost of capital
(WACC). The assumed WACC value is 7.4 % which is the average historical WACC for US
airlines (both legacy carriers and low cost carriers) between 2004 and 2011 (Pearce, 2013).

The effective corporate tax rate in the US depends on a federal and state component and is
assumed to be 39%. Using the tax rate the return on invested capital (ROIC) is calculated as;

Annual return on invested capital (ROIC) =
Annual operating profit− tax

Investment

=
Annual operating profit · (1− tax rate)

Investment
(5.8)

5.3 Assumptions and their implications

In addition to the assumptions that are grounded in the proposed methodology there are some
case study specific assumptions which are presented in this section.

Stochastic demand forecasting model

• Merely economy class passenger data is used;

– It could very well be that business class and first class air travel demand displays
different mean reverting properties than economy class air travel demand

• Historical passenger data is airport-to-airport related as such the demand forecast also
returns airport-to-airport demand;

– This might impact results considering that certain cities have multiple airports, and it
could be possible that passengers chose a particular airport within a city due to the
competitive circumstances (e.g. departure times, air fares) at that point in time

• OD pairs are assumed to be perfectly correlated (+1) within a year;

– This allows for the construction of 10 OD demand matrices per year instead of 1010
OD demand matrices per year. In words this assumption states that in a certain year
the demand sample values of each OD pair in an OD demand matrix are taken from
the same part of the probability distribution. This simplifying assumption also allows
for the generation of OD demand matrix based transition probability matrices.

• The used dataset is altered in that the effect of triangular and one-way connections are
eliminated by summing traffic in either way of one OD pair and dividing the sum by two to
arrive at directional passenger data
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Fleet assignment optimization model

• In the case study only 1 hub is adopted; being airport ATL (Atlanta)

• Yield is OD dependent and the yield ratio between nonstop and connecting passengers
is 1

– Yields in the case study are based on average airline fare data, so it is not airline
specific but representative of an average airline

– Assuming a yield ratio of 1 results in that nonstop flow is more profitable than con-
necting flow for each OD pair

• A market share model is not adopted. The market share is assumed to be 0.2 for all OD
pairs

– Demand-supply interactions are ignored; there is no consideration of a S-curve re-
lation between the offered weekly flight frequency and captured demand; demand-
price elasticity is not considered

– The impact of this assumption is discussed in Section 5.4.4

• Inflation is 1.5 % percent

• Taxi time depends on the airport and whether the flight is inbound or outbound but is not
aircraft type dependent

• A straight line 20 year depreciation term is assumed with a residual value of 15%

Scenario generation model

• The discount rate r is set by the WACC, which is based on the historical 7.4 % WACC for
US carriers between 2004-2011 (Pearce, 2013)

5.4 Results

The results of the stochastic demand forecastingmodel, the fleet assignment optimizationmodel
and the scenario generation model are presented in Sections 5.4.1, 5.4.2 and 5.4.3, respec-
tively. Section 5.4.4 presents a synthesis of the results and computation times from the per-
spective of the overarching solution methodology.

5.4.1 Stochastic demand forecasting model

Mean reverting model parameters for each OD pair

Figure 5.3 shows for one OD pair, ATL-FLL, how the mean reverting model parameters are
estimated through linear least squares regression. This procedure is executed for each OD
pair and the resulting mean reverting model parameters for the 10 OD pairs that are part of the
case study are presented in Table 5.4.

In terms of goodness of fit, it can be observed that for the 10 OD pairs under consideration
the R2 values range from 0.26 to 0.62 and the p-values range from 0.000 to 0.013. A high R2

together with a low p-value respectively indicate that a lot of the variability is explained and that
the predictor variable is significant (i.e. a change in the predictor variable x results in a change
in the response variable y).

In terms of mean reverting model parameters, it can be observed that the speed of mean
reversion λ ranges from 0.83 to 1.02, the long term average growth rates µ range from 0.7%
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(b) Historical evolution of year-to-year passenger growth rates (Xt)
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Figure 5.3: Estimating the mean reverting process model parameters through a linear least
squares regression
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Figure 5.4: Monte Carlo simulation of the mean reverting process
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Table 5.4: Mean reverting model parameters for each OD pair

OD pair a b p-value R2 λ µ σ

ATL-FLL 0.051 -0.963 0.000 0.617 0.963 0.053 0.087
ATL-MCO 0.034 -0.941 0.000 0.656 0.941 0.037 0.070
DFW-LAX 0.024 -1.020 0.000 0.526 1.020 0.024 0.063
JFK-LAX 0.029 -1.011 0.000 0.510 1.011 0.029 0.127
JFK-SFO 0.035 -0.961 0.000 0.485 0.961 0.036 0.144
LAS-LAX 0.018 -0.665 0.004 0.332 0.665 0.027 0.119
LAX-ORD 0.010 -0.953 0.000 0.476 0.953 0.011 0.056
LAX-SFO 0.004 -0.523 0.013 0.259 0.523 0.007 0.107
LGA-ORD 0.023 -0.977 0.000 0.490 0.977 0.023 0.080
ORD-SFO 0.013 -0.831 0.001 0.416 0.831 0.016 0.056

per year to 5.3% per year and the standard deviation of the historical estimation error σ varies
between 0.056 and 0.144. Based on these values it can be analyzed that the 10 OD pairs
under consideration display strong mean reverting properties because the λ is close to one,
they have varying long term average growth rates and also display a different behavior in terms
of year-to-year volatility.

It is noted that the case study only focuses on 10 OD pairs and that the evaluation of other
OD pairs might yield different results both in terms goodness of fit as well as mean reverting
properties.

Monte Carlo simulation of demand

Figure 5.4 displays the Monte Carlo simulation of OD pair ATL-FLL across the 2015-2013 plan-
ning horizon, based on 1, 10 and 5000 simulation runs respectively. An overview of the Monte
Carlo simulations of all 10 OD pairs can be found in Figure B.1. It can be clearly observed
that the uncertainty increases with time. Although the figure gives an interesting insight in the
expansion of uncertainty over time, it is noted that this visualization cannot be used to analyze
in detail the distribution of the 5000 Monte Carlo simulation observations within a year. This is
due to the thickness of the vast amount of plotted lines. In order to analyze the distribution of
observations within a year in detail, it is advised to analyze the histograms that are discussed
in the next paragraph.

A histogram based on 5000 observations per year per OD pair

Figure 5.5 displays 9 traditional histograms that provide insight into the distribution of 5000
Monte Carlo simulation observations per year for all the 9 forecasting years for the OD pair
ATL-FLL. In Section 4.2.3 it is elaborated why and how the data is not binned using traditional
histograms but rather using equal probability bin histograms. The latter type of histogram can
be found in Figure 5.6 for OD pair ATL-FLL and in Appendix B.2 for all OD pairs.

Five observations can be made. First, the widths of the histograms increase with time, which
is in line with expectation because uncertainty increases with time. Second, it can be observed
that across years there is a tendency of the weight of the histogram to move to the right; i.e.
generally across years there is air travel demand growth. Third, it can be observed that the
outer bins (especially bin 1 and bin 10) are much wider than the inner bins. Each bin contains
the same number of observations, but apparently the spread between the highest and lowest
value of the observation is larger in the outer bins than in the inner bins. This is in line with
expectation because when a vast amount of simulations is run, it is likely that some extreme
values occur that shift the outer bin edges to the right (for the right bin) and to the left (for the
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left bin) and therefore increase the bin widths of the outer bins. Fourth, it can be observed that
when focusing on the outer bins (bin 1 and bin 10) in general bin 10 is wider than bin 1. This
can be attributed to the presence of long-term average growth rates that result in some upward
skewness of uncertainty in demand levels. Fifth, it can be observed that generally all OD pairs
display the aforementioned four observations. This can be verified through visually inspecting
all figures in Appendix B.2.
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Figure 5.5: Traditional histograms of Monte Carlo simulation observations for the OD pair ATL-
FLL for all the years in the planning horizon

90 OD demand matrices

From the perspective of the overarching solution methodology the 90 OD demand matrices are
the most important output of the stochastic demand forecasting model. The OD demand matrix
based on sample values from bin 1 for the year 2015 is shown in Table 5.5. An overview of all
90 OD demand matrices can be found in Appendix B.3. Three observations are elaborated.

First, focusing on one OD pair and one year, the demand values increase when moving from
bin 1 to bin 10. This should always be the case since all the individual values in a bin are larger
than the individual values in the bin to the left of it and therefore the average value (i.e. sample
value) is also larger.

Second, focusing on one OD pair and one year, the spread between subsequent demand
values decreases from bin 1 to 5 and then increases from bin 5 to 10. This is in line with the
visual observations; the bin widths decrease from outer to inner bins so probably the averages
of those bins also lie closer to each other when moving inward. However, it is noted that this is
not necessarily the case because the sample values are averages of all the observations in the
bin and not the median of the observations in the bin.

Third, focusing on one OD pair and one bin number, generally the demand sample values
decrease from year to year for the bins 1-5 and increase from year to year for bins 6-10. This can
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Figure 5.6: Equal probability histograms of Monte Carlo simulation observations for the OD pair
ATL-FLL for all the years in the planning horizon

be attributed to the expansion of uncertainty over time, which is both upwards and downwards.

Table 5.5: OD demand matrix based on sample values from bin 1 in 2015

Year 2015 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.03E+06 0 0 0 0 1.13E+06 0 0
DFW 0 0 0 0 0 1.06E+06 0 0 0 0
FLL 1.03E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.29E+06 0 0 0 8.87E+05
LAS 0 0 0 0 0 9.43E+05 0 0 0 0
LAX 0 1.06E+06 0 1.29E+06 9.43E+05 0 0 0 1.08E+06 1.57E+06
LGA 0 0 0 0 0 0 0 0 1.21E+06 0
MCO 1.13E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.08E+06 1.21E+06 0 0 1.01E+06
SFO 0 0 0 8.87E+05 0 1.57E+06 0 0 1.01E+06 0

Computation time

The computation time of the stochastic demand forecasting model approximately scales with 6s
per OD pair Z, per year Y and can be represented by the following equation;

CTmodel 1 = Y · Z · 6s = 9 · 10 · 6 = 540s (5.9)
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5.4.2 Fleet assignment optimization model

One optimization model run

Each optimization model run returns the optimal values of the decision variables and objective
function. Both financial and non-financial performance metrics are derived from those values.
The decision variable and objective function values of one example run are provided in Table
5.6, and the corresponding derived performance metrics are presented in Table 5.7. The results
of this example run are based on the assignment of Fleet 6 from the portfolio (which contains
15 Bombardier CRJ700 aircraft) based on the OD demand matrix in 2015 that contains sam-
ple values from bin 5. The returned objective function value is $1,310,509.72 (i.e. the weekly
operating profit) and the optimality gap is 0.0085% (i.e. the gap between the optimal objective
function value with integrality constraints and the optimal value of the linear relaxation). A vi-
sualization of the routing network and the weekly frequencies per aircraft type can be found in
Figure 5.7.

Table 5.6: Decison variable values

Decision variable Subscripts Value

xod ATL-MCO 4875
xod MCO-ATL 4875
xod LAS-LAX 4500
xod LAX-LAS 4500
xod LGA-ORD 4875
xod ORD-LGA 4875
xod LAX-SFO 7200
xod SFO-LAX 7200
zkij ATL-CMO-Bombardier CRJ700 65
zkij MCO-ATL-Bombardier CRJ700 65
zkij LAS-LAX-Bombardier CRJ700 60
zkij LAX-LAS-Bombardier CRJ700 60
zkij LGA-ORD-Bombardier CRJ700 65
zkij ORD-LGA-Bombardier CRJ700 65
zkij LAX-SFO-Bombardier CRJ700 96
zkij SFO-LAX-Bombardier CRJ700 96

720 runs: running the optimization model for each fleet-OD demand matrix combination

The optimization model is run for every combination of fleets from the portfolio and OD demand
matrix outputted by the stochastic demand forecasting model. The case study encompasses 8
fleets (F = 8) in the portfolio, 9 planning years (Y = 9) and 10 OD demand matrices per year
(M = 10), resulting in F · Y ·M = 8 · 9 · 10 = 720 iterations of the optimization model.

Each iteration returns the same type of financial and non-financial performance metrics as
presented in Table 5.7, which are stored in one large data table with 720 rows. This allows for an
explicit comparison of both financial and non-financial performance metrics between different
fleets across different realizations of stochastic demand across the 9 years in the planning
horizon. Only the yearly operating profits are stored in the value matrix which is presented
in table form in Appendix C.2. The value matrix is subject to further analysis in the scenario
generation model. However, the value matrix can also be plotted per fleet in order to visualize
the range of annual operating profits across the planning horizon. An example of such a plot is
presented for Fleet 6 in Figure 5.8. The expansion of uncertainty with time on the demand side
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Table 5.7: Financial and non-financial performance metrics derived from a single optimization
run

Financial perfomance metrics Non-financial performance metrics

Metric Value Metric Value
Weekly revenue $3,597,750.79 Weekly OD pax transported 42900
Weekly operating cost $1,986,880.50 Weekly seats offered 42900
Weekly ownership cost $300,360.58 Weekly seats filled 42900
Weekly operating profit $1,310,509.72 Percentage nonstop flow 100%
Annual operating profit $68,146,505.33 Percentage OD demand satisfied 42.4%
Operating profit margin 36.43% Average network load factor 100%
Annual op. profit minus tax $41,569,368.25 Number of OD pairs served 4
Total investment cost $367,500,000.00 Weekly utilization per aircraft type
Annual ROIC 11.31% Bombardier CRJ700 100%
Spilled revenue percentage 70.49%

clearly also propagates through the evolution of annual operating profits across the planning
horizon.

Computation time

The total computation time of the second model (CTmodel 2) linearly scales with the computation
time of a single optimization run (CTo), the number of fleets in the portfolio (F ), the number of
years in the planning horizon (Y ) and the number of OD demand matrices per year (M );

CTmodel 2 = F · Y ·M · CTO = 8 · 9 · 10 · 0.72s = 520s (5.10)

5.4.3 Scenario generation model

OD pair based transition probability matrix for two consecutive years

Table 5.8 presents the transition probability matrix between 2015 and 2016 for the OD pair ATL-
FLL. While it is interesting to now the actual probabilities, it is also interesting to see the pattern
of probabilities within a transition probability at one glance. This can be done by visualizing the
transition probability matrix as a heat map, where the darker the color the higher the probability.
A heat map enables quick visual interpretation of the transition behavior and therefore can be
used to analyze one transition probability matrix but also can be used to compare the behavior of
different transition probability matrices. Figure 5.9 is the heat map visualization of the transition
probability matrix in Table 5.8. Three observations can be made with regards to one transition
probability matrix.

First, it can be clearly observed that the probabilities are highest along the diagonal of the
transition probability matrix. Essentially this means that it is very likely that from year-to-year
an observation falls either in the same bin or in adjacent bins. Moreover, this tendency seems
to gradually decrease with an increasing transition gap between bins in consecutive years.

Second, it can clearly be observed that within the diagonal, the highest probability is in the
outer bins. Essentially this means that the tendency of an observation to stay in the same bin
from year to year is higher for observation that are in the outer bins. This behavior is explained
by the usage of equal probability bins and the distribution of uncertainty which results in wider
outer bins than inner bins and therefore a smaller likelihood of transitioning from the outer wider
bin to another bin.
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Figure 5.7: Routing network

Third, it is noted that the first two observations hold for all 80 transition probability matrices
as can be verified through visual inspection in Appendix D.1.

Bin number in: 2016
1 2 3 4 5 6 7 8 9 10

B
in
nu
m
be
ri
n:

20
15

1 0.50 0.24 0.14 0.06 0.03 0.02 0.00 0.01 0.00 0.00
2 0.21 0.25 0.14 0.13 0.14 0.07 0.04 0.02 0.01 0.00
3 0.11 0.19 0.15 0.19 0.14 0.09 0.08 0.04 0.01 0.00
4 0.06 0.12 0.17 0.16 0.13 0.12 0.13 0.08 0.03 0.01
5 0.06 0.08 0.14 0.13 0.14 0.17 0.12 0.09 0.07 0.01
6 0.04 0.05 0.11 0.13 0.13 0.15 0.13 0.13 0.10 0.04
7 0.01 0.03 0.07 0.10 0.12 0.13 0.17 0.16 0.15 0.06
8 0.01 0.02 0.04 0.06 0.09 0.14 0.15 0.18 0.15 0.15
9 0.01 0.02 0.02 0.04 0.06 0.07 0.10 0.19 0.24 0.25
10 0.00 0.00 0.02 0.01 0.03 0.04 0.08 0.11 0.23 0.48

Table 5.8: Transition probability matrix for the
OD pair ATL-FLL for the consecutive year
combination 2015-2016 based on 5000 Monte
Carlo simulation observations
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Figure 5.9: Heat map visualization of the tran-
sition probability matrix presented in Table 5.8

OD pair based transition probability matrices for all consecutive years

Appendix D.1 contains the heat maps for each consecutive year combination in the planning
period 2015-2023 for each of the 10 OD pairs. In addition to the observations that are made
about individual transition probability matrices in the previous section, one observation can be
made with regards to the evolution of transition probability behavior over time. It can be ob-
served that the probability density across the diagonal increases over time. Essentially this
means that the tendency of an observation to fall in the same bin or adjacent bins gets stronger
with the evolution of time. This can be explained using the same principle as in the previous
section; because uncertainty expands with time, the bin widths also increase and therefore as
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Figure 5.8: A plot of one intersection through the value matrix; annual operating profit of Fleet 6
for each of the 10 OD demand matrices per year for each of the 9 years in the planning horizon

time evolves the likelihood of transferring from one bin to another bin decreases. As result the
probability that an observation is transitioned from one bin to another decreases.

OD demand matrix based transition probability matrices for all consecutive years

The tables and figure in Appendix D.2 present theOD demandmatrix based transition probability
matrices both in table form and as a heat map. These transition probability matrices represent
the average year-to-year transition behavior of all OD pairs in an OD demand matrix. It is noted
that although the different OD pairs do show similar transition behavior and are of the same order
of magnitude, the actual transition probabilities might not be exactly the same. The validation
of this aggregation procedure is presented in Chapter 6.3.1.

Distribution of net present profit values for each fleet in the portfolio

Figure 5.10 presents for each fleet in the portfolio the distribution of net present profit values
based on the 5.000 scenarios across the planning horizon. Three attributes can be evaluated
in order to compare the different fleets from the portfolio.

• The mean of the distribution

– Does the distribution have a high mean (i.e. distribution to the right) or a low mean
(i.e. distribution to the left)? This gives insight in the absolute operating profit gener-
ation capability of the fleet across the planning horizon across the range of stochastic
demand.

• The spread of the distribution:

– Is it a wide distribution (i.e. lot of uncertainty) or a narrow distribution (i.e. little uncer-
tainty)? This provides insight in the robustness of the profit generating capability of a
fleet to the range of stochastic of demand it is subject to across the planning horizon.
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• The location of the distribution with respect to the level of investment required

– Is the distribution close the investment cost? Is it to the right of it? This observation
relates the profit generating capability of a fleet to the magnitude of the investment
cost that is required to purchase the fleet. Whereas operating profit is an indicator
of how efficient the assets (i.e. the fleet) are deployed, the spread between prof-
itability and investment can be used as an indicator of how efficient the investment
is generating a return.

The third observation reveals a key insight in the difference of the profit generating capability
of a fleet and the capability to generate returns on invested capital. A fleet could be very prof-
itable in operation in absolute terms (i.e. a distribution with a high mean) but at the same time
can be a poor investment because of the disproportionate level of investment that is required
to get to that level of absolute operating profits (i.e. the de distribution of operating profits is to
the far left of the investment cost such as with Fleet 8 from the portfolio). In short, there can
be fleets with high operating margins and low returns. To emphasize that, also the average
annual return on invested capital based on the average annual net present profit value in the
distribution is shown in the figure.

Together, these attributes define the robustness of a fleet. Based on these three attributes,
a fleet planner from industry would probably like to select the fleet with a distribution with a high
mean, low spread and preferably close or even to the right of the investment cost.

Computation time

The computation time of the scenario generation model scales with the number of scenarios B
and the number of fleets in the portfolio F ;

CTmodel 3 = B · F · 0.02754s = 5000 · 8 · 0.0275s = 1100s (5.11)

5.4.4 Synthesis of the results and computation times

The three models together produce a vast amount of results, the majority of which is used as
intermediate results that are part of the methodology. The most important final results in terms
of the overarching methodology are;

• The distribution of net present values of profit across the planning horizon across the range
of stochastic demand, per fleet from the portfolio

• The large data table that contains all financial and non-financial performance metrics per
fleet per year per OD demand matrix within the year

How should a fleet planner interpret the results?

The information that stems from these two datasets can be used to explicitly compare fleets.
First, the distribution of NPVs can be used by fleet planners to get a high level insight in the
magnitude and uncertainty of the operating profits across a 9 year planning horizon and how
these operating profits relate to the investment necessary to obtain the profits. Second, the
vast amount of both financial and non-financial data can be used to unravel the underlying
factors that drive the distribution of profitability; what are the aircraft utilizations of the different
aircraft types in the fleet? What is the average network load factor? How many passengers
are spilled? What is the spilled revenue? How many OD pairs are served? What percentage
of the passengers is transported nonstop? What are the weekly operating cost and ownership
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cost? What is the routing network? This vast amount of detailed information can be used for
subsequent detailed analysis.

Based on the distributions presented in Figure 5.10, fleet planner is likely to select fleet 6
due to the relatively narrow distribution of NPVs and the beneficial relation between NPVs and
investment cost.

The total computation time

The computation times of each of the three models is presented in Table 5.9.

Table 5.9: An overview of computation times per model

Model Total computation time (s) Number of runs Time per run (s)

Model 1 540 Y · Z = 9 · 10 = 90 6
Model 2 520 F · Y ·M = 8 · 9 · 10 = 720 0.72
Model 3 1100 B · F = 5.000 · 8 = 40.000 0.0275

The total computation time is simply calculated as the sum of the computation times of the
three models:

CTTOTAL = CTmodel 1 + CTmodel 2 + CTmodel 3

= Y · Z · 6 + F · Y ·M · 0.72 +B · F · 0.0275
= 9 · 10 · 6 + 8 · 9 · 10 · 0.72 + 5000 · 8 · 0.0275
= 36 minutes (5.12)

The problem size and computation time of a real world case study

For a larger real world case study with 300 OD pairs under consideration (Z = 300), 9 years
in the planning horizon (Y = 9), 10 OD demand matrices per year (M = 10), 5.000 scenarios
(B = 5.000) and 100 fleet in the portfolio (F = 100), the computation would amount to approx-
imately 10 hours, as is calculated in Equation 5.13. However it is noted that this estimation of
computation time does neglect the impact of the increased number of OD pairs under consid-
eration on the computation time of a single optimization run CTo.

CTTOTAL =

= Y · Z · 6 + F · Y ·M · 0.72 +B · F · 0.0275
= 9 · 300 · 6 + 100 · 9 · 10 · 0.72 + 5000 · 100 · 0.0275
≈ 10 hours (5.13)
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Figure 5.10: A distribution of net present values based on annual operating profits across the
planning horizon across numereous realizations of stochastic demand, for each fleet in the
portfolio
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6
Verification and validation

This chapter details the verification and validation of themodels andmethodology. It is important
to investigate whether the models comply with the specified requirements (i.e. verification) and
to what extent the results can be considered to be a reflection of reality (i.e. validation). For
each of the three models these verification and validation procedures are detailed in Sections
6.1, 6.2 and 6.3, respectively.

6.1 Stochastic demand forecasting model

6.1.1 Selecting the air travel demand variable

As is briefly highlighted in Section 4.2.2, multiple variables could be used as air travel demand
variable: passenger data, passenger growth data, rpm data and rpm growth data. For all 4 vari-
ables the total US domestic historical data is used to test the mean reverting model properties
and goodness of fit. The results are shown in Table 6.1. Historical passenger data is available
for the period 1990-2014, resulting in 25 data points whereas historical rpm data is available for
the period 1996-2014, resulting in 19 data points.

Clearly the passenger growth air travel demand variable displays the most desired behavior
in terms of goodness of fit with a R2 of 0.47 and a p-value of 0.000. Moreover, this demand
variable shows a strong mean reverting property (λ = 0.9). Therefore it is decided to use
passenger growth data as the mean reverting air travel demand variable in this research.

This decision can be qualitatively corroborated through two notions. On a global level the
number of passengers per year steadily increased the past thirty years with an average growth
rate of 5% (Belobaba et al., 2009), hinting towards the suitability of using of an air travel demand
growth rate (either pax or rpm) as mean reverting air travel demand variable. Moreover it can
be argued that passenger data is a better predictor than rpm data because rpm data is even
more influenced by historic competition (i.e. which drives how OD passenger are transported
over the network and thus the distance term in rpm) than passenger data, which is something
that can be influenced in the future.
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Table 6.1: Goodness of fit of the four different air travel demand variables (pax, rpm, pax growth,
rpm growth)

# data points R2 p-value λ µ σ

pax 25 0.10 0.138 0.08 6.88E+08 2.18E+07
pax growth 25 0.47 0.000 0.90 0.023 0.049
rpm 19 0.12 0.158 0.13 5.97E+11 1.91E+10
rpm growth 19 0.37 0.010 0.73 0.019 0.039

6.1.2 Estimation of the mean reverting model parameters

There is a discrepancy between analytically calculated annual historical passenger growth rates
and the µ parameters that stem from the mean reverting model parameter estimation through
linear least squares regression. The differences are listed Figure 6.2. For future work it is
considered interesting to investigate the impact of other methods to estimate the mean reverting
parameters such as the maximum likelihood method. Moreover it can be expected that using
more data points, if available, will yield more accurate mean reverting parameter estimates.

Table 6.2: Difference between estimated mean annual growth rate µ and the analytically calcu-
lated mean annual growth rate

OD pair µ analytical solution

ATL-FLL 0.053 0.038
ATL-MCO 0.037 0.021
DFW-LAX 0.024 0.020
JFK-LAX 0.029 0.025
JFK-SFO 0.036 0.032
LAS-LAX 0.027 0.028
LAX-ORD 0.011 0.010
LAX-SFO 0.007 0.010
LGA-ORD 0.023 0.022
ORD-SFO 0.016 0.017

6.1.3 Implications of the number of Monte Carlo simulations

As discussed in Section 4.2.3 a Monte Carlo simulation is a brute force method to numerically
approximate the probability distribution. As such, the accuracy of the approximation depends
on the number of simulation runs, which in turns also impacts the computation time. It is strived
to set the number of simulation runs at a level for which the resulting sample values display
acceptably low inconsistency when the simulation process is performed more than once. Table
6.3 presents for four different quantities of Monte Carlo simulation runs how the model returns
sample values across three trials. Inconsistency is defined as the sum of the absolute difference
between each sample value and the average sample value of all trials as percentage of the
average sample value of all trials. The table shows that the adoption of 5000 runs results in
a computation time of 541s and an inconsistency of 0.4% which is considered an acceptable
balance. It is noted however that this investigation is performed for the demand sample value
based on the average of all Monte Carlo simulation observations in bin 1 for OD pair ATL-FLL
in 2015, and might lead to different results when performed for other sample values within the
year, other years and other OD pairs. Still, the expectation is that in general terms a higher
number of simulation runs will lead to lower inconsistency.
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Table 6.3: Balance between the number of Monte Carlo simulation runs, inconsistency of results
and computation time

# Runs Trial 1 Trial 2 Trial 3 Inconsistency Computation time
[#] [Pax] [Pax] [Pax] [%] [s]

500 1031187 1040640 1039374 1.1% 192
1000 1033736 1036129 1027395 1.0% 232
2500 1037334 1026506 1036193 1.3% 354
5000 1031932 1033559 1029341 0.4% 541

6.1.4 Validation using historical data

Order of magnitude and range of uncertainty of forecasted sample values

In order to validate the stochastic demand forecasting model only part of the historical data is
used to estimate themodel parameters so that the remainder of the historical data can be used to
validate the model output. In this example the 1990-2011 years are used to estimate the model
parameters and a Monte Carlo simulation is performed for the period 2012-2014. Appendix
B.4 shows the validation of the model for all OD pairs. For each OD pair, it presents the three
resulting equal probability histograms and the spread of Monte Carlo simulation observations.
The red dotted lines represent the actual historical passenger data. Although it is noted that this
analysis cannot be used to validate the accuracy of the model since the demand is stochastic,
at least it can be observed that the order of magnitude of the outputted forecasts is in line with
the actual historical data and the actual data falls within the range of forecasted values.

10 OD demand matrices

In Section 4.2.3 it is decided to adopt 10 OD demand matrices per year where each OD de-
mand matrix contains all OD pairs with demand sample values based on the same bin number.
Here it is investigated whether that assumption is a correct reflection of reality. For each of the
histograms in Appendix B.4, the actual historical data falls in a particular bin in the forecasted
data. The results of this observation for each OD pair and each year are presented in Table 6.4.
The assumption of constructing 10 OD demand matrices per year with each OD demand matrix
containing OD demand sample values based on the same bin number would be validated if
for each year the historical demand data of each OD pair would fall in the same bin number,
which is unfortunately not the case. In 2012, 2013 and 2014, respectively, 2, 4 and 4 out of
10 OD pairs displayed historical passenger data that fell in the same bin number. As such the
assumption is not a fully correct reflection of reality and a recommendation for future work is to
investigate whether this information can be used to improve the construction of a limited set of
OD pairs.

6.2 Fleet assignment optimization model

6.2.1 Verification through analytical solution checks

The mathematical optimization model is implemented incrementally by adding constraints one
at the time. During this construction phase the optimization model is run and verified by using
the resulting decision variable values to analytically calculate both sides of each constraint to
check whether the constraints are satisfied and not violated. During the incremental implemen-
tation process this verification step has been performed for each constraint and under different
circumstances (e.g. yields, number of aircraft per type in the fleet, available daily utilization
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Table 6.4: Historical bin numbers per year per OD pair

OD pairs 2012 2013 2014

ATL-FLL 5 2 2
ATL-MCO 4 3 2
DFW-LAX 9 8 8
JFK-LAX 6 5 5
JFK-SFO 7 5 6
LAS-LAX 2 3 4
LAX-ORD 8 6 6
LAX-SFO 7 5 6
LGA-ORD 6 5 5
ORD-SFO 8 6 6

time, etc.). The same checking procedure has also been performed for the verification of the
objective function.

One example is provided here to support the understanding of this verification process.
Equation 4.20a represented the passenger flow-capacity constraint between two airports that
are not a hub. In the case study in Table 5.6, the xod decision variable of passenger flow between
ATL-MCO returned a value of 4875 and the zkij decision variable of weekly flight frequency be-
tween ATL-MCO with aircraft type Bombardier CRJ700 returned a value of 65 and the number
of seats of that aircraft type (sk) is 75. The Bombardier was the only aircraft type under consid-
eration in this example. Consequently the passenger flow-capacity constraint can be verified in
the following fashion;

xi,j ≤
∑
k∈K

zki,j · sk

4875 ≤ 65 · 75 (6.1)
4875 ≤ 4875

6.2.2 Validating the observed model behavior

Next to ensuring that the math is implemented correctly, it is also important to investigate and
understand the type of behavior the optimization model displays when getting to optimal solu-
tions and check whether that behavior is a correct reflection of reality. This behavior is the result
of the mathematical formulation of the decision variables, objective function and constraints as
well as the sequence of solution steps adopted by the optimization algorithm.

The impact of objective function coefficients

The objective function aims to maximize profit, which is influenced by four terms; two revenue
terms, one constant ownership cost term that does not contain any decision variables and an
operating cost term. This set up drives the focus on profitability and as such there are two theo-
retical results of the optimization process. Either all potential profitable demand is satisfied and
capacity has not yet reached its upper bound (i.e. spoilage due to over-capacity), or alterna-
tively the upper bound on capacity is reached but some profitable demand is not satisfied (i.e.
spill due to under-capacity). In the first case, the aircraft types with the highest total operating
cost (i.e. with the most negative objective function coefficient) will not be deployed whereas
in the second case the least revenue generating OD passenger demand (i.e. with the least
positive objective function coefficient) will not be satisfied.
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This behavior is arguably a partial reflection of reality. It seems sensible that airlines in a
real world will try to get a demand share in the most profitable OD pairs. However, it is unlikely
that such narrow rationale of prioritizing the allocation of capacity to the most profitable OD
pairs is employed in the real world because airlines need to consider also other elements that
may impact revenues, cost and profitability on a larger scale. For instance, the total demand
an airline can potentially capture in a particular OD pair may possibly also depend on the total
number of OD pairs served due to customer loyalty effects. This would shift the focus from allo-
cating as much capacity as possible to a single highly profitable OD pair to distributing capacity
across multiple OD pairs in order to cover a larger set of OD pairs. Another example could be
that a specific aircraft type is preferably operated from and to a particular maintenance hub with
maintenance capabilities for that aircraft type, which might not necessarily coincide to the set
of OD pairs that can be served with the highest operational profit with that aircraft type.

Grounding aircraft due to case study specific values

Another behavior can be observed as consequence of the mathematical logic. An OD pair is
only served by an aircraft type when the connection results in a positive operating profit. When
none of the OD pairs under consideration can be profitably catered by a specific aircraft type,
then that aircraft type will be not be deployed. Consequently, situations occur in the case study
where aircraft are grounded while the demand in all OD pairs is not fully satisfied and capacity
has not yet reached its upper bound. Although this makes sense mathematically, in the real
world an airline is not likely to ground aircraft throughout the year because it cannot cater the
profitable demand in the limited set of OD pairs that was initially under consideration; it will likely
seek new OD pairs in which the aircraft types can be deployed profitably.

Average network load factors

The average network load factors are close to 100 percent across the case study while in reality
load factors are typically around 80% (Pearce, 2013). The average network load factor (ANLF)
is given by;

ANLF =
Total pax in network
Total seats in network

(6.2)

An attempt has been made to incorporate an average network load factor constraint, but
this resulted in undesired results. The load factor constraint simply added empty chairs by
adding empty flights between airports with the shortest distance in order to satisfy the load
factor constraint. Although this might seem a counterintuitive result, it can be shown that this
behavior stems from the mathematical logic; from a total operating profit perspective it was
less detrimental to add very short flights with empty seats (i.e. between LGA and JFK with a
distance of just 10 miles) and thereby increase the magnitude of the denominator in equation
6.2 to enforce the load factor constraint, than to reduce some of the highly profitable flow in
the numerator of equation 6.2. It is noted that the latter investigation is a prime example of
the verification and validation process; a constraint was implemented, verified but led to an
undesired result and therefore was disregarded.

Sensitivity to purchase price

Because depreciation is based on the purchase price, the aircraft purchase price impacts the
annual ownership cost and through that impacts the annual operating profit. Moreover it also
impacts the total aircraft investment. Consequently, the purchase price impacts the return on
invested capital on both sides of the equation: the after tax operating profit and the total invested
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capital. Because of this impact and because in the real world aircraft are typically sold at a
discount against the list price, the sensitivity of the outputted return on invested capital to the
inputted purchase price is investigated in Table 6.5. In this calculation the ROIC is the average
annual ROIC based on the average annual NPV across the planning horizon across the range of
stochastic demand. It can clearly be observed that discounts on the list price have a beneficial
impact on the average return on invested capital. In practice such a table can be used for
a more thorough understanding of the trade space when negotiating the purchase price with
manufacturers.

Table 6.5: Sensitivity of average annual ROIC to aircraft purchase price

Average annual return on invested capital (ROIC)
Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8

Full list price 6.66% 5.36% 4.22% 3.11% 2.26% 8.90% 3.13% 0.27%
List price - 10% 7.62% 6.18% 4.92% 3.68% 2.74% 10.12% 3.71% 0.53%
List price - 25% 9.54% 7.81% 6.30% 4.81% 3.68% 12.54% 4.85% 1.03%

Sensitivity to yields

Competition can impact airline specific yields, which can in turn impact the airline’s profitability.
Therefore the sensitivity of average annual return on invested capital to a yield increase and
decrease of 10% is evaluated in Table 6.6. It can be observed from this table that the return on
invested capital is clearly sensitive to these different levels of yields, with higher yields resulting
in a higher ROIC and lower yields resulting in a lower ROIC.

Table 6.6: Sensitivity of average annual ROIC to yields

Average annual return on invested capital (ROIC)
Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8

Yields - 10% 5.33% 4.12% 3.10% 2.14% 1.41% 6.58% 2.13% -0.27%
Yields 6.66% 5.36% 4.22% 3.11% 2.26% 8.90% 3.13% 0.27%
Yields + 10% 8.00% 6.64% 5.42% 4.23% 3.33% 11.25% 4.42% 1.05%

Sensitivity to market share

The absence of a market share model and resulting assumption of a fixed market share of 0.2
for each OD pair is a major assumption. Therefore it is considered interesting to investigate
how the average return on invested capital relates to changes in the level of market share. The
impact of a 0.15 and 0.25 market share (MS) assumption are presented in Table 6.7. It can
be observed that a higher market share positively impacts the returns whereas a lower market
share negatively impacts returns.

Typically a S-curve relation is assumed between the frequency share of an airline and its
market share. Translated to the context of this research this has the following impact on the
results presented in Figure 5.10; larger fleets are likely to be capable to offer a higher frequency
and therefore capture a higher share of demand. Consequently, the entire distribution of NPVs
is expected to shift to the left for small fleets, and to the right for larger fleets, assuming that the
more demand that could be captured the higher the profits that could be obtained.
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Table 6.7: Sensitivity of average annual ROIC to assumed market share

Average annual return on invested capital (ROIC)
Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7 Fleet 8

MS (0.15) 6.11% 4.63% 3.12% 2.05% 1.33% 7.17% 1.90% -0.28%
MS (0.20) 6.66% 5.36% 4.22% 3.11% 2.26% 8.90% 3.13% 0.27%
MS (0.25) 6.98% 5.80% 4.96% 4.00% 3.13% 10.05% 4.31% 0.84%

Sensitivity of computation time to integrality constraints

Table 6.8 provides an overview of the computation times. It shows computation times for 1
optimization run CTo and for all 720 optimization runs CTmodel 2, as well as how the computation
time increases when some or all decision variables are subject to integrality constraints. The
LP formulation has no integrality constraints and generates solutions in the lowest computation
time. When the flight frequency decision variable zki,j is subject to integrality constraints, the LP
is transformed to a MILP and this increases computation times roughly by 1.53 times. When
all decision variables are subject to integrality constraints the LP is transformed to an ILP and
it takes on average generally 1.55 times more time to generate solution with respect to the LP
formulation; the difference in computation time compared to the MILP formulation is marginal
however. Again, it is noted that this a simple computation time analysis that in reality is affected
by a multitude of computer science related factors such as; working memory processor speed,
number of cores per processor, etc., as well as the efficiency of the solution techniques of the
optimization algorithm.

Table 6.8: Computation times of different optimization model formulations

Formulation 1 iteration 720 iterations multiplier
CTO [s] CTmodel 2 [s] [×]

LP 0.47 335
MILP 0.71 512 1.53
ILP 0.72 520 1.55

6.3 Scenario generation model

6.3.1 Aggregating the transiton probabilities

Through visually comparing the OD pair based transition probability matrices in Appendix D.1
as well as the aggregated OD demand matrix based transition probability matrices in Appendix
D.2 the following observations can be made:

• The same transition behavior patterns can be observed

– Within each year-to-year transition probability matrix the highest density is across the
diagonal and within the diagonal the highest density is in the outer bins

– Moving across the planning horizon this observed behavior increases for the OD de-
mand matrix based transition probability matrix which is congruous with the behavior
of individual OD pairs

• Specific elements in transition probability matrices are of the same order of magnitude but
are not exactly the same value
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– Although on average the transition behavior tends to be similar, individual transition
probabilities can be different. Because the aggregated OD demand matrix based
transition probability matrix contains transition behavior that is based on the average
transition behavior of all OD pairs, some OD pair based transition probabilities will
show a stronger transition behavior and some will show a weaker behavior when
compared to the aggregated OD demand matrix based transition probabilities. To
illustrate the order of magnitude of these differences, Table 6.9 presents OD pair
based and aggregated OD demand matrix based transition probabilities for all years
for two example transitions: from bin 1 to bin 1 and from bin 5 to bin 5 in consecutive
years. In this table, p refers to the transition probability and ∆ refers to the percent-
age difference between the OD pair based transition probability and the OD demand
matrix based transition probability. It can be observed that indeed the ∆ terms differ
per OD pair with for example OD pair ATL-FLL showing small dissimilarities and OD
pair LAX-SFO showing larger dissimilarities.

Table 6.9: Validation of OD pair based transition probabilities to aggregated OD demand matrix
based transition probabilities

OD pair based OD demand matrix based
ATL-FLL ATL-MCO DFW-LAX JFK-LAX JFK-SFO LAS-LAX LAX-ORD LAX-SFO LGA-ORD ORD-SFO Aggregated

year-to-year transition p ∆ p ∆ p ∆ p ∆ p ∆ p ∆ p ∆ p ∆ p ∆ p ∆ p

2015-2016 1->1 0.49 4% 0.50 3% 0.47 9% 0.48 7% 0.49 4% 0.60 17% 0.51 1% 0.57 12% 0.50 3% 0.52 2% 0.51
2016-2017 1->1 0.60 2% 0.61 0% 0.57 8% 0.56 9% 0.61 0% 0.67 8% 0.61 1% 0.71 15% 0.57 7% 0.63 2% 0.62
2017-2018 1->1 0.66 3% 0.66 3% 0.63 8% 0.64 6% 0.68 1% 0.72 6% 0.67 2% 0.75 10% 0.61 10% 0.66 4% 0.68
2018-2019 1->1 0.70 2% 0.69 4% 0.66 8% 0.68 4% 0.71 0% 0.75 4% 0.69 3% 0.78 9% 0.66 8% 0.73 1% 0.72
2019-2020 1->1 0.72 3% 0.71 4% 0.71 4% 0.71 5% 0.76 2% 0.76 3% 0.75 2% 0.83 12% 0.70 6% 0.77 3% 0.74
2020-2021 1->1 0.74 3% 0.74 3% 0.73 5% 0.74 3% 0.76 0% 0.81 6% 0.77 1% 0.84 10% 0.75 2% 0.77 1% 0.76
2021-2022 1->1 0.78 1% 0.77 1% 0.76 1% 0.76 3% 0.80 3% 0.84 8% 0.77 0% 0.83 7% 0.74 4% 0.80 4% 0.78
2022-2023 1->1 0.76 3% 0.79 1% 0.78 0% 0.76 3% 0.79 1% 0.84 7% 0.78 1% 0.86 10% 0.76 4% 0.80 2% 0.79

2015-2016 5->5 0.14 3% 0.16 13% 0.14 0% 0.17 15% 0.14 4% 0.18 25% 0.16 11% 0.19 32% 0.13 10% 0.17 18% 0.14
2016-2017 5->5 0.20 8% 0.18 5% 0.15 18% 0.19 1% 0.19 1% 0.22 17% 0.18 5% 0.19 4% 0.17 11% 0.20 7% 0.19
2017-2018 5->5 0.22 1% 0.21 4% 0.19 14% 0.19 12% 0.22 0% 0.24 12% 0.19 14% 0.30 37% 0.21 4% 0.26 18% 0.22
2018-2019 5->5 0.23 8% 0.24 5% 0.24 5% 0.21 14% 0.19 23% 0.28 12% 0.24 2% 0.32 30% 0.23 7% 0.23 8% 0.25
2019-2020 5->5 0.27 0% 0.22 19% 0.22 17% 0.26 4% 0.27 1% 0.28 5% 0.25 8% 0.34 28% 0.26 4% 0.28 6% 0.27
2020-2021 5->5 0.30 1% 0.27 9% 0.24 18% 0.26 12% 0.28 5% 0.35 18% 0.29 1% 0.39 31% 0.26 13% 0.31 4% 0.29
2021-2022 5->5 0.31 2% 0.30 6% 0.31 4% 0.26 17% 0.28 13% 0.34 8% 0.29 9% 0.42 32% 0.27 14% 0.30 7% 0.32
2022-2023 5->5 0.32 3% 0.28 16% 0.24 27% 0.29 11% 0.27 17% 0.37 13% 0.28 15% 0.43 30% 0.28 15% 0.35 7% 0.33

6.3.2 Mutually exclusive collectively exhaustive scenario generation

In this research it is decided to run a limited set of scenarios (B = 5.000), and to generate the
paths based on the DTMC transition probability matrices. Alternatively it could be decided to not
run a limited set of scenarios based on the DTMC transition probability matrices, but to enforce
the evaluation of all paths. Table 6.10 displays the theoretical number of mutually exclusive
collectively exhaustive (MECE) scenarios that could unfold, irrespective of their probability of
occurrence, as function of the number of years in the planning horizon and the number of bins
per histogram. When considering a 9-year planning horizon and 10 bins per histogram per year
the total number of MECE scenarios amounts to 109. The benefit of this approach is that it allows
for explicitly evaluating all scenarios (i.e. including the most unlikely scenarios), irrespective of
their probability of occurrence. The downside is that the information regarding the year-to-year
transition probabilities is disregarded.

In the case study it was identified that the runtime of 5.000 scenarios amounted roughly to 20
minutes. Running 1 billion scenarios would therefore take roughly 7 years, which is unaccept-
able in terms of computation time. Moreover it can be argued that in terms of meaningfulness
this approach would not provide a significant contribution because most of the scenarios in the
set of MECE scenarios consist of paths that have a near zero probability of occurrence. Still,
if a MECE scenario generation approach would be desired while ensuring reasonable compu-
tation times, Table 6.10 can be used re-evaluate the decision regarding the number of bins per
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histogram and the number of years in the planning horizon knowing that the evaluation 5.000
scenarios yields a computation time of approximately 20 minutes.

Table 6.10: Number of alternative mutually exclusive and collectively exhaustive scenarios as
function of the number of years in the planning horizon and the number of bins per histogram

Number of bins per histogram
1 2 3 4 5 6 7 8 9 10

N
um

be
ro
fy
ea
rs

1 1 2 3 4 5 6 7 8 9 10
2 1 4 9 16 25 36 49 64 81 100
3 1 8 27 64 125 216 343 512 729 1000
4 1 16 81 256 625 1296 2401 4096 6561 10000
5 1 32 243 1024 3125 7776 16807 32768 59049 1E+05
6 1 64 729 4096 15625 46656 1E+05 3E+05 5E+05 1E+06
7 1 128 2187 16384 78125 3E+05 8E+05 2E+06 5E+06 1E+07
8 1 256 6561 65536 4E+05 2E+06 6E+06 2E+07 4E+07 1E+08
9 1 512 19683 3E+05 2E+06 1E+07 4E+07 1E+08 4E+08 1E+09

6.3.3 Verification of random selection process

The random selection process of the bin number in a subsequent year given the bin number in
the current year is based on the transition probability matrix for these two years. This random
selection process is verified in Table 6.11 for two example cases; transitioning from bin 5 in 2015
to any of the bins in 2016 and transitioning from bin 9 in 2022 to any of the bins in 2023, using
the corresponding rows in the corresponding transition probability matrices that can be found in
Appendix D.2. It can be observed that the frequency of outputted bin numbers by this selection
process corresponds with the inputted transition probability of arriving in each bin, which serves
as verification of this random selection procedure.

Table 6.11: Verification of the random selection process based on 5000 random draws

2015-2016 bin 5 1 2 3 4 5 6 7 8 9 10

Inputted transition probability 0.04 0.09 0.12 0.14 0.14 0.15 0.13 0.10 0.06 0.02
Random selection occurrence 197 472 608 689 729 772 651 462 318 102
Random selection probability 0.04 0.09 0.12 0.14 0.15 0.15 0.13 0.09 0.06 0.02

2022-2023 bin 9 1 2 3 4 5 6 7 8 9 10

Inputted transition probability 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.23 0.48 0.20
Random selection occurrence 0 0 0 3 19 79 337 1185 2361 1016
Random selection probability 0.00 0.00 0.00 0.00 0.00 0.02 0.07 0.24 0.47 0.20
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7
Conclusions and
recommendations

A concise overview of conclusions is presented in Section 7.1. The limitations and recommen-
dations for future work are covered in detail in Section 7.2.

7.1 Conclusions

In the introduction the need is identified for airline fleets that are robust in terms of profit gen-
erating capability across a long-term planning horizon under stochastic demand. The airline
fleet planning problem is an optimization problem under uncertainty, which poses a challenge
in terms of generating meaningful results in reasonable computation times. Consequently, the
research objective of this research is to develop an innovative fleet planning concept that is
capable to generate meaningful results in reasonable computation times.

Meaningfulness is defined as the ability to compare different fleets, on both financial and
non-financial performance metrics, across a multi-year planning period across numerous real-
izations of stochastic demand. A computation time of less than two hours for the case study is
considered reasonable and moreover it is considered valuable if the impact of increasing the
problem size on the computation time is made explicit.

Meaningful results

The proposed methodology is a three-step modeling framework that harvests insight into the
operating profit generating capability of different fleets in terms of size and composition under a
multi-year planning horizon under stochastic demand. Two types of results enable the explicit
comparison of different fleets in the portfolio.

First, the distribution of net present values of operating profit (NPVs) across the planning
horizon across the range of stochastic demand can be used to compare different fleets from the
portfolio on three attributes: the absolute magnitude of NPVs, the range of uncertainty of NPVs
and the relation between operating profits and return on invested capital.

Second, the vast amount of financial and non-financial performance metrics enables a more
detailed analysis and investigation into the underlying drivers of the distribution of profitability by
using information such as; the aircraft utilization per aircraft type, average network load factors,
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the number of origin-destination pairs served, the weekly operating and ownership cost, the
spilled revenue, etc.

It can be concluded that the proposed airline fleet planning modeling framework has the
potential to identify robust fleet plans through the detailed consideration of stochastic demand
per origin-destination pair across a long term planning horizon, and being able to compare both
financial and non-financial performance metrics of different fleets across a multi-year planning
horizon across multiple realizations of stochastic demand.

Reasonable computation times

The computation time of a small case study, with 8 fleets in the portfolio and 10 origin-destination
pairs under consideration and a 9-year planning horizon, amounts to 36 minutes. Explicit infor-
mation is available with regards to how the computation time scales with input variables such
as the number of fleets in the portfolio, the number of origin-destination pairs under considera-
tion, the number of years in the planning horizon, and the number of origin-destination demand
matrices per year.

Moreover, it is made explicit how the size of the linear programming matrix (i.e. the number
of decision variables and constraints) scales with increasing problem size, through the number
of aircraft types, the number of airports and the number of hubs under consideration. Given
this information it is estimated that a real world case study, with 100 fleets in the portfolio and
300 origin-destination pairs under consideration and a 9 year planning horizon, would amount
to approximately 10 hours of computation time. For a planning decision that covers multiple
years it can be argued that it is reasonable if it takes less than one day to generate information
that can be used as input to decision making.

It can be concluded that the case study results are generated within 2 hours. Moreover,
the relation between increasing the problem size and increasing computation times is made
explicit. Furthermore it is noted that the methodology is generic and can be applied to any
airline, irrespective of the business model, size, routing network and preference with regards to
aircraft types or risk profile.

Contribution to the body of knowledge

• Long-term (multi-year) consideration of stochastic demand per origin-destination pair by
modeling it as a mean reverting Ornstein-Uhlenbeck process and using discrete-time
Markov chain transition probability matrices to generate scenarios

• Portfolio perspective which allows for explicit comparison of different fleets in terms of size
and composition on both financial and non-financial performance metrics. Robust fleets
can be selected based on their operating profit generating capability across the long-term
planning horizon across the range of stochastic demand

Industry impact

• Detailed and long-term consideration of stochastic demand. Themore information is avail-
able regarding future demand levels, the better an airline is capable to match supply with
demand

• Network analysis of the profitability of the entire fleet as opposed to the traditionally route-
based analysis for the acquisition of individual aircraft

• The consideration of return on invested capital provides a strong insight in the relationship
between operating profits and returns. Being capable to thoroughly understand the impact
of stochastic demand in the long run on the return on invested capital on an airline level
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might prove to be a key step forward in the improvement of the airlines’ financial perfor-
mance (i.e. generating a return on invested capital at or above weighted average cost of
capital). Moreover, this improved information might strengthen the understanding of the
trade space that airlines have when negotiating aircraft purchase discounts with aircraft
manufacturers

• The modeling framework might be of use to four different groups. First, existing airlines
seeking to renew or expand their fleet. Second, start-up airlines that have a clean sheet
in terms of deciding which aircraft to have in the fleet but also pose an additional risk
to airline investors. Third, aircraft manufacturers could also benefit from this modeling
framework by displaying their understanding of the airline’s problem in terms of the large
capital investment, profitability and returns and try to think with them across the long-
term planning horizon on an airline level. Fourth, aircraft leasing companies could use the
modeling framework for an analysis of demand development on both a global and regional
level in order to forecast the future demand of airlines for specific aircraft types

7.2 Limitations and recommendations for future work

This section provides an extensive discussion of the limitations of the proposed modeling frame-
work. Some limitations are expected to be overcome with minor work; these suggestions are
formulated as recommendations. Other limitations require a profound shift of perspective and
are formulated as research opportunities for future work.

Limitations

• Implications of the adoption of a portfolio

– The adoption of a portfolio of fleets is a two-edged sword. On the one hand it pro-
vides valuable information by enabling the identification of robust fleets in a portfolio
of fleets by being able to explicitly compare the fleets. On the other hand, it does
not guarantee that any of the fleets in the portfolio is the optimal fleet. In theory, the
collection of fleets in terms of size and composition is of astronomical size. In terms
of computation time it is not feasible to evaluate all these fleets. By nature, selecting
a small subset of that collection in the portfolio eliminates the possibility to guaran-
tee optimality which changes the perspective to a decision analysis approach. The
implication is that the formulation of the portfolio can significantly impact the results,
which gives rise to question on how to construct the portfolio.

– Recommendation: the construction of fleets should be grounded in reality. Input to
the construction of the portfolio can be provided by; experienced fleet planners, con-
sideration of fleet commonality and historically financially successful fleets of com-
petitors.

• Number of OD demand matrices per year

– As part of the methodology it is decided to fill each OD demand matrix with OD
pair based demand sample values that are based on averages from the same bin
number. This decision allowed for the construction of 10 OD demand matrices per
year (M = S = 10) as opposed to 1010 (M = SZ = 1010), which greatly reduced the
computation times from impracticable large (i.e. years) to reasonable (i.e. minutes).
However, during the validation it is observed that this construction of 10 OD demand
matrices per year is not a fully correct reflection of reality, with between 2-4 out of 10
OD pairs showing actual historical demand values in the same bin number.
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– Research opportunity: there is a need to investigate new ways to construct OD de-
mand matrices per year in a manner that is a correct reflection of reality, while ensur-
ing that the number of OD demand matrices per year remains small considering the
impact on the total computation time. Improvements could be made by extending the
investigation in Chapter 6.1.4 from 3 years to more years in order to check whether
a trend can be identified with respect to the correlation of bin numbers between OD
pairs.
However it is important to keep in mind that the scenario generation model is based
on the assumption that OD demand matrix based transition probability matrices re-
flect the same transition behavior as all the individual OD pairs in the OD demand
matrix. When OD demand sample values in an OD demand matrix are taken from
different bin numbers this assumption no longer holds and the development of OD
demand matrix based transition probability matrices can become troublesome.

• Consideration of competition

– The model does not consider competitive elements such as service, fares and the
relative frequency offered per OD pair. Instead, a 20% market share is assumed
for each OD pair when reducing total market demand to airline specific demand. In
industry and academia, the impact of competition is typically modeled through the
adoption of a S-curve relationship between frequency share of an airline and its mar-
ket share, or through the adoption of a quality-service index (QSI) that encompasses
more differentiating attributes such as service and fares. As result, the main as-
sumption is that a higher frequency offered corresponds to a higher market share.
The implication of the absence of a market share model on the results of this research
is that the distribution of NPVs is likely to shift to the right for larger fleets considering
they can offer a higher flight frequency and vice versa for smaller fleets.

– Research opportunity: implement a S-curved market share frequency share model
or a QSI based market share model in order to capture the competitive elements.

• Consideration of hub-and-spoke economics

– While the methodology does allow for both point-to-point and hub-and-spoke routing
networks, it cannot act as a tool to decide which routing network is more beneficial.
This is because the hub-and-spoke economics in the model are not representative of
reality. In short this can be attributed to three considerations: a focus on profit instead
of revenue, the absence of economies of scale advantages due to cost reduction at
the hub and the adoption of a yield ratio. Only yields are a differentiating factor in the
model between nonstop and connecting passenger flows. As such, either nonstop or
connecting passenger flows can be prioritized through a yield ratio. Consequently,
if a hub-and-spoke network is desired, the inputted yield ratio should be such that
connecting flow is higher yielding than nonstop flow.
In reality however, the difference between yields for nonstop and connecting flow is
more complex. Typically, a hub-and-spoke network aims to cater the demand in a
large number of OD pairs by offering connecting flights through a hub between OD
connections that can potentially not be operated profitably with a nonstop connection
because of the low demand. However, typically passengers are willing to pay less
for a connecting flight than for a nonstop flight, resulting in lower yields for connecting
passenger flow. Moreover, it can be argued that the transportation of a passenger
through a connection instead of nonstop is more costly than transporting them non-
stop because of the additional fuel burnt due to longer stage lengths and additional
takeoffs and landings. As result it could be argued that connecting passenger flow
tends to generate less revenue (i.e. through lower yields) and more cost (i.e. higher
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fuel cost) per OD passenger when compared to nonstop flow. On an airline level
however, the hub-and-spoke network could generate more revenue because more
OD pairs can be catered. In short, a hub-and-spoke network is likely to generate
a higher absolute revenue at a lower profit margin. Therefore, it can be concluded
that the adoption of a hub-and-spoke network is not necessarily primarily focused on
profit but on revenue. A layer of complexity is added when competition is taken into
account per OD pair. The impact of this observation is that only a simple yield ratio
is not sufficiently representative of reality to let the model decide on whether to adopt
a hub-and-spoke or a point-to-point routing network.

– Research opportunity: implement the impact of economies of scale at the hub and
research whether an improved representation of reality can be achieved in the im-
plementation of hub-and-spoke economics, by taking into account revenues, profits
and the consideration of competition on the level of OD pairs.

• Absence of dynamic aspect of fleet planning

– Each fleet in the portfolio has a fixed size and composition across the planning hori-
zon. Consequently, the consideration of aircraft replacement and fleet expansion is
neglected. Assuming a fixed fleet over a long-term planning horizon is not realistic
and inherently causes decreasing market shares as passenger levels grow consis-
tently.

– Research opportunity: include the dynamic aspect of fleet planning by changing the
number of aircraft per fleet ACk from a parameter to a decision variable and adding
a budget constraint for annual aircraft purchases. Also, a fleet evolution constraint is
to be implemented that ensures that the aircraft that are in the fleet in the previous
year and are not sold, still remain in the fleet. This approach does however eliminate
the possibility to explicitly compare different fixed fleets across the planning horizon.
Rather, the perspective is shifted towards comparing different fleet evolutions under
the evolution of stochastic demand. Moreover, this new perspective could support
the construction of the initial portfolio of fixed fleets. In a more detailed analysis,
the consideration of timing of orders and deliveries (i.e. purchase slots and lead
times) would contribute to a better reflection of reality since usually the purchase of
an aircraft does not lead to ad hoc availability to deployment of that aircraft.

Recommendations

• Expand the consideration of demand

– On the demand side three recommendations can be made. First, using weekly de-
mand forecasts instead of annual demand forecasts would allow for the consideration
of seasonality and trend growth throughout the year. This does multiply the number
of time steps by a factor of 12 however, which could greatly influence computation
times. Second, it is recommended to research whether business and first class de-
mand can also be appropriately modeled as a mean reverting process. Third, the
consideration of city-to-city demand instead of airport-to-airport demand allows for a
better reflection of reality.

• Break down the simplistic cost terms

– The operating cost is assumed to capture all costs from maintenance cost, to fuel
cost and crew cost, whereas the ownership cost is solely based on depreciation.

– Research opportunity: implement a more detailed breakdown of ownership and op-
erating cost by explicitly considering maintenance cost, crew cost (per aircraft type),
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fuel cost, insurance, etc. Moreover, when ordering aircraft in the real world, there
is typically a choice in engines from different engine manufacturers. These differ-
ent engines could yield different payload-range combinations, fuel efficiency, noise
patterns, operating cost and investment cost. Consequently, it seems promising to
incorporate the consideration of engines in the investment decision.

• Consider fuel price volatility

– Consider the uncertainty associated with future fuel price volatility and its impact on
the fleet planning decision.

• Include lease/buy mix consideration

– It seems promising to research whether the uncertainty of NPVs outputted by the
modeling framework can be used to investigate the value of flexibility. This informa-
tion could possibly be used to make informed decisions about the value of flexibility
that can be bought at a leasing company compared to the risk of purchasing the
aircraft, given the uncertainty in NPVs.

• Reducing computation times

– Adopt a computer science perspective in an attempt to reduce computation times.
Examples of potential improvements include the consideration of parallel computing
and cloud computing. Other measures to reduce computation times can be broken
down in two categories. The number of inputs can be reduced (e.g. the number of
fleets in the portfolio, number of OD pairs under consideration) or the model can be
simplified (e.g. reduce the number of sample values per year per OD pairs from 10 to
3; drop the integrality constraints in the mathematical formulation of the optimization
model).

• Implement realistic average network load factor constraint

– On the optimization side, it is recommended to implement an average network load
factor constraint in order to achieve average network load factors that are a better
reflection of reality.

• Investigate the potential of adopting the Markowitz portfolio theory

– It is considered interesting to research whether Markowitz portfolio theory could be
implemented as extension to the proposed methodology. Given the distribution of
NPVs of operating profits, a distribution of returns on invested capital could be gen-
erated. With the different means and standard deviations of ROIC of each fleet, each
fleet can be seen as an investment opportunity. Using Markowitz portfolio theory, the
means and standard deviations of expected return on invested capital of these dif-
ferent fleets in the portfolio can be plotted and a Pareto front (i.e. or efficient frontier)
can be drawn which allows for the identification of the optimal fleet given the risk
profile the airline is seeking to pursue.
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A
Input data

A.1 Portfolio of fleets

Table A.1: Portfolio of fleets

Fleet Bombardier CRJ700 Boeing 737-800 Airbus A340-300 Total

Fleet 1 1 1 1 3
Fleet 2 2 2 2 6
Fleet 3 3 3 3 9
Fleet 4 4 4 4 12
Fleet 5 5 5 5 15
Fleet 6 15 0 0 15
Fleet 7 0 15 0 15
Fleet 8 0 0 15 15
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A.2 OD pairs

Table A.2: OD pairs

OD pairs Airport specification

ATL-FLL Atlanta Hartsfield-Jackson - Fort Lauderdale
ATL-MCO Atlanta Hartsfield-Jackson - Orlando
DFW-LAX Dallas/Ft Worth - Los Angeles
JFK-LAX New York John F Kennedy - Los Angeles
JFK-SFO New York John F Kennedy - San Francisco
LAS-LAX Las Vegas McCarran - Los Angeles
LAX-ORD Los Angeles - Chicago O’Hare
LAX-SFO Los Angeles - San Francisco
LGA-ORD New York LaGuardia - Chicago O’Hare
ORD-SFO Chicago O’Hare - San Francisco

A.3 Aircraft data

Table A.3: Aircraft characteristics per aircraft type: number of seats (sk), cruise speed (vck),
range (rangek), daily utilization (Uk), turnaround time (TAT k), ownership cost (Ck

fix), variable
cost (Ck

var) and purchase price (PP k)

Attributes sk vck rangek Uk TAT k Ck
fix Ck

var PP k

Units # miles/hour miles hours hours USD USD USD

Bombardier CRJ700 75 514 1401 11 0.75 1.23E+06 0.09 2.45E+07
Boeing 737-800 162 543 3582 12 1.00 3.95E+06 0.10 7.90E+07
Airbus A340-300 295 555 8510 14 1.50 1.10E+07 0.13 2.19E+08

A.4 Airport data

Table A.4: Taxi out times in minutes per OD pair (T dep
i ), for the 10 OD pairs under consideration

ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0.00 0.00 16.96 0.00 0.00 0.00 0.00 16.37 0.00 0.00
DFW 0.00 0.00 0.00 0.00 0.00 15.84 0.00 0.00 0.00 0.00
FLL 16.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JFK 0.00 0.00 0.00 0.00 0.00 25.58 0.00 0.00 0.00 27.50
LAS 0.00 0.00 0.00 0.00 0.00 17.18 0.00 0.00 0.00 0.00
LAX 0.00 17.08 0.00 17.70 15.50 0.00 0.00 0.00 17.00 16.56
LGA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.89 0.00
MCO 17.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ORD 0.00 0.00 0.00 0.00 0.00 17.33 19.26 0.00 0.00 19.13
SFO 0.00 0.00 0.00 19.60 0.00 17.74 0.00 0.00 18.79 0.00
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Table A.5: Taxi in times in minutes per OD pair (T arr
j ), for the 10 OD pairs under consideration

ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0.00 0.00 4.52 0.00 0.00 0.00 0.00 8.05 0.00 0.00
DFW 0.00 0.00 0.00 0.00 0.00 10.67 0.00 0.00 0.00 0.00
FLL 10.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JFK 0.00 0.00 0.00 0.00 0.00 11.42 0.00 0.00 0.00 7.32
LAS 0.00 0.00 0.00 0.00 0.00 9.98 0.00 0.00 0.00 0.00
LAX 0.00 9.80 0.00 10.29 7.56 0.00 0.00 0.00 11.57 5.75
LGA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.43 0.00
MCO 10.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ORD 0.00 0.00 0.00 0.00 0.00 10.99 5.76 0.00 0.00 6.98
SFO 0.00 0.00 0.00 10.08 0.00 11.19 0.00 0.00 12.23 0.00

A.5 Distance data

Table A.6: Origin-destination distance matrix in miles (Di,j)

ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 732 581 760 1747 1946 761 404 606 2139
DFW 732 0 1119 1391 1055 1235 1389 985 802 1464
FLL 581 1119 0 1069 2174 2343 1075 177 1182 2584
JFK 760 1391 1069 0 2248 2475 10 944 740 2586
LAS 1747 1055 2174 2248 0 236 2242 2039 1514 414
LAX 1946 1235 2343 2475 236 0 2469 2218 1744 337
LGA 761 1389 1075 10 2242 2469 0 950 733 2580
MCO 404 985 177 944 2039 2218 950 0 1005 2446
ORD 606 802 1182 740 1514 1744 733 1005 0 1846
SFO 2139 1464 2584 2586 414 337 2580 2446 1846 0

A.6 Yield data

Table A.7: Origin-destination yield matrix with yields for nonstop passengers in 2014 USD cents
(yieldo,d)

ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0.00 0.15 0.13 0.16 0.08 0.08 0.15 0.24 0.20 0.08
DFW 0.15 0.00 0.09 0.11 0.09 0.09 0.11 0.11 0.14 0.09
FLL 0.13 0.09 0.00 0.09 0.05 0.05 0.08 0.19 0.09 0.05
JFK 0.16 0.11 0.09 0.00 0.07 0.08 4.00 0.10 0.13 0.08
LAS 0.08 0.09 0.05 0.07 0.00 0.28 0.06 0.07 0.08 0.18
LAX 0.08 0.09 0.05 0.08 0.28 0.00 0.07 0.07 0.08 0.20
LGA 0.15 0.11 0.08 4.00 0.06 0.07 0.00 0.10 0.15 0.07
MCO 0.24 0.11 0.19 0.10 0.07 0.07 0.10 0.00 0.10 0.06
ORD 0.20 0.14 0.09 0.13 0.08 0.08 0.15 0.10 0.00 0.08
SFO 0.08 0.09 0.05 0.08 0.18 0.20 0.07 0.06 0.08 0.00
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B.1 Monte Carlo simulations

(a) ATL-FLL (b) ATL-MCO

(c) DFW-LAX (d) JFK-LAX

(e) JFK-SFO (f) LAS-LAX

(g) LAX-ORD (h) LAX-SFO

(i) LGA-ORD (j) ORD-SFO

Figure B.1: Monte Carlo simulations for all 10 OD pairs
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B.2 Equal probability histograms
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OD-pair ATL-FLL: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.2: Histograms of Monte Carlo simulation observations - OD pair: ATL-FLL
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OD-pair ATL-MCO: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.3: Histograms of Monte Carlo simulation observations - OD pair: ATL-MCO
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OD-pair DFW-LAX: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.4: Histograms of Monte Carlo simulation observations - OD pair: DFW-LAX
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OD-pair JFK-LAX: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.5: Histograms of Monte Carlo simulation observations - OD pair: JFK-LAX
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OD-pair JFK-SFO: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.6: Histograms of Monte Carlo simulation observations - OD pair: JFK-SFO
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OD-pair LAS-LAX: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.7: Histograms of Monte Carlo simulation observations - OD pair: LAS-LAX
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OD-pair LAX-ORD: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.8: Histograms of Monte Carlo simulation observations - OD pair: LAX-ORD
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OD-pair LAX-SFO: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.9: Histograms of Monte Carlo simulation observations - OD pair: LAX-SFO
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OD-pair LGA-ORD: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.10: Histograms of Monte Carlo simulation observations - OD pair: LGA-ORD
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OD-pair ORD-SFO: histogram of pax per year based on 5000 Monte carlo observations equally distributed over 10 equal probability bins

Figure B.11: Histograms of Monte Carlo simulation observations - OD pair: ORD-SFO
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B.3 OD demand matrices
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Year 2015 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.03E+06 0 0 0 0 1.13E+06 0 0
DFW 0 0 0 0 0 1.06E+06 0 0 0 0
FLL 1.03E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.29E+06 0 0 0 8.87E+05
LAS 0 0 0 0 0 9.43E+05 0 0 0 0
LAX 0 1.06E+06 0 1.29E+06 9.43E+05 0 0 0 1.08E+06 1.57E+06
LGA 0 0 0 0 0 0 0 0 1.21E+06 0
MCO 1.13E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.08E+06 1.21E+06 0 0 1.01E+06
SFO 0 0 0 8.87E+05 0 1.57E+06 0 0 1.01E+06 0

Year 2015 bin 2 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.10E+06 0 0 0 0 1.19E+06 0 0
DFW 0 0 0 0 0 1.11E+06 0 0 0 0
FLL 1.10E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.43E+06 0 0 0 9.99E+05
LAS 0 0 0 0 0 1.04E+06 0 0 0 0
LAX 0 1.11E+06 0 1.43E+06 1.04E+06 0 0 0 1.12E+06 1.70E+06
LGA 0 0 0 0 0 0 0 0 1.29E+06 0
MCO 1.19E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.12E+06 1.29E+06 0 0 1.06E+06
SFO 0 0 0 9.99E+05 0 1.70E+06 0 0 1.06E+06 0

Year 2015 bin 3 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.14E+06 0 0 0 0 1.23E+06 0 0
DFW 0 0 0 0 0 1.13E+06 0 0 0 0
FLL 1.14E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.51E+06 0 0 0 1.06E+06
LAS 0 0 0 0 0 1.09E+06 0 0 0 0
LAX 0 1.13E+06 0 1.51E+06 1.09E+06 0 0 0 1.15E+06 1.77E+06
LGA 0 0 0 0 0 0 0 0 1.33E+06 0
MCO 1.23E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.15E+06 1.33E+06 0 0 1.08E+06
SFO 0 0 0 1.06E+06 0 1.77E+06 0 0 1.08E+06 0

Year 2015 bin 4 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.17E+06 0 0 0 0 1.25E+06 0 0
DFW 0 0 0 0 0 1.16E+06 0 0 0 0
FLL 1.17E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.57E+06 0 0 0 1.11E+06
LAS 0 0 0 0 0 1.13E+06 0 0 0 0
LAX 0 1.16E+06 0 1.57E+06 1.13E+06 0 0 0 1.17E+06 1.83E+06
LGA 0 0 0 0 0 0 0 0 1.36E+06 0
MCO 1.25E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.17E+06 1.36E+06 0 0 1.10E+06
SFO 0 0 0 1.11E+06 0 1.83E+06 0 0 1.10E+06 0

Year 2015 bin 5 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.19E+06 0 0 0 0 1.27E+06 0 0
DFW 0 0 0 0 0 1.17E+06 0 0 0 0
FLL 1.19E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.62E+06 0 0 0 1.16E+06
LAS 0 0 0 0 0 1.17E+06 0 0 0 0
LAX 0 1.17E+06 0 1.62E+06 1.17E+06 0 0 0 1.18E+06 1.88E+06
LGA 0 0 0 0 0 0 0 0 1.39E+06 0
MCO 1.27E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.18E+06 1.39E+06 0 0 1.11E+06
SFO 0 0 0 1.16E+06 0 1.88E+06 0 0 1.11E+06 0
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Year 2015 bin 6 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.22E+06 0 0 0 0 1.30E+06 0 0
DFW 0 0 0 0 0 1.19E+06 0 0 0 0
FLL 1.22E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.67E+06 0 0 0 1.20E+06
LAS 0 0 0 0 0 1.21E+06 0 0 0 0
LAX 0 1.19E+06 0 1.67E+06 1.21E+06 0 0 0 1.20E+06 1.92E+06
LGA 0 0 0 0 0 0 0 0 1.42E+06 0
MCO 1.30E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.20E+06 1.42E+06 0 0 1.13E+06
SFO 0 0 0 1.20E+06 0 1.92E+06 0 0 1.13E+06 0

Year 2015 bin 7 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.25E+06 0 0 0 0 1.32E+06 0 0
DFW 0 0 0 0 0 1.21E+06 0 0 0 0
FLL 1.25E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.72E+06 0 0 0 1.24E+06
LAS 0 0 0 0 0 1.24E+06 0 0 0 0
LAX 0 1.21E+06 0 1.72E+06 1.24E+06 0 0 0 1.22E+06 1.98E+06
LGA 0 0 0 0 0 0 0 0 1.45E+06 0
MCO 1.32E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.22E+06 1.45E+06 0 0 1.15E+06
SFO 0 0 0 1.24E+06 0 1.98E+06 0 0 1.15E+06 0

Year 2015 bin 8 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.28E+06 0 0 0 0 1.35E+06 0 0
DFW 0 0 0 0 0 1.23E+06 0 0 0 0
FLL 1.28E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.78E+06 0 0 0 1.28E+06
LAS 0 0 0 0 0 1.28E+06 0 0 0 0
LAX 0 1.23E+06 0 1.78E+06 1.28E+06 0 0 0 1.24E+06 2.04E+06
LGA 0 0 0 0 0 0 0 0 1.48E+06 0
MCO 1.35E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.24E+06 1.48E+06 0 0 1.16E+06
SFO 0 0 0 1.28E+06 0 2.04E+06 0 0 1.16E+06 0

Year 2015 bin 9 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.31E+06 0 0 0 0 1.38E+06 0 0
DFW 0 0 0 0 0 1.26E+06 0 0 0 0
FLL 1.31E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.86E+06 0 0 0 1.34E+06
LAS 0 0 0 0 0 1.33E+06 0 0 0 0
LAX 0 1.26E+06 0 1.86E+06 1.33E+06 0 0 0 1.26E+06 2.11E+06
LGA 0 0 0 0 0 0 0 0 1.52E+06 0
MCO 1.38E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.26E+06 1.52E+06 0 0 1.19E+06
SFO 0 0 0 1.34E+06 0 2.11E+06 0 0 1.19E+06 0

Year 2015 bin 10 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.38E+06 0 0 0 0 1.44E+06 0 0
DFW 0 0 0 0 0 1.32E+06 0 0 0 0
FLL 1.38E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.01E+06 0 0 0 1.46E+06
LAS 0 0 0 0 0 1.43E+06 0 0 0 0
LAX 0 1.32E+06 0 2.01E+06 1.43E+06 0 0 0 1.31E+06 2.24E+06
LGA 0 0 0 0 0 0 0 0 1.60E+06 0
MCO 1.44E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.31E+06 1.60E+06 0 0 1.23E+06
SFO 0 0 0 1.46E+06 0 2.24E+06 0 0 1.23E+06 0
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Year 2016 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.02E+06 0 0 0 0 1.11E+06 0 0
DFW 0 0 0 0 0 1.04E+06 0 0 0 0
FLL 1.02E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.21E+06 0 0 0 8.23E+05
LAS 0 0 0 0 0 8.28E+05 0 0 0 0
LAX 0 1.04E+06 0 1.21E+06 8.28E+05 0 0 0 1.04E+06 1.37E+06
LGA 0 0 0 0 0 0 0 0 1.17E+06 0
MCO 1.11E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.04E+06 1.17E+06 0 0 9.70E+05
SFO 0 0 0 8.23E+05 0 1.37E+06 0 0 9.70E+05 0

Year 2016 bin 2 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.12E+06 0 0 0 0 1.19E+06 0 0
DFW 0 0 0 0 0 1.10E+06 0 0 0 0
FLL 1.12E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.39E+06 0 0 0 9.68E+05
LAS 0 0 0 0 0 9.77E+05 0 0 0 0
LAX 0 1.10E+06 0 1.39E+06 9.77E+05 0 0 0 1.10E+06 1.59E+06
LGA 0 0 0 0 0 0 0 0 1.27E+06 0
MCO 1.19E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.10E+06 1.27E+06 0 0 1.04E+06
SFO 0 0 0 9.68E+05 0 1.59E+06 0 0 1.04E+06 0

Year 2016 bin 3 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.17E+06 0 0 0 0 1.24E+06 0 0
DFW 0 0 0 0 0 1.14E+06 0 0 0 0
FLL 1.17E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.49E+06 0 0 0 1.05E+06
LAS 0 0 0 0 0 1.06E+06 0 0 0 0
LAX 0 1.14E+06 0 1.49E+06 1.06E+06 0 0 0 1.14E+06 1.71E+06
LGA 0 0 0 0 0 0 0 0 1.33E+06 0
MCO 1.24E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.14E+06 1.33E+06 0 H 0 1.07E+06
SFO 0 0 0 1.05E+06 0 1.71E+06 0 0 1.07E+06 0

Year 2016 bin 4 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.21E+06 0 0 0 0 1.28E+06 0 0
DFW 0 0 0 0 0 1.17E+06 0 0 0 0
FLL 1.21E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.57E+06 0 0 0 1.12E+06
LAS 0 0 0 0 0 1.13E+06 0 0 0 0
LAX 0 1.17E+06 0 1.57E+06 1.13E+06 0 0 0 1.17E+06 1.81E+06
LGA 0 0 0 0 0 0 0 0 1.37E+06 0
MCO 1.28E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.17E+06 1.37E+06 0 0 1.10E+06
SFO 0 0 0 1.12E+06 0 1.81E+06 0 0 1.10E+06 0

Year 2016 bin 5 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.25E+06 0 0 0 0 1.31E+06 0 0
DFW 0 0 0 0 0 1.20E+06 0 0 0 0
FLL 1.25E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.64E+06 0 0 0 1.18E+06
LAS 0 0 0 0 0 1.19E+06 0 0 0 0
LAX 0 1.20E+06 0 1.64E+06 1.19E+06 0 0 0 1.19E+06 1.90E+06
LGA 0 0 0 0 0 0 0 0 1.41E+06 0
MCO 1.31E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.19E+06 1.41E+06 0 0 1.12E+06
SFO 0 0 0 1.18E+06 0 1.90E+06 0 0 1.12E+06 0
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Year 2016 bin 6 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.29E+06 0 0 0 0 1.35E+06 0 0
DFW 0 0 0 0 0 1.22E+06 0 0 0 0
FLL 1.29E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.71E+06 0 0 0 1.24E+06
LAS 0 0 0 0 0 1.25E+06 0 0 0 0
LAX 0 1.22E+06 0 1.71E+06 1.25E+06 0 0 0 1.21E+06 2.00E+06
LGA 0 0 0 0 0 0 0 0 1.45E+06 0
MCO 1.35E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.21E+06 1.45E+06 0 0 1.15E+06
SFO 0 0 0 1.24E+06 0 2.00E+06 0 0 1.15E+06 0

Year 2016 bin 7 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.33E+06 0 0 0 0 1.38E+06 0 0
DFW 0 0 0 0 0 1.25E+06 0 0 0 0
FLL 1.33E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.79E+06 0 0 0 1.31E+06
LAS 0 0 0 0 0 1.31E+06 0 0 0 0
LAX 0 1.25E+06 0 1.79E+06 1.31E+06 0 0 0 1.24E+06 2.09E+06
LGA 0 0 0 0 0 0 0 0 1.50E+06 0
MCO 1.38E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.24E+06 1.50E+06 0 0 1.17E+06
SFO 0 0 0 1.31E+06 0 2.09E+06 0 0 1.17E+06 0

Year 2016 bin 8 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.37E+06 0 0 0 0 1.42E+06 0 0
DFW 0 0 0 0 0 1.28E+06 0 0 0 0
FLL 1.37E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.88E+06 0 0 0 1.38E+06
LAS 0 0 0 0 0 1.38E+06 0 0 0 0
LAX 0 1.28E+06 0 1.88E+06 1.38E+06 0 0 0 1.27E+06 2.21E+06
LGA 0 0 0 0 0 0 0 0 1.55E+06 0
MCO 1.42E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.27E+06 1.55E+06 0 0 1.20E+06
SFO 0 0 0 1.38E+06 0 2.21E+06 0 0 1.20E+06 0

Year 2016 bin 9 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.43E+06 0 0 0 0 1.47E+06 0 0
DFW 0 0 0 0 0 1.32E+06 0 0 0 0
FLL 1.43E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.00E+06 0 0 0 1.47E+06
LAS 0 0 0 0 0 1.48E+06 0 0 0 0
LAX 0 1.32E+06 0 2.00E+06 1.48E+06 0 0 0 1.31E+06 2.36E+06
LGA 0 0 0 0 0 0 0 0 1.61E+06 0
MCO 1.47E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.31E+06 1.61E+06 0 0 1.24E+06
SFO 0 0 0 1.47E+06 0 2.36E+06 0 0 1.24E+06 0

Year 2016 bin 10 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.56E+06 0 0 0 0 1.58E+06 0 0
DFW 0 0 0 0 0 1.40E+06 0 0 0 0
FLL 1.56E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.24E+06 0 0 0 1.67E+06
LAS 0 0 0 0 0 1.67E+06 0 0 0 0
LAX 0 1.40E+06 0 2.24E+06 1.67E+06 0 0 0 1.38E+06 2.64E+06
LGA 0 0 0 0 0 0 0 0 1.73E+06 0
MCO 1.58E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.38E+06 1.73E+06 0 0 1.31E+06
SFO 0 0 0 1.67E+06 0 2.64E+06 0 0 1.31E+06 0
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Year 2017 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.02E+06 0 0 0 0 1.10E+06 0 0
DFW 0 0 0 0 0 1.01E+06 0 0 0 0
FLL 1.02E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.15E+06 0 0 0 7.76E+05
LAS 0 0 0 0 0 7.49E+05 0 0 0 0
LAX 0 1.01E+06 0 1.15E+06 7.49E+05 0 0 0 1.02E+06 1.22E+06
LGA 0 0 0 0 0 0 0 0 1.14E+06 0
MCO 1.10E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.02E+06 1.14E+06 0 0 9.48E+05
SFO 0 0 0 7.76E+05 0 1.22E+06 0 0 9.48E+05 0

Year 2017 bin 2 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.13E+06 0 0 0 0 1.20E+06 0 0
DFW 0 0 0 0 0 1.10E+06 0 0 0 0
FLL 1.13E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.36E+06 0 0 0 9.47E+05
LAS 0 0 0 0 0 9.28E+05 0 0 0 0
LAX 0 1.10E+06 0 1.36E+06 9.28E+05 0 0 0 1.09E+06 1.48E+06
LGA 0 0 0 0 0 0 0 0 1.26E+06 0
MCO 1.20E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.09E+06 1.26E+06 0 0 1.02E+06
SFO 0 0 0 9.47E+05 0 1.48E+06 0 0 1.02E+06 0

Year 2017 bin 3 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.20E+06 0 0 0 0 1.26E+06 0 0
DFW 0 0 0 0 0 1.15E+06 0 0 0 0
FLL 1.20E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.48E+06 0 0 0 1.04E+06
LAS 0 0 0 0 0 1.03E+06 0 0 0 0
LAX 0 1.15E+06 0 1.48E+06 1.03E+06 0 0 0 1.14E+06 1.65E+06
LGA 0 0 0 0 0 0 0 0 1.33E+06 0
MCO 1.26E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.14E+06 1.33E+06 0 0 1.07E+06
SFO 0 0 0 1.04E+06 0 1.65E+06 0 0 1.07E+06 0

Year 2017 bin 4 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.25E+06 0 0 0 0 1.31E+06 0 0
DFW 0 0 0 0 0 1.18E+06 0 0 0 0
FLL 1.25E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.57E+06 0 0 0 1.13E+06
LAS 0 0 0 0 0 1.12E+06 0 0 0 0
LAX 0 1.18E+06 0 1.57E+06 1.12E+06 0 0 0 1.17E+06 1.79E+06
LGA 0 0 0 0 0 0 0 0 1.39E+06 0
MCO 1.31E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.17E+06 1.39E+06 0 0 1.11E+06
SFO 0 0 0 1.13E+06 0 1.79E+06 0 0 1.11E+06 0

Year 2017 bin 5 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.30E+06 0 0 0 0 1.36E+06 0 0
DFW 0 0 0 0 0 1.22E+06 0 0 0 0
FLL 1.30E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.67E+06 0 0 0 1.21E+06
LAS 0 0 0 0 0 1.20E+06 0 0 0 0
LAX 0 1.22E+06 0 1.67E+06 1.20E+06 0 0 0 1.20E+06 1.91E+06
LGA 0 0 0 0 0 0 0 0 1.44E+06 0
MCO 1.36E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.20E+06 1.44E+06 0 0 1.14E+06
SFO 0 0 0 1.21E+06 0 1.91E+06 0 0 1.14E+06 0
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Year 2017 bin 6 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.35E+06 0 0 0 0 1.40E+06 0 0
DFW 0 0 0 0 0 1.25E+06 0 0 0 0
FLL 1.35E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.76E+06 0 0 0 1.28E+06
LAS 0 0 0 0 0 1.29E+06 0 0 0 0
LAX 0 1.25E+06 0 1.76E+06 1.29E+06 0 0 0 1.23E+06 2.04E+06
LGA 0 0 0 0 0 0 0 0 1.49E+06 0
MCO 1.40E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.23E+06 1.49E+06 0 0 1.17E+06
SFO 0 0 0 1.28E+06 0 2.04E+06 0 0 1.17E+06 0

Year 2017 bin 7 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.41E+06 0 0 0 0 1.44E+06 0 0
DFW 0 0 0 0 0 1.29E+06 0 0 0 0
FLL 1.41E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.86E+06 0 0 0 1.37E+06
LAS 0 0 0 0 0 1.38E+06 0 0 0 0
LAX 0 1.29E+06 0 1.86E+06 1.38E+06 0 0 0 1.26E+06 2.18E+06
LGA 0 0 0 0 0 0 0 0 1.54E+06 0
MCO 1.44E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.26E+06 1.54E+06 0 0 1.20E+06
SFO 0 0 0 1.37E+06 0 2.18E+06 0 0 1.20E+06 0

Year 2017 bin 8 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.47E+06 0 0 0 0 1.49E+06 0 0
DFW 0 0 0 0 0 1.32E+06 0 0 0 0
FLL 1.47E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.98E+06 0 0 0 1.46E+06
LAS 0 0 0 0 0 1.47E+06 0 0 0 0
LAX 0 1.32E+06 0 1.98E+06 1.47E+06 0 0 0 1.30E+06 2.35E+06
LGA 0 0 0 0 0 0 0 0 1.60E+06 0
MCO 1.49E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.30E+06 1.60E+06 0 0 1.24E+06
SFO 0 0 0 1.46E+06 0 2.35E+06 0 0 1.24E+06 0

Year 2017 bin 9 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.55E+06 0 0 0 0 1.56E+06 0 0
DFW 0 0 0 0 0 1.38E+06 0 0 0 0
FLL 1.55E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.13E+06 0 0 0 1.59E+06
LAS 0 0 0 0 0 1.60E+06 0 0 0 0
LAX 0 1.38E+06 0 2.13E+06 1.60E+06 0 0 0 1.35E+06 2.56E+06
LGA 0 0 0 0 0 0 0 0 1.69E+06 0
MCO 1.56E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.35E+06 1.69E+06 0 0 1.29E+06
SFO 0 0 0 1.59E+06 0 2.56E+06 0 0 1.29E+06 0

Year 2017 bin 10 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.71E+06 0 0 0 0 1.69E+06 0 0
DFW 0 0 0 0 0 1.48E+06 0 0 0 0
FLL 1.71E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.46E+06 0 0 0 1.86E+06
LAS 0 0 0 0 0 1.90E+06 0 0 0 0
LAX 0 1.48E+06 0 2.46E+06 1.90E+06 0 0 0 1.44E+06 3.03E+06
LGA 0 0 0 0 0 0 0 0 1.85E+06 0
MCO 1.69E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.44E+06 1.85E+06 0 0 1.38E+06
SFO 0 0 0 1.86E+06 0 3.03E+06 0 0 1.38E+06 0
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Year 2018 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.02E+06 0 0 0 0 1.10E+06 0 0
DFW 0 0 0 0 0 1.01E+06 0 0 0 0
FLL 1.02E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.11E+06 0 0 0 7.46E+05
LAS 0 0 0 0 0 7.00E+05 0 0 0 0
LAX 0 1.01E+06 0 1.11E+06 7.00E+05 0 0 0 1.00E+06 1.10E+06
LGA 0 0 0 0 0 0 0 0 1.12E+06 0
MCO 1.10E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.00E+06 1.12E+06 0 0 9.30E+05
SFO 0 0 0 7.46E+05 0 1.10E+06 0 0 9.30E+05 0

Year 2018 bin 2 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.16E+06 0 0 0 0 1.22E+06 0 0
DFW 0 0 0 0 0 1.11E+06 0 0 0 0
FLL 1.16E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.34E+06 0 0 0 9.25E+05
LAS 0 0 0 0 0 8.97E+05 0 0 0 0
LAX 0 1.11E+06 0 1.34E+06 8.97E+05 0 0 0 1.09E+06 1.40E+06
LGA 0 0 0 0 0 0 0 0 1.26E+06 0
MCO 1.22E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.09E+06 1.26E+06 0 0 1.02E+06
SFO 0 0 0 9.25E+05 0 1.40E+06 0 0 1.02E+06 0

Year 2018 bin 3 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.24E+06 0 0 0 0 1.29E+06 0 0
DFW 0 0 0 0 0 1.16E+06 0 0 0 0
FLL 1.24E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.48E+06 0 0 0 1.03E+06
LAS 0 0 0 0 0 1.02E+06 0 0 0 0
LAX 0 1.16E+06 0 1.48E+06 1.02E+06 0 0 0 1.13E+06 1.59E+06
LGA 0 0 0 0 0 0 0 0 1.34E+06 0
MCO 1.29E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.13E+06 1.34E+06 0 0 1.07E+06
SFO 0 0 0 1.03E+06 0 1.59E+06 0 0 1.07E+06 0

Year 2018 bin 4 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.30E+06 0 0 0 0 1.34E+06 0 0
DFW 0 0 0 0 0 1.20E+06 0 0 0 0
FLL 1.30E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.59E+06 0 0 0 1.13E+06
LAS 0 0 0 0 0 1.12E+06 0 0 0 0
LAX 0 1.20E+06 0 1.59E+06 1.12E+06 0 0 0 1.17E+06 1.76E+06
LGA 0 0 0 0 0 0 0 0 1.41E+06 0
MCO 1.34E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.17E+06 1.41E+06 0 0 1.11E+06
SFO 0 0 0 1.13E+06 0 1.76E+06 0 0 1.11E+06 0

Year 2018 bin 5 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.36E+06 0 0 0 0 1.40E+06 0 0
DFW 0 0 0 0 0 1.24E+06 0 0 0 0
FLL 1.36E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.70E+06 0 0 0 1.22E+06
LAS 0 0 0 0 0 1.21E+06 0 0 0 0
LAX 0 1.24E+06 0 1.70E+06 1.21E+06 0 0 0 1.21E+06 1.92E+06
LGA 0 0 0 0 0 0 0 0 1.47E+06 0
MCO 1.40E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.21E+06 1.47E+06 0 0 1.15E+06
SFO 0 0 0 1.22E+06 0 1.92E+06 0 0 1.15E+06 0
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Year 2018 bin 6 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.42E+06 0 0 0 0 1.45E+06 0 0
DFW 0 0 0 0 0 1.28E+06 0 0 0 0
FLL 1.42E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.80E+06 0 0 0 1.32E+06
LAS 0 0 0 0 0 1.31E+06 0 0 0 0
LAX 0 1.28E+06 0 1.80E+06 1.31E+06 0 0 0 1.24E+06 2.08E+06
LGA 0 0 0 0 0 0 0 0 1.53E+06 0
MCO 1.45E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.24E+06 1.53E+06 0 0 1.19E+06
SFO 0 0 0 1.32E+06 0 2.08E+06 0 0 1.19E+06 0

Year 2018 bin 7 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.49E+06 0 0 0 0 1.50E+06 0 0
DFW 0 0 0 0 0 1.32E+06 0 0 0 0
FLL 1.49E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.93E+06 0 0 0 1.42E+06
LAS 0 0 0 0 0 1.43E+06 0 0 0 0
LAX 0 1.32E+06 0 1.93E+06 1.43E+06 0 0 0 1.28E+06 2.26E+06
LGA 0 0 0 0 0 0 0 0 1.59E+06 0
MCO 1.50E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.28E+06 1.59E+06 0 0 1.23E+06
SFO 0 0 0 1.42E+06 0 2.26E+06 0 0 1.23E+06 0

Year 2018 bin 8 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.56E+06 0 0 0 0 1.56E+06 0 0
DFW 0 0 0 0 0 1.37E+06 0 0 0 0
FLL 1.56E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.06E+06 0 0 0 1.54E+06
LAS 0 0 0 0 0 1.56E+06 0 0 0 0
LAX 0 1.37E+06 0 2.06E+06 1.56E+06 0 0 0 1.32E+06 2.47E+06
LGA 0 0 0 0 0 0 0 0 1.66E+06 0
MCO 1.56E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.32E+06 1.66E+06 0 0 1.27E+06
SFO 0 0 0 1.54E+06 0 2.47E+06 0 0 1.27E+06 0

Year 2018 bin 9 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.66E+06 0 0 0 0 1.65E+06 0 0
DFW 0 0 0 0 0 1.43E+06 0 0 0 0
FLL 1.66E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.24E+06 0 0 0 1.71E+06
LAS 0 0 0 0 0 1.73E+06 0 0 0 0
LAX 0 1.43E+06 0 2.24E+06 1.73E+06 0 0 0 1.38E+06 2.75E+06
LGA 0 0 0 0 0 0 0 0 1.76E+06 0
MCO 1.65E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.38E+06 1.76E+06 0 0 1.33E+06
SFO 0 0 0 1.71E+06 0 2.75E+06 0 0 1.33E+06 0

Year 2018 bin 10 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.87E+06 0 0 0 0 1.82E+06 0 0
DFW 0 0 0 0 0 1.56E+06 0 0 0 0
FLL 1.87E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.64E+06 0 0 0 2.06E+06
LAS 0 0 0 0 0 2.12E+06 0 0 0 0
LAX 0 1.56E+06 0 2.64E+06 2.12E+06 0 0 0 1.50E+06 3.39E+06
LGA 0 0 0 0 0 0 0 0 1.96E+06 0
MCO 1.82E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.50E+06 1.96E+06 0 0 1.45E+06
SFO 0 0 0 2.06E+06 0 3.39E+06 0 0 1.45E+06 0
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Year 2019 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.03E+06 0 0 0 0 1.10E+06 0 0
DFW 0 0 0 0 0 1.00E+06 0 0 0 0
FLL 1.03E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.07E+06 0 0 0 7.20E+05
LAS 0 0 0 0 0 6.62E+05 0 0 0 0
LAX 0 1.00E+06 0 1.07E+06 6.62E+05 0 0 0 9.84E+05 1.00E+06
LGA 0 0 0 0 0 0 0 0 1.11E+06 0
MCO 1.10E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 9.84E+05 1.11E+06 0 0 9.17E+05
SFO 0 0 0 7.20E+05 0 1.00E+06 0 0 9.17E+05 0

Year 2019 bin 2 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.20E+06 0 0 0 0 1.23E+06 0 0
DFW 0 0 0 0 0 1.11E+06 0 0 0 0
FLL 1.20E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.32E+06 0 0 0 9.15E+05
LAS 0 0 0 0 0 8.72E+05 0 0 0 0
LAX 0 1.11E+06 0 1.32E+06 8.72E+05 0 0 0 1.08E+06 1.33E+06
LGA 0 0 0 0 0 0 0 0 1.26E+06 0
MCO 1.23E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.08E+06 1.26E+06 0 0 1.01E+06
SFO 0 0 0 9.15E+05 0 1.33E+06 0 0 1.01E+06 0

Year 2019 bin 3 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.28E+06 0 0 0 0 1.31E+06 0 0
DFW 0 0 0 0 0 1.17E+06 0 0 0 0
FLL 1.28E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.47E+06 0 0 0 1.04E+06
LAS 0 0 0 0 0 1.00E+06 0 0 0 0
LAX 0 1.17E+06 0 1.47E+06 1.00E+06 0 0 0 1.13E+06 1.54E+06
LGA 0 0 0 0 0 0 0 0 1.35E+06 0
MCO 1.31E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.13E+06 1.35E+06 0 0 1.07E+06
SFO 0 0 0 1.04E+06 0 1.54E+06 0 0 1.07E+06 0

Year 2019 bin 4 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.36E+06 0 0 0 0 1.38E+06 0 0
DFW 0 0 0 0 0 1.22E+06 0 0 0 0
FLL 1.36E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.59E+06 0 0 0 1.15E+06
LAS 0 0 0 0 0 1.12E+06 0 0 0 0
LAX 0 1.22E+06 0 1.59E+06 1.12E+06 0 0 0 1.18E+06 1.73E+06
LGA 0 0 0 0 0 0 0 0 1.42E+06 0
MCO 1.38E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.18E+06 1.42E+06 0 0 1.12E+06
SFO 0 0 0 1.15E+06 0 1.73E+06 0 0 1.12E+06 0

Year 2019 bin 5 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.43E+06 0 0 0 0 1.44E+06 0 0
DFW 0 0 0 0 0 1.26E+06 0 0 0 0
FLL 1.43E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.72E+06 0 0 0 1.25E+06
LAS 0 0 0 0 0 1.23E+06 0 0 0 0
LAX 0 1.26E+06 0 1.72E+06 1.23E+06 0 0 0 1.22E+06 1.91E+06
LGA 0 0 0 0 0 0 0 0 1.49E+06 0
MCO 1.44E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.22E+06 1.49E+06 0 0 1.16E+06
SFO 0 0 0 1.25E+06 0 1.91E+06 0 0 1.16E+06 0
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Year 2019 bin 6 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.50E+06 0 0 0 0 1.50E+06 0 0
DFW 0 0 0 0 0 1.31E+06 0 0 0 0
FLL 1.50E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.84E+06 0 0 0 1.36E+06
LAS 0 0 0 0 0 1.35E+06 0 0 0 0
LAX 0 1.31E+06 0 1.84E+06 1.35E+06 0 0 0 1.26E+06 2.11E+06
LGA 0 0 0 0 0 0 0 0 1.56E+06 0
MCO 1.50E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.26E+06 1.56E+06 0 0 1.21E+06
SFO 0 0 0 1.36E+06 0 2.11E+06 0 0 1.21E+06 0

Year 2019 bin 7 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.58E+06 0 0 0 0 1.56E+06 0 0
DFW 0 0 0 0 0 1.36E+06 0 0 0 0
FLL 1.58E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.98E+06 0 0 0 1.48E+06
LAS 0 0 0 0 0 1.48E+06 0 0 0 0
LAX 0 1.36E+06 0 1.98E+06 1.48E+06 0 0 0 1.30E+06 2.32E+06
LGA 0 0 0 0 0 0 0 0 1.63E+06 0
MCO 1.56E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.30E+06 1.63E+06 0 0 1.25E+06
SFO 0 0 0 1.48E+06 0 2.32E+06 0 0 1.25E+06 0

Year 2019 bin 8 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.66E+06 0 0 0 0 1.64E+06 0 0
DFW 0 0 0 0 0 1.42E+06 0 0 0 0
FLL 1.66E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.15E+06 0 0 0 1.63E+06
LAS 0 0 0 0 0 1.63E+06 0 0 0 0
LAX 0 1.42E+06 0 2.15E+06 1.63E+06 0 0 0 1.34E+06 2.57E+06
LGA 0 0 0 0 0 0 0 0 1.72E+06 0
MCO 1.64E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.34E+06 1.72E+06 0 0 1.30E+06
SFO 0 0 0 1.63E+06 0 2.57E+06 0 0 1.30E+06 0

Year 2019 bin 9 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.78E+06 0 0 0 0 1.73E+06 0 0
DFW 0 0 0 0 0 1.48E+06 0 0 0 0
FLL 1.78E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.37E+06 0 0 0 1.82E+06
LAS 0 0 0 0 0 1.85E+06 0 0 0 0
LAX 0 1.48E+06 0 2.37E+06 1.85E+06 0 0 0 1.42E+06 2.92E+06
LGA 0 0 0 0 0 0 0 0 1.82E+06 0
MCO 1.73E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.42E+06 1.82E+06 0 0 1.37E+06
SFO 0 0 0 1.82E+06 0 2.92E+06 0 0 1.37E+06 0

Year 2019 bin 10 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 2.03E+06 0 0 0 0 1.94E+06 0 0
DFW 0 0 0 0 0 1.63E+06 0 0 0 0
FLL 2.03E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.83E+06 0 0 0 2.26E+06
LAS 0 0 0 0 0 2.35E+06 0 0 0 0
LAX 0 1.63E+06 0 2.83E+06 2.35E+06 0 0 0 1.56E+06 3.74E+06
LGA 0 0 0 0 0 0 0 0 2.06E+06 0
MCO 1.94E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.56E+06 2.06E+06 0 0 1.51E+06
SFO 0 0 0 2.26E+06 0 3.74E+06 0 0 1.51E+06 0
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Year 2020 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.05E+06 0 0 0 0 1.11E+06 0 0
DFW 0 0 0 0 0 1.00E+06 0 0 0 0
FLL 1.05E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.05E+06 0 0 0 6.97E+05
LAS 0 0 0 0 0 6.27E+05 0 0 0 0
LAX 0 1.00E+06 0 1.05E+06 6.27E+05 0 0 0 9.69E+05 9.21E+05
LGA 0 0 0 0 0 0 0 0 1.10E+06 0
MCO 1.11E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 9.69E+05 1.10E+06 0 0 9.04E+05
SFO 0 0 0 6.97E+05 0 9.21E+05 0 0 9.04E+05 0

Year 2020 bin 2 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.23E+06 0 0 0 0 1.26E+06 0 0
DFW 0 0 0 0 0 1.12E+06 0 0 0 0
FLL 1.23E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.31E+06 0 0 0 9.12E+05
LAS 0 0 0 0 0 8.46E+05 0 0 0 0
LAX 0 1.12E+06 0 1.31E+06 8.46E+05 0 0 0 1.08E+06 1.26E+06
LGA 0 0 0 0 0 0 0 0 1.26E+06 0
MCO 1.26E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.08E+06 1.26E+06 0 0 1.01E+06
SFO 0 0 0 9.12E+05 0 1.26E+06 0 0 1.01E+06 0

Year 2020 bin 3 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.33E+06 0 0 0 0 1.34E+06 0 0
DFW 0 0 0 0 0 1.19E+06 0 0 0 0
FLL 1.33E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.47E+06 0 0 0 1.04E+06
LAS 0 0 0 0 0 9.92E+05 0 0 0 0
LAX 0 1.19E+06 0 1.47E+06 9.92E+05 0 0 0 1.13E+06 1.51E+06
LGA 0 0 0 0 0 0 0 0 1.36E+06 0
MCO 1.34E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.13E+06 1.36E+06 0 0 1.07E+06
SFO 0 0 0 1.04E+06 0 1.51E+06 0 0 1.07E+06 0

Year 2020 bin 4 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.42E+06 0 0 0 0 1.42E+06 0 0
DFW 0 0 0 0 0 1.24E+06 0 0 0 0
FLL 1.42E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.60E+06 0 0 0 1.16E+06
LAS 0 0 0 0 0 1.12E+06 0 0 0 0
LAX 0 1.24E+06 0 1.60E+06 1.12E+06 0 0 0 1.18E+06 1.72E+06
LGA 0 0 0 0 0 0 0 0 1.44E+06 0
MCO 1.42E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.18E+06 1.44E+06 0 0 1.13E+06
SFO 0 0 0 1.16E+06 0 1.72E+06 0 0 1.13E+06 0

Year 2020 bin 5 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.50E+06 0 0 0 0 1.49E+06 0 0
DFW 0 0 0 0 0 1.29E+06 0 0 0 0
FLL 1.50E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.74E+06 0 0 0 1.28E+06
LAS 0 0 0 0 0 1.25E+06 0 0 0 0
LAX 0 1.29E+06 0 1.74E+06 1.25E+06 0 0 0 1.22E+06 1.92E+06
LGA 0 0 0 0 0 0 0 0 1.52E+06 0
MCO 1.49E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.22E+06 1.52E+06 0 0 1.18E+06
SFO 0 0 0 1.28E+06 0 1.92E+06 0 0 1.18E+06 0
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Year 2020 bin 6 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.58E+06 0 0 0 0 1.56E+06 0 0
DFW 0 0 0 0 0 1.34E+06 0 0 0 0
FLL 1.58E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.89E+06 0 0 0 1.40E+06
LAS 0 0 0 0 0 1.39E+06 0 0 0 0
LAX 0 1.34E+06 0 1.89E+06 1.39E+06 0 0 0 1.27E+06 2.14E+06
LGA 0 0 0 0 0 0 0 0 1.60E+06 0
MCO 1.56E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.27E+06 1.60E+06 0 0 1.23E+06
SFO 0 0 0 1.40E+06 0 2.14E+06 0 0 1.23E+06 0

Year 2020 bin 7 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.67E+06 0 0 0 0 1.63E+06 0 0
DFW 0 0 0 0 0 1.39E+06 0 0 0 0
FLL 1.67E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.05E+06 0 0 0 1.54E+06
LAS 0 0 0 0 0 1.54E+06 0 0 0 0
LAX 0 1.39E+06 0 2.05E+06 1.54E+06 0 0 0 1.32E+06 2.36E+06
LGA 0 0 0 0 0 0 0 0 1.68E+06 0
MCO 1.63E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.32E+06 1.68E+06 0 0 1.28E+06
SFO 0 0 0 1.54E+06 0 2.36E+06 0 0 1.28E+06 0

Year 2020 bin 8 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.77E+06 0 0 0 0 1.71E+06 0 0
DFW 0 0 0 0 0 1.45E+06 0 0 0 0
FLL 1.77E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.24E+06 0 0 0 1.71E+06
LAS 0 0 0 0 0 1.71E+06 0 0 0 0
LAX 0 1.45E+06 0 2.24E+06 1.71E+06 0 0 0 1.37E+06 2.66E+06
LGA 0 0 0 0 0 0 0 0 1.76E+06 0
MCO 1.71E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.37E+06 1.76E+06 0 0 1.34E+06
SFO 0 0 0 1.71E+06 0 2.66E+06 0 0 1.34E+06 0

Year 2020 bin 9 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.91E+06 0 0 0 0 1.82E+06 0 0
DFW 0 0 0 0 0 1.53E+06 0 0 0 0
FLL 1.91E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.48E+06 0 0 0 1.93E+06
LAS 0 0 0 0 0 1.96E+06 0 0 0 0
LAX 0 1.53E+06 0 2.48E+06 1.96E+06 0 0 0 1.45E+06 3.08E+06
LGA 0 0 0 0 0 0 0 0 1.89E+06 0
MCO 1.82E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.45E+06 1.89E+06 0 0 1.41E+06
SFO 0 0 0 1.93E+06 0 3.08E+06 0 0 1.41E+06 0

Year 2020 bin 10 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 2.21E+06 0 0 0 0 2.08E+06 0 0
DFW 0 0 0 0 0 1.70E+06 0 0 0 0
FLL 2.21E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 3.02E+06 0 0 0 2.46E+06
LAS 0 0 0 0 0 2.60E+06 0 0 0 0
LAX 0 1.70E+06 0 3.02E+06 2.60E+06 0 0 0 1.60E+06 4.07E+06
LGA 0 0 0 0 0 0 0 0 2.16E+06 0
MCO 2.08E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.60E+06 2.16E+06 0 0 1.58E+06
SFO 0 0 0 2.46E+06 0 4.07E+06 0 0 1.58E+06 0
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Year 2021 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.07E+06 0 0 0 0 1.13E+06 0 0
DFW 0 0 0 0 0 1.01E+06 0 0 0 0
FLL 1.07E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.03E+06 0 0 0 6.81E+05
LAS 0 0 0 0 0 6.00E+05 0 0 0 0
LAX 0 1.01E+06 0 1.03E+06 6.00E+05 0 0 0 9.53E+05 8.51E+05
LGA 0 0 0 0 0 0 0 0 1.09E+06 0
MCO 1.13E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 9.53E+05 1.09E+06 0 0 8.99E+05
SFO 0 0 0 6.81E+05 0 8.51E+05 0 0 8.99E+05 0

Year 2021 bin 2 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.27E+06 0 0 0 0 1.29E+06 0 0
DFW 0 0 0 0 0 1.14E+06 0 0 0 0
FLL 1.27E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.30E+06 0 0 0 9.11E+05
LAS 0 0 0 0 0 8.32E+05 0 0 0 0
LAX 0 1.14E+06 0 1.30E+06 8.32E+05 0 0 0 1.07E+06 1.21E+06
LGA 0 0 0 0 0 0 0 0 1.26E+06 0
MCO 1.29E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.07E+06 1.26E+06 0 0 1.01E+06
SFO 0 0 0 9.11E+05 0 1.21E+06 0 0 1.01E+06 0

Year 2021 bin 3 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.39E+06 0 0 0 0 1.38E+06 0 0
DFW 0 0 0 0 0 1.21E+06 0 0 0 0
FLL 1.39E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.46E+06 0 0 0 1.05E+06
LAS 0 0 0 0 0 9.81E+05 0 0 0 0
LAX 0 1.21E+06 0 1.46E+06 9.81E+05 0 0 0 1.13E+06 1.47E+06
LGA 0 0 0 0 0 0 0 0 1.37E+06 0
MCO 1.38E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.13E+06 1.37E+06 0 0 1.08E+06
SFO 0 0 0 1.05E+06 0 1.47E+06 0 0 1.08E+06 0

Year 2021 bin 4 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.48E+06 0 0 0 0 1.46E+06 0 0
DFW 0 0 0 0 0 1.26E+06 0 0 0 0
FLL 1.48E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.62E+06 0 0 0 1.18E+06
LAS 0 0 0 0 0 1.12E+06 0 0 0 0
LAX 0 1.26E+06 0 1.62E+06 1.12E+06 0 0 0 1.19E+06 1.69E+06
LGA 0 0 0 0 0 0 0 0 1.46E+06 0
MCO 1.46E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.19E+06 1.46E+06 0 0 1.14E+06
SFO 0 0 0 1.18E+06 0 1.69E+06 0 0 1.14E+06 0

Year 2021 bin 5 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.57E+06 0 0 0 0 1.53E+06 0 0
DFW 0 0 0 0 0 1.32E+06 0 0 0 0
FLL 1.57E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.78E+06 0 0 0 1.31E+06
LAS 0 0 0 0 0 1.27E+06 0 0 0 0
LAX 0 1.32E+06 0 1.78E+06 1.27E+06 0 0 0 1.23E+06 1.91E+06
LGA 0 0 0 0 0 0 0 0 1.54E+06 0
MCO 1.53E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.23E+06 1.54E+06 0 0 1.19E+06
SFO 0 0 0 1.31E+06 0 1.91E+06 0 0 1.19E+06 0
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Year 2021 bin 6 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.66E+06 0 0 0 0 1.61E+06 0 0
DFW 0 0 0 0 0 1.37E+06 0 0 0 0
FLL 1.66E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.94E+06 0 0 0 1.45E+06
LAS 0 0 0 0 0 1.42E+06 0 0 0 0
LAX 0 1.37E+06 0 1.94E+06 1.42E+06 0 0 0 1.28E+06 2.15E+06
LGA 0 0 0 0 0 0 0 0 1.63E+06 0
MCO 1.61E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.28E+06 1.63E+06 0 0 1.25E+06
SFO 0 0 0 1.45E+06 0 2.15E+06 0 0 1.25E+06 0

Year 2021 bin 7 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.76E+06 0 0 0 0 1.69E+06 0 0
DFW 0 0 0 0 0 1.43E+06 0 0 0 0
FLL 1.76E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.11E+06 0 0 0 1.60E+06
LAS 0 0 0 0 0 1.60E+06 0 0 0 0
LAX 0 1.43E+06 0 2.11E+06 1.60E+06 0 0 0 1.33E+06 2.41E+06
LGA 0 0 0 0 0 0 0 0 1.71E+06 0
MCO 1.69E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.33E+06 1.71E+06 0 0 1.30E+06
SFO 0 0 0 1.60E+06 0 2.41E+06 0 0 1.30E+06 0

Year 2021 bin 8 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.88E+06 0 0 0 0 1.79E+06 0 0
DFW 0 0 0 0 0 1.49E+06 0 0 0 0
FLL 1.88E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.31E+06 0 0 0 1.78E+06
LAS 0 0 0 0 0 1.80E+06 0 0 0 0
LAX 0 1.49E+06 0 2.31E+06 1.80E+06 0 0 0 1.39E+06 2.75E+06
LGA 0 0 0 0 0 0 0 0 1.82E+06 0
MCO 1.79E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.39E+06 1.82E+06 0 0 1.37E+06
SFO 0 0 0 1.78E+06 0 2.75E+06 0 0 1.37E+06 0

Year 2021 bin 9 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 2.03E+06 0 0 0 0 1.92E+06 0 0
DFW 0 0 0 0 0 1.58E+06 0 0 0 0
FLL 2.03E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.60E+06 0 0 0 2.04E+06
LAS 0 0 0 0 0 2.09E+06 0 0 0 0
LAX 0 1.58E+06 0 2.60E+06 2.09E+06 0 0 0 1.48E+06 3.25E+06
LGA 0 0 0 0 0 0 0 0 1.95E+06 0
MCO 1.92E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.48E+06 1.95E+06 0 0 1.45E+06
SFO 0 0 0 2.04E+06 0 3.25E+06 0 0 1.45E+06 0

Year 2021 bin 10 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 2.40E+06 0 0 0 0 2.20E+06 0 0
DFW 0 0 0 0 0 1.77E+06 0 0 0 0
FLL 2.40E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 3.24E+06 0 0 0 2.67E+06
LAS 0 0 0 0 0 2.82E+06 0 0 0 0
LAX 0 1.77E+06 0 3.24E+06 2.82E+06 0 0 0 1.65E+06 4.41E+06
LGA 0 0 0 0 0 0 0 0 2.26E+06 0
MCO 2.20E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.65E+06 2.26E+06 0 0 1.64E+06
SFO 0 0 0 2.67E+06 0 4.41E+06 0 0 1.64E+06 0
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Year 2022 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.09E+06 0 0 0 0 1.14E+06 0 0
DFW 0 0 0 0 0 1.01E+06 0 0 0 0
FLL 1.09E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.02E+06 0 0 0 6.66E+05
LAS 0 0 0 0 0 5.77E+05 0 0 0 0
LAX 0 1.01E+06 0 1.02E+06 5.77E+05 0 0 0 9.44E+05 7.91E+05
LGA 0 0 0 0 0 0 0 0 1.08E+06 0
MCO 1.14E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 9.44E+05 1.08E+06 0 0 8.90E+05
SFO 0 0 0 6.66E+05 0 7.91E+05 0 0 8.90E+05 0

Year 2022 bin 2 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.30E+06 0 0 0 0 1.31E+06 0 0
DFW 0 0 0 0 0 1.15E+06 0 0 0 0
FLL 1.30E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.31E+06 0 0 0 9.16E+05
LAS 0 0 0 0 0 8.19E+05 0 0 0 0
LAX 0 1.15E+06 0 1.31E+06 8.19E+05 0 0 0 1.07E+06 1.17E+06
LGA 0 0 0 0 0 0 0 0 1.27E+06 0
MCO 1.31E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.07E+06 1.27E+06 0 0 1.02E+06
SFO 0 0 0 9.16E+05 0 1.17E+06 0 0 1.02E+06 0

Year 2022 bin 3 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.43E+06 0 0 0 0 1.41E+06 0 0
DFW 0 0 0 0 0 1.22E+06 0 0 0 0
FLL 1.43E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.49E+06 0 0 0 1.07E+06
LAS 0 0 0 0 0 9.75E+05 0 0 0 0
LAX 0 1.22E+06 0 1.49E+06 9.75E+05 0 0 0 1.14E+06 1.43E+06
LGA 0 0 0 0 0 0 0 0 1.38E+06 0
MCO 1.41E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.14E+06 1.38E+06 0 0 1.09E+06
SFO 0 0 0 1.07E+06 0 1.43E+06 0 0 1.09E+06 0

Year 2022 bin 4 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.55E+06 0 0 0 0 1.50E+06 0 0
DFW 0 0 0 0 0 1.28E+06 0 0 0 0
FLL 1.55E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.66E+06 0 0 0 1.20E+06
LAS 0 0 0 0 0 1.13E+06 0 0 0 0
LAX 0 1.28E+06 0 1.66E+06 1.13E+06 0 0 0 1.19E+06 1.67E+06
LGA 0 0 0 0 0 0 0 0 1.48E+06 0
MCO 1.50E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.19E+06 1.48E+06 0 0 1.15E+06
SFO 0 0 0 1.20E+06 0 1.67E+06 0 0 1.15E+06 0

Year 2022 bin 5 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.64E+06 0 0 0 0 1.59E+06 0 0
DFW 0 0 0 0 0 1.35E+06 0 0 0 0
FLL 1.64E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.82E+06 0 0 0 1.35E+06
LAS 0 0 0 0 0 1.28E+06 0 0 0 0
LAX 0 1.35E+06 0 1.82E+06 1.28E+06 0 0 0 1.24E+06 1.91E+06
LGA 0 0 0 0 0 0 0 0 1.57E+06 0
MCO 1.59E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.24E+06 1.57E+06 0 0 1.21E+06
SFO 0 0 0 1.35E+06 0 1.91E+06 0 0 1.21E+06 0
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Year 2022 bin 6 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.74E+06 0 0 0 0 1.67E+06 0 0
DFW 0 0 0 0 0 1.40E+06 0 0 0 0
FLL 1.74E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.98E+06 0 0 0 1.49E+06
LAS 0 0 0 0 0 1.45E+06 0 0 0 0
LAX 0 1.40E+06 0 1.98E+06 1.45E+06 0 0 0 1.29E+06 2.16E+06
LGA 0 0 0 0 0 0 0 0 1.66E+06 0
MCO 1.67E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.29E+06 1.66E+06 0 0 1.26E+06
SFO 0 0 0 1.49E+06 0 2.16E+06 0 0 1.26E+06 0

Year 2022 bin 7 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.85E+06 0 0 0 0 1.76E+06 0 0
DFW 0 0 0 0 0 1.47E+06 0 0 0 0
FLL 1.85E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.17E+06 0 0 0 1.66E+06
LAS 0 0 0 0 0 1.63E+06 0 0 0 0
LAX 0 1.47E+06 0 2.17E+06 1.63E+06 0 0 0 1.35E+06 2.46E+06
LGA 0 0 0 0 0 0 0 0 1.76E+06 0
MCO 1.76E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.35E+06 1.76E+06 0 0 1.33E+06
SFO 0 0 0 1.66E+06 0 2.46E+06 0 0 1.33E+06 0

Year 2022 bin 8 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.98E+06 0 0 0 0 1.87E+06 0 0
DFW 0 0 0 0 0 1.54E+06 0 0 0 0
FLL 1.98E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.38E+06 0 0 0 1.87E+06
LAS 0 0 0 0 0 1.88E+06 0 0 0 0
LAX 0 1.54E+06 0 2.38E+06 1.88E+06 0 0 0 1.42E+06 2.83E+06
LGA 0 0 0 0 0 0 0 0 1.87E+06 0
MCO 1.87E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.42E+06 1.87E+06 0 0 1.40E+06
SFO 0 0 0 1.87E+06 0 2.83E+06 0 0 1.40E+06 0

Year 2022 bin 9 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 2.16E+06 0 0 0 0 2.01E+06 0 0
DFW 0 0 0 0 0 1.64E+06 0 0 0 0
FLL 2.16E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.71E+06 0 0 0 2.16E+06
LAS 0 0 0 0 0 2.21E+06 0 0 0 0
LAX 0 1.64E+06 0 2.71E+06 2.21E+06 0 0 0 1.51E+06 3.40E+06
LGA 0 0 0 0 0 0 0 0 2.03E+06 0
MCO 2.01E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.51E+06 2.03E+06 0 0 1.49E+06
SFO 0 0 0 2.16E+06 0 3.40E+06 0 0 1.49E+06 0

Year 2022 bin 10 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 2.58E+06 0 0 0 0 2.33E+06 0 0
DFW 0 0 0 0 0 1.84E+06 0 0 0 0
FLL 2.58E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 3.45E+06 0 0 0 2.88E+06
LAS 0 0 0 0 0 3.09E+06 0 0 0 0
LAX 0 1.84E+06 0 3.45E+06 3.09E+06 0 0 0 1.69E+06 4.74E+06
LGA 0 0 0 0 0 0 0 0 2.37E+06 0
MCO 2.33E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.69E+06 2.37E+06 0 0 1.70E+06
SFO 0 0 0 2.88E+06 0 4.74E+06 0 0 1.70E+06 0
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Year 2023 bin 1 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.12E+06 0 0 0 0 1.16E+06 0 0
DFW 0 0 0 0 0 1.01E+06 0 0 0 0
FLL 1.12E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.00E+06 0 0 0 6.57E+05
LAS 0 0 0 0 0 5.53E+05 0 0 0 0
LAX 0 1.01E+06 0 1.00E+06 5.53E+05 0 0 0 9.36E+05 7.40E+05
LGA 0 0 0 0 0 0 0 0 1.08E+06 0
MCO 1.16E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 9.36E+05 1.08E+06 0 0 8.85E+05
SFO 0 0 0 6.57E+05 0 7.40E+05 0 0 8.85E+05 0

Year 2023 bin 2 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.35E+06 0 0 0 0 1.34E+06 0 0
DFW 0 0 0 0 0 1.16E+06 0 0 0 0
FLL 1.35E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.31E+06 0 0 0 9.19E+05
LAS 0 0 0 0 0 8.08E+05 0 0 0 0
LAX 0 1.16E+06 0 1.31E+06 8.08E+05 0 0 0 1.06E+06 1.13E+06
LGA 0 0 0 0 0 0 0 0 1.28E+06 0
MCO 1.34E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.06E+06 1.28E+06 0 0 1.02E+06
SFO 0 0 0 9.19E+05 0 1.13E+06 0 0 1.02E+06 0

Year 2023 bin 3 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.49E+06 0 0 0 0 1.45E+06 0 0
DFW 0 0 0 0 0 1.24E+06 0 0 0 0
FLL 1.49E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.50E+06 0 0 0 1.08E+06
LAS 0 0 0 0 0 9.77E+05 0 0 0 0
LAX 0 1.24E+06 0 1.50E+06 9.77E+05 0 0 0 1.14E+06 1.39E+06
LGA 0 0 0 0 0 0 0 0 1.40E+06 0
MCO 1.45E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.14E+06 1.40E+06 0 0 1.10E+06
SFO 0 0 0 1.08E+06 0 1.39E+06 0 0 1.10E+06 0

Year 2023 bin 4 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.61E+06 0 0 0 0 1.55E+06 0 0
DFW 0 0 0 0 0 1.30E+06 0 0 0 0
FLL 1.61E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.68E+06 0 0 0 1.23E+06
LAS 0 0 0 0 0 1.14E+06 0 0 0 0
LAX 0 1.30E+06 0 1.68E+06 1.14E+06 0 0 0 1.19E+06 1.65E+06
LGA 0 0 0 0 0 0 0 0 1.51E+06 0
MCO 1.55E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.19E+06 1.51E+06 0 0 1.16E+06
SFO 0 0 0 1.23E+06 0 1.65E+06 0 0 1.16E+06 0

Year 2023 bin 5 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.72E+06 0 0 0 0 1.63E+06 0 0
DFW 0 0 0 0 0 1.37E+06 0 0 0 0
FLL 1.72E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 1.85E+06 0 0 0 1.37E+06
LAS 0 0 0 0 0 1.31E+06 0 0 0 0
LAX 0 1.37E+06 0 1.85E+06 1.31E+06 0 0 0 1.25E+06 1.91E+06
LGA 0 0 0 0 0 0 0 0 1.61E+06 0
MCO 1.63E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.25E+06 1.61E+06 0 0 1.22E+06
SFO 0 0 0 1.37E+06 0 1.91E+06 0 0 1.22E+06 0
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Year 2023 bin 6 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.83E+06 0 0 0 0 1.73E+06 0 0
DFW 0 0 0 0 0 1.43E+06 0 0 0 0
FLL 1.83E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.03E+06 0 0 0 1.53E+06
LAS 0 0 0 0 0 1.48E+06 0 0 0 0
LAX 0 1.43E+06 0 2.03E+06 1.48E+06 0 0 0 1.30E+06 2.18E+06
LGA 0 0 0 0 0 0 0 0 1.71E+06 0
MCO 1.73E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.30E+06 1.71E+06 0 0 1.28E+06
SFO 0 0 0 1.53E+06 0 2.18E+06 0 0 1.28E+06 0

Year 2023 bin 7 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 1.95E+06 0 0 0 0 1.83E+06 0 0
DFW 0 0 0 0 0 1.50E+06 0 0 0 0
FLL 1.95E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.23E+06 0 0 0 1.72E+06
LAS 0 0 0 0 0 1.68E+06 0 0 0 0
LAX 0 1.50E+06 0 2.23E+06 1.68E+06 0 0 0 1.37E+06 2.49E+06
LGA 0 0 0 0 0 0 0 0 1.81E+06 0
MCO 1.83E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.37E+06 1.81E+06 0 0 1.35E+06
SFO 0 0 0 1.72E+06 0 2.49E+06 0 0 1.35E+06 0

Year 2023 bin 8 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 2.10E+06 0 0 0 0 1.95E+06 0 0
DFW 0 0 0 0 0 1.58E+06 0 0 0 0
FLL 2.10E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.47E+06 0 0 0 1.96E+06
LAS 0 0 0 0 0 1.94E+06 0 0 0 0
LAX 0 1.58E+06 0 2.47E+06 1.94E+06 0 0 0 1.44E+06 2.89E+06
LGA 0 0 0 0 0 0 0 0 1.94E+06 0
MCO 1.95E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.44E+06 1.94E+06 0 0 1.43E+06
SFO 0 0 0 1.96E+06 0 2.89E+06 0 0 1.43E+06 0

Year 2023 bin 9 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 2.31E+06 0 0 0 0 2.11E+06 0 0
DFW 0 0 0 0 0 1.69E+06 0 0 0 0
FLL 2.31E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 2.82E+06 0 0 0 2.30E+06
LAS 0 0 0 0 0 2.32E+06 0 0 0 0
LAX 0 1.69E+06 0 2.82E+06 2.32E+06 0 0 0 1.54E+06 3.51E+06
LGA 0 0 0 0 0 0 0 0 2.10E+06 0
MCO 2.11E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.54E+06 2.10E+06 0 0 1.53E+06
SFO 0 0 0 2.30E+06 0 3.51E+06 0 0 1.53E+06 0

Year 2023 bin 10 ATL DFW FLL JFK LAS LAX LGA MCO ORD SFO

ATL 0 0 2.78E+06 0 0 0 0 2.46E+06 0 0
DFW 0 0 0 0 0 1.91E+06 0 0 0 0
FLL 2.78E+06 0 0 0 0 0 0 0 0 0
JFK 0 0 0 0 0 3.68E+06 0 0 0 3.09E+06
LAS 0 0 0 0 0 3.34E+06 0 0 0 0
LAX 0 1.91E+06 0 3.68E+06 3.34E+06 0 0 0 1.75E+06 5.08E+06
LGA 0 0 0 0 0 0 0 0 2.48E+06 0
MCO 2.46E+06 0 0 0 0 0 0 0 0 0
ORD 0 0 0 0 0 1.75E+06 2.48E+06 0 0 1.76E+06
SFO 0 0 0 3.09E+06 0 5.08E+06 0 0 1.76E+06 0
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B.4 Validation
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Figure B.12: Validation of the mean reverting process using historical data - OD pair: ATL-FLL
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Figure B.13: Validation of the mean reverting process using historical data - OD pair: ATL-MCO
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Figure B.14: Validation of the mean reverting process using historical data - OD pair: DFW-LAX
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Figure B.15: Validation of the mean reverting process using historical data - OD pair: JFK-LAX
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Figure B.16: Validation of the mean reverting process using historical data - OD pair: JFK-SFO
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Figure B.17: Validation of the mean reverting process using historical data - OD pair: LAS-LAX
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Figure B.18: Validation of the mean reverting process using historical data - OD pair: LAX-ORD
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Figure B.19: Validation of the mean reverting process using historical data - OD pair: LAX-SFO
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Figure B.20: Validation of the mean reverting process using historical data - OD pair: LGA-ORD
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Figure B.21: Validation of the mean reverting process using historical data - OD pair: ORD-SFO
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118 Chapter C. Fleet assignment optimization model results

C.1 The mathematical formulation of the optimization model at a
glance

Sets
N Set of airports
K Set of aircraft types
H Set of hubs

Index
o,d Indices used for origin and destination airports (for passengers)
i,j Indices used for departure and arrival airports (for aircraft)
h Hub index
k Aircraft type index

Parameters
Qo,d demand between airports o and d
DLo demand leaving from origin airport o
DAd demand arriving in destination airport d
Do,d distance between airports o and d
yieldo,d yield per route for nonstop connections
yieldho,d yield per route for connections through hub h

ACk number of aircraft of aircraft type k in the fleet
Uk aircraft utilization per aircraft type k
Ck
fix aircraft ownership cost per aircraft type k

Ck
var aircraft operating cost per aircraft type k (i.e. CASM)

sk number of seats per aircraft type k
vck cruise speed per aircraft type k

T dep
i and T arr

j taxi time per departure and arrival airport, respectively
rangek range per a/c type k

Decision variables
xo,d Nonstop passenger flow between origin airport o

and destination airport d
wh
o,d Connecting passenger flow for passengers that are in the segment

between the origin airport o and the hub h
irrespective of their final destination airport d

yo,h Connecting passenger flow for passengers that originate
from airport o and are in the segment between
the hub h and the final destination airport d

zki,j Number of flights (i.e. flight frequency) between
airport i and airport j operated by aircraft type k
operated by aircraft type k
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Objective function

Maximize profit =
∑
o∈N

∑
d∈N

[yieldo,d ·Do,d · xo,d] +
∑
o∈N

∑
d∈N

∑
h∈H

[
yieldho,d ·Do,d · wh

o,d

]
−

∑
k∈K

[
ACk · Ck

fix

]
−

∑
i∈N

∑
j∈N

∑
k∈K

[
Ck
var ·Di,j · sk · zki,j

]
(C.1)

Subject to

∑
d∈N

xo,d +
∑
d∈N

∑
h∈H

wh
o,d ≤ DLo ∀ o ∈ N (C.2)

∑
o∈N

xo,d +
∑
o∈N

∑
h∈H

wh
o,d ≤ DAd ∀ d ∈ N (C.3)

xo,d +
∑
h∈H

wh
o,d ≤ Qo,d ∀ o, d ∈ N, o ̸= d (C.4)

yi,j = 0 ∀ i ∈ N, j ∈ N\H, i ̸= j (if j is not a hub) (C.5)

xi,j ≤
∑
k∈K

zki,j · sk ∀ i, j ∈ N\H, i ̸= j (if neither i or j is a hub) (C.6a)

xi,j +
∑
o∈N
o̸=i,j

wi
o,j ≤

∑
k∈K

zki,j · sk ∀ i ∈ H, j ∈ N\H, i ̸= j (if i is hub) (C.6b)

xi,j + yi,j ≤
∑
k∈K

zki,j · sk ∀ j ∈ H, i ∈ N\H, i ̸= j (if j is hub) (C.6c)

xi,j +
∑
o∈N
o̸=i,j

wi
o,j + yi,j ≤

∑
k∈K

zki,j · sk ∀ i, j ∈ H, i ̸= j (if both i and j are hubs) (C.6d)

yo,h =
∑
d∈N

wh
o,d ∀ o ∈ N\H,h ∈ H (C.7)

∑
j∈N

zkj,i =
∑
j∈N

zki,j ∀ i ∈ N, k ∈ K (C.8)

∑
i∈N

∑
j∈N

zki,j ·
[
Di,j

vck
+ T dep

i + T arr
j + TAT k

]
≤ ACk · Uk ∀k ∈ K (C.9)

zki,j = 0 ∀i ∈ N, j ∈ N, i ̸= j, k ∈ K if rangek < Di,j (C.10)

xo,d ∈ Z+, yo,h ∈ Z+, wh
o,d ∈ Z+, zki,j ∈ Z+ (C.11)
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C.2 The value matrix

Table C.1: The value matrix with annual operating profits for each of the 8 fleets in the portfolio
for each of the 9 years in the planning horizon for each of the 10 OD demand matrices per year

Run Fleet Bin Year Annual operating profit Run Fleet Bin Year Annual operating profit Run Fleet Bin Year Annual operating profit

1 1 1 2015 $43,363,869 81 1 9 2023 $56,840,445 161 2 8 2022 $92,105,000
2 1 1 2016 $43,196,298 82 1 10 2015 $48,050,047 162 2 8 2023 $94,815,265
3 1 1 2017 $43,322,341 83 1 10 2016 $49,306,059 163 2 9 2015 $75,817,889
4 1 1 2018 $43,708,668 84 1 10 2017 $50,536,331 164 2 9 2016 $78,508,443
5 1 1 2019 $44,132,722 85 1 10 2018 $51,832,530 165 2 9 2017 $81,307,660
6 1 1 2020 $44,566,023 86 1 10 2019 $52,932,723 166 2 9 2018 $83,989,269
7 1 1 2021 $45,335,146 87 1 10 2020 $54,120,695 167 2 9 2019 $86,955,030
8 1 1 2022 $45,993,932 88 1 10 2021 $55,306,909 168 2 9 2020 $89,635,706
9 1 1 2023 $46,794,355 89 1 10 2022 $56,459,857 169 2 9 2021 $92,382,074
10 1 2 2015 $44,452,620 90 1 10 2023 $57,706,787 170 2 9 2022 $95,457,679
11 1 2 2016 $44,786,350 91 2 1 2015 $69,231,354 171 2 9 2023 $98,613,812
12 1 2 2017 $45,274,171 92 2 1 2016 $66,986,372 172 2 10 2015 $76,856,708
13 1 2 2018 $45,941,563 93 2 1 2017 $65,605,865 173 2 10 2016 $80,538,428
14 1 2 2019 $46,657,094 94 2 1 2018 $64,782,888 174 2 10 2017 $84,224,935
15 1 2 2020 $47,467,387 95 2 1 2019 $63,929,348 175 2 10 2018 $87,751,852
16 1 2 2021 $48,453,353 96 2 1 2020 $63,270,652 176 2 10 2019 $91,157,739
17 1 2 2022 $49,403,836 97 2 1 2021 $63,195,998 177 2 10 2020 $95,020,631
18 1 2 2023 $50,221,407 98 2 1 2022 $63,216,005 178 2 10 2021 $99,016,182
19 1 3 2015 $44,994,844 99 2 1 2023 $63,473,166 179 2 10 2022 $102,784,509
20 1 3 2016 $45,609,715 100 2 2 2015 $72,493,786 180 2 10 2023 $106,810,562
21 1 3 2017 $46,407,083 101 2 2 2016 $72,452,365 181 3 1 2015 $68,043,959
22 1 3 2018 $47,240,731 102 2 2 2017 $72,093,669 182 3 1 2016 $63,206,657
23 1 3 2019 $48,144,237 103 2 2 2018 $72,501,525 183 3 1 2017 $59,885,183
24 1 3 2020 $49,177,627 104 2 2 2019 $73,283,243 184 3 1 2018 $57,671,728
25 1 3 2021 $50,117,295 105 2 2 2020 $74,009,458 185 3 1 2019 $56,400,908
26 1 3 2022 $51,293,122 106 2 2 2021 $74,985,164 186 3 1 2020 $55,254,217
27 1 3 2023 $52,494,559 107 2 2 2022 $76,057,268 187 3 1 2021 $55,047,564
28 1 4 2015 $45,422,414 108 2 2 2023 $77,181,165 188 3 1 2022 $54,743,407
29 1 4 2016 $46,355,307 109 2 3 2015 $73,219,971 189 3 1 2023 $54,921,387
30 1 4 2017 $47,297,324 110 2 3 2016 $74,116,641 190 3 2 2015 $74,794,911
31 1 4 2018 $48,382,946 111 2 3 2017 $75,310,986 191 3 2 2016 $73,203,090
32 1 4 2019 $49,423,085 112 2 3 2018 $76,578,845 192 3 2 2017 $72,242,057
33 1 4 2020 $50,559,686 113 2 3 2019 $77,814,316 193 3 2 2018 $72,102,072
34 1 4 2021 $51,852,664 114 2 3 2020 $79,223,109 194 3 2 2019 $72,641,974
35 1 4 2022 $52,779,065 115 2 3 2021 $80,682,759 195 3 2 2020 $73,183,294
36 1 4 2023 $54,007,376 116 2 3 2022 $82,348,576 196 3 2 2021 $74,014,217
37 1 5 2015 $45,838,252 117 2 3 2023 $83,936,884 197 3 2 2022 $75,108,706
38 1 5 2016 $47,004,702 118 2 4 2015 $73,500,055 198 3 2 2023 $76,454,899
39 1 5 2017 $48,004,435 119 2 4 2016 $74,937,154 199 3 3 2015 $78,169,606
40 1 5 2018 $49,274,255 120 2 4 2017 $76,231,937 200 3 3 2016 $78,609,374
41 1 5 2019 $50,548,970 121 2 4 2018 $77,761,332 201 3 3 2017 $79,277,682
42 1 5 2020 $51,683,840 122 2 4 2019 $79,284,358 202 3 3 2018 $80,504,808
43 1 5 2021 $52,876,289 123 2 4 2020 $80,909,162 203 3 3 2019 $81,919,962
44 1 5 2022 $53,913,379 124 2 4 2021 $82,604,176 204 3 3 2020 $83,319,420
45 1 5 2023 $54,845,882 125 2 4 2022 $84,213,193 205 3 3 2021 $85,659,578
46 1 6 2015 $46,421,748 126 2 4 2023 $86,046,326 206 3 3 2022 $87,757,276
47 1 6 2016 $47,596,951 127 2 5 2015 $74,013,713 207 3 3 2023 $90,193,087
48 1 6 2017 $48,762,196 128 2 5 2016 $75,601,625 208 3 4 2015 $80,894,179
49 1 6 2018 $50,091,290 129 2 5 2017 $77,068,060 209 3 4 2016 $82,917,466
50 1 6 2019 $51,428,150 130 2 5 2018 $78,808,233 210 3 4 2017 $84,878,582
51 1 6 2020 $52,317,967 131 2 5 2019 $80,614,120 211 3 4 2018 $87,392,974
52 1 6 2021 $53,236,799 132 2 5 2020 $82,242,044 212 3 4 2019 $89,863,184
53 1 6 2022 $54,239,343 133 2 5 2021 $84,085,488 213 3 4 2020 $92,293,353
54 1 6 2023 $55,466,948 134 2 5 2022 $85,896,344 214 3 4 2021 $95,361,093
55 1 7 2015 $46,762,746 135 2 5 2023 $87,777,030 215 3 4 2022 $98,549,051
56 1 7 2016 $48,050,663 136 2 6 2015 $74,511,458 216 3 4 2023 $101,917,909
57 1 7 2017 $49,502,360 137 2 6 2016 $76,251,020 217 3 5 2015 $83,499,656
58 1 7 2018 $50,668,128 138 2 6 2017 $78,065,955 218 3 5 2016 $86,711,619
59 1 7 2019 $51,544,795 139 2 6 2018 $79,847,108 219 3 5 2017 $90,007,633
60 1 7 2020 $52,450,049 140 2 6 2019 $81,724,899 220 3 5 2018 $93,619,203
61 1 7 2021 $53,637,420 141 2 6 2020 $83,734,683 221 3 5 2019 $97,046,203
62 1 7 2022 $54,891,185 142 2 6 2021 $85,753,308 222 3 5 2020 $100,547,904
63 1 7 2023 $55,838,355 143 2 6 2022 $87,828,705 223 3 5 2021 $103,366,301
64 1 8 2015 $47,040,443 144 2 6 2023 $89,796,603 224 3 5 2022 $105,988,213
65 1 8 2016 $48,652,177 145 2 7 2015 $74,810,124 225 3 5 2023 $108,908,915
66 1 8 2017 $49,919,338 146 2 7 2016 $76,887,098 226 3 6 2015 $85,691,867
67 1 8 2018 $50,783,049 147 2 7 2017 $78,823,716 227 3 6 2016 $90,748,419
68 1 8 2019 $51,674,925 148 2 7 2018 $80,849,028 228 3 6 2017 $95,092,187
69 1 8 2020 $53,043,985 149 2 7 2019 $83,013,673 229 3 6 2018 $98,778,646
70 1 8 2021 $54,200,156 150 2 7 2020 $85,157,271 230 3 6 2019 $101,936,580
71 1 8 2022 $55,149,232 151 2 7 2021 $87,543,340 231 3 6 2020 $105,408,679
72 1 8 2023 $56,269,576 152 2 7 2022 $89,821,672 232 3 6 2021 $109,065,415
73 1 9 2015 $47,325,725 153 2 7 2023 $92,172,258 233 3 6 2022 $112,402,910
74 1 9 2016 $49,070,065 154 2 8 2015 $75,281,982 234 3 6 2023 $115,947,027
75 1 9 2017 $50,032,561 155 2 8 2016 $77,605,316 235 3 7 2015 $88,061,018
76 1 9 2018 $50,986,550 156 2 8 2017 $79,828,192 236 3 7 2016 $94,681,168
77 1 9 2019 $52,376,729 157 2 8 2018 $82,254,525 237 3 7 2017 $98,681,544
78 1 9 2020 $53,399,168 158 2 8 2019 $84,615,471 238 3 7 2018 $102,559,115
79 1 9 2021 $54,412,444 159 2 8 2020 $87,060,916 239 3 7 2019 $106,689,892
80 1 9 2022 $55,510,300 160 2 8 2021 $89,558,423 240 3 7 2020 $110,821,715
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Run Fleet Bin Year Annual operating profit Run Fleet Bin Year Annual operating profit Run Fleet Bin Year Annual operating profit

241 3 7 2021 $115,288,282 321 4 6 2020 $102,574,868 401 5 5 2019 $79,263,090
242 3 7 2022 $118,995,570 322 4 6 2021 $107,945,327 402 5 5 2020 $83,219,398
243 3 7 2023 $123,257,184 323 4 6 2022 $113,132,015 403 5 5 2021 $87,551,195
244 3 8 2015 $90,774,859 324 4 6 2023 $118,606,786 404 5 5 2022 $91,852,054
245 3 8 2016 $97,628,482 325 4 7 2015 $80,988,134 405 5 5 2023 $96,284,242
246 3 8 2017 $102,451,704 326 4 7 2016 $87,634,551 406 5 6 2015 $67,861,936
247 3 8 2018 $107,198,827 327 4 7 2017 $93,723,678 407 5 6 2016 $73,066,677
248 3 8 2019 $112,141,947 328 4 7 2018 $99,689,903 408 5 6 2017 $77,932,507
249 3 8 2020 $116,975,874 329 4 7 2019 $105,904,780 409 5 6 2018 $82,738,078
250 3 8 2021 $120,228,245 330 4 7 2020 $112,587,381 410 5 6 2019 $88,052,075
251 3 8 2022 $123,151,588 331 4 7 2021 $119,356,966 411 5 6 2020 $93,495,020
252 3 8 2023 $126,514,905 332 4 7 2022 $125,397,673 412 5 6 2021 $99,225,506
253 3 9 2015 $93,912,057 333 4 7 2023 $132,606,845 413 5 6 2022 $104,893,936
254 3 9 2016 $100,782,346 334 4 8 2015 $83,759,019 414 5 6 2023 $110,412,566
255 3 9 2017 $106,899,215 335 4 8 2016 $92,553,097 415 5 7 2015 $70,486,685
256 3 9 2018 $113,085,689 336 4 8 2017 $100,457,881 416 5 7 2016 $77,910,345
257 3 9 2019 $116,365,952 337 4 8 2018 $108,365,102 417 5 7 2017 $84,335,970
258 3 9 2020 $119,718,643 338 4 8 2019 $116,172,674 418 5 7 2018 $90,902,942
259 3 9 2021 $123,083,272 339 4 8 2020 $124,093,714 419 5 7 2019 $97,609,734
260 3 9 2022 $126,615,442 340 4 8 2021 $132,611,123 420 5 7 2020 $104,715,832
261 3 9 2023 $130,292,064 341 4 8 2022 $139,543,036 421 5 7 2021 $111,535,239
262 3 10 2015 $97,591,215 342 4 8 2023 $145,016,438 422 5 7 2022 $117,439,219
263 3 10 2016 $107,457,920 343 4 9 2015 $87,202,583 423 5 7 2023 $124,717,508
264 3 10 2017 $112,956,394 344 4 9 2016 $98,639,524 424 5 8 2015 $73,758,759
265 3 10 2018 $117,133,576 345 4 9 2017 $109,198,756 425 5 8 2016 $83,342,717
266 3 10 2019 $121,198,234 346 4 9 2018 $119,680,202 426 5 8 2017 $91,994,739
267 3 10 2020 $125,369,176 347 4 9 2019 $130,374,671 427 5 8 2018 $100,793,525
268 3 10 2021 $129,713,985 348 4 9 2020 $137,306,594 428 5 8 2019 $108,513,413
269 3 10 2022 $134,446,317 349 4 9 2021 $143,965,406 429 5 8 2020 $116,595,037
270 3 10 2023 $139,350,545 350 4 9 2022 $151,117,202 430 5 8 2021 $125,036,345
271 4 1 2015 $58,632,805 351 4 9 2023 $158,340,463 431 5 8 2022 $133,608,102
272 4 1 2016 $52,986,417 352 4 10 2015 $93,987,203 432 5 8 2023 $141,992,335
273 4 1 2017 $49,014,995 353 4 10 2016 $111,149,269 433 5 9 2015 $77,661,264
274 4 1 2018 $46,280,747 354 4 10 2017 $127,504,498 434 5 9 2016 $90,317,391
275 4 1 2019 $44,663,787 355 4 10 2018 $137,911,912 435 5 9 2017 $101,668,408
276 4 1 2020 $43,204,303 356 4 10 2019 $147,278,521 436 5 9 2018 $112,438,241
277 4 1 2021 $42,775,111 357 4 10 2020 $155,429,198 437 5 9 2019 $122,941,694
278 4 1 2022 $42,359,370 358 4 10 2021 $160,348,441 438 5 9 2020 $133,056,287
279 4 1 2023 $42,315,915 359 4 10 2022 $165,432,152 439 5 9 2021 $143,518,269
280 4 2 2015 $66,212,074 360 4 10 2023 $171,101,594 440 5 9 2022 $155,230,839
281 4 2 2016 $64,314,165 361 5 1 2015 $47,474,663 441 5 9 2023 $167,237,143
282 4 2 2017 $63,033,896 362 5 1 2016 $41,575,170 442 5 10 2015 $85,353,883
283 4 2 2018 $62,677,661 363 5 1 2017 $37,370,731 443 5 10 2016 $103,830,753
284 4 2 2019 $63,057,350 364 5 1 2018 $34,443,264 444 5 10 2017 $120,300,130
285 4 2 2020 $63,184,910 365 5 1 2019 $32,645,057 445 5 10 2018 $136,755,164
286 4 2 2021 $63,919,388 366 5 1 2020 $30,934,010 446 5 10 2019 $152,835,755
287 4 2 2022 $65,247,017 367 5 1 2021 $30,417,723 447 5 10 2020 $169,123,768
288 4 2 2023 $66,493,480 368 5 1 2022 $29,748,168 448 5 10 2021 $179,615,988
289 4 3 2015 $70,203,914 369 5 1 2023 $29,527,826 449 5 10 2022 $190,697,755
290 4 3 2016 $70,309,220 370 5 2 2015 $55,180,471 450 5 10 2023 $202,317,857
291 4 3 2017 $70,953,497 371 5 2 2016 $53,008,389 451 6 1 2015 $60,637,096
292 4 3 2018 $72,135,570 372 5 2 2017 $51,478,217 452 6 1 2016 $57,507,552
293 4 3 2019 $73,539,885 373 5 2 2018 $50,952,791 453 6 1 2017 $55,079,165
294 4 3 2020 $74,811,303 374 5 2 2019 $51,185,514 454 6 1 2018 $52,873,878
295 4 3 2021 $77,134,619 375 5 2 2020 $51,129,444 455 6 1 2019 $51,717,033
296 4 3 2022 $79,377,320 376 5 2 2021 $51,739,043 456 6 1 2020 $50,707,471
297 4 3 2023 $81,830,588 377 5 2 2022 $52,742,899 457 6 1 2021 $50,552,411
298 4 4 2015 $73,383,590 378 5 2 2023 $53,921,995 458 6 1 2022 $50,194,672
299 4 4 2016 $75,521,211 379 5 3 2015 $59,072,296 459 6 1 2023 $50,335,597
300 4 4 2017 $77,289,953 380 5 3 2016 $59,124,630 460 6 2 2015 $64,618,752
301 4 4 2018 $79,826,097 381 5 3 2017 $59,641,667 461 6 2 2016 $63,668,693
302 4 4 2019 $82,111,494 382 5 3 2018 $60,526,639 462 6 2 2017 $63,158,149
303 4 4 2020 $84,574,961 383 5 3 2019 $61,781,874 463 6 2 2018 $63,245,906
304 4 4 2021 $87,738,276 384 5 3 2020 $62,927,685 464 6 2 2019 $63,608,204
305 4 4 2022 $90,863,597 385 5 3 2021 $64,972,518 465 6 2 2020 $63,859,904
306 4 4 2023 $94,020,678 386 5 3 2022 $67,089,975 466 6 2 2021 $64,444,741
307 4 5 2015 $76,303,371 387 5 3 2023 $69,291,316 467 6 2 2022 $65,302,717
308 4 5 2016 $79,408,436 388 5 4 2015 $62,486,366 468 6 2 2023 $66,330,075
309 4 5 2017 $82,739,532 389 5 4 2016 $64,222,619 469 6 3 2015 $66,843,534
310 4 5 2018 $86,301,608 390 5 4 2017 $65,938,031 470 6 3 2016 $66,997,584
311 4 5 2019 $89,647,144 391 5 4 2018 $68,415,030 471 6 3 2017 $67,586,421
312 4 5 2020 $93,495,171 392 5 4 2019 $70,919,873 472 6 3 2018 $68,352,412
313 4 5 2021 $97,366,851 393 5 4 2020 $73,367,195 473 6 3 2019 $69,358,893
314 4 5 2022 $101,624,331 394 5 4 2021 $76,402,264 474 6 3 2020 $70,359,891
315 4 5 2023 $105,851,198 395 5 4 2022 $79,611,206 475 6 3 2021 $71,497,918
316 4 6 2015 $78,481,207 396 5 4 2023 $83,235,891 476 6 3 2022 $73,091,795
317 4 6 2016 $83,514,336 397 5 5 2015 $65,224,448 477 6 3 2023 $74,878,667
318 4 6 2017 $87,982,698 398 5 5 2016 $68,507,130 478 6 4 2015 $68,386,411
319 4 6 2018 $92,525,429 399 5 5 2017 $72,017,189 479 6 4 2016 $69,485,024
320 4 6 2019 $97,350,706 400 5 5 2018 $75,808,578 480 6 4 2017 $70,768,182
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Run Fleet Bin Year Annual operating profit Run Fleet Bin Year Annual operating profit Run Fleet Bin Year Annual operating profit

481 6 4 2018 $72,261,069 561 7 3 2017 $60,870,930 641 8 2 2016 $-15,112,553
482 6 4 2019 $73,499,642 562 7 3 2018 $61,761,013 642 8 2 2017 $-18,077,837
483 6 4 2020 $75,001,176 563 7 3 2019 $63,232,940 643 8 2 2018 $-19,326,087
484 6 4 2021 $76,733,928 564 7 3 2020 $64,455,025 644 8 2 2019 $-20,959,561
485 6 4 2022 $78,362,607 565 7 3 2021 $66,094,990 645 8 2 2020 $-21,864,572
486 6 4 2023 $80,146,003 566 7 3 2022 $68,483,189 646 8 2 2021 $-22,293,516
487 6 5 2015 $69,168,703 567 7 3 2023 $70,163,467 647 8 2 2022 $-21,461,673
488 6 5 2016 $70,808,995 568 7 4 2015 $63,730,538 648 8 2 2023 $-22,627,686
489 6 5 2017 $72,416,676 569 7 4 2016 $65,137,400 649 8 3 2015 $-6,143,015
490 6 5 2018 $74,222,615 570 7 4 2017 $67,623,031 650 8 3 2016 $-7,424,913
491 6 5 2019 $76,120,795 571 7 4 2018 $69,763,126 651 8 3 2017 $-8,604,449
492 6 5 2020 $78,055,244 572 7 4 2019 $71,867,337 652 8 3 2018 $-8,012,604
493 6 5 2021 $79,879,948 573 7 4 2020 $74,466,754 653 8 3 2019 $-7,648,921
494 6 5 2022 $82,050,257 574 7 4 2021 $77,309,392 654 8 3 2020 $-7,482,678
495 6 5 2023 $84,049,274 575 7 4 2022 $80,628,134 655 8 3 2021 $-5,033,747
496 6 6 2015 $69,836,819 576 7 4 2023 $84,237,377 656 8 3 2022 $-4,692,604
497 6 6 2016 $72,095,974 577 7 5 2015 $66,362,043 657 8 3 2023 $-3,173,964
498 6 6 2017 $74,134,744 578 7 5 2016 $69,591,788 658 8 4 2015 $-2,299,397
499 6 6 2018 $76,382,220 579 7 5 2017 $73,537,322 659 8 4 2016 $-1,051,354
500 6 6 2019 $78,627,878 580 7 5 2018 $76,908,876 660 8 4 2017 $203,498
501 6 6 2020 $80,822,218 581 7 5 2019 $80,519,941 661 8 4 2018 $1,309,988
502 6 6 2021 $83,353,801 582 7 5 2020 $84,372,284 662 8 4 2019 $3,289,589
503 6 6 2022 $85,849,658 583 7 5 2021 $88,006,529 663 8 4 2020 $4,757,416
504 6 6 2023 $88,273,893 584 7 5 2022 $92,478,638 664 8 4 2021 $8,093,612
505 6 7 2015 $70,621,853 585 7 5 2023 $97,492,750 665 8 4 2022 $9,438,139
506 6 7 2016 $73,647,945 586 7 6 2015 $69,195,336 666 8 4 2023 $13,772,616
507 6 7 2017 $76,020,321 587 7 6 2016 $74,225,488 667 8 5 2015 $697,166
508 6 7 2018 $78,610,028 588 7 6 2017 $79,200,909 668 8 5 2016 $3,536,133
509 6 7 2019 $81,463,829 589 7 6 2018 $83,886,801 669 8 5 2017 $6,900,745
510 6 7 2020 $84,263,241 590 7 6 2019 $88,850,909 670 8 5 2018 $10,838,005
511 6 7 2021 $87,226,610 591 7 6 2020 $94,586,903 671 8 5 2019 $12,927,967
512 6 7 2022 $89,810,583 592 7 6 2021 $99,777,646 672 8 5 2020 $15,799,987
513 6 7 2023 $93,111,358 593 7 6 2022 $105,233,713 673 8 5 2021 $20,854,294
514 6 8 2015 $71,493,027 594 7 6 2023 $111,583,537 674 8 5 2022 $23,569,872
515 6 8 2016 $74,980,139 595 7 7 2015 $71,426,605 675 8 5 2023 $28,742,562
516 6 8 2017 $78,219,562 596 7 7 2016 $78,927,472 676 8 6 2015 $4,406,694
517 6 8 2018 $81,639,538 597 7 7 2017 $85,079,823 677 8 6 2016 $9,832,731
518 6 8 2019 $84,829,998 598 7 7 2018 $91,589,606 678 8 6 2017 $13,380,180
519 6 8 2020 $88,119,875 599 7 7 2019 $98,524,515 679 8 6 2018 $18,257,965
520 6 8 2021 $91,346,656 600 7 7 2020 $105,418,650 680 8 6 2019 $23,589,024
521 6 8 2022 $93,950,557 601 7 7 2021 $113,527,391 681 8 6 2020 $28,378,758
522 6 8 2023 $96,651,516 602 7 7 2022 $119,483,687 682 8 6 2021 $34,817,460
523 6 9 2015 $72,581,839 603 7 7 2023 $127,657,322 683 8 6 2022 $40,073,535
524 6 9 2016 $76,866,799 604 7 8 2015 $75,144,810 684 8 6 2023 $45,698,968
525 6 9 2017 $81,185,789 605 7 8 2016 $84,298,095 685 8 7 2015 $7,511,411
526 6 9 2018 $85,233,954 606 7 8 2017 $93,221,965 686 8 7 2016 $15,160,322
527 6 9 2019 $88,551,965 607 7 8 2018 $101,772,783 687 8 7 2017 $22,076,062
528 6 9 2020 $91,467,619 608 7 8 2019 $110,098,017 688 8 7 2018 $27,916,977
529 6 9 2021 $94,304,339 609 7 8 2020 $118,698,372 689 8 7 2019 $34,363,685
530 6 9 2022 $97,639,552 610 7 8 2021 $127,426,210 690 8 7 2020 $42,612,441
531 6 9 2023 $100,764,029 611 7 8 2022 $137,097,678 691 8 7 2021 $50,009,935
532 6 10 2015 $74,738,349 612 7 8 2023 $146,503,685 692 8 7 2022 $57,287,987
533 6 10 2016 $80,966,850 613 7 9 2015 $79,085,696 693 8 7 2023 $64,505,907
534 6 10 2017 $86,058,658 614 7 9 2016 $91,661,965 694 8 8 2015 $11,008,752
535 6 10 2018 $89,774,575 615 7 9 2017 $102,998,782 695 8 8 2016 $21,988,935
536 6 10 2019 $93,333,387 616 7 9 2018 $114,438,346 696 8 8 2017 $30,637,944
537 6 10 2020 $97,323,600 617 7 9 2019 $125,745,416 697 8 8 2018 $38,984,212
538 6 10 2021 $101,504,367 618 7 9 2020 $136,845,438 698 8 8 2019 $48,710,946
539 6 10 2022 $105,657,211 619 7 9 2021 $148,658,199 699 8 8 2020 $58,463,331
540 6 10 2023 $110,380,496 620 7 9 2022 $161,409,106 700 8 8 2021 $67,879,094
541 7 1 2015 $49,276,589 621 7 9 2023 $168,862,768 701 8 8 2022 $77,734,473
542 7 1 2016 $43,197,122 622 7 10 2015 $86,552,323 702 8 8 2023 $87,650,513
543 7 1 2017 $39,813,616 623 7 10 2016 $105,365,513 703 8 9 2015 $16,534,730
544 7 1 2018 $36,119,231 624 7 10 2017 $123,308,584 704 8 9 2016 $29,745,236
545 7 1 2019 $34,464,889 625 7 10 2018 $141,085,783 705 8 9 2017 $42,842,868
546 7 1 2020 $33,479,725 626 7 10 2019 $157,263,371 706 8 9 2018 $55,114,146
547 7 1 2021 $32,266,667 627 7 10 2020 $168,075,427 707 8 9 2019 $68,344,407
548 7 1 2022 $31,639,852 628 7 10 2021 $179,122,694 708 8 9 2020 $80,548,559
549 7 1 2023 $31,615,724 629 7 10 2022 $189,463,706 709 8 9 2021 $93,185,391
550 7 2 2015 $56,446,561 630 7 10 2023 $196,339,581 710 8 9 2022 $107,606,592
551 7 2 2016 $54,249,298 631 8 1 2015 $-20,667,224 711 8 9 2023 $119,132,488
552 7 2 2017 $53,290,046 632 8 1 2016 $-28,009,820 712 8 10 2015 $26,446,101
553 7 2 2018 $52,541,597 633 8 1 2017 $-33,631,053 713 8 10 2016 $46,768,937
554 7 2 2019 $52,495,878 634 8 1 2018 $-38,769,016 714 8 10 2017 $68,083,449
555 7 2 2020 $52,801,761 635 8 1 2019 $-42,696,003 715 8 10 2018 $87,871,048
556 7 2 2021 $53,170,066 636 8 1 2020 $-45,201,031 716 8 10 2019 $107,659,531
557 7 2 2022 $54,293,014 637 8 1 2021 $-46,434,716 717 8 10 2020 $125,584,861
558 7 2 2023 $55,360,758 638 8 1 2022 $-48,292,866 718 8 10 2021 $145,358,982
559 7 3 2015 $60,686,556 639 8 1 2023 $-49,588,366 719 8 10 2022 $164,912,456
560 7 3 2016 $60,057,358 640 8 2 2015 $-10,933,335 720 8 10 2023 $187,058,250
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OD-pair ATL-FLL: year-to-year transition probabilities based on 5000 Monte Carlo observations equally distributed across 10 equal probability bins

Figure D.1: Heat maps of OD pair based transition probability matrices - OD pair: ATL-FLL
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OD-pair ATL-MCO: year-to-year transition probabilities based on 5000 Monte Carlo observations equally distributed across 10 equal probability bins

Figure D.2: Heat maps of OD pair based transition probability matrices - OD pair: ATL-MCO
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OD-pair DFW-LAX: year-to-year transition probabilities based on 5000 Monte Carlo observations equally distributed across 10 equal probability bins

Figure D.3: Heat maps of OD pair based transition probability matrices - OD pair: DFW-LAX
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OD-pair JFK-LAX: year-to-year transition probabilities based on 5000 Monte Carlo observations equally distributed across 10 equal probability bins

Figure D.4: Heat maps of OD pair based transition probability matrices - OD pair: JFK-LAX
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OD-pair JFK-SFO: year-to-year transition probabilities based on 5000 Monte Carlo observations equally distributed across 10 equal probability bins

Figure D.5: Heat maps of OD pair based transition probability matrices - OD pair: JFK-SFO
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OD-pair LAS-LAX: year-to-year transition probabilities based on 5000 Monte Carlo observations equally distributed across 10 equal probability bins

Figure D.6: Heat maps of OD pair based transition probability matrices - OD pair: LAS-LAX
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OD-pair LAX-ORD: year-to-year transition probabilities based on 5000 Monte Carlo observations equally distributed across 10 equal probability bins

Figure D.7: Heat maps of OD pair based transition probability matrices - OD pair: LAX-ORD
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OD-pair LAX-SFO: year-to-year transition probabilities based on 5000 Monte Carlo observations equally distributed across 10 equal probability bins

Figure D.8: Heat maps of OD pair based transition probability matrices - OD pair: LAX-SFO
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OD-pair LGA-ORD: year-to-year transition probabilities based on 5000 Monte Carlo observations equally distributed across 10 equal probability bins

Figure D.9: Heat maps of OD pair based transition probability matrices - OD pair: LGA-ORD
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Figure D.10: Heat maps of OD pair based transition probability matrices - OD pair: ORD-SFO
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D.2 OD demand matrix based transition probability matrices

2015-2016 1 2 3 4 5 6 7 8 9 10

1 0.513 0.235 0.125 0.068 0.037 0.015 0.004 0.002 0.000 0.000
2 0.213 0.233 0.193 0.138 0.102 0.065 0.038 0.016 0.003 0.000
3 0.113 0.178 0.180 0.172 0.126 0.097 0.070 0.039 0.021 0.003
4 0.066 0.127 0.147 0.161 0.157 0.135 0.105 0.063 0.033 0.007
5 0.042 0.091 0.122 0.141 0.144 0.147 0.130 0.099 0.063 0.021
6 0.026 0.055 0.092 0.115 0.141 0.155 0.149 0.128 0.099 0.039
7 0.013 0.041 0.068 0.095 0.111 0.136 0.161 0.167 0.140 0.069
8 0.009 0.022 0.044 0.062 0.095 0.126 0.152 0.175 0.193 0.122
9 0.004 0.014 0.021 0.033 0.062 0.085 0.128 0.183 0.233 0.238
10 0.001 0.004 0.007 0.016 0.025 0.040 0.063 0.127 0.216 0.502

2016-2017 1 2 3 4 5 6 7 8 9 10

1 0.617 0.240 0.094 0.033 0.009 0.005 0.001 0.000 0.000 0.000
2 0.223 0.308 0.223 0.133 0.071 0.026 0.011 0.003 0.001 0.000
3 0.089 0.196 0.238 0.194 0.140 0.085 0.039 0.015 0.004 0.000
4 0.039 0.127 0.184 0.196 0.182 0.144 0.082 0.036 0.010 0.000
5 0.018 0.064 0.118 0.176 0.187 0.170 0.148 0.081 0.034 0.004
6 0.009 0.035 0.075 0.130 0.165 0.180 0.180 0.138 0.073 0.016
7 0.003 0.018 0.041 0.074 0.123 0.179 0.200 0.193 0.138 0.032
8 0.002 0.007 0.019 0.039 0.078 0.118 0.188 0.236 0.219 0.095
9 0.000 0.003 0.007 0.020 0.035 0.073 0.117 0.200 0.296 0.249
10 0.000 0.000 0.001 0.005 0.010 0.021 0.035 0.098 0.226 0.604

2017-2018 1 2 3 4 5 6 7 8 9 10

1 0.683 0.229 0.066 0.017 0.005 0.001 0.000 0.000 0.000 0.000
2 0.214 0.361 0.240 0.124 0.044 0.015 0.004 0.000 0.000 0.000
3 0.065 0.217 0.265 0.218 0.137 0.069 0.026 0.004 0.000 0.000
4 0.026 0.106 0.208 0.232 0.194 0.140 0.069 0.022 0.003 0.000
5 0.007 0.053 0.117 0.184 0.218 0.199 0.144 0.060 0.017 0.001
6 0.004 0.021 0.062 0.123 0.192 0.214 0.205 0.130 0.046 0.004
7 0.001 0.010 0.028 0.063 0.116 0.182 0.222 0.231 0.127 0.020
8 0.000 0.003 0.011 0.030 0.065 0.123 0.193 0.257 0.246 0.072
9 0.000 0.001 0.003 0.008 0.025 0.051 0.113 0.221 0.341 0.236
10 0.000 0.000 0.001 0.001 0.004 0.008 0.026 0.075 0.219 0.667

2018-2019 1 2 3 4 5 6 7 8 9 10

1 0.716 0.223 0.050 0.010 0.001 0.000 0.000 0.000 0.000 0.000
2 0.200 0.393 0.248 0.117 0.032 0.008 0.002 0.000 0.000 0.000
3 0.059 0.229 0.294 0.234 0.122 0.048 0.012 0.002 0.000 0.000
4 0.017 0.097 0.210 0.250 0.222 0.138 0.055 0.010 0.002 0.000
5 0.007 0.042 0.118 0.194 0.248 0.210 0.129 0.044 0.008 0.000
6 0.001 0.012 0.052 0.121 0.192 0.247 0.211 0.128 0.035 0.001
7 0.001 0.004 0.019 0.053 0.114 0.191 0.271 0.232 0.107 0.009
8 0.000 0.001 0.007 0.019 0.053 0.109 0.205 0.299 0.252 0.054
9 0.000 0.000 0.001 0.004 0.014 0.043 0.100 0.228 0.382 0.227
10 0.000 0.000 0.000 0.000 0.001 0.005 0.015 0.056 0.214 0.709
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2019-2020 1 2 3 4 5 6 7 8 9 10

1 0.741 0.209 0.041 0.008 0.001 0.000 0.000 0.000 0.000 0.000
2 0.196 0.415 0.263 0.095 0.028 0.003 0.000 0.000 0.000 0.000
3 0.050 0.240 0.319 0.238 0.112 0.034 0.006 0.001 0.000 0.000
4 0.009 0.093 0.214 0.287 0.232 0.120 0.038 0.006 0.001 0.000
5 0.003 0.029 0.107 0.202 0.268 0.236 0.115 0.037 0.003 0.000
6 0.001 0.010 0.039 0.107 0.198 0.273 0.229 0.119 0.023 0.000
7 0.000 0.003 0.014 0.047 0.106 0.201 0.284 0.244 0.094 0.007
8 0.000 0.001 0.003 0.013 0.042 0.103 0.224 0.321 0.254 0.038
9 0.000 0.000 0.000 0.002 0.011 0.027 0.091 0.223 0.418 0.227
10 0.000 0.000 0.000 0.001 0.001 0.003 0.012 0.049 0.206 0.728

2020-2021 1 2 3 4 5 6 7 8 9 10

1 0.763 0.203 0.031 0.003 0.000 0.000 0.000 0.000 0.000 0.000
2 0.188 0.455 0.256 0.077 0.020 0.003 0.000 0.000 0.000 0.000
3 0.038 0.231 0.349 0.256 0.097 0.024 0.006 0.000 0.000 0.000
4 0.009 0.078 0.220 0.313 0.231 0.116 0.031 0.003 0.000 0.000
5 0.003 0.025 0.098 0.200 0.294 0.235 0.115 0.027 0.003 0.000
6 0.000 0.007 0.036 0.099 0.217 0.288 0.242 0.096 0.016 0.000
7 0.000 0.001 0.008 0.040 0.098 0.212 0.309 0.241 0.087 0.003
8 0.000 0.001 0.002 0.010 0.036 0.095 0.213 0.355 0.255 0.034
9 0.000 0.000 0.000 0.002 0.006 0.024 0.076 0.235 0.450 0.206
10 0.000 0.000 0.000 0.000 0.001 0.003 0.009 0.043 0.188 0.756

2021-2022 1 2 3 4 5 6 7 8 9 10

1 0.776 0.202 0.020 0.002 0.000 0.000 0.000 0.000 0.000 0.000
2 0.189 0.479 0.252 0.070 0.010 0.000 0.000 0.000 0.000 0.000
3 0.027 0.226 0.375 0.255 0.095 0.021 0.002 0.000 0.000 0.000
4 0.007 0.068 0.235 0.321 0.245 0.100 0.022 0.002 0.000 0.000
5 0.001 0.021 0.083 0.217 0.317 0.236 0.099 0.024 0.001 0.000
6 0.000 0.004 0.026 0.097 0.203 0.311 0.248 0.100 0.011 0.000
7 0.000 0.001 0.008 0.030 0.097 0.220 0.326 0.243 0.072 0.003
8 0.000 0.000 0.001 0.007 0.027 0.088 0.222 0.366 0.267 0.022
9 0.000 0.000 0.000 0.001 0.005 0.023 0.076 0.231 0.467 0.197
10 0.000 0.000 0.000 0.000 0.000 0.001 0.005 0.034 0.182 0.778

2022-2023 1 2 3 4 5 6 7 8 9 10

1 0.785 0.197 0.017 0.001 0.000 0.000 0.000 0.000 0.000 0.000
2 0.185 0.494 0.258 0.054 0.008 0.001 0.000 0.000 0.000 0.000
3 0.028 0.227 0.382 0.256 0.090 0.017 0.001 0.000 0.000 0.000
4 0.002 0.063 0.233 0.354 0.240 0.092 0.014 0.002 0.000 0.000
5 0.000 0.016 0.084 0.215 0.328 0.241 0.099 0.014 0.002 0.000
6 0.000 0.003 0.020 0.089 0.216 0.323 0.252 0.091 0.007 0.000
7 0.000 0.000 0.005 0.025 0.093 0.221 0.344 0.250 0.059 0.002
8 0.000 0.000 0.001 0.005 0.021 0.088 0.222 0.384 0.259 0.020
9 0.000 0.000 0.000 0.001 0.004 0.015 0.064 0.230 0.483 0.202
10 0.000 0.000 0.000 0.000 0.000 0.002 0.004 0.028 0.190 0.776
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Aggregated year-to-year transition probabilities based on 10 OD pairs

Figure D.11: Heat maps of aggregated OD demand matrix based transition probability matrices
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