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Abstract

Distance fields finds a lot of applications recently in computational geometry. We
propose an algorithm to extract the mean camber line of an airfoil using distance
fields. This method does not require computing any geometric approximations in-
side the airfoil geometry. It also does not need the airfoil coordinates to be evenly
distributed on the top and bottom. All the computations are done on a simple Carte-
sian mesh and can be easily coupled with any existing computational fluid dynamics
codes. We show the efficiency of the algorithm on a variety of airfoil geometries. We
demonstrate the robustness and flexibility of the algorithm for a wide range of airfoil
geometries.

1 Introduction

Airfoil selection is one of the most preliminary decisions made in the initial design process
of aerodynamic machineries such as aircraft, race cars, wind turbines, and gas turbine
engines. Traditionally an Aerodynamicist designs airfoil contour using techniques such
as the thin airfoil theory/panel methods[1]. Wind tunnel test results complement the
theoretical results[2]. It is easy to find formulae for computing parameters such as mean
camber line for existing airfoils such as NACA or Eppler series airfoils[3][4]. However,
manually computing the mean camber line of an arbitrary airfoil requires computing a
Voronoi diagram to pack a series of circles inside the airfoil. One must join the loci
of these points for obtaining the mean camber line[5]. There have been very notable
improvements done on computing airfoil coordinates at specified chord location for given
camber[6]; however, the present investigation deals with the inverse problem of computing
the mean camber line for any given airfoil distribution.

There has been an acute increase in the indirect/stochastic approaches provided for
different components of aircraft design and engineering design. Recent studies from Sekar et
al. show the ability of machine learning algorithms in airfoil selection[7]. Similar techniques
have been applied for computing different performance characteristics of airfoils[8][9].

The field of computational geometry has also seen an increase in indirect approaches
for several different geometry problems. The most notable work relevant to the present
investigation is the usage of the heat conduction equation for computing geodesic distances
[10]. The heat equation is approximated on surfaces as an alternative to traditional geodesic
distance approaches. The present investigation focuses on the problem of computing mean
camber lines in airfoils without requiring computation of any geometric predicates. We
focus on the usage of distance fields for the extraction of mean camber lines. We compute
the distance field inside the airfoil geometry which is approximated on a Cartesian mesh and
perform a simple gradient computation to extract the mean camber line of the airfoil. The
proposed algorithm has other applications beyond aerodynamic design. It can also be useful
in areas such as mesh generation where the mean camber line can give helpful information
about the curvature flow of the airfoil. The algorithm outlined in the present investigation
can be handy for aerodynamic practitioners in reverse engineering mean camber lines for
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any random airfoil contour. The algorithm does not impose any specific requirement on
the uniformity of the point distribution. It does not require any distinction between the
top and bottom of the airfoil either. The present investigation is primarily intended as a
reverse engineering tool for acquiring information about unknown airfoil countours.

2 Methodology

The algorithm is built on top of distance fields. Distance fields computed using the level
set method or the heat method is quite popular in various domains of computational fluid
dynamics where different components are moving inside a computational mesh. We make
use of the fast marching method[11] for computing the distance field in any arbitrary do-
main. The Eikonal wave equation is solved in an arbitrary domain using finite difference
method[12]. The distance field is considered to be a general scalar field. Gradient compu-
tation performed on a scalar field yields the mean camber line of an airfoil. The algorithm
can be generalized to extract the medial axis of arbitrary domains. The medial axis acts
as a base decomposition for applications such as mesh generation[12]. However, the paper
focuses on the extraction of mean camber lines from different airfoil contours.

2.1 Theory

The Level Set method is an extension to curvature shortening flow[13] where a curve is
assigned an artificial velocity and is diffused down to a singularity. The primary advantage
of level set computation is the ability to compute a so-called distance field inside and outside
a geometry. The distance obtained is a signed distance where the positive and negative
values distinguish the inside and outside of a closed curve. It advances curvature fronts
radially outward along the normal direction of the curvature in a computational domain
and diffuses radially inward in the opposite direction. There are numerous applications
to distance fields in the field of computational geometry, computational fluid dynamics,
robotics amongst other fields. Sethian[11] made use of a stationary Eikonal wave equation
for computing the distance field. The Fast marching level set method used for computing
distance field d in the present investigation is based on Sethian’s[11] work. It is computed
by solving the Eikonal wave equation.

F |∇φ| = 1 + ε∇2φ (1)

where F is the velocity and φ describes the arrival time of the wave fronts. By setting ε
to zero in equation 1, it becomes the boundary value formulation for the ”front tracking

problem” where F is always greater than zero and equal to
dφ

dx
. The Equation 1 can

be solved using an upwind finite difference scheme on a two-dimensional Cartesian mesh.
A more detailed explanation of the finite difference discretization for the fast marching
method can be seen in reference[11] and [12]. This particular case of the distance field can
also be computed with diffusion equation[14] / heat equation[10].
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2.1.1 Distance field computation using Fast Marching Method

The fast marching method developed by Sethian is an excellent algorithm for computing
distance fields. We project a closed polygon (closed as a result of concave hull approxi-
mation) onto a Cartesian mesh. The cells that represent the boundary of the polygon are
assigned as the zero level set. We assign an artificial velocity to the zero level set (which is
the boundary of the polygon), and the Eikonal wave equation is solved inside the domain
using the fast marching method. The result of the fast marching method is a distance field
inside the airfoil. The sign of the distance field helps distinguish the inside of the airfoil
geometry from outside.
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Figure 1: Input airfoil geometry

0.0 0.2 0.4 0.6 0.8 1.0

X

−0.4

−0.2

0.0

0.2

0.4

Y

Distance Field – naca4412

−4.8

−4.2

−3.6

−3.0

−2.4

−1.8

−1.2

−0.6

0.0

0.6

Figure 2: Distance field computed using
the fast marching method

2.1.2 Distance field computation using Heat Equation / Diffusion Equation

A newer approach for approximating distance field is with the help of the Diffusion equa-
tion/heat equation. An airfoil represented in a Cartesian mesh are created using the same
technique as above. Since the algorithms for computing the mean camber line of the airfoil
only requires the distance field inside the airfoil. This problem reduces to a simple heat
conduction problem. The boundary nodes forming the airfoil geometry are assigned a very
high temperature and a null value is assigned everywhere else. The heat conduction equa-
tion is then solved inside the airfoil using the finite difference method. A scalar field that
represents the temperature inside the airfoil resembles the distance field produced inside
the airfoil using the fast marching method. The heat conduction simulation is run for a few
time steps until the high temperature at the boundary reaches the interior of the airfoil.

∂T

∂t
= k(

∂2T

∂x2
+
∂2T

∂y2
) (2)

A detailed investigation on heat conduction based distance field amongst other applications
has been conducted by Crane et al[10] which provides numerous applications in aerody-
namics beyond the mean camber line extraction.
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2.2 Algorithm

The algorithm for extracting the mean camber line of an airfoil is based on the distance
field generated inside the airfoil. The algorithm itself is rotationally invariant; however,
the computed mean camber line can be transformed with simple affine transformations.
A variant of the algorithm also addresses airfoils that do not have zero angle of attack.
Once computed, the mean camber line can be transformed to any axis. In the case of
reverse engineering, input geometry can have a non zero angle of attack. Simple geometric
transformations help compute the angle of attack of an airfoil concerning both axes.

Algorithm 1: Algorithm to extract mean camber lines in airfoils ( Airfoil parallel
to global X or Y axis)

Result: Vector of line segments
1 Read airfoil geometry as line segments or a vector of points;
2 Compute the concave hull of the airfoil coordinates;
3 Create a Cartesian mesh of a size greater than the axis-aligned bounding box of

the airfoil geometry;
4 forall Edges of airfoil do
5 Find intersecting cells in the Cartesian mesh and mark them as boundary cells;
6 end
7 Set the intersecting cells in the Cartesian mesh as the zeroth level set (φ(x, t = 0)

(in case of fast marching method);
8 Compute the distance field inside the airfoil geometry using fast marching level set

method (or) heat method;
9 Compute the gradient along X / Y direction (depending on which axis is parallel

to the airfoil);
10 The result is obtained as a mask on the Cartesian mesh where the cells forming

the mean camber line are marked to be True;
11 The marked cells can be grouped into sets of edges to form the mean camber line

of the airfoil;

If the airfoil is parallel to the X / Y axis, then the straightforward form of the mean
camber line computation 1 can be followed. Once the airfoil geometry is projected to
a Cartesian mesh, the distance field is computed inside the airfoil. The gradient of the
distance field along the chord-wise direction would yield the mean camber line of the airfoil.

There are scenarios where airfoils are not parallel to either axis. In such cases, an
oriented bounding box of the airfoil can be used to find the angle made by the chord-wise
axis of the airfoil with respect to the X / Y-axis. The airfoil can be temporarily rotated
towards one of the axes so that it is reasonably parallel. The listing below describes a
modified version of algorithm 1 for computing the mean camber line of airfoils oriented
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arbitrarily.

Algorithm 2: Algorithm to extract mean camber lines in airfoils ( Airfoil oriented
arbitrarily)

Result: Vector of line segments
1 Read airfoil geometry as line segments or a vector of points;
2 Compute the concave hull of the airfoil geometry;
3 Compute the oriented bounding box of the airfoil;
4 Get the orientation angle of the bounding box (obb) with respect to X and Y axis

(Let this angle be θ);
5 if X axis forms a minimal angle with the oriented bounding box then
6 Perform a rotation of −θ with respect to X axis;
7 end
8 else
9 Perform a rotation of −θ with respect to Y axis;

10 end
11 Repeat the steps 3 to 11 from algorithm 1;
12 Rotate the airfoil back to its original position by rotating it to θ with respect to X

or Y axis;

The present investigation is restricted to mean camber line extraction in airfoils. We
do not intend to extract a more generic medial axis transform.

3 Different components of Algorithm

3.1 Input data and Mesh generation

The input data for the algorithm is a set of two dimensional planar points that represent
the contour of the airfoil. The algorithm is tested on a wide variety of airfoil geometries
available in public domain. These may also be coming from other sources such as scanned
data from which airfoil coordinates could be extracted using image processing algorithms.
Distance field computation using fast marching method does not require any distinction
from inside and outside of the airfoil since the computations are performed on a watertight
polygon computed as a concave hull of the airfoil coordinates. In a Cartesian mesh, the
cells which intersect with edges of the airfoil are marked as zero level set for the fast
marching method computation. This is always guaranteed to be a closed path since the
computation of the concave hull guarantees a closed polygon.

3.2 Distance field computation

The Fast marching method based distance field computation is exactly the same as the
algorithm employed by Xia, H. and Tucker, P.G.[12] and is explained in detail in the ap-
pendix of their paper. However the heat method for computing distance field requires a
few additional steps. The advantage of fast marching level set method is that it does not
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require any prior distinction between inside and outside of the airfoil geometry. In many
geometry / CFD based applications, the level set method is simply used to distinguish
inside of a geometry from outside. A simple ray shooting approach can be used to distin-
guish the inside of the airfoil from outside and then heat equation can be solved inside the
airfoil using finite difference method. The scalar field can be obtained using either explicit
or implicit finite difference method.

Algorithm 3: Appromixated distance field like scalar field using heat equation
(explicit FDM)

Result: Approximated distance field
1 Set a very high temperature value T of 1 as initial value on the cells marked as the

boundary cells in the input Cartesian mesh representing the airfoil geometry;
2 Set the temperature T to be a zero value elsewhere in the mesh;
3 Since the temperature is obtained using an explicit finite difference scheme,

stability needs to be enforced by choosing appropriate values for k and ∆T ;
4 Choose a k value of 1 and a CFL number (or) σ of 0.25;
5 The value of ∆T can be computed using the following relation

∆T =
σ ∗ h2
k

(3)

while The temperature of every cell has not reached a value greater than or equal
to 0.1 do

6 forall Cells in the interior of the airfoil do
7 Compute the temperature using finite difference method as follows;
8

T t+1
i,j = T t

i,j + ∆Tk(
T t
i,j−1 + T t

i−1,j − 4T t
i,j + T t

i+1,j + T t
i,j+1

h2
) (4)

9 end

10 end

3.3 Derivative of distance field

The derivative of a distance field can be computed with the help of central finite difference
method. Since the distance field computed using either the fast marching method or
the heat method is a simple scalar field d. The problem of computing the derivative of
the distance field reduces to computing the derivative of any arbitrary scalar field. The
derivative in x or y direction can be computed as follows.

∂d

∂x
=
di+1,j − di−1,j

2h
∂d

∂y
=
di,j+1 − di,j−1

2h

(5)
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The airfoil orientation decides the direction of the derivative. In most cases, the chord
line is parallel to the x axis, hence derivative with respect to x would give the necessary
derivative of the distance field for mean camber line computation.

3.4 Mean camber line extraction

The derivative of the distance field is computed in a Cartesian mesh and it does not have
any geometric representation. The conversion of the distance field derivative into a mean
camber line can be performed with a simple segmentation approach. The centroids of
all the cells in the Cartesian mesh are computed. The Centroidal points are connected
to each other based on the connectivity from their parent cells. All the newly formed
edges are assigned a scalar value, which is the average value of the computed distance field
derivative. Now a chaining algorithm can be used to form edge chains. A half-edge data
structure[15] can be beneficial here. Given an edge, its left and right edge are checked for
the derivative value, and if its a non zero value, then that edge is added to the current
chain. This is repeated until no other edges are present to the left and right with the same
derivative value. This approach, however, only works for mean camber line extraction and
does not work in applications like multiblock decomposition for mesh generation. For such
applications, a morphological thinning operation[16] is required.

3.5 Cleanup of output

In some cases, there are multiple segmented edge groups after mean camber line extraction
stage. This could be due to some noise from derivative computation. The longest edge
group (or) chain can be kept back and additional edge groups (or) chains can simply be
ignored. The longest edge group (or) chain describes the mean camber line of the airfoil.

4 Theoretical results

Theoretical results can explain some of the rudimentary details in the algorithm better
than numerical results. Some of the geometric arguments related to the algorithm, such
as the ability of the algorithm to perform well without a clear distinction between top and
bottom of the airfoil and the algorithm’s capability in providing right mean camber line
without a uniform coordinate distribution everywhere in the airfoil.

Statement 1. A planar airfoil geometry defined by a set of discrete points does not require
a uniform coordinate distribution everywhere.

Proof. Let S1 represent a set of finer (or semi uniform) points (P1, P2, P3, ....Pn) repre-
senting the airfoil geometry. Let S2 represent a sparser set of points from S1. Let their
mean curvature value be represented by ε1 and ε2 respectively. The two sets S1 and S2 are
the same as long as the deviation in mean curvature in S2 from S1 is within a reasonable
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threshold ( ‖ε1 − ε2‖ ≤ εthreshold). If this curvature threshold is set to a small value, then
the sets S1 and S2 are essentially the same.

Lemma 1. Hence, the concave polygon formed by S1 and S2 are essentially the same.

Statement 2. Distance-field based mean camber line computation does not require any
distinction between the top and bottom of the airfoil.

Proof. If statement 1 is satisfied, then the concave polygon of the planar airfoil geometry
represented by a discrete set of points accurately represents the contour of the airfoil
geometry. All the further computations are performed on a Cartesian mesh generated from
this watertight polygon. Any boundary condition applied for distance field computation
(such as defining a zero level set) is defined as a constant value for the entire polygon.
Since there is no difference in the boundary condition for the top and bottom of the airfoil,
there is no requirement to distinguish the top and bottom of the airfoil for distance field
computation.

Statement 3. Derivative of a distance field along the chordwise direction produces a mean
camber line of an airfoil.

Proof. This argument can be proven easily from the geometric meaning of the derivative.
The distance field produced by the fast marching method (or) heat method converges to
a singularity at the core of the airfoil geometry. The slope between the various level sets
starting from zero level-set to singularity would be maximum along the chordwise direction
and be nearly negligible everywhere else inside the airfoil. The cells of the Cartesian mesh,
which has a positive derivative value (in magnitude) inside the airfoil along the chordwise
direction, would yield the mean camber line.

5 Numerical Experiments

5.1 Analysis of results

Figure 3 shows an overview of different components of the algorithm. The following steps
in the algorithm are important and common to all variants. Numerical experiments were
performed for a variety of known airfoil geometries, and the mean camber line is shown in
the subsequent sections.

• Reading the geometry and projecting it onto a Cartesian mesh.

• Computing the distance field.

• Computing the gradient of the distance field.

• Extracting the mean camber line from the gradient.
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Figure 3: Different steps of the algorithm
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The algorithm has been tested on several airfoil geometries available in the literature,
and their mean camber line distribution is shown in Figure 4. It is notable that in most
cases, the algorithm is capable of computing the mean camber line directly connecting the
leading and trailing edge of the airfoil. Different airfoil contours in Figure 4 are colored in
blue and their respective mean camber lines colored in red. The mean camber lines were
compared with the ones from existing approaches[17] and are shown to agree. If required,
interpolation/curve fitting could be performed to generate splines out of the extracted mean
camber lines. Techniques such as arc-length parameterization can be used to parameterize
the mean-camber line for topology optimization and other design optimization purposes.
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Figure 4: Mean camber line computed on different airfoils and their comparison against
existing approaches

5.2 Implementation details

The code for the present investigation is entirely implemented in Python. The code does
not have any parallelism. The computation of the distance field and derivative are almost
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instant and do not require any substantial computational resources. The airfoil geometries
used for the analysis of the algorithms were obtained from the public domain.

5.3 Extension of the algorithm for mesh generation applications

In this section, we show how the algorithm can be generalized for different volumetric
decomposition purposes, such as block decomposition for structured multiblock grid gen-
eration. Similar investigations have been performed using the fast marching method[12].
However, solving the level set equation is not strictly required, as mentioned in the paper,
and any code to solve the diffusion equation can yield a so-called biased medial axis[12].
The heat method based algorithm can be very useful here provided a Cartesian mesh can
be generated in advance. The algorithm for medial axis extraction only computes the
derivative of the distance field in either X or Y direction. A derivative of the distance
field in both X and Y direction is required for decomposing a closed polygon into smaller
blocks. The algorithm does not produce a purely quadrilateral decomposition. However,
topological modifiers can be used for generating a purely quadrilateral decomposition with
fewest singularities.

Figure 5: Different polygons and its block decompositions

6 Conclusion

The paper summarizes an algorithm for computing the mean camber line in airfoils. The
primary advantage of the algorithms outlined in the paper is that they are fully automatic.
Since the algorithms perform computation on a mesh, the mesh created for CFD / FEA
simulation can be reused, and the computation can be performed in conjunction with the
numerical simulation. Parameterization techniques could be coupled with the algorithm
for airfoil/wing optimization purposes. This approach is useful for reverse engineering
existing airfoil contours and for quick prototyping of new airfoil contours. It does not
require that the airfoil coordinates be evenly distributed on the top and bottom. The
computation can be performed instantly and does not require any information about the
local curvature of the airfoil. The algorithms proposed in the present investigation can be
easily extended to three-dimensional geometries, such as wings and turbine blades. The
proposed algorithms in the present investigation would help train neural network-based
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models, which are gaining much popularity in the field of inverse design. Such models
trained with the results from the proposed algorithms in the present investigation could be
used to choose an airfoil with a specific amount of camber. Shape similarity algorithms use
shape indicators such as skeletons and Reeb graphs of geometries. The proposed algorithm
would also serve as a useful shape indicator in the selection of similar airfoil geometries.
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