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Abstract

Phase Retrieval Problem is very common and has a lot of applications in fields such as
microscope, astronomy, crystallography, optical imaging etc.. In this problem, PSF and the
pupil function are given, and the goal is to reconstruct the phase of the object. For camera
which has 8 bits color depth, the maximum number of colors that can be displayed at any one
time is 2%, i.e. 256. When the minimal exposure time of the camera is longer than "correct”
exposure time or the intensity is changing, e.g. dynamic focusing, too much intensity is
measured by the camera and causes saturation, i.e. over-exposure. Over-exposure causes
distortion of the image, thereby losing the information. However, on the other hand, the
overall brightness of the PSF image will be enhanced due to over-exposure. It highlight
structure and increase the number of informative pixels of the image. We can use this to
enhance the information in the PSF image to offset the negative effects of noise or background
in the image.

Gerchberg-Saxton algorithm is a solution to phase retrieval problem and is a nice example
of projection based algorithm. The algorithm has a perfect performance in the case that the
PSF is the modules square of the object, i.e. without noise or other preconditioners effect.
It is demonstrated in [Nishizaki, 2019] that an over-exposure preconditioner can improve
the performance for phase restoration of a machine-learning model based algorithm. In this
master thesis, we propose modification of the model of PSF amplitude in Gerchbrg-Saxton
algorithm to make the algorithm be able to cope with over-exposed PSF image. This approach
is tested both by numerical simulation and with experimental data.
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Chapter 1

Introduction

Turbulent atmosphere can cause aberrations, which change the shape of plane wavefront.
The optical imaging camera suffers from aberrated wavefront as it distort the point spread
function(PSF) images. PSF is the proportional modulus squared of the Fourier transform
of a function. Recovering the function from PSF is not only the solution of characterizing
aberrations, but also receive the information of the object. Similarly, in many applications
of science and engineering, such as microscope, astronomy, crystallography, optical imaging,
one is given the modulus squared of the Fourier transform of an unknown signal and then
tasked with solving the corresponding inverse problem, known as phase retrieval problem.[1]

Gerchberg-Saxton algorithm (GS algorithm)[2][3] is a nice application of alternating pro-
jection method for solving phase retrieval problem. Alternating projection is a method to
compute a point in the intersection of two closed convex sets while knowing how to project
onto these sets separately.[4] . Gerchberg-Saxton algorithm alternates between Fourier plane
and real-space plane by using Fourier transform and the inverse transform, and promotes con-
vergence by imposing constraints. Technically, simple GS algorithm has good performance on
PSF images of point source. However, when the PSF image suffers from high level noise or
influenced by preconditioners such as defocus and over-exposure, the algorithm is more likely
to get in a stagnation or converge to a wrong retrieval.

In practice, it is inevitable that noise will have an influence when taking the image of object.
High-level noise can obscure the information of the image. Classical denoise approaches such
as noise filtering and apodisation can reduce the intensity of noise. On the other hand, some
methods, e.g. enhance exposure, can reinforce the intensity of the image and highlight the
structure, thus increases the image’s information. When using camera which has 8 bits color
depth, the maximum number of colors that can be displayed at any one time is 2%, i.e. 256.
When the minimal exposure time of the camera is longer than "correct" exposure time or the
intensity is changing, too much intensity is measured by the camera and causes saturation,
i.e. over-exposure. Over-exposure leads to uncompleted information, since the intensity that
exceeds the limit of the camera is displayed as uniformly white in image.

Simple GS algorithm cannot retrieve phase perfectly from the over-exposed PSF, but neural
networks can. Nishizaki[5] used training data-set that randomly generated by first 32 Zernike
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2 Introduction

modes with coefficients range in [—0.5, 0.5] to train a Convolution Neural Network (CNN) and
made the network restore phase from aberrated PSF without preconditioner and over-exposed
PSF with aberration, respectively. The experiment results showed that the CNN can retrieve
phase from over-exposed PSF and also demonstrated that over-exposure proconditioner can
improve the performance of the network, as it increases the number of informative pixels.
However, the disadvantage of using neural network method to solve phase retrieval problem
is the performance of the network closely depends on the content of the training data-set. It is
unlike as GS algorithm, which can deal with high quality point source’s PSF images without
additional training.

Comparing characteristics of Gerchberg-Saxton algorithm and CNN methods motives the
research question: Is it possible to modify the constraints in the iterative process of GS
algorithm so that it can handle the overexposed PSF with better results? Is overexposure
preconditioner could also improve the performance and the robustness against noise of GS
algorithm?

This thesis will conduct a theoretical analysis of this problem, and verify the idea through
the experimental results of numerical simulations and actual lab data.

1-1 Phase Retrieval Problem

The study of phase retrieval problem can be tracked back to 60 years ago. At the beginning,
researchers tried to solve the problem on one dimension. In 1950, Akutowicz[6][7] showed
that the answer to one dimension phase retrieval problem without any prior constraints lacks
uniqueness. A simple example is if the modules is vector of all ones, then the phase could
be arbitrary if it multiply a standard basic element. A breakthrough was at the end of the
1970s, Bruck and Sodin[8] pointed out that the fundamental barrier to unconstrained 1D
phase retrieval does not apply in higher dimensions. It confirmed nicely with the success of
simple Gerchberg-Saxton (GS) algorithm[2] and Hybrid-Input-Output(HIO) algorithm[9]. In
1982, Gonsalves[10][11] proposed phase diversity method for phase retrieval problem. Using a
second image with an additional known phase variation with respect to the first image, such
as defocus, it is possible to estimate the phase even when the object is extended, which is not
for GS algorithm. Recent decades, more works are about applying machine-learning theory
to this field. Some papers[12][13][5] show that Deep neural network and convolutional neural
network succeed on this issue.

In many science and engineering, we only have access to magnitude measurements. For in-
stance, optical detection devices cannot measure the phase of a light wave, but the photon
flux, which is proportional to the magnitude squared of the field, like Fig.1-1[14]. The mea-~
surements we receive, e.g. PSF image, are the modulus squared of the Fourier transform of
the unknown signal & € C" such as

Px = ‘<ak,$>|2,k =1,.., K. (1_1)

Suppose that yr, = /pr, then a simple statement of the most general form of the phase
retrieval problem is:

iven = |{ay,x)|, k=1,.. K.

g yr = [{ak, z)| (1.2)
find xeCcC"
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1-2 Gerchberg-Saxton Algorithm 3

The phase retrieval problem is recovering the missing phase of the data (ax, ). Here x € C"
is the target phase and the mapping ag € C™ for all k£ denotes Fourier transform of some kind,
which includes the Fresnel transform and some defocused or otherwise imperfect Fraunhofer
transform. The set C' is some a prior constraint, e.g. support or non-negativity.

Figure 1-1: Basic coherent diffractive imaging setup. When the object is small and the intensity
is measured far away, the far-field intensity pattern corresponding to the modulus of the Fourier
transform of the object. When the Fresnel number is small, the measured intensity is proportional
to the magnitude squared of the Fourier transform. [14]

1-2 Gerchberg-Saxton Algorithm

Gerchberg-Saxton(GS) algorithm can recover the complex phase image from magnitude mea-
surements at two different planes, i.e. the real plane and the Fourier plane. Suppose the
measured PSF data is represented as p(z), and Eq.(1-2) could be written in the form

p(z) = |H (). (1-3)

Then we obtain the Fourier magnitude |H (z)| by getting the square root of p(x). The real
space magnitude |h(k)| is the amplitude of the aperture, and is related with the phase ¢ as

h(k) = [h(k)[e ™), (1-4)

h(k) and H (k) are a pair of Fourier transform. GS algorithm is using known aperture ampli-
tude |h(z)| and Fourier magnitude |H (k)| to estimate the unknown phase ¢ via several times
iteration. The process of the algorithm is presented as the Algorithml.

1-2-1 Description of the Algorithm Process

The simple Gerchberg-Saxton algorithm is a method that converges to the result through
multiple iterations. The iteration starts from an initial point, which is usually a guessed one
with random phase. When the error is under the threshold, the iteration stop. Or we can
directly set the iteration time and the algorithm will end when all iterations finish.
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4 Introduction

Algorithm 1 Gerchberg-Saxton algorithm[14]

Input: |h(x)| - real space magnitude,
|H (k)| - Fourier magnitude,
€ - the error threshold
Output: f(k) - a matrix that conforms with both magnitude constraints, i.e., | f(z)| = |h(x)|
and |F(k)| = |H(k)|, where f(z) and F(k) are a Fourier pair.
Initialization: fy(x) = |h(x)|exp[®(z)], with a random ®(x) € [—7, 7].
General Step (i=1,2,...):
1: Fourier transform f;(z) to obtain F;(k)
2: Use the measured Fourier modulus to replace the calculated Fourier transform modulus

to form a Fourier transform estimate, i.e. F (k) = |H (k)| - ‘?((’Z)ﬂ

3: Inverse Fourier transform the estimate Fourier transform F (k) to gain f; (z)
4: Replace the modulus of the resulting computed image with the measured object modulus

to form a new estimate of the object, i.e. fii1(z) = |h(z)|- |?'Eg|
5: Goto 1 '
Until E; =3, [|[F(k)| — [H(E)|]* < e
£ Fourier F.(k)
() 7 |transform !
fi &)
x) = |h(x)] -
fra @ = IR - e |
Impose Impose
Real-space Fourier
Magnitude Magnitude
Constraint Constraint
Inverse J
. F.(k
fil (x)ye———— Fourler fe——F/ (k) = |H(k)| - o)
transform [F:i(k)|

Figure 1-2: The block diagrams of the GS algorithm.[14]

Magnitude constraints about two fields and the choice of the initial point play important roles
and have directly effects on the algorithm performance. Some modified versions based on GS
algorithm change constraints to improve the performance or expand the application of the
algorithm. An example is hybrid input-output (HIO)[9] method, which applys a correction
to the real-space image estimate:

IR G (N
fel )‘{ fila) = Bfi(a), weC

with (3 being a small parameter and ¢ being the set of indices for which f/(z) violates the real-
space constraints. This change on constraints makes the algorithm be less likely to converge
to a local minima.
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1-2 Gerchberg-Saxton Algorithm

fi(x) = ————

Fourter

= F()

transform
fi () X €7 l
x) = ,
Jria @0 L;(x) SBRG) x et
Apply lmpo.se
Real-space Fou1.'1e1'
Correction Magmtulde
Constraint
I Inverse l
i F(k)
fi'(x)—— Foutler |« F' (k) = |[H(k)| - —
' transform ' |F:(k)|

Figure 1-3: The block diagrams of HIO algorithm.[14]

1-2-2 Converge to a Wrong Result

When the desired solution is complex-valued, GS algorithm is known to suffer from twin-
image stagnation. Fig.1-4 is an example. The reason for this stagnation is that the function
h(z,y) and its twin h*(—z, —y)(the complex conjugated object rotated by 180 deg) have the
same Fourier amplitude |H (f;, fy)|. When the iterative algorithm starts from an initial guess
with random values, then there is an equal probability that the result will be either of these
two functions. If feathers of both h(z,y) and h*(—x, —y) in the result are equally strong, the
algorithm may stay at the stagnation. The algorithm tries to reconstruct both together and
goes nowhere, as it is unable to suppress one twin image and converge to the other [15].

(A) (B)
[i]
200 200 200 1
_ 2 -0.5
5 15 .
250 .., 250 ! 250 05
d [}]
300 05 300 2 300
(1]
200 250 300 200 250 300 200 250 300

Figure 1-4: Simultaneous twin-images problem. (A) the phase ¢(z,y) of the object h(z,y) of
the input field; (B) the phase—¢(—z, —y) of twin h*(—z, —y); (C) Output from the iterative
transform algorithm that has stagnated with features of both.[15]

When the GS algorithm output a result like (C) in Fig.1-4, the reduced-area support constraint
method[15] is a solution, as Algorithm?2.

The temporary mask is a mask that covers only a subset of the correct support including at
least one of its edges and has no 180° rotational symmetry, as shown in Fig. 1-5. The method
does not need a large iteration time, e.g. 10 times is fine, since the purpose of the method is
using the temporary mask to increase the difference between the features of the twin-phases.
After the iteration with temporary mask, we replace it to the original constraints, i.e. aperture
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Algorithm 2 The Reduced-area Support Constraint Method

Input: [t(z)| - a temporary mask ,

|H (k)| - the Fourier magnitude,
k - the iteration times.

Output: ®(z) - half phase without its twin.
Initialization: fy(x) = |[t(z)|exp[i®;(x)], with ®;(z) is the phase suffers from twin stagna-

tion .

General Step (i=1,2,....k):

1:

Fourier transform f;(x) to obtain F;(k)

2: Use the measured Fourier modulus to replace the calculated Fourier transform modulus
to form a Fourier transform estimate, i.e. F (k) = |H (k)| - F;(k)/|F;(k)|
3: Inverse Fourier transform the estimate Fourier transform F (k) to gain f; (z)
4: Replace the modulus of the resulting computed image with the temporary mask, i.e.
firi(@) = @) - £ @)/1f, (@)
5: Go to 1
Until i =k

amplitude, and continue the GS algorithm. After further iterations, the GS algorithm finally
can output a phase without its twin.

The temporary mask

08

0.8

0.7

08

05

0.4

0.3

02

0.1

Figure 1-5: The temporary mask.
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1-3 Factors Affecting PSF Image Quality 7

phase has twin images features result phase after the reduced-area support constraint method

200 200

250 250

300 300

200 250 300 200 250 300

Figure 1-6: The left image is the phase that input to the reduced-area support constraint
method which has twin-image features. The right phase is the result after 10 iterations temporary
constraints and 3000 times simple GS algorithm iterations.

Fig.(1-6) shows the performance of the reduced-area support constraint method. After using
few times temporary mask as the constraints, the simple GS algorithm could converge to the
right result.

1-3 Factors Affecting PSF Image Quality

The ideal condition of phase retrieval problem assumes that the PSF image is only the in-
tensity of the object, and it is proportional module’s square of the Fourier transform of the
wavefront in the pupil plane. But in fact, there is inevitably noise and aberration in the
"background" of PSF image. The noise can cause spot in the retrieved phase, or worse, the
phase cannot be restored. Besides, the imaging camera cannot accurately record the image of
the object. Different colors may appear as the same color in the captured image, as there is
limitation of color depth of camera. These effects cause the failure of converging when apply
GS algorithm to the measured images. In this section, we are going to discuss the theoretical
background of factors that have effects on PSF image quality.

1-3-1 Noise: Theoretical Background

Image noise is the random variation of brightness or color information in the image produced
by the sensors and circuits of a scanner or digital camera, and it may also originate from
film grain and in the unavoidable shot noise of an ideal photon detector[16]. Noise could be
modeled in two kinds, i.e. additive noise and multiplicative noise.

Let f(-) denote an image. We define the desired component of the image as g(-) and the noise
component as n(-). For additive noise, it can be formulated as

fC)=4g()+n(). (1-5)
An example of additive noise is Gaussian noise.

For multiplicative noise, the decomposition of the image is
fC)=9()n(). (1-6)

Master of Science Thesis Runfei Liu
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Speckle is a kind of noise that often modeled as multiplicative.

Additive noise does not affect the value of the image, while multiplicative noise may cover and
destroy information of the image. A simple example is when n(-) is 0, then f(-) will be 0 and
there is no ideal to get value of g(-). Hence, additive noise is easier to deal with, comparing
with multiplicative noise. Additive and multiplicative models are used to fit the noise, but
not guarantee to fit perfectly. Thus, it is usually impossible to remove all the effects of the
noise. But a well-fitted model would be convenient for mitigating the effect of noise.

*) (©)

100 100

200 200
300 300 |

400 |

400 (4

500 500

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Figure 1-7: The effect of Gaussian noise and speckle noise. (A) is the original figure without
noise; (B) is adding speckle noise to (A) and (C) is adding Gaussian noise to (A).

Fig.(1-7) shows the effect of speckle noise and Gaussian noise, respectively. The Gaussian
noise is zero-mean Gaussian white noise with a variance of 0.01. For speckle noise, the
decomposition of the image is

f=gx(1+n),

where n is uniformly distributed random noise with a mean of 0 and a variance of 0.05.
Both two kinds of noise can impair the quality of the image. But there are some differences
between additive noise and multiplicative noise. For example, the light-dark relationship of
(C) in Fig.(1-7) has not changed significantly, while the highlight part of (B) is obviously
darker than that of (A).

1-3-2 Limitation of Camera’s Color Depth

Color depth, also known as bit depth, is either the number of bits used to indicate the color
of a single pixel in a bit mapped image, or the number of bits used for each color component
of a single pixel. "Bit" is a computer storage unit. Computer uses binary, hence a single bit
only have 2 value, 0 and 1, which means that only 2 colors could be stored. Analogously, n
bit can express 2" numbers. Therefore, 8-bit is 256 possible integer values. If it is a gray-scale
image, the color will be expressed as an integer in the range of 0-255 with "0" is black and
"'255" is white.

The higher bit number the camera has, the more colors can be expressed in the image. Hence
the quality of measured image depends on the color depth of camera. When a large range of
the similar color appears, lower bit camera is not able to express the smooth color change as
the color change is small and the number of color is not enough. Eventually the similar colors
in a range will appear in the image as the same color, and cause dividing line between color
and color.

Runfei Liu Master of Science Thesis



1-3 Factors Affecting PSF Image Quality 9

Fig.(1-8) shows the simulated PSF results of the same object collected by 2-bit, 4-bit and
8-bit cameras. It is clear that with higher bit number, the changes of colors are more smooth
and delicate. Lots of details are lost in low bit number PSF result, and the color layering is
also obvious.

If we focus on the brightest part of the PSF, i.e. the central yellow part and compare 2-bit
and 8-bit PSFs, it is apparent that there are at least 2 kinds of yellow colors actually but they
are presented in the same way in 2-bit PSF. Image distortion occurs in collections of 2-bit
camera. Lots of details are lost due to low bit. Compared with this, 8-bit camera can display
256 colors, which is enough for many application.

2-bit 4-bit 8-bit
20 20
40 40
60 60
80 80
100 100
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Figure 1-8: One PSF image (zoomed) under 2, 4 and 8 color depth.

In this chapter, "what is phase retrieval problem" is answered. The development of solutions
to this problem is reviewed. Among many methods, a classic algorithm, Gerchberg-Saxton
algorithm is explained in detail, including twin stagnation, which is a defect of GS algorithm.
Meanwhile, two factors that affect the quality of PSF image, noise and camera’s color depth,
are mentioned as well.
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Chapter 2

Proposal of Modification on
Gerchberg-Saxton Algorithm

In this chapter, proposal of a modified Gerchberg-Saxton algorithm is introduced. The modi-
fication aims to expand the application of Gerchberg-Saxton algorithm on over-exposed PSF,
i.e. retrieve phase from PSF with high level saturation, as well as reduce noise interference
in the input field to the phase restoration.

2-1 Premodifier: Theoretical Background

Premodifier, also called as preconditioner, conditions a given problem into a form that is more
suitable for numerical solving methods. For a linear system

Az = b,

with matrix A, instead of solving the system itself, one may solve the right preconditioned
System:

AP 'Pr=1b
via solving
AP ly=1b
for y and
Pz=y

for z. Here, matrix P is a preconditioner, and it is common to call T = P~! the preconditioner.
Preconditioner is useful in iterative methods to solve the original system.[17]

Master of Science Thesis Runfei Liu



12 Proposal of Modification on Gerchberg-Saxton Algorithm

2-2 Over-exposure as Premodifier

As mentioned in Chapter 1, the measurements collected by imaging camera could be over-
exposed in some cases. Over-exposure is when an image appears brighter than it should, or
brighter than neutral exposure. When too much light hits the camera’s sensor, it results in
an extremely bright image, which is overexposed.

Over-exposure can be considered as a premodifier in phase retrieval problem. Suppose that
p(x) denotes the real intensity, and o(x) is the over-exposed PSF, i.e. data collected by
imaging camera. The mathematical model of over-exposure can be expressed as:

where ¢ is a constant which acts as a cut-line.

Over-exposure can be positive for phase retrieval. Compare with PSF without over-exposure,
the over-exposed PSF has clearer structure and more details, since there is more light and the
intensity that below the cut-line is actually enhanced. Fig.(2-1)[18] is an excellent example
to show the positive effect of over-exposure. The original experimentally measured PSF is
simple, and after over-exposure, the structure of the PSF is highlighted and more information
could be collected.

(a) Experimentally measured PSF. (b) Measured PSF overexposed to highlight
structure.

Figure 2-1: A good example for positive effect of over-exposure.[18]

However, if the saturation level of over-exposed PSF is too high, the image would be extreme
bright and it limits detail in the image and reduces opportunity for shadowing or distinguish-
able highlights in the image.

2-3 Adjustment of Simple Gerchberg-Saxton Algorithm

To expand the application of GS algorithm on over-exposed PSF, we propose to modify the
algorithm on the constraints, and the algorithm is combined with the phase diversity method
to remove bias in background or noise in the image.

Runfei Liu Master of Science Thesis



2-3 Adjustment of Simple Gerchberg-Saxton Algorithm 13

2-3-1 Modification on the constraints on Fourier Domain

Fig.(2-2) and Fig.(2-3) show over-exposed image and the section view of real and simulation
PSF, respectively. It is clear that the central part of the PSF, i.e. the part suffers from
over-exposure, has the maximum intensity. Compare with the PSF of the same object but
without over-exposure, the real information of these over-exposed pixels are lost.

100 0.8

200 0.6
300 0.4

400 0.2

500 0

100 200 300 400 500 0 100 200 300 400 500 600

(a) Real PSF image with high level saturation. (b) Section view of (a).

Figure 2-2: A real PSF image and the section view of a high level saturated object.

0 100 200 300 400 500 600

b) Secti i f (a).
(a) Simulated PSF image with 0.5 over- (b) Section view of (a)

exposure level.

Figure 2-3: A simulate PSF image and the section view of a high level saturated object.

In simple GS algorithm, which is shown in Fig.(1-2), the Fourier domain constraint |H| is the
square root of the intensity. It is according to Eq.(1-1). However, for over-exposed PSF, its
square root is not the Fourier magnitude, thus the simple GS algorithm does not apply well
in this situation. In this proposal of modified GS algorithm, in order to maximize the use of
available data, a mask is designed. This "valid data mask" is a binary mask, and only save
data that do not reach the maximum. And for the pixels that reach the maximum intensity,
there is no constraints on and will keep the amplitude in the iteration.

Master of Science Thesis Runfei Liu



14 Proposal of Modification on Gerchberg-Saxton Algorithm

As presented in Fig.(2-6), the modified constraint on Fourier domain is:

Fi(k)
| Fi (k)|

’

F

7

(k) = M - [H(k)| -

+~v(1—M) - Fi(k). (2-1)

Fi(k) and F; (k) denote the Fourier transform and the estimate in the i iteration, respectively.
M denotes the valid data mask, and ~ is a parameter that adjusts magnification of the un-
update part to keep it at the same order of magnitude as other data and make sure the part
is the brightest. Fig.(2-5) is an example to show the importance of setting a parameter like
7. Though the un-update part has the highest value, these values are too huge to match
other part and the reliable part, where the pixels values are updated, would be ignored in
the following iteration process. If we do not make adjustments to this part, the algorithm is
likely to regard the input PSF as the PSF of the point light source with piston phase, and
finally output the wrong result. Fig.(2-4) is an example of valid data mask when the input is
the simulation in Fig.(2-3).

(A) 1 (B)
100 0.8 100 :
200 0.6 200

- < o8 '
300 0.4 300
400 02 400 '
500 0 500

100 200 300 400 500 100 200 300 400 500

Figure 2-4: (A)Valid data mask of simulation in Fig.(2-3).(B) The Fourier domain constraint of
Fig.(2-3).

50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600

(a) Fourier domain constrain image without (b) Section view of the Fourier domain con-
parameter 7. strain.

Figure 2-5: Figures about Fourier constrain and its section view.
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Fourier
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Figure 2-6: The block diagrams of algorithm with a modified constraint on Fourier domain.

In this thesis, we propose 3 ideas to decide the parameter v. We use Fig.(2-3) to compare
the evaluation of these 3 methods as we know the ground truth in this case. In this chapter
we explain two of them and introduce the rest in the appendix, since the idea of the rest one
is in-comprehensive, though it works to some extent.

The difference between the following two methods is how much we know about prior infor-
mation. For the case that we only have the over-exposed PSF, v can be calculated according

to
_JVI- V)
TT A=) [ F @)

with I is the input over-exposed PSF data, M is the valid data mask and f;(z) is a complex-
value result after being imposed real-space magnitude constraints in the iteration process.
The effect of v is shown as Fig.(2-7). The details of the diffraction are saved and the un-
update part matches well. As the value of v is related with f;(z) and f;(x) is changed after
every iteration, v needs to be updated on each iteration.

(2-2)

50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600

(a) Fourier domain constrain image. (b) Section view of the Fourier domain con-

strain.

Figure 2-7: Figures about Fourier constrain and its section view when using =y calculated by
Eq.(2-2).
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16 Proposal of Modification on Gerchberg-Saxton Algorithm

For the case that we know both the original PSF and an over-exposed one, which expressed
as Iegp and Iy in Eq.(2-2) respectively, the parameter v is decied by

1,
v = mean(%). (2-3)
ort

In this method, we consider that the over-exposed PSF is the cut of magnification of original
PSF. Hence we divide the two PSF. Notice that we only use the "valid values", i.e. values
under the maximum. Fig.(2-8) presents the effect of v calculated by Eq.(2-3). In this case
~ will not change in the iteration. One thing needs to point out is that in practice the PSF
images are influenced by noise, which leads to the quotient of ]Ieﬂ be different in every pixel,
and therefore we calculate the mean of the quotient in everwa)ixel. However, though the
method of calculating the average value is more comprehensive, the calculated result may be
smaller than the actual magnification, which will lead to double peaks, as Fig(2-8(b)).

50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600

(a) Fourier domain constrain image. (b) Section view of the Fourier domain con-
strain.

Figure 2-8: Figures about Fourier constrain and its section view when using 7 calculated by
Eq.(2-3).

2-3-2 Moadification to Remove Background

An ideal PSF has a 0 background, which means pixels that are far from the center diffraction
area of PSF have zero intensity. However, in practice, the PSF images measured by the
optic imaging system contain unavoidable noise and aberration, which cause the background
non-zero. The ba ckground will interfere with the convergence direction of the simple GS
algorithm and affect the result of the restoration.

To solve this problem, we integrate a method that mentioned by Oleg Soloviev et al. in [19].
They suggest to use a phase diversity method to separate the negative background from PSF
and to reduce the effect of the background.

Incoherent 3D Phase Retrieval Problem

The background of experimental PSF image, which technically is supposed to be zero, contains
noise and stuff thus is non-zero. Removing the background could reduce the iteration times
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2-3 Adjustment of Simple Gerchberg-Saxton Algorithm 17

of the GS algorithm and improve the retrieval quality. Suppose that the background is a
constant and could be expressed as following equation:

I =y* = |Fola(z)e”D)]* +b. (2-4)

It can be considered as an incoherent 3D phase retrieval problem. 3D phase retrieval problem,
also known as phase-diverse phase retrieval, is a method to retrieve phase when we know the
information about PSF image and series of real-space amplitude. 2D phase retrieval problem,
such as Eq.((1-1), becomes find ¢ € R, if y,a1,...,aps € R are known

y2 = |.7:2(CL162¢)’2 + ...+ |]:2(aMei¢)|2. (2—5)

Consider a vector v = (Fa(a1e™®), ..., Fa(apre’®)), then Eq(2-5) is equivalent to

2
y? = |lvlly = | Fuoll 3, (2-6)

and Fiv = fl((fg(alei¢), - fg(aMei¢)) = fg(a1€i¢, - aMei¢).

Fig(2-9) and Eq(2-7) are the prior information. z and X are a Fourier pair. p;; is the
amplitude of PSF at position (7, j) and |z| is the amplitude of pupil. Every element in vector
x; j,. has same phase.

=

i5£a

A\
B

J
A/
B

Figure 2-9: Incoherent 3D PR problem.

X = fg:ﬂ
2
pij = [ Xij.1l3 (27)
a = |z|
argxig 1 = ... = argx; j M

We can use above 3D phase retrieval method to solve Eq(2-4) by adding an additional delta
amplitude, i.e. only one pixel is non-zero in the amplitude. Hence Eq.(2-4) can be expressed
in form:

I =y* = |Fa(a()eD)]? + | Fo(Vb3(2)e ) (2-8)
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18 Proposal of Modification on Gerchberg-Saxton Algorithm

In equations (2-4) and (2-8), F2 denotes 2 dimensional Fourier Transform. §(x) is the delta
amplitude. The specific value of background b is not necessarily known, since it has no
influence of phase retrieval when using the following algorithm3.

Algorithm 3 3D Vector Gerchberg-Saxton algorithm[20]

Input: a - Real space amplitude constrain,
VPij = I Xij.|l, - Fourier magnitude constrain,
¢o - Random guessed initial phase
Output: ® - Retrieved phase.
Initialization: zo = |a|e!®
General Step (k=1,2,...):
1: )ﬁk ::‘Féxk
2. Xk = x/ﬁagTE§%?;H;

3 ghtl = it xk

Akl
4 ML = arg 2 amﬂ;'xi,j,m
by Zm 1,7,m
r k41
k+1 1P
5 xi,j,m alvjvme n
Go to 1.

2-4 A Modified Gerchberg-Saxton Algorithm

Based on the previous two modifications in the simple Gerchberg-Saxton algorithm, here is a
proposal of a modified Gerchberg-Saxton algorithm.

Algorithm 4 Proposed Method: Modified Gerchberg-Saxton algorithm for over-exposed PSF

Input: a - Real space amplitude constrain,
VPij = [ Xi .||, - Fourier magnitude constrain,
¢o - Random guessed initial phase,
M - The valid data mask,
~ - A constant parameter.
Output: ® - Retrieved phase.
Initialization: zo = |a|e’®
General Step (k=1,2,...):
1: )%k ::.Féxk .
2 XF =M. /pijrecr + (1 - M) X*

7,112
3: gt = Frlxh
Zmai,jnn'i‘,ﬁ;}n

S Y T i
50 @y 5y = Qijm€

6: Go to 1.

L@kt
4: (IDi’j’. = arg

Fig.(2-10) shows the block diagram of the process of the proposed method. This proposed is
supposed to retrieve phase from PSF images that suffered from over-exposure and noise.
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X 3D Fourier
Xty ————————» 7
transform Xk
K+1 kit
Xijm = Qijm-€ l
. Impose
~Ak+1 .
k+1 _ Em ai,j,m ’ xi,j,m Fourier
q)i.j.' = ar, ET Magnitude
mYijm Constraint
Inverse Sk
2k+1,__ | 3D Fourier XK=M- [pij o + v — M) XF
transform ”Xi.j.-“?_

Figure 2-10: The block diagram of the proposed method.

In this chapter, modelling of over-exposure and details of the proposed modified Gerchberg-
Saxton algorithm is described. This algorithm has the ability to handle over-exposed PSF
images as well as reduce the negative effect of noise and aberrations. In the following chapters,
we test our new algorithm on numerical simulation experiments and apply the algorithm on
real data, to check its robustness against noise and over-exposure. Meanwhile, whether over-
exposure could improve the performance of the algorithm when used as a premodifier will
also be answered in the following chapters.
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Chapter 3

Numerical Simulation Experiment for
Testing Modified GS Algorithm

We firstly implement numerical simulation experiment on MATLAB platform to test and verify
the proposed algorithm. Two types of phase are used to generate PSF images in the experi-
ment, one is random multiple low-order Zernike polynomials phase and another is a picture
Lena. This chapter illustrates the way to build forward model, the process of the experiment
and analysis of results.

3-1 Forward Model for PSF Generation

3-1-1 Original PSF Images Generation

The point light source emits light uniformly in all directions, and its size is negligible. The
light wave emitted by the light source can be described as a wavefront. The description of
the wavefront at the aperture is called the pupil function. The pupil function describes the
wavefront that enters the aperture of the imaging system, and it is expressed as

P(.’E, y) = A(.T, y) * ei¢(iﬁ,y)_ (3_1)

Eq.(3-1) describes a two dimensional pupil function. x and yrepresent the coordinate position.
¢(z,y) is phase, and A(x,y) is the amplitude function of the aperture. Aperture’s amplitude
function, as shown in Fig.(3-1), is a binary function with the inside aperture value is 1 while
the outside value is 0.

One way to describe phase ¢(z,y) is using weighted sum of Zernike polynomials, like Eq.
(3-2)
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22 Numerical Simulation Experiment for Testing Modified GS Algorithm

1
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Figure 3-1: An example of aperture function.

The coefficient a; determines the amplitude of Zernike polynomial Z; in the wavefront. In
our experiment, we use low-order Zernike modes, i.e. the first 15 Noll’s ordering Zernike
Polynomials. Description about these Zernike Polynomials is in Appendix A-3.

Point Spread function (PSF) is the image of a point source as seen by the imaging system.
The wavefront results in the intensity distribution and the relationship between wavefront
and PSF is

I =|F(P(z,y))]” = |F(A(z,y) » /)2, (3-3)

with F represents Fourier transform. In this case, it is two dimensional Fourier Transform.

In the experiment, we use two kinds of phase to generate PSF image. One is like Eq.(3-2),
which is made of some of the first 15 order Zernike modes with random coefficient; another is
a certain picture, as shown in Fig.(3-3). The size of phase is 512x512 pixels, and the aperture
radius is 15 pixels. The size of aperture determine the diameter of the PSF. Fig.(3-2) shows
the difference between radius 15pix aperture and radius 60pix aperture.

500
100 200 300 400 500 100 200 300 400 500

(a) PSF of aperture with radius 15pix. (b) PSF of aperture with radius 60pix.

Figure 3-2: Difference between PSF generated by radius 15pix aperture and radius 60pix aperture.

It is obvious that the smaller the aperture is, the larger Airy disk will be. Airy disk is
description of the best-focused spot of light that a perfect lens with a circular aperture can
make, limited by the diffraction of light[21]. When the size of PSFs are the same, bigger size
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3-1 Forward Model for PSF Generation 23

Airy disk contains more information. In order to make the algorithm work better and obtain
good experimental results, we set the aperture radius as 15pix. Fig.(3-3) shows two kinds of
phase and their pupil functions that we use in the following numerical simulation experiment.

4
3
2
1
‘
J 0
El
“
100 200 300 400 500

f
G

&
&

-

(a) Zernike Phase (b) Pupil Function of Zernike Phase
05 ‘“
(c¢) Picture(Lena) Phase (d) Pupil Function of Picture(Lena) Phase

Figure 3-3: Two kinds of phase and their pupil functions used in the experiment.

3-1-2 Over-exposure Simulation

The final goal of the experiment is to verify feasibility of the modified GS algorithm for
over-exposed PSF images. In Section 3-1-1, an ideal PSF image is generated. To simulate
over-exposure, firstly the intensity should be enhanced, as more intensity of light is collected
by camera, which leads to a brighter image. To simulate the limitation of camera’s color
depth, we set a constant acts as cut-line. For example, for 8-bit camera, the range of colors
is 0-255, then the cut-line is 255 and the over-exposure function could be

olz) = {a -p(z), a-p(x) <255 (3-4)

255, a-p(z) > 255"

with « is a constant parameter, which represents the magnification of the original PSF p(z).
Fig(3-4) is an example of a PSF and the over-exposed one with a = 5.

In our simulation, we normalize PSF images to make them in range 0 — 1. This is to facilitate
applying noise to the image later. In order to indicate how exposed the image is, we introduce
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Original PSF Five times the intensity Over-exposed PSF
300 1500 300
200 1000 200
100 500 100
0 0 0
0 200 400 600 0 200 400 600 0 200 400 600

100 100 100

200 200 200

300 300 300

400 400 400

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Figure 3-4: An example of generating an over-exposed PSF. Figures in the top row are cross
sections of the bottom PSF images.

a parameter, i.e. "over-exposure level', a in Eq.(3-4). Over-exposure level is a constant that
denotes how many times the intensity increased by exposure of the part where the intensity
is under the limitation of the color depth. Over-exposure level of a PSF that has no effect
of exposure is 1, and the example in Fig(3-4) has over-exposure level as 5. The higher over-
exposure level, the greater the impact of over-exposure. We set four different over-exposure
level in our experiments, i.e. 1, 1.25, 2, 5. Fig(3-5) and Fig(3-6) are PSF images of two kinds
of phase with four over-exposure levels.

3-1-3 Noise Simulation

We add white Gaussian noise to the PSF image in this numerical simulation to simulate noise.
The basic information about Gaussian noise can be found in A-2.

Gaussian noise is usually modeled as an additive noise. Fig.(3-7) shows the effect of a small
amount of Gaussian noise and of an increased noise. Gaussian noise with larger variance
value can make more "fuzziness". Various filtering techniques can improve the image’s quality,
though usually at the expense of some loss of sharpness[22].

In the simulation, we assume the noise is additive Gaussian noise. Using Matlab command
imnoise, we directly add Gaussian noise to PSF images. We use signal-to-noise ratio (SNR)
to qualify the influence of noise and the corresponding SNR, values are 100dB, 80dB, 50dB
and 20dB. We consider that SNR= 100dB denotes there is no noise in the image.
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Figure 3-5: Four over-exposure level used in the simulation of object Lena. (a) The original
PSF. (b) PSF with over-exposure level 1.25. (c)PSF with over-exposure level 2. (d)PSF with
over-exposure level 5. The bottom plots are the section views of the tops.
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Figure 3-6: Four over-exposure level used in the simulation of object Zernike modes. (a) The
original PSF. (b) PSF with over-exposure level 1.25. (c)PSF with over-exposure level 2. (d)PSF
with over-exposure level 5. The bottom plots are the section views of the tops.
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Figure 3-7: PSF images suffering from different level noise. (a) is a PSF image without noise.
(b)-(d) are PSFs influenced by Gaussian noise with 0 mean and 10~!!, 1078,10~° variance,
respectively.

3-1-4 Simulation of Color Depth of Camera

One reason that causes over-exposure is the color depth of imaging camera is not enough
to smoothly present all the captured colors. The relationship between color depth, i.e. bit
number, and the number of colors that can be presented is as follows:

N =2" (3-5)
where N denotes how many colors can be shown at a time, and n denotes the color depth.
In our experiment, we assume the camera’s color depth is 8, i.e. total 256 colors can be

expressed in the image. In order to facilitate our operation on the matlab, all PSFs have been
normalized, and the intensity is in the range of 0 — 1.

object 1-Lena object 2-Zernike Polynomials

200 3

2 2

15 !

’ o

1
1
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o 3
00 250 300

220 240 260 280 300 El

100 200 300 400 500

100 200 300 400 500

Figure 3-8: The two objects used in simulations in the top row and the corresponding PSF
images (no noise and over-exposure) in the bottom row.
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3-2 Results and Analysis of the Numerical Simulation

In this section we discuss the results of the simulations with different levels of noise and
over-exposure. We compare the proposed modified GS algorithm to the simple GS algorithm.
Two kinds of phase, as shown in Fig(3-8), are used to generate PSF images. We set four
levels of over-exposure and noise respectively, as introduced in the last section. The details
parameters are recorded in Table3-1. Except running the proposed modified GS algorithm
on the simulation, we also run the simple GS algorithm with object 1. The aim is to compare
the performance of the two algorithms.

parameter inputs
object object 1: Lena
object 2: Zernike Polynomials
0 (100dB)
noise 10~1* (80dB)
variance of Gaussian noise (SNR) 108 (50dB)
1075 (20dB)
1
over-exposure level 1.25
2
5

Table 3-1: Settings of the simulation. The object can be found in Fig(3-8).

25

05

100 200 300 400 500

Figure 3-9: The random guess initial phase of the proposed method.
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SNR=100dB
Convergence Speed SNR=84dB
SNR=55dB
100 over-exposure level=1 100 over-exposure level=1.25 SNR=26dB
\ '
f'\\ BN
', ! -
w \ w | .
% 100} \ ‘.-'é'j 1070 F Y .
o \ ¥ \ N
\ \ \ T
1 \ "
N \ ~
N .
e e e = T ————]
10720 1020
0 1000 2000 3000 4000 0 1000 2000 3000 4000
iteration times iteration times
" over-exposure level=2 o over-exposure level=5
10 10
ot h‘._‘ o
107 I 107 W’w\/\h—\
— N "
w — u NN
2 10710 — E.'é'j 10710 — N D
= — = \\\ .
— SN
1018 ] 1015 R .
, o
- = S —
1020 10720
0 1000 2000 3000 4000 ] 1000 2000 3000 4000

iteration times iteration times

Figure 3-10: Modified GS algorithm convergence speed plots of objectl Lena. The x- axis
presents iteration time, and the y- axis is the root mean square of difference of results of every
two iterations. In every experiment, the algorithm converges to a result, as plots reach a stable
state.

Every experiment the algorithm run 4000 times iteration. The initial phase is a random guess
in the range of (0,7), as shown in Fig.(3-9). According to Fig(3-10) and Fig(3-15), we can
check the converge speed. It plots x- and y-coordinates using a linear scale on the x-axis
and a base-10 logarithmic scale on the y-axis. The y- axis presents the root mean square of
difference of results of every two iterations. When the plot has a rapid decrease and finally
reaches a stable state, we consider the algorithm converges to a result.

The standards we use to compare performance are the average of the error, i.e. ME, and
Peak signal-to-noise ratio (PSNR), with the ground truth as the reference. The error is using
retrieved phase subtract the ground-truth, i.e. the object in Fig.(3-8). Besides, the error
between every experiment result and the ground truth are presented in Fig.(3-12) and Fig.(3-
17). From this, the quality of retrieved phase can be observed intuitively. PSNR is one of the
commonly used standards to measure the effect of restoration. Its unit is decibel. The larger
the value of PSNR, the closer the comparison value is to the reference value.

Fig.(3-11) and Fig.(3-16) show results of using modified GS algorithm to retrieve object Lena
and Zernike modes from different noise and over-exposure. Fig.(3-13) and Fig.(3-18) plot
mean error of results for the 2 objects, while Fig.(3-14) and Fig.(3-19) plot the PSNR of
results. Following we analyze these figures and evaluate the performance of the modified GS
algorithm from the ability on dealing with noise and over-exposure.
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Figure 3-11: The retrieved phases in experiments of object 1 via proposed modified GS algorithm.
In the 4 x 4 images array, the experimental input of each row has the same over-exposure level,

and the experimental input of each column has the same SNR.
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Figure 3-12: The differences between every experiment result and the ground truth Lena. In the
4 x 4 images array, the experimental input of each row has the same over-exposure level, and the

experimental input of each column has the same SNR.
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Figure 3-13: Plots of the average error of results about using modified GS algorithm to retrieve
object Lena from different noise and over-exposure level. Over-exposure level is a constant that
denotes how many times the intensity increased by exposure, e.g. over-exposure level 1 means no
over-exposure effect and 5 means the intensity is enlarged 5 times.

3-2-1 Robustness against Noise

As shown in Table3-1, we add different levels of Gaussian noise to the original PSF and make
the Signal-to-noise Ratio (SNR) at 80dB, 50dB and 20dB. The original PSF acts as a control
group and its SNR is considered as 100dB. The larger the value of SNR, the smaller the
signal is interfered by noise. For more information about SNR, look up the Appendix(A-4).

From Fig(3-13), we know that when the noise level is low, i.e. SNR is higher than 80dB,
the changes of every plot are slight. With the same over-exposure, low noise interference
has little effect on the ability of the algorithm to reconstruct the phase. We can suppose
that the algorithm has robustness against low noise. However, when the noise has higher
power, the performance of the algorithm decreases evidently, especially for the PSF without
over-exposure. It is a support that over-exposure premodifier can offset some of the negative
effects of noise. For cases that the PSF images suffer from high level noise, no matter what
level of over-exposure premodifier is, the retrieved phase contains clearly noise. Therefore,
we cannot assert that over-exposure is effective for high-level noise for this object based on
Fig.(3-13).

The information that we can obtain from Fig.(3-14) is that retrievals of the input without
over-exposure have the lowest PSNR in a high level noise condition, which intimates in this
situation the over-exposure could be helpful for phase restoration.

Results of object2 are slightly different with the objectl. Firstly, the range of ME enlarges.
Fig(3-18) shows that for inputs with low saturation, i.e. the red line and blue line, when
the SNR changes from 100dB to 80dB, the error becomes larger but still at a tiny value;
for inputs with high saturation, changes in SNR has slight influence on the performance. In
Fig.(3-19), as the influence of noise increases, the four plots have not changed much, which
also shows the stability of the algorithm.
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Figure 3-14: Plots of PSNR of the retrieval in every experiment. Every plot has the same
over-exposure level. x-axis and y-axis denote SNR in every experiment input and values of PSNR,
respectively. The ground truth acts as the reference when calculate PSNR. Larger PSNR is
considered as better retrieval.

In every over-exposure condition, the modified GS algorithm presents the robustness against
noise. Although the mean error of some results are not good, the algorithm finally converges
to a result similar to ground-truth in each set of experiments. Meanwhile, the retrieved
phases are as the same or similar with the ground truth. It also means the algorithm as least
converges to right solution.

3-2-2 Over-exposure Premodifier

Four level of saturation are simulated in the experiments. Over-exposure level is a constant
that denotes how many times the intensity increased by exposure, e.g. over-exposure level 1
means no over-exposure effect and 5 means the intensity is enlarged 5 times.

From Fig.(3-13) we can see that when the input images suffer from higher level noise, the
over-exposure premodifier can cancel out a certain degree of negative effect of noise, as the
changes in line "over-exposure level = 1" are the most. Fig.(3-14) also supports this. When
the inputs only has 20dB SNR, the retrieval of the one where has no over-exposure effect has
the lowest PSNR.

Comparing the red line and the blue line in Fig,(3-18) we can consider that over-exposure
premodifier has an effect on improving the performance of the algorithm. The low level over-
exposure has almost the same result of the control group in the low level noise cases, and
have smaller mean error value when the SNR is in the range 30dB — 80dB. The situation is
different when the SNR value is small. No matter which object, the blue points is not the
lowest, which means that when the noise interference is strong, over-exposure may help phase
recovery.

However, results shown in Fig,(3-19) is unexpected, as results of inputs with the highest
over-exposure level have the best performance in PSNR while results of inputs without over-
exposure have the lowest PSNR values. Though all PSNR values are at low level, around
20dB.
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Figure 3-15: Modified GS algorithm convergence speed plots of object2 Zernike modes. The x-
axis presents iteration time, and the y- axis is the root mean square of difference of results of
every two iterations. We consider that in every experiment the algorithm converges to a result,
as plots reach a stable state or have small RMSE at the end of iteration.

Both Fig(3-13) and Fig(3-18) results of inputs with lower saturation are better than those
with high saturation. Inputs with high level over-exposure have high mean errors. However,
from Fig.(3-12) and Fig.(3-17) we can see that errors of high saturation inputs are similar
with the ground truth. We consider it as in these cases the algorithm reconstructs the phase
well but the amplitude is multiplied a constant comparing with the object. The over-exposure
premodifier highlight the structure of PSF, thus the details that were originally in the shadows
emerge, i.e. the size of PSF becomes bigger. The higher the amplitude of phase, the bigger
size of PSF. Therefore, when the PSF becomes bigger, the retrieved phase may have larger
amplitude. If we only care about the information in the image, then the multiple change of
the amplitude does not affect how the phase looks. As shown in Fig.(3-11) and Fig.(3-16),
results of high saturation are quite close to the ground truth but with higher contrast.
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Figure 3-16: The retrieved phases in experiments of object 2 via proposed modified GS algorithm.
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Figure 3-17: The differences between every experiment result and the ground truth Zernike
modes. In the 4 x 4 images array, the experimental input of each row has the same over-exposure
level, and the experimental input of each column has the same SNR.
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Figure 3-18: Plots of the average error of results about using modified GS algorithm to retrieve
object Zernike modes from different noise and over-exposure.

3-2-3 Comparison between Modified GS and Simple GS

To test whether the proposed modified GS algorithm has the ability to deal with the over-
exposed and effected by noise PSF, we run the simple GS algorithm on object with phase
Lena. Fig(3-20) presents the results of these simulations. Fig.(3-21) and Fig.(3-22) are plots
of mean average and PSNR for every experiment.

Generally speaking, performance of the simple GS algorithm for processing input with noise
and over-exposure is not as bad as we assumed, as the most results are the same with Fig.(3-
11). Only when both noise and over-exposure are in high levels the algorithm cannot converge
to a good result.

In Fig.(3-21) and Fig.(3-22), we compare results of two algorithms under the same over-
exposure and noise level. Except the case without noise and over-exposure, under the same
conditions of noise and overexposure, the results of modified GS algorithm have smaller mean
error and larger PSNR than results of simple GS algorithm. This also shows that the modified
GS algorithm has indeed achieved our expected goal to a certain extent: it can retrieve the
phase from the image disturbed by noise and overexposure.

In this chapter we use PSF images generated with different levels of noise and over-exposure
to test the performance of the proposed algorithm. In experiments, the algorithm shows
robustness against noise and against low level saturation.

Runfei Liu Master of Science Thesis



3-2 Results and Analysis of the Numerical Simulation 35

obejct:Zernike Polynomials
T

22 T T T T ]
215 ]
[ - ]
21 L * # ]
@ 3 _ ]
o H — ]
c 205 = 1
z - —* + * ]
20r L ]
F —+— over-exposure level=1 1
[ —#— over-exposure level=1.25 | ]
19.5 r over-exposure level=2 ]
L —#— owver-exposure level=5 1
19 L | | | | | ]

20 40 60 80 100

SNR(dB)

Figure 3-19: Plots of PSNR of the retrieval in every experiment. Every plot has the same
over-exposure level. x-axis and y-axis denote SNR in every experiment input and values of PSNR,
respectively.
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Figure 3-20: The retrieved phases in experiments of object 1 via the original GS algorithm. In
the 4 x 4 images array, the experimental input of each row has the same over-exposure level, and
the experimental input of each column has the same SNR.
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Figure 3-21: Plots of mean error of results about using simple GS algorithm and modified GS
algorithm to retrieve phase Lena from different noise and over-exposure. Lines with stars are
results of simple GS algorithm while dotted lines are results of modified GS (MGS) algorithm.
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Figure 3-22: PSNR values of retrievals with the ground truth as the reference. Lines with stars
are results of simple GS algorithm while dotted lines are results of modified GS (MGS) algorithm.
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Chapter 4

Apply Maodified GS Algorithm on Real
Data

4-1 Experimental Data Source

There are two kinds of PSF data used in the experiments. One are PSFs corresponding to
single Zernike modes, which is mainly for deciding and correcting the aperture size of the
aperture model in our experiment. Another data are PSFs with different saturation level of
an certain object, as shown in Fig.(4-2). All data is obtained with beam diameter approx 10
mm, lens with a focal length of 300mm at wavelength 650nm with IDS UI-1490 camera. The
specification of the IDS UI-1490 camera is in Appendix A-5.

In raw data the intensity does not gather at the center of the image, as shown in Fig.(4-1).
In order to facilitate the subsequent algorithm operation, first we crop the blank part on the
right side of the image, and make the brightest part in the middle of the photo as much as
possible. To achieve this, we use a method called centroid algorithm to find the center of the
intensity. More details about centroid algorithm can be found in the Appendix A-6.

Figure 4-1: An example of a raw PSF image.
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Figure 4-2: Different saturation level PSFs with the same object. The camera is 8-bit and images
are normalized. The top-lift image is the original PSF of the object, i.e. no over-exposure. This
PSF is named as 'saturation 1', and the saturation of the subsequent images increase in order, so
we number them in the order of ascending saturation.
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4-2 Aperture Modelling 39

4-2 Aperture Modelling

The aperture decides the real-space amplitude of the PSF, which is a necessary prior infor-
mation for the algorithm. Hence, the model of aperture function is needed, and it can be
achieved by the following steps. Firstly, we calculate the numerical aperture. Numerical aper-
ture is a dimensionless number that characterizes the range of angles over which the system
can accept or emit light[23]. Based on Fig.(4-3), the image-space numerical aperture of the
lens is

D 10mm
NA = sinf ~ = =~ _ 0167 4-1
S o F T 2% 300mm ’ (4-1)

Figure 4-3: Schematic diagram of thin lens numerical aperture(NA). D and f are diameter of
beam and focal length of the thin lens, respectively. 6 is the angle that relates to NA.

where N A stands for numerical aperture, D means the diameter of the beam, and f denotes
the focal length of lens.

The radius of brightest spot in the PSF with flattened phase and the numerical aperture
have a relationship as Eq.(4-2). It is a transform of calculating the angle at which the first
minimum occurs in Airy disk. Airy disk, which is mentioned in Section 3-1-1, is the best-
focused spot of light that an ideal lens with circle aperture can make limited by the diffraction
of light. Figd-4(b) is an example of Airy disk, as it is the PSF of a spot with zero phase and
without any aberration wavefront.

1.22\

"7 9NA

=23.7. (4-2)
Therefore, the distance between the first minimum and the center of the PSF generated by
the modeled aperture with zero phase should be 24 pixels. According to this we model a
binary mask with circle aperture. Eq.(4-2) also shows that more orders of diffraction from
the object are brought into the lens as a higher numerical aperture is, thus more information
it has to form a resultant image.

To verify the correctness of the modeling, we compare the PSF generated with zero phase by
the aperture with a flattened Zernike mode PSF. The flattened PSF is considered as an ideal
PSF, i.e. no aberration and noise.
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(a) PSF generated by modeled aperture with (P) A measured PSF of piston Zernike mode.
zero phase.

Figure 4-4: PSF generated by the modeled aperture and a flattened PSF collected in the lab.
The sizes of PSF in two figures are almost the same.

The size of the Airy disk in Figd-4(a) and Figd-4(b) are the same, which shows we have
a correct modelling of the aperture function. It gives a support to continue the following
experiments.

4-3 Results and Analysis of the Experiment on Real Data

We apply our modified GS algorithm on the real PSF data with different level of saturation,
as shown in Fig(4-2). Except the first PSF, i.e. the PSF with no over-exposure effect, the
others are the inputs to the algorithm. Since in this case we have no information about the
true phase of the object, we firstly retrieve a phase from the first PSF and use this result as
a basis to measure the results of retrieval from the other PSFs.

Retrieved Phase from the first PSF

180 200 220 240 260 280 300 320
Figure 4-5: The retrieved phase of the first PSF without over-exposure.

Fig(4-5) and Fig(4-6) show the retrieved phase and the corresponding PSF. When we compare
the two PSFs in Fig(4-6), we find they have similar diffraction shape. This shows that the
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Figure 4-6: The PSF generated by the retrieved phase (left) and the input PSF (right). It can
be observed that the shapes of the left and right PSFs are basically the same.

recovered phase we obtained is similar to the actual phase, so we can use the obtained phase
as a basis for subsequent reference and comparison.

4-3-1 Case 1: Original PSF is Unknown

In this case we only have one over-exposed PSF information, i.e. we have no idea about the
PSF without over-exposure of the same object. As introduced in Chapter 2, in our algorithm
the parameter v is decided as Eq.(2-3).

Fig(4-7) presents the convergence trend of the modified GS algorithm retrieve phases from
the other 18 PSFs. At the end of 4000 iterations, though some plots do not reach a stable
state, the trend has reached a stage of rapid decline and the values of the final RMSE are
small. We consider these experiments finally converge to a result. For experiments whose
plot is not even show a rapidly decrease, we suppose that these experiments do not converge.
Experiments that fail to converge to the result are those with higher input saturation.

Firstly we compare the retrieved phases with the basis, as presented in Fig.(4-8). Expect the
first image, which is regarded as the basis, the other figures show the difference between the
phase restored from different saturation level PSFs and the basis. It can be seen that the
error is still relatively large, and the difference is mainly in the lower half of the phase.

We reconstruct PSF images using the retrieved phase. Our expectation is that the recon-
structed PSF should be similar to the first PSF, so that we could consider that the phase
may be close to the actual one. From Fig(4-9) we could see that 'reconstructed saturation 2’
and ’reconstructed saturation 3’ are close to the basis but with the increase of the saturation,
the reconstructed PSFs are more and more different with the reference. The shape of the
PSF changes from ellipse to circle, as if the ellipse is cut, and the diffraction pattern becomes
"messy" in the end. Starting from saturation 13, the diffraction rings become totally different
with the basis, as the algorithm even can not converge to a right result in these cases.
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Figure 4-7: The plots of convergence speed of 17 experiments with saturation level from 2 to
max. The y- axis is the root mean square of difference of results of every two iterations.

One explain for the change of shape of PSF from ellipse to circle may be the centroid of the
PSF is not the centroid of the over-exposed part, which is un-updated and substituted by the
product in the iteration. This may cause that the un-updated part not be filled completely
then leaves a blank in the part which should be the brightest.

4-3-2 Case 2: Original PSF is Known

Except the over-exposed PSF, in this case we also have the information about the original PSF
of the same object. Then we can use the two PSF images to calculate how many times the
intensity is enhanced by the over-exposure. This is the second method to decide parameter
~ mentioned in Chapter2, as Eq.(2-2).

First we use plots of RMSE to check the convergence state of each experiment, as Fig.(4-10)
shown. Similar with Case 1, the algorithm cannot converge successfully when the input PSF
with high saturation. This is confirmed in Fig.(4-12). From "reconstructed saturation 15" to
"reconstructed saturation max", PSFs are over-exposed and deform.

Using the same way as Fig(4-8), we calculate the error between retrieved phases and the
basis phase and obtain Fig.(4-11). Except the last five figures, which do not converge, the
rest phase still have large difference with the referenced phase, and the difference become
larger with the saturation level increases.

According to Fig.(4-12), we evaluate the function of the algorithm from the similarity between
the reconstructed PSFs and the PSF without over-exposure. "reconstructed saturation 2" to
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Figure 4-8: The first image is the phase retrieved from saturation 1 in Fig.(4-2). Using the
phases retrieved from the rest PSFs in Fig.(4-2) subtract the phase of saturation 1 we get the
error between phases.
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Figure 4-9: PSFs generated by the corresponding retrieved phases. Each phase is restored from
the PSF at the same location in Fig.(4-2). By comparing each reconstructed PSF with the first
one, we can judge the performance of the algorithm.
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"reconstructed saturation 5" have kind of similarity with "saturation 1". However, the size of
the central spot shrinks and the diffraction rings are not clear. Starting from "reconstructed
saturation 6" the shape of PSFs become distorted. However, the diffraction rings become
more and more apparent since "reconstructed saturation 9". Finally, over-exposure occurs in
the reconstructed PSF.
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Figure 4-10: The plots of convergence speed of 17 experiments with saturation level from 2 to

max. The y- axis is the root mean square of difference of results of every two iterations.
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Figure 4-11: The first image is the phase retrieved from saturation 1 in Fig.(4-2). Using the
phases retrieved from the rest PSFs in Fig.(4-2) subtract the phase of saturation 1 we get the
error between phases.
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Figure 4-12: PSFs generated by the corresponding retrieved phases. Each phase is restored from
the PSF at the same location in Fig.(4-2). By comparing each reconstructed PSF with the first
one, we can judge the performance of the algorithm.
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Chapter 5

Conclusions and Future Work

The motivation of the research is to implement an over-exposure premodifier on phase retrieval
problem and using the classic solution of phase retrieval problem, i.e. Gerchberg-Saxton
algorithm to restore phase. The goal of the thesis is to modify the simple GS algorithm so
that the algorithm can deal with the input with over-exposure premodifier and test whether
the over-exposure can improve the performance of the algorithm when it acts as a premodifier.

In this thesis we proposed a modified GS algorithm that can remove background bias and
noise in PSF image and retrieve phase from over-exposed images. In Chapter3, we simulate
numerical experiments. Using two kinds of object, Lena and Zernike modes as phase to
generate PSF images and set four different levels of noise and saturation. Based on results of
32 experiments (4 noise levels, 4 over-exposure levels and 2 kinds of object), we consider that
low level over-exposure premodifier has a positive effect on improving the robustness against
low level noise(SNR above than 60dB) of GS algorithm. But high level over-exposure may
be negative for phase retrieval, since the information covered by over-exposure are more than
the details highlighted by the premodifier.

In Chapter4d we apply our modified GS algorithm on real data. We consider two cases: the
original PSF is known and the original PSF is unknown. For each case we design a constraint
on Fourier magnitude so that we can use the information that highlight by the over-exposure
while ignore the part that covered because of over-exposure. 18 experiments of the different
levels saturated PSFs are done and the results show that the modified GS algorithm can only
deal with PSFs with low level over-exposure level. When the input PSF suffers from high
level saturation, the algorithm cannot converge to a right solution.

Although compared with the simple GS algorithm, the proposed modified GS algorithm has
stronger robustness against noise and over-exposure, there are still some drawbacks of the
algorithm. The algorithm has good results in numerical simulation experiments, but it has
limitations for real data. The real data may have more complex phase and the PSF shape.
Now our choice about the parameter that adjusts magnification of the un-update part to
keep it at the same order of magnitude as other data is still rough and has limited scope of
application. The future research direction can be refined selection of this parameter. Besides,
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we combine a 3D phase diversity method to remove the background noise in PSF. We may
consider further to use different over-exposure level PSFs as the diversity and modify this
method to solve phase retrieval problem.
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Appendix A

Appendix:Fundamental Concepts

A-1 An approach for Parameter + calculation

The idea of this approach to decide parameter -y is to calculate the mean values of the inside
and outside pixels around the junction. The main function of parameter v is to enlarge or
shorten values of the part where the Fourier constraints are not be imposed, so that this part
can smoothly connect the area where the amplitude is updated, and become the area with
the highest intensity in the whole picture.

50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 800

(a) Fourier domain constrain image. (b) Section view of the Fourier domain con-
strain.

Figure A-1: Figures about Fourier constrain and its section view when using ~ calculated by
Eq.(A-1).

) (A_l)

where O, denotes the mean value of the outside pixels and I, denotes the mean value of the
inside pixels.
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Compare with the situation that no parameter v is implemented, the approach for v calcu-
lation has a good effect. However, the drawback and limitation of the method is that only a
small number of pixels are used in the calculation. This not only leads to a lack of credibility
in the calculated results, but also wastes a lot of other information.

A-2 Gaussian Noise

The density function of univariate Gaussian noise n, which is shown as Fig.(A-2), with mean

p and variance o2 is

() = (2%02)71/2 e~ (=) /20 (A-2)

for —o0 < x < 0.

J_ —[r _11):‘20"
pa __-'/

Figure A-2: The Gaussian density.

In situations where v is a random vector, the multivariate Gaussian density becomes
pv(U) — (271—)*"/2’2|*1/2e*(v*u)TE*1(U*H)/27 (A—3)

where 1 = E[v] is a mean vector and ¥ = E[(v — p)(v — u)T] is the covariance matrix.
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A-3 Zernike Polynomials

Index Moll's crdering Mame Expression Shape PSF
Hlxy 1 piston 1 .
Zlx.y 2 tp x ' .
jf.-_- Xy 3 tlt ¥ .
Zx,y ) defocus 2?2t -1 \-’ .
.%:.1',1.' 5 astigmatism - — .|.13 : n
Z(xy) B astigmatism 2xy
jf...":l i 7 coma 32 4 ]_u‘\.l' — 2x (—) .
/ x, ¥ -] coma 3 4 1\'3].'— 2y .
J/.:::J.'.]r: 9 trefoil x¥— 3.1'].’3 r -
el

: { : h‘ -
Z % y) 10 trefol Ity -yt
P'.‘i':.l i 11 spherical [ ‘12_|.13.1'2 — fixdy l'i.iﬂ — !i]f: 1 @ .
Zlxy 12 dxd — 322 — a4 32 {j H

‘l-’ .
jf.l Iy, y) 13 Syx? + By — byx
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(=
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Frdxy) 15 Aoty — dmy? |

Figure A-3: The first 15 order Zernike modes.
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A-4 Signal-to-noise Ratio (SNR)

Signal-to-noise Ratio is a measure used in science and engineering that compares the level of
a desired signal to the level of background noise. SNR is defined as the ratio of signal power
to the noise power, often expressed in decibels. When the ratio is greater than 1: 1, i.e. SNR
is higher than 0dB, signal is more than noise.

The definition of SNR is the ratio of the power of a signal (meaningful input) to the power
of background noise (meaningless or unwanted input), which can be expressed as

P .
SNR = —signal (A-4)
Pnoise
Because many signals have a very wide dynamic range, signals are often expressed using the
logarithmic decibel scale. Based upon the definition of decibel, SNR may be expressed in
decibels as

Psi na
SNRgp = 10log;(=424l) (A-5)

Pnoise
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A-5 Specification of IDS UI-1490 Camera

1IDS:

CEFE ® @

Specifical
Sensor
Sensor type CMOS Color 0%
Shutter Rolling shutter
Sensor characteristic Linear oo
Readout mode Progressive scan .
Pixel Class UHD+ #g ot
Resolution 10.55 Mpix H
Resolution (h x v) 3840 x 2748 Pixel % 20%
Aspect ratio 4:3 5
12 bit ® 0%
Color depth (camera) 8 bit 350 400 500 600 700 800 %0 1000 1100
Optical sensor class 1/2" Wavelensth (om)
Optical Size 6.413 mm x 4.589 mm
Optical sensor diagonal 7.89 mm (1/2.03")
Pixel size 1.67 ym
Manufacturer ON Semiconductor
Sensor Model MT9J003STC
Gain (master/RGB) 8.5x/5.3x
AOI horizontal increased frame rate
AOlI vertical increased frame rate
AOI image width / step width 448/ 4
AOI image height / step width 4/2
AOQI position grid (horizontal/vertical) 4 /2
Binning horizontal increased frame rate
Binning vertical increased frame rate
Binning method Color
Binning factor 2/4
Subsampling horizontal increased frame rate
Subsampling vertical increased frame rate
Subsampling method Color
Subsampling factor 2,4
Subject to technical modifications (2021-02-24)
Page 1 of 2 www.ids-imaging.com

IDS Imaging Development Systems GmbH
Dimbacher Str.6 -8 - 74182 Obersulm - Germany - Phone +49 7134 96196-0 - E-mail info@ids-imaging.com
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1IVS:

UI-1490LE-C-HQ (AB.0010.1.45300.24

Model

Pixel clock range 5 MHz - 36 MHz
Frame rate freerun mode 3.2 fps

Frame rate trigger (maximum) 3.2 fps

Exposure time (minimum - maximum) 0.340 ms - 14582 ms
Power consumption 05W-13W

Ambient conditions
The temperature values given below refer to the outer device temperature of the camera housing.

Device temperature during operation 0°C-55°C/32°F-131°F
Device temperature during storage -20°C-80°C/-4 °F-176 °F
Humidity (relative, non-condensing) 20 % - 80 %

Connectors

Interface connector USB 2.0 mini-B

1/0 connector -

Power supply USB cable

Design

Lens Mount CS- / C-Mount

IP code 1P30

Dimensions H/W/L 48.6 mm x 44.0 mm x 25.6 mm
Mass 419

Subject to technical modifications (2021-02-24)
Page 2 of 2 www.ids-imaging.com

IDS Imaging Development Systems GmbH
Dimbacher Str. 6 -8 - 74182 Obersulm - Germany - Phone +49 7134 96196-0 - E-mail info@ids-imaging.com
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A-6 Centroid Algorithm

Centroid algorithm is a method to find the location of the center. For a 2-dimension PSF
image, the position of the center can be calculated by following formula:

> U(x,y) x x)

“T T Iy
YUy xy) (40
! Y I(zy)

where z and y are the horizontal and vertical coordinates of the point, respectively. I(x,y)
denotes the intensity of the point (z,y). Therefore, (¢, ¢, ) is the location of the center.
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