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Analytical Calculation Model for Predicting Cracking
Behavior of Reinforced Concrete Ties

Reignard Tan, Ph.D.1; Max A. N. Hendriks2; Mette Geiker3; and Terje Kanstad4

Abstract: This paper formulates an analytical calculation model for predicting the cracking behavior of reinforced concrete ties to provide
more consistent crack width calculation methods for large-scale concrete structures in which large bar diameters and covers are used. The
calculation model was derived based on the physical behavior of reinforced concrete ties reported from experiments and finite-element
analyses in the literature. The derivations led to a second order differential equation for the slip that accounts for the three-dimensional
effects of internal cracking by using a proper bond-slip law. The second order differential equation for the slip was solved completely ana-
lytically, resulting in a closed-form solution in the case of lightly loaded members and in a non-closed-form solution in the case of heavily
loaded members. Finally, the paper provides a solution strategy to facilitate a practical and applicable method for predicting the complete
cracking response. Comparison with experimental and finite-element results in the literature demonstrated the ability of the calculation model
to predict crack widths and crack spacing consistently and on the conservative side regardless of the bar diameter and cover. DOI: 10.1061/
(ASCE)ST.1943-541X.0002510. © 2019 American Society of Civil Engineers.

Author keywords: Crack widths; Crack distances; Analytical calculation model; Bond-slip; Reinforced concrete (RC) ties; Large-scale
concrete structures.

Introduction

Predicting the cracking behavior of reinforced concrete (RC) struc-
tures consistently and accurately is not straightforward. This is re-
flected in the many approaches proposed in the literature (Borosnyói
and Balázs 2005). Formulas based on empirical, semiempirical,
elastic analysis, and even fracture mechanics have all been pro-
posed. Mechanical calculation models based on the internal crack-
ing behavior of RC ties have also recently been proposed (Fantilli
et al. 2007; Debernardi and Taliano 2016; Kaklauskas 2017).

The study presented in this paper is part of an ongoing research
project with the overall objective of improving crack width cal-
culation methods for the large-scale concrete structures planned
for the coastal highway route “Ferry-free E39” in Norway. The
Norwegian Public Roads Administration (NPRA) recommends that
the design of such structures should follow the guidelines provided
in N400 (NPRA 2015), which state that the crack width calculation
methods should be in accordance with the provisions in Eurocode 2

(EC2) (CEN 2004). However, Tan et al. (2018a) showed that the
crack width formulas recommended by EC2 and the fibModel Code
2010 (MC2010) ( fib 2013) predict the cracking behavior of struc-
tural elements inconsistently, particularly in cases of large covers
and bar diameters. The analytical calculation model presented in this
paper was based on solving the second order differential equation
(SODE) for the slip when applying a bond-slip law first proposed by
Eligehausen et al. (1983) and later adopted by MC2010. Other au-
thors in the literature have used a similar approach (e.g., Russo and
Romano 1992; Balázs 1993; Debernardi and Taliano 2016), an ap-
proach which has recently been acknowledged in the state-of-the-art
French research project CEOS.fr (2016) as an alternative way of
calculating crack widths for large RC members. The main drawback
in using this approach until now was the analytically complex sol-
ution of the SODE for the slip, thus resorting to numerical solution
techniques instead and by that reducing the practical applicability of
the approach. Moreover, the background of the SODE for the slip
was never properly elaborated.

The aim of this research was to provide more realistic and
consistent surface crack width calculation methods for large-scale
concrete structures, where large covers in combination with large
bar diameters in several layers and bundles are typically used, by
deriving and solving the SODE for the slip completely analytically.
First, the SODE for the slip was derived. Then, the SODE for
the slip was solved analytically, after which a solution strategy for
determining the complete cracking response was developed for the
purposes of practical application. Finally, the application was dem-
onstrated by comparing analytical predictions with experimental
and finite-element (FE) results reported in the literature.

The analytical model was derived using the concept of axisym-
metry and applies first and foremost to such conditions. However,
it will be shown that the model also has the ability to predict the
cracking behavior of RC ties that deviate from such conditions
by transforming an arbitrary cross section into an equivalent axi-
symmetric cross section. Moreover, predicting realistic and consis-
tent surface crack widths is an important part of the structural
design, and it might also be relevant for the aesthetics of a structure
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(Leonhardt 1988). On the other hand it is often argued that the crack
width at the reinforcement appears more relevant in terms of
durability. Predicting the latter, though, becomes rather complicated
and was not addressed in this study.

Physical Behavior of RC Ties

A typical deformation configuration of RC ties according to several
experimental studies reported in the literature (Watstein and Mathey
1959; Broms 1968; Husain and Ferguson 1968; Yannopoulos 1989;
Beeby 2004; Borosnyói and Snóbli 2010) is depicted in Fig. 1(a).
Note that the crack width at the interface between concrete and steel
wcr;int is considerably smaller than that on the concrete surface wcr,
which according to Goto (1971) and Tammo and Thelandersson
(2009) is due to the rib interaction between concrete and steel. This
causes the concrete to crack internally, which allows it to follow
the displacement field of steel at the interface almost completely.
This reported physical behavior formed the basis for ignoring the
crack width at the interface in the FE model of Tan et al. (2018b).
This imposed equal longitudinal displacements for concrete and
steel at the interface as shown in Fig. 1(b), in which it should be
noted that the crack width wcr applies to the concrete surface only.
The FE model was validated against the classical experiments of
Bresler and Bertero (1968) and Yannopoulos (1989), where com-
parison of steel strains, the development of crack widths and the
mean crack spacing showed good agreement. Furthermore, the FE
model was also used to analyze cylindrical RC ties to better under-
stand the cracking behavior. It was observed that the bond transfer at
the interface caused radial displacements of the concrete, which in
turn increased hoop stresses and strains. This resulted in internal
splitting cracks and inclined cracks, depicted respectively as circles
and straight lines in Fig. 1(b), when the principal stresses exceeded
the tensile strength of the concrete. Moreover, deriving local bond-
slip curves at different positions over the bar length showed that

such curves include the effect that internal splitting and inclined
cracks had on reducing the bond transfer. In other words, the local
bond-slip curve describes how the 3D behavior of an RC tie affects
the bond transfer. This shows that a single local bond-slip curve is
sufficient to describe the mean bond transfer at the interface between
concrete and steel for an arbitrary RC tie.

Mechanical Crack Width Calculation Model

Main Assumptions

The analytical calculation model was derived based on the physical
behavior of RC ties discussed in the previous section. However,
some simplifications were made, and at first the concept of axisym-
metry was also used for simplicity. Firstly, concrete and steel were
both treated as elastic materials. Secondly, the nonlinearity of the
internal cracking of the confining concrete was accounted for by
lumping this behavior to the interface between the materials using
a bond-slip law, i.e., claiming that the three sections in Figs. 2(a–c)
are statically equivalent. Note that a physical slip u occurs at the
interface in Figs. 2(b and c) as a result of treating concrete and steel
as elastic materials. This means that the total slip stot in the stati-
cally equivalent section in Fig. 2(c) is composed of two parts: the
slip at the interface u caused by the formation of internal inclined
cracks and the elastic deformations of the concrete caused by axial
and shear deformations in the cover ss. This also conforms to the
definition of slip in fib bulletin 10 ( fib 2000). Assuming that the
slip at the interface is equivalent to the deformation caused by in-
ternal inclined cracks implies in reality that the crack width at the
interface can be ignored in the calculation model, so that the result-
ing crack width applies to the concrete surface. Furthermore, the
Poisson’s ratio for concrete can be ignored (νc ¼ 0) because the
concrete is assumed to be exposed to heavy internal cracking as
described in the previous section. Finally, the displacement field
depicted in Fig. 3, which shows the deformed configuration of
an arbitrary section in an RC tie subjected to loading at the rebar
ends, can be assumed to apply for an arbitrary statically equivalent
section.

The continuum concept (Irgens 2008) is hereafter used to formu-
late the compatibility, material laws, and equilibrium for concrete
and steel.

Equations for Concrete

General Equations
The SODE for the concrete displacements was derived by using the
cylindrical coordinates and the displacement field depicted in Fig. 3.
Concrete strains at the interface εci and the specimen surface εco
were assumed to be related as

ψðxÞ ¼ εco
εci

≤ 1 ð1Þ

in which

εci ¼
dwciðxÞ
dx

ð2Þ

and

εco ¼
dwcoðxÞ

dx
ð3Þ

where dwci and dwco are differential displacements at the interface
and at the specimen surface respectively. Note that the inequality
in Eq. (1) is because the concrete strains at the specimen surface

(a)

(b)

Fig. 1. (a) Typical deformation configuration of RC ties with deformed
steel bars observed in experiments; and (b) FE model with assumptions
in accordance with Tan et al. (2018b) showing a typical deformation
configuration and crack plot, where straight lines indicate inclined
internal cracks and circles indicate internal splitting cracks.
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cannot exceed the concrete strains at the interface as a consequence
of force being applied at the steel bar ends. The maximum longi-
tudinal displacement of the concrete cover relative to the concrete
interface is

−ΔwcmaxðxÞ ¼ wciðxÞ − wcoðxÞ ð4Þ

Moreover, longitudinal concrete displacements can be formu-
lated as

wcðR; xÞ ¼ wciðxÞ þΔwcmaxðxÞψ̄ðR; xÞ ð5Þ
in which ψ̄ is a shape function describing the variation in longitu-
dinal displacements over the section and over the bar length. It was
chosen to satisfy the following boundary conditions:

wcðR1; xÞ ¼ wciðxÞ
wcðR2; xÞ ¼ wcoðxÞ ð6Þ

where R1 and R2 are the radial coordinates of respectively the inter-
face and the specimen surface. It should be noted that Fig. 3 omits
radial displacements for the concrete, while in the case of axisym-
metry displacements in the hoop direction are nonexistent. Omit-
ting radial displacements contradicts the physical behavior of RC
ties discussed previously, but using a bond-slip law τðuÞ, with τ
denoting the bond stress, will take into account the 3D effects that
are excluded when radial displacements for the concrete are omit-
ted. This means that Eq. (5) suffices in describing the displacement
field for concrete. Now, using Green strains for small displacements
yield the following nonzero components in the strain tensor for
concrete:

εc ¼
∂wcðR; xÞ

∂x ¼ dwciðxÞ
dx

þ ∂
dx

½ΔwcmaxðxÞψ̄ðR; xÞ� ð7Þ

γcRx ¼ γcxR ¼ ∂wcðR; xÞ
∂R ¼ ΔwcmaxðxÞ

dψ̄ðR; xÞ
dR

ð8Þ

where εc and γcRx ¼ γcxR are longitudinal strains and engineering
shear strains respectively. Consequently, Eqs. (7) and (8), and
ignoring the Poisson’s ratio for concrete, yield the following non-
zero components for the stress tensor:

σc ¼ Ecεc ð9Þ

(a)

(d)

(b) (c)

Fig. 2. (a) Internally cracked section typically observed in physical experiments; (b) the internal cracking behavior lumped as springs to the interface
between concrete and steel; (c) statically equivalent section using a bond-slip law for the springs; and (d) equivalent cross sections when using the
second order differential equation for the slip.

Fig. 3. Displacement field of an arbitrary statically equivalent section.
The section to the left-hand side shows the undeformed configuration,
while the section to the right-hand side shows the deformed configura-
tion for a load applied to the rebar end greater than zero.
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τ cxR ¼ τ cRx ¼
1

2
EcγcxR ð10Þ

where σc and τ cRx ¼ τ cxR are respectively the normal and the shear
stresses, while Ec is the Young’s modulus for concrete. Considering
equilibrium for the concrete in Fig. 2(c) yields

dFcðxÞ
dx

¼ τðuÞ
X

πϕs ð11Þ

where τ is the bond stress dependent on the slip at the interface u,
and

P
πϕs is the total perimeter surrounding the steel bars in a

cross section. The concrete force resultant can be formulated as

FcðxÞ ¼
Z
Ac

σcdAc ð12Þ

where Ac is the concrete area.
Finally, inserting Eqs. (12), (9), (7), (4), (1), (2), and (3) in

Eq. (11) successively yields

Ec
∂
∂x

Z
Ac

�
dwciðxÞ
dx

− dwciðxÞ
dx

½1 − ψðxÞ�ψ̄ðR; xÞ

− ½wciðxÞ − wcoðxÞ�
∂ψ̄ðR; xÞ

∂x
�
dAc ¼ τðuÞ

X
πϕs ð13Þ

which is the SODE for the longitudinal concrete displacements at
the interface.

Simplified Equations
An analytical solution of Eq. (13) is possible in the case of axisym-
metry if both ψ and ψ̄ are known. In most practical situations, how-
ever, this is not the case. A practical approach to Eq. (13) would
therefore be to redefine Eq. (1) as

ψðxÞ ¼ ψ ¼ εcm
εci

≤ 1 ð14Þ

in which

εcm ¼ dwcmðxÞ
dx

¼ ψεci ð15Þ

are mean concrete strains and wcm are mean displacements over the
section—see Fig. 3, which in this particular case simplifies the
shape function to

ψ̄ ¼ 1 ð16Þ

Note that ψ in Eq. (14) is now assumed constant. Edwards and
Picard (1972) were the first to introduce the concept of Eq. (14).
This was later investigated more thoroughly by conducting non-
linear finite-element analysis (NLFEA) on cylindrical RC ties in
Tan et al. (2018c). It was concluded that although the shape func-
tion ψ̄, first defined in Eq. (5) varied with respect to both R and
x-coordinates over the bar length, the ratio in Eq. (14) remained
more or less constant over the bar length except for a small region
close to the loaded end. Actually, it was observed that a constant
value of ψ ¼ 0.70 over the entire bar length seemed reasonable
independent of geometry and load level. The physical interpretation
of Eq. (15) is that plane sections that do not remain plane are
implicitly accounted for in determining the equilibrium. Now,
replacing wco with wcm in Eq. (13) and inserting Eqs. (14) and (16)
simplifies the SODE for the longitudinal concrete displacements at
the interface to

ψAcEc
d2wciðxÞ
dx2

¼ τðuÞ
X

πϕs ð17Þ

Equations for Steel

Longitudinal displacements for steel were assumed uniform over its
radius. And since the Poisson’s ratio for concrete was ignored and
axisymmetry applied for circular steel rebars means that Eq. (18)

wsðR; xÞ ¼ wsðxÞ ð18Þ
suffices in describing the displacement field for steel. The follow-
ing normal strain was thus the only nonzero component in the strain
tensor when Green strains for small deformations were applied:

εs ¼
dwsðxÞ
dx

ð19Þ

Moreover, the Poisson’s ratio for steel was ignored (νs ¼ 0) as
the lateral effects it had on bond were assumed to be included in the
bond-slip curve. This led to the following normal stress being the
only nonzero component in the stress tensor:

σs ¼ Esεs ð20Þ
where Es is the Young’s modulus for steel. The equilibrium of steel
in Fig. 2(c) yields

dFsðxÞ
dx

¼ −τðuÞX πϕs ð21Þ

Furthermore, the steel force resultant was obtained as

FsðxÞ ¼
Z
As

σsdAs ¼ AsEs
dwsðxÞ
dx

ð22Þ

when inserting Eqs. (20) and (19) successively. Finally, inserting
Eqs. (22) in (21) yields

AsEs
d2wsðxÞ
dx2

¼ −τðuÞXπϕs ð23Þ

which is the SODE for the steel displacements.

Compatibility

The slip was defined in terms of the displacement field depicted in
Fig. 3 as

−uðxÞ ¼ wsðxÞ − wciðxÞ ð24Þ
Differentiating Eq. (24) once and inserting Eqs. (2) and (19)

provides the first derivative of the slip as

−u 0ðxÞ ¼ dwsðxÞ
dx

− dwciðxÞ
dx

¼ εs − εci ð25Þ

Second Order Differential Equation for the Slip

Inserting Eq. (23) in (17) provides

d
dx

�
dwciðxÞ
dx

þ ξ
dwsðxÞ
dx

�
¼ 0 ð26Þ

where

ξ ¼ αeρs
ψ

ð27Þ

αe ¼
Es

Ec
ð28Þ

© ASCE 04019206-4 J. Struct. Eng.
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and

ρs ¼
As

Ac
ð29Þ

Inserting Eqs. (25) and (23) successively in Eq. (26) yields the
SODE for the slip as

d2uðxÞ
dx2

− χτðuÞ ¼ 0 ð30Þ

where

χ ¼
P

πϕs

AsEs
ð1þ ξÞ ð31Þ

By introducing

ζ ¼ τmðuÞ
τðu; θÞ ≤ 1 ð32Þ

where τm and τðu; θÞ is respectively the mean and the maximum
bond stress around the circumference of a steel bar in an arbitrary
cross section, and further multiplying χ in Eq. (30) by ζ from
Eq. (32) takes into account the bond stress τ not being constant
around the circumference of the steel bar in nonaxisymmetric cases,
such as when the cover to the steel surface varies in a cross section
as depicted in Fig. 2(d). In practice, this implies taking the distance
between rebars into account, a parameter acknowledged by the re-
search of Gergely and Lutz (1968) to be significant for the crack
width. This means that the solution of Eq. (30) with χ multiplied
by ζ from Eq. (32) involves transforming a cross section with an
arbitrary geometry into a circular cross section with a radius req
such that the area Ac remains the same.

The analytical solution of Eq. (30) depends on the choice of the
bond-slip law and a variety of choices can be found in the literature
(Rehm 1961; Nilson 1972; Martin 1973; Dörr 1978; Mirza and
Houde 1979; Hong and Park 2012). In this study, the local bond-
slip law recommended by MC2010 was used:

τðuÞ ¼ τmax

�
u
u1

�
α

ð33Þ

Eq. (33) and its parameters were originally derived on the
basis of pull-out tests of relatively short specimens, in which the
concrete was in compression, thus differing considerably from
the stress conditions in RC ties where the concrete is in tension
(Pedziwiatr 2008). However, the investigation by Tan et al. (2018b)
showed that Eq. (33) could be applied to represent the mean bond
transfer over the specimen length by using the predefined param-
eters τmax ¼ 5.0 MPa, u1 ¼ 0.1, and α ¼ 0.35 when comparing it
to the local bond-slip curves obtained from the FE analysis of sev-
eral RC ties, see Fig. 4. Bond-slip curves proposed by other authors
are also shown in the same figure. This means that inserting
Eq. (33) in Eq. (30) finally yields the SODE

d2u
dx2

− χ
τmax

uα1
uα ¼ 0 ð34Þ

Note that Eq. (34) has been derived and will be solved using the
simplified equations for concrete.

Analytical Crack Width Calculation Model

General Solutions

Slip
Eq. (34) is a nonlinear homogenous SODE and can be solved ana-
lytically, by successively defining the second term as a function of
the slip fðuÞ, moving it to the other side of the equals sign, multi-
plying both sides with the first derivative of the slip u 0, applying the
chain rule on the left-hand side of the equal sign and the substitu-
tion rule on the right-hand side, and subsequently integrating once,
the first derivative of the slip is provided as

u 0 ¼ du
dx

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγuβ þ CÞ

q
ð35Þ

where C is an integration constant and

β ¼ 1þ α ð36Þ
and

γ ¼ χ
τmax

βuα1
ð37Þ

Only the negative sign is included in Eq. (35) for compatibility
with Eq. (25). Separating the variables in Eq. (35) and integrating
on both sides yields

x ¼ B − 1ffiffiffi
2

p
Z

ðγuβ þ CÞ−1
2du ð38Þ

where B is an integration constant. The integral can now be solved
using the method proposed by Russo et al. (1990) and Russo and
Romano (1992) where the binomial in Eq. (38) is developed as an
infinite series of functions in accordance with Newton’s binomial
theorem and then integrating each term. This results in two different
general solutions that converge at distinct intervals

Fig. 4. Local bond-slip curves according to Eq. (33) with adjusted
parameters proposed by Russo and Romano (1992), Balázs (1993),
Debernardi and Taliano (2016), and Tan et al. (2018b) compared with
theoretical local bond-slip curves obtained in the FE analysis of several
RC ties at different positions over the bar length in Tan et al. (2018b).
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x ¼ B1 − 1ffiffiffi
2

p
X∞
k¼0

0
@− 1

2

k

1
Aγk

�
1

C

�	1
2
þk


u1þkβ

1þ kβ
for 0 < u < ud

ð39Þ

and

x ¼ B2 − 1ffiffiffiffiffi
2γ

p
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k uδ−kβ
δ − kβ

for u > ud ð40Þ

where B1 and B2 are integration constants, and

δ ¼ 1 − α
2

ð41Þ

while

ud ¼
����Cγ

����
1
β ð42Þ

is the value discerning Eq. (39) from (40). Note that the general
solutions in Eqs. (39) and (40) imply that the longitudinal coordi-
nate x is a function of the slip value u as a consequence of splitting
the variables in Eq. (35).

Strains
Successively inserting Eqs. (2) and (19) in Eq. (26), integrating
once, and applying εci ¼ 0 and εs ¼ F=EsAs ¼ εs0 at the loaded
end (i.e., at x ¼ 0) yields

εci ¼ ξðεs0 − εsÞ ð43Þ

Inserting Eqs. (35) and (43) in Eq. (25) yields the steel strains

εs ¼
ξεs0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγuβ þ CÞ

p
1þ ξ

ð44Þ

while inserting Eqs. (44) in (43) provides the concrete strains

εci ¼ ξ
εs0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγuβ þ CÞ

p
1þ ξ

ð45Þ

Boundary Conditions

Boundary conditions must be established before calculating particu-
lar solutions. These are established by considering the concepts of
comparatively lightly loaded members (CLLM) and comparatively
heavily loaded members (CHLM) depicted in Fig. 5. Russo and
Romano (1992) were the first to introduce these concepts, which
were later acknowledged by fib bulletin 10 ( fib 2000). Briefly
summarized, the main difference is that steel and concrete strains
become compatible, εs ¼ εci, at a certain distance xr from the loaded
end in the case of CLLM, while the strains remain incompatible,
εs ≠ εci, over the entire bar length in the case of CHLM. This fur-
ther implies, in accordance with Eq. (24), that the slip becomes zero
at distance xr from the loaded end in the case of CLLM and at the
symmetry section xS in the case of CHLM. This yields the following
boundary conditions in the case of CLLM behavior:

−ur ¼ 0

−u 0
r ¼ εs − εci ¼ 0 ð46Þ

at x ¼ xr, and in the case of CHLM behavior:

−uS ¼ 0

−u 0
S ¼ εs − εci > 0 ð47Þ

at x ¼ xS ¼ ðL=2Þ.

CLLM

Applying the boundary conditions in Eq. (46) for Eq. (35) yields

C ¼ 0 ð48Þ
Inserting Eq. (48) in (38), integrating once, and applying the

boundary conditions in Eq. (46) again yields the expression for the
slip in the case of CLLM behavior

(a) (c)

(b) (d)

Fig. 5. (a and b) Strain and slip distribution in CLLM; and (c and d) strain and slip distribution in CHLM.
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u ¼ �
δ

ffiffiffiffiffi
2γ

p
ðxr − xÞ1δ ð49Þ

Inserting Eq. (48) in (44) and acknowledging that εs ¼ εs0 at
x ¼ 0, provides the maximum slip at the loaded end as

u0 ¼
�
ε2s0
2γ

�1
β ð50Þ

Furthermore, inserting Eq. (50) in (49) for x ¼ 0 yields the
transfer length as

xr ¼
1

δ

�
εs0

�
1

2γ

� 1
2δ
�2δ

β ð51Þ

Note that the transfer length increases with increasing steel
strains εs0 ¼ F=EsAs at the loaded end. Expressions for the steel
and concrete strains can be finally obtained by inserting Eq. (49)
in respectively Eqs. (44) and (45):

εs ¼
ξεs0 þ ð2γÞ 1

2δ½δðxr − xÞ� β2δ
1þ ξ

ð52Þ

εci ¼ ξ
εs0 − ð2γÞ 1

2δ½δðxr − xÞ� β2δ
1þ ξ

ð53Þ

One application of the particular solutions obtained could be in
the case of two consecutive cracks formed with a considerable dis-
tance between them. This means that a certain region, 2ðxs − xrÞ,
remains undisturbed as depicted in Figs. 5(a and b). This situation
occurs typically in the so-called crack formation stage, in which the
applied member load is relatively low and the distance between two
consecutive cracks formed is relatively large.

CHLM

Particular Solutions
Applying the boundary conditions in Eq. (47) in (35) yields

u 0
s ¼ − ffiffiffiffiffiffi

2C
p

ð54Þ
Acknowledging from Eq. (35) and Fig. 5 that u 0 is a real func-

tion yields

C > 0 ð55Þ
This means that the general solutions of Eqs. (39) and (40) apply

in the case of CHLM becauseC ≠ 0. Now, inserting Eq. (35) in (25)
and applying εci ¼ 0 and εs ¼ F=EsAs ¼ εs0 at the loaded end
(i.e., at x ¼ 0) yields

C ¼ ε2s0
2

− γuβ0 ð56Þ

Furthermore, Eqs. (55) and (56) imply that the maximum slip at
the loaded end must satisfy

u0;max ¼
�
ε2s0
2γ

�1
β ð57Þ

Inserting Eq. (56) in (42) and acknowledging that Eq. (37) is a
positive value provides

ud ¼
�
ε2s0
2γ

− uβ0

�1
β ð58Þ

Now, applying the first condition in Eq. (47) to (39) yields

B1 ¼
L
2

ð59Þ

Moreover, applying u ¼ u0 at x ¼ 0 for Eq. (40) yields that B2

can be expressed with binomial coefficients as

B2 ¼
1ffiffiffiffiffi
2γ

p
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k uδ−kβ0

δ − kβ
ð60Þ

The particular solutions of Eqs. (39) and (40) are now obtained
using the integration constants in Eqs. (56), (59), and (60). It should
be noted, however, that the integration constants in Eqs. (56)
and (60) depend on the slip at the loaded end u0, so they must be
obtained iteratively. This can be done conveniently by considering
the two cases shown in Fig. 6.

Case 1
The first case involves solving Eq. (39) with respect to the slip at the
loaded end in its interval when u0 < ud in accordance with Fig. 6(a).
Inserting Eq. (59) in (39) and applying u ¼ u0 at x ¼ 0 provides the
function

f1ðu0Þ ¼
L
2
− 1ffiffiffi

2
p

X∞
k¼0

0
@− 1

2

k

1
Aγk

�
1

C

�	1
2
þk


u1þβk
0

1þ βk
¼ 0 ð61Þ

which is valid for the interval

0 ≤ u0 <

�
ε2s0
4γ

�1
β ð62Þ

when acknowledging that ud in Eq. (39) is given by Eq. (58).

(a) (b)

Fig. 6. (a) Case 1: solution for the slip using Eq. (39), i.e., u0 < ud; and (b) Case 2: solution for the slip using Eq. (39) for 0 < u < ud and Eq. (40)
for ud < u < u0.
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Case 2
Case 2 is where u0 > ud, which means that the solution for the slip
u depends on both Eqs. (39) and (40) due to the validity of the
equations at its respective intervals—see Fig. 6(b). In other words,
Eq. (39) is valid for slip values below ud while Eq. (40) is valid for
slip values above ud. Now, accepting that Eq. (39) is valid for the
slip value u ¼ ud − du at the location xd þ dx1 provides

xdþdx1 ¼
L
2
− 1ffiffiffi

2
p

X∞
k¼0

0
@−1

2

k

1
Aγk

�
1

C

�	1
2
þk


ðud−duÞ1þβk

1þβk
ð63Þ

Similarly, accepting that Eq. (40) is valid for the slip value u ¼
ud þ du at the location xd − dx2 and inserting Eq. (60) provides

xd − dx2 ¼
1ffiffiffiffiffi
2γ

p
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k uδ−kβ0

δ − kβ

− 1ffiffiffiffiffi
2γ

p
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k ðud þ duÞδ−kβ

δ − kβ
ð64Þ

Note that du is an infinitesimal value for the slip, while dx1 and
dx2 are infinitesimal values along the bar length in accordance with
Fig. 6(b). Subtracting Eq. (64) from (63) provides the function

f2ðu0Þ ¼
L
2
− 1ffiffiffiffiffi

2γ
p ff21ðu0Þ − f22ðu0Þg − 1ffiffiffi

2
p f23ðu0Þ −Δx ¼ 0

ð65Þ
where

f21ðu0Þ ¼
X∞
k¼0

0
@− 1

2

k

1
A�

C
γ

�
k uδ−kβ0

δ − kβ
ð66Þ

f22ðu0Þ ¼
X∞
k¼0

0
@− 1

2

k

1
A

h	
C
γ


 k
δ−kβþ1

β þ du
	
C
γ


 k
δ−kβ

i
δ−kβ

δ − kβ
ð67Þ

f23ðu0Þ ¼
X∞
k¼0

0
@− 1

2

k

1
A γk

�
C

2−β
2βð1þkβÞ

	
1
γ


1
β − duC− 1

2
þk

1þkβ

�
1þkβ

1þ kβ
ð68Þ

and Δx ¼ dx1 þ dx2. Eq. (65) is valid for

u0 >

�
ε2s0
4γ

�1
β ð69Þ

when acknowledging that ud in Eq. (40) is given by Eq. (58).

Solution Strategy
Russo and Romano (1992) give a convenient way of determining
whether Case 1 or Case 2 governs by calculating Eq. (61) for a
value of u0 close to the upper limit value in Eq. (62), e.g., as
u0check ¼ ðε2s0=4γ − duÞ1=β . Case 1 governs if the value calculated
is negative. Case 2 governs if the value calculated is positive since
the nature of Eq. (61) invokes that u0 must increase to satisfy
Eq. (61), which implies that Eq. (69) governs.

Newton-Raphson iterations are used to calculate the value of u0
effectively after determining whether Case 1 or 2 governs

u0;iþ1 ¼ u0;i − fjðu0;iÞ
f 0
jðu0;iÞ

ð70Þ

where index i represents the number of iterations and index j rep-
resents the function in Eq. (61) for Case 1 or Eq. (65) for Case 2.
Furthermore, it is suggested that an initial value of u0;init ¼
ðε2s0=4γÞ1=β − du is used for Case 1 or u0;init ¼ ðε2s0=4γÞ1=β þ du
is used for Case 2 to start the iterations in Eq. (70). The iterated
value u0;iþ1, however, should never exceed Eq. (57) due to
the requirement of Eq. (55). Convergence is achieved when
ju0;iþ1 − u0;ij < Tol, at which Tol is a chosen tolerance value. Note
that the derivatives of the functions in Eqs. (61) and (65) are needed
to solve Eq. (70) and are provided in Appendix I. Once the value of
u0 is obtained, the particular solutions of Eqs. (39) and (40) are
used to obtain the corresponding x values for the slip u along
the bar length. In summary, CHLM involves determining whether
Case 1 or 2 governs using Eq. (61) before the slip at the loaded end
u0 is calculated using Eq. (70).

Strains
The strain distributions for steel and concrete were obtained by
using Eqs. (44) and (45) respectively. Moreover, inserting Eq. (45)
in (15), and acknowledging that the maximum concrete strains will
occur at the symmetry section (i.e., where the slip u ¼ 0) provides
the maximum mean concrete strains as

εcm;max ¼ ψξ
εs0 −

ffiffiffiffiffiffi
2C

p

1þ ξ
< εct ð71Þ

The violation of Eq. (71) implies that a crack has formed at the
symmetry section, meaning a new member with length L=2 exists
and that the CHLM response should be determined for the newly
formed member.

Conditions at Crack Formation

The conditions at crack formation are shown in Fig. 7, where the
transfer length increases with increasing load as highlighted for
Eq. (51). The steel strain at the loaded end needed to extend the
transfer length to the symmetry section is obtained by inserting
xr ¼ L=2 in Eq. (51) so that

εs0;S ¼ ð2γÞ 1
2δ

�
L
2
δ

� β
2δ ð72Þ

Furthermore, the maximum mean concrete strain at the end
of the transfer length xr is obtained by inserting Eq. (53) in (15) at
x ¼ xr so that

εcm;max ¼
ψξ

1þ ξ
εs0 ð73Þ

It is assumed that a crack forms when εcm;max ¼ εct, which
means that the corresponding steel strain at the loaded end is

εs0;cr ¼ εct
1þ ξ
ψξ

ð74Þ

So inserting Eq. (74) in (51) yields the distance from the loaded
end at which a new crack can form or, expressed more rigorously,
the crack spacing

xcr ¼
1

δ

�
εct

1þ ξ
ψξ

�
1

2γ

� 1
2δ
�2δ

β ð75Þ

Eqs. (72)–(75) are conceptually visualized in Fig. 7, providing
two different conditions for the cracking response of a member. The
continuous lines represent the steel strains, while the dashed lines
represent the corresponding concrete strains. Note that the concrete
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strain for εs0;S in Fig. 7(a) is unrealistic since the concrete tensile
strength is exceeded. It is only included to elucidate the physical
concept of Eq. (72). Condition 1 implies that a crack forms at a
distance from the loaded end shorter than half the member length,
i.e., xcr < xS, meaning that εs0;cr < εs0;S. This further implies that
the cracking response of the member is governed by CLLM behav-
ior as long εs0 < εs0;cr, while CHLM behavior governs the cracking
response as soon as εs0 > εs0;cr. Condition 2 implies that a crack can
form only at the symmetry section, xcr ¼ xs, because εs0;cr > εs0;S.
This means that a CLLM behavior governs the cracking response of
the member as long εs0 < εs0;S, while CHLM behavior governs the
cracking response as soon εs0 > εs0;S. The physical interpretation of
Condition 1 is that cracking can form at any location beyond xr due
to the unrestricted length of the member, while Condition 2 means
that cracking can form only at the symmetry section due to the lim-
ited length of the member. Appendix II provides guidelines for de-
termining which condition applies and whether CLLM or CHLM
behavior governs the cracking response based on the a priori loading
and the mechanical properties of the RC tie. For design purposes,
however, only Condition 1 is relevant for determining the cracking
response.

Crack Width

Finally, the crack width is obtained as

wcr ¼ 2

Z
xr

ðεs − εcmÞdx ð76Þ

Inserting Eqs. (15), (44), and (45) in Eq. (76) yields

wcr ¼ 2

�
1

1þ ξ

�
½ξεs0xrð1 − ψÞ þ u0ð1þ ψξÞ� ð77Þ

In summary, the crack width is a function of the applied load
εs0 ¼ F=AsEs, the transfer length xr, and the slip at the loaded
end u0. For design purposes, i.e., Condition 1, the crack width is
determined by calculating u0 and xr, which in the case of CLLM
behavior is obtained by the closed-form solutions in Eqs. (50)
and (51). A solution strategy is provided in subsection “Solution
strategy” to calculate u0 efficiently in the case of CHLM behavior,
but here xr is replaced with xcr=2, where xcr is the crack spacing
obtained using the closed-form solution in Eq. (75). Note that the
crack width obtained wcr applies to the face at the loaded rebar end,
i.e., as depicted in Fig. 1. This means that the calculation model
conservatively assumes that a crack has been formed before load-
ing, which allows for predicting crack widths regardless of the load
level.

Comparison with Equivalent Calculation Models

The calculation model described was evaluated against the equiv-
alent models proposed by Russo and Romano (1992), Balázs
(1993), and Debernardi and Taliano (2016). The models are equiv-
alent in the sense that the SODE for the slip, i.e., Eq. (34), is solved.
However, some significant differences should be highlighted. The
models of Balázs (1993) and Debernardi and Taliano (2016) ne-
glect the elastic shear deformation over the cover, i.e., they assume
ψ ¼ 1 in Eq. (14). Another significant difference in Debernardi and
Taliano (2016) is that the bond stress distribution over the bar
length is altered locally by using a linear descending branch close
to the primary crack, which complicates the solution of Eq. (34).
These authors assume that internal inclined cracks form in this re-
gion and continue to form towards the symmetry section as the load
increases. The FE analysis by Lutz (1970) and by Tan et al. (2018b)
on RC ties show that a buildup of bond stresses occurs close to a
primary crack and that the peak of the bond stress distribution tends
to move towards the symmetry section as the load increases, as as-
sumed by Debernardi and Taliano (2016). However, this physical
phenomenon is a consequence not of internal inclined cracks, but of
internal splitting cracks forming close to the primary crack, which
is reflected by the characteristic bond-slip curves at x≈ 0 in Fig. 4.
In fact, the FE analysis showed that internal inclined cracks also
formed beyond the bond stress distribution peak, which means they
cannot occur in direct conjunction with the descending branch
alone. This also means that a single bond-slip curve should suffice
to represent the mean local bond-slip behavior over the bar length,
as shown in Fig. 4 and discussed in section “Physical Behavior of
RC Ties,” and should already include the total effect of both inter-
nal splitting and internal inclined cracks have on reducing the bond
transfer.

The calculation model presented in this paper was particularly
inspired by the work of Russo and Romano (1992). However, there
are some significant differences: (1) a primary crack is assumed to
form when, εcm ¼ εct, implying that concrete stresses are unevenly
distributed even at the zero-slip section in accordance with the ob-
servations in Fantilli et al. (2007) and Tan et al. (2018c); (2) the
influence of the distance between steel bars can be accounted for
by Eq. (32); and (3) a completely analytical solution strategy is
provided to solve Eq. (34) for practical applications. In addition,
the derivations using continuum mechanics formulation yield a me-
chanically sound model that describes how the 3D behavior of RC
ties can be simplified into a one-dimensional model when using a
proper bond-slip law. However, the main advantage of the model
presented in this paper, and that of Russo and Romano (1992), is
that Eq. (34) is solved completely analytically, in contrast to Balázs
(1993) and Debernardi and Taliano (2016), who only provide ana-
lytical solutions in the case of CLLM behavior.

(a) (b)

Fig. 7. (a) Condition 1; and (b) Condition 2.
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Using the bond-slip curve recommended by Tan et al. (2018b)
implies that the bond stresses should be related to the deformations
in the outer surface of the concrete rather than at the steel-concrete
interface, which contradicts the compatibility in Eq. (24). However,
the elastic shear deformation over the cover is normally considered
to be negligible, although it does seem to affect the elastic stress
and strain distribution (Braam 1990; Tan et al. 2018c). This justifies
the combined use of the chosen bond-slip curve, the compatibility
in Eq. (24), and the concept of ψ in Eq. (14).

Application

Comparison with Axisymmetric RC Ties

General
This section compares strains and crack widths obtained analytically
with the classical experiments of Bresler and Bertero (1968) and
Yannopoulos (1989), and the FE analysis of Tan et al. (2018b) on
cylindrical RC ties concentrically reinforced with a steel bar loaded
at the steel bar ends. The bond-slip parameters, τmax ¼ 5.0 MPa,
u1 ¼ 0.1 mm, and α ¼ 0.35 were chosen, while ψ ¼ 0.70 was
adopted in accordance with Tan et al. (2018c). The factor ζ ¼ 1
was chosen due to axisymmetry. The infinite series used for calcu-
lating the response in the case of CHLM behavior was truncated
after 10 terms, while the parametersΔx ¼ 0.1 and du ¼ 5.8 · 10−5
were chosen in accordance with Russo and Romano (1992).

Comparison with Experimental Data
Bresler and Bertero (1968) measured the strain distribution over the
bar length by mounting several strain gauges in a groove cut along
the center of several reinforcing steel bars. The reinforcing steel bars
were first cut longitudinally into two halves, after which the groove
was milled along the center of the two parts. After mounting the
strain gauges in this groove, the two halves were tack-welded to-
gether to minimize the impact on the exterior of the reinforcing bars.
The specimen investigated, denoted Specimen H, was 406.4 mm
(16 in.) long and 152.4 mm (6 in.) in diameter concentrically rein-
forced with a 28.7 mm (1.13 in.) deformed steel bar. The length of
the specimen was chosen as twice the mean crack spacing of
203.2 mm (8 in.) obtained from pilot studies conducted on
1,829 mm (72 in.) long RC ties with similar sectional properties.
A notch was cut around the circumference at midlength to induce
cracking here. The compressive strength, tensile strength, and
Young’s modulus for the concrete were reported as respectively
40.8 MPa (5.92 ksi), 4.48 MPa (0.65 ksi), and 33165 MPa

(4810 ksi), while the yield strength and Young’s modulus for the
steel were reported as 413 MPa (60 ksi) and 205,464 MPa
(29,800 ksi), respectively. The reduction of the steel area due to
the groove was taken into account in the analytical calculations
by using the reported steel area As ¼ 548 mm2 (0.85 in.2), while
the notch was taken into account by reducing the reported tensile
strength by a factor of 0.7. This led to cracking at midlength in
the analytical calculations for higher load levels as shown in
Fig. 8(a). It should be noted that the analytical steel strains represent
the mean of the experimental steel strains.

The six specimens investigated by Yannopoulos (1989) were
76 mm in diameter concentrically reinforced with a 16 mm de-
formed steel bar and were 100 mm long. The length of the spec-
imens was based on the mean crack spacing of 90 mm obtained
from pilot studies conducted on 800 mm long RC ties with similar
sectional properties and was chosen to prevent new cracks from
forming between the loaded ends. The compressive strength, tensile
strength, and Young’s modulus for concrete were reported respec-
tively as 43.4, 3.30, and 32,000 MPa, while the yield strength and
Young’s modulus for steel were reported as 424 and 200,000 MPa,
respectively. The specimen length in the analytical calculations was
chosen to be similar to that in the experiments. Fig. 8(b) shows the
average crack width development at the loaded ends reported for
the six specimens investigated. The analytical calculations pre-
dicted slightly larger crack widths. Nevertheless, the comparison
shows good agreement.

Comparison with FE Analysis
Tan et al. (2018b) conducted NLFEA on four cylindrical RC ties
denoted ϕ20c40, ϕ32c40, ϕ20c90, and ϕ32c90 using axisymmet-
ric elements, with ϕ and c respectively indicating steel bar diameter
and cover. The concrete was given material properties correspond-
ing to a concrete grade C35 in accordance with MC2010 and a non-
linear fracture mechanics material model based on total strain
formulation with rotating cracks. The crack bandwidth was chosen
to be dependent on the total area of the finite elements in line with
the smeared crack approach. The steel was chosen to have linear
elastic material properties with a Young’s modulus of 200,000 MPa
and a Poisson’s ratio of 0.3. Furthermore, interface elements were
used to allow for radial separation but no physical slip, as depicted
in Fig. 1(b). In summary, the approach implied smearing out inter-
nal inclined and splitting cracks that would have localized at the tip
of each bar rib if they were modelled discretely. This was found to
give good agreement in comparison with the steel strains, develop-
ment of crack widths, and mean crack spacing observed in the
experiments.

(a) (b)

Fig. 8. (a) Comparison of steel strains predicted with steel strains reported in the experiments of Bresler and Bertero (1968) over the bar length;
and (b) comparison of crack widths predicted with crack widths reported in the experiments of Yannopoulos (1989) using similar specimen length
L ¼ 100 mm similar to that in the experiments.
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Fig. 9 shows the comparison of steel strain distributions over the
bar lengths at three different stress levels for the specimens, again
noting that the analytical model predicts the mean of the experi-
mental steel strains. The first stress level shows the CLLM behavior
just before a crack forms at a certain distance from the loaded end,
while the two higher stress levels show the CHLM behavior for
specimen lengths similar to the crack spacing obtained in the FE
analysis (see Table 1). Note that the strain distribution is shown for
only half the specimen length due to symmetry. In general, the ana-
lytical calculations make conservative predictions of the CLLM
behavior, which also is reflected in the comparison of the predicted
crack spacing in Table 1. The table also shows that the analytical
model predicts crack spacing consistently and on the conservative
side regardless of the bar diameter and cover size. The conservative
prediction of the crack spacing can be attributed to the bond-slip
parameters chosen. Fig. 10 shows the development of crack widths
in specimens with lengths similar to the FE analysis crack spacing
in Table 1 and indicates that the analytical model makes quite ac-
curate predictions of crack widths for a given specimen length.

Fig. 11 shows comparisons of the development of crack widths
based on specimen lengths similar to the crack spacing predicted
by the analytical model in Table 1. The analytical model yields

Condition 2 and CHLM behavior in general, which allows for crack-
ing at midlength at higher load levels and occurs for all of the spec-
imens except ϕ20c90. The graphs also show that the analytical
model predicts crack widths on the conservative side in general.

Comparison with Nonaxisymmetric RC Ties

The French research project CEOS.fr (2016) conducted experi-
ments on two identical quadratic RC ties identified as Ties 4 and 5,
which were pulled in tension. The ties were 355 mm in width and
height, had a length of 3,200 mm, and were reinforced with eight
16 mm rebars. A concrete grade C40/50 was used, while the yield
strength and Young’s modulus of steel were reported as 529 and
200,000 MPa, respectively. The cover to the rebars was 45 mm.
Fig. 12(a) shows a comparison of the development of predicted
crack widths with the maximum crack widths measured. The ana-
lytical calculations were based on using specimen lengths similar to
the crack spacing predicted analytically in Table 2. The factor ζ ¼ 1
was chosen for simplicity. The deviation between Ties 4 and 5 in
the maximum crack widths measured seems to be due to the differ-
ence in maximum crack spacing reported in Table 2. Nevertheless,
the maximum crack spacing predictions were conservative, and the
crack widths predicted show relatively good agreement with the
maximum crack widths measured.

Tan et al. (2018a) conducted experiments on eight quadratic RC
ties identified as X-ϕ-c, where X represents the loading regime the
RC tie was exposed to, either at the crack formation stage (F) or
the stabilized cracking stage (S), while ϕ and c represent the rebar
diameter and cover respectively. The rebar diameter was either 20
or 32 mm, while the cover was either 40 or 90 mm. The ties were
400 mm in width and height, had a length of 3000 mm, and were
reinforced with eight rebars. The concrete compressive and ten-
sile strength were reported as 74.3 and 4.14 MPa, respectively,
while the Young’s modulus was reported as 27.4 MPa. The yield
strength and Young’s modulus of the steel were reported as 500
and 200,000 MPa, respectively. Fig. 12(b) shows the comparison

(a) (b)

(c) (d)

Fig. 9. Comparison of steel strains predicted with steel strains reported over the bar length in the FE analysis of Tan et al. (2018b):
(a) specimen ϕ20c40; (b) specimen ϕ32c40; (c) specimen ϕ20c90; and (d) specimen ϕ32c90.

Table 1. Comparison of crack spacing predicted with mean crack spacing
reported in the experiments of Bresler and Bertero (1968) and Yannopoulos
(1989), and the FE analysis of Tan et al. (2018b)

RC tie

Experimental and
FE analysis mean

(mm)

Predicted
analytical
(mm)

Bresler and Bertero (1968) 203 301
Yannopoulos (1989) 90 181
ϕ20c40 105 224
ϕ32c40 Tan et al. (2018b) 109 207
ϕ20c90 260 470
ϕ32c90 272 434
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(a) (b)

(c) (d)

Fig. 10. Comparison of crack widths predicted (in specimens with lengths similar to FE analysis mean crack spacing reported in Table 1 with
crack widths reported in the FE analysis of Tan et al. (2018b); (a) specimen ϕ20c40, L ¼ 105 mm; (b) specimen ϕ32c40, L ¼ 109 mm;
(c) specimen ϕ20c90, L ¼ 260 mm; and (d) specimen ϕ32c90, L ¼ 272 mm.

(a) (b)

(c)

(e)

(d)

Fig. 11. Comparison of crack widths predicted (in specimens with lengths similar to crack spacing predicted in Table 1 with crack widths reported in
the experiments of Yannopoulos (1989) and the FE analysis of Tan et al. (2018b): (a) Yannopoulos (1989) specimen, L ¼ 181 mm; (b) specimen
ϕ20c40, L ¼ 224 mm; (c) specimen ϕ32c40, L ¼ 207 mm; (d) specimen ϕ20c90, L ¼ 470 mm; and (e) specimen ϕ32c90, L ¼ 434 mm.
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of maximum crack widths measured w0.95 and crack widths pre-
dicted wcr using the concept of modelling uncertainty, i.e., as θ ¼
w0.95=wcr. The crack widths calculated were based on using speci-
men lengths similar to the crack spacing predicted analytically in
Table 2. The factor ζ ¼ 1 was again chosen for simplicity. Both the
crack widths and the crack spacing predicted are on the conser-
vative side except for F-32-90 and S-32-90, in which the maximum
crack widths predicted were slightly underestimated.

Discussion

The conservative predictions of the crack widths in Fig. 11 are due
to the nature of Eq. (75), which, together with the predefined bond-
slip parameters, provides an upper limit for the crack spacing or,
expressed more rigorously, for the maximum crack spacing. This is
equivalent to the concept of calculating the maximum crack widths
according to the semiempirical formulas in EC2 and MC2010.
However, unlike EC2 and MC2010, Eq. (75) is not assumed to vary
from once to twice this value. Furthermore, Figs. 8(b) and 10 show
the ability of the model to predict accurate crack widths given a
specimen length. The observations in Figs. 8(a) and 9 suggest that
the analytical model can predict the mean behavior of experimental
steel strains, which is a direct result of using just one local bond-slip
curve to represent the bond transfer over the specimen length. This
means that the effect internal inclined and splitting cracks has on
reducing the bond transfer locally is smeared over the specimen
length in the analytical model. The consequence of using only one
local bond-slip curve is that the bond stresses reach their maximum
at the cracked section (x ¼ 0), which contradicts the physical be-
havior of RC ties discussed previously. This is because the selected
bond-slip curve causes bond stresses to increase with increasing
slip as can be observed in Fig. 4. This is elucidated in Fig. 13,
which shows the corresponding bond stresses to the steel strains
predicted in Fig. 9. One solution to this problem would be to use

different bond-slip curves depending on the location over the speci-
men length, but this would substantially complicate the solutions to
the analytical model. So, the use of just one local bond-slip curve
provides a practical yet mechanically sound calculation model that
has proven capable of predicting the development of crack widths
and crack spacing consistently and on the conservative side, re-
gardless of the mechanical properties and loading of the RC ties.
Another advantage of using a bond-slip curve, as opposed to assum-
ing a constant bond stress distribution e.g., in EC2 and MC2010,
is that the mean bond stresses become dependent on the load level
and the geometry of RC tie, thus conforming to the theoretical ob-
servations made by Tan et al. (2018b). This should provide more
realistic predictions of the crack spacing.

Fig. 14 shows the corresponding concrete strains at the inter-
face, εci, to the steel strains predicted in Fig. 9 at load levels
250 and 400 MPa, whereas the dashed lines represent the resultant
of concrete strains in a section according to Eq. (15), i.e., as εcm ¼
ψεci. It is observed that both the concrete stresses at the interface
and the resultants of concrete stresses increase with increasing load
level. This is due to the increase of the bond transfer between the
load levels of 250 and 400 MPa as represented by the increase of
the areas under the curves shown in Fig. 13. Furthermore, this
would cause a crack to form at the zero-slip section even in the
case of CHLM behavior if the mean concrete strains exceed the
tensile strength of concrete, as shown in Fig. 11. This conforms
to the discussions of transient cracking of RC ties addressed in
fib bulletin No. 10 ( fib 2000). This feature though, can easily
be neglected in the calculation model for design situations as a
conservative approach. The main reason for including ψ in Eq. (14)
was to account for the fact that nonlinear strain profiles occur over
the concrete cover (Tan 2018c), which is a mechanical improve-
ment to the assumption of claiming that plane sections remain plane
in RC ties as per (Saliger 1936; Balázs 1993; CEN 2004; fib 2013;
Debernardi and Taliano 2016). It can be shown though, that differ-
ent values of ψ in general have limited effect on the crack width
predictions.

Fig. 12 shows that the analytical model presented can be applied
to predict crack widths in nonaxisymmetric RC ties as well. In these
calculations, simple assumptions were made such as that the whole
concrete area contributed in tension Ac;ef ¼ Ac and choosing ζ ¼ 1.
This led to similar crack spacing predictions for RC ties with similar
reinforcement ratios but different covers, which contradicts the
experimental data in Table 2. It is well known that the cover has
a significant influence on crack spacing, and therefore crack widths,
as reported by Broms (1968), Gergely and Lutz (1968), Caldentey
et al. (2013), and Tan et al. (2018a). One approach to taking the cover
into account could be to use the provisions in EC2 and MC2010
for calculating an effective reinforcement ratio, ρs;ef ¼ As=Ac;ef ,

(a) (b)

Fig. 12. Comparison of crack widths predicted (in specimens with lengths similar to crack spacing predicted in Table 2) with crack widths reported in
experiments: (a) CEOS.fr (2016); and (b) Tan et al. (2018a).

Table 2. Comparison of crack spacing predicted with crack spacing
reported in the experiments of CEOS.fr (2016) and Tan et al. (2018a)

RC tie Study

Experimental Predicted
analytical
(mm)

Mean
(mm)

Maximum
(mm)

Tie 4 CEOS.fr (2016) 160 257 370
Tie 5 — 188 318 370
S-20-40 — 163 250 422
S-32-40 Tan et al. (2018a) 178 240 361
S-20-90 — 217 290 422
S-32-90 — 266 320 361
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to predict the cracking behavior. This is exemplified in Table 3,
which shows the crack spacing predictions when the effective height
surrounding the rebars, i.e., hc;ef ¼ min½2.5ðcþ ϕ=2Þ; h=2�, is used
to determine the effective reinforcement ratios. Comparison of spec-
imens having similar geometrical reinforcement ratios, e.g., S-20-40
against S-20-90 and S-32-40 against S-32-90, shows that the crack
spacing predictions increase for specimens having larger covers
owing to the difference in effective reinforcement ratios. However,
the increase in crack spacing predictions for specimens with larger

(a) (b)

(c) (d)

Fig. 14. Concrete strains corresponding to the steel strains predicted in Fig. 9: (a) specimen ϕ20c40; (b) specimen ϕ32c40; (c) specimen ϕ20c90; and
(d) specimen ϕ32c90.

(a) (b)

(c) (d)

Fig. 13. Bond stresses corresponding to the steel strains predicted in Fig. 9: (a) specimen ϕ20c40; (b) specimen ϕ32c40; (c) specimen ϕ20c90; and
(d) specimen ϕ32c90.

Table 3. Comparison of crack spacing reported in the experiments of Tan
et al. (2018a) and crack spacing predicted using effective reinforcement ratios

RC tie

Experimental Predicted analytical
(mm)Mean (mm) Maximum (mm)

S-20-40 163 250 390
S-32-40 178 240 342
S-20-90 217 290 422
S-32-90 266 320 361
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covers is seen to be underestimated compared to the experimental
evidence. This could also be related to assuming ζ ¼ 1, which is
questionable particularly for RC ties with 90 mm cover because
the bond stress distribution surrounding the perimeter of the rebars
is probably not uniform, as elucidated in Fig. 2(d). However, deter-
mining a proper value for ζ is not straightforward and requires fur-
ther study, e.g., by conducting FE analysis of nonaxisymmetric RC
ties. Nevertheless, the model with the introduction of the factor ζ and
an effective reinforcement ratio based on the cover size shows great
potential in predicting the cracking behavior of nonaxisymmetric RC
ties as well.

The calculation model using the simplified equations for con-
crete can predict crack widths both in the crack formation stage
and the stabilized cracking stage through the concepts of CLLM
and CHLM, and is as such different from the calculation methods
recommended by EC2 and MC2010, which apply to the stabilized
cracking stage only. Furthermore, assuming ψ not equal to one im-
plies that the mean concrete strains over the section in general is
different from the concrete strains at the interface further implying
that the concrete stresses in each section are assumed unevenly dis-
tributed, even at the zero-slip section, a concept first introduced by
Edwards and Picard (1972). This means that a crack forms when
the resultant of concrete stresses at the zero-slip section is equal to
the mean value of the tensile strength as pointed out for Eq. (74).
Finally, using only one bond-slip curve means that bond stresses
are different from null at the cracked section. These assumptions
enabled a practical approach to solve the SODE for the slip.

The model allows for treating problems such as imposed defor-
mations, where the mechanical loading becomes directly dependent
on the crack pattern or, expressed more rigorously, the stiffness of
the member. Moreover, the authors of this paper are also currently
working on the application of the analytical model to more general
cases, such as noncylindrical RC ties, tensile zones in structural

elements exposed to bending, and RC membrane elements exposed
to biaxial stress states at which cracks form at a skew angle to an
orthogonal reinforcement grid.

Conclusions

A new analytical crack width calculation model has been formu-
lated to provide more consistent crack width calculations for large-
scale concrete structures, where large covers and bar diameters are
typically used. The calculation model was derived based on the
uniaxial behavior of axisymmetric RC ties. Furthermore, the model
includes the effect of internal cracking on the bond transfer, a non-
uniform strain distribution over the concrete area and a nonuniform
bond stress distribution surrounding the perimeter of the steel bar in
nonaxisymmetric cases. The latter accounts for the effect of steel
bar spacing in practice.

The SODE for the slip has been solved completely analytically,
yielding closed-form solutions in the case of CLLM behavior and
non-closed-form solutions in the case of CHLM behavior. One sol-
ution strategy and method for determining the complete cracking
response has been provided for the purposes of facilitating a prac-
tical applicable calculation model, the lack of which has been the
major drawback in using previous equivalent models. The compari-
son with experimental and finite-element results in the literature
shows that the calculation model predicts an average strain distri-
bution based on using a single local bond-slip curve to represent
the bond transfer. The comparisons demonstrate the ability of the
calculation model to predict crack widths accurately given a mem-
ber length. Finally, the model has proven capable of predicting
crack spacing and crack widths consistently and in general on the
conservative side regardless of the bar diameter and cover, even for
nonaxisymmetric RC ties.

Appendix I. Function Derivatives for CHLM

Function derivatives in the case of CHLM behavior for Case 1.
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Appendix II. Procedure to Determine the
Cracking Response

A method for determining the complete cracking response is
shown in Fig. 15, in which εs0;s, εs0;cr, and xcr are determined
by Eqs. (72), (74), and (75) respectively, while εs0 is the steel strain
at the loaded end.
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Fig. 15. Flowchart for determining the cracking response a priori.
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