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 a b s t r a c t

As part of its life cycle, malware can establish communication with its command and control server. To bypass 
static protection techniques, such as blocking certain IPs in firewalls or DNS server deny lists, malware can use 
algorithmically generated domains (AGD). Many different solutions based on deep learning have been proposed 
during the last years to detect this type of domains. However, there is a lack of ability to compare the proposed 
models because there is no common framework that allows experiments to be replicated under the same condi-
tions. Each previous work shows its evaluation results, but under different experimentation conditions and even 
with different datasets. In this paper, we address this gap by proposing a software framework, dubbed Rampage 
(fRAMework to comPAre aGd dEtectors), focused on training and comparing machine learning models for AGD 
detection. Furthermore, we propose a new model that uses logistic regression and, using Rampage to obtain a 
fair comparison with different state-of-the-art models, achieves slightly better results than those obtained so far. 
In addition, the dataset built from real-world samples for evaluation, as well as the source code of Rampage, are 
also publicly released to facilitate its use and promote experimental reproducibility in this research field.

1.  Introduction

In recent years, the number of cyberattacks has increased because 
cybercrime has become a profitable business that moves large amounts 
of money, even more profitable than the global illegal drug trade com-
bined (Cybersecurityventures, 2023). As a result, techniques for de-
veloping malicious code (malware) are becoming more sophisticated, 
requiring continuous updating of prevention, detection, and response 
techniques.

Lockheed Martin’s Cyber Kill Chain (Martin, 2023) describes the 
seven phases an attack must complete to be successful. Once the first 
five phases are completed (reconnaissance, armament, delivery, exploita-
tion, and installation), the attacker has full control over the victim’s ma-
chine. The attacker then establishes a command and control channel to 
communicate with the compromised system, allows them to issue com-
mands and control the system remotely, often to move laterally within 
the network or exfiltrate data. This phase is known as Command & Con-
trol (C&C).

There are several techniques to establish such a communication 
channel with the C&C server. Many malware uses constant data to ob-
tain the C&C address, such as an IP address string or a domain name 
in its binary data (Palo Alto, 2023). However, this data is very easy 

∗ Corresponding author.
 E-mail addresses: tpelayo@unizar.es (T. Pelayo-Benedet), rjrodriguez@unizar.es (R.J. Rodríguez), C.HernandezGanan@tudelft.nl (C.H. Gañán).

to extract (Yong Wong et al., 2021) and therefore the communication 
channel can be stopped very quickly. For instance, adding specific rules 
to firewalls or intrusion detection systems (Bejtlich, 2013).

To overcome these detections and continue establishing communi-
cation, malware began to incorporate techniques such as Domain Gen-
eration Algorithms (DGAs). Since their appearance in the Conflicker 
malware (Porras, Saïdi, & Yegneswaran, 2009), DGAs have been a very 
effective strategy for establishing communication between attackers and 
compromised systems.

A DGA pseudo-randomly generates many domain names known as 
Algorithmically Generated Domains (AGDs). For this technique to work, 
both the malware and the attacker must know the specific DGA and the 
initial seed used for the pseudo-random number generator. The attacker 
first registers one of the possible AGDs to deploy their C&C server. Mean-
while, the malware in the compromised system periodically generates 
new AGDs and tries to communicate with them. It will eventually con-
nect to the registered AGD and thus establish the connection. When the 
C&C server is taken down, the attacker simply registers a new AGD and 
deploys again their C&C server infrastructure, and waits again for the 
compromised system to connect again.

Detection of malicious AGDs has been an important research topic in 
the last 15 years. To detect them, different solutions have been proposed, 
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mainly based on deep learning approaches (Drichel, von Querfurth, & 
Meyer, 2024; Woodbridge, Anderson, Ahuja, & Grant, 2016). When a 
new solution appears, they always claim to provide significant benefits 
compared to previous solutions, providing numerical experiments that 
support this claim. However, different pitfalls have been encountered 
in the machine learning research in cybersecurity, such as inappropri-
ate baselines (Arp et al., 2023) or the use of non-reproducible method-
ology to define dataset and design experiments (Botacin, Ceschin, Sun, 
Oliveira, & Grégio, 2021). In this sense, comparison of new proposals 
becomes difficult since many works do not freely share their implemen-
tations or the datasets used for evaluation. This work aims to help solve 
this problem.

While existing DGA detection techniques have shown promising re-
sults, they face several key challenges that hinders progress in DGA de-
tection research. First, the lack of standardized evaluation frameworks 
makes it difficult to fairly compare different approaches, as researchers 
often use varying datasets, metrics, and experimental setups. Second, 
many of the proposed solutions are not publicly available or lack suf-
ficient documentation, impeding reproducibility and verification of re-
sults claimed in the literature.

Our software, dubbed Rampage (fRAMework to comPAre aGd dEtec-
tors), directly addresses these limitations by providing a standardized 
environment for training and evaluating DGA detection models. Fur-
thermore, Rampage’s modular architecture allows researchers to easily 
compare different detection techniques, thereby accelerating innovation 
in this field while ensuring reproducibility and fair comparison of re-
sults.

To demonstrate the impact of Rampage, we replicate a set of ma-
chine learning-based models proposed in the literature and use our tool 
to compare them. Furthermore, we then create a new meta-model that 
combines several previously deep learning networks, together with a lo-
gistic regression, to determine whether a given domain name is an AGD 
or not. Additionally, we employ SHAP analysis and ablation studies to 
gain insights into the internal dynamics of our meta-model and evaluate 
the contribution of each individual classifier to the overall performance.

Our experiments show that this new meta-model, while conceptu-
ally simple, offers several practical advantages: it achieves compara-
ble and even slightly better results than current state-of-the-art models 
(Drichel et al., 2024; Woodbridge et al., 2016), while providing better 
interpretability and easier deployment in production environments. As 
a dataset for experiments, we use the Tranco  (2023) list and (Tuan, 
Anh, Luong, & Long, 2023) for training and testing, as well as a dataset 
we constructed from one year of DNS requests from the University of 
Zaragoza to perform experiments with real-world domains. For the sake 
of open science and reproducibility, the source code of the framework is 
public and fully operational for use, along with the models and datasets 
used in the experiments performed in this paper.

In summary, the contribution of this paper is three-fold:

• We propose a software framework to train and compare approaches 
based on deep learning for DGA detection. This software, dubbed 
Rampage, aims to improve and accelerate the development of new 
approaches for the detection of AGDs, providing a reproducible 
methodology and an adequate baseline for evaluation and compari-
son of models. The source code of Rampage has been released un-
der the GNU/GPLv3 license in a GitHub repository1 for the scientific 
community to use and improve.

• We demonstrate a practical approach to combining existing neural 
networks using logistic regression. To analyze the internal dynam-
ics and evaluate the contribution of each classifier within the meta-
model, we perform SHAP analysis and ablation studies. We also an-
alyze the time complexity to evaluate the computational overhead 
introduced by our approach. This results in a model that maintains 

1 https://github.com/reverseame/RAMPAGE

competitive performance while reducing architectural complexity. 
By integrating established techniques, we show how existing meth-
ods can be effectively combined to create robust solutions suitable 
for real-world deployment.

• We developed a dataset of real-world domains. Specifically, we built 
a new dataset containing the domain names requested to the Uni-
versity of Zaragoza’s DNS server between June 2023 and May 2024. 
This dataset allows us to perform more precise experiments with real-
world domains and has been released to facilitate the evaluation and 
comparison of machine learning-based proposals. By making it pub-
licly and freely available, we aim to support open science and pro-
mote reproducibility in research.

This paper is organized as follows. Section 2 presents previous con-
cepts necessary to understand our work. Section 3 discusses related 
work. Section 4 describes the proposed software framework and new 
model. Section 5 presents the dataset constructed for the experiments, 
as well as the experiments carried out in this work. Discussion of results 
and limitations is provided in Section 6. Finally, Section 7 concludes the 
paper and sets out future work.

2.  Background

This section aims to provide a comprehensive overview of two key 
areas for our work: DGAs and artificial neural networks.

2.1.  Domain generation algorithms

A Domain Generation Algorithm (DGA) is an algorithm that gener-
ates domain names following behavior similar to pseudo-random num-
ber generators. Since these algorithms follow pseudo-random bases, 
they make the generated domains appear random. These algorithms 
need a seed, which is an initial value used by the algorithm to gen-
erate the sequence of pseudo-random domain names, ensuring that the 
same seed will always produce the same sequence of domains, allowing 
both the malware and its C&C servers to stay synchronized. Domains 
generated using DGAs are known as Algorithmically Generated Domains 
(AGDs) (MITRE, 2023).

Since their first appearance in malware (Porras et al., 2009), DGAs 
have evolved.  Plohmann, Yakdan, Klatt, Bader, and Gerhards-Padilla 
(2016) characterize DGAs based on the seed source and based on the 
pseudo-random number generation algorithm (PRNGA). Most relevant 
for this work are the types of PRNGAs. Specifically, the PRNGA of a DGA 
can be Plohmann et al. (2016):

1. arithmetic, which calculates a sequence of values that are then trans-
formed into ASCII characters to construct a domain;

2. hash-based, which uses a cryptographic hash function on certain val-
ues (such as the date) to construct a domain;

3. dictionary-based, which uses dictionaries to concatenate words and 
thus construct a domain; and

4. permutation-based, which permutes single characters or substrings 
from an original domain to construct a new domain.

The AGDs resulting from each type of DGA are very different. For 
example, a dictionary-based DGA generates domains that are readable 
(so they may appear to be legitimate domains), while domains from a 
hash- or arithmetic-based DGA are simply a sequence of meaningless 
characters, which look like random or rare words to the human eye.

2.2.  Artificial neural networks

Artificial Neural Networks or simply Neural Networks (NNs) are com-
putational models inspired by the structure and function of biological 
neural networks in the brain (Wu & Feng, 2018). An ANN is made up of 
artificial neurons interconnected in layers that process information in a 
way that mimics how human neurons communicate.
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A NN consists of multiple layers: input layer, which receives the raw 
data and passes it to the next layer; a set of hidden layers, which process 
the data and extract relevant features using non-linear transformations; 
and an output layer, which produces the final result of the prediction 
or classification. In this regard, the term deep learning refers to neural 
networks with multiple hidden layers, allowing them to model more 
complex relationships in the data.

Forward propagation refers to the process of passing input 
data through the network, layer by layer, to produce an output
(Svozil, Kvasnicka, & Pospichal, 1997). This is done by calculating 
weighted sums and applying activation functions on each neuron until the 
output is calculated. These activation functions introduce non-linearity 
into the network, allowing it to solve complex tasks beyond simple linear 
classification. Common activation functions include, but are not limited 
to, sigmoid, ReLU, and softmax (Ding, Qian, & Zhou, 2018).

NNs are trained to minimize a loss function, which quantifies the 
difference between the predicted output and the actual target value. 
Popular loss functions include mean squared error (for regression tasks) 
and cross-entropy (for classification problems). The process of minimiz-
ing the loss function is performed using optimization algorithms such 
as Gradient Descent (Amari, 1993), although some variants such as 
Adam (Zhang, 2018) and RMSprop (Huk, 2020) are commonly used to 
speed up convergence and improve performance.

The algorithm used to calculate the gradients of the loss function 
with respect to the network weights is called backpropagation. This al-
gorithm allows the network to adjust the weights to minimize the loss 
and involves calculating the gradients from the output layer back to the 
input layer.

Like any other machine learning model, NN are evaluated using 
datasets that are typically split into three parts: training set, which is used 
to train the model; validation set, which is used to fine-tune the model 
parameters and prevent overfitting. Overfitting occurs when a NN learns 
to fit the training data too well, capturing noise and irrelevant details, 
which harms its ability to generalize to new data. To prevent this, reg-
ularization techniques such as dropout and L2 regularization, to name 
a few, can be used; and test set, which is used to evaluate the model’s 
performance on unseen data.

NNs are widely used in various fields such as computer vision (Guo 
et al., 2022), natural language processing (Chowdhary, 2020), speech 
recognition (Malik, Malik, Mehmood, & Makhdoom, 2021) and time se-
ries forecasting (Benidis et al., 2022). NNs have also emerged as a useful 
technique for AGD detection due to their ability to process raw data with 
minimal preprocessing. This characteristic is particularly advantageous 
compared to traditional machine learning methods, which often require 
extensive feature engineering and domain-specific knowledge to accu-
rately identify AGDs.

3.  Related work

Many researchers have focused their efforts on AGD detection since 
its first appearance in 2008 (Porras et al., 2009). As a result of these 
efforts, various approaches to detect and mitigate the threats posed by 
DGAs have been proposed, with a notable emphasis on approaches lever-
aging neural networks. In this section, we provide a brief review of the 
state-of-the-art techniques for AGD detection approaches (particularly 
those based on neural networks), highlighting key contributions in this 
rapidly evolving field.

Table 1 summarizes the current state of the art in AGD detection us-
ing neural networks, considering the characteristics of interest for this 
work (model and dataset used). Below, we describe only the most rel-
evant works that use NNs to identify AGDs. These works have been se-
lected because they either introduce novel models that have not been 
used before or because they provide a new approach for applying NNs 
to detect AGDs.

Woodbridge et al. (2016) introduced the first AGD detection 
model using neural networks with a Long Short-Term Memory (LSTM)

comprising 128 units. The proposed model has two different variants: 
a binary classification model (to differentiate between AGD and no 
AGD), and a multiclass classification model intended to identify spe-
cific DGA families. The study highlights the adaptability of LSTM net-
works in handling the variable lengths and complex structures of do-
main names generated by different DGA families. Another significant 
contribution to the field is the multi-class classifier based also on LSTM 
was given in Tran et al. (2018). This model achieves multiclass in-
variance by integrating a binary classifier with a multiclass classifier, 
offering a robust framework for distinguishing between various DGA
families.

Yu et al. (2017) conducted a comparative study of DGA detection 
models, comparing the effectiveness of an LSTM as proposed by Wood-
bridge et al. (2016) with that of a one-dimensional convolutional layer. 
The authors proposed a novel model for DGA detection based on a con-
volutional neural network (CNN), demonstrating the versatility and po-
tential of convolutional layers in this context. The comparative study 
provides valuable insights into the strengths and limitations of differ-
ent neural network models for DGA detection. Specifically, the convo-
lutional layers can capture local patterns within domain names, which 
are crucial for identifying characteristic substrings that are often indica-
tive of domains generated by a DGA. Yang et al. (2018) proposed a 
more complex CNN model, which expands the hidden layers of the net-
work and compares its results with models that only use LSTM layers 
(as in Woodbridge et al. (2016)).

Yu et al. (2018) presented an empirical comparison of various ma-
chine learning models for AGD detection. Using a dataset comprising 2 
million domains, they demonstrated that simpler models often achieve 
superior results in the validation phase, emphasizing the importance of 
model simplicity and efficiency and the value of simplicity in machine 
learning model design. Similarly, Sivaguru et al. (2018) evaluated dif-
ferent classifiers, although the model details are not as detailed as those 
provided by Yu et al. (2018). Both works highlighted the need for a bal-
anced approach to model complexity, where simplicity should not be 
sacrificed for the sake of incorporating advanced neural network archi-
tectures.

Vinayakumar et al. (2019) introduced a new model named Deep Bot 
Detect (DBD). This model is characterized by its simplicity and fast train-
ing process, which fortunately does not compromise its classification 
performance. The authors effectively demonstrated that an optimized 
model can achieve competitive results, contributing to the current dis-
course on how to balance model complexity and performance. The DBD 
model’s ability to achieve high accuracy with reduced computational 
overhead presents important practical advantages, particularly in real-
world deployment scenarios where real-time monitoring is a critical con-
sideration.

Berman (2019) proposed a new model called 1D Capsule Network, 
which is compared with other models suggested in previous works. This 
new type of neural network emerged as a response to the shortcom-
ings of convolutional networks (Sabour, Frosst, & Hinton, 2017). Other 
studies proposed new models also based on convolutional layers, such 
as Aloysius and Geetha (2017); Zhou et al. (2019). However, these works 
did not present significant advancements or novel model configurations. 
They also lack specificity when defining the values used in the mod-
els, which made them not reproducible. The lack of detailed configu-
ration parameters in these studies highlights the importance of trans-
parency and reproducibility in machine learning research (Arp et al., 
2023; Botacin et al., 2021). Similarly, Curtin et al. (2019) explored the 
detection of AGDs using recurrent networks and additional DNS query 
information. However, despite using additional information beyond the 
domain name itself, their approach did not produce significant improve-
ments in detection results. This finding suggests that incorporating aux-
iliary data sources does not necessarily translate into better model per-
formance, underscoring the complexity of the AGD detection problem 
and the need for continued innovation in feature engineering and model 
design.
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Table 1 
Summary of previous studies.
Paper Models used Datasets used Framework Public

(Woodbridge et al., 2016) LSTM b) (2025) & c) (2025) Keras 3

(Lison & Mavroeidis, 2017) RNN Alexa  (2025), DGArchive  (2023) & Bambenek  
(2025)

Keras

(Saxe & Berlin, 2017) CNN N/A Keras
(Yu, Gray, Pan, Cock, & Nascimento, 2017) LSTM & CNN N/A Keras 3

(Catania, Garcia, & Torres, 2018) CNN Alexa  (2025) & Bambenek  (2025) N/A
(Shi, Chen, & Li, 2018) ELM N/A N/A
(Tran, Mac, Tong, Tran, & Nguyen, 2018) LSTM Alexa  (2025) & Bambenek  (2025) Keras
(Yang et al., 2018) LSTM & CNN Umbrella  (2025) & Netlab-360 (2025a) Keras
(Yu, Pan, Hu, Nascimento, & De Cock, 2018) CNN, CMU, MIT, Baseline & MLP Alexa  (2025) & Bambenek  (2025) Keras 3

(Berman, 2019) LSTM, CNN & CapsNet Alexa  (2025) & Bambenek  (2025) Keras 3

(Catania, García, & Torres, 2019) CNN Alexa  (2025) & Bambenek  (2025) Keras
(Choudhary et al., 2019) LSTM, CNN, CMU, MIT & NYU public DGAs, Alexa  (2025), (Netlab-360, 2025a), 

DGArchive  (2023), openDNS  (2025) & Bambenek 
 (2025)

N/A

(Curtin, Gardner, Grzonkowski, Kleymenov, & 
Mosquera, 2019)

RNN openDNS  (2025) & N/A Keras

(Qiao, Zhang, Zhang, Sangaiah, & Wu, 2019) LSTM Alexa  (2025) & Bambenek  (2025) N/A
(Vinayakumar, Soman, Poornachandran, 
Alazab, & Jolfaei, 2019)

DBD Alexa  (2025), openDNS  (2025), DGArchive  
(2023) & Bambenek  (2025)

Keras 3

(Xu, Shen, & Du, 2019) CNN Alexa  (2025) & DGArchive  (2023) Keras
(Zhou et al., 2019) CNN Alexa  (2025) & DGArchive  (2023) Keras
(Liu, Zhang, Chen, Fan, & Dong, 2020) RCNN Alexa  (2025), Netlab-360 (2025a) & Bambenek  

(2025)
Keras

(Sivaguru, Peck, Olumofin, Nascimento, & 
De Cock, 2020)

LSTM Alexa  (2025) & DGArchive  (2023) Keras 3

(Yang, Liu, Dai, Wang, & Zhai, 2020) HDNN Umbrella  (2025) & Netlab-360 (2025a) N/A
(Namgung, Son, & Moon, 2021) Bi-LSTM Alexa  (2025) & Bambenek  (2025) Keras 3

(Selvi, Rodríguez, & Soria-Olivas, 2021) LSTM Alexa  (2025) & public DGAs Keras 3

(Shahzad, Sattar, & Skandaraniyam, 2021) LSTM & Bi-LSTM Alexa  (2025), Bambenek  (2025), Netlab-360 
(2025a) & Umbrella  (2025)

Pytorch

(Huang, Zong, Shi, Wang, & Liu, 2022) DPCNN Alexa  (2025), Bambenek  (2025), DGArchive  
(2023) & Netlab-360 (2025a)

Keras

(Liang, Chen, Wei, Zhao, & Zhao, 2022) CNN Alexa  (2025), Majestic  (2025), DGArchive  
(2023) & Netlab-360 (2025a)

Pytorch

(Morbidoni, Spalazzi, Teti, & Cucchiarelli, 
2022)

LSTM Alexa  (2025) & public DGAs N/A

(Suryotrisongko & Musashi, 2022) PQCs Alexa  (2025) & public DGAs Keras
(Tuan, Long, & Taniar, 2022) LSTM Alexa  (2025), Bambenek  (2025), Netlab-360 

(2025a) & public DGAs
Keras

(Vranken & Alizadeh, 2022) LSTM & MLP Tranco  (2023) & DGArchive  (2023) Keras
(Maia et al., 2024) LSTM, CNN & MLP Alexa  (2025) & DGArchive  (2023) N/A
(Drichel et al., 2024) ResNeXt, ConvNeXt, Transformer 

& RWKV
DGArchive  (2023) & N/A Keras 3

(Cebere, Flueren, Sebastián, Plohmann, & 
Rossow, 2024)

MLP, RNN, GRU, LSTM, CNN, 
Transformer & ResNset

Tranco  (2023), DGArchive  (2023) & public DGAs Pytorch 3

N/A: Not available.

In recent years, several works have introduced more models for AGD 
detection using neural networks, such as (Selvi et al., 2021; Sivaguru 
et al., 2020; Yang et al., 2020). Namely, a model using a heterogeneous 
deep neural network is proposed in (Yang et al., 2020), while Sivaguru 
et al. (2020) conducted a study on the importance of each feature of 
a domain name for AGD detection. Likewise, Selvi et al. (2021) im-
prove the configuration of an LSTM network by preprocessing the input 
data with the aim of achieving better results. Despite the innovative ap-
proaches presented, the first two studies are not very specific regarding 
the network layer configurations, making it difficult to reproduce the 
models. The third study, unlike the others, shares the developed con-
figuration. The lack of detailed methodological documentation poses 
a significant barrier to replication and validation, highlighting again 
the need for rigorous standards when reporting machine learning re-
search (Arp et al., 2023; Botacin et al., 2021). Nevertheless, these works 
represent important contributions to the continued evolution of AGD 
detection methodologies, demonstrating the potential of heterogeneous 
and feature-centric approaches to advance the state of the art. Drichel 
et al. (2024) propose a novel method based on transfer learning and fine-
tunning. This new approach allows learning nuances of specific AGDs, 
which improves classification.

Finally, Cebere et al. (2024) reviews detection techniques from a 
meta perspective. This work highlights certain assumptions made, some 
of which, as explained, are erroneous. In addition, current problems 
identified in AGD detection are discussed.

As evidenced by the extensive literature reviewed, deep learning ap-
proaches have demonstrated significant strengths in detecting AGDs. 
The main advantage lies in their ability to automatically extract mean-
ingful features from raw domain names, eliminating the need for man-
ual feature engineering. Deep learning architectures, particularly LSTMs 
and CNNs, have consistently achieved high classification accuracy on 
various datasets and DGA families. The evolution from basic LSTM archi-
tectures (Woodbridge et al., 2016) to sophisticated transfer learning ap-
proaches (Drichel et al., 2024) highlights the continuous improvement 
in detection capabilities. Both LSTMs and CNNs have proven effective 
at capturing sequential patterns and structural regularities in domain 
names.

Despite these advances, significant challenges remain. Recent meta-
analyses (Cebere et al., 2024) have exposed fundamental flaws in com-
mon assumptions about AGDs and legitimate domains, while the lack of 
detailed documentation in many studies impedes reproducibility (Arp 
et al., 2023; Botacin et al., 2021). The observation that simpler models 
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often match or outperform complex architectures (Vinayakumar et al., 
2019; Yu et al., 2018), coupled with the limited scope of analyzing only 
the domain name structure (Curtin et al., 2019), suggests that the field 
would benefit from a shift toward more comprehensive and reproducible 
approaches rather than an over-reliance on increasingly complex archi-
tectures. To address these challenges, particularly the issue of repro-
ducibility, we propose RAMPAGE as a framework that provides a stan-
dardized environment for implementing and comparing AGD detection 
approaches.

4.  The Rampage software framework

In this section, we describe our software framework, Rampage 
(fRAMework to comPAre aGd dEtectors), which allows the comparison 
of different neural network models. After an exhaustive study of the 
programming languages and frameworks used in the literature for AGD 
detection (see Table 1), we found that the most used language by far is 
Python with its Keras library, as shown in Fig. 1. Therefore, our tool 
is implemented in Python and Keras to facilitate its adoption by the 
scientific community.

Fig. 2 shows the proposed structure for our software. As can be 
seen, the framework is made up of two main modules: the Core and 
the Dataset Manager, which are explained in more detail below.

The Core module works as the central component that interconnects 
all other modules and handles the execution logic. It manages the inte-
gration of the datasets that the classifiers will use for training or compar-
ison, as well as the classifiers to be evaluated, acting as the foundation 
of the framework’s architecture. In contrast, the Dataset Manager mod-
ule functions exclusively as the dedicated handler for all dataset-related 
operations during the framework’s runtime. It has several customiza-
tion parameters to split the data into training, validation, and testing 
subsets. To do this, it uses Data Element, which represents an element 
of information from which the classifiers are trained. To simplify the 
process, Dataset Manager allows the user to read datasets from a file, 
requiring them to only develop the function that parses each line read 
from the file. This parsing flexibility allows users to tailor the frame-
work to their specific needs, accommodating various data formats and 
structures without modifying the core functionality.

Classifier defines the base structure that all models must follow 
for training and comparison. Researchers using the framework must

Fig. 1. Python frameworks used in the 32 reviewed state-of-the-art papers.

Fig. 2. Architectural diagram of Rampage.

implement their models by extending this module, ensuring a standard-
ized interface for all classifiers. Classifiers of interest for the evaluation 
and comparison must be added to the Core module in order for them to 
be run.

During the model comparison, the classifiers generate Results, 
which contain all the statistics obtained during the execution with the 
test dataset. As before, this must also be defined by the researcher.

To compare two or more models, it is mandatory that the new 
DataElement and Result can only extend or maintain the same struc-
ture as with the previous models. Otherwise, an update to the class fields 
from a DataElement or Result already processed or calculated can re-
sult can cause a failed execution and therefore the models cannot be 
compared.

For execution, it is first necessary to define the required Classifiers 
and add them to the Core. Next, the Dataset Manager must be defined 
and added to the Core, also incorporating the dataset of interest to be 
evaluated. With this, the framework is correctly initialized and ready to 
run. Once the run is complete, the models are trained, and the Results 
are generated. The framework can be configured to run only training 
or only testing. A full description of the framework, along with usage 
examples, is available in our GitHub repository.2

5.  Evaluation

In this section, we evaluate Rampage by answering the following 
research questions:

RQ1.- (RQ1.1) What specific challenges arise when comparing differ-
ent models for AGD detection and (RQ1.2) how can a stan-
dardized framework address these issues effectively? (See  Sec-
tion 5.1).

RQ2.- What are the benefits and potential drawbacks of using meta-
model and mixed models compared to single unmixed models in 
AGD detection? (See  Section 5.2).

RQ3.- To what extent do academic models work effectively in detecting 
AGD in real-world scenarios? (See  Section 5.3).

To answer these questions, we first present the datasets constructed 
for the experiments, as well as the experimental setup and metrics used. 
We then answer each question.

Construction of Datasets. Five different datasets were constructed for 
this work. The first three, 𝐷1, 𝐷2, and 𝐷3, each contain 250,000 DGA-
generated domains and 250,000 non-malicious domains, for a total of 

2 See https://github.com/reverseame/RAMPAGE
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500,000 domains per dataset. These datasets are disjoint from each 
other. The fourth dataset, 𝐷4, includes 7.5 million domains extracted 
from the University of Zaragoza DNS server logs, from June 2023 to 
May 2024 (347 days). Finally, 𝐷5 consists of 2.9 million real AGDs from 
DGArchive (Plohmann et al., 2016).

𝐷1 is used to train and compare all the models evaluated in this work 
to perform an initial classification and determine which have achieved 
the best results, helping to address  RQ1. 𝐷2 and 𝐷3 are used to ad-
dress  RQ2. Finally, 𝐷4 and 𝐷5 are used to evaluate RQ3.

The malicious AGDs in datasets 𝐷1, 𝐷2 and 𝐷3 come from the 
UTL_DGA22 dataset (Tuan et al., 2023). This dataset comprises 76 dif-
ferent families of DGA domains and aims to provide a broad sample of 
potential DGA-generated domains without biases towards any specific 
family. To have a similar sample size per malware family, we randomly 
select ⌊250, 000∕76⌋ AGDs from each family. The non-malicious domains 
have been obtained from the Tranco  (2023) list.

𝐷4 was created from the domains recorded in the logs of the Uni-
versity of Zaragoza. Since DNS servers receive a high volume of domain 
resolution requests, a filtering process is necessary to ensure all domains 
meet the conditions of a well-formed domain. To ensure the validity of 
the analyzed domains, we implement several validation filters. The first 
filter checks the technical characteristics of the domain name: the total 
length must not exceed 253 characters; it must start with a letter and 
continue with a string containing only letters, numbers, and hyphens; 
this string cannot start or end with hyphens; and must be between 1 
and 63 characters in length. The second filter focuses on domain clas-
sification: we use the Tranco list Tranco  (2023) as a reference to iden-
tify non-malicious domains. Specifically, if both the SLD and TLD of a 
domain appear on the Tranco list, we classify it as non-malicious. The 
remaining domains are classified as unknown. It should be noted that 
while we use the Tranco list as a reliable source, we recognize the possi-
bility that this list may contain some malicious domains, as pointed out 
by  (Pochat, Goethem, & Joosen, 2019). Furthermore, we acknowledge 
that there exist more benign domains than those included in the Tranco 
list. Accordingly, this filtering approach is subject to possible improve-
ments and may introduce classification errors. The remaining domains 
are categorized as unknown. Note that unknown domains may be either 
malicious or non-malicious, while non-malicious are considered benign 
because they are sub-domains of domains that belong to Tranco list.

Let us clarify that the goal of the 𝐷4 dataset is not to capture the 
complete diversity of real-world AGDs. Rather, it aims to provide a rep-
resentative sample of domains observed on a production DNS server, 
specifically in the context of a university environment such as the Uni-
versity of Zaragoza. This allows us to better understand the types of do-
mains, both legitimate and potentially malicious, that security analysts 
are likely to encounter on similar networks. While we acknowledge that 
this dataset may not cover all DGA families or emerging threats, it does 
provide valuable insight into the domain resolution patterns typical of 
academic DNS infrastructures, offering a realistic basis for testing and 
evaluating AGD detection techniques.

𝐷5 comprises 2.9 million real-world AGDs from 
DGArchive (Plohmann et al., 2016), representing 58 different 
malware families. To construct this dataset, we first selected malware 
families with at least 50,000 domains. We then randomly sampled 
50,000 AGDs from each of these families to ensure a diverse and 
representative sample of common malware families in the real world.

Experimental Setup. The experiments were performed on a ThinkPad 
E14 Gen 2 machine equipped with an Intel Core i7-1165G7 proces-
sor (8 cores, up to 4.7GHz), 32 GiB of RAM, and running Arch Linux 
2024.06.01. All experiments were run in identical software environ-
ments, using Python 3.12.3, Keras 3.5.0, and TensorFlow 2.17.0. All 
additional dependencies and their exact versions are listed in the 
requirements.txt file, available in our repository. To facilitate com-
plete reproducibility, complete source code and experimental config-
urations are publicly available in our GitHub repository (see footnote 
1) under the GNU/GPLv3 license. The specific version of the codebase 

used in this work is v1.1.0. The repository includes detailed installation 
instructions, usage examples, and experimental procedures to facilitate 
accurate replication of our results.

Deep Learning Models. A total of 17 models have been implemented 
on Rampage. Specifically, models containing a LSTM layer (Berman, 
2019; Selvi et al., 2021; Woodbridge et al., 2016; Yang et al., 2018; Yu 
et al., 2017), convolutional networks (Yang et al., 2018; Yu et al., 2017, 
2018), a combined LSTM and convolutional network (Berman, 2019), 
two versions of Tweet2Vec (CMU and MIT) (Dhingra, Zhou, Fitzpatrick, 
Muehl, & Cohen, 2016; Yu et al., 2018), an Parallel CNN network (Yu 
et al., 2018), a Baseline network (Yu et al., 2018), an MLP network (Yu 
et al., 2018), a convolutional network with max pooling (Berman, 2019), 
a network with a bidirectional LSTM layer (Berman, 2019) and a DBD 
network (Vinayakumar et al., 2019). To ensure consistency and allow 
for fair comparison, all models were trained using the hyperparameter 
settings described in Appendix B.

Due to the complexity of 1D Capsule Network (Berman, 2019) model, 
it has not been possible to implement and compare it with the other 
models in this work. In a similar way, due to technical issues with 
(Drichel et al., 2024) implementation, it has not been possible to re-
produce their models despite them being available to use.

Meta-model. The proposed meta-model implements an ensemble ap-
proach that combines predictions from multiple deep learning models 
via logistic regression. Fig. 3 illustrates the architectural design of this 
ensemble system. The architecture can be mathematically expressed as 
follows:

Let 𝑥 = [𝑥1,… , 𝑥𝑛]𝑇  be an input domain name represented as a se-
quence of characters, where each 𝑥𝑖 represents a character. The meta-
model  processes this input through 7 independent deep learning 
models, where each model 𝑚𝑗 generates a probability 𝑝𝑗 = 𝑚𝑗 (𝑥), 𝑗 ∈
{1,… , 7}.

These probabilities form a feature vector 𝑝 =
[𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7]𝑇 , which serves as input to a logistic re-
gression layer. The logistic regression then models the probability 
as (Yu, Huang, & Lin, 2011) 𝑃𝐿𝑅(𝑝) = 𝜎(𝑤𝑇 𝑝), where 𝑤 ∈ ℝ7 is the 
weight vector, and 𝜎 is the sigmoid function defined as 𝜎(𝑧) = 1

1 + 𝑒−𝑧
.

This architecture allows the meta-model to learn optimal weights 
𝑤 that combine the predictions of the individual models in a way that 
maximizes the overall performance. The logistic regression layer ensures 
that the output 𝑃𝐿𝑅(𝑝) is bounded within the interval [0, 1], providing a 
valid probability score, while simultaneously learning an optimal com-
bination of the individual deep learning models predictions.

Metrics. The metrics used are accuracy (Acc), precision (Prec), recall 
(Rec), F1-score (F1), false positive rate (FPR), true positive rate (TPR), 
Matthew’s correlation coefficient (MCC), and Cohen’s Kappa coefficient 
(𝜅), where the formulas for each metric are defined as follows:
Acc = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

Prec = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

Rec = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

F1 = 2 ⋅ Prec ⋅ Rec
Prec + Rec

(4)

FPR = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(5)

TPR = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)

MCC = 𝑇𝑁 ⋅ 𝑇𝑃 − 𝐹𝑁 ⋅ 𝐹𝑃
√

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(7)

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

,where (8)

𝑝𝑜 =
(𝑇𝑁 + 𝑇𝑃 )

(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 )
(9)

𝑝𝑒 =
(𝑇𝑁 + 𝑇𝑃 )(𝑇𝑁 + 𝐹𝑁)
(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 )2

+
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Fig. 3. Architecture of the proposed meta-model.

(𝐹𝑁 + 𝑇𝑃 )(𝐹𝑃 + 𝑇𝑃 )
(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 )2

(10)

True Negative (TN) and True Positive (TP) are, respectively, the 
number of legitimate domains correctly classified as non-AGD and the 
number of AGDs correctly classified as AGDs. In contrast, False Negative 
(FN) and False Positive (FP) are, respectively, the number of AGDs in-
correctly classified as legitimate and the number of legitimate domains 
incorrectly classified as AGDs.

Accuracy, precision, recall, and F1-score measure the classification 
efficiency of the models. FPR and TPR measure the rate of false posi-
tives and true positives among the classified domains. MCC is used as 
an indicator of quality of classification, and 𝜅 indicates the effect of ran-
domness on the proportion of agreement observed (the closer 𝜅 is to 1, 
the greater the degree of agreement; and vice versa).

5.1.  Q1: challenges in comparing AGD detection models and the role of 
standardized frameworks

To answer Q1, we need to gather and analyze specific information 
related to the challenges in comparing different deep learning models 
for AGD detection. To do so, we first implement and evaluate all the 17 
models using the same dataset. We use the same dataset for training, 
validation, and subsequently testing across all models (specifically, 𝐷1). 
This avoids any variability in dataset composition, size, and diversity 
that could lead to inconsistent performance between models, making it 
difficult to draw definitive conclusions.

Table 2 shows the results of this experiment. From these results we 
can draw several conclusions, discussed below, thus answering Q1.

Inconsistency in Performance Metrics. Comparison of different 
models revealed variability in performance metrics such as accuracy, 
precision, false positive rate, and other key indicators. For instance, the 
MIT model (Yu et al., 2018) achieves the highest accuracy (95.48%) 
and F1-score (96.59%), but the CMU model (Yu et al., 2018) has the 
highest precision (97.46%) and the lowest FPR (4.92%). This variabil-
ity complicates direct comparisons and the selection of the “best” model, 
as different metrics may prioritize different aspects of performance.

In this sense, a standardized framework can define a set of core 
evaluation metrics that all models must report, such as accuracy, pre-
cision, recall, F1 score, FPR, TPR, MCC, and 𝜅, among others. This 
eliminates discrepancies in how performance is reported, ensuring that 

model comparisons are performed consistently. Similarly, by defining 
and enforcing the same procedures for calculating metrics, the frame-
work helps avoid variations due to differences in computation or inter-
pretation of metrics. Additionally, a standardized framework can also 
provide a benchmark for comparison, where all models are assessed 
against the same baseline or reference, thus ensuring fair and reliable
evaluation.

Overfitting in Complex Models. Complex models tend to overfit 
when dealing with many different AGD families. This overfitting oc-
curs because complex models need to adjust more weights, leading to 
poor generalization to new, unseen data. In this sense, the results indi-
cated that simpler models, such as the LSTM models in Woodbridge et al. 
(2016); Yu et al. (2017), generally perform well across multiple metrics, 
while some more complex models, like Berman (2019), exhibit poorer 
performance (e.g., accuracy of 83.88% and F1-score of 86.99%). This 
presents a challenge in model selection, where simpler models can out-
perform complex ones under certain conditions. Let us recall that while 
simpler models tend to generalize better due to their limited ability 
to memorize the training data, they may not capture complex patterns 
that are essential for distinguishing subtle differences between various 
AGD families. This can result in underfitting, where the model performs 
poorly because it is too simplistic.

In this regard, using a standardized framework can enforce consis-
tent regularization techniques and hyperparameter tuning procedures 
across models, thereby reducing the risk of overfitting by maintaining 
uniform practices for managing model complexity. Likewise, using the 
same cross-validation methods ensures that all models are evaluated 
in a way that accurately reflects their generalizability, helping to mit-
igate the impact of overfitting. Finally, it can make it easier to track 
performance metrics across different datasets and conditions, provid-
ing insights into whether complex models are truly overfitting or if the 
problem lies elsewhere.

Balancing Complexity and Generalization. Complex models, such 
as the MIT (Yu et al., 2018) and DBD (Vinayakumar et al., 2019) net-
works, show strong performance. These results indicate that, when well 
regularized and properly tuned, complex models can achieve high accu-
racy and generalize well. However, this requires careful management 
of model complexity using techniques such as regularization, cross-
validation, and hyperparameter tuning. In contrast, as discussed above, 
the results also indicate that simpler models tend to adapt better to 
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Table 2 
Results obtained using 𝐷1 and the 17 implemented models.
   Model (Reference) Acc Prec Rec F1 FPR TPR MCC 𝛋  
 LSTM (Woodbridge et al., 2016) 95.42 97.39 95.69 96.53 5.12 95.69 89.82 0.8045  
 LSTM (Yu et al., 2017) 95.44 97.25 95.87 96.55 5.40 95.87 89.84 0.8059  
 CNN (Yu et al., 2017) 94.96 97.39 94.98 96.17 5.07 94.98 88.86 0.7849  
 LSTM (Yang et al., 2018) 95.02 96.82 95.67 96.24 6.27 95.67 88.88 0.7896  
 CNN (Yang et al., 2018) 92.94 96.29 92.99 94.61 7.16 92.99 84.49 0.7056  
 CMU (Yu et al., 2018) 94.87 97.46 94.77 96.10 4.92 94.77 88.69 0.7810  
 MIT Yu et al. (2018) 95.48 96.96 96.23 96.59 6.03 96.23 89.87 0.8083 
 Parallel CNN (Yu et al., 2018) 93.48 96.64 93.48 95.03 6.49 93.48 85.68 0.7265  
 Baseline (Yu et al., 2018) 86.51 93.36 85.87 89.46 12.19 85.87 71.31 0.4745  
 MLP (Yu et al., 2018) 92.59 96.41 92.32 94.32 6.86 92.32 83.84 0.6907  
 CNN (Berman, 2019) 95.28 97.08 95.81 96.44 5.76 95.81 89.48 0.7998  
 Max Pooling (Berman, 2019) 90.48 95.62 89.84 92.64 8.21 89.84 79.53 0.6107  
 LSTM (Berman, 2019) 92.40 96.98 91.44 94.13 5.68 91.44 83.67 0.6804  
 LSTM+CNN (Berman, 2019) 83.88 94.12 80.87 86.99 10.09 80.87 67.44 0.3796  
 Bidireccional (Berman, 2019) 93.40 95.92 94.10 95.00 8 94.10 85.33 0.7261  
 DBD (Vinayakumar et al., 2019) 94.19 96.92 94.28 95.58 5.98 94.28 87.18 0.7545  
 LSTM (Selvi et al., 2021) 88.09 86.59 90.13 88.33 13.95 90.13 76.24 0.6247  
Acc: Accuracy; Prec: Precision; Rec: Recall; F1: F1-score; FPR: False Positive Rate; TPR: True Positive Rate; MCC: Matthews’s 
Correlation Coefficient; 𝜅: Cohen’s Kappa Score.

more variations and perform consistently across different metrics. In 
conclusion, balancing model complexity and generalization remains a 
challenge, as simpler models might miss intricate patterns that complex 
models can capture.

Regarding this challenge, the use of a standardized framework allows 
systematic experimentation with different levels of model complexity 
under controlled conditions. This includes using techniques such as reg-
ularization and tuning to ensure that both simple and complex models 
are evaluated equally. Similarly, the framework can also provide guide-
lines for hyperparameter optimization, helping to find the best settings 
for simple and complex models, thus improving their balance between 
complexity and generalization. The framework also provides a standard-
ized approach to evaluating simple and complex models, helping to un-
derstand how well each model generalizes to unseen data and captures 
underlying complex patterns.

Consistency in Evaluation and Reporting. Challenges can arise 
from differences in how models are applied and interpreted. Variations 
in aspects such as preprocessing techniques, specific hyperparameter 
settings, and handling different data splits can impact performance met-
rics, even within a standardized framework like the one we use here. 
Ensuring that all models are evaluated under identical conditions and 
with the same rigor is essential to avoid misleading comparisons. Any 
subtle differences in implementation or dataset handling could still lead 
to variations in the reported results, which may influence the overall 
interpretation of model performance.

In this case, using a standardized framework ensures that prepro-
cessing steps, data splits, and other handling methods are applied con-
sistently across all models. This eliminates inconsistencies that arise 
from variations in data preparation. As for reporting, it can provide a 
structured way to document and report evaluation procedures and re-
sults, helping to understand the conditions under which each model was 
tested and reducing the impact of any subtle differences in implemen-
tation. Additionally, automated tools within the framework can gen-
erate consistent reports and visualizations, ensuring that performance
comparisons are based on the same evaluation criteria and reducing the 
likelihood of human error.

5.2.  Q2: meta-model vs. single models for AGD detection

Here, we evaluate the benefits and drawbacks of using meta-model 
and mixed models instead of single, unmixed models in AGD detec-
tion. To do this, we define a logistic regression model that integrates 
the results of our top-seven-performing neural network models shown 
above. This logistic regression takes the probabilities generated by each 

Table 3 
Results of the ablation study, illustrating the performance impact of removing 
each classifier from the meta-model.
Classifier removed Δ accuracy Δ F1 score Δ MCC Δ 𝜅

LSTM (Woodbridge et al., 2016) 0.0010 0.0010 0.0020 0.0019
LSTM (Yu et al., 2017) 0.0012 0.0012 0.0024 0.0022
MCU (Yu et al., 2018) 0.0004 0.0004 0.0008 0.0007
MIT (Yu et al., 2018) 0.0015 0.0016 0.0031 0.0029
CNN (Berman, 2019) 0.0015 0.0015 0.0030 0.0028
DBD (Vinayakumar et al., 2019) 0.0001 0.0001 0.0002 0.0002
Parallel CNN (Yu et al., 2018) 0.0005 0.0005 0.0010 0.0009

individual model –which indicates the likelihood of a domain being 
AGD-generated– as input features. By aggregating these probabilities, 
the logistic regression model is trained to produce a single probability 
score for each domain. This approach allows us to leverage the strengths 
and mitigate the weaknesses of individual models, providing a compre-
hensive analysis of whether meta-models offer significant performance 
improvement over stand-alone models in AGD detection scenarios. All 
models are available as examples in our GitHub repository, with their 
respective hyperparameters detailed in Appendix A. For consistency, we 
retain the original hyperparameters from previous works without mak-
ing any additional adjustments.

In response to Q2, we conducted an extensive set of studies to eval-
uate the effectiveness and performance improvement achieved through 
our meta-model approach, as described below.

Understanding the Internal Dynamics of the Meta-model. To bet-
ter understand the inner workings of our meta-model, we performed a 
SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) analy-
sis and an ablation study (Sheikholeslami, 2019). SHAP results explain 
the impact of each feature (in this case, each model’s prediction) on the 
overall result. This facilitates the interpretation of the model’s decision-
making process, making it more transparent and understandable. On the 
other hand, the ablation study helps assess the importance of each clas-
sifier within the meta-model by systematically removing one classifier 
at a time and observing the resulting performance change. This allows 
us to determine each model’s contribution to overall performance and 
identify whether any classifiers can be removed without significantly 
affecting the meta-model’s predictive performance.

Fig. 4 illustrates the contribution of each individual model to the fi-
nal prediction, as determined by the SHAP analysis, while Table 3 shows 
the performance impact when each classifier is removed from the meta-
model, based on the ablation study.
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Table 4 
Evaluation of 𝐷3 in the 7 best models (individual) and logistic regression (combines the 7 models).
Model Acc Prec Rec F1 FPR TPR MCC 𝛋

LSTM (Woodbridge et al., 2016) 95.41 95.81 94.97 95.39 4.14 94.97 90.83 0.8307
LSTM (Yu et al., 2017) 95.65 95.35 95.98 95.66 4.67 95.98 91.30 0.8408
MCU (Yu et al., 2018) 95.64 96.07 95.17 95.62 3.88 95.17 91.29 0.8385
MIT (Yu et al., 2018) 95.02 94.81 95.26 95.03 5.20 95.26 90.05 0.8197
DBD (Vinayakumar et al., 2019) 94.55 94.35 94.78 94.57 5.66 94.78 89.11 0.8044
CNN (Berman, 2019) 95.71 96.31 95.06 95.68 3.36 95.06 91.43 0.8403
Parallel CNN (Yu et al., 2018) 91.87 91.56 92.25 91.90 8.49 92.25 83.76 0.7220
Our proposed meta-model 96.68 97.04 96.29 96.66 2.93 96.29 93.36 0.8746

Acc: Accuracy; Prec: Precision; Rec: Recall; F1: F1-score; FPR: False Positive Rate; TPR: True Positive 
Rate;MCC: Matthews’s Correlation Coefficient; 𝜅: Cohen’s Kappa Score.

Fig. 4. Impact of individual models on meta-model prediction (SHAP analysis 
results).

The results reveal a clear pattern of hierarchical influence, with 
the CNN (Berman, 2019) model exhibiting the highest impact range
(−1.0 to +1.5), followed by the MIT (Yu et al., 2018) and LSTM (Wood-
bridge et al., 2016) models, which exhibit moderate influence ranges 
(−0.75 to +1.0). SHAP analysis shows that most models contribute pos-
itively to the final correlation patterns, meaning higher probability out-
puts tend to contribute positively to the final meta-model decision, with 
higher likelihood scores being positively correlated. However, an excep-
tion is observed with the Parallel CNN (Yu et al., 2018) model, which 
exhibits an inverse correlation pattern, as further elaborated below.

The effectiveness of our meta-model approach is further enhanced 
by the complementary nature of the individual models’ contributions. 
While some models, such as CNN (Berman, 2019) and MIT (Yu et al., 
2018), exert a broader impact and significantly influence the final pre-
diction, others, such as DBD (Vinayakumar et al., 2019) and MCU (Yu 
et al., 2018), provide more specialized contributions within specific 
probability ranges. This complementary interaction allows the meta-
model to leverage broad and focused detection capabilities, improving 
overall robustness.

Our ablation study further validates the contributions of individual 
models to the overall meta-model performance. Table 3 shows the im-
pact of removing each classifier from the meta-model on each metric. 
The Δ represents the change in the corresponding performance metric 
when the specific classifier is removed from the meta-model. The results 
are consistent with our SHAP analysis, which reveals that the MIT (Yu 
et al., 2018) and CNN (Berman, 2019) models have the most signifi-
cant influence, with a 0.15% decrease in accuracy and F1-score when 
removing either one. These findings suggest that our meta-model does 
not rely heavily on a single classifier, demonstrating a well-distributed 
contribution across models.

Extending the single-model ablation study, we performed a compre-
hensive study in which we systematically varied the number of con-
stituent models in the meta-model. Specifically, we evaluated all possi-
ble model combinations for each group size, from 2 to 7, and calculated 

Fig. 5. Meta-model performance metrics as a function of the number of con-
stituent models.

average performance metrics for these combinations, grouped by the 
number of models included. Fig. 5 presents the resulting performance 
trends across all evaluation metrics as the meta-model size increases.

As shown in Fig. 5, all evaluation metrics show a steady upward 
trend with the inclusion of additional models in the meta-model. 
While the performance improvements are incremental, the aggregate 
improvements underscore the effectiveness of the ensemble strategy. 
These results indicate that the meta-model leverages the complemen-
tary strengths of the individual classifiers, with each additional model 
contributing distinct detection capabilities that improve the overall sys-
tem performance.

A notable observation is the distinctive behavior of the Parallel 
CNN (Yu et al., 2018) model, which exhibits an inverse correlation pat-
tern compared to other models. While most models contribute positively 
when their output probabilities are high, the Parallel CNN demonstrates 
a stronger influence on lower probability outputs. This unique behavior, 
combined with the systematic distribution of influence across multiple 
models, ensures that the final prediction is not overly dependent on any 
single model, reducing susceptibility to bias or failure of individual mod-
els and providing a more reliable detection mechanism.

Meta-model Performance Evaluation. We train the top seven mod-
els along with the logistic regression meta-model using 𝐷2 for training 
and evaluate their performance on 𝐷3. The results of this experiment, 
presented in Table 4, show a significant advantage of employing a meta-
model approach for AGD detection.

Our proposed meta-model, which integrates the likelihood results of 
the seven individual models via logistic regression, consistently achieves 
the highest scores across all performance metrics. These results high-
light the effectiveness of the meta-model in aggregating the strengths of 
the individual models, leading to improved performance and robustness 
compared to any individual model.
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Fig. 6. Comparison of training times (on 𝐷2) and inference times (on 𝐷3) for individual models and the meta-model.

Furthermore, the consistency and improvements observed across 
several evaluation metrics reinforce the benefits of this ensemble-based 
approach. These findings validate our initial hypothesis that metamod-
els can more effectively manage the complexities and variations inher-
ent in AGD data, ultimately improving overall detection capabilities and 
ensuring more reliable and adaptive threat detection.

Time Complexity Analysis of the Meta-model vs. Individual 
Models. A critical factor in evaluating the viability of our meta-model 
approach is its computational efficiency compared to standalone mod-
els. While performance metrics indicate a slight advantage in detection 
accuracy for the meta-model, a holistic evaluation must also consider 
the time spent in the training and inference phases. To do so, we mea-
sure the training time required to fine-tune each individual model, as 
well as the meta-model, along with the corresponding inference time 
for domain classification.

Fig. 6 presents a comparative overview of the training and inference 
times of the seven individual models and the proposed meta-model. A 
key advantage of our meta-model architecture is that the component 
models can be run in parallel, substantially reducing the computational 
overhead that would otherwise occur with sequential execution. During 
training, we observe an additional overhead of approximately 80 sec-
onds for the meta-model, compared to training the individual models. 
However, this cost is incurred only once and does not affect runtime 
performance after deployment.

From a deployment perspective, inference time is the most critical 
metric. In our experiments, the meta-model demonstrated minimal in-
ference overhead. Since inference is performed in parallel across all 
component models, the total inference time is largely bounded by the 
slowest model, followed by a lightweight logistic regression computa-
tion for the final prediction. The negligible additional latency intro-
duced by this last step confirms that the meta-model achieves its per-
formance improvements without imposing significant execution costs. 
These results confirm the viability of our meta-model in real-world 
AGD detection systems, where operational efficiency is a determining
factor.

Resource Usage Analysis. To evaluate the practical viability of our 
meta-model approach in hardware-constrained operating environments, 
we measured the computational resource consumption during the train-
ing and inference phases. In our implementation, each individual model 
runs on a dedicated CPU core at 100% utilization. As a result, the meta-
model, composed of seven parallel classifiers, operates simultaneously 
on seven CPU cores at full capacity.

Table 5 
Maximum RAM usage during training (in 𝐷2) and inference (in 𝐷3).

Model Training (GiB) Inference (GiB)
LSTM (Woodbridge et al., 2016) 1.34 1.15
LSTM (Yu et al., 2017) 1.60 1.30
MCU (Yu et al., 2018) 1.72 1.38
MIT (Yu et al., 2018) 2.13 1.62
DBD (Vinayakumar et al., 2019) 2.18 1.65
CNN (Berman, 2019) 2.02 1.58
Parallel CNN (Yu et al., 2018) 2.26 1.72
Our proposed meta-model 5.63 4.28

Table 5 summarizes the peak RAM usage for the training and infer-
ence phases for the seven highest-performing individual models, as well 
as our proposed meta-model.

As shown, our meta-model exhibits higher peak RAM consump-
tion in both phases, reflecting the cumulative memory footprint of the 
concurrently executed base models. Despite this increased usage, re-
source demands remain within the capabilities of contemporary mul-
ticore systems. RAM consumption is highly dependent on the size of the
underlying dataset and the architectural complexity of each component 
model. Overall, these measurements confirm that our meta-model is 
suitable for deployment in production environments with standard hard-
ware configurations, supporting its operational feasibility under practi-
cal conditions.

Statistical Validation of Meta-model Performance. To rigor-
ously validate the performance of the models, we perform a Scott-
Knott ESD (Effect Size Difference) analysis (Tantithamthavorn, McIn-
tosh, Hassan, & Matsumoto, 2019). This statistical method employs
hierarchical clustering to divide treatment means into statistically dis-
tinct groups based on statistical significance and effect size, providing 
insight into significant differences between and within groups. Fig. 7 
illustrates the results of the Scott-Knott ESD analysis on four key per-
formance metrics, while Table 6 presents the corresponding detailed 
statistical measures.

The results of the analysis reveal a consistent clustering pattern 
across all performance metrics, with the models forming four statis-
tically distinct groups (G1-G4). The meta-model achieves the high-
est performance across all metrics and is consistently placed in its 
own group (G1), confirming its superiority. Next, a group of five 
models (specifically, CNN (Berman, 2019), LSTM (Yu et al., 2017), 
MIT (Yu et al., 2018), LSTM (Woodbridge et al., 2016), and MCU
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Fig. 7. Scott-Knott ESD analysis for different performance metrics.

(Yu et al., 2018)) form the second group (G2), with the CNN model 
leading this group. The DBD (Vinayakumar et al., 2019) model consti-
tutes a separate group (G3), while the Parallel CNN (Yu et al., 2018) 
consistently ranks lowest across all metrics, forming the final group
(G4).

The statistical validation provided by the Scott-Knott ESD analysis 
offers compelling evidence of the superior performance of the meta-
model. As illustrated in both Fig. 7 and Table 6, the meta-model not 
only outperforms all individual models in terms of absolute performance 
but also shows statistically significant improvements, justifying its dis-
tinctive classification in the G1 group. Furthermore, narrow confidence 
intervals (CI) and low standard deviations (𝜎) across all metrics in-
dicate that the superior performance of the meta-model is consistent 
and reliable. These findings strongly support the efficacy of our ap-
proach to aggregating individual models into a meta-model, as it con-
sistently outperforms even the best-performing stand-alone models by 
a statistically significant margin. This validation further reinforces the 
robustness and reliability of our proposed ensemble approach for AGD
detection.

Calibration Analysis of the Meta-model. In addition to per-
formance metrics, we evaluate the quality of our meta-model’s
calibration (Trucano, Swiler, Igusa, Oberkampf, & Pilch, 2006) to as-
sess the adequacy of its probability estimates to the actual class proba-
bilities. Fig. 8 shows the distribution of predicted probabilities for the 
benign and AGD domains in 𝐷3.

The clear separation between classes highlights the meta-model’s 
confidence in its classifications. As shown in Table 7, approximately 
92% of all instances fall into the extreme probability ranges (0.0-0.1 
and 0.9-1.0), further confirming the model’s decisive classification be-
havior.

Fig. 8. Distribution of predicted probabilities for the benign and AGD domains 
in 𝐷3.

To visualize the calibration precision, we generate a reliability di-
agram (see Fig. 9) comparing predicted probabilities with observed 
frequencies across the 10 equal-width probability bins detailed in
Table 7.

The calibration analysis in Table 7 reveals several key findings: (i) 
our meta-model demonstrates strong overall calibration, with a Brier 
score of 0.0307 and an Expected Calibration Error (ECE) of 0.0098; (ii) 
the model shows good calibration precision at the probability extremes, 
with minimal calibration errors of 0.0011 in the 0.0 to 0.1 interval and 
0.0081 in the 0.9 to 1.0 interval; and (iii) calibration errors increase in 
the middle probability ranges, with a Maximum Calibration Error (MCE) 
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Table 7 
Probability bin calibration analysis for the meta-model.
Bin range Size Mean confidence Calibration error
0.00-0.10 229,331 0.0162 0.0011
0.10-0.20 8192 0.1426 0.0370
0.20-0.30 4326 0.2471 0.0085
0.30-0.40 3261 0.3479 0.0345
0.40-0.50 2727 0.4492 0.0696
0.50-0.60 2648 0.5503 0.1059
0.60-0.70 2975 0.6511 0.1237
0.70-0.80 3541 0.7521 0.1495
0.80-0.90 5823 0.8560 0.1613
0.90-1.00 237,176 0.9883 0.0081

Fig. 9. Reliability diagram comparing predicted probabilities with observed fre-
quencies.

Table 8 
Evaluation of 𝐷4 in the 7 best individual models individual and logistic regres-
sion.

Benign Unknown

 Model AGD Non-AGD AGD Non-AGD

LSTM (Woodbridge et al., 2016) 81.67% 18.33% 19.66% 80.34%
LSTM (Yu et al., 2017) 83.17% 16.83% 21.97% 78.03%
MCU (Yu et al., 2018) 80.44% 19.56% 30.93% 69.07%
MIT (Yu et al., 2018) 83.78% 16.22% 22.01% 77.99%
DBD (Vinayakumar et al., 2019) 84.31% 15.69% 20.13% 79.87%
CNN (Berman, 2019) 81.37% 18.63% 17.14% 82.86%
Parallel CNN (Yu et al., 2018) 82.17% 17.83% 22.84% 77.16%
Our proposed meta-model 84.40% 15.60% 18.63% 81.37%

of 0.1613 occurring in the 0.8-0.9 bin, indicating a tendency toward 
overconfidence in this range.

Notably, the bins with the largest calibration errors contain relatively 
few instances: the six middle intervals from 0.4 to 0.9 combined repre-
sent only 17,714 instances (approximately 3.5% of the dataset). This 
pattern is advantageous for AGD detection systems, where domains are 
often clearly benign or clearly malicious. Robust calibration of the meta-
model at probability extremes ensures that confidence indices reliably 
reflect actual probabilities.

5.3.  Q3: real-world effectiveness of academic AGD detection models

An effective AGD detection model is necessary in the context of to-
day’s threat landscape. In this section, we address RQ3 by evaluating 
the performance of the classifiers described in Section 5.2 in real-life 
situations. To do so, we conduct experiments on the 𝐷4 and 𝐷5 datasets 
to test the classifiers. This approach allows us to estimate their effec-
tiveness under real-life conditions. The results of this experiment are 
presented in Table 8. We then draw several conclusions based on these 
results, which answer RQ3.
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Table 9 
Evaluation results on the 𝐷5 dataset.
Model Acc F1

LSTM (Woodbridge et al., 2016) 89.23 94.31
LSTM (Yu et al., 2017) 88.07 93.66
MCU (Yu et al., 2018) 89.11 94.24
MIT (Yu et al., 2018) 88.92 94.14
DBD (Vinayakumar et al., 2019) 88.03 93.64
CNN (Berman, 2019) 87.97 93.60
Parallel CNN (Yu et al., 2018) 87.93 93.58
Our proposed meta-model 89.46 94.44

Misclassification of Benign Domains. Current classifiers are not 
suitable for real-world environments. The results in Table 8 show that 
more than 80% of benign domains are incorrectly classified by all classi-
fiers, which is inaccurate if we consider these domains as benign because 
their SLD and TLD are included in the Tranco  (2023) list. Regarding the 
domains classified as unknown in 𝐷4, approximately only 20% of these 
domains have been positively identified as AGDs.

Inadequacy of Training Datasets to Represent Real-World Do-
mains. If we analyze the benign domains in 𝐷4, we can see that most 
of them are domains with hierarchical subdomains. In contrast, datasets 
used to train AGD detection models only consist of second- and top-level 
domains. Therefore, these datasets cannot be considered representative 
of domains in real-world environments, as they do not consider that do-
mains can have multiple subdomains. Furthermore, these subdomains 
can be generated dynamically and randomly, but not used for malicious 
purposes. This happens with some well-known Internet services that use 
such subdomains, such as googlesyndication.com, dropbox.com, or 
cloudfront.net. This lack of representation of real-world domains in 
training datasets is the main cause of the misclassification problem dis-
cussed above.

DGArchive’s Real-World AGDs Evaluation. To further validate our 
findings, we evaluate all models on the 𝐷5 dataset, which contains 2.9 
million real-world AGDs from DGArchive (Plohmann et al., 2016). The 
results are presented in Table 9. All models achieved accuracy values 
between 87.93% and 89.46%, with our proposed meta-model perform-
ing the best at 89.46%. The perfect precision, reflected in the F1-scores, 
is expected since 𝐷5 contains exclusively AGDs. However, the accuracy 
values indicate that all models fail to detect approximately 10 to 12% of 
the real-world AGDs, highlighting performance shortcomings compared 
to controlled environments in previous experiments.

Notably, there is a significant gap between model performance on 
the academic AGD datasets (𝐷1, 𝐷2, and 𝐷3) and those on real-world 
AGDs in 𝐷5. This performance degradation underscores the challenges 
of transferring academic models to operational environments, where 
DGAs may be more diverse, sophisticated, or previously unknown to 
detection models. These findings emphasize the need for continuous 
model updating and more representative training datasets that better 
reflect the evolving landscape of real-world malicious domains.

Common Classification Failures. We also analyze common 
classification failures observed in both individual models and the meta-
model, focusing on the patterns of misclassification of benign domains 
as DGAs and vice versa. Our analysis reveals that benign domains 
misclassified as AGDs in 𝐷4 often share characteristics with malicious 
DGAs, despite serving legitimate purposes. For example, domains 
such as dd3187aea93c4f86.safeframe.googlesyndication.com,
i2-qvprxfpecstaegbeldyyno.init.cedexis-radar.net, and
ucea5465a78eff0d990.dl.dropboxusercontent.com contain random-
looking alphanumeric strings as subdomains of legitimate parent 
domains. Similarly, domains like zzu4e.tdum.alibaba.com and
np.dl.playstation.com use abbreviations or shortcodes that trigger 
false positives due to their entropy patterns, even though they belong 
to well-established organizations.

These misclassifications are primarily due to current models being 
trained on datasets composed mainly of second-level domains, which 
lack adequate representation of legitimate domains with complex hier-
archical structures. Models tend to focus on character-level features that 
appear algorithmically generated, without regard for the legitimacy of 
the original domain.

Regarding the AGDs in the 𝐷5 dataset that were misclassified as be-
nign, no clear patterns were found to distinguish correctly classified 
from incorrectly classified samples. This suggests that the models either 
fail to detect subtle variations in DGA algorithms or encounter entirely 
new generation patterns not present in their training data.

These findings indicate that current academic models require sub-
stantial adaptation to address the diversity and complexity of domains 
present in real-world settings. Future research should focus on devel-
oping more representative training datasets that include hierarchical 
domains, legitimate randomization patterns, and continuously updated 
AGD examples to improve detection accuracy in operational environ-
ments.

6.  Threat model and limitations

In this section, we first describe the threat model of our proposed 
model and then outline the limitations of our work.

6.1.  Threat model

The meta-model proposed in Section 5.2 consists of a logistic regres-
sion model that integrates the outputs of multiple neural network mod-
els for AGD detection. In this regard, if any of the neural network mod-
els feeding the logistic regression model are compromised (e.g., through 
adversarial attacks or data poisoning), their output probabilities can be 
skewed, affecting the performance of the entire meta-model. This can 
lead to incorrect AGD classifications due to poisoned or manipulated in-
put probabilities. Similarly, logistic regression models are also vulnera-
ble to adversarial attacks, where carefully crafted inputs can manipulate 
the decision boundary to cause misclassification. To address these issues, 
we can implement adversarial defense mechanisms as well as validate 
the input data for each neural network model to ensure it has not been 
tampered with.

An attacker can also attempt a model inversion attack on the logistic 
regression model to infer details about the underlying NN models or the 
training data. If successful, this can lead to privacy violations, revealing 
details about how AGD domains are detected or even leaking informa-
tion about the system’s detection capabilities. To prevent this, we can 
limit the exposure of model’s internals and use differential privacy tech-
niques.

Our proposed model may be overfitted to particular patterns and 
outputs from the underlying models. If one or more of these NN models 
are biased or flawed, the logistic regression may inherit these biases, re-
sulting in reduced generalizability to new, unseen domains. To mitigate 
this, we can use techniques such as cross-validation and regularization 
mechanisms to reduce overfitting and facilitate generalization.

The effectiveness of our meta-model is highly dependent on the qual-
ity and consistency of the input data feeding each neural network. In 
real-world scenarios, where domain names often exhibit complex hi-
erarchical patterns and dynamically generated characteristics, we may 
encounter noisy, incomplete, or inconsistent data that could impact the 
reliability of our detection system. Data quality issues such as missing 
features, inconsistent formats, or variations in subdomain patterns could 
propagate through individual neural networks and ultimately impact 
the meta-model’s decision-making process. These challenges are partic-
ularly evident when dealing with legitimate services that employ dy-
namic subdomain generation for non-malicious purposes.

To address these limitations, we propose to implement robust pre-
processing pipelines, including data validation checks to identify and 
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handle missing or corrupted values, standardization procedures to en-
sure consistent representation of features across models, and noise re-
duction techniques to improve the signal-to-noise ratio in input data. 
These steps are designed to preserve the legitimate complexity of do-
main structures while reducing the impact of noisy or incomplete data, 
thereby improving the overall performance and reliability of the model.

Similarly, an attacker can attempt to perform a denial-of-service at-
tack in our meta-model. Since the system depends on multiple NN mod-
els followed by a logistic regression layer, the attacker can create inputs 
that cause excessive resource usage, slowing down the detection pro-
cess. Resource monitoring and graceful degradation strategies to man-
age resource-intensive operations and avoid system overload can help 
mitigate this issue.

Our proposed model aggregates the results of multiple NN models. 
This process, while improving performance, introduces additional com-
plexity that can make it vulnerable to exploitation. For instance, an 
adversary can compromise one or more models by manipulating the 
neural networks to generate biased probabilities, which could dispro-
portionately influence the final output of the logistic regression classi-
fier. This can lead to incorrect classifications, especially if the logistic 
regression gives significant weight to the outputs of the compromised
models.

Another concern arises from the sequential nature of the aggrega-
tion process, which introduces temporal dependencies that can also 
be exploited. Delays or manipulations in the timing of the outputs 
of individual models can create race conditions or synchronization 
issues, ultimately affecting the reliability of the final classification
decision.

To mitigate these vulnerabilities, several defensive strategies can be 
employed. First, weighted ensembling techniques can reduce the impact 
of any model on the final decision, making the system more robust to 
attacks targeting specific models. Additionally, anomaly detection can 
be incorporated to monitor and flag unusual results from any individ-
ual model, reducing the chances that an adversary can manipulate the 
overall result without being detected. To address timing concerns, we 
recommend implementing synchronization mechanisms, such as time-
out protocols, that would ensure that all models produce results within 
a consistent time frame. These measures can help prevent timing incon-
sistencies, race conditions, and unresponsive models from affecting the 
aggregation process.

Similarly, if individual NN models are poorly calibrated (i.e., pre-
dicted probabilities do not reflect actual likelihoods), inaccurate input 
features for the logistic regression model may arise. The meta-model can 
therefore incorrectly classify AGD domains, as the input probabilities of 
the base models are not reliable indicators of AGD likelihood. Correct 
fine-tuning of the underlying NNs can help mitigate this problem.

The output of the logistic regression meta-model is considered the 
final predicted value. In this sense, this model acts as a single point of 
failure. If the logistic regression algorithm is compromised (e.g., through 
model inversion attacks), the entire AGD detection system can fail, re-
gardless of the performance of the individual NNs. We can monitor the 
integrity of the logistic regression model and consider redundancy or 
ensembling even at the meta-model level to mitigate this problem.

6.2.  Limitations

Rampage may face challenges in scaling to accommodate a larger 
number of models or more complex models. This is particularly prob-
lematic when integrating more advanced neural network architectures 
or a larger ensemble of models, which may require significant engineer-
ing efforts.

Furthermore, the lack of reproducible research and publicly avail-
able data in the field poses another substantial limitation. As noted 
in (Arp et al., 2023; Botacin et al., 2021), many state-of-the-art datasets 
are not shared openly or the hyperparameters settings of the mod-
els are not consistently defined, hampering the ability to validate and

compare results between studies. This scarcity of accessible data can 
prevent comparison with previous models, as well as the development 
and subsequent benchmarking of new models.

Like any other DGA detection model based on DNS requests, our lo-
gistic regression assumes that DNS requests are available. In real-world 
networks, transit data may be incomplete, encrypted, or obfuscated, 
complicating the detection process. Furthermore, the performance of 
our model may vary under different operational environments. The 
prevalence of certain DGA families may influence the effectiveness of 
our model.

On top of that, interpretability remains a major challenge in meta-
model approaches. Neural networks, particularly when combined in 
a meta-model approach, often act as black boxes, making it difficult 
to understand the network’s decision-making process. To address this 
challenge, we integrate explainability techniques such as SHAP val-
ues, which provide transparency by highlighting feature importance and 
clarifying local decision boundaries. Additionally, we maintain detailed 
logs of the intermediate results of each neural network component, al-
lowing for better traceability and transparency in the decision-making 
process along the meta-model pipeline.

Performance is also another issue. Running multiple neural network 
models, followed by a logistic regression model, demands substantial 
computational resources. To mitigate this, resource-constrained orga-
nizations can benefit from employing model compression techniques 
or leveraging distributed computing approaches. From a scalability 
perspective, our logistic regression architecture is designed to handle 
increasing data volumes through horizontal scaling of computing re-
sources and modular component design. Although this approach may 
not be feasible in all environments, particularly for organizations with 
limited access to high-performance computing infrastructure or real-
time networks, these strategies offer potential workarounds that could 
make deployment more accessible.

Finally, although our proposed meta-model performs well on the 
existing dataset, its ability to generalize to new unseen AGDs remains 
uncertain. To address concerns about overfitting, we implement cross-
validation and include dropout layers within the training. The model’s 
ability to detect emerging threats depends on the diversity and repre-
sentativeness of the training data. As with all deep learning models, 
our system requires regular updates and retraining to adapt to chang-
ing conditions. In this regard, periodic retraining programs using newly 
collected data can help. In our case, we have developed an automated 
pipeline to support continuous data collection and model updates. This 
automated process, coupled with continuous monitoring of model per-
formance metrics, ensures that the system remains responsive to real-
world dynamics.

7.  Conclusions and future work

Despite numerous proposed machine learning models for AGD 
detection, their true efficacy remains uncertain due to the lack of 
standardized evaluation methods and reproducible datasets. In this 
paper, we addressed these challenges by presenting Rampage, a novel 
Python3 software framework designed to standardize and facilitate 
the development, evaluation, and comparison of machine learning 
models for AGD detection. Our framework provides a reproducible 
approach to overcome common issues in cybersecurity and machine 
learning research, such as inconsistent baselines and non-reproducible 
methodologies. To demonstrate the utility of Rampage, we imple-
mented several existing models from the literature and evaluated 
them under the same conditions. Furthermore, we built a new meta-
model that combines distinct deep learning models and a logistic 
regression, which we evaluated on a developed dataset containing 
real-world DNS requests. The results show that our meta-model 
achieves slightly better performance than the state-of-the-art models, 
highlighting the effectiveness of our approach and the applicabil-
ity of our framework. In the spirit of open science, our software 
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framework and proposed model, as well as the dataset used for
experimentation, are freely and publicly available under the 
GNU/GPLv3 license.

As future work, we aim to create a repository dedicated to sharing 
and downloading pre-trained models for detecting AGDs. This repository 
would allow researchers to easily share and compare their results, foster-
ing collaboration and improving reproducibility in this field. We are also 
working on the explainability of our model to elucidate how it reaches 
its conclusions and identify the most influential features in its predic-
tions. We also aim to evaluate the computational efficiency, resource 
consumption, and scalability of the meta-model in large-scale deploy-
ments. Additionally, we aim to explore the potential of incorporating 
lexical and metadata features, such as character n-gram distributions, 
entropy scores, and WHOIS/registration-based data, as well as hierar-
chical parsing strategies that treat each subdomain label individually 
to expand validation efforts in AGD detection. These techniques could 
improve the ability to distinguish between benign dynamic subdomains 
and true AGDs in more heterogeneous or large-scale environments, and 
we consider them promising for future research. We also aim to expand 
validation by incorporating DNS data from diverse organizational or ge-
ographic sources, and by cross-validating with public threat intelligence 
sources to improve the generalizability of our approach.
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Appendix A.  Model hyperparameter configurations

This appendix describes the detailed hyperparameter settings 
for all models evaluated in this work. For each model, we 
adopted the settings specified in their respective original publica-
tions, applying minimal additional tuning. This decision facilitates 
a fair comparison with previous work and ensures that any ob-
served performance differences primarily reflect the influence of 
our experimental framework, rather than exhaustive hyperparameter
optimization.

Tables A.10 to A.16 provide comprehensive information on 
the model architectures, hyperparameter values, optimization strate-
gies, and loss functions employed in our implementation. These 
details are intended to improve reproducibility. All models de-
scribed in this appendix are publicly available in our GitHub
repository.3

3 https://github.com/reverseame/RAMPAGE
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Table A.10 
Hyperparameter configuration for the LSTM model (Woodbridge 
et al., 2016).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 256
 Output Dimension 128
 Input Length 128
LSTM Layer
 Units 128
 Unroll True
Dropout Layer
 Rate 0.5
Dense Layer
 Units 1
Activation Function sigmoid

Optimizer Adam
 Learning Rate 0.001
 Beta 1 0.9
 Beta 2 0.999
 Epsilon 1e-08
 Weight Decay 0.001

Loss Function binary_crossentropy

Table A.11 
Hyperparameter configuration for the LSTM model (Yu et al., 2017).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 256
 Output Dimension 128
 Input Length 128
LSTM Layer
 Units 128
 Unroll True
Dropout Layer
 Rate 0.5
Dense Layers
 First Layer Units 100
 Second Layer Units 1
Activation Function sigmoid

Optimizer Adam
 Learning Rate 0.001
 Beta 1 0.9
 Beta 2 0.999
 Epsilon 1e-08
 Weight Decay 0.001
Loss Function binary_crossentropy

Table A.12 
Hyperparameter configuration for the MCU model (Yu et al., 2018).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 128
 Output Dimension 128
 Input Length 128
Bidirectional LSTM Layer
 Units 64
 Return Sequences False
 Unroll True
 Merge Mode concat
Dense Layer
 Units 1
 Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy

Table A.13 
Hyperparameter configuration for the MIT model (Yu et al., 2018).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 128
 Output Dimension 128
 Input Length 128
Conv1D Layer
 Filters 128
 Kernel Size 3
 Padding same
 Activation relu
 Strides 1
MaxPooling1D Layer
 Pool Size 2
 Padding same
LSTM Layer
 Units 64
 Return Sequences False
 Unroll True
Output Dense Layer
 Units 1
 Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy
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Table A.14 
Hyperparameter configuration for the CNN model (Berman, 2019).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 256
 Output Dimension 50
 Input Length 128
Dropout Layer
 Rate 0.25
First Conv1D Layer
 Filters 250
 Kernel Size 4
 Padding same
MaxPooling1D Layer
 Pool Size 3
Second Conv1D Layer
 Filters 300
 Kernel Size 3
 Padding same
Flatten Layer
BatchNormalization Layer
Dense Layer
 Units 300
Dropout Layer
 Rate 0.2
BatchNormalization Layer
Output Dense Layer
 Units 1
 Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy

Table A.15 
Hyperparameter configuration for the DBD model (Vinayakumar 
et al., 2019).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 256
 Output Dimension 128
 Input Length 128
Conv1D Layer
 Filters 64
 Kernel Size 5
MaxPooling1D Layer
 Pool Size 4
LSTM Layer
 Units 70
 Unroll True
Output Dense Layer
 Units 1
 Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy

Table A.16 
Hyperparameter configuration for the Parallel CNN model (Yu et al., 2018).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 128
 Output Dimension 128
 Input Length 128
Parallel Conv1D Layers
 Kernel Sizes 2, 3, 4, 5
 Filters 256 (each)
 Padding same
 Activation relu
 Strides 1
 Reduction sum (axis=1)
Dropout Layer (after each conv)
 Rate 0.5
Dense Layers
 First Layer Units 1024
 First Layer Activation relu
 Second Layer Units 1024
 Second Layer Activation relu
 Output Layer Units 1
Dropout Layers (between dense)
 Rate 0.5
Output Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy

Appendix B.  Hyperparameter optimization methodology

This appendix provides detailed documentation of the hyperparam-
eter optimization methodology applied to the 17 models evaluated in 
this work. The goal is to improve transparency and facilitate the repro-
ducibility of our experimental procedures.

B.1.  Optimization strategy

Rather than performing exhaustive hyperparameter searches across 
all possible parameter configurations, we adopted a principled strategy 
designed to balance reproducibility and computational efficiency. Our 
approach was based on the following key decisions:
Baseline Configuration. We initialized each model with the hyperpa-
rameter settings reported in its original publication. This ensures that 
our comparisons accurately reflect the configurations intended by the 
authors and provide a fair and standardized basis for evaluation.
Standardized Training Parameters. To ensure consistent and compa-
rable training conditions across all models, we apply a unified train-
ing configuration, regardless of model architecture. This standardiza-
tion mitigates confounding factors that could arise from heterogeneous 
training procedures.
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B.2.  Training setup details

The following training parameters were consistently applied to all 
17 models:

• Epochs: 500
• Batch size: 50
• Optimizer: Adam optimizer with:

– Learning rate: 0.001
– Beta 1: 0.9
– Beta 2: 0.999
– Epsilon: 10−8
– Weight decay: 0.001

• Learning function loss: Binary Cross-Entropy

B.3.  Model selection and validation strategy

Early Stopping. All models incorporated early stopping based on vali-
dation accuracy to prevent overfitting. Training was stopped if no im-
provement was observed over a predefined time interval.
Model Checkpointing. Model checkpointing was used to retain the 
state of the best-performing model based on validation accuracy, 
thereby ensuring that the final model reflects the optimal configuration 
observed during training.
Cross-Validation. All experiments employed consistent training-
validation-test splits of 70%-15%-15%. This fixed split was applied uni-
formly to each model to eliminate dataset variability as a confounder in 
performance comparisons.
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