

Delft University of Technology

RAMPAGE
A software framework to ensure reproducibility in algorithmically generated domains
detection
Pelayo-Benedet, Tomás; Rodríguez, Ricardo J.; Gañán, Carlos H.

DOI
10.1016/j.eswa.2025.128629
Publication date
2025
Document Version
Final published version
Published in
Expert Systems with Applications

Citation (APA)
Pelayo-Benedet, T., Rodríguez, R. J., & Gañán, C. H. (2025). RAMPAGE: A software framework to ensure
reproducibility in algorithmically generated domains detection. Expert Systems with Applications, 293,
Article 128629. https://doi.org/10.1016/j.eswa.2025.128629

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.eswa.2025.128629
https://doi.org/10.1016/j.eswa.2025.128629

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

RAMPAGE: a software framework to ensure reproducibility in

algorithmically generated domains detection

Tomás Pelayo-Benedet a, Ricardo J. Rodríguez a,∗, Carlos H. Gañán b

aDpto. de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, Spain
bDelft University of Technology, the Netherlands

a r t i c l e i n f o

Keywords:
Malware
Machine learning models
Neural network models
Algorithmically generated domains detection
Evaluation

 a b s t r a c t

As part of its life cycle, malware can establish communication with its command and control server. To bypass
static protection techniques, such as blocking certain IPs in firewalls or DNS server deny lists, malware can use
algorithmically generated domains (AGD). Many different solutions based on deep learning have been proposed
during the last years to detect this type of domains. However, there is a lack of ability to compare the proposed
models because there is no common framework that allows experiments to be replicated under the same condi-
tions. Each previous work shows its evaluation results, but under different experimentation conditions and even
with different datasets. In this paper, we address this gap by proposing a software framework, dubbed Rampage
(fRAMework to comPAre aGd dEtectors), focused on training and comparing machine learning models for AGD
detection. Furthermore, we propose a new model that uses logistic regression and, using Rampage to obtain a
fair comparison with different state-of-the-art models, achieves slightly better results than those obtained so far.
In addition, the dataset built from real-world samples for evaluation, as well as the source code of Rampage, are
also publicly released to facilitate its use and promote experimental reproducibility in this research field.

1. Introduction

In recent years, the number of cyberattacks has increased because
cybercrime has become a profitable business that moves large amounts
of money, even more profitable than the global illegal drug trade com-
bined (Cybersecurityventures, 2023). As a result, techniques for de-
veloping malicious code (malware) are becoming more sophisticated,
requiring continuous updating of prevention, detection, and response
techniques.

Lockheed Martin’s Cyber Kill Chain (Martin, 2023) describes the
seven phases an attack must complete to be successful. Once the first
five phases are completed (reconnaissance, armament, delivery, exploita-
tion, and installation), the attacker has full control over the victim’s ma-
chine. The attacker then establishes a command and control channel to
communicate with the compromised system, allows them to issue com-
mands and control the system remotely, often to move laterally within
the network or exfiltrate data. This phase is known as Command & Con-
trol (C&C).

There are several techniques to establish such a communication
channel with the C&C server. Many malware uses constant data to ob-
tain the C&C address, such as an IP address string or a domain name
in its binary data (Palo Alto, 2023). However, this data is very easy

∗ Corresponding author.
 E-mail addresses: tpelayo@unizar.es (T. Pelayo-Benedet), rjrodriguez@unizar.es (R.J. Rodríguez), C.HernandezGanan@tudelft.nl (C.H. Gañán).

to extract (Yong Wong et al., 2021) and therefore the communication
channel can be stopped very quickly. For instance, adding specific rules
to firewalls or intrusion detection systems (Bejtlich, 2013).

To overcome these detections and continue establishing communi-
cation, malware began to incorporate techniques such as Domain Gen-
eration Algorithms (DGAs). Since their appearance in the Conflicker
malware (Porras, Saïdi, & Yegneswaran, 2009), DGAs have been a very
effective strategy for establishing communication between attackers and
compromised systems.

A DGA pseudo-randomly generates many domain names known as
Algorithmically Generated Domains (AGDs). For this technique to work,
both the malware and the attacker must know the specific DGA and the
initial seed used for the pseudo-random number generator. The attacker
first registers one of the possible AGDs to deploy their C&C server. Mean-
while, the malware in the compromised system periodically generates
new AGDs and tries to communicate with them. It will eventually con-
nect to the registered AGD and thus establish the connection. When the
C&C server is taken down, the attacker simply registers a new AGD and
deploys again their C&C server infrastructure, and waits again for the
compromised system to connect again.

Detection of malicious AGDs has been an important research topic in
the last 15 years. To detect them, different solutions have been proposed,

https://doi.org/10.1016/j.eswa.2025.128629
Received 25 October 2024; Received in revised form 29 May 2025; Accepted 13 June 2025

Expert Systems With Applications 293 (2025) 128629

Available online 17 June 2025
0957-4174/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
https://orcid.org/0009-0000-9308-5688

D_1

D_2

D_3

D_4

D_5

D_1

D_2

D_3

D_4

D_5

D_1

D_2

D_3

$\lfloor 250,000 / 76 \rfloor $

D_4

D_4

D_5

$x = [x_1, \ldots , x_n]^T$

x_i

$\mathcal {M}$

7

m_j

$p_j= m_j(x), \quad j \in \{1,\ldots ,7\}$

$p = [p_1, p_2, p_3, p_4, p_5, p_6, p_7]^T$

$P_{LR}(p) = \sigma (w^T p)$

$w \in \mathbb {R}^7$

$\sigma $

$\sigma (z) = \dfrac {1}{1 + e^{-z}}$

w

$P_{LR}(p)$

$[0,1]$

$\displaystyle \textit {Acc}$

$\displaystyle \textit {Prec}$

$\displaystyle \textit {Rec}$

$\displaystyle \textit {F1}$

$\displaystyle \textit {FPR}$

$\displaystyle \textit {TPR}$

$\displaystyle \textit {MCC})$

$\displaystyle \kappa $

\begin {align}&\textit {Acc}=\dfrac {TP + TN}{TP + TN + FP + FN} \\ &\displaystyle \textit {Prec}=\dfrac {TP}{TP + FP} \\ &\displaystyle \textit {Rec}=\dfrac {TP}{TP + FN} \\ &\displaystyle \textit {F1}= {\,}2 \cdot \dfrac {\textit {Prec} \cdot \textit {Rec}}{\textit {Prec} + \textit {Rec}} \\ &\displaystyle \textit {FPR}=\dfrac {FP}{FP + TN} \\ &\displaystyle \textit {TPR}=\dfrac {TP}{TP + FN} \\ &\displaystyle \textit {MCC}=\dfrac {TN \cdot TP - FN \cdot FP}{\sqrt {(TP+FP)(TP+FN)(TN+FP)(TN+FN)}} \\ &\displaystyle \kappa =\dfrac {p_o - p_e}{1 - p_e}, \text {where} \\ &\displaystyle p_o = \dfrac {(TN+TP)}{(TN+FP+FN+TP)} \\ &\displaystyle p_e = \dfrac {(TN+TP)(TN+FN)}{(TN+FP+FN+TP)^2} +\notag \\ &\qquad \frac {(FN+TP)(FP+TP)}{(TN+FP+FN+TP)^2}\end {align}

$\kappa $

$\kappa $

D_1

D_1

${\mathbf \kappa }$

$\kappa $

$\kappa $

$\Delta $

$\Delta $

$\Delta $

$\Delta $

$\kappa $

$-$

$-$

$\Delta $

D_2

D_3

D_3

$\mathbf \kappa $

$\kappa $

D_2

D_3

D_2

D_3

$\mu $

$\sigma $

$\mu $

$\sigma $

$\mu $

$\sigma $

$\mu $

$\sigma $

$\mu $

$\sigma $

$\sigma $

D_3

D_3

D_4

D_5

D_4

D_4

D_4

D_5

D_5

D_5

D_1

D_2

D_3

D_5

D_4

D_5

10^{-8}

https://orcid.org/0000-0001-7982-0359
https://orcid.org/0000-0002-4699-3007
mailto:tpelayo@unizar.es
mailto:rjrodriguez@unizar.es
mailto:C.HernandezGanan@tudelft.nl
https://doi.org/10.1016/j.eswa.2025.128629
https://doi.org/10.1016/j.eswa.2025.128629
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Pelayo-Benedet et al.

mainly based on deep learning approaches (Drichel, von Querfurth, &
Meyer, 2024; Woodbridge, Anderson, Ahuja, & Grant, 2016). When a
new solution appears, they always claim to provide significant benefits
compared to previous solutions, providing numerical experiments that
support this claim. However, different pitfalls have been encountered
in the machine learning research in cybersecurity, such as inappropri-
ate baselines (Arp et al., 2023) or the use of non-reproducible method-
ology to define dataset and design experiments (Botacin, Ceschin, Sun,
Oliveira, & Grégio, 2021). In this sense, comparison of new proposals
becomes difficult since many works do not freely share their implemen-
tations or the datasets used for evaluation. This work aims to help solve
this problem.

While existing DGA detection techniques have shown promising re-
sults, they face several key challenges that hinders progress in DGA de-
tection research. First, the lack of standardized evaluation frameworks
makes it difficult to fairly compare different approaches, as researchers
often use varying datasets, metrics, and experimental setups. Second,
many of the proposed solutions are not publicly available or lack suf-
ficient documentation, impeding reproducibility and verification of re-
sults claimed in the literature.

Our software, dubbed Rampage (fRAMework to comPAre aGd dEtec-
tors), directly addresses these limitations by providing a standardized
environment for training and evaluating DGA detection models. Fur-
thermore, Rampage’s modular architecture allows researchers to easily
compare different detection techniques, thereby accelerating innovation
in this field while ensuring reproducibility and fair comparison of re-
sults.

To demonstrate the impact of Rampage, we replicate a set of ma-
chine learning-based models proposed in the literature and use our tool
to compare them. Furthermore, we then create a new meta-model that
combines several previously deep learning networks, together with a lo-
gistic regression, to determine whether a given domain name is an AGD
or not. Additionally, we employ SHAP analysis and ablation studies to
gain insights into the internal dynamics of our meta-model and evaluate
the contribution of each individual classifier to the overall performance.

Our experiments show that this new meta-model, while conceptu-
ally simple, offers several practical advantages: it achieves compara-
ble and even slightly better results than current state-of-the-art models
(Drichel et al., 2024; Woodbridge et al., 2016), while providing better
interpretability and easier deployment in production environments. As
a dataset for experiments, we use the Tranco (2023) list and (Tuan,
Anh, Luong, & Long, 2023) for training and testing, as well as a dataset
we constructed from one year of DNS requests from the University of
Zaragoza to perform experiments with real-world domains. For the sake
of open science and reproducibility, the source code of the framework is
public and fully operational for use, along with the models and datasets
used in the experiments performed in this paper.

In summary, the contribution of this paper is three-fold:

• We propose a software framework to train and compare approaches
based on deep learning for DGA detection. This software, dubbed
Rampage, aims to improve and accelerate the development of new
approaches for the detection of AGDs, providing a reproducible
methodology and an adequate baseline for evaluation and compari-
son of models. The source code of Rampage has been released un-
der the GNU/GPLv3 license in a GitHub repository1 for the scientific
community to use and improve.

• We demonstrate a practical approach to combining existing neural
networks using logistic regression. To analyze the internal dynam-
ics and evaluate the contribution of each classifier within the meta-
model, we perform SHAP analysis and ablation studies. We also an-
alyze the time complexity to evaluate the computational overhead
introduced by our approach. This results in a model that maintains

1 https://github.com/reverseame/RAMPAGE

competitive performance while reducing architectural complexity.
By integrating established techniques, we show how existing meth-
ods can be effectively combined to create robust solutions suitable
for real-world deployment.

• We developed a dataset of real-world domains. Specifically, we built
a new dataset containing the domain names requested to the Uni-
versity of Zaragoza’s DNS server between June 2023 and May 2024.
This dataset allows us to perform more precise experiments with real-
world domains and has been released to facilitate the evaluation and
comparison of machine learning-based proposals. By making it pub-
licly and freely available, we aim to support open science and pro-
mote reproducibility in research.

This paper is organized as follows. Section 2 presents previous con-
cepts necessary to understand our work. Section 3 discusses related
work. Section 4 describes the proposed software framework and new
model. Section 5 presents the dataset constructed for the experiments,
as well as the experiments carried out in this work. Discussion of results
and limitations is provided in Section 6. Finally, Section 7 concludes the
paper and sets out future work.

2. Background

This section aims to provide a comprehensive overview of two key
areas for our work: DGAs and artificial neural networks.

2.1. Domain generation algorithms

A Domain Generation Algorithm (DGA) is an algorithm that gener-
ates domain names following behavior similar to pseudo-random num-
ber generators. Since these algorithms follow pseudo-random bases,
they make the generated domains appear random. These algorithms
need a seed, which is an initial value used by the algorithm to gen-
erate the sequence of pseudo-random domain names, ensuring that the
same seed will always produce the same sequence of domains, allowing
both the malware and its C&C servers to stay synchronized. Domains
generated using DGAs are known as Algorithmically Generated Domains
(AGDs) (MITRE, 2023).

Since their first appearance in malware (Porras et al., 2009), DGAs
have evolved. Plohmann, Yakdan, Klatt, Bader, and Gerhards-Padilla
(2016) characterize DGAs based on the seed source and based on the
pseudo-random number generation algorithm (PRNGA). Most relevant
for this work are the types of PRNGAs. Specifically, the PRNGA of a DGA
can be Plohmann et al. (2016):

1. arithmetic, which calculates a sequence of values that are then trans-
formed into ASCII characters to construct a domain;

2. hash-based, which uses a cryptographic hash function on certain val-
ues (such as the date) to construct a domain;

3. dictionary-based, which uses dictionaries to concatenate words and
thus construct a domain; and

4. permutation-based, which permutes single characters or substrings
from an original domain to construct a new domain.

The AGDs resulting from each type of DGA are very different. For
example, a dictionary-based DGA generates domains that are readable
(so they may appear to be legitimate domains), while domains from a
hash- or arithmetic-based DGA are simply a sequence of meaningless
characters, which look like random or rare words to the human eye.

2.2. Artificial neural networks

Artificial Neural Networks or simply Neural Networks (NNs) are com-
putational models inspired by the structure and function of biological
neural networks in the brain (Wu & Feng, 2018). An ANN is made up of
artificial neurons interconnected in layers that process information in a
way that mimics how human neurons communicate.

Expert Systems With Applications 293 (2025) 128629

2

https://github.com/reverseame/RAMPAGE

T. Pelayo-Benedet et al.

A NN consists of multiple layers: input layer, which receives the raw
data and passes it to the next layer; a set of hidden layers, which process
the data and extract relevant features using non-linear transformations;
and an output layer, which produces the final result of the prediction
or classification. In this regard, the term deep learning refers to neural
networks with multiple hidden layers, allowing them to model more
complex relationships in the data.

Forward propagation refers to the process of passing input
data through the network, layer by layer, to produce an output
(Svozil, Kvasnicka, & Pospichal, 1997). This is done by calculating
weighted sums and applying activation functions on each neuron until the
output is calculated. These activation functions introduce non-linearity
into the network, allowing it to solve complex tasks beyond simple linear
classification. Common activation functions include, but are not limited
to, sigmoid, ReLU, and softmax (Ding, Qian, & Zhou, 2018).

NNs are trained to minimize a loss function, which quantifies the
difference between the predicted output and the actual target value.
Popular loss functions include mean squared error (for regression tasks)
and cross-entropy (for classification problems). The process of minimiz-
ing the loss function is performed using optimization algorithms such
as Gradient Descent (Amari, 1993), although some variants such as
Adam (Zhang, 2018) and RMSprop (Huk, 2020) are commonly used to
speed up convergence and improve performance.

The algorithm used to calculate the gradients of the loss function
with respect to the network weights is called backpropagation. This al-
gorithm allows the network to adjust the weights to minimize the loss
and involves calculating the gradients from the output layer back to the
input layer.

Like any other machine learning model, NN are evaluated using
datasets that are typically split into three parts: training set, which is used
to train the model; validation set, which is used to fine-tune the model
parameters and prevent overfitting. Overfitting occurs when a NN learns
to fit the training data too well, capturing noise and irrelevant details,
which harms its ability to generalize to new data. To prevent this, reg-
ularization techniques such as dropout and L2 regularization, to name
a few, can be used; and test set, which is used to evaluate the model’s
performance on unseen data.

NNs are widely used in various fields such as computer vision (Guo
et al., 2022), natural language processing (Chowdhary, 2020), speech
recognition (Malik, Malik, Mehmood, & Makhdoom, 2021) and time se-
ries forecasting (Benidis et al., 2022). NNs have also emerged as a useful
technique for AGD detection due to their ability to process raw data with
minimal preprocessing. This characteristic is particularly advantageous
compared to traditional machine learning methods, which often require
extensive feature engineering and domain-specific knowledge to accu-
rately identify AGDs.

3. Related work

Many researchers have focused their efforts on AGD detection since
its first appearance in 2008 (Porras et al., 2009). As a result of these
efforts, various approaches to detect and mitigate the threats posed by
DGAs have been proposed, with a notable emphasis on approaches lever-
aging neural networks. In this section, we provide a brief review of the
state-of-the-art techniques for AGD detection approaches (particularly
those based on neural networks), highlighting key contributions in this
rapidly evolving field.

Table 1 summarizes the current state of the art in AGD detection us-
ing neural networks, considering the characteristics of interest for this
work (model and dataset used). Below, we describe only the most rel-
evant works that use NNs to identify AGDs. These works have been se-
lected because they either introduce novel models that have not been
used before or because they provide a new approach for applying NNs
to detect AGDs.

Woodbridge et al. (2016) introduced the first AGD detection
model using neural networks with a Long Short-Term Memory (LSTM)

comprising 128 units. The proposed model has two different variants:
a binary classification model (to differentiate between AGD and no
AGD), and a multiclass classification model intended to identify spe-
cific DGA families. The study highlights the adaptability of LSTM net-
works in handling the variable lengths and complex structures of do-
main names generated by different DGA families. Another significant
contribution to the field is the multi-class classifier based also on LSTM
was given in Tran et al. (2018). This model achieves multiclass in-
variance by integrating a binary classifier with a multiclass classifier,
offering a robust framework for distinguishing between various DGA
families.

Yu et al. (2017) conducted a comparative study of DGA detection
models, comparing the effectiveness of an LSTM as proposed by Wood-
bridge et al. (2016) with that of a one-dimensional convolutional layer.
The authors proposed a novel model for DGA detection based on a con-
volutional neural network (CNN), demonstrating the versatility and po-
tential of convolutional layers in this context. The comparative study
provides valuable insights into the strengths and limitations of differ-
ent neural network models for DGA detection. Specifically, the convo-
lutional layers can capture local patterns within domain names, which
are crucial for identifying characteristic substrings that are often indica-
tive of domains generated by a DGA. Yang et al. (2018) proposed a
more complex CNN model, which expands the hidden layers of the net-
work and compares its results with models that only use LSTM layers
(as in Woodbridge et al. (2016)).

Yu et al. (2018) presented an empirical comparison of various ma-
chine learning models for AGD detection. Using a dataset comprising 2
million domains, they demonstrated that simpler models often achieve
superior results in the validation phase, emphasizing the importance of
model simplicity and efficiency and the value of simplicity in machine
learning model design. Similarly, Sivaguru et al. (2018) evaluated dif-
ferent classifiers, although the model details are not as detailed as those
provided by Yu et al. (2018). Both works highlighted the need for a bal-
anced approach to model complexity, where simplicity should not be
sacrificed for the sake of incorporating advanced neural network archi-
tectures.

Vinayakumar et al. (2019) introduced a new model named Deep Bot
Detect (DBD). This model is characterized by its simplicity and fast train-
ing process, which fortunately does not compromise its classification
performance. The authors effectively demonstrated that an optimized
model can achieve competitive results, contributing to the current dis-
course on how to balance model complexity and performance. The DBD
model’s ability to achieve high accuracy with reduced computational
overhead presents important practical advantages, particularly in real-
world deployment scenarios where real-time monitoring is a critical con-
sideration.

Berman (2019) proposed a new model called 1D Capsule Network,
which is compared with other models suggested in previous works. This
new type of neural network emerged as a response to the shortcom-
ings of convolutional networks (Sabour, Frosst, & Hinton, 2017). Other
studies proposed new models also based on convolutional layers, such
as Aloysius and Geetha (2017); Zhou et al. (2019). However, these works
did not present significant advancements or novel model configurations.
They also lack specificity when defining the values used in the mod-
els, which made them not reproducible. The lack of detailed configu-
ration parameters in these studies highlights the importance of trans-
parency and reproducibility in machine learning research (Arp et al.,
2023; Botacin et al., 2021). Similarly, Curtin et al. (2019) explored the
detection of AGDs using recurrent networks and additional DNS query
information. However, despite using additional information beyond the
domain name itself, their approach did not produce significant improve-
ments in detection results. This finding suggests that incorporating aux-
iliary data sources does not necessarily translate into better model per-
formance, underscoring the complexity of the AGD detection problem
and the need for continued innovation in feature engineering and model
design.

Expert Systems With Applications 293 (2025) 128629

3

T. Pelayo-Benedet et al.

Table 1
Summary of previous studies.
Paper Models used Datasets used Framework Public

(Woodbridge et al., 2016) LSTM b) (2025) & c) (2025) Keras 3

(Lison & Mavroeidis, 2017) RNN Alexa (2025), DGArchive (2023) & Bambenek
(2025)

Keras

(Saxe & Berlin, 2017) CNN N/A Keras
(Yu, Gray, Pan, Cock, & Nascimento, 2017) LSTM & CNN N/A Keras 3

(Catania, Garcia, & Torres, 2018) CNN Alexa (2025) & Bambenek (2025) N/A
(Shi, Chen, & Li, 2018) ELM N/A N/A
(Tran, Mac, Tong, Tran, & Nguyen, 2018) LSTM Alexa (2025) & Bambenek (2025) Keras
(Yang et al., 2018) LSTM & CNN Umbrella (2025) & Netlab-360 (2025a) Keras
(Yu, Pan, Hu, Nascimento, & De Cock, 2018) CNN, CMU, MIT, Baseline & MLP Alexa (2025) & Bambenek (2025) Keras 3

(Berman, 2019) LSTM, CNN & CapsNet Alexa (2025) & Bambenek (2025) Keras 3

(Catania, García, & Torres, 2019) CNN Alexa (2025) & Bambenek (2025) Keras
(Choudhary et al., 2019) LSTM, CNN, CMU, MIT & NYU public DGAs, Alexa (2025), (Netlab-360, 2025a),

DGArchive (2023), openDNS (2025) & Bambenek
 (2025)

N/A

(Curtin, Gardner, Grzonkowski, Kleymenov, &
Mosquera, 2019)

RNN openDNS (2025) & N/A Keras

(Qiao, Zhang, Zhang, Sangaiah, & Wu, 2019) LSTM Alexa (2025) & Bambenek (2025) N/A
(Vinayakumar, Soman, Poornachandran,
Alazab, & Jolfaei, 2019)

DBD Alexa (2025), openDNS (2025), DGArchive
(2023) & Bambenek (2025)

Keras 3

(Xu, Shen, & Du, 2019) CNN Alexa (2025) & DGArchive (2023) Keras
(Zhou et al., 2019) CNN Alexa (2025) & DGArchive (2023) Keras
(Liu, Zhang, Chen, Fan, & Dong, 2020) RCNN Alexa (2025), Netlab-360 (2025a) & Bambenek

(2025)
Keras

(Sivaguru, Peck, Olumofin, Nascimento, &
De Cock, 2020)

LSTM Alexa (2025) & DGArchive (2023) Keras 3

(Yang, Liu, Dai, Wang, & Zhai, 2020) HDNN Umbrella (2025) & Netlab-360 (2025a) N/A
(Namgung, Son, & Moon, 2021) Bi-LSTM Alexa (2025) & Bambenek (2025) Keras 3

(Selvi, Rodríguez, & Soria-Olivas, 2021) LSTM Alexa (2025) & public DGAs Keras 3

(Shahzad, Sattar, & Skandaraniyam, 2021) LSTM & Bi-LSTM Alexa (2025), Bambenek (2025), Netlab-360
(2025a) & Umbrella (2025)

Pytorch

(Huang, Zong, Shi, Wang, & Liu, 2022) DPCNN Alexa (2025), Bambenek (2025), DGArchive
(2023) & Netlab-360 (2025a)

Keras

(Liang, Chen, Wei, Zhao, & Zhao, 2022) CNN Alexa (2025), Majestic (2025), DGArchive
(2023) & Netlab-360 (2025a)

Pytorch

(Morbidoni, Spalazzi, Teti, & Cucchiarelli,
2022)

LSTM Alexa (2025) & public DGAs N/A

(Suryotrisongko & Musashi, 2022) PQCs Alexa (2025) & public DGAs Keras
(Tuan, Long, & Taniar, 2022) LSTM Alexa (2025), Bambenek (2025), Netlab-360

(2025a) & public DGAs
Keras

(Vranken & Alizadeh, 2022) LSTM & MLP Tranco (2023) & DGArchive (2023) Keras
(Maia et al., 2024) LSTM, CNN & MLP Alexa (2025) & DGArchive (2023) N/A
(Drichel et al., 2024) ResNeXt, ConvNeXt, Transformer

& RWKV
DGArchive (2023) & N/A Keras 3

(Cebere, Flueren, Sebastián, Plohmann, &
Rossow, 2024)

MLP, RNN, GRU, LSTM, CNN,
Transformer & ResNset

Tranco (2023), DGArchive (2023) & public DGAs Pytorch 3

N/A: Not available.

In recent years, several works have introduced more models for AGD
detection using neural networks, such as (Selvi et al., 2021; Sivaguru
et al., 2020; Yang et al., 2020). Namely, a model using a heterogeneous
deep neural network is proposed in (Yang et al., 2020), while Sivaguru
et al. (2020) conducted a study on the importance of each feature of
a domain name for AGD detection. Likewise, Selvi et al. (2021) im-
prove the configuration of an LSTM network by preprocessing the input
data with the aim of achieving better results. Despite the innovative ap-
proaches presented, the first two studies are not very specific regarding
the network layer configurations, making it difficult to reproduce the
models. The third study, unlike the others, shares the developed con-
figuration. The lack of detailed methodological documentation poses
a significant barrier to replication and validation, highlighting again
the need for rigorous standards when reporting machine learning re-
search (Arp et al., 2023; Botacin et al., 2021). Nevertheless, these works
represent important contributions to the continued evolution of AGD
detection methodologies, demonstrating the potential of heterogeneous
and feature-centric approaches to advance the state of the art. Drichel
et al. (2024) propose a novel method based on transfer learning and fine-
tunning. This new approach allows learning nuances of specific AGDs,
which improves classification.

Finally, Cebere et al. (2024) reviews detection techniques from a
meta perspective. This work highlights certain assumptions made, some
of which, as explained, are erroneous. In addition, current problems
identified in AGD detection are discussed.

As evidenced by the extensive literature reviewed, deep learning ap-
proaches have demonstrated significant strengths in detecting AGDs.
The main advantage lies in their ability to automatically extract mean-
ingful features from raw domain names, eliminating the need for man-
ual feature engineering. Deep learning architectures, particularly LSTMs
and CNNs, have consistently achieved high classification accuracy on
various datasets and DGA families. The evolution from basic LSTM archi-
tectures (Woodbridge et al., 2016) to sophisticated transfer learning ap-
proaches (Drichel et al., 2024) highlights the continuous improvement
in detection capabilities. Both LSTMs and CNNs have proven effective
at capturing sequential patterns and structural regularities in domain
names.

Despite these advances, significant challenges remain. Recent meta-
analyses (Cebere et al., 2024) have exposed fundamental flaws in com-
mon assumptions about AGDs and legitimate domains, while the lack of
detailed documentation in many studies impedes reproducibility (Arp
et al., 2023; Botacin et al., 2021). The observation that simpler models

Expert Systems With Applications 293 (2025) 128629

4

T. Pelayo-Benedet et al.

often match or outperform complex architectures (Vinayakumar et al.,
2019; Yu et al., 2018), coupled with the limited scope of analyzing only
the domain name structure (Curtin et al., 2019), suggests that the field
would benefit from a shift toward more comprehensive and reproducible
approaches rather than an over-reliance on increasingly complex archi-
tectures. To address these challenges, particularly the issue of repro-
ducibility, we propose RAMPAGE as a framework that provides a stan-
dardized environment for implementing and comparing AGD detection
approaches.

4. The Rampage software framework

In this section, we describe our software framework, Rampage
(fRAMework to comPAre aGd dEtectors), which allows the comparison
of different neural network models. After an exhaustive study of the
programming languages and frameworks used in the literature for AGD
detection (see Table 1), we found that the most used language by far is
Python with its Keras library, as shown in Fig. 1. Therefore, our tool
is implemented in Python and Keras to facilitate its adoption by the
scientific community.

Fig. 2 shows the proposed structure for our software. As can be
seen, the framework is made up of two main modules: the Core and
the Dataset Manager, which are explained in more detail below.

The Core module works as the central component that interconnects
all other modules and handles the execution logic. It manages the inte-
gration of the datasets that the classifiers will use for training or compar-
ison, as well as the classifiers to be evaluated, acting as the foundation
of the framework’s architecture. In contrast, the Dataset Manager mod-
ule functions exclusively as the dedicated handler for all dataset-related
operations during the framework’s runtime. It has several customiza-
tion parameters to split the data into training, validation, and testing
subsets. To do this, it uses Data Element, which represents an element
of information from which the classifiers are trained. To simplify the
process, Dataset Manager allows the user to read datasets from a file,
requiring them to only develop the function that parses each line read
from the file. This parsing flexibility allows users to tailor the frame-
work to their specific needs, accommodating various data formats and
structures without modifying the core functionality.

Classifier defines the base structure that all models must follow
for training and comparison. Researchers using the framework must

Fig. 1. Python frameworks used in the 32 reviewed state-of-the-art papers.

Fig. 2. Architectural diagram of Rampage.

implement their models by extending this module, ensuring a standard-
ized interface for all classifiers. Classifiers of interest for the evaluation
and comparison must be added to the Core module in order for them to
be run.

During the model comparison, the classifiers generate Results,
which contain all the statistics obtained during the execution with the
test dataset. As before, this must also be defined by the researcher.

To compare two or more models, it is mandatory that the new
DataElement and Result can only extend or maintain the same struc-
ture as with the previous models. Otherwise, an update to the class fields
from a DataElement or Result already processed or calculated can re-
sult can cause a failed execution and therefore the models cannot be
compared.

For execution, it is first necessary to define the required Classifiers
and add them to the Core. Next, the Dataset Manager must be defined
and added to the Core, also incorporating the dataset of interest to be
evaluated. With this, the framework is correctly initialized and ready to
run. Once the run is complete, the models are trained, and the Results
are generated. The framework can be configured to run only training
or only testing. A full description of the framework, along with usage
examples, is available in our GitHub repository.2

5. Evaluation

In this section, we evaluate Rampage by answering the following
research questions:

RQ1.- (RQ1.1) What specific challenges arise when comparing differ-
ent models for AGD detection and (RQ1.2) how can a stan-
dardized framework address these issues effectively? (See Sec-
tion 5.1).

RQ2.- What are the benefits and potential drawbacks of using meta-
model and mixed models compared to single unmixed models in
AGD detection? (See Section 5.2).

RQ3.- To what extent do academic models work effectively in detecting
AGD in real-world scenarios? (See Section 5.3).

To answer these questions, we first present the datasets constructed
for the experiments, as well as the experimental setup and metrics used.
We then answer each question.

Construction of Datasets. Five different datasets were constructed for
this work. The first three, 𝐷1, 𝐷2, and 𝐷3, each contain 250,000 DGA-
generated domains and 250,000 non-malicious domains, for a total of

2 See https://github.com/reverseame/RAMPAGE

Expert Systems With Applications 293 (2025) 128629

5

https://github.com/reverseame/RAMPAGE

T. Pelayo-Benedet et al.

500,000 domains per dataset. These datasets are disjoint from each
other. The fourth dataset, 𝐷4, includes 7.5 million domains extracted
from the University of Zaragoza DNS server logs, from June 2023 to
May 2024 (347 days). Finally, 𝐷5 consists of 2.9 million real AGDs from
DGArchive (Plohmann et al., 2016).

𝐷1 is used to train and compare all the models evaluated in this work
to perform an initial classification and determine which have achieved
the best results, helping to address RQ1. 𝐷2 and 𝐷3 are used to ad-
dress RQ2. Finally, 𝐷4 and 𝐷5 are used to evaluate RQ3.

The malicious AGDs in datasets 𝐷1, 𝐷2 and 𝐷3 come from the
UTL_DGA22 dataset (Tuan et al., 2023). This dataset comprises 76 dif-
ferent families of DGA domains and aims to provide a broad sample of
potential DGA-generated domains without biases towards any specific
family. To have a similar sample size per malware family, we randomly
select ⌊250, 000∕76⌋ AGDs from each family. The non-malicious domains
have been obtained from the Tranco (2023) list.

𝐷4 was created from the domains recorded in the logs of the Uni-
versity of Zaragoza. Since DNS servers receive a high volume of domain
resolution requests, a filtering process is necessary to ensure all domains
meet the conditions of a well-formed domain. To ensure the validity of
the analyzed domains, we implement several validation filters. The first
filter checks the technical characteristics of the domain name: the total
length must not exceed 253 characters; it must start with a letter and
continue with a string containing only letters, numbers, and hyphens;
this string cannot start or end with hyphens; and must be between 1
and 63 characters in length. The second filter focuses on domain clas-
sification: we use the Tranco list Tranco (2023) as a reference to iden-
tify non-malicious domains. Specifically, if both the SLD and TLD of a
domain appear on the Tranco list, we classify it as non-malicious. The
remaining domains are classified as unknown. It should be noted that
while we use the Tranco list as a reliable source, we recognize the possi-
bility that this list may contain some malicious domains, as pointed out
by (Pochat, Goethem, & Joosen, 2019). Furthermore, we acknowledge
that there exist more benign domains than those included in the Tranco
list. Accordingly, this filtering approach is subject to possible improve-
ments and may introduce classification errors. The remaining domains
are categorized as unknown. Note that unknown domains may be either
malicious or non-malicious, while non-malicious are considered benign
because they are sub-domains of domains that belong to Tranco list.

Let us clarify that the goal of the 𝐷4 dataset is not to capture the
complete diversity of real-world AGDs. Rather, it aims to provide a rep-
resentative sample of domains observed on a production DNS server,
specifically in the context of a university environment such as the Uni-
versity of Zaragoza. This allows us to better understand the types of do-
mains, both legitimate and potentially malicious, that security analysts
are likely to encounter on similar networks. While we acknowledge that
this dataset may not cover all DGA families or emerging threats, it does
provide valuable insight into the domain resolution patterns typical of
academic DNS infrastructures, offering a realistic basis for testing and
evaluating AGD detection techniques.

𝐷5 comprises 2.9 million real-world AGDs from
DGArchive (Plohmann et al., 2016), representing 58 different
malware families. To construct this dataset, we first selected malware
families with at least 50,000 domains. We then randomly sampled
50,000 AGDs from each of these families to ensure a diverse and
representative sample of common malware families in the real world.

Experimental Setup. The experiments were performed on a ThinkPad
E14 Gen 2 machine equipped with an Intel Core i7-1165G7 proces-
sor (8 cores, up to 4.7GHz), 32 GiB of RAM, and running Arch Linux
2024.06.01. All experiments were run in identical software environ-
ments, using Python 3.12.3, Keras 3.5.0, and TensorFlow 2.17.0. All
additional dependencies and their exact versions are listed in the
requirements.txt file, available in our repository. To facilitate com-
plete reproducibility, complete source code and experimental config-
urations are publicly available in our GitHub repository (see footnote
1) under the GNU/GPLv3 license. The specific version of the codebase

used in this work is v1.1.0. The repository includes detailed installation
instructions, usage examples, and experimental procedures to facilitate
accurate replication of our results.

Deep Learning Models. A total of 17 models have been implemented
on Rampage. Specifically, models containing a LSTM layer (Berman,
2019; Selvi et al., 2021; Woodbridge et al., 2016; Yang et al., 2018; Yu
et al., 2017), convolutional networks (Yang et al., 2018; Yu et al., 2017,
2018), a combined LSTM and convolutional network (Berman, 2019),
two versions of Tweet2Vec (CMU and MIT) (Dhingra, Zhou, Fitzpatrick,
Muehl, & Cohen, 2016; Yu et al., 2018), an Parallel CNN network (Yu
et al., 2018), a Baseline network (Yu et al., 2018), an MLP network (Yu
et al., 2018), a convolutional network with max pooling (Berman, 2019),
a network with a bidirectional LSTM layer (Berman, 2019) and a DBD
network (Vinayakumar et al., 2019). To ensure consistency and allow
for fair comparison, all models were trained using the hyperparameter
settings described in Appendix B.

Due to the complexity of 1D Capsule Network (Berman, 2019) model,
it has not been possible to implement and compare it with the other
models in this work. In a similar way, due to technical issues with
(Drichel et al., 2024) implementation, it has not been possible to re-
produce their models despite them being available to use.

Meta-model. The proposed meta-model implements an ensemble ap-
proach that combines predictions from multiple deep learning models
via logistic regression. Fig. 3 illustrates the architectural design of this
ensemble system. The architecture can be mathematically expressed as
follows:

Let 𝑥 = [𝑥1,… , 𝑥𝑛]𝑇 be an input domain name represented as a se-
quence of characters, where each 𝑥𝑖 represents a character. The meta-
model  processes this input through 7 independent deep learning
models, where each model 𝑚𝑗 generates a probability 𝑝𝑗 = 𝑚𝑗 (𝑥), 𝑗 ∈
{1,… , 7}.

These probabilities form a feature vector 𝑝 =
[𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7]𝑇 , which serves as input to a logistic re-
gression layer. The logistic regression then models the probability
as (Yu, Huang, & Lin, 2011) 𝑃𝐿𝑅(𝑝) = 𝜎(𝑤𝑇 𝑝), where 𝑤 ∈ ℝ7 is the
weight vector, and 𝜎 is the sigmoid function defined as 𝜎(𝑧) = 1

1 + 𝑒−𝑧
.

This architecture allows the meta-model to learn optimal weights
𝑤 that combine the predictions of the individual models in a way that
maximizes the overall performance. The logistic regression layer ensures
that the output 𝑃𝐿𝑅(𝑝) is bounded within the interval [0, 1], providing a
valid probability score, while simultaneously learning an optimal com-
bination of the individual deep learning models predictions.

Metrics. The metrics used are accuracy (Acc), precision (Prec), recall
(Rec), F1-score (F1), false positive rate (FPR), true positive rate (TPR),
Matthew’s correlation coefficient (MCC), and Cohen’s Kappa coefficient
(𝜅), where the formulas for each metric are defined as follows:
Acc = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

Prec = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

Rec = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

F1 = 2 ⋅ Prec ⋅ Rec
Prec + Rec

(4)

FPR = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(5)

TPR = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)

MCC = 𝑇𝑁 ⋅ 𝑇𝑃 − 𝐹𝑁 ⋅ 𝐹𝑃
√

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(7)

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

,where (8)

𝑝𝑜 =
(𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃)
(9)

𝑝𝑒 =
(𝑇𝑁 + 𝑇𝑃)(𝑇𝑁 + 𝐹𝑁)
(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃)2

+

Expert Systems With Applications 293 (2025) 128629

6

T. Pelayo-Benedet et al.

Fig. 3. Architecture of the proposed meta-model.

(𝐹𝑁 + 𝑇𝑃)(𝐹𝑃 + 𝑇𝑃)
(𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃)2

(10)

True Negative (TN) and True Positive (TP) are, respectively, the
number of legitimate domains correctly classified as non-AGD and the
number of AGDs correctly classified as AGDs. In contrast, False Negative
(FN) and False Positive (FP) are, respectively, the number of AGDs in-
correctly classified as legitimate and the number of legitimate domains
incorrectly classified as AGDs.

Accuracy, precision, recall, and F1-score measure the classification
efficiency of the models. FPR and TPR measure the rate of false posi-
tives and true positives among the classified domains. MCC is used as
an indicator of quality of classification, and 𝜅 indicates the effect of ran-
domness on the proportion of agreement observed (the closer 𝜅 is to 1,
the greater the degree of agreement; and vice versa).

5.1. Q1: challenges in comparing AGD detection models and the role of
standardized frameworks

To answer Q1, we need to gather and analyze specific information
related to the challenges in comparing different deep learning models
for AGD detection. To do so, we first implement and evaluate all the 17
models using the same dataset. We use the same dataset for training,
validation, and subsequently testing across all models (specifically, 𝐷1).
This avoids any variability in dataset composition, size, and diversity
that could lead to inconsistent performance between models, making it
difficult to draw definitive conclusions.

Table 2 shows the results of this experiment. From these results we
can draw several conclusions, discussed below, thus answering Q1.

Inconsistency in Performance Metrics. Comparison of different
models revealed variability in performance metrics such as accuracy,
precision, false positive rate, and other key indicators. For instance, the
MIT model (Yu et al., 2018) achieves the highest accuracy (95.48%)
and F1-score (96.59%), but the CMU model (Yu et al., 2018) has the
highest precision (97.46%) and the lowest FPR (4.92%). This variabil-
ity complicates direct comparisons and the selection of the “best” model,
as different metrics may prioritize different aspects of performance.

In this sense, a standardized framework can define a set of core
evaluation metrics that all models must report, such as accuracy, pre-
cision, recall, F1 score, FPR, TPR, MCC, and 𝜅, among others. This
eliminates discrepancies in how performance is reported, ensuring that

model comparisons are performed consistently. Similarly, by defining
and enforcing the same procedures for calculating metrics, the frame-
work helps avoid variations due to differences in computation or inter-
pretation of metrics. Additionally, a standardized framework can also
provide a benchmark for comparison, where all models are assessed
against the same baseline or reference, thus ensuring fair and reliable
evaluation.

Overfitting in Complex Models. Complex models tend to overfit
when dealing with many different AGD families. This overfitting oc-
curs because complex models need to adjust more weights, leading to
poor generalization to new, unseen data. In this sense, the results indi-
cated that simpler models, such as the LSTM models in Woodbridge et al.
(2016); Yu et al. (2017), generally perform well across multiple metrics,
while some more complex models, like Berman (2019), exhibit poorer
performance (e.g., accuracy of 83.88% and F1-score of 86.99%). This
presents a challenge in model selection, where simpler models can out-
perform complex ones under certain conditions. Let us recall that while
simpler models tend to generalize better due to their limited ability
to memorize the training data, they may not capture complex patterns
that are essential for distinguishing subtle differences between various
AGD families. This can result in underfitting, where the model performs
poorly because it is too simplistic.

In this regard, using a standardized framework can enforce consis-
tent regularization techniques and hyperparameter tuning procedures
across models, thereby reducing the risk of overfitting by maintaining
uniform practices for managing model complexity. Likewise, using the
same cross-validation methods ensures that all models are evaluated
in a way that accurately reflects their generalizability, helping to mit-
igate the impact of overfitting. Finally, it can make it easier to track
performance metrics across different datasets and conditions, provid-
ing insights into whether complex models are truly overfitting or if the
problem lies elsewhere.

Balancing Complexity and Generalization. Complex models, such
as the MIT (Yu et al., 2018) and DBD (Vinayakumar et al., 2019) net-
works, show strong performance. These results indicate that, when well
regularized and properly tuned, complex models can achieve high accu-
racy and generalize well. However, this requires careful management
of model complexity using techniques such as regularization, cross-
validation, and hyperparameter tuning. In contrast, as discussed above,
the results also indicate that simpler models tend to adapt better to

Expert Systems With Applications 293 (2025) 128629

7

T. Pelayo-Benedet et al.

Table 2
Results obtained using 𝐷1 and the 17 implemented models.
 Model (Reference) Acc Prec Rec F1 FPR TPR MCC 𝛋
 LSTM (Woodbridge et al., 2016) 95.42 97.39 95.69 96.53 5.12 95.69 89.82 0.8045
 LSTM (Yu et al., 2017) 95.44 97.25 95.87 96.55 5.40 95.87 89.84 0.8059
 CNN (Yu et al., 2017) 94.96 97.39 94.98 96.17 5.07 94.98 88.86 0.7849
 LSTM (Yang et al., 2018) 95.02 96.82 95.67 96.24 6.27 95.67 88.88 0.7896
 CNN (Yang et al., 2018) 92.94 96.29 92.99 94.61 7.16 92.99 84.49 0.7056
 CMU (Yu et al., 2018) 94.87 97.46 94.77 96.10 4.92 94.77 88.69 0.7810
 MIT Yu et al. (2018) 95.48 96.96 96.23 96.59 6.03 96.23 89.87 0.8083
 Parallel CNN (Yu et al., 2018) 93.48 96.64 93.48 95.03 6.49 93.48 85.68 0.7265
 Baseline (Yu et al., 2018) 86.51 93.36 85.87 89.46 12.19 85.87 71.31 0.4745
 MLP (Yu et al., 2018) 92.59 96.41 92.32 94.32 6.86 92.32 83.84 0.6907
 CNN (Berman, 2019) 95.28 97.08 95.81 96.44 5.76 95.81 89.48 0.7998
 Max Pooling (Berman, 2019) 90.48 95.62 89.84 92.64 8.21 89.84 79.53 0.6107
 LSTM (Berman, 2019) 92.40 96.98 91.44 94.13 5.68 91.44 83.67 0.6804
 LSTM+CNN (Berman, 2019) 83.88 94.12 80.87 86.99 10.09 80.87 67.44 0.3796
 Bidireccional (Berman, 2019) 93.40 95.92 94.10 95.00 8 94.10 85.33 0.7261
 DBD (Vinayakumar et al., 2019) 94.19 96.92 94.28 95.58 5.98 94.28 87.18 0.7545
 LSTM (Selvi et al., 2021) 88.09 86.59 90.13 88.33 13.95 90.13 76.24 0.6247
Acc: Accuracy; Prec: Precision; Rec: Recall; F1: F1-score; FPR: False Positive Rate; TPR: True Positive Rate; MCC: Matthews’s
Correlation Coefficient; 𝜅: Cohen’s Kappa Score.

more variations and perform consistently across different metrics. In
conclusion, balancing model complexity and generalization remains a
challenge, as simpler models might miss intricate patterns that complex
models can capture.

Regarding this challenge, the use of a standardized framework allows
systematic experimentation with different levels of model complexity
under controlled conditions. This includes using techniques such as reg-
ularization and tuning to ensure that both simple and complex models
are evaluated equally. Similarly, the framework can also provide guide-
lines for hyperparameter optimization, helping to find the best settings
for simple and complex models, thus improving their balance between
complexity and generalization. The framework also provides a standard-
ized approach to evaluating simple and complex models, helping to un-
derstand how well each model generalizes to unseen data and captures
underlying complex patterns.

Consistency in Evaluation and Reporting. Challenges can arise
from differences in how models are applied and interpreted. Variations
in aspects such as preprocessing techniques, specific hyperparameter
settings, and handling different data splits can impact performance met-
rics, even within a standardized framework like the one we use here.
Ensuring that all models are evaluated under identical conditions and
with the same rigor is essential to avoid misleading comparisons. Any
subtle differences in implementation or dataset handling could still lead
to variations in the reported results, which may influence the overall
interpretation of model performance.

In this case, using a standardized framework ensures that prepro-
cessing steps, data splits, and other handling methods are applied con-
sistently across all models. This eliminates inconsistencies that arise
from variations in data preparation. As for reporting, it can provide a
structured way to document and report evaluation procedures and re-
sults, helping to understand the conditions under which each model was
tested and reducing the impact of any subtle differences in implemen-
tation. Additionally, automated tools within the framework can gen-
erate consistent reports and visualizations, ensuring that performance
comparisons are based on the same evaluation criteria and reducing the
likelihood of human error.

5.2. Q2: meta-model vs. single models for AGD detection

Here, we evaluate the benefits and drawbacks of using meta-model
and mixed models instead of single, unmixed models in AGD detec-
tion. To do this, we define a logistic regression model that integrates
the results of our top-seven-performing neural network models shown
above. This logistic regression takes the probabilities generated by each

Table 3
Results of the ablation study, illustrating the performance impact of removing
each classifier from the meta-model.
Classifier removed Δ accuracy Δ F1 score Δ MCC Δ 𝜅

LSTM (Woodbridge et al., 2016) 0.0010 0.0010 0.0020 0.0019
LSTM (Yu et al., 2017) 0.0012 0.0012 0.0024 0.0022
MCU (Yu et al., 2018) 0.0004 0.0004 0.0008 0.0007
MIT (Yu et al., 2018) 0.0015 0.0016 0.0031 0.0029
CNN (Berman, 2019) 0.0015 0.0015 0.0030 0.0028
DBD (Vinayakumar et al., 2019) 0.0001 0.0001 0.0002 0.0002
Parallel CNN (Yu et al., 2018) 0.0005 0.0005 0.0010 0.0009

individual model –which indicates the likelihood of a domain being
AGD-generated– as input features. By aggregating these probabilities,
the logistic regression model is trained to produce a single probability
score for each domain. This approach allows us to leverage the strengths
and mitigate the weaknesses of individual models, providing a compre-
hensive analysis of whether meta-models offer significant performance
improvement over stand-alone models in AGD detection scenarios. All
models are available as examples in our GitHub repository, with their
respective hyperparameters detailed in Appendix A. For consistency, we
retain the original hyperparameters from previous works without mak-
ing any additional adjustments.

In response to Q2, we conducted an extensive set of studies to eval-
uate the effectiveness and performance improvement achieved through
our meta-model approach, as described below.

Understanding the Internal Dynamics of the Meta-model. To bet-
ter understand the inner workings of our meta-model, we performed a
SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) analy-
sis and an ablation study (Sheikholeslami, 2019). SHAP results explain
the impact of each feature (in this case, each model’s prediction) on the
overall result. This facilitates the interpretation of the model’s decision-
making process, making it more transparent and understandable. On the
other hand, the ablation study helps assess the importance of each clas-
sifier within the meta-model by systematically removing one classifier
at a time and observing the resulting performance change. This allows
us to determine each model’s contribution to overall performance and
identify whether any classifiers can be removed without significantly
affecting the meta-model’s predictive performance.

Fig. 4 illustrates the contribution of each individual model to the fi-
nal prediction, as determined by the SHAP analysis, while Table 3 shows
the performance impact when each classifier is removed from the meta-
model, based on the ablation study.

Expert Systems With Applications 293 (2025) 128629

8

T. Pelayo-Benedet et al.

Table 4
Evaluation of 𝐷3 in the 7 best models (individual) and logistic regression (combines the 7 models).
Model Acc Prec Rec F1 FPR TPR MCC 𝛋

LSTM (Woodbridge et al., 2016) 95.41 95.81 94.97 95.39 4.14 94.97 90.83 0.8307
LSTM (Yu et al., 2017) 95.65 95.35 95.98 95.66 4.67 95.98 91.30 0.8408
MCU (Yu et al., 2018) 95.64 96.07 95.17 95.62 3.88 95.17 91.29 0.8385
MIT (Yu et al., 2018) 95.02 94.81 95.26 95.03 5.20 95.26 90.05 0.8197
DBD (Vinayakumar et al., 2019) 94.55 94.35 94.78 94.57 5.66 94.78 89.11 0.8044
CNN (Berman, 2019) 95.71 96.31 95.06 95.68 3.36 95.06 91.43 0.8403
Parallel CNN (Yu et al., 2018) 91.87 91.56 92.25 91.90 8.49 92.25 83.76 0.7220
Our proposed meta-model 96.68 97.04 96.29 96.66 2.93 96.29 93.36 0.8746

Acc: Accuracy; Prec: Precision; Rec: Recall; F1: F1-score; FPR: False Positive Rate; TPR: True Positive
Rate;MCC: Matthews’s Correlation Coefficient; 𝜅: Cohen’s Kappa Score.

Fig. 4. Impact of individual models on meta-model prediction (SHAP analysis
results).

The results reveal a clear pattern of hierarchical influence, with
the CNN (Berman, 2019) model exhibiting the highest impact range
(−1.0 to +1.5), followed by the MIT (Yu et al., 2018) and LSTM (Wood-
bridge et al., 2016) models, which exhibit moderate influence ranges
(−0.75 to +1.0). SHAP analysis shows that most models contribute pos-
itively to the final correlation patterns, meaning higher probability out-
puts tend to contribute positively to the final meta-model decision, with
higher likelihood scores being positively correlated. However, an excep-
tion is observed with the Parallel CNN (Yu et al., 2018) model, which
exhibits an inverse correlation pattern, as further elaborated below.

The effectiveness of our meta-model approach is further enhanced
by the complementary nature of the individual models’ contributions.
While some models, such as CNN (Berman, 2019) and MIT (Yu et al.,
2018), exert a broader impact and significantly influence the final pre-
diction, others, such as DBD (Vinayakumar et al., 2019) and MCU (Yu
et al., 2018), provide more specialized contributions within specific
probability ranges. This complementary interaction allows the meta-
model to leverage broad and focused detection capabilities, improving
overall robustness.

Our ablation study further validates the contributions of individual
models to the overall meta-model performance. Table 3 shows the im-
pact of removing each classifier from the meta-model on each metric.
The Δ represents the change in the corresponding performance metric
when the specific classifier is removed from the meta-model. The results
are consistent with our SHAP analysis, which reveals that the MIT (Yu
et al., 2018) and CNN (Berman, 2019) models have the most signifi-
cant influence, with a 0.15% decrease in accuracy and F1-score when
removing either one. These findings suggest that our meta-model does
not rely heavily on a single classifier, demonstrating a well-distributed
contribution across models.

Extending the single-model ablation study, we performed a compre-
hensive study in which we systematically varied the number of con-
stituent models in the meta-model. Specifically, we evaluated all possi-
ble model combinations for each group size, from 2 to 7, and calculated

Fig. 5. Meta-model performance metrics as a function of the number of con-
stituent models.

average performance metrics for these combinations, grouped by the
number of models included. Fig. 5 presents the resulting performance
trends across all evaluation metrics as the meta-model size increases.

As shown in Fig. 5, all evaluation metrics show a steady upward
trend with the inclusion of additional models in the meta-model.
While the performance improvements are incremental, the aggregate
improvements underscore the effectiveness of the ensemble strategy.
These results indicate that the meta-model leverages the complemen-
tary strengths of the individual classifiers, with each additional model
contributing distinct detection capabilities that improve the overall sys-
tem performance.

A notable observation is the distinctive behavior of the Parallel
CNN (Yu et al., 2018) model, which exhibits an inverse correlation pat-
tern compared to other models. While most models contribute positively
when their output probabilities are high, the Parallel CNN demonstrates
a stronger influence on lower probability outputs. This unique behavior,
combined with the systematic distribution of influence across multiple
models, ensures that the final prediction is not overly dependent on any
single model, reducing susceptibility to bias or failure of individual mod-
els and providing a more reliable detection mechanism.

Meta-model Performance Evaluation. We train the top seven mod-
els along with the logistic regression meta-model using 𝐷2 for training
and evaluate their performance on 𝐷3. The results of this experiment,
presented in Table 4, show a significant advantage of employing a meta-
model approach for AGD detection.

Our proposed meta-model, which integrates the likelihood results of
the seven individual models via logistic regression, consistently achieves
the highest scores across all performance metrics. These results high-
light the effectiveness of the meta-model in aggregating the strengths of
the individual models, leading to improved performance and robustness
compared to any individual model.

Expert Systems With Applications 293 (2025) 128629

9

T. Pelayo-Benedet et al.

Fig. 6. Comparison of training times (on 𝐷2) and inference times (on 𝐷3) for individual models and the meta-model.

Furthermore, the consistency and improvements observed across
several evaluation metrics reinforce the benefits of this ensemble-based
approach. These findings validate our initial hypothesis that metamod-
els can more effectively manage the complexities and variations inher-
ent in AGD data, ultimately improving overall detection capabilities and
ensuring more reliable and adaptive threat detection.

Time Complexity Analysis of the Meta-model vs. Individual
Models. A critical factor in evaluating the viability of our meta-model
approach is its computational efficiency compared to standalone mod-
els. While performance metrics indicate a slight advantage in detection
accuracy for the meta-model, a holistic evaluation must also consider
the time spent in the training and inference phases. To do so, we mea-
sure the training time required to fine-tune each individual model, as
well as the meta-model, along with the corresponding inference time
for domain classification.

Fig. 6 presents a comparative overview of the training and inference
times of the seven individual models and the proposed meta-model. A
key advantage of our meta-model architecture is that the component
models can be run in parallel, substantially reducing the computational
overhead that would otherwise occur with sequential execution. During
training, we observe an additional overhead of approximately 80 sec-
onds for the meta-model, compared to training the individual models.
However, this cost is incurred only once and does not affect runtime
performance after deployment.

From a deployment perspective, inference time is the most critical
metric. In our experiments, the meta-model demonstrated minimal in-
ference overhead. Since inference is performed in parallel across all
component models, the total inference time is largely bounded by the
slowest model, followed by a lightweight logistic regression computa-
tion for the final prediction. The negligible additional latency intro-
duced by this last step confirms that the meta-model achieves its per-
formance improvements without imposing significant execution costs.
These results confirm the viability of our meta-model in real-world
AGD detection systems, where operational efficiency is a determining
factor.

Resource Usage Analysis. To evaluate the practical viability of our
meta-model approach in hardware-constrained operating environments,
we measured the computational resource consumption during the train-
ing and inference phases. In our implementation, each individual model
runs on a dedicated CPU core at 100% utilization. As a result, the meta-
model, composed of seven parallel classifiers, operates simultaneously
on seven CPU cores at full capacity.

Table 5
Maximum RAM usage during training (in 𝐷2) and inference (in 𝐷3).

Model Training (GiB) Inference (GiB)
LSTM (Woodbridge et al., 2016) 1.34 1.15
LSTM (Yu et al., 2017) 1.60 1.30
MCU (Yu et al., 2018) 1.72 1.38
MIT (Yu et al., 2018) 2.13 1.62
DBD (Vinayakumar et al., 2019) 2.18 1.65
CNN (Berman, 2019) 2.02 1.58
Parallel CNN (Yu et al., 2018) 2.26 1.72
Our proposed meta-model 5.63 4.28

Table 5 summarizes the peak RAM usage for the training and infer-
ence phases for the seven highest-performing individual models, as well
as our proposed meta-model.

As shown, our meta-model exhibits higher peak RAM consump-
tion in both phases, reflecting the cumulative memory footprint of the
concurrently executed base models. Despite this increased usage, re-
source demands remain within the capabilities of contemporary mul-
ticore systems. RAM consumption is highly dependent on the size of the
underlying dataset and the architectural complexity of each component
model. Overall, these measurements confirm that our meta-model is
suitable for deployment in production environments with standard hard-
ware configurations, supporting its operational feasibility under practi-
cal conditions.

Statistical Validation of Meta-model Performance. To rigor-
ously validate the performance of the models, we perform a Scott-
Knott ESD (Effect Size Difference) analysis (Tantithamthavorn, McIn-
tosh, Hassan, & Matsumoto, 2019). This statistical method employs
hierarchical clustering to divide treatment means into statistically dis-
tinct groups based on statistical significance and effect size, providing
insight into significant differences between and within groups. Fig. 7
illustrates the results of the Scott-Knott ESD analysis on four key per-
formance metrics, while Table 6 presents the corresponding detailed
statistical measures.

The results of the analysis reveal a consistent clustering pattern
across all performance metrics, with the models forming four statis-
tically distinct groups (G1-G4). The meta-model achieves the high-
est performance across all metrics and is consistently placed in its
own group (G1), confirming its superiority. Next, a group of five
models (specifically, CNN (Berman, 2019), LSTM (Yu et al., 2017),
MIT (Yu et al., 2018), LSTM (Woodbridge et al., 2016), and MCU

Expert Systems With Applications 293 (2025) 128629

10

T. Pelayo-Benedet et al.

Fig. 7. Scott-Knott ESD analysis for different performance metrics.

(Yu et al., 2018)) form the second group (G2), with the CNN model
leading this group. The DBD (Vinayakumar et al., 2019) model consti-
tutes a separate group (G3), while the Parallel CNN (Yu et al., 2018)
consistently ranks lowest across all metrics, forming the final group
(G4).

The statistical validation provided by the Scott-Knott ESD analysis
offers compelling evidence of the superior performance of the meta-
model. As illustrated in both Fig. 7 and Table 6, the meta-model not
only outperforms all individual models in terms of absolute performance
but also shows statistically significant improvements, justifying its dis-
tinctive classification in the G1 group. Furthermore, narrow confidence
intervals (CI) and low standard deviations (𝜎) across all metrics in-
dicate that the superior performance of the meta-model is consistent
and reliable. These findings strongly support the efficacy of our ap-
proach to aggregating individual models into a meta-model, as it con-
sistently outperforms even the best-performing stand-alone models by
a statistically significant margin. This validation further reinforces the
robustness and reliability of our proposed ensemble approach for AGD
detection.

Calibration Analysis of the Meta-model. In addition to per-
formance metrics, we evaluate the quality of our meta-model’s
calibration (Trucano, Swiler, Igusa, Oberkampf, & Pilch, 2006) to as-
sess the adequacy of its probability estimates to the actual class proba-
bilities. Fig. 8 shows the distribution of predicted probabilities for the
benign and AGD domains in 𝐷3.

The clear separation between classes highlights the meta-model’s
confidence in its classifications. As shown in Table 7, approximately
92% of all instances fall into the extreme probability ranges (0.0-0.1
and 0.9-1.0), further confirming the model’s decisive classification be-
havior.

Fig. 8. Distribution of predicted probabilities for the benign and AGD domains
in 𝐷3.

To visualize the calibration precision, we generate a reliability di-
agram (see Fig. 9) comparing predicted probabilities with observed
frequencies across the 10 equal-width probability bins detailed in
Table 7.

The calibration analysis in Table 7 reveals several key findings: (i)
our meta-model demonstrates strong overall calibration, with a Brier
score of 0.0307 and an Expected Calibration Error (ECE) of 0.0098; (ii)
the model shows good calibration precision at the probability extremes,
with minimal calibration errors of 0.0011 in the 0.0 to 0.1 interval and
0.0081 in the 0.9 to 1.0 interval; and (iii) calibration errors increase in
the middle probability ranges, with a Maximum Calibration Error (MCE)

Expert Systems With Applications 293 (2025) 128629

11

T. Pelayo-Benedet et al.
Ta
bl
e 6

D
et
ai
le
d p

er
fo
rm
an
ce

 m
et
ri
cs
 fo
r a
ll m

od
el
s w

ith
 Sc
ot
t-K
no
tt
 ES

D
 gr
ou
pi
ng
.

A
cc
ur
ac
y

F1
-s
co
re

M
CC

Ka
pp
a

M
od
el

𝜇
𝜎

CI
G

𝜇
𝜎

CI
G

𝜇
𝜎

CI
G

𝜇
𝜎

CI
G

O
ur

 pr
op
os
ed

m
et
a-
m
od
el

0.
96
13

0.
00
03

[0
.9
60
8,

 0
.9
61
9]

1
0.
96
13

0.
00
03

[0
.9
60
8,

 0
.9
61
9]

1
0.
92
27

0.
00
05

[0
.9
21
6,

 0
.9
23
8]

1
0.
92
27

0.
00
05

[0
.9
21
6,

 0
.9
23
7]

1

CN
N
 (B
er
m
an
,

20
19
)

0.
95
01

0.
00
03

[0
.9
49
5,

 0
.9
50
7]

2
0.
95
01

0.
00
03

[0
.9
49
5,

 0
.9
50
7]

2
0.
90
02

0.
00
06

[0
.8
99
0,

 0
.9
01
4]

2
0.
90
02

0.
00
06

[0
.8
99
0,

 0
.9
01
4]

2

LS
TM

 (Y
u

et
 al
., 2

01
7)

0.
94
85

0.
00
03

[0
.9
47
9,

 0
.9
49
1]

2
0.
94
85

0.
00
03

[0
.9
47
9,

 0
.9
49
1]

2
0.
89
70

0.
00
06

[0
.8
95
8,

 0
.8
98
3]

2
0.
89
70

0.
00
06

[0
.8
95
8,

 0
.8
98
3]

2

M
IT

 (Y
u

et
 al
., 2

01
8)

0.
94
73

0.
00
03

[0
.9
46
7,

 0
.9
48
0]

2
0.
94
73

0.
00
03

[0
.9
46
7,

 0
.9
48
0]

2
0.
89
51

0.
00
07

[0
.8
93
8,

 0
.8
96
4]

2
0.
89
46

0.
00
07

[0
.8
93
3,

 0
.8
96
0]

2

LS
TM

 (W
oo
d-

br
id
ge

 et
 al
.,

20
16
)

0.
94
61

0.
00
03

[0
.9
45
5,

 0
.9
46
7]

2
0.
94
60

0.
00
03

[0
.9
45
4,

 0
.9
46
7]

2
0.
89
26

0.
00
06

[0
.8
91
4,

 0
.8
93
8]

2
0.
89
21

0.
00
06

[0
.8
90
9,

 0
.8
93
3]

2

M
CU

 (Y
u

et
 al
., 2

01
8)

0.
94
42

0.
00
03

[0
.9
43
6,

 0
.9
44
9]

2
0.
94
42

0.
00
03

[0
.9
43
6,

 0
.9
44
9]

2
0.
88
85

0.
00
07

[0
.8
87
2,

 0
.8
89
8]

2
0.
88
85

0.
00
07

[0
.8
87
2,

 0
.8
89
8]

2

D
BD

 (V
in
ay
ak
u-

m
ar

 et
 al
.,

20
19
)

0.
93
51

0.
00
03

[0
.9
34
4,

 0
.9
35
8]

3
0.
93
51

0.
00
03

[0
.9
34
4,

 0
.9
35
8]

3
0.
87
07

0.
00
07

[0
.8
69
4,

 0
.8
72
1]

3
0.
87
02

0.
00
07

[0
.8
68
9,

 0
.8
71
6]

3

Pa
ra
lle
l

CN
N
 (Y
u

et
 al
., 2

01
8)

0.
91
88

0.
00
04

[0
.9
18
0,

 0
.9
19
5]

4
0.
91
88

0.
00
04

[0
.9
18
0,

 0
.9
19
5]

4
0.
83
76

0.
00
08

[0
.8
36
1,

 0
.8
39
1]

4
0.
83
76

0.
00
08

[0
.8
36
1,

 0
.8
39
1]

4

𝜇 =
 M
ea
n;
 𝜎
=

 St
an
da
rd

 D
ev
ia
tio
n;
 CI

 =
 95

%
 Co

nfi
de
nc
e I
nt
er
va
l; G

 =
 Sc
ot
t-K
no
tt
 ES

D
 G
ro
up
.

Table 7
Probability bin calibration analysis for the meta-model.
Bin range Size Mean confidence Calibration error
0.00-0.10 229,331 0.0162 0.0011
0.10-0.20 8192 0.1426 0.0370
0.20-0.30 4326 0.2471 0.0085
0.30-0.40 3261 0.3479 0.0345
0.40-0.50 2727 0.4492 0.0696
0.50-0.60 2648 0.5503 0.1059
0.60-0.70 2975 0.6511 0.1237
0.70-0.80 3541 0.7521 0.1495
0.80-0.90 5823 0.8560 0.1613
0.90-1.00 237,176 0.9883 0.0081

Fig. 9. Reliability diagram comparing predicted probabilities with observed fre-
quencies.

Table 8
Evaluation of 𝐷4 in the 7 best individual models individual and logistic regres-
sion.

Benign Unknown

 Model AGD Non-AGD AGD Non-AGD

LSTM (Woodbridge et al., 2016) 81.67% 18.33% 19.66% 80.34%
LSTM (Yu et al., 2017) 83.17% 16.83% 21.97% 78.03%
MCU (Yu et al., 2018) 80.44% 19.56% 30.93% 69.07%
MIT (Yu et al., 2018) 83.78% 16.22% 22.01% 77.99%
DBD (Vinayakumar et al., 2019) 84.31% 15.69% 20.13% 79.87%
CNN (Berman, 2019) 81.37% 18.63% 17.14% 82.86%
Parallel CNN (Yu et al., 2018) 82.17% 17.83% 22.84% 77.16%
Our proposed meta-model 84.40% 15.60% 18.63% 81.37%

of 0.1613 occurring in the 0.8-0.9 bin, indicating a tendency toward
overconfidence in this range.

Notably, the bins with the largest calibration errors contain relatively
few instances: the six middle intervals from 0.4 to 0.9 combined repre-
sent only 17,714 instances (approximately 3.5% of the dataset). This
pattern is advantageous for AGD detection systems, where domains are
often clearly benign or clearly malicious. Robust calibration of the meta-
model at probability extremes ensures that confidence indices reliably
reflect actual probabilities.

5.3. Q3: real-world effectiveness of academic AGD detection models

An effective AGD detection model is necessary in the context of to-
day’s threat landscape. In this section, we address RQ3 by evaluating
the performance of the classifiers described in Section 5.2 in real-life
situations. To do so, we conduct experiments on the 𝐷4 and 𝐷5 datasets
to test the classifiers. This approach allows us to estimate their effec-
tiveness under real-life conditions. The results of this experiment are
presented in Table 8. We then draw several conclusions based on these
results, which answer RQ3.

Expert Systems With Applications 293 (2025) 128629

12

T. Pelayo-Benedet et al.

Table 9
Evaluation results on the 𝐷5 dataset.
Model Acc F1

LSTM (Woodbridge et al., 2016) 89.23 94.31
LSTM (Yu et al., 2017) 88.07 93.66
MCU (Yu et al., 2018) 89.11 94.24
MIT (Yu et al., 2018) 88.92 94.14
DBD (Vinayakumar et al., 2019) 88.03 93.64
CNN (Berman, 2019) 87.97 93.60
Parallel CNN (Yu et al., 2018) 87.93 93.58
Our proposed meta-model 89.46 94.44

Misclassification of Benign Domains. Current classifiers are not
suitable for real-world environments. The results in Table 8 show that
more than 80% of benign domains are incorrectly classified by all classi-
fiers, which is inaccurate if we consider these domains as benign because
their SLD and TLD are included in the Tranco (2023) list. Regarding the
domains classified as unknown in 𝐷4, approximately only 20% of these
domains have been positively identified as AGDs.

Inadequacy of Training Datasets to Represent Real-World Do-
mains. If we analyze the benign domains in 𝐷4, we can see that most
of them are domains with hierarchical subdomains. In contrast, datasets
used to train AGD detection models only consist of second- and top-level
domains. Therefore, these datasets cannot be considered representative
of domains in real-world environments, as they do not consider that do-
mains can have multiple subdomains. Furthermore, these subdomains
can be generated dynamically and randomly, but not used for malicious
purposes. This happens with some well-known Internet services that use
such subdomains, such as googlesyndication.com, dropbox.com, or
cloudfront.net. This lack of representation of real-world domains in
training datasets is the main cause of the misclassification problem dis-
cussed above.

DGArchive’s Real-World AGDs Evaluation. To further validate our
findings, we evaluate all models on the 𝐷5 dataset, which contains 2.9
million real-world AGDs from DGArchive (Plohmann et al., 2016). The
results are presented in Table 9. All models achieved accuracy values
between 87.93% and 89.46%, with our proposed meta-model perform-
ing the best at 89.46%. The perfect precision, reflected in the F1-scores,
is expected since 𝐷5 contains exclusively AGDs. However, the accuracy
values indicate that all models fail to detect approximately 10 to 12% of
the real-world AGDs, highlighting performance shortcomings compared
to controlled environments in previous experiments.

Notably, there is a significant gap between model performance on
the academic AGD datasets (𝐷1, 𝐷2, and 𝐷3) and those on real-world
AGDs in 𝐷5. This performance degradation underscores the challenges
of transferring academic models to operational environments, where
DGAs may be more diverse, sophisticated, or previously unknown to
detection models. These findings emphasize the need for continuous
model updating and more representative training datasets that better
reflect the evolving landscape of real-world malicious domains.

Common Classification Failures. We also analyze common
classification failures observed in both individual models and the meta-
model, focusing on the patterns of misclassification of benign domains
as DGAs and vice versa. Our analysis reveals that benign domains
misclassified as AGDs in 𝐷4 often share characteristics with malicious
DGAs, despite serving legitimate purposes. For example, domains
such as dd3187aea93c4f86.safeframe.googlesyndication.com,
i2-qvprxfpecstaegbeldyyno.init.cedexis-radar.net, and
ucea5465a78eff0d990.dl.dropboxusercontent.com contain random-
looking alphanumeric strings as subdomains of legitimate parent
domains. Similarly, domains like zzu4e.tdum.alibaba.com and
np.dl.playstation.com use abbreviations or shortcodes that trigger
false positives due to their entropy patterns, even though they belong
to well-established organizations.

These misclassifications are primarily due to current models being
trained on datasets composed mainly of second-level domains, which
lack adequate representation of legitimate domains with complex hier-
archical structures. Models tend to focus on character-level features that
appear algorithmically generated, without regard for the legitimacy of
the original domain.

Regarding the AGDs in the 𝐷5 dataset that were misclassified as be-
nign, no clear patterns were found to distinguish correctly classified
from incorrectly classified samples. This suggests that the models either
fail to detect subtle variations in DGA algorithms or encounter entirely
new generation patterns not present in their training data.

These findings indicate that current academic models require sub-
stantial adaptation to address the diversity and complexity of domains
present in real-world settings. Future research should focus on devel-
oping more representative training datasets that include hierarchical
domains, legitimate randomization patterns, and continuously updated
AGD examples to improve detection accuracy in operational environ-
ments.

6. Threat model and limitations

In this section, we first describe the threat model of our proposed
model and then outline the limitations of our work.

6.1. Threat model

The meta-model proposed in Section 5.2 consists of a logistic regres-
sion model that integrates the outputs of multiple neural network mod-
els for AGD detection. In this regard, if any of the neural network mod-
els feeding the logistic regression model are compromised (e.g., through
adversarial attacks or data poisoning), their output probabilities can be
skewed, affecting the performance of the entire meta-model. This can
lead to incorrect AGD classifications due to poisoned or manipulated in-
put probabilities. Similarly, logistic regression models are also vulnera-
ble to adversarial attacks, where carefully crafted inputs can manipulate
the decision boundary to cause misclassification. To address these issues,
we can implement adversarial defense mechanisms as well as validate
the input data for each neural network model to ensure it has not been
tampered with.

An attacker can also attempt a model inversion attack on the logistic
regression model to infer details about the underlying NN models or the
training data. If successful, this can lead to privacy violations, revealing
details about how AGD domains are detected or even leaking informa-
tion about the system’s detection capabilities. To prevent this, we can
limit the exposure of model’s internals and use differential privacy tech-
niques.

Our proposed model may be overfitted to particular patterns and
outputs from the underlying models. If one or more of these NN models
are biased or flawed, the logistic regression may inherit these biases, re-
sulting in reduced generalizability to new, unseen domains. To mitigate
this, we can use techniques such as cross-validation and regularization
mechanisms to reduce overfitting and facilitate generalization.

The effectiveness of our meta-model is highly dependent on the qual-
ity and consistency of the input data feeding each neural network. In
real-world scenarios, where domain names often exhibit complex hi-
erarchical patterns and dynamically generated characteristics, we may
encounter noisy, incomplete, or inconsistent data that could impact the
reliability of our detection system. Data quality issues such as missing
features, inconsistent formats, or variations in subdomain patterns could
propagate through individual neural networks and ultimately impact
the meta-model’s decision-making process. These challenges are partic-
ularly evident when dealing with legitimate services that employ dy-
namic subdomain generation for non-malicious purposes.

To address these limitations, we propose to implement robust pre-
processing pipelines, including data validation checks to identify and

Expert Systems With Applications 293 (2025) 128629

13

T. Pelayo-Benedet et al.

handle missing or corrupted values, standardization procedures to en-
sure consistent representation of features across models, and noise re-
duction techniques to improve the signal-to-noise ratio in input data.
These steps are designed to preserve the legitimate complexity of do-
main structures while reducing the impact of noisy or incomplete data,
thereby improving the overall performance and reliability of the model.

Similarly, an attacker can attempt to perform a denial-of-service at-
tack in our meta-model. Since the system depends on multiple NN mod-
els followed by a logistic regression layer, the attacker can create inputs
that cause excessive resource usage, slowing down the detection pro-
cess. Resource monitoring and graceful degradation strategies to man-
age resource-intensive operations and avoid system overload can help
mitigate this issue.

Our proposed model aggregates the results of multiple NN models.
This process, while improving performance, introduces additional com-
plexity that can make it vulnerable to exploitation. For instance, an
adversary can compromise one or more models by manipulating the
neural networks to generate biased probabilities, which could dispro-
portionately influence the final output of the logistic regression classi-
fier. This can lead to incorrect classifications, especially if the logistic
regression gives significant weight to the outputs of the compromised
models.

Another concern arises from the sequential nature of the aggrega-
tion process, which introduces temporal dependencies that can also
be exploited. Delays or manipulations in the timing of the outputs
of individual models can create race conditions or synchronization
issues, ultimately affecting the reliability of the final classification
decision.

To mitigate these vulnerabilities, several defensive strategies can be
employed. First, weighted ensembling techniques can reduce the impact
of any model on the final decision, making the system more robust to
attacks targeting specific models. Additionally, anomaly detection can
be incorporated to monitor and flag unusual results from any individ-
ual model, reducing the chances that an adversary can manipulate the
overall result without being detected. To address timing concerns, we
recommend implementing synchronization mechanisms, such as time-
out protocols, that would ensure that all models produce results within
a consistent time frame. These measures can help prevent timing incon-
sistencies, race conditions, and unresponsive models from affecting the
aggregation process.

Similarly, if individual NN models are poorly calibrated (i.e., pre-
dicted probabilities do not reflect actual likelihoods), inaccurate input
features for the logistic regression model may arise. The meta-model can
therefore incorrectly classify AGD domains, as the input probabilities of
the base models are not reliable indicators of AGD likelihood. Correct
fine-tuning of the underlying NNs can help mitigate this problem.

The output of the logistic regression meta-model is considered the
final predicted value. In this sense, this model acts as a single point of
failure. If the logistic regression algorithm is compromised (e.g., through
model inversion attacks), the entire AGD detection system can fail, re-
gardless of the performance of the individual NNs. We can monitor the
integrity of the logistic regression model and consider redundancy or
ensembling even at the meta-model level to mitigate this problem.

6.2. Limitations

Rampage may face challenges in scaling to accommodate a larger
number of models or more complex models. This is particularly prob-
lematic when integrating more advanced neural network architectures
or a larger ensemble of models, which may require significant engineer-
ing efforts.

Furthermore, the lack of reproducible research and publicly avail-
able data in the field poses another substantial limitation. As noted
in (Arp et al., 2023; Botacin et al., 2021), many state-of-the-art datasets
are not shared openly or the hyperparameters settings of the mod-
els are not consistently defined, hampering the ability to validate and

compare results between studies. This scarcity of accessible data can
prevent comparison with previous models, as well as the development
and subsequent benchmarking of new models.

Like any other DGA detection model based on DNS requests, our lo-
gistic regression assumes that DNS requests are available. In real-world
networks, transit data may be incomplete, encrypted, or obfuscated,
complicating the detection process. Furthermore, the performance of
our model may vary under different operational environments. The
prevalence of certain DGA families may influence the effectiveness of
our model.

On top of that, interpretability remains a major challenge in meta-
model approaches. Neural networks, particularly when combined in
a meta-model approach, often act as black boxes, making it difficult
to understand the network’s decision-making process. To address this
challenge, we integrate explainability techniques such as SHAP val-
ues, which provide transparency by highlighting feature importance and
clarifying local decision boundaries. Additionally, we maintain detailed
logs of the intermediate results of each neural network component, al-
lowing for better traceability and transparency in the decision-making
process along the meta-model pipeline.

Performance is also another issue. Running multiple neural network
models, followed by a logistic regression model, demands substantial
computational resources. To mitigate this, resource-constrained orga-
nizations can benefit from employing model compression techniques
or leveraging distributed computing approaches. From a scalability
perspective, our logistic regression architecture is designed to handle
increasing data volumes through horizontal scaling of computing re-
sources and modular component design. Although this approach may
not be feasible in all environments, particularly for organizations with
limited access to high-performance computing infrastructure or real-
time networks, these strategies offer potential workarounds that could
make deployment more accessible.

Finally, although our proposed meta-model performs well on the
existing dataset, its ability to generalize to new unseen AGDs remains
uncertain. To address concerns about overfitting, we implement cross-
validation and include dropout layers within the training. The model’s
ability to detect emerging threats depends on the diversity and repre-
sentativeness of the training data. As with all deep learning models,
our system requires regular updates and retraining to adapt to chang-
ing conditions. In this regard, periodic retraining programs using newly
collected data can help. In our case, we have developed an automated
pipeline to support continuous data collection and model updates. This
automated process, coupled with continuous monitoring of model per-
formance metrics, ensures that the system remains responsive to real-
world dynamics.

7. Conclusions and future work

Despite numerous proposed machine learning models for AGD
detection, their true efficacy remains uncertain due to the lack of
standardized evaluation methods and reproducible datasets. In this
paper, we addressed these challenges by presenting Rampage, a novel
Python3 software framework designed to standardize and facilitate
the development, evaluation, and comparison of machine learning
models for AGD detection. Our framework provides a reproducible
approach to overcome common issues in cybersecurity and machine
learning research, such as inconsistent baselines and non-reproducible
methodologies. To demonstrate the utility of Rampage, we imple-
mented several existing models from the literature and evaluated
them under the same conditions. Furthermore, we built a new meta-
model that combines distinct deep learning models and a logistic
regression, which we evaluated on a developed dataset containing
real-world DNS requests. The results show that our meta-model
achieves slightly better performance than the state-of-the-art models,
highlighting the effectiveness of our approach and the applicabil-
ity of our framework. In the spirit of open science, our software

Expert Systems With Applications 293 (2025) 128629

14

T. Pelayo-Benedet et al.

framework and proposed model, as well as the dataset used for
experimentation, are freely and publicly available under the
GNU/GPLv3 license.

As future work, we aim to create a repository dedicated to sharing
and downloading pre-trained models for detecting AGDs. This repository
would allow researchers to easily share and compare their results, foster-
ing collaboration and improving reproducibility in this field. We are also
working on the explainability of our model to elucidate how it reaches
its conclusions and identify the most influential features in its predic-
tions. We also aim to evaluate the computational efficiency, resource
consumption, and scalability of the meta-model in large-scale deploy-
ments. Additionally, we aim to explore the potential of incorporating
lexical and metadata features, such as character n-gram distributions,
entropy scores, and WHOIS/registration-based data, as well as hierar-
chical parsing strategies that treat each subdomain label individually
to expand validation efforts in AGD detection. These techniques could
improve the ability to distinguish between benign dynamic subdomains
and true AGDs in more heterogeneous or large-scale environments, and
we consider them promising for future research. We also aim to expand
validation by incorporating DNS data from diverse organizational or ge-
ographic sources, and by cross-validating with public threat intelligence
sources to improve the generalizability of our approach.

Declaration of generative AI and AI-assisted technologies in the
writing process

During the preparation of this work, the authors used ChatGPT-4
(OpenAI) to improve readability and language. After using this tool/ser-
vice, the authors reviewed and edited the content as needed and assume
full responsibility for the content of the publication.

CRediT authorship contribution statement

Tomás Pelayo-Benedet: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Data curation, Investigation, Writing
- original draft, Writing - review & editing; Ricardo J. Rodríguez: Con-
ceptualization, Methodology, Funding acquisition, Project administra-
tion, Resources, Validation, Supervision, Writing - original draft, Writ-
ing - review & editing; Carlos H. Gañán: Formal analysis, Methodology,
Visualization, Writing - review & editing.

Data availability

Data will be made available on request.

Declaration of interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

We would like to sincerely thank the reviewers for their con-
structive comments and insightful suggestions, which have signifi-
cantly contributed to improving the quality and clarity of this work.
This research was supported in part by grant PID2023-151467OA-
I00 (CRAPER), funded by MICIU/AEI/10.13039/501100011033 and
by ERDF/EU, by grant TED2021-131115A-I00 (MIMFA), funded by
MICIU/AEI/10.13039/501100011033 and by the European Union
NextGenerationEU/PRTR, by grant Ayudas para la recualificación del
sistema universitario español 2021–2023, funded by the European
Union NextGenerationEU/PRTR, the Spanish Ministry of Universities,
and the University of Zaragoza, by grant Proyecto Estratégico Ciberse-
guridad EINA UNIZAR, funded by the Spanish National Cybersecurity
Institute (INCIBE) and the European Union NextGenerationEU/PRTR,
by grant Programa de Proyectos Estratégicos de Grupos de Investigación
(DisCo research group, ref. T21-23R), funded by the University, Indus-
try and Innovation Department of the Aragonese Government, and by
the RAPID project (grant no CS.007) financed by the Dutch Research
Council (NWO).

Appendix A. Model hyperparameter configurations

This appendix describes the detailed hyperparameter settings
for all models evaluated in this work. For each model, we
adopted the settings specified in their respective original publica-
tions, applying minimal additional tuning. This decision facilitates
a fair comparison with previous work and ensures that any ob-
served performance differences primarily reflect the influence of
our experimental framework, rather than exhaustive hyperparameter
optimization.

Tables A.10 to A.16 provide comprehensive information on
the model architectures, hyperparameter values, optimization strate-
gies, and loss functions employed in our implementation. These
details are intended to improve reproducibility. All models de-
scribed in this appendix are publicly available in our GitHub
repository.3

3 https://github.com/reverseame/RAMPAGE

Expert Systems With Applications 293 (2025) 128629

15

http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100013410
http://dx.doi.org/10.13039/501100013410
https://github.com/reverseame/RAMPAGE

T. Pelayo-Benedet et al.

Table A.10
Hyperparameter configuration for the LSTM model (Woodbridge
et al., 2016).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 256
 Output Dimension 128
 Input Length 128
LSTM Layer
 Units 128
 Unroll True
Dropout Layer
 Rate 0.5
Dense Layer
 Units 1
Activation Function sigmoid

Optimizer Adam
 Learning Rate 0.001
 Beta 1 0.9
 Beta 2 0.999
 Epsilon 1e-08
 Weight Decay 0.001

Loss Function binary_crossentropy

Table A.11
Hyperparameter configuration for the LSTM model (Yu et al., 2017).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 256
 Output Dimension 128
 Input Length 128
LSTM Layer
 Units 128
 Unroll True
Dropout Layer
 Rate 0.5
Dense Layers
 First Layer Units 100
 Second Layer Units 1
Activation Function sigmoid

Optimizer Adam
 Learning Rate 0.001
 Beta 1 0.9
 Beta 2 0.999
 Epsilon 1e-08
 Weight Decay 0.001
Loss Function binary_crossentropy

Table A.12
Hyperparameter configuration for the MCU model (Yu et al., 2018).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 128
 Output Dimension 128
 Input Length 128
Bidirectional LSTM Layer
 Units 64
 Return Sequences False
 Unroll True
 Merge Mode concat
Dense Layer
 Units 1
 Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy

Table A.13
Hyperparameter configuration for the MIT model (Yu et al., 2018).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 128
 Output Dimension 128
 Input Length 128
Conv1D Layer
 Filters 128
 Kernel Size 3
 Padding same
 Activation relu
 Strides 1
MaxPooling1D Layer
 Pool Size 2
 Padding same
LSTM Layer
 Units 64
 Return Sequences False
 Unroll True
Output Dense Layer
 Units 1
 Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy

Expert Systems With Applications 293 (2025) 128629

16

T. Pelayo-Benedet et al.

Table A.14
Hyperparameter configuration for the CNN model (Berman, 2019).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 256
 Output Dimension 50
 Input Length 128
Dropout Layer
 Rate 0.25
First Conv1D Layer
 Filters 250
 Kernel Size 4
 Padding same
MaxPooling1D Layer
 Pool Size 3
Second Conv1D Layer
 Filters 300
 Kernel Size 3
 Padding same
Flatten Layer
BatchNormalization Layer
Dense Layer
 Units 300
Dropout Layer
 Rate 0.2
BatchNormalization Layer
Output Dense Layer
 Units 1
 Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy

Table A.15
Hyperparameter configuration for the DBD model (Vinayakumar
et al., 2019).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 256
 Output Dimension 128
 Input Length 128
Conv1D Layer
 Filters 64
 Kernel Size 5
MaxPooling1D Layer
 Pool Size 4
LSTM Layer
 Units 70
 Unroll True
Output Dense Layer
 Units 1
 Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy

Table A.16
Hyperparameter configuration for the Parallel CNN model (Yu et al., 2018).
Parameter Value

Architecture Sequential
Embedding Layer
 Input Dimension 128
 Output Dimension 128
 Input Length 128
Parallel Conv1D Layers
 Kernel Sizes 2, 3, 4, 5
 Filters 256 (each)
 Padding same
 Activation relu
 Strides 1
 Reduction sum (axis=1)
Dropout Layer (after each conv)
 Rate 0.5
Dense Layers
 First Layer Units 1024
 First Layer Activation relu
 Second Layer Units 1024
 Second Layer Activation relu
 Output Layer Units 1
Dropout Layers (between dense)
 Rate 0.5
Output Activation Function sigmoid

Optimizer Adam (default)
Loss Function binary_crossentropy

Appendix B. Hyperparameter optimization methodology

This appendix provides detailed documentation of the hyperparam-
eter optimization methodology applied to the 17 models evaluated in
this work. The goal is to improve transparency and facilitate the repro-
ducibility of our experimental procedures.

B.1. Optimization strategy

Rather than performing exhaustive hyperparameter searches across
all possible parameter configurations, we adopted a principled strategy
designed to balance reproducibility and computational efficiency. Our
approach was based on the following key decisions:
Baseline Configuration. We initialized each model with the hyperpa-
rameter settings reported in its original publication. This ensures that
our comparisons accurately reflect the configurations intended by the
authors and provide a fair and standardized basis for evaluation.
Standardized Training Parameters. To ensure consistent and compa-
rable training conditions across all models, we apply a unified train-
ing configuration, regardless of model architecture. This standardiza-
tion mitigates confounding factors that could arise from heterogeneous
training procedures.

Expert Systems With Applications 293 (2025) 128629

17

T. Pelayo-Benedet et al.

B.2. Training setup details

The following training parameters were consistently applied to all
17 models:

• Epochs: 500
• Batch size: 50
• Optimizer: Adam optimizer with:

– Learning rate: 0.001
– Beta 1: 0.9
– Beta 2: 0.999
– Epsilon: 10−8
– Weight decay: 0.001

• Learning function loss: Binary Cross-Entropy

B.3. Model selection and validation strategy

Early Stopping. All models incorporated early stopping based on vali-
dation accuracy to prevent overfitting. Training was stopped if no im-
provement was observed over a predefined time interval.
Model Checkpointing. Model checkpointing was used to retain the
state of the best-performing model based on validation accuracy,
thereby ensuring that the final model reflects the optimal configuration
observed during training.
Cross-Validation. All experiments employed consistent training-
validation-test splits of 70%-15%-15%. This fixed split was applied uni-
formly to each model to eliminate dataset variability as a confounder in
performance comparisons.

References

Netlab-360 (2025a). Netlab-360 feed. [Online]; https://data.netlab.360.com/dga/.
Alexa (2025b). Alexa Top 1 Million Domains feed. [Online]; http://s3.amazonaws.com/

alexa-static/top-1m.csv.zip.
Aloysius, N., & Geetha, M. (2017). A review on deep convolutional neural networks.

In 2017 international conference on communication and signal processing (ICCSP) (pp.
0588–0592). IEEE.

Amari, S.-i. (1993). Backpropagation and stochastic gradient descent method. Neurocom-
puting, 5(4), 185–196.

Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cavallaro,
L., & Rieck, K. (2023). Lessons learned on machine learning for computer security. IEEE
Security & Privacy, 21(5), 72–77.

Bambenek (2025c). Bambenek Consulting - master feeds. [Online]; https://osint.
bambenekconsulting.com/feeds/.

Bejtlich, R. (2013). The practice of network security monitoring. San Francisco, CA: No
Starch Press.

Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, Y., Maddix, D., Turkmen, C., Gasthaus,
J., Bohlke-Schneider, M., Salinas, D., Stella, L., Aubet, F.-X., Callot, L., & Januschowski,
T. (2022). Deep learning for time series forecasting: Tutorial and literature survey.
ACM Computing Surveys, 55(6).

Berman, D. S. (2019). DGA Capsnet: 1D application of capsule networks to DGA detection.
Information, 10(5).

Botacin, M., Ceschin, F., Sun, R., Oliveira, D., & Grégio, A. (2021). Challenges and pitfalls
in malware research. Computers & Security, 106, 102287.

Catania, C., Garcia, S., & Torres, P. (2018). An analysis of convolutional neural networks
for detecting DGA. In Xxiv congreso argentino de ciencias de la computación (la plata,
2018). (pp. 1060–1069).

Catania, C., García, S., & Torres, P. (2019). Deep convolutional neural networks for DGA
detection. In P. Pesado, & C. Aciti (Eds.), Computer science – CACIC 2018 (pp. 327–340).
Cham: Springer International Publishing.

Cebere, B. C., Flueren, J. L. B., Sebastián, S., Plohmann, D., & Rossow, C. (2024). Down to
earth! guidelines for DGA-based malware detection. In Proceedings of the 27th interna-
tional symposium on research in attacks, intrusions and defenses RAID ’24 (pp. 147–165).
New York, NY, USA: Association for Computing Machinery.

Choudhary, C., Sivaguru, R., Pereira, M., Yu, B., Nascimento, A. C., & De Cock, M. (2019).
Algorithmically generated domain detection and malware family classification. In S. M.
Thampi, S. Madria, G. Wang, D. B. Rawat, & J. M. Alcaraz Calero (Eds.), Security in
computing and communications (pp. 640–655). Singapore: Springer Singapore.

Chowdhary, K. R. (2020). Natural Language Processing. In Fundamentals of Artificial Intel-
ligence, pp. 603–649). New Delhi: Springer India.

Curtin, R. R., Gardner, A. B., Grzonkowski, S., Kleymenov, A., & Mosquera, A. (2019).
Detecting DGA domains with recurrent neural networks and side information. In Pro-
ceedings of the 14th international conference on availability, reliability and security ARES
’19 (p. 10). Association for Computing Machinery.

Cybersecurityventures(2023). Cybercrime To Cost The World 10.5 Trillion Annually
By 2025. Online Accessed on 15 August, 2023; https://cybersecurityventures.com/
cybercrime-damages-6-trillion-by-2021/.

DGArchive (2023). DGArchive feed. Online Accessed on 1 August, 2023; https://
dgarchive.caad.fkie.fraunhofer.de/.

Dhingra, B., Zhou, Z., Fitzpatrick, D. J., Muehl, M., & Cohen, W. W. (2016). Tweet2Vec:
Character-based distributed representations for social media. CoRR, abs/1605.03481.

Ding, B., Qian, H., & Zhou, J. (2018). Activation functions and their characteristics in
deep neural networks. In 2018 Chinese control and decision conference (CCDC) (pp.
1836–1841).

Drichel, A., von Querfurth, B., & Meyer, U. (2024). Extended abstract: A transfer learning-
Based training approach for DGA classification. In F. Maggi, M. Egele, M. Payer, &
M. Carminati (Eds.), Detection of intrusions and malware, and vulnerability assessment
(pp. 381–391). Cham: Springer Nature Switzerland.

Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin,
R. R., Cheng, M.-M., & Hu, S.-M. (2022). Attention mechanisms in computer vision: A
survey. Computational Visual Media, 8(3), 331–368.

Huang, W., Zong, Y., Shi, Z., Wang, L., & Liu, P. (2022). PEPC: A deep parallel convolu-
tional neural network model with pre-trained embeddings for DGA detection. In 2022
international joint conference on neural networks (IJCNN) (pp. 1–8).

Huk, M. (2020). Stochastic optimization of contextual neural networks with RMSprop. In
N. T. Nguyen, K. Jearanaitanakij, A. Selamat, B. Trawiński, & S. Chittayasothorn (Eds.),
Intelligent information and database systems (pp. 343–352). Cham: Springer International
Publishing.

Liang, J., Chen, S., Wei, Z., Zhao, S., & Zhao, W. (2022). HAGDetector: Heterogeneous
DGA domain name detection model. Computers & Security, 120, 102803.

Lison, P., & Mavroeidis, V. (2017). Automatic detection of malware-Generated domains
with recurrent neural models. CoRR, abs/1709.07102.

Liu, Z., Zhang, Y., Chen, Y., Fan, X., & Dong, C. (2020). Detection of algorithmically gen-
erated domain names using the recurrent convolutional neural network with spatial
pyramid pooling. Entropy, 22(9).

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions.
In Proceedings of the 31st international conference on neural information processing systems
NIPS’17 (pp. 4768–4777). Red Hook, NY, USA: Curran Associates Inc.

Maia, R. J. M., Ray, D., Pentyala, S., Dowsley, R., De Cock, M., Nascimento, A. C. A., &
Jacobi, R. (2024). An end-to-end framework for private DGA detection as a service.
PloS one, 19(8), e0304476.

Majestic (2025). The majetic million feed. Online https://majestic.com/reports/
majestic-million.

Malik, M., Malik, M. K., Mehmood, K., & Makhdoom, I. (2021). Automatic speech recog-
nition: A survey. Multimedia Tools and Applications, 80(6), 9411–9457.

Martin, L.(2023). The Cyber Kill Chain. Online; Accessed on 22 August, 2023 https://
lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html Accessed on 22
August, 2023.

MITRE(2023). Dynamic Resolution: Domain Generation Algorithms. https://attack.mitre.
org/techniques/T1568/002/. Online; Accessed on 23 August, 2023.

Morbidoni, C., Spalazzi, L., Teti, A., & Cucchiarelli, A. (2022). Leveraging n-gram neu-
ral embeddings to improve deep learning DGA detection. In Proceedings of the 37th
ACM/SIGAPP symposium on applied computing SAC ’22 (pp. 995–1004). New York, NY,
USA: Association for Computing Machinery.

Namgung, J., Son, S., & Moon, Y.-S. (2021). Efficient deep learning models for DGA do-
main detection. Security and Communication Networks, 2021(1), 8887881.

openDNS (2025). openDNS feed. [Online; https://umbrella.cisco.com/blog.
Palo Alto(2023). Threat Brief: Understanding Domain Generation Algorithms (DGA).

https://unit42.paloaltonetworks.com/threat-brief-understanding-domain-generation-
algorithms-dga/ [Online Accessed on 23 August, 2023.]

Plohmann, D., Yakdan, K., Klatt, M., Bader, J., & Gerhards-Padilla, E. (2016). A com-
prehensive measurement study of domain generating malware. In 25th USENIX
security symposium (USENIX security 16) (pp. 263–278). Austin, TX: USENIX
Association.

Pochat, V. L., Goethem, T. V., & Joosen, W. (2019). Evaluating the long-term effects of pa-
rameters on the characteristics of the tranco top sites ranking. In 12th USENIX workshop
on cyber security experimentation and test (CSET 19) (p. 10). Santa Clara, CA: USENIX
Association.

Porras, P. A., Saïdi, H., & Yegneswaran, V. (2009). A foray into Conficker’s logic and
rendezvous points. LEET, 9, 7.

Qiao, Y., Zhang, B., Zhang, W., Sangaiah, A. K., & Wu, H. (2019). DGA Domain name
classification method based on long short-Term memory with attention mechanism.
Applied Sciences, 9(20).

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules. In
Proceedings of the 31st international conference on neural information processing systems
NIPS’17 (pp. 3859–3869). Red Hook, NY, USA: Curran Associates Inc.

Saxe, J., & Berlin, K. (2017). Expose: A character-Level convolutional neural network
with embeddings for detecting malicious URLs, file paths and registry keys. CoRR,
abs/1702.08568.

Selvi, J., Rodríguez, R. J., & Soria-Olivas, E. (2021). Towards optimal LSTM neural
networks for detecting algorithmically generated domain names. IEEE Access, 9,
126446–126456.

Shahzad, H., Sattar, A. R., & Skandaraniyam, J. (2021). DGA Domain detection using deep
learning. In 2021 IEEE 5th international conference on cryptography, security and privacy
(CSP) (pp. 139–143).

Sheikholeslami, S. (2019). Ablation programming for machine learning.
Shi, Y., Chen, G., & Li, J. (2018). Malicious domain name detection based on extreme

machine learning. Neural Processing Letters, 48(3), 1347–1357.
Sivaguru, R., Choudhary, C., Yu, B., Tymchenko, V., Nascimento, A., & Cock, M. D. (2018).

An evaluation of DGA classifiers. In 2018 IEEE international conference on big data (big
data) (pp. 5058–5067). IEEE.

Sivaguru, R., Peck, J., Olumofin, F., Nascimento, A., & De Cock, M. (2020). Inline detection
of DGA domains using side information. IEEE Access, 8, 141910–141922.

Expert Systems With Applications 293 (2025) 128629

18

https://data.netlab.360.com/dga/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0001
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0001
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0001
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0002
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0002
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0003
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0003
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0003
https://osint.bambenekconsulting.com/feeds/
https://osint.bambenekconsulting.com/feeds/
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0004
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0004
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0005
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0005
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0005
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0005
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0006
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0006
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0007
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0007
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0008
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0008
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0008
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0009
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0009
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0009
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0010
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0010
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0010
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0010
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0011
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0011
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0011
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0011
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0012
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0012
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0013
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0013
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0013
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0013
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://dgarchive.caad.fkie.fraunhofer.de/
https://dgarchive.caad.fkie.fraunhofer.de/
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0014
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0014
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0015
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0015
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0015
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0016
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0016
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0016
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0016
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0017
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0017
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0017
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0018
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0018
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0018
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0019
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0019
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0019
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0019
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0020
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0020
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0021
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0021
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0022
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0022
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0022
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0023
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0023
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0023
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0024
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0024
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0024
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0025
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0025
https://lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://attack.mitre.org/techniques/T1568/002/
https://attack.mitre.org/techniques/T1568/002/
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0026
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0026
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0026
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0026
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0027
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0027
https://umbrella.cisco.com/blog
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0028
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0028
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0028
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0028
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0029
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0029
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0029
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0029
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0030
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0030
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0031
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0031
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0031
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0032
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0032
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0032
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0033
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0033
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0033
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0034
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0034
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0034
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0035
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0035
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0035
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0036
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0037
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0037
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0038
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0038
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0038
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0039
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0039

T. Pelayo-Benedet et al.

Suryotrisongko, H., & Musashi, Y. (2022). Evaluating hybrid quantum-classical deep learn-
ing for cybersecurity botnet DGA detection. Procedia Computer Science, 197, 223–229.
Sixth Information Systems International Conference (ISICO 2021).

Svozil, D., Kvasnicka, V., & Pospichal, J. (1997). Introduction to multi-layer feed-forward
neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1), 43–62.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2019). The impact
of automated parameter optimization on defect prediction models. IEEE Transactions
on Software Engineering, 45(7), 683–711.

Tran, D., Mac, H., Tong, V., Tran, H. A., & Nguyen, L. G. (2018). A LSTM based frame-
work for handling multiclass imbalance in DGA botnet detection. Neurocomputing, 275,
2401–2413.

Tranco (2023). Tranco List. https://tranco-list.eu/ [Online; Accessed on 1 August, 2023].
Trucano, T. G., Swiler, L. P., Igusa, T., Oberkampf, W. L., & Pilch, M. (2006). Calibration,

validation, and sensitivity analysis: What’s what. Reliability Engineering & System Safety,
91(10), 1331–1357. The Fourth International Conference on Sensitivity Analysis of
Model Output (SAMO 2004).

Tuan, T. A., Anh, N. V., Luong, T. T., & Long, H. V. (2023). UTL_DGA22 a dataset for DGA
botnet detection and classification. Computer Networks, 221, 109508.

Tuan, T. A., Long, H. V., & Taniar, D. (2022). On detecting and classifying DGA botnets
and their families. Computers & Security, 113, 102549.

Umbrella (2025). Cisco Umbrella feed. Online; http://s3-us-west-1.amazonws.com/
umbrellastatic/index.html.

Vinayakumar, R., Soman, K. P., Poornachandran, P., Alazab, M., & Jolfaei, A. (2019).
DBD: Deep learning DGA-based botnet detection. In M. Alazab, & M. Tang (Eds.), Deep
learning applications for cyber security, pp. 127–149). Springer International Publishing.

Vranken, H., & Alizadeh, H. (2022). Detection of DGA-generated domain names with TF-
IDF. Electronics, 11(3).

Woodbridge, J., Anderson, H. S., Ahuja, A., & Grant, D. (2016). Predicting domain gener-
ation algorithms with long short-Term memory networks. CoRR, 1611.00791.

Wu, Y.-c., & Feng, J.-w. (2018). Development and application of artificial neural network.
Wireless Personal Communications, 102(2), 1645–1656.

Xu, C., Shen, J., & Du, X. (2019). Detection method of domain names generated by DGAs
based on semantic representation and deep neural network. Computers & Security, 85,
77–88.

Yang, L., Liu, G., Dai, Y., Wang, J., & Zhai, J. (2020). Detecting stealthy domain genera-
tion algorithms using heterogeneous deep neural network framework. IEEE Access, 8,
82876–82889.

Yang, L., Liu, G., Zhai, J., Dai, Y., Yan, Z., Zou, Y., & Huang, W. (2018). A novel detection
method for word-based DGA. In X. Sun, Z. Pan, & E. Bertino (Eds.), Cloud computing
and security (pp. 472–483). Springer International Publishing.

Yong Wong, M., Landen, M., Antonakakis, M., Blough, D. M., Redmiles, E. M., & Ahamad,
M. (2021). An inside look into the practice of malware analysis. In Proceedings of the
2021ACM SIGSAC conference on computer and communications security CCS ’21 (pp.
3053–3069). New York, NY, USA: Association for Computing Machinery.

Yu, B., Gray, D. L., Pan, J., Cock, M. D., & Nascimento, A. C. A. (2017). Inline DGA detec-
tion with deep networks. In 2017 IEEE international conference on data mining workshops
(ICDMW) (pp. 683–692). IEEE.

Yu, B., Pan, J., Hu, J., Nascimento, A., & De Cock, M. (2018). Character level based de-
tection of DGA domain names. In 2018 international joint conference on neural networks
(IJCNN) (pp. 1–8). IEEE.

Yu, H.-F., Huang, F.-L., & Lin, C.-J. (2011). Dual coordinate descent methods for logistic
regression and maximum entropy models. Machine Learning, 85(1), 41–75.

Zhang, Z. (2018). Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM
26th international symposium on quality of service (IWQos) (pp. 1–2).

Zhou, S., Lin, L., Yuan, J., Wang, F., Ling, Z., & Cui, J. (2019). CNN-Based DGA detection
with high coverage. In 2019 IEEE international conference on intelligence and security
informatics (ISI) (pp. 62–67). IEEE.

Expert Systems With Applications 293 (2025) 128629

19

http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0040
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0040
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0040
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0041
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0041
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0042
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0042
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0042
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0043
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0043
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0043
https://tranco-list.eu/
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0044
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0044
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0044
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0044
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0045
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0045
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0046
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0046
http://s3-us-west-1.amazonws.com/umbrellastatic/index.html
http://s3-us-west-1.amazonws.com/umbrellastatic/index.html
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0047
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0047
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0047
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0048
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0048
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0049
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0049
http://arxiv.org/abs/1611.00791
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0050
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0050
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0051
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0051
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0051
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0052
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0052
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0052
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0053
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0053
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0053
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0054
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0054
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0054
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0054
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0055
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0055
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0055
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0056
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0056
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0056
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0057
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0057
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0058
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0058
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0059
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0059
http://refhub.elsevier.com/S0957-4174(25)02248-1/sbref0059

	RAMPAGE: a software framework to ensure reproducibility in algorithmically generated domains detection
	1 Introduction
	2 Background
	2.1 Domain generation algorithms
	2.2 Artificial neural networks

	3 Related work
	4 The Rampage software framework
	5 Evaluation
	5.1 Q1: challenges in comparing AGD detection models and the role of standardized frameworks
	5.2 Q2: meta-model vs. single models for AGD detection
	5.3 Q3: real-world effectiveness of academic AGD detection models

	6 Threat model and limitations
	6.1 Threat model
	6.2 Limitations

	7 Conclusions and future work
	A Model hyperparameter configurations
	B Hyperparameter optimization methodology
	B.1 Optimization strategy
	B.2 Training setup details
	B.3 Model selection and validation strategy

