

On the Influence of
Whitening

Transformations on
Hyperspectral Data

by

G.K. van der Wal

to obtain the degree of Master of Science in Applied Mathematics
at the Delft University of Technology,
to be defended on the 26th of September, 2023 at 13:30.

Student number: 4602501
Project duration: September 2022 — September 2023
Thesis committee: Prof. dr. ir. M. B. van Gijzen, TU Delft, thesis advisor
Dr. J. Sohl, TU Delft, supervisor
Dr. R. G. Satink, Stage Gate 11 B.V., supervisor

This thesis is confidential and will be made public two years after the defence date.

An electronic version of this thesis will be made available at http://repository.tudelft.nl/.

%
TUDelft Stage Gate 11

http://repository.tudelft.nl/

Preface

This is the thesis “On the Influence of Whitening Transformations on Hyperspectral Data", where synthetic
data is created to research the influence of whitening on a target spectrum and its signal-to-noise ratio. The
synthetic data is further used to create high contrast scenario’s, to see the influence of this on a target spec-
trum, and how multi-area whitening can help with the classification of illegal substances.

This thesis was written as part of a graduation project at Stage Gate 11 B.V,, in order to obtain the degree
of Master of Science in Applied Mathematics at Delft University of Technology. It is also meant for the em-
ployees of Stage Gate 11 B.V,, to help them with their classification algorithm. This thesis was written in the
period from September 2022 to September 2023 at Stage Gate 11 B.V. in Breukelen, under the supervision of
Rob Satink, and in Delft, under the supervision of Jakob S6hl.

I would like to thank both Rob Satink and Jakob Sohl for their supervision, valuable feedback and sup-
port. Jakob, your expertise in mathematics has helped greatly with making the background in this thesis
mathematically sound, due to your preciseness. I could not have done this on my own. I would also like to
express me gratitude for supporting me through the writing process, which has not been easy for me. Rob, I
am grateful for all the meetings we have had where you really got involved in the project. Your willingness to
share your knowledge in spectroscopy and engage in discussions have truly shaped this thesis. Thank you for
your guidance and support.

I would also like to extend my appreciation to the entire staff of Stage Gate 11 B.V., who where all willing
to help where possible and open for questions and discussions. Last but not least, to my friends and family,
thank you for your support and encouragement throughout this process.

G.K. van der Wal
Breukelen, September 18, 2023

iii

Abstract

The whitening transformation transforms a random matrix into a whitened matrix with expectation 0 and
covariance matrix I. By removing the first and second order statistical structures, higher order structures can
be looked at for better classification. This is why Stage Gate 11 B.V. has employed whitening in the prepro-
cessing of their hyperspectral data. The aim of this work is to gain insight into the whitening transformation
and how it influences hyperspectral data.

To gain this insight, synthetic data was created and used to make synthetic scans. The signal-to-noise
ratio of a target spectrum was calculated, and Monte Carlo simulations were used to reveal hidden patterns
in the data. In case of a high contrast scenario, multi-area whitening was employed and the cosine similarity
between the target spectrum and its signature was determined.

It was observed that the shape and intensity of the whitened target spectrum differs, depending on if
pixels were used as observations or wavelengths. However, both are subject to the ‘bleeding’ effect. Further,
it was found that if the number of pixels in the scan is greater than the number of spectral bands (548), then
the signal-to-noise ratio becomes better as the number of whitened pixels in the scan increases. In case of a
high contrast scenario, multi-area whitening guarantees the uniformity of the spectra, resulting in a higher
cosine similarity between the target spectrum and its signature. But as multi-area whitening uses a smaller
number of pixels in the scan, it cannot be concluded if multi-area whitening is better than global whitening,
as it is not known how the increase in cosine similarity and the decrease in signal-to-noise ratio relate to the
classification process. Finally, it is concluded that when working with real and unknown data, using pixels as
observations is much more feasible.

List of Variables

Variable | Description Note Formula

Im Input image of a scan

Wi Mean over all wavelengths for pixel i % Z;.”: Img

X Row-wise centered data set Row average = 0 Xik=1Imj— i
z Covariance matrix of X Symmetric T=E[(X-EX])(X-EXDT]
b Empirical covariance matrix of X Symmetric 2= ﬁ xxT

X; Spectrum of pixel i

w Whitening matrix wiw =371

Y Whitened matrix E[Y]=0, Cov(Y)=1 Y=WX

14 Matrix containing the eigenvectors of X as its columns Orthogonal z=vDpvT

D Matrix containing the corresponding eigenvalues of ¥~ Diagonal z=vDVT

Ui Rotation matrix Orthogonal wW=Uz"?

U, Rotation matrix Orthogonal W =U,p~252
S Diagonal covariance matrix Diagonal S =diag(Z)

P Correlation matrix Symmetric T =§"2ps"?

G Matrix containing the eigenvectors of P as its columns Orthogonal P=GOGT

<] Matrix containing the corresponding eigenvalues of P Diagonal P=GOGT

R Relation matrix between U; and Uy, U; = U>R Orthogonal R=pll2g-lxli
(0] Cross-covariance between Y and X o=U; =2

v Cross-correlation between Y and X ¥ =U,P"?

C Column-wise centered data set Column average=0 C=XT

pi Principal component i of Z Orthonormal vectors V= (py,...,pn)
Z Row-wise centered data set, set of signatures Row average = 0

H Matrix used in CCA H=3Sx75,'37x
a; Canonical direction i of X, eigenvector of H Orthonormal vectors

ni ith largest eigenvalue of H Ha;=n;a;

Bi Canonical direction i of Z Orthonormal vectors f;=r -ZEIZ 7x;
L Matrix that is part of the Cholesky decomposition of ¥ Lower triangular sl=rL?

5 Shrinkage estimator of = Symmetric S=6T+(1-6)2
T Structured estimator for Symmetric

0 Shrinkage intensity 0€[0,1]

o* Optimal shrinkage intensity

vii

Contents

Preface iii
Abstract v
List of Variables vii
1 Introduction 1
2 Background 3
2.1 Hyperspectrallmaging L e 3

2.2 TheCovariance Matrix o 0t e e e e e e 4

2.3 Whitening Tranformations L. L L e e 5
2.3.1 Principal Component Analysis (PCA) L 0. 7

2.3.2 Standardized PCA e e e 10

2.3.3 Zero-phase Component Analysis (ZCA) e 10

2.3.4 Standardized ZCA e e e 11

2.3.5 Canonical Correlation Analysis (CCA)« it v v v it e e 12

2.3.6 CholeskyWhitening L e 14

2.3.7 Characteristics of Whitening Transformations 15

3 Methodology 17
3.1 SyntheticData e e e e e e e 17

3.2 Whitening. e e e e e e e e e 20
3.2.1 Empirical Whitening Process. L Lo 20

3.2.2 Used Whitening Transformations L. .. 20

3.2.2.1 PCAand Standardized PCAWhitening 20

3.2.2.2 ZCA and Standardized ZCA Whitening 21

3.223 CCAWhitening e e 21

3.2.24 CholeskyWhitening. L o 21

3.3 Signal-to-NoiseRatio L. Lo o 22

3.4 The Influence of the Number of PixelsintheScene 23
3.4.1 Monte Carlo Simulations. 24

3.5 Multi-areawhitening e e e 24
3.5.1 Creatingthe Leather Spectrum. 24

3.5.2 The Influence of Shifting the Spectrum on the Scenario 26

3.5.3 Spectral Angle and Cosine Similarity. Lo L Lo 27

3.5.4 Monte Carlo Simulations. L 28

4 Results and Discussion 31
4.1 WithoutShotNoise e e 31

4.2 Signal-to-NoiseRatio L e e e 34
4.2.1 CuttingoftheSpectrum e 36

4.3 Multi-AreaWhitening. L e e e 36

5 Conclusions 39
6 Recommendations 41
Bibliography 43
A The Empirical Covariance Matrix: Additional Proofs 45
B Figures 47

X Contents
C Code 53
C.1 whitening math_functions Lo 53
C.2 whitening methods_functions L L L 56
C.3 whitening SNR _functions L. L e 59
C.4 Whitening synthetic_data L 61
C.5 SNR_Monte_Carlo e e e e e e e e e 68
C.6 Multi_area_whitening. e 71
C.7 Normal test. e e e e e e e e s e 77
C.8 Whitening Figures L e 78

Introduction

In December 2001 Richard Reid, also known as the “Shoe Bomber”, attempted to ignite a bomb hidden in the
soles of his shoes on a plane from Paris to Miami. Even though the bomb did not detonate, it is said that “his
shoes were packed with enough plastic explosives to punch a hole through the side of the plane” [25]. Nowa-
days, when going through airport security, one needs to take off big shoes like hiking boots, which can hold
up the line. Airports like Schiphol are already dealing with large queues, since the COVID-19 pandemic led
to staff shortages, specifically security guards [19]. One way to increase the efficiency without compromising
on safety could be the use of a shoe scanner.

Stage Gate 11 B.V. is a small company that innovates in airport security solutions, such as the Shoe Scan-
ner. The Shoe Scanner uses differential reflectance spectroscopy in order to scan the outside of the shoe for
relevant materials, such as explosives and narcotics. Passengers will not have to take off their shoes, as trying
to hide illicit materials in shoes almost always leaves traces on the outside of the shoe, which can be detected
[4]. The hyperspectral data then goes through a number of steps before classifying the substances on the shoe
as safe or unsafe. This report will be focussing on one step of the preprocessing: whitening.

The whitening transformation transforms a random matrix into a matrix with expectation 0 and a covari-
ance matrix equal to the identity matrix, i.e., it removes correlation between the pixels and each pixel has
variance 1. In the case of working with real data, and thus not knowing the expectation, the whitening trans-
formation transforms a data matrix into a matrix with row average 0 and a covariance matrix equal to the
identity matrix. This leads to the first question: what does a data matrix look like before and after whitening?
There are actually infinitely many possible whitening transformations, but in this thesis, six whitening trans-
formations will be examined.

In the case of high contrast within a scan, the data can still be transformed with whitening, but the parts
with high intensity will be transformed differently then the parts with low intensity. The difference in this
transformation has consequences to the way in which the transformation of explosives and narcotics are be-
ing carried out. Because of this deviating transformation, the uniformity of the spectra cannot be guaranteed.
It needs to be researched what exactly is the influence of a high contrast scenario on the whitening transfor-
mation. If indeed the uniformity of the spectra cannot be guaranteed, then multi-area whitening can be used,
to avoid this. Multi-area whitening uses clustering to separate similar planes on the shoe. These planes are
then whitened individually, after which the data is merged back together for classification. This hopefully
leads to a better uniformity of the spectra of explosives and narcotics. When using multi-area whitening,
much smaller data matrices are whitened than when an entire scan is whitened. Since a relation has been
noticed between the number of pixels used in the whitening transformation and the signal-to-noise-ratio,
this relation is also a topic that needs to be researched. And since the number of pixels being whitened mat-
ters, the cut-off criteria when using multi-area whitening will also be researched, i.e., how many pixels are
needed at least in a cluster to perform properly.

2 1. Introduction

Furthermore, when conducting the research, the question came up whether the data matrix that is used
as input should be transposed or not, i.e., the question of should the pixels be viewed as the variables or the
observations?

To summarize, the following research questions will be answered:
e What does a target spectrum look like before and after whitening?

e What is the relationship between the number of pixels used in the whitening transformation and the
signal-to-noise-ratio?

¢ What is the influence of a high contrast scenario on the whitening transformation?
* How does ‘normal’ whitening compare to multi-area whitening?

e What is a suitable cut-off criterium for a cluster when using multi-area whitening?

Should the data matrix used as input be transposed or not?

To be able to answer these questions in this thesis, first background information is given on hyperspectral
imaging, covariance matrix estimation and the six whitening methods that were researched: PCA, standard-
ized PCA, ZCA, standardized ZCA, Cholesky and CCA whitening in Chapter 2. Then, in Chapter 3, descriptions
are given of the methodology and implementations that were used to give more insight into the whitening
transformation, like the creating of synthetic data, the signal-to-noise ratio, Monte Carlo simulations and
multi-area whitening. In Chapter 4, the results are discussed. In Chapter 5 conclusions to all results are
drawn. And finally, in Chapter 6 possible complications will be discussed, and how the research in this thesis
could be improved. Recommendations for further research will be given.

Background

2.1. Hyperspectral Imaging

Hyperspectral imaging is a technology that can be used for the identification of substances. Unpolarized,
polychromatic light is sent out with a varying wavelength [9]. When reaching the object to be scanned, some
of the light is absorbed, the rest is reflected. The intensity of the incoming light at every wavelength is mea-
sured. This way a spectrum is created, showing the intensity of the light measured at varying wavelength and
thus at which wavelengths light is reflected or absorbed by the scanned substance.

There are two different ways to record this data, using multispectral imaging and hyperspectral imaging.
In multispectral imaging, there are generally 3 to 10 spectral bands recorded [7]. In hyperspectral imaging,
a larger number of spectral bands are recorded, namely hundreds, resulting in a continuous spectrum, see
Figure 2.1. By analysing these spectral signatures, hyperspectral imaging enables us to identify and differen-
tiate materials and substances, based on their unique spectral fingerprints. This technology can be used to
scan a two-dimensional surface. This results in a detailed dataset known as a hyperspectral cube, where each
two-dimensional pixel contains a whole spectrum.

Multispectral Hyperspectral

Several Spectral Bands Continuous Spectrum

Response
Response

—~

-

Wavelength (um) Wavelength (ym)

Figure 2.1: Multispectral and Hyperspectral imaging, figure taken from [5].

4 2. Background

In our case, 548 spectral bands are used, ranging from 200 nm to 550 nm, i.e., ranging from UV to visible
light, see Figure 2.2.

Wavelength in meters (m)

10 0% 10" 10 10 10°% 10°* 107 1 102 10* 10° 10°
L 1 1 1 1 1 1 1 1
|
uw IR Radio waves
Visible light
400 500 600 700
(violet) (red)

Wavelength in nanometers (nm)
Figure 2.2: Electromagnetic spectrum, figure taken from [2].

Now, it is assumed that the hyperspectral cube is of size x x y x z, then the input image is of size x x y
and the number of spectral bands is z. In order to easily process all this data, the hyperspectral cube is rear-
ranged, such that it is two-dimensional. The pixels are rearranged from a two-dimensional picture into a line
of length x - y, meaning the data cube is now of size (x- y) x z. From here on out, the recorded data cube or
image obtained from a scan will be called Im with size n x m.

If Im € R is the input image of a scan, then it has n rows of variables, from which the row means
need to be subtracted to centre the data, and m columns of observations. An entry of the input image is the
intensities of a certain pixels at a certain wavelength. It can be chosen if 7 is the number of wavelengths that
are used, which is 548 for all scans, or if 7 is the number of pixels in the scan, which varies per scan, i.e., it can
be decided whether or not to transpose the input image. The effects of doing so will be discussed further into
this report.

2.2. The Covariance Matrix

The true covariance matrix of a random matrix Y equals ~ = E [(Y —E[YD)(Y - [E[Y])T]. If the distribution of

Y is unknown, X must be estimated from the data. To do this, the input image Im is used. The covariance

matrix of Im € R"*™ is estimated from the data using the empirical covariance matrix: £ = —L- XX, where X

is row-wise centred. If Im € R™*™ is the input image, then X; = Im; ;. —u;, where y; is the mean ofrow i, i.e.,
1

Mi =5, Z;”:l Im; j, fori=1,...,n. The matrix X € R"*"" is considered a matrix consisting of m observations,

i.e., column vectors X = (X1, Xo,..., X;») with X1, X>,..., X, e R".

Theorem 2.2.1. Let Im € R"*™ be a random matrix with i.i.d columns Imj, for j = 1,...,m. Let X e R"*" be
a row-wise centred matrix with X; i = Im; . — u;, where p; is the mean of row i of Im, i.e., y; = %Z;":I Imy;,

fori=1,...,n. Then the sample covariance matrix, = = ﬁXX T is an unbiased estimator of the covariance
matrix of Im.

Rnxm

Proof. Let p= (i, lh,..., 1) € with g = (u1, 2., un) T € R", then

- L um-wum-pT=—
 om-1 B £ Cm-

2.3. Whitening Tranformations 5

XinXin XinXiz ... XinXin
1 2| XinXie XipXip ... XipXin 1 m .
= — . . i . =—) XiX;
m-1;3 : : . : m-1;3
XinXin Xi2Xin . XinXin
1 T
= T IZ(Imz wIm; —) —m—z ImiIm; T —pIm; T — Im;u” +pu)
= —Z[Im-]m-T—uIm-T—Im-pT)+ T
- 1 1 1 1 .
m-—1;3 m-—1

Here, Im; is the i column of Im. Now, ImiuT and ulIm; T are looked at, and it is found that

m

m m
(rmiu®)" = ZlulmiT =u_lemiT =mup’.
i= i=

—

i=

So,
: = ;i(lm-lmj—plm-T—ImﬂT)wL uut
m_lizl i i i i m—1
T m T m r m T m T
= —Y (ImiIm;") - ——pp” - |—— b ——pupT = —— (ImiIm; ") - ——puT.
m—l,;(m’ mi') = —— kg (m luu) = _1;(% mi') = —— kg
To prove that £ is unbiased, it must be shown that its expectation equals X:
- 1 Z T 1 & T T
E[Z] = E|—=) (ImiIm;")—-——pp" | =——> (E[ImiIm;"|)- ——E[up']
m=1iz 1 -1i5 -1
- L i (Var(Im;) + Em)E(Im;]") — —— (Var(w) +E[pIE[] ")
m-1i3 m-—1
Now, use Var(Im;) = %, and thus Var(y) = Var (L X" | Im;) = #Z?;Var(lmi) =1z
- m m 1
E[2]=——(=+ — =+l =z
[B]=—— E+um')- m—l(m uu)
O

The basis for the proof is taken from [1] and elaborated upon. In practice, the observations will not be
independent and identically distributed random variables, but £ will still be a good estimator, as long as the
number of variables is smaller than the number of observations, but not when % is large [18, 20, 22]. Covari-
ance matrix estimation is a well researched problem within the field of statistics and will be discussed later.

Throughout this chapter, = will be written instead of £ in the theoretical background, but all theorems
also hold for £, as is shown in Appendix A.

2.3. Whitening Tranformations

A whitening matrix W € R"*" transforms the input random matrix X € R”*" into a whitened matrix Y € R"**""
according to the formula: Y = WX. The whitened matrix has an expectation of 0 and a covariance matrix
equal to the identity matrix. By removing the first and second order statistical structures, i.e., expectations,
correlations and variances, higher order structures can be looked at for a better classification [15].

Definition 2.3.1. Let X € R"*"" be a row-wise centred data matrix with covariance matrix . A whitening
matrix of X is a matrix W such that WT W =z7L,

If W and X are invertible, this is equivalent to WEWT = [, because

wiw = 3zt
swiw = 1
swl = w!

ww? = 1.

6 2. Background

Theorem 2.3.2. Let X € R™™ be a row-wise centred random matrix with covariance matrix 2, i.e., E[X] =0
and Cov(X) = Z. Let W be a whitening matrix of X. Then, the whitened matrix Y = W X has expectation 0 and
covariance matrix I.

Proof. The following expectation and covariance are found for Y:

E[Y] E[WX] = WE[X] =0,

Cov(Y) = E[(Y-E[YD(Y-E[YDT]
= E[WX-EWX)(WX-EWX]T]
= E[WX-EXNX-EXDTWT]
= WE[X-EXDX-EXDT|w’
= wiw'=1L

O

In reality, E[X] is unknown. Therefore, the empirical covariance matrix 3 x of X is used, and thus also the
corresponding whitening matrix W such that W7 W = Z)‘(l is used. Then the empirical covariance matrix 2y
of Y will also be equal to the identity matrix:

N 1 A A T
> = ——— (WX (WX
vo= —— (WX)(WX)
- WxXTWT oW WT =
m-—1

As mentioned earlier, write X instead of £ will be written throughout this chapter. But as long as the corre-
sponding whitening matrix W and other corresponding matrices, all estimated from 2, are used, all theorems

Since the covariance matrix is a real and symmetric matrix, an eigendecomposition can be performed:
> = VDV, where V is a orthogonal matrix with the orthonormal eigenvectors of X as its columns, and D
a diagonal matrix with the corresponding eigenvalues as its diagonal values. The eigenvalues can be put in
descending order, such that D; ; = D;41,i+1.

Theorem 2.3.3. If W = U122 = U, VD "2VT with Uy any orthogonal matrix of size n x n, then W is a

whitening matrix.

Proof. U, and V are orthogonal, i.e., U] = U; ! and VT = V=1, This is used to find

wiw = (vT)' pvTulu,vpvT
= vDp "vTvpyT
- yp\ep-iyT
= vplvl=3x7}
wrw! = uz syl =uuf =1
O
Thus, the whitening transformation combines multivariate rescaling by Z~"/? and rotation by Uj. Differ-

ent choices for the orthogonal matrix U; correspond to different whitening methods. This is called rotational
freedom in whitening [13]. There are infinitely many whitening matrices that satisfy Definition 2.3.1.

Another possibility is to decompose the covariance matrix X into the correlation matrix P and diagonal
covariance matrix S, such that £ = §/2PS"2. The input matrix X € R”*"” can be interpreted as a matrix of row
vectors with mean zero, then X = (X3, Xo,..., X,,) T with X;, Xo,..., X, e R and E[X;] =0fori = 1,...,n. The
following diagonal covariance matrix S and correlation matrix P can be found:

CT%(0 . 0 Cov(X3,X1) Cov(Xy,Xp) Cov(X1,Xy)
1 0x,0x 0x,0Xx 0x,0X,
)) CoviX1.X) Cov(Xp.Xo) Cov(Xs, %)
S= 0 O'Xl . and P = 0x10X, OX,0X, 0X,0xp,
: K 0 : : . :
0 0 o2 Cov(X1,Xn) Cov(Xp,Xpn) Cov(Xn,Xn)
Xy 0X,0Xp, 0X,0Xp, T O0Xn0Xn

2.3. Whitening Tranformations 7

Note that the diagonal elements of P, cor(X;, X;) = % should equal 1. Using this, one finds that
Cov(X;,X;) Cov(Xy,Xo) ... Cov(Xy,Xy)
Cov(X;,X2) Cov(Xy, X2) ... Cov(Xy, X;)
> =8"ps" = . . .
Cov(X1,X,) Cov(Xe,Xp) ... Cov(Xp, Xp)

Theorem 2.3.4. If W = U, P~2S~"? with U, any orthogonal matrix of size nx n, then W is a whitening matrix.
Proof. Remember that P and S are symmetric and U, is orthogonal, i.e., UZT =U, !, Using this, one finds that

WTW — 871/2P71/2U2TU2P7]/2571/2 — S*]/ZP*I/ZP*1/28*]/2 — S*UZp*ls*]/Z :zfl,
wrwT U,p~ 257282 pgte g p=tey L =y, p~ 2 PP U] = UL U = 1.

O

The matrix P is also a real symmetric matrix, thus an eigendecomposition can be performed on P =
GOGT. “In this view, with W = U>GO~"2GTS~"2, the variables are first scaled by the square root of the di-
agonal variance matrix, then rotated by G , then scaled again by the square root of the eigenvalues of the
correlation matrix, and possibly rotated once more (depending on the choice of U>)." [13]

For a certain whitening transformation, both W from Theorem 2.3.3 and 2.3.4 should obviously be the
same, this gives a relation between the rotation matrices U; and Us:

Ulz—l/Z — U2P_1/28_1/2,
U, P~287252 = U, R.

w
Uy

Here the matrix R = P~"2$723"2 is orthogonal:

RRT — P—llzS—llzzl/zzllzs—llzp—l/z — P—llzs—l/zzs—llzp—llz
— P—1/2S—I/ZSI/ZPSI/ZS—I/ZP—UZ — P—I/ZPP—l/Z - I,
RTR — 21/2S—I/ZP—I/ZP—I/ZS—I/ZZUZ 221/2 (S—l/ZP—IS—I/Z) 21/2 221/22—121/2 — I,
R = (RT)—l _ pll2glizy =it

Now, like Kessy et al., 2018 [13], the cross-covariance ® and cross-correlation ¥ matrices between the
whitened matrix ¥ = WX and the original data centred matrix X can be examined. A link to the rotation
matrices U; and U, is found:

(0]
v

Cov(WX, X) =E[(WX -EIWXDN(X -EX)T]|=wE=U,2""x=U;2"?
cor(WX, X) = (Ds—llz — Ulzllzs—llz — Uszllzs—llz — Uzpllzsllzz—llzzllzs—llz — U2P1/281/28—1/2 — UZPI/Z.

2.3.1. Principal Component Analysis (PCA)
PCA is an orthogonal linear transformation, i.e., it preserves the inner product, scalar multiplication and vec-
tor addition. It transforms a column-wise centred dataset C € R™*”, with each of the m rows representing an
observation and each of the n columns representing a variable, to a new coordinate system Cpc 4, where the
data is projected upon the principal components. The first coordinate is the projection upon the first princi-
pal component, the second coordinate the projection upon the second principal component, etc. The prin-
cipal components are orthonormal vectors that point in the direction of the greatest variance of the dataset,
with the first principal component accounting for the most of the variance, the second principal component
accounting for the most of the variance after the first, etc. Since the input image is a row-wise centred dataset
X e R™"™ itis clear that C= X 7.

To have the first principal component p; pointing in the direction of the greatest variance, it has to satisfy
the following equation:

p1 = argmax{||Cp|*} =argmax{p’C’Cp}
llpll=1 llpll=1

= argmax{p? XX7 p} = argmax{p” Ep}
lpll=1 lIpll=1

8 2. Background

rs
= argmax{p T p}‘ 2.1)
p'p

This equals the eigenvector corresponding to the largest eigenvalue of £. The i principal component also
needs to satisfy equation 2.1, with the additional constraint of being orthogonal to the first i — 1 principal
components. This turns out to be the eigenvector corresponding to the i largest eigenvalue of £. The factor
of ﬁ can be ignored, since it does not affect the argmax. Note that if an eigenvalue has a multiplicity higher
than 1, say m, i.e., it corresponds to m eigenvectors, say p;,..., Pi+m, then p;,..., pi+m are interchangeable
and make up the next m principal components.

Theorem 2.3.5. The principal components of the column-wise centred dataset X € R™*" equal the eigenvec-
tors of the empirical covariance matrix £ = ﬁXX T with the first principal component being equal to the
eigenvector that corresponds to the largest eigenvalue of £, the second principal component being equal to the
eigenvector that corresponds to the second largest eigenvalue, etc.

Proof. A proof by induction is used. First, there will be a proof that the theorem holds for the first principal
component, for this the proof by Severn, K. (2023) [24] is followed. The aim is to maximize pTi p subject to
llpll=1,ie, pTp=10r1-pTp=0. This can be achieved using Lagrange multipliers, differentiating with
respect to p and A and setting both to 0, in order to find the maximum:

LpN = plEp+ra-plp),

0% 0%
VorZ(p,A) = —_—
pA (P) (6}9 6/1)
= (2Zp-2Ap,1-p'p),
25p-2Ap=0

VorZ(p,A)=0 <&
paL () {l—pr:O

B {i p=Ap
p'p=1
Thus, p is an eigenvector of £, subject to p” p = 1, corresponding to eigenvalue A. If this is substituted back
into %, one gets:
ZL(p,) = pTip+ Al - pr) = pTip = /lpr =A.

To maximize this, A needs to be the largest eigenvalue of 3. Thus, it is indeed found that the first principal
component, p1, is equal to the unit eigenvector that corresponds to the largest eigenvalue of .
Now, itis assumed that the first j —1 principal components equal the unit eigenvectors that correspond to the
j—1largest eigenvalues of £, and proven this also holds for the j™ principal component. Again the aim is to
maximize pjTipj, subjectnotonlyto||p;|| =1, butalso to p].Tpi =0fori=1,...,j—1, because the j™ principal
component must be orthogonal to the first j — 1 principal components. Again, use Lagrange multipliers:

. 1
Lpj A, o) = piEpj+AQ=pipp+ Y piO=pjip),
i=1
(aﬁ 0£ 0% 0%
6}?]', oA ’ayl""’ayj_l
. 1
= (2219;—2119;—Zuipi,l—pfpj,—pfpl,---,—nfpj—l),
i=1

25p;—2Apj+ ¥ pipi =0
Vs ittty L @i Aottty 1) =0 & §1=pip;=0
p].Tpizo foralli=1,...,j—1

Take the first of the three equations and left multiply by pg for some k € {1,...,j — 1}, where pi is a unit
0ifk#i

eigenvector of £ by assumption. Note that all p; are mutually orthogonal, i.e., p,{ pi= { Lifkei
ifk=1

One finds that

pipk=0 < pip;=0,

2.3. Whitening Tranformations 9

j-1
0 = 2pEp;-2Apgpj+) wipLPi
i=1
o T
= 2(Epx) pj-2Apgpj+ukpipr
T T
= 2(Mpr) pj-2(Api)’ pj+ k= i
It is obtained that puy =0 for all k =1,..., j — 1. When this is filled in at 2—;?, it is then found that ﬁpj = Apj.

Thus, if the aim is to maximize this given that p; should be orthogonal to py,..., p;j-1, then p; must be equal
to the eigenvector of 3 that corresponds to the j™ largest eigenvalue. O

For PCA whitening, choose U; from Theorem 2.3.3tobe VT, i.e, W = VI "2 =yTyp-2yT = p~2yT,
The matrix V' rotates the data, such that the points are projected upon the principal components. This
means that the data is now decorrelated, but not yet with variance 1. This is because

Cov(v'X) = E[(VIX-E[vIX])(v X-E[v'X])"]
= E[(v'x-VTEX) (v X - VTEX)']

= VIE[X-EXDX-EXDT]V
= vizv=vlvpvlv=D.

To get the variances to 1, multiply by D~ and find

Cov(Y) Cov(D™"*vTX)

= E[(DVIX-E[D"VTX]) (DT VI X -E[DT VT X])' |
= E[(D7VIX-D "VTEX) (DI X - DT VIEX) |
= D VTE[(X-E[XD(X-E[XDNT| VD™

= p"vTzyp=p"vTvpvTD v =D DD " = .

Thus, when applying PCA whitening, the data is first projected upon the principal components to decorrelate
it, and then divided by the square root of the eigenvalue to get the variances to equal 1. This gives maximal
¢i= Z;l:ﬂ/’?J = ;1:1 Cov(WX;, Xj)%

Theorem 2.3.6. ¢; withi€ {1,...,n} are successively maximized for W = Wpca = D2V, with ¢; = ;4.

Proof. First, maximize ¢, then ¢, , etc. up to ¢,,. This ensures that ¢p; = ¢b; 4. First, look at the general ¢;:

n
i = Zi ¢7 ;= (@07),;,
]:

(1, pn)” diag (0®7) = diag(UIZ”Z (UIZ”Z)T) = diag (U, 222207

diag(U,2U]) = diag (U, VDVTU]') = diag (QDQT),

where Q = UV € R"*" is an orthogonal matrix, because U; and V are orthogonal matrices. D was a diagonal
matrix with the eigenvalues of X on its diagonal, in descending order. Thus, it is obtained that:

i = (QDQT)”-:Z(QD)i,k(QT)k,i:Z(Qi,ij,k)Qi,k,
k=1 =1

k=1

J
Djx = 0ifj#k

n n
di = Y QikDixQik=), Dk,kQ?,k.
k=1 k=1
Since Q is orthogonal, every row and column is orthonormal, thus ZZ:I Qi xQjx=0fori# jand1fori=j,

and ZZ:I Qk,iQx,j =0for i # jand 1for i = j. Furthermore, it is known that Dy =...,= Dy, ,,. Therefore, ¢, is
maximized when Q1,3 = 1 and Q; x = 0 for all other k. This gives ¢; = D1,1. So Q has a one as it first entry, and

10 2. Background

zeros in the rest of the first row. Because of Q’s orthogonality, the rest of the first column should also contain
zeros. If now ¢, is maximized, it is found that ¢, = Z]’C‘:z Dy, in o since Q1 = 0. Again, this is maximized
when Q2 =1 and Q. = 0 for all other k. This gives ¢, = D, . Continue this pattern, and one finds that the
¢; are maximized if Q = I. They are indeed in descending order, since ¢; = D;; = D;1,i+1 = ¢i+1. The result
arethat Uy =QVT =V T and W=U1 2 2= VIVD "2V T = D72y T = Wpe 4. O

2.3.2. Standardized PCA

For standardized PCA whitening, choose Uy from Theorem 2.3.4 to be G7,i.e.,, W = GT p~"257'2
=GTGe2GTs "> =@~"2GTSs"2. Similar to PCA, standardized PCA maximizes the y; = X wlz.j

=X cor(WX;, X;)>.
Theorem 2.3.7. v; withi€{1,...,n} are successively maximized for W = Wpca—sta = 0~ "2GTs™2, with Y=
Vi+l-

Proof. First maximize v, then v, , etc. up to ¥,. This ensures that ¥; = y;;,. The general v; are first
considered:

n
v = Z‘,IW%]‘Z(\P\PT)LW
]:
(W1, wn)" = diag(we7) = diag(U:P" (U,P")") = diag (U, P"*P"U])

diag (U, PUJ) = diag (U.GOG" U}) = diag (QOQT),

where Q = U,G is an orthogonal matrix, because U, and G are orthogonal matrices. © is a diagonal matrix
with the eigenvalues of P on its diagonal, in descending order. Just as in the proof of Theorem 2.3.6, it is found
that Q = I and therefore U, = GT and W = ©2GTS™2 = Wpea—_s1a- O

2.3.3. Zero-phase Component Analysis (ZCA)

For Zero-phase Component Analysis, or ZCA whitening, choose U; from Theorem 2.3.3 to be the identity
matrix, i.e., W = 2> = VD™2VT, This has the same first two steps as PCA, rotation by V' and scaling by
D2, but then the data is rotated back by V to the original coordinate system. Because of this, ZCA is the
“closest” to the original data in the least squares sense, using the Frobenius norm [13].

Theorem 2.3.8. || X — WXIIfE is minimized for W = Wzcy = pamE given that X is a data centred matrix and
W X is a whitened matrix.

Proof. The proofis taken from the supplementary material from [27]. First, show that for any matrix B € R™*™
itholds that ||B||% = tr(BB"):

2 X 2
”BHF = ZZB,"]';
i=1j=1
T m
(BB)i,k = ZBLJ'(B]k‘ZBl]Bk]’
j=1 j=1
T - T SR 2
tr(BB") =) (BB L,FZZ Bi,jBi,j = IBllf.
i=1 i=1j=1
Now, remember the following properties: £ = —L-XXT = VDV, WEWT =T and W = U; 27" where U] =

Uy This is used to calculate the minimum of ||X WX||3:

mmi/nIIX—WXIIZF mmtr((X wx)x-wx?)

= mlntr(X -wxx"-xxTwT+wxxTw’)

= mlntr(X ~wxx” - (wxx") +wxx"w?)
(

xxT)-2tr (Wxx")+er (wxxTw?)

2.3. Whitening Tranformations 11

= min(m-1)tr (£)-20m-Dtr(WE)+m-Dtr(WEWT)

min(m - Dt (2)-2m-Dtr (WE)+(m-Dtr ().

Only tr (Wﬁ) depends on W, so minimizing the result above w.r.t. W is the same as maximizing ¢r(WZ) with
respect to W, and therefore to problem is equivalent to

maxtr(Ws) = max tr(U12728) = max tr(U12"?)
w w=u, 512 Ui
ul=uy! uf=ur!

A

= max tr(UlVﬁl/zVT)z max tr(ﬁ”ZVTUIV)

1 1
uf=urt ul=u;i?

1,
max DI/ZQ ZD /zQz i»
Q:VTU1V bt
T _717-1
Ul _Ul

where the fact that tr(AB) = tr(BA) if A and B are square matrices was used, which they are, since A = U 1%
and B = D2V T, Furthermore, the last step can be done, because Disa diagonal matrix. Since U; and V are
real orthogonal matrices, Q is also a real orthogonal matrix. Therefore, its entries cannot be bigger than one,
including the diagonal entries, i.e., Q; ; < 1. The following inequality follows from this fact:

n n
mMe/lX tr(Wﬁ) = Z D;{le,l < Z Dl/z
i=1 i=1

i,i’

with equality if and only if all diagonal entries of Q equal 1. Since Q is orthogonal (i.e., with orthonormal rows
and columns,) this can only happen when Q = I. Because Q = VU,V = I, one gets VVTU1 VT =Vl &
U; = I. So the whitening matrix W that uniquely minimizes || X - WX II%, isW=U; 2 2=5%""2, O

2.3.4. Standardized ZCA

For standardized ZCA whitening, choose U, from Theorem 2.3.4 to be the identity matrix, i.e., W = plzg-iz,
Because of this, ZCA is the “closest” to the standardized data S™"2X in the least squares sense, using the
Frobenius norm [13].

Theorem 2.3.9. ||WX —S$~"2X|[2 is minimized for W = Wyca_siq = P~"287""2, given that X is a data centred
matrix and W X is a whitened matrix.

Proof. Rernember the following properties: £ = —L- XXT = §"2pS§", WEWT = Tand W = U, P~"2$"> where
UJ = U, . This is used to calculate the minimum of WX - 82 X]|2:

m&nuWX—S*”zxni = mlntr((WX—S’l/ZX)(WX—SA’”ZX)T)
= mmtr(WXXTWT—WXXTS‘l’Z—S‘l’ZXXTWT+S‘1’2XXT§‘1’2)
= miner (WXXTWT - Wxx"§" - (WxxT§7%)" 4+ §2xxT ")
= mintr (WxxTwTh)—2er (WXXT§) + ¢r (§72xxT877)
= min(m -1 (WEWT) —2(m -1 tr (WES™) + (m - 1tr (§7285717)

= min(m-tr () -2(m=1Dtr (WS"P)+ (m-1tr (P).

Only tr (WS$"2P) depends on W, so minimizing the result above w.r.t. W is the same as maximizing tr (W §"?P)
with respect to W.

maxtr (WS"2P) = max tr(Up,P728728"2 Py = max tr(U,P~"?P)= max tr(U,P"?
w W:Uzﬁ—l/zg—l/z U, U,
ul=u;! Uy =y Uy =U;!

max tr (U.GO"GT) = max tr (6" 6TU,6)
2 2
Uy =U;! U, =u;!

12 2. Background

n
= max r(6"2Q)= Z@UZ
Q=GTUxG =

Where the fact that tr(AB) = tr(BA) if A and B are square matrices was used, which they are, since A = U,G
and B = 0"?G. Furthermore, the last step can be done, because © is a diagonal matrix. Since U, and G are
real orthogonal matrices, Q is also a real orthogonal matrix. Therefore, its entries cannot be bigger than one,
including the diagonal entries, i.e., Q; ; < 1. The following inequality follows from this fact:

S

1/2
z i’

mvextr (w§"p)= Z 02Q

T M:

with equality if and only if all diagonal entries of Q equal 1. Since Q is orthogonal, (i.e., with orthonormal
rows and columns,) this can only happen when Q = I. Because Q = G'U,G = I, one gets GGTUL,GGT =
GG™ © U, = I. So the whitening matrix W that uniquely minimizes ||WX — $~2X||%, is W = U,P~"257"2 =
p-128-1z2. O

2.3.5. Canonical Correlation Analysis (CCA)

CCA is an algorithm used to examine the linear relationship between two datasets. It finds canonical di-
rections ay,...,a, € R” of linear combinations of dataset X € R”*" and f,..., 8, € RP of Z € RP*™, such
that all a; are orthogonal, all §; are orthogonal, and al.TX and ﬁ]TZ have a maximal correlation with each
other for i = j and zero correlation otherwise [11]. Here r = min{rank(X),rank(Z)}. Thus, CCA seeks vec-
tors a; and §;, such that p = cor(aiTX, ﬁjTZ) =v; is maximal if i = j and p = 0 otherwise. y; are called the
canonical correlations. Since all pairs are mutually orthogonal, one has that cor(aiTX) ajTX) =1ifi=jand
0 otherwise, and similarly cor(ﬁiTZ , ,BjTZ) =1if i = j and 0 otherwise. One will find that a; is the eigenvector
of ZJ‘{IZ X ZZEIZ zx corresponding to the ith largest eigenvalue, and ; is proportional to ZEIZ zx@;, where
Xxz =Cov(X,2Z) = ZEX € R P are cross-covariance matrices and Xx = Xxx and X, = X, are covariance
matrices.

Theorem 2.3.10. The canonical direction a; € R" of the dataset X € R"**™ equals the eigenvector of the matrix
Z)‘(IZ X ZZEIZ 7x corresponding to the i largest eigenvalue, and the canonical direction f; € RP of the dataset
Z e RP*™ equalsr - Z}lzzxai, with r € R a constant.

Proof. Start with the first pair of canonical directions:

Cov(alX,pT2)

(@1,81) = argmax cor(a’X,B’Z)=argmax
wp o OatxOpT7
_ al~xzp a al>x,p
= argmax = argmax

ap \Nar@TX)y/Var(BT2) @b /aT=Zxa\/BTzp
Now, change the basis. Substitute with ¢ = ?a € R" and d = 2/* € R? and find:
aTZXZﬁ ~ CTz)_(l/ZZXZZEI/Zd

max = max
b\ faTsva /BTs ;B cd VelevdTld

Now, use the Cauchy-Schwarz inequality: (u” v)* < u”u-v"v, with u” = ¢T2"5x ;37" and v = d. This
gives an upper bound for the numerator

_ — _ _ _ _ 1 1/
cT2ex,27d < (cTEEx 22 E, s k2 e) C(dTd)
T35 x5 d (722222 S 7x232c) "

max < max 0 ,
cd Vclevdld ¢ (cT¢)

with equality if d is proportional to ¢, i.e., d = r-£,"22 ;x 23 "?¢, with r € R a constant # 0. Substitute this into
the inequality:
CTZ;(I/ZZXZZEI/Zd TZ UZZX >- 1/2r >- 1/222 2—1/2
max = max

c,d velevdTd c \/_\/rz T. I/ZZXZZ;/ZZ;/ZZZXZ)_(UZC

2.3. Whitening Tranformations 13

Ts-1. -1 =1/2
Cc ZX 22){222 ZZXZX 2c

= max
c / — — —
CTC\/CTZXI/ZZXZzZIZZXzXI/ZC

- - _1/2 AV
~ ("2 2x 725 27523 %)
- mCaX T 1/2
G
This is essentially the same equation as equation 2.1, and in the proof of Theorem 2.3.5 it was found that this

is maximal if ¢ is the eigenvector of H, = Z;(”ZZ X ZZEIZ ZXZ;(]/ % corresponding to the largest eigenvalue, 7.
Now;, substitute @ and f back in:

Hee = ne=nifa=33"2xz3,'3,x3,"*2{a,
na = Z}lzxzzélzzxa,
d = 2PB=r-3,"3,x3;"c

— =1/2 =lj2gl/2 —1/2
= 12, Ezx2yEya=r-X,Ezxq,
-1
ﬁ = r-ZZZZXa.

Thus, a; is an eigenvector of H = Z}l Xx ZZ;Z zx corresponding to the largest eigenvalue 1, and f, is propor-
tional to ZZIZ zxa1. Again, similar to the proof of Theorem 2.3.5, one finds by induction that a; is an eigen-
vector of 22 H 272 = 3115 x ;3715 ,x = H. Given that it must be orthogonal to aj,...,aj, it is obtained
that a; must be equal to the eigenvector of 23(12 X ZZEIZ zx that corresponds to the j largest eigenvalue.
Therefore, §; equals r - Z;szaj, with r € R a constant. O

a and S can also be switched and cor (,BTZ) aTX) can be maximized instead, similar to the proof above
it is obtained that §; must be equal to the eigenvector of 2212 z XZ;(IZ x~ that corresponds to the j™ largest
eigenvalue. Therefore, a; equals g - Z)‘(IZ xzPj, with g € R a constant. A connection between the constants g
and r is found, namely:

aj = q-IxZxzPj,

Bj = r27'%zxaj

aj = q-r~Z}IZXZZ;ZZXaj:q-r'Haj:q‘r'naj,
1

n = a

For CCA whitening, let X be the input image and Z the set of signatures. Call the whitened matrices
X =WxXand Z =W Z. In CCA itis the objective to have Cov (X, Z) be a diagonal matrix, with the canonical
correlations on its diagonal, i.e.,

Cov(X,Z) = El(WxX-E[WxX))(WzZ-EWzZ)"]=WxEI(X -E[X) (Z-E[Z)T W]]
WxZxz W} =Pgs.

Now, use Theorem 2.3.4 to substitute Wx and Wy:

Pgy UxPy"*8y"*2x78,"* P, * UL

= UxPy"Px,P,"*U} = UxKUL.

Here, K = P)‘(l/zPX ZP;/ 2 e R"™P. Since K is not a square matrix, use a singular value decomposition (SVD)
instead of an eigendecomposition. This gives K = QXAQE, where Qx € R™" and Qz € RP*" are semi-
orthogonal matrices, i.e., Q)T(QX = QEQZ = I,. Here r = min{n, p}. Further, it follows from the SVD that
A € R™7 is a diagonal matrix with the singular values of K on its diagonal. Since Ux and U, can be chosen
freely, choose them to equal Q)T(and Qg respectively. This gives

>
Il

UxKU} =QYKkQz
QxQxAQZQz =A,

Xz

which is indeed diagonal. However, unlike in Theorem 2.3.4, Ux and U are not orthogonal, but semi-
orthogonal. Nonetheless, it still holds that UXU; =UzU ZT = I,, and thus WEWT = . Therefore, they can

14 2. Background

still be used for whitening [11]. It is found that Wy = QT P}"2$;""2 € R™" and Wy = QL P,'*S " e R™*P.

Let A = (ay,...,a;)T e R™*" and B = (,Bl,...,ﬁ,)T € R™P. Now, standardize the canonical correlations,
such that Cov(a! X,a] X) = a] xa; = 1and Cov(f] Z,p] Z) = 1 £, i = 1. Since cor(a] X, ajTX) =cor(p] Z, ﬁ]TZ) =

0if i # j, it follows that AZX xAT =BY,BT = I,. Thus, A and B are the whitening matrices Wy and W.

2.3.6. Cholesky Whitening

A real positive definite matrix (i.e., all eigenvalues > 0) can be decomposed into the product of the matrices
Land LT, where L is a lower triangular matrix, i.e., [; ; = 0if i < j, with positive values on its diagonal. Let
>~! = LLT be the Cholesky decomposition of =~!, the matrix L is unique:

n n
-1 T T
(Z)i,j = (LL)i,j = Z Li,k(L)k,j =2 LixLjk
k=1 k=1
from these equations, all L; j can beuniquely determined. From (£71), , determine Ly 1: (£7'), ; =X7_, Ly kL1 =
Lil. Now, determine Ly from (2‘1)1'2 and L ;: (2‘1)1,2 =37 LikLok = L1,1Lp1. Then, determine L,
from (£7!), , and Ly,1, then Lz ; from (£7!), , and Ly 1, etc. The following formula’s are found:

Li= JE)-E L) fori=)
Li,j = ﬁ((z_l)i’j—Z;;ll Li,ij,k) fori>j,
Lij= 0 fori<j.

Since 27! = LL”, and the definition of a whitening matrix is that =~! = W’ W, the Cholesky whitening matrix
W equals L”. This corresponds to U; from Theorem 2.3.3 being equal to L™'27"?, i.e, W = L'z 7"2572 =
L7'z7'= LT, This is indeed orthogonal:

UlTUl e (L—l)TL—lz—l/z _y-i (LT)—l [ly-V2 _ gl (LLT)_I sV oyVeyyle o
ol = sy = s (@WN) = (7)==

Where it is used that L™! = LT, Note that Cholesky decomposition can only be performed if the sample
covariance matrix X is positive definite, i.e., all eigenvalues should be > 0. Furthermore, a lower triangular
matrix is invertible if the elements on the diagonal are not zero. In our case, all diagonal elements are positive,
thus L is invertible.

PCA and standardized PCA respectively maximized the cross-covariances ¢; and the cross-correlations
w;. ZCA and standardized ZCA minimized the Frobenius norm between X and WX, and S™2X and WX
respectively. Unlike these transformations, Cholesky whitening does not result from an optimization, but
from a symmetry constraint. If it is demanded that the cross-covariance matrix ® and the cross-correlation
matrix ¥ are lower triangular matrices with positive elements on the diagonal, then the whitening matrix
W = LT will be found.

Theorem 2.3.11. Ifitis demanded that® and ¥ are lower triangular matrices with positive diagonal elements,
then W = Wepor = LT must hold, where L is the lower triangular matrix from the Cholesky decomposition of
=L

Proof. If @ is lower triangular with positive diagonal elements, then ®~! exists and it is also lower triangular.
This means that there exists a matrix with ®~1(®@~1)T as its Cholesky decomposition. It will be shown that
this matrix equals the inverse of the covariance matrix:

® = Uz
q)—l(q)—l)T — 2—1/2 UITUIZ‘”Z — 2—1/22—1/2 — Z_l.

The Cholesky decomposition of a matrix is unique, this indicated that ! = LLT = ®~1(®~1)”, which means
that ®~! = L. Now, an expression for the orthogonal matrix U can be found:

U =bx =11z

2.3. Whitening Tranformations 15

Similarly, if W is lower triangular with positive diagonal elements, then W~! exists and it is also lower trian-
gular. This means that there exists a matrix with ¥ =1 (¥~1)7 as its Cholesky decomposition. It will be shown
that this matrix equals S722~15"2:

v U 2572,
\P—l (‘P_l)T — 51/22—1/2 UlT Ulz—llzsllz — SI/ZZ_ISI/Z — SI/2LLTSI/2

Since the Cholesky decomposition of a matrix is unique, it follows that ¥~! = §”2L. The same expression is
found for U;:

\Ij — L*ls*I/Z — UIZI/ZS*I/Z’
U = L'z

From this expression of Uy, it indeed follows that Wy, = Uy 2™ = Uy =222 = [zt = 7 1LLT = LT,
O

2.3.7. Characteristics of Whitening Transformations
A small overview of the whitening matrices that were discussed is given: what the whitening matrix W looks
like and how it is found. The other characteristics can be found in Table 2.1.

* PCA maximizes (pi = Z;‘l:l (Pi] = ;1:1 Cov(WX;, Xj)z; glVlng Wpca = Dil/ZVT,
* Standardized PCA maximizes y; = ¥/_, w?,j =X/, cor(WX;, X)%, giving Wpca—sia = 02 GTS™2,
¢ 7ZCA minimizes || X — W X||%, and is therefore closest to the original data, giving Wzca = >

o Standardizes ZCA minimizes ||S~"2X — W X||2, and is therefore closest to the standardized data, giving
Wyzca-sta =P~

¢ CCA finds canonincal directions a7, ..., @, € R" oflinear combinations of dataset X € R"*" and f,..., 8, €
R” of Z € RP*™, such that all ; are orthogonal, all §; are orthogonal, and al.TX and ﬁ]TZ have a maximal

correlation with each other for i = j and zero correlation otherwise. This gives Wx = Q)T(P;(” 25;/ zand
Wz =QLP,"S,""?, where K = Qx AQ}, is the singular value decomposition (SVD) of K = Py 2Py, P,"".

* Cholesky whitening does not result from an optimization, unlike these other transformations, but from
a symmetry constraint. It is demanded that the cross-covariance matrix ® and the cross-correlation
matrix W are lower triangular matrices with positive elements on the diagonal, giving Wy, = LT,
where 27! = LLT.

Whitening Matrix =~ Rotation Matrix ~Rotation Matrix Cross-covariance Cross-correlation
w Uy = wz'? U, = U RT O=Uz"2 ¥ =U,P" =052

PCA D—1/2VT VT VTRT D1/2vT D1/2vT8—1/2
PCA-std e 2T G'R GT GTp'2g'2 e'"2GT
7CA 2*1/2 1 RT 21/2 ZI/ZSfl/Z
ZCA-std prizgmie R I plzgie p'?
Cholesky LT LTx'? LTs"2p'2 L' LTzs 2
CCA Wx =QLPy"* Sy U =QLRx Uy =Q} Dy = QL PSP ¥y =QLP}?

Table 2.1: Different whitening transformations and their characteristics.

Methodology

In this Chapter, the methods used to create the results given in Chapter 4 are discussed. First of all, synthetic
data is created to analyse the effects of whitening without any unknown influences from potential undocu-
mented artefacts in real data. Creating synthetic data also means a much smaller amount of pixels can be
studied than the amount of pixels in a full scan, such that the effects of whitening can be seen more clearly.
So, the first section will be a step-by-step description of how the synthetic data is made. This is followed by
a description of the empirical whitening procedure, including what measures were taken when the empirical
covariance matrix was not positive definite, and including an explanation to which whitening transforma-
tions were used and which were not, and why. Next, the step-by-step process is given of how the Signal-to-
Noise Ratio (SNR) was calculated. Subsequently, a description is given of how the Monte Carlo simulations
were done, to give a better view of the signal-to-noise ratio. And lastly, a description is given of the methods
used for the multi-area whitening procedure, which consists of the creation of another synthetic spectrum,
and testing how it influences the target spectrum in a high contrast scenario. This will be measured using the
cosine similarity. The code for all procedures described in this chapter can be found in Appendix C.

3.1. Synthetic Data

First, a substrate must be chosen to display the target substance on. Stage Gate 11 B.V. uses polytetraflu-
orethylene (PTFE) as a substrate, because it possesses certain photometric qualities. PTFE is also known
under the brand name Teflon, Stage Gate 11 B.V. specifically uses white Teflon. They put a known amount of
target substance onto the Teflon before it goes through the scanner. Thus, in order to simulate this process
and create a synthetic scan, a background pixel is created first, i.e., a Teflon spectrum. Then, a spectrum for
a target pixel is created, specifically for when a target substance is placed upon a piece of white Teflon. After
that, noise is added to the created spectra, because in reality, the data is subject to shot noise. At this point,
two spectra have been made: one of a piece of white Teflon and the other of a piece of white Teflon with a
target substance on it. Now, a synthetic scan can be created from these spectra with any number of pixels in
it. The underlying text explains how the synthetic data was created, step by step.

1. Creating a background pixel
First, a scan of pure Teflon is selected. From this scan, 50 pixels were chosen, such that the selected
pixels were non-adjacent. This is done to limit the effect of possible irregularities, e.g., a bit of dust on
the Teflon piece. Then, for every wavelength the average intensity over all 50 Teflon pixels is calculated,
creating an average Teflon spectrum. This average spectrum still contains noise, so a polynomial is
fitted to the data to create a smooth spectrum without noise. A polynomial with degree 6 was found to
be adequate, as can be seen in Figure 3.1. The fitted polynomial is of the form:

Z0+Z1'x+Z2'x2+Z3')C3+Z4'x4+Z5')C5+Z6'x6,

where

17

18

3. Methodology

o 7o =2.08134265- 105,
o z; =—3.95708439-10%,
* 25 =3.06589766- 10,
o z3=—1.23925005,

o z,=2.75658174-1073,
o z5=1.49316921-1079,
e zg=1.49316921-107°,

—— Average Teflon spectrum
50000 - —— Fitted polynomial with degree 6 ‘

40000 -

30000 -

Intensity

20000 -

10000 -

200 250 300 350 400 450 500 550
Wavelength (nm)

Figure 3.1: Spectrum of the average of 50 Teflon pixels and the polynomial with degree 6 fitted to that average Teflon spectrum.

2. Creating a target pixel

Inreality, a target pixel will look similar to the average Teflon spectrum, but with a Gaussian distribution
subtracted from it. This is because the situation that was chosen to be simulated is the situation where
the target substance to be detected is placed upon a piece of Teflon. Thus, the spectrum will look like
the Teflon spectrum, except at the wavelengths where the target substance absorbs the light. Therefore,
the location of this Gaussian depends on the chosen substance. The Gaussian itself is representative
of a signature from an explosive [21]. The amplitude depends on the amount of substance, a higher
amount means more absorption and thus a bigger amplitude. The standard deviation also depends
on the substance. For our target pixel, a shift of 300 and standard deviation of 10 are chosen, i.e., the
Gaussian will have p = 300, o = 10. Furthermore, an amplitude A of 150000 j¢ -hpsen. This results in

the following probability density function:

x-p)2 X— 2
e_%(?”) 3 150.0006_%(200 .

A
= 3.1
\/2][0’2 207 ()

fx) =

The resulting Gaussian probability density can be found in Figure 3.2.

3.1. Synthetic Data 19

=500 -

|
Jun
o
o
o

Intensity

—1500 -

—2000 -

—2500 - ; v
200 250 300 350 400 450 500 550
Wavelength (nm)

Figure 3.2: Negative Gaussian probability density function, — f(x), as made in Equation 3.1.

Subtracting the Gaussian probability density function as in Equation 3.1 from the average Teflon spec-
trum, i.e., adding the negative Gaussian distribution as in Figure 3.2, results in spectrum of the target
pixel, depicted in Figure 3.3.

50000 - —— Fitted polynomial with degree 6 | TN
Spectrum target substance on Teflon S \\
/ \\
/ \
'O -
40000 - / \
t"
_@30000 - "3'
2
(0]
o
= # 18000
20000 - 16000
14000
10000 - / 12000 -
’
,""' . . .
r"r
__~ 280 300 320
200 250 300 350 400 450 500 550

Wavelength (nm)

Figure 3.3: The polynomial with degree 6 fitted to the average Teflon spectrum and the target pixel made from the Teflon polynomial,
enlarged between 275 and 325 nm.

3. Adding noise
The solutions produced by Stage Gate 11 B.V. use a spectrograph with an imaging camera based upon
a scientific Complementary Metal Oxide Semiconductor (sCMOS) imaging chip. Such a chip produces
certain types of noise. A sSCMOS device is subject to three types of noise: shot noise, dark noise and
read-out noise [10, 23]. Due to this notion, noise needs to be added to synthetic data to mimic the actual
data as accurately as possible. Of the three types of noise, shot noise is the predominant component

20 3. Methodology

of noise, being typically bigger by at least an order of magnitude compared to dark noise and read
noise. Thus, only shot noise is considered to be required to be added as other components will have a
comparatively negligible effect. Thus, shot noise is added to all pixels. The shot noise has a Gaussian
distribution with p =0, 02 =1, i.e., the variance is proportional to the square root of the intensity /
(10, 23]. A higher intensity gives a larger shot noise.

4. Creating a synthetic scan

Lastly, a synthetic scan can be created. If a scan is of size n, then n — 1 Teflon pixels and 1 target pixel
are created. Half of the Teflon pixels are placed in an array, then the target pixel is added and finally
the rest of the Teflon pixels. This means that a matrix of size n x 548 is immediately created, instead
of creating a three- dimensional data cube first. This two-dimensional array is the synthetic scan. If n
is odd, first "T_l Teflon pixels are added to the array, then the target pixel and then another "T_l Teflon
pixels, meaning that the target pixel is pixel 2%, which is exactly in the middle. If 7 is even, 5 Teflon
pixels are added to the array, then the target pixel and then another 2 — 1 Teflon pixels, meaning that the
target pixel is pixel 4 +1, which is not exactly in the middle, as that is not possible with an even number
of pixels. When all pixels are created for the scan, it is made sure that different random numbers are
generated for each pixel when simulating the shot noise.

3.2. Whitening
3.2.1. Empirical Whitening Process

When starting the whitening process, the data is first centered, such that the sum of each row equals 0. Then,
the empirical covariance matrix is calculated. The empirical covariance matrix 3 = ﬁx XT, will be of size
n x n. This means that if pixels are used as observations, £ will always be of size 548 x 548. Therefore, the
covariance matrix can never be positive definite if there are less than 548 pixels in a scan. There will be
eigenvalues equal to zero, meaning that the empirical covariance matrix cannot be inverted. Therefore, an
epsilon is added to the eigenvalues in D. If wavelengths are used as observations, 3 will always be of size
n x n, where n is the number of pixels, which varies per scan. In this case, the covariance matrix can never
be positive definite if there are more than 548 pixels in a scan. Again, there will be eigenvalues equal to zero,
so an epsilon needs to be added to the eigenvalues in D. In all cases, € = 1e™* is used, even if the matrix
is positive definite, for simplicity. The empirically acquired matrices V and D are then used to calculate a
whitening matrix W, depending on which whitening transformation is chosen. Finally, W is multiplied with
the centered dataset X, this gives the whitened image Y = WX.

3.2.2. Used Whitening Transformations

Unfortunately, it turns out that not all discussed whitening transformations in Section 2.3 are useful for de-
tecting illicit substances. In this section, a discussion on what transformations were and were not used will
be given and an explanation why.

3.2.2.1. PCA and Standardized PCA Whitening

The PCA whitening matrix is determined using the eigendecomposition £ = VDV, such that Wpcs = D™2V 7T,
This means that the data is first rotated by V7 and then scaled by D~"/2. However, the eigenvalues in D are or-
dered from smallest to largest. When pixels are used as observations, the big peak is not at 300 nm anymore,
instead it will always be at 550 nm, which is not correct. This can be fixed by rotating the data back using V,
but that will give W = VD2V T, which is just ZCA whitening. Furthermore, if a 9 x 9 synthetic scan is made,
it will contain 81 pixels. This means that there are 81 eigenvalues bigger than or equal to zero, and 548-81 =
467 eigenvalues that are definitely zero. Because there is no rotation back to the original coordinate system,
this can be seen in the whitened spectrum, see Figure 3.4a. When wavelengths are used as observations, there
will be whitened data that is not equal to zero, but no clear signal can be made out, as seen in Figure 3.4b.
Therefore, it is decided that PCA whitening will not be used for the rest of this report. Standardized PCA has
the same problems, so it is also not used.

3.2. Whitening 21

8 3-
2 -
6 -
7 -
2 4 z
2 2 0
])
£ £
2 -1
2 -
0 -
—— Teflon spectrum 3 - —— Teflon spectrum
—— Target spectrum —— Target spectrum
=2 1 —— Baseline of target spectrum —— Baseline of target spectrum
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Pixels used as observations on a9 x 9 scan. (b) Wavelengths used observations on a 2 x 2 scan.

Figure 3.4: PCA whitening of two synthetic scans using pixels (3.4a) and wavelengths (3.4b) as observations.

3.2.2.2. ZCA and Standardized ZCA Whitening

ZCA whitening will be used, so the results of that will be discussed in the next chapter, Chapter 4. As for stan-
dardized ZCA, the available time did not permit the completion of the code of this whitening transformation.
The code can still be found in Appendix C.

3.2.2.3. CCA Whitening

For CCA whitening, two sets need to be whitened simultaneously. The set X, the input image, i.e., the row-
wise centered data matrix, and Z, the set of signatures. As there was chosen to work with synthetic data,
there exists no set of signatures Z. Also, this method works quite differently from the other methods and due
to time constraints, the coding of this whitening transformation was not completed. The code can still be
found in Appendix C.

3.2.2.4. Cholesky Whitening

When pixels are used as observation, the empirical covariance matrix will not be positive definite if the num-
ber of pixels in the scan is smaller than 548. This means a Cholesky decomposition cannot be performed.
However, adding the epsilon, € = le~4, will help run the code. Nevertheless, the same problems as for PCA
are still there, where all the data is zero or very close to zero for the number of pixels that ‘lack’ to reach 548,
i.e.,, ifa 11 x 11 synthetic scan is made, it will contain 121 pixels. This means that there are 121 eigenvalues
bigger than or equal to zero, and 548-121 = 427 eigenvalues that are definitely zero, resulting in the first 427
datapoints having little to no signal, see Figure 3.5a. The number of pixels needs to be bigger than 548, only
then a peak around 300 nm starts to show, see Figure 3.5b. However, this peak seems to be skewed and does
not lie perfectly around 300 nm anymore.

Intensity
o
Intensity

b

|
-

-2 - —— Teflon spectrum —— Teflon spectrum
—— Target spectrum —— Target spectrum
—— Baseline of target spectrum -6 - —— Baseline of target spectrum
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Pixels used as observations on a 11 x 11 scan. (b) Pixels used observations on a 29 x 29 scan.

Figure 3.5: Cholesky whitening of two different sized synthetic scans.

22 3. Methodology

Furthermore, when whitening a scan without shot noise added, the peak of the Gaussian does not lie at
the correct location, if pixels are used as observations. In the cases that were researched, which is scans up
to and including a size of 1000 pixels, it did not matter if the scan contains more or less than 548 pixels, see
Figure 3.6. Therefore, it is chosen to not work with Cholesky whitening.

0.3 -

0.2 -

0.1 -

!
~

Intensity
o
o
Intensity
1
o

_8 -

~—— Teflon spectrum -10 - —— Teflon spectrum

03 —— Target spectrum —— Target spectrum
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Two spectra of a 1 x 2 synthetic scan, i.e., a scan consisting of one Teflon (b) Two spectra of a synthetic scan with 841 pixels in total after Cholesky
pixel and one target pixel, after Cholesky whitening, pixels used as obser- whitening, the target spectrum and one of the Teflon spectra, pixels used
vations. as observations.

Figure 3.6: Two spectra after Cholesky whitening, the target spectrum and the Teflon spectrum, for different sizes of synthetic scans,
pixels used as observations.

In conclusion, the results will focus solely on ZCA whitening.

3.3. Signal-to-Noise Ratio

In order to identify a target substance on a substrate, it is important that a signal can be made out beyond
the noise, if not, then it cannot be classified. To quantify the relationship between the desired signal and the
unwanted noise, the Signal-to-Noise Ratio (SNR) can be calculated. The signal-to-noise ratio is the essential
figure-of-merit in assessing performance of the whitening transformation [3]. A higher signal-to-noise ratio
means a higher ability to detect meaningful patterns within the whitened spectra. As mentioned in the Intro-
duction, Chapter 1, there is reason to believe that there exists a connection between the amount of whitened
pixels in the scene and the signal-to-noise ratio. Therefore, the signal-to-noise ratio will be calculated for
different sizes of synthetic scans. This can help with finding suitable cut-off criteria for multi-area whitening.
A description of how the signal-to-noise ratio is calculated will follow.

1. Fitting the baseline

When pixels are used as observations, there is no clear visible baseline underneath the whitened data.
However, this baseline can be clearly observed when using wavelengths as observations, specifically
when using a small amount of pixels, as in Figure 3.7. To correctly calculate the SNR, this baseline must
be calculated and subtracted from the data. Therefore, a polynomial is fitted to the data without the
Gaussian. The Gaussian is centered around 300 with o = 10, so the data from wavelengths 300 + 30
is not used for this fitting, i.e., from 270 nm to 330 nm, see the vertical lines in Figure 3.7. Later, the
integral of the Gaussian has to be calculated, so then the data from 270 nm to 330 nm is used. To avoid
correlation, 10 datapoints away from 300 nm are taken extra. The spectrum goes from 200 nm to 550 in
548 steps, so x[110] = 270,384 and x[203] = 329,89. Taking 10 extra datapoints away from 300 nm means
the data from x[0] up to and including x[100] and from x[213] up to and including x[547] will be used.
Since the average Teflon spectrum that was used was a polynomial with degree 6, again a polynomial
with a degree of 6 is used to fit the baseline to this data.

2. Calculating the noise, i.e., 0 gums
To calculate the noise, first the baseline is subtracted from the data. Then, the standard deviation of
the same data where the baseline was fitted on is calculated, i.e., the data from x[0] up to and including
x[100] and from x[213] up to and including x[547].

3. Calculating the signal, i.e., the integral of the Gaussian
Again, the baseline is subtracted from the data. Then, the integral of the Gaussian must be calculated,

3.4. The Influence of the Number of Pixels in the Scene 23

or in our case, estimated. The aim is to integrate between 270 nm and 330 nm, but this time, starting
from 10 datapoints extra toward the 300 nm to avoid correlation. The spectrum goes from 200 nm to
550 in 548 steps, so x[110] = 270,384 and x[203] = 329,89. Taking 10 extra datapoints toward from 300 nm
means that the data used lies between x[120:194]. Then, the integral I is approximated with a midpoint
Riemann sum [14].

4. Calculating the Signal-to-Noise Ratio
The signal-to-noise ratio is the ratio between the desired signal and the background noise. In our case,
the desired signal is the integral I around 300 nm, and the background noise is standard deviation o gpss
of the shot noise outside the signal. This gives the formula

ORMS
0.15
2 -
0.10
] -
0.05 -
0 -
z z
2 000 - g
£ -1
-0.05 -
2 -
-0.10 -
—— Teflon spectrum _3- —— Teflon spectrum
—— Target spectrum —— Target spectrum
—— Baseline of target spectrum —— Baseline of target spectrum
-0.15 - " " X X " T z r ! ! L | ! L | |
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Pixels used as observations. (b) Wavelengths used observations.

Figure 3.7: ZCA whitening of synthetic scan with two pixels: one Teflon pixel and one target pixel. And fitted baseline of target pixel using
pixels (3.7a) and wavelengths (3.7b) as observations.

3.4. The Influence of the Number of Pixels in the Scene

It is suspected that the number of pixels in the scene, i.e., the number of pixels in the input image, influences
the signal-to-noise ratio. Therefore, the signal-to-noise ratio is calculated, using the steps described in Sec-
tion 3.3, for different amounts of pixels in the scan. Synthetic scans of sizes 9, 25, 50, 75, 100, 125, 150, 175,
200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 and 1000 are created and the signal-to-noise
ratio of the target pixel is calculated. The results can be found in Figure 3.8.

310 - -310 -

. -320 -
-320 - ° .
o . . .
. . T 330 -, °
. 330 - 4 © R - S . ¢
=4 . . S .
& & 340 - O .
®e .
-340 -
-350 -
o
-350 - . . °
-360 - e
. T °
.
-360 -
° E -370 - 3
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of whitened pixels Number of whitened pixels

(a) Pixels used as observations. (b) Wavelengths used observations.

Figure 3.8: Signal-to-noise ratios for ZCA and whitening against the number of pixels in the synthetic scan, with pixels and wavelengths
used as observations.

24 3. Methodology

It is difficult to see any trends in this data. Since noise is added to the spectral data inside each pixel,
it is possible that this added noise creates variability of the results beyond the magnitude of the trend one
wishes to observe. Therefore, Monte Carlo simulations are used to reveal the patterns which otherwise remain
obscured.

3.4.1. Monte Carlo Simulations

Monte Carlo methods are found on the connection between volume and probability. They build upon the
mathematical concept of measure. This mathematical framework associates an event with a specific set of
potential outcomes and defines the event’s probability as the ratio between the volume or measure of the
event and that of all potential outcomes. Monte Carlo simulations reverse this identity, determining the set’s
volume by interpreting it as a probability. This approach involves randomly sampling from all potential out-
comes and calculating the fraction of these random draws that fall within a specific set. This fraction serves as
an estimate of the set’s volume. As the number of random draws increases, the law of large numbers guaran-
tees that this estimate will converge towards the true volume of the set. Additionally, the central limit theorem
provides valuable insights into the likely magnitude of error in the estimate after a finite number of draws M
[8].

In our case, Monte Carlo simulations are used to estimate the expected signal-to-noise ratio. As the data
is subject to noise, trends are difficult to observe. Using M Monte Carlo simulations and taking the average
signal-to-noise ratio, gives an estimate of the expected value. The law of large numbers guarantees that this
estimate will converge towards the true expected value of the signal-to-noise ratio as M increases. M = 1000
is deemed to be sufficiently large.

As described above, 23 synthetic scans of various sizes are created, the signal-to-noise ratio is calculated
and saved in a matrix. This process is repeated 1000 times, thus creating a matrix of size 23 x 1000. Then,
for all 23 rows, the average and the standard deviation are calculated. This results in two arrays of length 23,
where the 23 entries correspond to the number of whitened pixels in the scan, namely: 9, 25, 50, 75, 100, 125,
150, 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900 and 1000. The first array contains
the average signal-to-noise ratio of 1000 Monte Carlo simulations as its entries. The second array contains
the standard deviation of these 1000 Monte Carlo simulations as its entries.

3.5. Multi-area whitening

When an object to be scanned contains more than one background material, the resulting spectra after
whitening of all materials can be influenced by the intermixing of the various input spectra before whitening.
To prevent this intermixing, a different method can be applied: multi-area whitening. In multi-area whiten-
ing, the complete scene is divided into separate categories of the individual substrates. These categories are
individually whitened. After whitening, all whitened pixels are combined to create the whitened image. By
doing this, the influence of the other materials on the spectra that one could get if all pixels are whitened at
the same time, is avoided.

In this research, the choice was made to work with two different materials. The first material is Teflon, for
which a synthetic spectrum was created earlier. For the second material, a new synthetic spectrum must be
created. It was chosen to recreate the spectrum of leather.

3.5.1. Creating the Leather Spectrum

To create a leather spectrum, a real recorded spectrum of a leather pixel was selected for recreation, as seen
in Figure 3.9a. It was recreated by eye, and a logistic curve was deemed to be of accurate shape. Two curves
were used, as the intensity of the spectrum increases and then decreases. The increasing part is roughly from
x =0 up to x =450, and the decreasing part is roughly from x = 450 up to and including x = 550.

3.5. Multi-area whitening 25

4000 4000 -
3900 -
39004
3800 -
38004
Z 3700 -
27004
3600 -
3600
3500 -
35004
3400 -
000 B 30030 A4S 500 530 0 B0 N0 B0 40 450 K00 550
Wavelength [nm]
(a) An example of a real spectrum (b) Synthetic spectrum
Figure 3.9: Real and synthetic spectrum of a leather pixel.
The logistic curve follows the formula
L
T = v

where

¢ Xp is the x value of the midpoint of the function, i.e., the point where the second derivative equals zero
f"(x0) =0,
* Lis the supremum of the function,

* kis the logistic growth rate, i.e., how steep the logistic curve is.

For the first function xo = 350 was chosen, and for the second function xy = 550 was chosen to be the midpoint
of the function. The leather spectrum starts around an intensity of 3400, so that number is added to the first
function. It then increases to around 4000, so L = 600 is used. The second (decreasing) function starts at 4000
and then decreases back to 3400, so 4000 is added and L = 600 is used, but the logistic curve is now multiplied
by —1. And lastly, k = % is selected for the steepness of the curve. The following two functions follow from
this:

Let x be the wavelength,
; _ 600
1. if x <450, then f(x) = 3400+ e 70350
2. if x = 450, then f(x) = 4000 — 600

Here, f(x) is the intensity at wavelength x. The synthetic spectrum as seen in Figure 3.9b is created.
However, as seen in Figure 3.1, the Teflon spectrum reaches an intensity up to 50.000. Therefore, it has

been decided to increase the amplitude of the leather spectrum, such that it has a similar intensity. This may

not be realistic, but in this way, better research on the influence of other materials in a scan on the whitening

transformation can be done. Thus, the following formulas are used:

Let x be the wavelength,

; - 46600
1. if x <450, then f(x) = 3400+ Tr e 10.(x=350))

. _ _ 46600
2. if x = 450, then f(x) = 50000 Tr e 710 (x—550))

This gives a spectrum with the same shape as in Figure 3.9b, but now ranging in intensity from 3400 to 50.000.

26 3. Methodology

3.5.2. The Influence of Shifting the Spectrum on the Scenario

In order to test the effect of multi-area whitening versus global whitening, it is desirable to have as much
influence on the spectrum of the target pixel, caused by the leather pixel, as possible. Therefore, the leather
spectrum is shifted to the left and the right and to determine how the target spectrum was affected.

First, the scenario used to test this influence must be discussed. A 6 x 7 simulated scan was created, where
the first three rows contain Teflon pixels, the last three rows contain leather pixels. The pixel in the middle of
the Teflon pixels is a target pixel, see Figure 3.10.

le7

- 14

il 122

0.8

0.6

0.4

Figure 3.10: Heatmap of the multi-area whitening scenario. Rows 0, 1 and 2 contain Teflon pixels. Rows 3, 4 and 5 contain leather pixels.
Row 1 column 3 contains the target pixel on a Teflon background.

Then, the leather spectrum was shifted to the left and the right, to test when the biggest influence on the
target spectrum was obtained. This process uses the following formulas:

Let x be the wavelength,
i = 46600
1 ifx<n, then f(x) = 3400+ 1+(e110-(x—(n-100)))’
2. if x = n, then f(x) = 50000 — 46600

1+(e~"10-(x—(n+100))) ~

For n, the numbers 407.95, 423.95, 439.95, 455.94, 471.94, 487.93, 503.93 and 519.93 were used. These num-
bers correspond to x[325], x[350], x[375], x[400], x[425], x[450], x[475] and x[500] respectively. Note that 450
gives the original spectrum, this is roughly x[391] = 450.18, thus n = 400 lies closest to the original leather
spectrum. The unwhitened spectra can be found in Appendix B in Figures B.1, B.3, B.5, B.7, B.9, B.11, B.13
and B.15, respectively. The results after ZCA whitening the entire scan at once, i.e., global ZCA whitening, and
whitening the two categories separate, i.e., multi-area ZCA whitening, can be found in Appendix B in Figures
B.2, B.4,B.6,B.8, B.10, B.12, B.14 and B.16, respectively.

In these figures, it can be seen that the shape of the spectrum of the target pixel is highly affected by the
presence of leather in the scene. Although the shape of the spectra around 300 nm are quite similar, after
the 300 nm, the spectrum of a target pixel where global whitening was used, deviates from the spectrum of a
target pixel where multi-area whitening was used. Because of this change in shape, the baseline fit does not
work properly anymore, see Figure 3.11

3.5. Multi-area whitening 27

" o %MW
| il

-02 i
z 'll‘ Url
(U]
j=
204
£
-0.6
-0.8
—— Target spectrum after global ZCA whitening
—— Target spectrum after multi-area ZCA whitening
-1.0

Fitted baseline to global ZCA whitened
target spectrum

200 250 300 350 400 450 500 550
Wavelength (nm)

Figure 3.11: Spectra of the target pixel after using global ZCA whitening and multi-area ZCA whitening, and the baseline that is fitted to
the target spectrum after global ZCA whitening, pixels used as observations.

Therefore, the signal-to-noise ratio cannot be properly calculated using the steps described in Section
3.3. But as Stage Gate 11 B.V. mostly uses the shape of the spectrum to determine the substance, it will be
interesting to investigate the shape instead of the signal-to-noise ratio. Thus, the similarity between the target
spectrum using global whitening and the target spectrum using multi-area whitening must be determined.
To do this, the spectral angle or cosine similarity between the spectra will be used.

3.5.3. Spectral Angle and Cosine Similarity

In this section, the spectral angle and cosine similarity will be discussed, these are both commonly used for
comparing hyperspectral images. The spectral angle mapper (SAM) is a classification algorithm that cal-
culates the spectral angle 8 between a pixel P in the image and a reference spectrum Q. SAM is relatively
robust against variation in the total illumination intensity, as it exclusively compares the vectors direction on
a band-wise basis, such that the length of the vector does not affect the final spectral angle [26].

Y pigi
1 1
(£329 p7)2 (X745 a7)?

The cosine of the angle 8 is called the cosine similarity.

6 = arccos

Y pigi
1 1°
(X358 p?)? (234 4%)?

As the spectral angle 0 ranges from 0 to 180°, the cosine similarity ranges from 1 to -1, see Figure 3.12.

Sc(P,Q) =cos(0) =

a a 7 N
X X
0 C)
0 y y ‘/gw
X

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180

- Cos(B) close to 1 - Cos(0) close to @ - Cos(8) close to -1

| - Similar vectors $- Orthogonal vectors | - Opposite vectors

A

Figure 3.12: Different spectral angles between two vectors and their corresponding cosine similarities, figure taken from [12].

28 3. Methodology

Figure 3.12 contains three statements about vectors, that connect the cosine similarity of two spectra P
and Q. Note that -1 < S¢c(PQ) <1.

1. The cosine similarity equals 1 if and only if the spectra are exactly the same, i.e., P = Q:
548 2 548 2
200 P _Xpy
1 17548 2
(EE P02 (2 P ZimPi

Sc(BP) =

2. The cosine similarity equals -1 if and only if the spectra are exactly each other opposites, i.e., P = —Q:

548 2 548 2
Y00 —D; P

Sc(B-P)= 1 1T~ "\548 2
(E2 P (£ ep?)t 2P

=-1

3. The cosine similarity will equal 0 if and only if the spectra are orthogonal, i.e., Y323 p;q; = 0, so clearly:

Y8 pigi
1 1
(X348 p?)? (232 4%)?

Sc(BQ)= =0.

Taking the arccos of the cosine similarity then gives a value 6 € [0, 1) when using radians, where a smaller
angle means a higher similarity. As the cosine similarity needs to be calculated in order to calculate the spec-
tral angle, the cosine similarity is selected for comparing spectra. They are both perfectly understandable,
but this saves us the computation of an arccos.

Now, the cosine similarity can be calculated for different shifts of the spectrum, to determine for which
shift the target spectrum using global whitening and the target spectrum using multi-area whitening are the
least similar. The cosine similarity between the target spectrum after global ZCA whitening and the target
spectrum after multi-area ZCA whitening is calculated, thus indicating for which shift the target spectrum
changes the most. The results can be found in Table 3.1, here pixels were used as observations.

i 325 350 375 400 425 450 475 500
n=xl[i] 407.95 42395 43995 45594 47194 48793 503.93 519.93
Cosine Similarity, 0.9954 0.9722 0.8996 0.8638 0.8848 0.9196 0.9367 0.9594
pixels as observations
Cosine Similarity, 0.9961 0.9696 0.9073 0.8857 0.9430 0.9672 0.9828 0.9913
wavelengths as observations

Table 3.1: Cosine similarity between the target spectrum after global ZCA whitening and the target spectrum after multi-area ZCA whiten-
ing, for different shifts in wavelength n of the leather spectrum in the scenario described in Section 3.5.2, pixels and wavelengths used
as observations.

It can be seen that a shift of i = 400 gives the lowest cosine similarity, for both pixels and wavelengths used
as observations. Furthermore, a shift of i = 400, i.e., n = 455.94 is the closest to the actual leather spectrum,
where n =450 = x[391]. Therefore, a shift of i = 400 is selected to be used in the Monte Carlo simulations.

3.5.4. Monte Carlo Simulations
Again, Monte Carlo simulations will be used, this time to estimate the expected cosine similarity between the
spectrum of the target after global whitening and the spectrum of the target after multi-area whitening.

For ZCA whitening, 18 different synthetic scans are created, each consisting of 200 pixels in total. The
difference between the scans is the number of leather pixels, i.e., the ratio between the amount of Teflon
pixels and leather pixels changes. The amount of leather pixels that are used in each scan are: 2, 3, 4, 5, 6, 7,
8,9, 10, 15, 20, 25, 50, 75, 100, 125, 150 and 175. Thus, the ratio between the amount of leather pixels and the
total amount of pixels can be found in Table 3.2.

3.5. Multi-area whitening

29

Leather pixels | Leather to total pixels Leather to Teflon pixels
2 2/200=0.010 2/198 = 0.0101
3 3/200=0.015 3/197 = 0.0152
4 4/200 = 0.020 4/196 = 0.0204
5 5/200 = 0.025 5/195 = 0.0256
6 6/200 = 0.030 6/194 =~ 0.0309
7 7/200 = 0.035 7/193 = 0.0363
8 8/200 = 0.040 8/192 =~ 0.0417
9 9/200 = 0.045 9/191 = 0.0471
10 10/200 = 0.050 10/190 =~ 0.0526
15 15/200 = 0.075 15/185 = 0.0811
20 20/200 = 0.100 20/180 =~ 0.1111
25 25/200 = 0.125 25/175 =~ 0.1429
50 50/200 = 0.250 50/150 = 0.3333
75 75/200 = 0.375 75/125 = 0.6000

100 100/200 = 0.500 100/100 = 1.0000
125 125/200 = 0.625 125/75 ~ 1.6667
150 150/200 = 0.750 150/50 = 3.0000
175 175/200 = 0.875 175/25 = 7.0000

Table 3.2: Number of leather pixels in a synthetic scan of 200 total pixels and the corresponding ratios to the total number of pixels in the
scan and to the number of Teflon pixels in the scan.

Each scan gets whitened in its entirety using ZCA whitening, this is referred to as global ZCA whitening.
Then, multi-area whitening is performed on the two parts of the scan. First, the pixels containing a Teflon
spectrum get ZCA whitened, including the target pixel. Then, the pixels containing a leather spectrum get
ZCA whitened. After this, the two resulting whitened matrices are combined to create the full whitened image.
Now, two cosine similarities are calculated: the spectrum of the target pixel after global ZCA whitening and
the spectrum of the target pixel after multi-area ZCA whitening are both compared to the negative Gaussian
probability density function, as in Figure 3.2 or — f(x) from Equation 3.1. As mentioned before, SAM is "rel-
atively robust against variation in the total illumination intensity" [26], however, the intensity of a whitened
spectrum usually lies between -3 and 3, and the intensity of the Gaussian probability density function almost
reaches -2500, as it is not whitened. The cosine similarity is not able to handle this factor of 1000 and will give
values around 0. Therefore, the Gaussian probability density function is multiplied by 1/1000. This gives the
following probability density function:

(F) 2 150 -yt

1(xzp
e 2\o2) =—p

T 20m 8-2)

f)=—=

1000v270?
resulting in the same figure as Figure 3.2, but with the intensities on the y-axis divided by 1000. This is the
spectrum used to calculate the cosine similarities of global ZCA whitening and multi-area ZCA whitening.
1000 Monte Carlo simulations are done to estimate the expected cosine similarity.

Results and Discussion

In this chapter, the results to the experiments described in Chapter 3 will be given and discussed. This in-
cludes average signal-to-noise ratio of a ZCA whitened target spectrum after 1000 Monte Carlo simulations,
and the results of the multi-area whitening. The average cosine similarity between the target spectrum after
global ZCA whitening and the Gauss from Equation 3.2, and the average cosine similarity between the target
spectrum after multi-area ZCA whitening and the Gauss from Equation 3.2. But first, the spectra after ZCA
whitening if shot noise was not added, are discussed.

4.1. Without Shot Noise
In order to clearly look at the effects of ZCA whitening, the step of adding noise, step 3 in Section 3.1, is left
out. The process is then resumed at step 4. Not adding noise allows one to inspect the effects of whitening

with ease.

First, a scan of only two pixels was created: one Teflon pixel and one target pixel. This results in a synthetic
scan of size 2 x 548. This scan is whitened using ZCA whitening, both pixels and wavelengths were used as the
observations. The result can be found in Figure 4.1.

z 2 —
£ 0.00 g
2 £-1-
-0.05 __/
-2
-0.10 - 3.
—— Teflon spectrum —— Teflon spectrum
—— Target spectrum —— Target spectrum
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Two spectra of a 1 x 2 synthetic scan after ZCA whitening, the target (b) Two spectra of a 1 x 2 synthetic scan after ZCA whitening, the target
spectrum and the Teflon spectrum, pixels used as observations. spectrum and the Teflon spectrum, wavelengths used as observations.

Figure 4.1: Two spectra of a 1 x 2 synthetic scan without shot noise after ZCA whitening, the target spectrum and the Teflon spectrum,
pixels and wavelengths used as observations.

In Figure 4.1a, the target spectrum clearly resembles the Gaussian from Figure 3.2. But most notable is that
the whitened Teflon spectrum is the exact opposite of the target spectrum. This is due to the requirement that
the whitened image should be row-wise centered. When using pixels as observations, this means that given
any wavelength 7, the sum of the intensities at wavelength i of all pixels in the scan should equal zero, i.e., for
all 7, y; Z;.”: 1 Xi,j = 0, where m is the number pixels in the scan. Since there are only two pixels in the scan,

31

32 4. Results and Discussion

they should indeed be each other’s opposite. The spectrum of a small amount of substance ‘leaking’ into the
spectrum of the substrate is called the ‘bleeding effect. However, when using wavelengths as observations,
this means that given any pixel i, the sum of the intensities at pixel i of all wavelengths in the scan should
equal zero, i.e., for all i, y; ZT: 1 Xi,j =0, where m is the number wavelengths (spectral bands) in the scan.
Thus the spectrum itself has an integral equal to 0, this can be seen in Figure 4.1b. Because of this, the
spectrum outside of the Gaussian (the vertical lines in Figures 4.1a and 4.1b is not almost equal to 0, like in
Figure 4.1a. Instead, an underlying shape can be made out, that seems to resemble the shape of the fitted
Teflon polynomial from Figure 3.3. However, this claim is not proven, as it is outside of the scope of this
research. But it is interesting to see what happens when all spectra are added together. When using pixels
as observations, this equals zero at every wavelength, but when using wavelengths as observations, a much
clearer resemblance to the Teflon polynomial from Figure 3.3 can be made out, see Figure 4.2.

o

Intensity

|
—

-3 - —— Teflon spectrum
—— Target spectrum
Sum of all spectra

200 250 300 350 400 450 500 550
Wavelength (nm)

Figure 4.2: Two spectra of a 1 x 2 synthetic scan after ZCA whitening, the target spectrum and the Teflon spectrum and the sum of the
two spectra, wavelengths used as observations.

In fact, if the Teflon spectrum is centered around zero, such that the integral of the spectrum equals zero,
and it is multiplied by the maximum of the sum of all spectra divided by the maximum of the Teflon spectrum
itself, i.e., the maximum of the Teflon spectrum is lined up with the maximum of the sum of all spectra, then
the two are almost completely similar, with a cosine similarity of 0,99995. But a slight dip around 300 nm can
be made out, so this procedure is also done on the target spectrum before whitening from Figure 3.3, result-
ing in a cosine similarity from 0,99982. As this is lower, but a dip can be seen around 300 nm, the suspicion
follows that the sum of all spectra equals the average of the Teflon spectrum and the target spectrum before
whitening, normalised as above. This results in a cosine similarity of 0,99999. Thus the sum of all spectra
equals the average spectrum of all pixels in the scan before whitening, normalised. This explains the shape
of the spectra of the whitened pixels.

Now, a scan of four pixels is created: three Teflon pixels and one target pixel. This results in a synthetic
scan of size 4 x 548. This scan is whitened using ZCA whitening, both pixels and wavelengths were used as the
observations. The result can be found in Figure 4.3.

4.1. Without Shot Noise 33

1 -
0.10 -
0.05 -
o-
0.00 -
-0.05 - -t
z z
k7 i
5 -0.10 - 8
5 £-2-
-0.15 -
-0.20 - =3
-0.25 -
—— Teflon spectrum - —— Teflon spectrum
—— Target spectrum - —— Target spectrum
-0.30 -, ; : . . [— | | | | | ! . =
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Two spectra of a synthetic with 4 pixels in total after ZCA whitening, the (b) Two spectra of a synthetic with 4 pixels in total after ZCA whitening,
target spectrum and one of the three Teflon spectra, pixels used as obser- the target spectrum and one of the three Teflon spectra, wavelengths used
vations. as observations.

Figure 4.3: Two spectra of a synthetic with 4 pixels in total without shot noise after ZCA whitening, the target spectrum and one of the
three Teflon spectra, pixels and wavelengths used as observations.

In Figure 4.3a, the target spectrum again clearly resembles the Gaussian from Figure 3.2, but with a higher
intensity than in Figure 4.1a. But most notable is that the whitened Teflon spectrum is not the exact opposite
of the target spectrum anymore. Although keeping a similar shape, the amplitude of the Gaussian is now
much smaller, relative to the amplitude of the target spectrum. Since the sum of the intensities of all pixels
at a given wavelength in the scan should equal zero, the burden to ‘counteract’ the target spectrum is now
shared by the three Teflon pixels. The bleeding effect is smaller when more Teflon pixels are added to the
scene. Note that since the input for all three Teflon pixels was exactly the same, the outputted spectra are also
completely equal. And if these three spectra are added together, they indeed equal the opposite of the target
spectrum, and everything adds op to zero. When using wavelengths as observations, similar consequences
can be seen: the amplitude of the Gaussian in the target spectrum increases, whereas the amplitude of the
Teflon spectrum decreases. Adding all spectra again gives a spectrum that very closely resembles the Teflon
spectrum when normalised.

Lastly, a much larger scan is investigated, to see what happens when a scan is larger than 548 pixels. A
scan of size 841 x 548 is used (29 x 29 x 548). The results can be found in Figure 4.4.

1 -

|
-

2 2
< < -0.02 -
] L 5. B
g3 0.0050 - g2
0.0025 - —HE N
4 - 5
0.0000 - ! ! . . .
280 290 300 310 320 280 290 300 310 320
-5 -
—— Teflon spectrum -4 - —— Teflon spectrum |
—— Target spectrum —— Target spectrum
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Two spectra of a synthetic with 841 pixels in total after ZCA whitening, (b) Two spectra of a synthetic with 841 pixels in total after ZCA whitening,
the target spectrum and one of the 840 Teflon spectra, pixels used as obser- the target spectrum and one of the 840 Teflon spectra, wavelengths used as
vations. observations.

Figure 4.4: Two spectra of a synthetic with 841 pixels in total without shot noise after ZCA whitening, the target spectrum and one of the
840 Teflon spectra, pixels and wavelengths used as observations.

In Figure 4.4a, the target spectrum again clearly resembles a Gaussian, but with a higher intensity. Since
there are now 840 Teflon pixels in the synthetic scan and one target pixel, the bleeding effect can barely be
seen. Therefore, a blow-up is given of the whitened Teflon spectrum, such that the effect can be observed.

34 4. Results and Discussion

When using wavelengths as observations, the amplitude of the Gaussian of the whitened target spectrum
has not increased much further than that of Figure 4.3b. Again, a blow-up is given of the whitened Teflon
spectrum, such that the bleeding effect can be observed. Because of the high amount of pixels, the underlying
shape of the Teflon spectrum is difficult to see, therefore, a figure without the target spectrum is given in
Figure 4.5. This figure also contains the sum of all 841 spectra, divided by 841.

0.04 - / \

0.02 - / \
/, \\.,

o
o
S

Intensity

-0.02 -

-0.04 -

= ZCA whitened Teflon spectrum
Sum of all spectra in the scan

-0.06 - - X : ;
200 250 300 350 400 450 500 550
Wavelength (nm)

Figure 4.5: Two spectra of a synthetic scan with 841 pixels after ZCA whitening, the Teflon spectrum and the sum of all 841 spectra divided
by 841, wavelengths used as observations.

4.2. Signal-to-Noise Ratio

Now, the step of adding noise, step 3 in Section 3.1, is not left out. If this noise would overpower the signal
at 300 nm, the target substance cannot be identified. Thus, it is important that a signal can be made out
when noise is present in the data. This relationship between the desired signal and the unwanted noise is
expressed in the signal-to-noise ratio, which is calculated as described in Section 3.3. A higher signal-to-
noise ratio means a higher ability to distinguish important patterns within the whitened spectra. Since there
isreason to believe that there exists a connection between the amount of whitened pixels in the scene and the
signal-to-noise ratio, the signal-to-noise ratio is calculated for different sizes of synthetic scans. It is expected
that more pixels in the synthetic scan means a better signal-to-noise ratio, as the normally distributed noise
cancels out. The average result of 1000 Monte Carlo simulations can be found in Figure 4.6.

0 e Signal-to-noise ratio of target pixel ‘ . e Signal-to-noise ratio of target pixel
~300 - ® Signal-to-noise ratio +- standard deviation | 300 - e Signal-to-noise ratio +- standard deviation
.
.
-310 - o .« 7 -310 - o° .
L o ® e . .
. oo,l..... 'Y . .
. _
320 - 320)
L O . ® .
o = .« ° i . o . o A\ °
Z “.e . Z-3%0 - LI - L
-330 - — Ceo 00" — . ®%®ee0e o ° .
.
340 - e v "
.
-340 - .. o e cee o @ . !
®Cee, e0es * . -350 - e%e 00 o ° o
.
-350 - . ¥
. —-360 °
. .
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of whitened pixels Number of whitened pixels
(a) Signal-to-noise ratio of ZCA whitened target pixel, pixels used as obser- (b) Signal-to-noise ratio of ZCA whitened target pixel, wavelengths used as
vations. observations.

Figure 4.6: Signal-to-noise ratios for ZCA whitening against the number of pixels in the synthetic scan, with pixels and wavelengths used
as observations, 1000 Monte Carlo simulations.

4.2. Signal-to-Noise Ratio 35

First of all, note that the signal-to-noise ratio’s in both Figure 4.6a and Figure 4.6a are negative. This is
because the signal that was calculated was the integral of the whitened target spectrum with the baseline
subtracted, roughly between 270 nm and 300 nm. At these points, the spectrum lies below zero, thus giving a
negative result. Normally, the signal-to-noise ratio is a positive number, where a higher signal-to-noise ratio
thus means there is more signal than noise present. In our case, since the signal is negative, but the noise
(o0 rMms) is positive, the signal-to-noise ratio is negative and thus a lower ratio indicates more signal to noise.

It is expected that the 1000 Monte Carlo simulations result in a set of values which are expected to be
distributed as a normal distribution, but this needs to be proven. Therefore, a Kolmogorov-Smirnov test is
done [6]. First, the data is normalised. The average v; of the 1000 signal-to-noise ratios is calculated: v; =
o5 z}g‘{o SNR;,j, where SNR; ; is the signal-to-noise ratio of a scan of size i simulation j, i € {9,25,50,75,100,
125,150, 175,200,225, 250,275,300, 350,400, 450, 500, 550, 600, 700, 800,900, 1000}. Then, the standard devia-
tion o; of the 1000 signal-to-noise ratios of a scan of size i is calculated. Finally, the data is normalized
according to the formula M If the data from scan size i was first distributed as a normal distribution
with mean v; and standard deviation & i, then it is now distributed as a standard normal distribution, i.e.,
with mean 0 and standard deviation 1. Thus, the null hypothesis is that the data has a standard normal dis-
tribution. The p-values are calculated using the code in Appendix C.7, for pixels and wavelengths used as
observations. The null hypothesis is rejected if the p-value is smaller than 0.05, which it not for any size i,
nor pixels and wavelengths used as observations. Thus the hypothesis that the data is distributed as a normal

distribution with mean v; and standard deviation o; is not rejected.

Secondly, note that the signal-to-noise ratio’s when pixels are used as observations and when wavelengths
are used as observations, look very similar. There are slight differences in how high the signal-to-noise ratio is,
but the overall shape is the same. These differences are likely due to the subtraction of the baseline. The sub-
traction of the baseline ensures that the whitened target spectrum when using wavelengths as observations,
looks highly similar to that of the whitened target spectrum when using pixels as observations. For example,
look at the synthetic scan consisting of only two pixels again, this time with noise added. The target spectrum
when wavelengths are used as observations contained an underlying shape, which was why the baseline was
calculated and subtracted. This results in the two spectra in Figure 4.7.

—— Target spectrum minus baseline, wavelengths used as observations

0.050 - —— Target spectrum minus baseline, pixels used as observations J‘ 1 -

0.025 -

0.000 -

-0.025 -

Intensity
L

—0.050 -

Intensity

-0.075 -

|
N

—0.100 -

-0.125 -

200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550

Wavelength (nm) Wavelength (nm)
(a) Target spectrum of a 1 x 2 synthetic scan after ZCA whitening with its (b) Target spectrum of a 1 x 2 synthetic scan after ZCA whitening with its
baseline subtracted, pixels used as observations. baseline subtracted, wavelengths used as observations.

Figure 4.7: Two target spectra of a 1 x 2 synthetic scan after ZCA whitening with their respective baselines subtracted, pixels and wave-
lengths used as observations.

In Figure 4.7, it can be seen that the two whitened spectra look almost exactly equal, mostly differing in
intensity. In fact, they have a cosine similarity of 0,99800. The slight difference is likely because the fitted
baseline is not entirely perfect. This is also suspected to be the cause of the slight differences in the signal-
to-noise ratio’s of Figure 4.6. Using wavelengths as observations also gives a bigger amplitude, i.e., lower
intensity, thus resulting in a slightly lower signal-to-noise ratio.

The last aspect of the signal-to-noise ratio’s that needs to be mentioned, is the shape of the graph. At first,
a decrease is observed until the scan contains 200 to 300 pixels. Then the signal-to-noise ratio increases until

36 4. Results and Discussion

the scan contains 550 pixels. After 550 pixels, the signal-to-noise ratio seems to decrease linearly. The exact
behaviour of the signal-to-noise ratio below 550 pixels is difficult to explain analytically, as this involves highly
complicated matrix calculations, which is out of the scope of this thesis. What stands out besides the shape,
is the point from where the signal-to-noise ratio’s start to decrease seemingly linear, namely 550 pixels. It is
mentioned in Section 3.2.1 that the empirical covariance matrix will always be of size 548 x 548 and can never
be positive definite when there are less than 548 pixels in the scan, when pixels are used as observations.
And when wavelengths are used as observations, the empirical covariance matrix will always be of size n x n,
where 7 is the number of pixels in the scan, and it can never be positive definite when there are more than
548 pixels in the scan. Therefore, it is hypothesised that the shape of the graph has to do with this number
548, the number of spectral bands or wavelengths that were used.

4.2.1. Cutting of the Spectrum

In the hope of proving the hypothesis that the shape of Figures 4.6a and 4.6b due to the number of wave-
lengths used, 548, the spectra are now cut off at 400 spectral bands. Meaning that the spectra used to create
synthetic scans now range from 200 nm to roughly 455 nm. If the hypothesis is correct, then using 400 spec-
tral bands instead of 548 should change the shape of Figures 4.6a and 4.6b such that the signal-to-noise ratio’s
now increase when getting closer to 400 whitened pixels per scan, and decrease when more than 400 pixels
are used per scan. The result can be found in Figure 4.8 and the suspicion is confirmed.

0 e Signal-to-noise ratio of target pixel -320 - . e Signal-to-noise ratio of target pixel
320 - O ® SNR +- standard deviation O ® SNR +- standard deviation
- . 0 - L . . -
. . ° - —-330 - . L) .
-330 - (R4 . sle .
o0 . &4 o ®oo 1
-340 .
340 - l...o. . o . o | P . .
. . . . o
. . 3 't o =350 - . "
Z -350 - .o . & oo
. o & o .
oo o . _ago I e . L
-360 - o - °®® . . . '..u. O .
. . L . o o
o
B * -370 - o ® .
-370 -
. o0 . ° o0
oo ° ° .
380 -) & -380 - .o
‘oo °° ° 0o’ ° L
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of whitened pixels Number of whitened pixels
(a) Signal-to-noise ratios for ZCA whitening against the number of pixels (b) Signal-to-noise ratios for ZCA whitening against the number of pixels
in the synthetic scan, if a spectrum contained only 400 wavelengths, pixels in the synthetic scan, if a spectrum contained only 400 wavelengths, wave-
used as observations. lengths used as observations.

Figure 4.8: Signal-to-noise ratios for ZCA whitening against the number of pixels in the synthetic scan, if a spectrum contained only 400
wavelengths, with pixels and wavelengths used as observations, 1000 Monte Carlo simulations.

4.3. Multi-Area Whitening

When scanning an object that consists of multiple background materials, the spectra obtained after the
whitening process will be affected by the intermixing of different input spectra prior to whitening, as can be
seen in the Figure B.8. To avoid this intermixing, multi-area whitening was employed. In multi-area whiten-
ing, the entire scene is partitioned into distinct categories corresponding to the individual substrates. Each
of these categories undergoes whitening independently. Next, all the whitened pixels are merged to form the
final whitened image. This approach circumvents any potential impact of other materials on the spectra that
might occur if all pixels were whitened simultaneously, which is important, as Stage Gate 11 B.V. uses the
shape of the spectrum to identify substances. The resulting target spectra from both global ZCA whitening
and multi-area ZCA whitening are compared to the negative Gaussian probability density function similar to
the one in Figure 3.2, but multiplied by a factor 1/1000, as in Equation 3.2. It is expected that the cosine similar-
ity of the target spectrum from the multi-area whitened scan lies much closer to 1 than the cosine similarity
of the target spectrum from the globally whitened scan, as the shape of the target spectrum is not affected
by the presence of another substrate. The average result of 1000 Monte Carlo simulations can be found in
Figures 4.9 and 4.10.

4.3. Multi-Area Whitening 37

1.00 -

0.82 - [0.98 -
.
s
2080 2
K ¢ g 096 -
; (O "TEE S S S T S S
0 0.78 o
£ £
3 S 2 0.94
o O
0.76
0.92 -
0.74 -

¢ Global ZCA whitening +- standard deviation 2 ¢ Multi-area ZCA whitening +- standard deviation

; : : ; : . : . 0.90 - : ; : ; . . .

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175

Number of leather pixels of total 200 pixels Number of leather pixels of total 200 pixels

(a) Cosine similarity between the spectrum of the target pixel resulting (b) Cosine similarity between the spectrum of the target pixel resulting
from whitening the entire scan using global ZCA whitening and the Gaus- from multi-area ZCA whitening and the Gaussian probability density func-
sian probability density function from Equation 3.2, 1000 Monte Carlo sim- tion from Equation 3.2, 1000 Monte Carlo simulations, pixels used as ob-
ulations, pixels used as observations. servations.

Figure 4.9: Cosine similarity between the spectrum of the target pixel resulting from whitening the entire scan using global ZCA whitening
and the Gaussian probability density function from Equation 3.2, and cosine similarity between the spectrum of the target pixel resulting
from multi-area ZCA whitening and the Gaussian probability density function from Equation 3.2, 1000 Monte Carlo simulations, pixels
used as observations.

It can be seen in Figure 4.9a, that the cosine similarity between the globally ZCA whitened target pixel
and the Gaussian probability density function from Equation 3.2 decreases as the number of leather pixels in
the scan increases. All spectra need to add up to 0 when pixels are used as observation, so when the num-
ber of leather pixels increases and the number of Teflon pixels decreases, the more the shape of the leather
spectrum ‘bleeds’ into the spectrum of the target pixel, thus decreasing the cosine similarity to the Gaussian
probability density function. But this ‘bleeding’ effect does not happen when all Teflon pixels are grouped
together and whitened separately from the leather pixels, as can be seen in Figure 4.9b. Not only is the cosine
similarity very stable, it is also much higher, when looking at the y-axis, due to the same reasons.

The same observations can be made when using wavelengths as observations, see Figure 4.10. The only
notable differences are a slightly lower cosine similarity, and an increase in cosine similarity with the increas-
ing number of leather pixels in the scan. Both of these differences are not necessarily because using pixels as
observations is simply ‘better’, but more likely because the baseline was not subtracted and the underlying
shape of the target spectrum has thus affected the cosine similarity.

079 - & 0.94 -
0.78 \ 5
1 .
0.92
0.77 - !
z t £
K . s
Z 076 z
@ * % 0.90
v o
< 0.75 < E
@ @
o . o
(s} o E E
0.74 - 0.88 - ME}{ } { E
0.73
s 0.86
0.72 - & Global ZCA whitening +- standard deviation ‘ ¢ Multi-area ZCA whitening +- standard deviation
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Number of leather pixels of total 200 pixels Number of leather pixels of total 200 pixels
(a) Cosine similarity between the spectrum of the target pixel resulting (b) Cosine similarity between the spectrum of the target pixel resulting
from whitening the entire scan using global ZCA whitening and the Gaus- from multi-area ZCA whitening and the Gaussian probability density func-
sian probability density function from Equation 3.2, 1000 Monte Carlo sim- tion from Equation 3.2, 1000 Monte Carlo simulations, wavelengths used
ulations, wavelengths used as observations. as observations.

Figure 4.10: Cosine similarity between the spectrum of the target pixel resulting from whitening the entire scan using global ZCA whiten-
ing and the Gaussian probability density function from Equation 3.2, and cosine similarity between the spectrum of the target pixel
resulting from multi-area ZCA whitening and the Gaussian probability density function from Equation 3.2, 1000 Monte Carlo simula-
tions, wavelengths used as observations.

38 4. Results and Discussion

Lastly, all results are given for two situations: the situation where the pixels are viewed as the observations
and the wavelengths as variables, and the situation where the wavelengths are viewed as the observations
and the pixels as variables. It is notable that, although not having the same shape after whitening, both
methods have quite a similar results. The signal-to-noise ratio looks similar in Figure 4.6. This is because the
baseline, i.e., the underlying shape of the spectrum outside of the Gaussian around 300 nm, was subtracted
from the target spectrum when wavelengths are used as observations. But it must be noted that calculating
this baseline might not be feasible when working with real data, i.e., not the synthetic data that was used in
this thesis. When trying to classify an unknown target substance, it is not known beforehand where the peaks
important to classification will lie in the spectrum. This makes it much harder to calculate and subtract
a baseline. Since using wavelengths as observations also adds an underlying shape to the target spectrum
depending on the substrate, target spectra from which no baseline is subtracted will look different from each
other, depending on which substrate the target substance is placed upon. This makes it even more difficult
to compare the whitened target spectra to a signature. Therefore, using wavelengths as observations makes
less sense than using pixels as observations when using real data.

One final problem arises when using real data. The input image is of size n x m, if n is the number of
spectral bands or wavelengths, then the covariance matrix is of the size n x n, i.e., it is always the same size
548 x 548. But when 7 is the number of pixels, the covariance matrix is of the size n x n and differs by the
amount of pixels that are used. Since synthetic data is used, the number of pixels was not made that much
larger than the number of wavelengths, and thus both methods work in a decent amount of time. But in
reality, the standard scan of a shoe has 128 by 858 = 109824 pixels, meaning that the covariance matrix is of
size 109824 x 109824 and contains about 12 billion entries. This is too large to work with and takes a lot of
time, another reason why using wavelengths as observations is not practical.

Conclusions

From the results in Chapter 4, a few conclusions can be drawn about the ZCA whitening transformation.

First, what a target spectrum looks like before and after whitening. The synthetic data that was created
in this thesis, used Teflon as a substrate. The target spectrum before whitening therefore looks similar to the
spectrum of a piece of Teflon, but with a Gaussian probability density function subtracted from it around 300
nm. After ZCA whitening where pixels are used as observations, the spectrum of the target pixel is again a neg-
ative Gaussian probability density function. As the sum of all spectra should equal 0 at every spectral band
i, this Gaussian probability density function ‘bleeds’ through to the whitened Teflon spectra, which have a
peak around 300 nm, such that they all add up to equal the opposite intensity of the target pixel. A synthetic
scan of size n consisted of n — 1 Teflon pixels and one target pixel. Thus, the bigger the scan, the more Teflon
pixels and therefore a smaller bleeding effect. However, when using wavelengths as observations, not the
sum of all spectra should equal 0 at every spectral band i, but every spectrum itself should integrate to 0.
This means that after ZCA whitening, there is still a negative peak visible around 300 nm, but there is another
shape present in the target spectrum. The underlying shape is caused by the fact that all whitened spectra in
the scan added together and divided by the number of pixels in the scan, equal the average of all unwhitened
spectra from the original scan, but normalised such that they integrate to 0.

Secondly, when noise is added to the pixels in the synthetic scan, what is the relationship between the
number of pixels in the scan and the signal-to-noise ratio. If the number of pixels in the scan is smaller than
the number of spectral bands (548), then the behaviour of the signal-to-noise ratio is difficult to explain and
considered out of the scope of the project. If the number of pixels in the scan is bigger than or equal the num-
ber of spectral bands, then the signal-to-noise ratio decreases as the number of pixels in the scan increases.
This is a positive result, as the signal-to-noise ratio is negative in our case. As the number of pixels in the scan
increases, the normally distributed noise cancels each other out, resulting in a better signal-to-noise ratio.

Then, another substrate was introduced to the scenario, resulting in the question of how a high contrast
scenario influences the spectra. It could be clearly seen that the addition of a different spectrum to the sce-
nario changed the shape of the whitened target spectrum. There has not been worked with the classification
algorithm of Stage Gate 11 B.V,, so the extent to which this negatively influences the classification is unknown,
but potential negative effects can be negated by performing multi-area whitening. It was observed that the
cosine similarity between the whitened target pixel and the negative Gaussian probability density function
was much higher after multi-area ZCA whitening than after global ZCA whitening, meaning the shape of the
spectrum more similar. As Stage Gate 11 B.V. uses the shape of the spectrum for the classification of a sub-
stance, this might result in more correct classifications, but it has to be noted that the amount of pixels used
in the whitening transformation is smaller when using multi-area whitening.

In multi-area whitening, not all pixels in the scan are whitened at once, but different sections are whitened
individually, resulting in smaller data matrices. This could mean a worse signal-to-noise ratio. But as for the
question of cut-off criteria, no conclusion can be drawn for now. As mentioned above, there has not been
worked with the classification algorithm of Stage Gate 11 B.V,, and it is not possible to predict if the effect

39

40 5. Conclusions

of the changing shape of the target spectrum due to global whitening is greater than the effect of the better
signal-to-noise ratio, or to predict if the effect of the stable shape of the target spectrum due to multi-area
whitening is greater than the effect of the worse signal-to-noise ratio, when it comes to classifying a target
pixel.

Finally, on whether to transpose the input image or not, i.e., whether to use pixels as observations or
wavelengths as observation, it is concluded that using wavelengths as observations makes less sense than us-
ing pixels as observations when using real data, due to the difficulty in calculating the baseline when working
with unknown substances, and the size that the covariance matrix can become, which becomes impractical
to work with. Thus the data matrix should be of size n x m, where 7 is the number of wavelengths, n = 548,
and m is the number of pixels, which can vary per scan.

Recommendations

Due to the time constraint, it was not possible to use all whitening methods that were investigated. PCA,
standardized PCA and Cholesky were deemed unsuitable for this project, since the position of the nega-
tive Gausian probability density function is important for classification, but this was not the problem with
CCA and standardized ZCA. These two methods, although very interesting, could not be effectively imple-
mented within the allotted time frame. Further investigating of standardized ZCA and CCA could give in-
teresting results, but CCA requires sets of signatures and for the method to be tested on multiple types of
target substances. From Table 2.1 it can be seen that CCA is actually very similar to standardized ZCA, as

X _nNnT
WCCA = QXWZCA—Sfd'

Although it was concluded that using pixels as observations was easier, especially when working with real
data, when working with wavelengths as observations, one more problem arises. Although the empirical co-
variance matrix is an unbiased estimator, when the wavelengths are used as observations and the number
of pixels is much higher than the number of wavelengths, m > n, the empirical covariance matrix is not a
good estimator and is estimated with a lot of error [16]. A possible solution to this is to "shrink" the empirical
covariance matrix to a more structured estimator T. The estimator T will have less variance, but introduce
a bias. This is called the bias-variance trade-off. The new estimator 2, will be a convex combination of the
two estimators: £ = 8T + (1 —6)2, where 6 € [0,1] is the shrinkage intensity. §* is the optimal shrinkage esti-
mator for which the squared error loss risk function is minimal [22]. If wavelengths are used as observations
and scans much larger than 1000 pixels are used, it is recommended to shrink the covariance matrix. A lot of
research has been done on shrinkage of the covariance matrix by Ledoit and Wolf [16-18].

When considering the study of the multi-area whitening within the current scope, it can be observed that
the relatonship between parameters is not fully explored at this stage. In this study, the total number of pixels
in the scene is kept constant, and thus the number of Teflon pixels and leather pixels vary with each exper-
iment. Consequently, the effect of the number of pixels on the signal-to-noise ratio is not independently
observed. It is thus currently not possible to conclude whether a small area, which is locally whitened, will
show a sufficient signal-to-noise ratio of the target spectrum to allow for a good cosine similarity. It is recom-
mended for completeness to conduct a further thorough investigation of potential interdependencies. The
methods described in Chapter 3 may be used to design such a further experiment.

41

Bibliography

[1] Bolla, M. (2021). Multivariate Statistics: Properties of the Multivariate Normal Distribution. Budapest
University of Technology and Economics, Institute of Mathematics. https://math.bme.hu/ marib/tob
bvalt/.

[2] Bradaschia, E (2013). Components of Electromagnetic Spectrum. https://www.radio2space.com/co
mponents-of-electromagnetic-spectrum/.

[3] Busch, K. and Busch, M. (2018). Chapter 3 - Light Polarization and Signal Processing in Chiropti-
cal Instrumentation. In Polavarapu, P, editor, Chiral Analysis (Second Edition), pages 73-151. Elsevier.
https://doi.org/10.1016/B978-0-444-64027-7.00003-3.

[4] de Groot, R. (2022). Een Gerichte Studie naar Contaminatie bij de Fabricage van Bomschoenen. Unpub-
lished confidential document.

[5] Edmund Optics (2020). Hyperspectral and Multispectral Imaging. https://www.edmundoptics.eu/kn
owledge-center/application-notes/imaging/hyperspectral-and-multispectral-imaging/.

[6] Encyclopedia of Mathematics (2020). Kolmogorov-Smirnov test. http://encyclopediaofmath.org/i
ndex.php?title=KolmogorovE2%80%93Smirnov_test&oldid=22660.

[7] GIS Geography (2023). Multispectral vs Hyperspectral Imagery Explained. https://gisgeography.c
om/multispectral-vs-hyperspectral-imagery-explained/.

[8] Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer, New York, NY. https:
//doi.org/10.1007/978-0-387-21617-1.

[9] Hummel, R. and Dubroca, T. (2006). Differential Reflectance Spectroscopy in Analysis of Surfaces. Ency-
clopedia of Analytical Chemistry. https://doi.org/10.1002/9780470027318.a2504.

[10] Instruments S.A. Inc. JOBIN YVON/SPEX Division (1994). Guide for Spectroscopy. Horiba Scientific, 3880
Park Avenue, Edison, NJ 08820-3097, USA.

[11] Jendoubi, T. and Strimmer, K. (2019). A Whitening Approach to Probabilistic Canonical Correlation
Analysis for Omics Data Integration. BMC Bioinformatics, 20(15). https://doi.org/10.1186/s128
59-018-2572-9.

[12] Karabiber, E (2021). Cosine Similarity. https://www.learndatasci.com/glossary/cosine-simil
arity/.

[13] Kessy, A., Lewin, A., and Strimmer, K. (2018). Optimal Whitening and Decorrelation. The American
Statistician, 72(4):309-314. https://doi.org/10.1080/00031305.2016.1277159.

[14] Lay, S. (2014). Analysis with an Introduction to Proof. Pearson Education, 2014 custom edition.

[15] Leboran, V, Garcia-Diaz, A., Fdez-Vidal, X., and Pardo, X. (2017). Dynamic Whitening Saliency. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(5). https://doi.org/10.1109/TPAMI. 20
16.2567391.

[16] Ledoit, O. and Wolf, M. (2004). "Honey, I Shrunk the Ssample Covariance Matrix". Journal of Portofolio
Management, 30(4):110-119. https://doi.org/10.3905/jpm.2004. 110.

[17] Ledoit, O. and Wolf, M. (2015). Spectrum estimation: A unified framework for covariance matrix estima-
tion and PCA in large dimensions. Journal of Multivariate Analysis, 139:360-384. http://dx.doi.org/1
0.1016/j.jmva.2015.04.006.

43

https://math.bme.hu/~marib/tobbvalt/
https://math.bme.hu/~marib/tobbvalt/
https://www.radio2space.com/components-of-electromagnetic-spectrum/
https://www.radio2space.com/components-of-electromagnetic-spectrum/
https://doi.org/10.1016/B978-0-444-64027-7.00003-3
https://www.edmundoptics.eu/knowledge-center/application-notes/imaging/hyperspectral-and-multispectral-imaging/
https://www.edmundoptics.eu/knowledge-center/application-notes/imaging/hyperspectral-and-multispectral-imaging/
http://encyclopediaofmath.org/index.php?title=Kolmogorov%E2%80%93Smirnov_test&oldid=22660
http://encyclopediaofmath.org/index.php?title=Kolmogorov%E2%80%93Smirnov_test&oldid=22660
https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/
https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/
https://doi.org/10.1007/978-0-387-21617-1
https://doi.org/10.1007/978-0-387-21617-1
https://doi.org/10.1002/9780470027318.a2504
https://doi.org/10.1186/s12859-018-2572-9
https://doi.org/10.1186/s12859-018-2572-9
https://www.learndatasci.com/glossary/cosine-similarity/
https://www.learndatasci.com/glossary/cosine-similarity/
https://doi.org/10.1080/00031305.2016.1277159
https://doi.org/10.1109/TPAMI.2016.2567391
https://doi.org/10.1109/TPAMI.2016.2567391
https://doi.org/10.3905/jpm.2004.110
http://dx.doi.org/10.1016/j.jmva.2015.04.006
http://dx.doi.org/10.1016/j.jmva.2015.04.006

44 Bibliography

[18] Ledoit, O. and Wolf, M. (2019). The power of (non-)linear shrinking: A review and guide to covariance
matrix estimation. Working Paper 323, University of Zurich, Department of Economics. https://doi.or
g/10.5167/uzh-170642.

[19] Nandram, A. (2023). Amper wachtrijen meer op schiphol, maar is de luchthaven klaar voor een prob-
leemloze zomer? https://www.volkskrant.nl/nieuws-achtergrond/amper-wachtrijen-meer-o
p-schiphol-maar-is-de-luchthaven-klaar-voor-een-probleemloze-zomer ~bOafedal/?

[20] Pourahmadi, M. (2011). Covariance Estimation: The GLM and Regularization Perspectives. Statistical
Science, 26(3). https://www. jstor.org/stable/23059137.

[21] Satink, R. (2023). Personal communication.

[22] Schiéfer, J. and Strimmer, K. (2005). A Shrinkage Approach to Large-Scale Covariance Matrix Estimation
and Implications for Functional Genomics. Statistical Applications in Genetics and Molecular Biology, 4(1).
https://doi.org/10.2202/1544-6115.1175.

[23] Schottky, W. (1918). Uber spontane Stromschwankungen in verschiedenen Elektrizititsleitern. Annalen
der Physik, 362(23). https://doi.org/10.1002/andp.19183622304.

[24] Severn, K. (2023). Multivariate Statistics. University of Nottingham. https://rich-d-wilkinson.g
ithub.io/MATH3030/index.html.

[25] Sisson, M. (2014). Richard Reid. https://www.britannica.com/biography/Richard-Reid.

[26] Weyermann, J., Schldpfer, D., Hueni, A., Kneubiihler, M., and Schaepman, M. (2009). Spectral An-
gle Mapper (sam) for anisotropy class indexing in imaging spectrometry data. Imaging Spectrometry,
XIV(74570B). https://doi-org.tudelft.idm.oclc.org/10.1117/12.825991.

[27] Yong, H. and Zhang, L. (2022). An Embedded Feature Whitening Approach to Deep Neural Network
Optimization. European Conference on Computer Vision. https://www.ecva.net/papers/eccv_202
2/papers_ECCV/html/358_ECCV_2022_paper . php.

https://doi.org/10.5167/uzh-170642
https://doi.org/10.5167/uzh-170642
https://www.volkskrant.nl/nieuws-achtergrond/amper-wachtrijen-meer-op-schiphol-maar-is-de-luchthaven-klaar-voor-een-probleemloze-zomer~b0afe9a0/?
https://www.volkskrant.nl/nieuws-achtergrond/amper-wachtrijen-meer-op-schiphol-maar-is-de-luchthaven-klaar-voor-een-probleemloze-zomer~b0afe9a0/?
https://www.jstor.org/stable/23059137
https://doi.org/10.2202/1544-6115.1175
https://doi.org/10.1002/andp.19183622304
https://rich-d-wilkinson.github.io/MATH3030/index.html
https://rich-d-wilkinson.github.io/MATH3030/index.html
https://www.britannica.com/biography/Richard-Reid
https://doi-org.tudelft.idm.oclc.org/10.1117/12.825991
https://www.ecva.net/papers/eccv_2022/papers_ECCV/html/358_ECCV_2022_paper.php
https://www.ecva.net/papers/eccv_2022/papers_ECCV/html/358_ECCV_2022_paper.php

The Empirical Covariance Matrix:
Additional Proofs

In this first appendix, additional proofs will be provided to the ones given in Section 2.3, where some proofs
used the true covariance matrix %, instead of the empirical covariance matrix >, namely Theorem 2.3.2, 2.3.3,
2.3.4. First note that Definition 2.3.1 needs to be updated using the empirical covariance matrix.

Definition A.0.1. Let X € R™*" be a row-wise centered data matrix (i.e., the average of every row equals 0)
with empirical covariance matrix 2. A whitening matrix of X is a matrix W such that W7 W = 271,

If W and £ are invertible, which they are assume to be, this is equivalent to WEW T = I, because

wiw = 37
SWiw = 1

swlh = w!
WEW?T = I

Now, it is proven that Theorem 2.3.2 also holds when using the empirical covariance matrix 5.

Theorem A.0.2. Let X € R be a row-wise centered data matrix with empirical covariance matrixZx. Let W
be a whitening matrix of X. Then, the whitened data matrix Y = WX also has the average of every row equal
to 0, and empirical covariance matrix I.

Proof. For the row average, note that the row average of row i of X equals 0, i.e., Z;.”: 1 Xi,j =0, foralli =
1,...,n. The aim is to prove that Z]m:l (WX)l.j =0foralli=1,...,n. Start by observing what an element of

W X at row i and column j looks like:

™M=

(WX)I',]' = I/Avi,ka,jy

kol
Il
—

I
Mz
M:

i (Wx

j=1

lka] ZZWthk]
k=1j=1

ol

For the covariance, the following equalities are found:

.
1}
—_
I
—

Il
M=
5

=~
Il
—

sy = 4 vyT- L wxvx)”
m-—1 m-—1

1 T T
= —WXX"W'=WwixyWw’' =1L
m-1

45

46 A. The Empirical Covariance Matrix: Additional Proofs

Since the covariance matrix is a real and symmetric matrix, an eigendecomposition was performed, and
T = VDV resulted. Using the data, the eigendecomposition will be performed on £, and thus £ = VDVT,
where V is a orthogonal matrix with the orthonormal eigenvectors of £ as its columns, and D a diagonal
matrix with the corresponding eigenvalues as its diagonal values. The eigenvalues are put in descending
order, such that D; ; = Dj11 141.
Theorem A.0.3. If W = U272 = 1 VD2V with Uy any orthogonal matrix of size n x n, then W is a
whitening matrix.

Proof. Tt is easy to see that the proof of Theorem 2.3.3 still holds when W, Z, V and D are replaced by W, £,
V and D, respectively. 0

Another possibility was to decompose the covariance matrix X into the correlation matrix P and diagonal
covariance matrix S, such that = = §"2PS"2. Now, the empirical covariance matrix 3 is decomposed, such that
Z = §"2p§"2, We interpret the input matrix X € R™™ as a matrix of row vectors with mean zero, such that

= (X1, Xo,..., X)) T with X1, X, ..., X, e R™™ and E[X;] = 0 for i = 1,...,n. We find the following diagonal
emplrlcal covariance matrix S and empmcal correlation matrix P:

T T
&2 0 0 AXI {(1 AXI {(2 XX,

X1 0x;0x; 0x,0X, 0x,0Xp
.2 xx7 Xo X) X XT

SA: aXl and p: (3'X16'X2 6X26X2 6’X26'Xn

.. m-—1

0 0 a%{ X xt X X! X, X!

n 0x,0x, 0x,0xy Gx,0xp

XT
Note that the diagonal elements of P, o should equal 1. Therefore, 6x; =/ 1 Z = (X,)% was used,

where X; j = Im; j — p;. The sum is divided by m — 1 instead of m. If one would divided by m, then P,-,i would
not equal 1. Using this, the same decomposition is indeed found:

xx!r xxt xixr

T T T

§_grpgn_ |12 e Rk
xixt XxI X, XT

Theorem A.0.4. If W = U, P~">8~"2 with U, any orthogonal matrix of size nx n, then W is a whitening matrix.

Proof. Ttis easy to see that the proof of Theorem 2.3.4 still holds when W, %, S and P are replaced by W, £, §
and P, respectively. O

We found that the cross-covariance ® and cross-correlation ¥ matrices between the whitened matrix
Y = WX and the original data centered matrix X were linked to the rotation matrices U1 and U,. This also
holds for the empirical cross-covariance matrix ® and the empirical correlation matrix ¥:

— WxxT=Wws=0,2""2=0,2",
me

dS"2 =
where R = pP~2§728"2 and U, =

® =

qj — =U 21/28_1/2 Us Rzllzs—llz Us P—llzs—llzzs—llz _ UZP—I/ZP Us P1/2

UsR.

For PCA whitening, choose Uj from Theorem 2.3.3tobe V7, i.e, W= VIS = VTV D-"2yT = D=2y T,
The matrix V7 rotates the data, such that the points are projected upon the principal components. This
means that the data is now decorrelated, but not yet with variance 1. This is because

(VTX)(VTX) = VXXV =(m-1)VT80 = (m-1)VTVDVTV = (m-1)D.

To get the variances to 1, multiply by D=2 and find

L (p-epT A-Y2 0T 5\ T
=—— D"V X)(D"V' X
=))

M

b 1f)‘l”(f/TX)(f/TX) D™ = (m- 1)—1 ID“’ZDD‘”2 I.

It is easy to see that in Theorems 2.3.6, 2.3.7, 2.3.10 and 2.3.11 and their proofs, all random matrices can
be replaced by their estimated counterparts, and the proofs will still hold.

Figures

50000 -
40000 -
30000 -
20000 -

10000 -
—— Teflon spectrum

—— Target on teflon spectrum
——— Leather spectrum

200 250 300 350 400 450 500 550

Figure B.1: Spectra of unwhitened pixels from the scenario in Figure 3.10, using n = x[325] = 407,95 to create the leather spectrum.

0.5 -
1 -
0.0 -
0 -
-0.5
> 2-1-
G -1.0 a
S j}
Q =)
€ £
£ -
-15
-2.0 -3
-2.5 - —— Global ZCA whitening -4 - —— Global ZCA whitening
—— Multi-area ZCA whitening —— Multi-area ZCA whitening
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Pixels used as observations. (b) Wavelengths used as observations.

Figure B.2: Spectra of whitened pixels from the scenario in Figure 3.10, using n = x[325] = 407,95 to create the leather spectrum, pixels and wave-
lengths used as observations.

47

48 B. Figures

—— Teflon spectrum

50000 -
—— Target on teflon spectrum
—— Leather spectrum

40000 -

30000 -

20000 -

10000 -

200 250 300 350 400 450 500 550

Figure B.3: Spectra of unwhitened pixels from the scenario in Figure 3.10, using n = x[350] = 423,95 to create the leather spectrum.

05 -
] -
0.0 -
o -
-05
Z 2-1-
G -1.0 2
S 9]
o =
€ <
c -
£ -
-15
-2.0 -3
=25 - Global ZCA whitening -4 - —— Global ZCA whitening
—— Multi-area ZCA whitening —— Multi-area ZCA whitening
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Pixels used as observations. (b) Wavelengths used as observations.

Figure B.4: Spectra of whitened pixels from the scenario in Figure 3.10, using n = x[350] = 423,95 to create the leather spectrum, pixels and wave-
lengths used as observations.

50000 - — Teflon spectrum
—— Target on teflon spectrum
—— Leather spectrum

40000 -

30000 -

20000 -

10000 -

200 250 300 350 400 450 500 550

Figure B.5: Spectra of unwhitened pixels from the scenario in Figure 3.10, using n = x[375] = 439,95 to create the leather spectrum.

49

0.5 -

|

o

w»
Intensity

Intensity
L
=)

|
=
v

I
™
o

—— Global ZCA whitening -4 - —— Global ZCA whitening
—— Multi-area ZCA whitening —— Multi-area ZCA whitening

200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)

(a) Pixels used as observations. (b) Wavelengths used as observations.

Figure B.6: Spectra of whitened pixels from the scenario in Figure 3.10, using n = x[375] = 439,95 to create the leather spectrum, pixels and wave-
lengths used as observations.

—— Teflon spectrum

50000 -
—— Target on teflon spectrum
—— Leather spectrum

40000 -

30000 -

20000 -

10000 -

200 250 300 350 400 450 500 550

Figure B.7: Spectra of unwhitened pixels from the scenario in Figure 3.10, using n = x[400] = 455,94 to create the leather spectrum.

10 - 2
05 - 1 -
0.0 - 0.
— - >
%, 0.5 2.
f=
S 9]
g i s
g-10 <
-
-15 -
-3 -
-2.0 -
—— Global ZCA whitening -4 - —— Global ZCA whitening
—25 - —— Multi-area ZCA whitening ~—— Multi-area ZCA whitening
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Pixels used as observations. (b) Wavelengths used as observations.

Figure B.8: Spectra of whitened pixels from the scenario in Figure 3.10, using n = x[400] = 455,94 to create the leather spectrum, pixels and wave-
lengths used as observations.

50 B. Figures

—— Teflon spectrum

50000 -
—— Target on teflon spectrum
—— Leather spectrum

40000 -

30000 -

20000 -

10000 -

200 250 300 350 400 450 500 550

Figure B.9: Spectra of unwhitened pixels from the scenario in Figure 3.10, using n = x[425] = 471,94 to create the leather spectrum.

1.0 -
0.5 -

0.0 -

Intensity
Lol
o v

Intensity

~1.5 -

—2.0 -

4 —— Global ZCA whitening
—— Multi-area ZCA whitening

—— Global ZCA whitening
-25 - —— Multi-area ZCA whitening

550 200 250 300 350 400 450 500 550

200 250 300 350 400 450 500
Wavelength (nm)

Wavelength (nm)

(a) Pixels used as observations. (b) Wavelengths used as observations.

Figure B.10: Spectra of whitened pixels from the scenario in Figure 3.10, using n = x[425] = 471,94 to create the leather spectrum, pixels and
wavelengths used as observations.

—— Teflon spectrum

50000 -
—— Target on teflon spectrum
—— Leather spectrum

40000 -

30000 -

20000 -

10000 -

200 250 300 350 400 450 500 550

Figure B.11: Spectra of unwhitened pixels from the scenario in Figure 3.10, using n = x[450] = 487,93 to create the leather spectrum.

51

1.0 -

0.0 -

|

o

v
Intensity

Intensity
iR
=)

|
=
w

I
™~
o

—— Global ZCA whitening -4 - —— Global ZCA whitening
—— Multi-area ZCA whitening —— Multi-area ZCA whitening

200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)

(a) Pixels used as observations. (b) Wavelengths used as observations.

Figure B.12: Spectra of whitened pixels from the scenario in Figure 3.10, using n = x[450] = 487,93 to create the leather spectrum, pixels and
wavelengths used as observations.

—— Teflon spectrum

50000 -
—— Target on teflon spectrum
—— Leather spectrum

40000 -

30000 -

20000 -

10000 -

200 250 300 350 400 450 500 550

Figure B.13: Spectra of unwhitened pixels from the scenario in Figure 3.10, using n = x[475] = 503,93 to create the leather spectrum.

1.0 - 1
0.5 -
0 -
0.0 -
> -1
2-05 - =
a c
S j}
3 -2 -
£-10 - =
=15 - -3 -
2.0 -
-4 - -
—— Global ZCA whitening —— Global ZCA whitening
—25 - —— Multi-area ZCA whitening —— Multi-area ZCA whitening
200 250 300 350 400 450 500 550 200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)
(a) Pixels used as observations. (b) Wavelengths used as observations.

Figure B.14: Spectra of whitened pixels from the scenario in Figure 3.10, using n = x[475] = 503,93 to create the leather spectrum, pixels and
wavelengths used as observations.

52 B. Figures

—— Teflon spectrum

50000 -
—— Target on teflon spectrum
—— Leather spectrum

40000 -

30000 -

20000 -

10000 -

200 250 300 350 400 450 500 550

Figure B.15: Spectra of unwhitened pixels from the scenario in Figure 3.10, using n = x[500] = 519,93 to create the leather spectrum.

1.0 -

0.5 -

o
o

|
o4
w
|
=

|

o

o
Intensity

Intensity
|
N

|
=
w

-3 -

|
N
o

—— Global ZCA whitening
—— Multi-area ZCA whitening

—— Global ZCA whitening -4 -
—— Multi-area ZCA whitening

200 250 300 350 400 450 500 550

200 250 300 350 400 450 500 550
Wavelength (nm) Wavelength (nm)

(a) Pixels used as observations. (b) Wavelengths used as observations.

Figure B.16: Spectra of whitened pixels from the scenario in Figure 3.10, using n = x[500] = 519,93 to create the leather spectrum, pixels and
wavelengths used as observations.

Code

C.1. whitening math_functions

import numpy as np

Code to center the scan
def center(scan):
if scan.ndim == 1:
meanPoint = scan.mean()
else:
meanPoint = scan.mean(axis = 1)
meanPoint = meanPoint[:, np.newaxis]
scan_centered = scan - meanPoint
return scan_centered

Calculates Mx+(-1/2) for square matrix M
def sqrt_inv(M: np.ndarray) —> np.ndarray:
if M.shape[0] != M.shape[1l]:
print ("This_matrix_is_not_square")
else:
D, V = np.linalg.eigM)
out = np.matmul(V, np.matmul(np.diag(1.0 / np.sqrt(D)), V.T))
return out

Calculates the unbiased estimator of the std of a vector x, i.e.,
we divide by m-1 instead of m
def std (x):

m = len(x)

return np.sqrt(np.var(x)*m/(m-1))

def var(x):
m = len(x)
return np.var (x)*m/(m-1)

Calculates the covariance matrix Sigma XZ between two data matrices X and Z
def cov_mat(X,Z):
if X.shape[l] != Z.shape[l]:
print ("No_covariance_matrix_possible")
else:
m = X.shape[1]
Xc center (X)
Zc center (Z)

53

54 C. Code

cov = (1/(m-1))*np.matmul (Xc,Zc.T)
return cov

Calculates the correlation matrix P_XZ between two data matrices X and Z
def cor mat(X,Z):
if X.shape[l] != Z.shape[l]:
print ("No_correlation_matrix_possible")
else:
.shape[0]
p = Z.shape[0]
cor np.zeros ((n,p))
cov = cov_mat(X,Z)
for i in range(n):
for j in range(p):
corli,j] = cov[i,j]/(std(X[i])*std(Z[j]))
return cor

I N <

Calculates the diagonal covariance matrix S_X of a matrix X
def diag _cov_mat(X):

m = len (X[0])

sigma = (m/(m-1))*X.var(axis=1)

return np.diag(sigma)

Shrinkage
Calculates the shrunk covariance matrix of centered scan X and its covariance matrix cov
(Schafer and Strimmer 2005)
def shrink cov (X, cov):
delta, T = shrink_intensity (X, cov)
return delta*T + (1-delta)=*cov

Calculates the shrunk covariance matrix of scan X and its covariance matrix cov
(Opgen—Rhein and Strimmer 2007)

Calculates the optimal shrinkage intensity
def shrink_intensity (X, cov):

n = X.shape[0]

m = X.shape[1]

w = np.zeros ([n,n,m])

w_bar = np.zeros ([n,n])

Var = np.zeros([n,n])

var_sum = np.zeros (m)

sum_cov = 0

x_bar = X.mean(axis = 1)
x_bar = x_bar[:, np.newaxis]

for i in range(n):
for j in range(n):
if j !=i
sum_cov = sum_cov + (cov[i][j])**2
for k in range(m):
wlill[jllk] = (X[i]l[k]-x_bar[i])*(X[j][k]l-x_bar[j])

w_bar[i][j] = np.mean(w[i][]])

for k in range(m):
var_suml[k] = (w[il[jI[k] - w_bar[i][j])**2

C.1. whitening math_functions

55

if j !=i
Var[il[j] = (m/((m-1)#+3))+sum(var_sum)

T = diag_cov_mat(X)
delta = (Var.sum())/ (sum_cov)

return delta*T + (1-delta)=*cov

def Midpoint_Riemann sum(x: np.array, y: np.array):
delta_x = x[1] - x[0]
Riemann_sum = y[0]*0.5xdelta_x
for i in range(1l,len(x)-1):
Riemann_sum = Riemann sum + delta_x=y[i]

Riemann_sum = Riemann_sum + y[-1]+*0.5+xdelta_x
return Riemann_sum

56

C. Code

C.2. whitening_methods_functions

import numpy as np
from whitening_math_functions import =

Different Whitening methods

PCA whitening
def pca_whitening matrix(X: np.ndarray, epsilon: np.float64) -> np.ndarray:
cov = np.cov(X, rowvar=True)
D, V = np.linalg.eigh(cov)
out = np.matmul(np.diag(1.0 / np.sqrt(D + epsilon)), V.T)
return out

def pca_on_cov(V: np.ndarray, D: np.ndarray, epsilon: np.float64) -> np.ndarray:
out = np.matmul(np.diag(1.0 / np.sqrt(D + epsilon)), V.T)

return out

Standardized PCA

def pca_std_on_cov(X: np.ndarray, cov: np.ndarray, epsilon: np.float64) -> np.ndarray:

P = np.corrcoef(X)

Theta, G = np.linalg.eigh(P)

m = len (X[0])

S = (m/(m-1))+X.var(axis=1)

outl = np.matmul(sqrt_inv (np.diag(Theta + epsilon)), G.T)
out2 = np.diag(1.0 / np.sqrt(S + epsilon))

return np.matmul(outl, out2)

ZCA whitening

def zca_whitening_matrix (X: np.ndarray, epsilon: np.float64) -> np.ndarray:
cov = np.cov(X, rowvar=True)
D, V = np.linalg.eigh(cov)
out = np.matmul(V, np.matmul(np.diag(1.0 / np.sqrt(D + epsilon)), V.T))
return out

def zca_on_cov(V: np.ndarray, D: np.ndarray, epsilon: np.float64) -> np.ndarray:
out = np.matmul(V, np.matmul(np.diag(1.0 / np.sqrt(D + epsilon)), V.T))

return out

Standardized ZCA

def zca_std_on_cov(X: np.ndarray, cov: np.ndarray, epsilon: np.float64) —> np.ndarray:

P = np.corrcoef(X)

m = len (X[0])

S = m/(m-1))=+X.var(axis=1)

out = np.matmul(sqrt_inv (P + epsilon), np.diag(1.0 / np.sqrt(S + epsilon)))
return out

Cholesky whitening

def cholesky_on_cov(V: np.ndarray, D: np.ndarray, epsilon: np.float64) —> np.ndarray:
cov_inv = np.matmul(V, np.matmul(np.diag(1.0 / (D + epsilon)), V.T))
L = np.linalg.cholesky(cov_inv)
return L.T

CCA whitening

CCA by eigendecomposition of H

def CCA by H(X: np.ndarray, Z: np.ndarray) -> np.ndarray:
Sigma_X = np.cov(X)

C.2. whitening_methods_functions

57

Sigma_Z = np.cov(Z)

Sigma_XZ = cov_mat(X, Z)
Sigma_7X = Sigma XZ.T

DX, VX = np.linalg.eigh (Sigma_X)
DZ, VZ = np.linalg.eigh (Sigma_Z)

Hl = np.matmul(np.linalg.inv(Sigma_X), Sigma XZ)
H2 = np.matmul(np.linalg.inv(Sigma_Z), Sigma_ZX)
H = np.matmul (H1, H2)
for i in range(len(H)):
for j in range(len(H[i])):
if np.abs(H[i][j]) < 0.0000001:

H[il[j] =0
if np.abs(1 - H[i][j]) < 0.0000001:
HIil[j] =1

L, WX = np.linalg.eig(H)
WZ = np.zeros ([len(WX), len(WX)])
for i in range(len (WX)):
WZ[i] = np.matmul(np.matmul(np.linalg.inv(Sigma _Z), Sigma_7ZX), WX[i])
return WX, WZ
cov_mat (np. matmul(WX[0] ,X) ,np. matmul(WX[1],X))

CCA by singular value decomposition of K
def CCA_by K(X: np.ndarray, Z: np.ndarray) —> np.ndarray:
P X = cor_mat(X, X)
P XZ = cor_mat(X, Z)
P 7Z = cor_mat(Z, Z)
K = np.matmul (np.matmul(sqrt_inv (P_X), P_XZ), sqrt_inv(P_Z))
Q_X, Lambda, Q_Z = np.linalg.svd (K)
S_X = diag_cov_mat(X)

S_7Z = diag_cov_mat(Z)
WX = np.matmul (np.matmul (Q X.T, sqrt_inv(P_X)), sqrt_inv(S_X))
W_Z = np.matmul (np.matmul (Q_Z.T, sqrt_inv(P_Z)), sqrt_inv(S_Z))

return WX, WZ

CCA by sklearn

n = np.linalg. matrix_rank (X)
p = np.linalg. matrix_rank (Z)
r = min(n,p)

from sklearn.cross_decomposition import CCA
cca = CCA(n_components=r)

cca. fit(X, Z)

X cca, Z_cca = cca.transform (X, Z)

def Whitening (X: np.ndarray, method, observations, epsilon):
if observations == ’pixels’:
X =X.T

cov = np.cov(X, rowvar=True)
centered = center (X)

D, V = np.linalg.eigh(cov)
for j in range(len(D)):
if D[j] < le-6:

58

C. Code

D[j] = 0

if method == 'ZCA’:
W = zca_on_cov(V, D, epsilon)
if method == "Cholesky":
W = cholesky_on_cov(V, D, epsilon)

Y = np.matmul (W, centered)

if observations == ’pixels’:
Y=Y.T

return Y

C.3. whitening SNR_functions 59

C.3. whitening SNR_functions

import numpy as np

import matplotlib. pyplot as plt

from whitening_math_functions import =
from whitening methods_functions import =

#9%6%

Create shot noise
def shot_noise(x: np.ndarray):
shot_noise = np.zeros(548)
for i in range(548):
shot_noise[i] = np.random.normal (0, np.sqrt(x[i]))
return x + shot_noise

def stack_shotnoise(x: np.ndarray, n: int):
shotnoise = shot_noise (x)
for i in range(1l,n):
shotnoise = np.vstack ([shotnoise, shot_noise(x)])
return shotnoise

Fit baseline
def baseline_fit(x: np.array, y: np.array, degree):
x_min_Gaussian = np.concatenate ((x[:101], x[213:]))
y_min_Gaussian = np.concatenate ((y[:101], y[213:]))
z = np. polyfit (x_min_Gaussian, y_min_Gaussian, deg = degree)
baseline = np.zeros (len(x))
for i in range(len(x)):
baseline[i] = z[0]*(x[i]**6) + Zz[1l]*(x[i1]**5) + z[2]*(x[1]**4)
+ z[3]*(x[i]**3) + z[4]*(x[i]**2) + z[5]*x[i] + z[6]
return baseline

def Ratio_signal_and_noise(Y: np.ndarray, target, x, MC: int, degree):
target_pixel = Y[target]
target_min_Gaussian = np.concatenate ((target_pixel[:101], target_pixel[213:]))
baseline = baseline_fit(x, target_pixel, degree)
baseline_min_Gaussian = np.concatenate ((baseline[:101], baseline[213:]))
sigmaRMS = np.std (target_min_Gaussian - baseline_min_Gaussian)
signal = Midpoint_Riemann_sum(x[120:194], target_pixel[120:194]- baseline[120:194])
SNR = signal / sigmaRMS
return SNR, signal, sigmaRMS

def plot_SNR(SNR, signal, noise, size, method, observations, MC: int):
SNR_mean = SNR.mean(1)
SNR_std = SNR.std (1)
plt.plot(size, SNR_mean, color = ’'r’, label = f’Mean SNR ,of {MC} Monte_Carlo _simulations’)
plt.plot(size ,SNR_mean + SNR_std, '--b’, label = ’Standard _deviation’)
plt.plot(size ,SNR_mean - SNR_std, '—-b’)
plt.title (f’Signal-to-Noise_Ratio_of_ {method}_whitenend_target_spectrum_\n_\
compared_to_total_amount_of_ whitened_pixels._\n_\
- {observations}_used_as_observations’)
plt.xlabel (' Total_number_of_whitened, pixels’)
plt.ylabel ('SNR")
if method == "Cholesky" and observations == ’'wavelengths’:
plt.legend (loc="upper_left")
else:

T TR

60 C. Code

plt.legend (loc="upper_right")
plt.show()
plt.close ()

signal_mean = signal.mean(1)

signal_std = signal.std (1)

plt.plot(size, signal mean, color = 'r’, label = f’Mean SNR_ of_{MC}_Monte_Carlo_simulations’)
plt.plot(size,signal mean + signal_std, '—-b’, label = ’Standard, deviation’)
plt.plot(size,signal mean - signal _std, '—-b’)

plt.title (f’Signal_of_{method}_whitenend target_spectrum_\n_\
compared,_to_total_amount_of_ whitened_pixels._\n \

- {observations}_used_as_observations’)

plt.xlabel (’ Total_number_of_whitened_pixels’)

plt.ylabel (’Intensity’)

plt.legend (loc="upper_right")

plt.show()

plt.close ()

TN

noise_mean = noise.mean(1)

noise_std = noise.std (1)

plt.plot(size, noise_mean, color = 'r’, label = f’Mean SNR ,of {MC}_ Monte_Carlo_simulations’)
plt.plot(size, noise_mean + noise_std, '—-b’, label = ’Standard,_deviation’)
plt.plot(size, noise_mean - noise_std, '—-b’)

plt. title (f 'Noise_of_{method} _whitenend _target_spectrum_\n_\
compared_to_total_amount_of_whitened_pixels._\n_\

- {observations}_used_as_observations’)

plt.xlabel (' Total_number_of whitened pixels’)

plt.ylabel (’'Intensity’)

plt.legend (loc="upper_right")

plt.show ()

plt.close ()

return

T TR

C.4. Whitening_synthetic_data 61

C.4. Whitening synthetic_data

import sys

sys.path.append(’../..")

sys.path.append("C:/ Users/Gwynn/OneDrive/Documenten/TW_Studie / Master/\
- Jaar_3/Thesis/kaleb/notebooks/Whitening Gwyn")

import numpy as np

from kaleb.data import NestedDirectory

import seaborn as sns

import matplotlib.pyplot as plt

from whitening SNR_functions import =

observations = "pixels" # observations = "pixels" or "wavelengths"
noise = "with" # "with" or "without" shot noise
epsilon = le-4 # epsilon = 0 or le-4

#%%

import pandas as pd

file_name = "C:/Users/Gwynn/OneDrive/Documenten/TW_Studie/Master/\
.. Jaar_3/Thesis/Data/Teflon_met_Gaussian_function. xlsx"

sheet = ’Data’

df = pd.read_excel(io = file_name, sheet_name = sheet)

df = df.to_numpy(dtype = np.float64)

x = np.linspace (200, 550, 548)

y = df[0]

degree = 6

z = np.polyfit(x, y, deg = degree)

plt.plot(x,y, label="Average_Teflon_spectrum_’)

plt.plot(x, z[0]*(x*%6) + zZ[1]*(x**5) + z[2]*(x**4) + z[3]*(x**3) + z[4]*(x**2) + z[5]*x + z[6],
label=f’Fitted_polynomial_with_degree_{degree}’)

plt.plot(x,df[3], 'y——', label=’Spectrum, target_pixel’)

plt. title (’Average_Teflon_spectrum_and_fitted_polynomial’)

plt.xlabel (’Wavelength,_ (nm) ’)

plt.ylabel(’Intensity’)

plt.legend(loc="lower_right", fancybox=True, shadow=True)

plt.show ()

plt.close ()

#%% # Make synthetic data without noise
def stack_teflon (n: int):
teflon = df[1]
for i in range(l,n):
teflon = np.vstack([teflon, df[1]])
return teflon

if noise == "without":
teflon2 = np.vstack ([df[1],df[1]])
teflon3 = np.vstack ([df[1],df[1],df[1]])

synl2 = np.vstack(
syn22 = np.vstack (
syn33 = np.vstack ([stack_teflon (4),df[3],stack_teflon (4)])

(df[11,df(3i11
[d
(
syn44 = np.vstack ([stack_teflon(10),df[3],stack_teflon (5)])
(
[
[

f[1],df[3],stack_teflon(2)])

syn55 = np.vstack ([stack_teflon(12),df[3],stack_teflon (12)])
syn77 = np.vstack ([stack_teflon (24),df[3],stack_teflon (24)])
syn99 = np.vstack ([stack_teflon (40),df[3],stack_teflon (40)])

62

C. Code

synll
synl3
synlb
synl9
syn21l
syn23
syn25
syn29
syn31

np.
np.
np.
np.
np.
np.
np.
np.
np.

vstack ([stack_teflon (60),df[3], stack_teflon (60)])

vstack ([stack_teflon (84),df[3],stack_teflon (84)])

vstack ([stack_teflon(112),df[3],stack_teflon(112)])
vstack ([stack_teflon (180),df[3],stack_teflon (180)])
vstack ([stack_teflon (220),df[3], stack_teflon (220)])
vstack ([stack_teflon (264),df[3],stack_teflon (264)])
vstack ([stack_teflon(312),df[3],stack_teflon (312)])
vstack ([stack_teflon (420),df[3],stack_teflon (420)])
vstack ([stack_teflon (480),df[3],stack_teflon (480)])

#%% # Make synthetic data with noise

51

12)])
24)1)
40)])

60)])

84)])
112)])
180)])
220)])
264)])
312)])
420)])

if noise == "with":
synl2 = np.vstack ([shot_noise(df[1]),shot_noise(df[3])])
syn22 np.vstack ([shot_noise (df[1]),shot_noise(df[3]),stack_shotnoise(df[1], 2)])
syn33 np.vstack ([stack_shotnoise (df[1], 4),shot_noise(df[3]),stack_shotnoise (df[1], 4)])
syn44 np.vstack ([stack_shotnoise (df[1], 10),shot_noise(df[3]),stack_shotnoise(df[1],
syn55 np.vstack ([stack_shotnoise (df[1], 12),shot_noise(df[3]),stack_shotnoise(df[1],
syn77 = np.vstack ([stack_shotnoise (df[1], 24),shot_noise(df[3]),stack_shotnoise (df[1],
syn99 np.vstack ([stack_shotnoise (df[1], 40),shot_noise(df[3]),stack_shotnoise (df[1],
synll np.vstack ([stack_shotnoise (df[1], 60),shot_noise(df[3]),stack_shotnoise(df[1],
synl3 np.vstack ([stack_shotnoise (df[1], 84),shot_noise(df[3]),stack_shotnoise(df[1],
synl5 = np.vstack ([stack_shotnoise(df[1], 112),shot_noise(df[3]),stack_shotnoise(df[1],
synl9 = np.vstack ([stack_shotnoise (df[1], 180),shot_noise(df[3]),stack_shotnoise(df([1],
syn21 np.vstack ([stack_shotnoise (df[1], 220),shot_noise(df[3]),stack_shotnoise (df[1],
syn23 np.vstack ([stack_shotnoise (df[1], 264),shot_noise (df[3]),stack_shotnoise (df[1],
syn25 np.vstack ([stack_shotnoise (df[1], 312),shot_noise(df[3]),stack_shotnoise(df[1],
syn29 = np.vstack ([stack_shotnoise(df[1], 420),shot_noise(df[3]),stack_shotnoise(df[1],

#%6%

synl2_3d synl2.reshape(1l, 2, 548)

syn22_3d = syn22.reshape(2, 2, 548)

syn33_3d = syn33.reshape(3, 3, 548)

syn44_3d = syn44.reshape(4, 4, 548)

syn55_3d syn55.reshape (5, 5, 548)

syn77_3d syn77.reshape(7, 7, 548)

syn99_3d = syn99.reshape(9, 9, 548)

synll_3d = synll.reshape(11,11,548)

synl3_3d synl3.reshape(13,13,548)

synl5_3d synl5.reshape(15,15,548)

synl9_3d synl9.reshape(19,19,548)

syn21_3d = syn2l.reshape(21,21,548)

syn23_3d = syn23.reshape(23,23,548)

syn25_3d syn25.reshape (25, 25, 548)

syn29_3d syn29.reshape (29, 29, 548)

syn = [synl2,syn22,syn33,syn44,syn55,syn77,syn99,synll,
synl3,synl5,synl9,syn2l,syn23,syn25,syn29]
syn_3d = [synl2_3d,syn22_3d,syn33_3d,syn44_3d,syn55_3d,

syn77_3d,syn99_3d,synll_3d,synl3_3d,synl5_3d,
synl19_3d,syn21_3d,syn23_3d, syn25_3d, syn29_3d]

length = [1,2,3,4,5,7,9,11,13,15,19,21,23,25,29]
width = [2,2,3,4,5,7,9,11,13,15,19,21,23,25,29]

C.4. Whitening_synthetic_data 63

target = [1,1,4,10,12,24,40,60,84,112,180,220,264,312,420] # index of the target pixel

#%6%
ZCA and Cholesky whitening

SNR_zca = np.zeros(len(syn))
SNR_chol = np.zeros(len(syn))

size = np.zeros(len(syn))

for i in range(len(syn)):

size[i] = len(syn[il])
if observations == ’'pixels’:
syn[i] = syn[i].T

cov = np.cov(syn[i], rowvar=True)
centered = center(syn[i])
D, V = np.linalg.eigh(cov)
for j in range(len(D)):
if D[j] < le-6:
D[(j] =0

W_zca = zca_on_cov(V, D, epsilon)

Y_zca = np.matmul (W_zca, centered)
if observations == ’'pixels’:
Y zca = Y _zca.T

target_pixel_zca = Y_zca[target[i]]

if noise == ’'with’:
target_min_Gaussian_zca = np.concatenate ((target_pixel_zca[:101], target_pixel_zca[213:]))
baseline_zca = baseline_fit(x, target_pixel_zca, degree)
baseline_min_Gaussian_zca = np.concatenate ((baseline_zca[:101], baseline_zca[213:]))
sigmaRMS_1 = np.std(target_pixel_zca[:101] - baseline_zca[:101])
sigmaRMS_2 = np.std(target_pixel _zca[213:] - baseline_zca[213:])
sigmaRMS_12_zca = np.std(target_min_Gaussian_zca - baseline_min_Gaussian_zca)
integral_zca = Midpoint_Riemann_sum (x[120:194],

target_pixel_zca[120:194] - baseline_zca[120:194])

SNR_zca[i] = integral_zca / sigmaRMS_12_zca

Y _zca_3d = Y_zca.reshape(length[i], width[i], 548)

sns.heatmap (Y_zca_3d.sum(2), linewidths=1, linecolor="black’)

plt. title (f'ZCA_Whitening, synthetic_data_{noise}_shotnoise, _\n_\
{observations}_used_as_observations,_epsilon_=_{epsilon}’)

I |

plt.show()
plt.close ()

plt.plot(x, Y_zca[0], label = 'Teflon_spectrum’)

plt.plot(x, target_pixel_zca,blabel = ’'Target_spectrum’, color = ’'c’)
if noise == ’with’:
plt.plot(x, baseline_zca, label = ’Baseline_of_target_spectrum’, color = ’black’)
plt.axvline (x = 270, color = ’'black’) # 300 - 3xsigma
plt.axvline (x = 330, color = ’black’) # 300 + 3=xsigma

plt.legend (loc="lower_right", fancybox=True, shadow=True)
plt.xlabel ('Wavelength,_ (nm) ’)

plt.ylabel ('Intensity’)

plt.show ()

64 C. Code

plt.close ()

#%%

Z1 = Y_zca|0]
Z31 = Z1[117:196]
x3 = x[117:196]

plot the main figure

plt.plot(x, Y_zca[0], label = ’'Teflon_spectrum’)

plt.plot(x, target_pixel_zca,hlabel = ’Target_spectrum’, color = ’'c’)
plt.legend (loc="lower_right’, ncol=1, fancybox=True, shadow=True)
plt.xlabel (’Wavelength,_ (nm) ’)

plt.ylabel (' Intensity’)

location for the zoomed portion
sub_axes = plt.axes([.47, .3, .4, .2])
plt.yticks (visible=True)

plot the zoomed portion
sub_axes.plot(x3, Z31, color = ’'red’)
plt.show()

plt.close ()

#%%

Y_12 = Whitening(synl2, 'ZCA’, ’wavelengths’, epsilon)

plt.plot(x, Y_12[0], label = ’'Teflon_spectrum’)

plt.plot(x, Y_12[1], label = ’Target_spectrum’, color = 'c’)

plt.plot(x, Y_12[0] + Y_12[1], label = ’Sum_of_all_spectra’, color = ’orange’)
plt.legend (loc="lower_right", fancybox=True, shadow=True)

plt.xlabel (’Wavelength,_ (nm) ’)

plt.ylabel ('Intensity’)

plt.show ()

plt.close ()

#%%
Y_22 = Whitening(syn22, 'ZCA’, ’wavelengths’, epsilon)
plt.plot(x, Y_22[0], label = ’'Teflon_spectrum’)
plt.plot(x, Y_22[1], label = ’'Target _spectrum’, color = ’'c’)
plt.plot(x, Y_22[0] + Y_22[1] + Y_22[2] + Y_22[3],

label = ’'Sum_of all_spectra’, color = ’orange’)
plt.legend(loc="lower_right", fancybox=True, shadow=True)
plt.xlabel ("Wavelength, (nm))
plt.ylabel (’Intensity’)
plt.show()
plt.close ()

#6%
Y_841 = Whitening(syn29, 'ZCA’, ’wavelengths’, epsilon)
plt.plot(x, Y_841[0], label = 'ZCA whitened_Teflon spectrum’)
#plt.plot(x, Y 841[420], label = ’'Target spectrum’, color = ’c’)
sum_wav = np.zeros(548)
for i in range(841):

sum_wav = sum_wav + Y_841[i]
plt.plot(x, (1/841)*sum_wav, label = ’Sum_of_all_spectra_in_the_scan’,

color = ’orange’, linestyle = ’dashed’)

plt.legend (loc="lower_right", fancybox=True, shadow=True)
plt.xlabel (’Wavelength,_ (nm) ’)

C.4. Whitening_synthetic_data 65

plt.ylabel (' Intensity’)
plt.show()
plt.close ()

#%%
Y_12 = Whitening(synl2, 'ZCA’, ’wavelengths’, epsilon)

polynomial = np.zeros(548)
p = np.zeros(548)
for j in range(548):
polynomial[j] = z[0]*(x[j]*%6) + z[1]*(x[j]**5) + z[2]=(x[j]**4) + z[3]*(x[j]**3)
polynomial[j] = polynomial[j] + z[4]*(x[j]**2) + z[5]*x[j] + z[6]
sum_poly = polynomial.sum/()
for k in range(548):
plk] = (polynomial [k] - sum_poly/548)
max_p = max(p)
max sum = max(Y_12[0] + Y_12[1])
factor = max_sum / max_p
plt.plot(x, factor=p,
label=f’Fitted_polynomial with_degree {degree}, normalised’)
plt.plot(x, Y_12[0] + Y_12[1], label = ’Sum of_all_spectra’, color = ’orange’)
plt.legend (loc="lower_right", fancybox=True, shadow=True)
plt.show()
plt.close ()

#%6%
av = (polynomial + df[3])/2
av = polynomial
av = df[3]
av_norm = np.zeros(548)
sum_av = av.sum()
for k in range(548):

av_norm[k] = (av[k] - sum_av/548)
max_av_norm = max(av_norm)
max_sum = max(Y_12[0] + Y_12[1])
factor = max sum / max_p
av_norm = factor=av_norm

def cos_similarity (P, Q):
theta_up = np.sum(P=Q)
theta_down = (np.sqrt(np.sum(P+P))+*np.sqrt(np.sum(Q+Q)))
return theta_up/theta_down

print(cos_similarity (av_norm, Y_12[0] + Y_12[1]))

#%6%

Y_12_pix = Whitening(synl2, 'ZCA’, ’'pixels’, epsilon)
Y_12_wav = Whitening(synl2, 'ZCA’, ’wavelengths’, epsilon)

target_pix = Y_12_pix[1]
target_wav = Y_12 wav/([1]

target_min_Gaussian_pix = np.concatenate ((target_pix[:101], target_pix[213:]))
baseline_pix = baseline_fit(x, target_pix, degree)

baseline_min_Gaussian_pix = np.concatenate ((baseline_pix[:101], baseline_pix[213:]))
sigmaRMS_1 = np.std (target_pix[:101] - baseline_pix[:101])

66 C. Code

sigmaRMS_2 = np.std(target_pix[213:] - baseline_pix[213:])

sigmaRMS_12_pix = np.std (target_min_Gaussian_pix - baseline_min_Gaussian_pix)

integral_pix = Midpoint Riemann_sum(x[120:194], target_pix[120:194]- baseline_pix[120:194])
SNR_pix = integral_pix / sigmaRMS_12_pix

target_min_Gaussian_wav = np.concatenate ((target_wav[:101], target_wav[213:]))

baseline_wav = baseline_fit(x, target_wav, degree)

baseline_min_Gaussian_wav = np.concatenate ((baseline_wav[:101], baseline_wav[213:]))
sigmaRMS_1 = np.std (target_wav[:101] - baseline_wav[:101])

sigmaRMS_2 = np.std(target_wav[213:] - baseline_wav[213:])

sigmaRMS_12_wav = np.std (target_min_Gaussian_wav - baseline_min_Gaussian_wav)

integral_wav = Midpoint_Riemann_sum (x[120:194], target_wav[120:194]- baseline_wav[120:194])
SNR wav = integral wav / sigmaRMS_12_wav

plt.plot(x, Y_12_pix[0], label = ’'Teflon_spectrum’)

plt.plot(x, target_pix,label = ’Target_spectrum’, color = ’'c’)

plt.plot(x, baseline_pix, label = ’Baseline_of_target_spectrum’, color = ’black’)
plt.axvline(x = 270, color = ’black’) # 300 - 3=xsigma

plt.axvline (x = 330, color "black’) # 300 + 3=xsigma

plt.legend (loc="lower_right", fancybox=True, shadow=True)

plt.xlabel (’Wavelength _ (nm) ’)

plt.ylabel (' Intensity’)

plt.show()

plt.close ()

n

plt.plot(x, Y_12_wav[0], label = ’'Teflon_spectrum’)

plt.plot(x, target_wav,label = ’Target_spectrum’, color = ’'c’)

plt.plot(x, baseline_wav, label = ’Baseline_of_target_spectrum’, color = ’black’)
plt.axvline (x = 270, color = ’black’) # 300 - 3=xsigma

plt.axvline(x = 330, color = ’black’) # 300 + 3xsigma

plt.legend (loc="lower_right", fancybox=True, shadow=True)
plt.xlabel (’Wavelength_ (nm) ’)

plt.ylabel (' Intensity’)

plt.show()

plt.close ()

#9%6%

plt.plot(x, target_pix - baseline_pix,label = ’'Target_spectrum_minus_baseline,\
_pixels_used _as_observations’, color = 'c’)

plt.legend (loc="upper_left", fancybox=True, shadow=True)

plt.xlabel (’Wavelength, (nm))

plt.ylabel (’Intensity’)

plt.show()

plt.close ()

plt.plot(x, target_ wav — baseline_wav,label = ’'Target_spectrum_minus_baseline\
_.».wavelengths_used_as_observations’, color = 'c’)

plt.plot(x, baseline_wav, label = ’'Baseline of target spectrum’, color = ’black’)

plt.legend (loc="upper_left", fancybox=True, shadow=True)
plt.xlabel (’Wavelength_ (nm) ’)

plt.ylabel (' Intensity’)

plt.show()

plt.close ()

print(cos_similarity (target_pix, target_wav — baseline_wav))

#%%
CCA

C.4. Whitening_synthetic_data 67

from defaults import Local
from kaleb.data import read_config
from kaleb.ml.similarity import Signatures

algo_config = read_config(Local. ConfigSimilarity / ’ctc/ac3_3.yaml’)

signatures = Signatures. from_config(algo_config[targets ’])

an_signatures = signatures.targets_settings[’AN’][data’]

petn_signatures = signatures.targets_settings ['PEIN’][data’]

rdx_signatures = signatures.targets_settings[’'RDX’][data’]

tnt_signatures = signatures.targets_settings [INT'][data’]

Z = np.concatenate ((an_signatures, petn_signatures, rdx_signatures, tnt_signatures))

if observations == "wavelengths":

Wx_CCA, WzCCA = CCA_by K(syn77,Z)

Yx = np.matmul(Wx_CCA, center (syn77))

Yz = np.matmul(Wz_CCA, center(Z))

Yx_3d = Yx.reshape(7, 7, 548)

sns. heatmap (Yx_3d.sum(2), linewidths=1, linecolor="black’)
plt.title (f 'CCA Whitening, synthetic data {noise} shotnoise, \n \
{observations} used as observations’)

plt.show()

plt.close ()

Yz_3d = Yz.reshape(4, 4, 548)

sns. heatmap (Yz_3d.sum(2), linewidths=1, linecolor="black’)

plt.title (f'CCA Whitening, signatures, \n {observations} used as observations’)

plt.show()

plt.close ()

68 C. Code

C.5.SNR _Monte_ Carlo

import sys

sys.path.append(’../..")

sys.path.append("C:/ Users/Gwynn/OneDrive/Documenten/TW_Studie / Master/\
- Jaar_3/Thesis/kaleb/notebooks/Whitening Gwyn")

import numpy as np

from kaleb.data import NestedDirectory

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib.patches as patches

from whitening SNR_functions import =

epsilon = le-4 # epsilon = 0 or le-4
MC = 1000 # number of Monte Carlo simulations
#6%

import pandas as pd

file_name = "C:/Users/Gwynn/OneDrive/Documenten/TW_Studie/Master/\
“w.Jaar_3/Thesis/Data/Teflon_met_Gaussian_function. xlsx"

sheet = 'Data’

df = pd.read_excel(io = file_name, sheet name = sheet)

df = df.to_numpy(dtype = np.float64)

x = np.linspace (200, 550, 548)

y = df[0]

degree = 6

z = np.polyfit(x, y, deg = degree)

#%6%
def synthetic_scan(size: int):
if size%2 == 0:
tl = int(size/2)

t2 =tl -1

else:
tl = int((size - 1)/2)
t2 = tl

scan = np.vstack ([stack_shotnoise (df[1],t1),shot_noise(df[3]),stack_shotnoise (df[1],t2)])
return scan, tl

def Monte_Carlo(size: np.ndarray, MC: int, pixels, wavelengths):
arg = 0
if max(size) >= 548:
while size[arg] < 548:
arg = arg + 1

if pixels == ’yes’:
size_zca_pix = size
SNR_zca_pix = np.zeros ([len(size) ,MC])
signal_zca_pix = np.zeros ([len(size) ,MC])
sigmaRMS_zca_pix = np.zeros ([len(size) ,MC])
if wavelengths == ’yes’:
size_zca_wav = size
SNR_zca_wav = np.zeros ([len(size) ,MC])
signal_zca_wav = np.zeros ([len(size) ,MC])
sigmaRMS_zca_wav = np.zeros ([len(size) ,MC])

C.5. SNR_Monte_Carlo 69

for m in range MC):
for i in range(len(size)):
syn, target = synthetic_scan(size[i])
if pixels == ’yes’:
syn_pix = syn.T
cov_pix = np.cov(syn_pix, rowvar=True)
centered_pix = center (syn_pix)
D_pix, V_pix = np.linalg.eigh (cov_pix)
for j in range(len(D_pix)):
if D_pix[j] < le-6:
D_pix[j] =0
if wavelengths == ’yes’:
cov_wav = np.cov(syn, rowvar=True)
centered_wav = center (syn)
D_wav, V_wav = np.linalg.eigh (cov_wav)
for j in range(len(D_wav)):
if D_wav[j] < le-6:
D_wav[j] =0

if pixels == ’yes’:
W_zca_pix = zca_on_cov(V_pix, D_pix, epsilon)
Y_zca_pix = np.matmul (W_zca_pix, centered_pix).T
A = Ratio_signal and_noise(Y_zca_pix, target, x, MC, degree)

SNR_zca_pix[i][m], signal_zca_pix[i][m], sigmaRMS_zca_pix[i][m] = A
if wavelengths == ’'yes’:

W_zca_wav = zca_on_cov(V_wav, D_wav, epsilon)

Y_zca_wav = np.matmul (W_zca_wav, centered_wav)

A = Ratio_signal and_noise(Y_zca_wav, target, x, MC, degree)

SNR_zca_wav([i][m], signal_zca_wav[i][m], sigmaRMS_zca_wav[i][m] = A

if pixels == ’yes’:
plot_SNR (SNR_zca_pix, signal_zca_pix, sigmaRMS_zca_pix, size_zca_pix,
'ZCA’, ’'pixels’, MO)
if wavelengths == ’yes’:
plot_SNR (SNR_zca_wav, signal_zca_wav, sigmaRMS_zca wav, size_zca_wav,
"ZCA’, ’wavelengths’, MC)

if pixels == ’yes’ and wavelengths == 'no’:

return SNR_zca_pix, signal_zca_pix, sigmaRMS_zca_pix, size_zca_pix
if pixels == 'no’ and wavelengths == ’yes’:

return SNR_zca_wav, signal_zca_wav, sigmaRMS_zca wav, size_zca_wav
if pixels == ’yes’ and wavelengths == ’yes’:

return SNR_zca_pix, size_zca_pix, SNR_zca_wav, size_zca_wav
return

#%%

Monte Carlo

length = [3,5, 5, 5, 5, 5, 5, 5,10, 9,10,11,12,14,20,18,20,22,20,20,20,30,25]

width = [3, 5,10,15,20,25,30,35,20,25,25,25,25,25,20,25,25,25,30,35,40,30,40]

size = [9,25,50,75,100,125,150,175,200,225,250,275,300,350,400,450,500,550,600,700,800,900,1000]

SNR_zca_pix, size_zca_pix, SNR_zca wav, size_zca_wav = Monte_Carlo(size, MC, ’yes’, ’yes’)

#%6%

70 C. Code

np.savetxt (f"SNR_ZCA_whitening_{MC}x23_obs=pix.csv", SNR_zca_pix, delimiter=",_")
np.savetxt (f"SNR_ZCA_whitening_{MC}x23_obs=wav.csv", SNR_zca wav, delimiter=",_")

C.6. Multi_area_whitening 71

C.6. Multi_area_whitening

import sys

sys.path.append(’../..")

sys.path.append("C:/ Users/Gwynn/OneDrive/Documenten/TW_Studie / Master/\
- Jaar_3/Thesis/kaleb/notebooks/Whitening Gwyn")

import numpy as np

from kaleb.data import NestedDirectory

import seaborn as sns

import matplotlib.pyplot as plt

from whitening SNR_functions import =

epsilon = le-4 # epsilon = 0 or le-4
MC=1 # number of Monte Carlo simulations
#%6%

import pandas as pd

file_name = "C:/Users/Gwynn/OneDrive/Documenten/TW_Studie/Master/Jaar _3/\
o Thesis/Data/Teflon_met_Gaussian_function. xlsx"

sheet = ’Data’

df = pd.read_excel(io = file_name, sheet_name = sheet)

df = df.to_numpy(dtype = np.float64)

x = np.linspace (200, 550, 548)
y = df[0]

degree = 6

z = np.polyfit(x, y, deg = degree)
Gauss = —-df[2]

Gauss = (1/1000)=+Gauss
plt.plot(x,Gauss)

plt.xlabel (’Wavelength_ (nm) ’)
plt.ylabel (' Intensity’)
plt.show()

plt.close ()

#%6%
def synthetic_scan(size: int):
if size%2 == 0:
tl = int(size/2)

t2 = t1 -1

else:
tl = int((size - 1)/2)
t2 = tl

scan = np.vstack ([stack_shotnoise (df[1], t1),shot_noise(df[3]),stack_shotnoise (df[1], t2)])

return scan, targetl

Multi—area whitening

def Leather_spectrum (n: int, x):
y_data = np.zeros(len(x))
for i in range(len(x)):

if i < n:

y_data[i] = 3400 + 46600/(1+np.exp(-((1/10))=(x[i] - (x[n] -100))))
if i >= n:

y_data[i] = 50000 - 46600/(1+np.exp(—(1/10)=(x[i] - (x[n] + 100))))

return y_data

72 C. Code

def MAW(y_data, total_pixels, leather_pixels, observations, method):
teflon_pixels = total_pixels - leather_pixels
syn_1, target_index = synthetic_scan(teflon_pixels)
syn_2 = stack_shotnoise(y_data, leather_pixels)
syn = np.vstack ([syn_1, syn_2])
if observations == ’pixels’:
syn = syn.T
syn_1 = syn_1.T
syn_2 = syn_2.T

cov_l = np.cov(syn_l, rowvar=True)
cov_2 = np.cov(syn_2, rowvar=True)
cov = np.cov(syn, rowvar=True)
centered_1 = center(syn_1)
centered_2 = center(syn_2)
centered = center(syn)

D, V = np.linalg.eigh(cov)
D1, V1 = np.linalg.eigh(cov_1)
D2, V2 = np.linalg.eigh(cov_2)
for j in range(len(D)):
if D[j] < le-6:
Dlj] = 0
for j in range(len(D1)):
if D1[j] < le-6:
D1[j] = 0
for j in range(len(D2)):
if D2[j] < le-6:
D2[j] =0

if method == 'ZCA’:
W = zca_on_cov(V, D, epsilon)
W_1 = zca_on_cov(V1l, DI, epsilon)
W_2 = zca_on_cov(V2, D2, epsilon)

if method == ’'Cholesky’:
W = cholesky_on_cov(V, D, epsilon)
W_1 = cholesky_on_cov(V1l, D1, epsilon)
W_2 = cholesky_on_cov(V2, D2, epsilon)

Y_1 = np.matmul(W_1, centered_1)
Y_2 = np.matmul(W_2, centered_2)
Y = np.matmul (W, centered)
if observations == ’pixels’:
Y=Y.T
Y1=Y.1.T
Y2 Y 2.T

Y maw = np.vstack ([Y_1, Y_2])
return Y, Y maw, target_index

def plot MAW(y_data, total_pixels, leather_pixels, observations, method):
Y zca, Y zca_maw, target = MAW(y_data, total_pixels, leather_pixels, observations, method)
plt.plot(x, Y_zca[target], label = f’Global_{method} whitening’)
plt.plot(x, Y zca_maw[target], label = f’Multi-area_{method} _whitening’)
plt.title (f'Spectrum of target pixel using global and multi-area {method} whitening,\

C.6. Multi_area_whitening 73

\n {observations} used as observations’)
plt.xlabel ('Wavelength,_ (nm) ’)

plt.ylabel (’Intensity’)

plt.legend (loc="lower_right")

plt.show ()

plt.close ()

return Y_zca, Y_zca_maw, target

def MAWMC(size: np.ndarray, total_pixels: int, MC: int, pixels, wavelengths, method):
if pixels == ’yes’:
SNR_pix = np.zeros ([len(size) ,MC])
signal_pix = np.zeros ([len(size) ,MC])
sigmaRMS_pix = np.zeros ([len(size) MC])
SNR_pix_maw = np.zeros ([len(size) ,MC])
signal_pix_maw = np.zeros ([len(size) ,MC])
sigmaRMS_pix_maw = np.zeros ([len(size) MC])
if wavelengths == ’yes’:
SNR_wav = np.zeros ([len(size) ,MC])
signal_wav = np.zeros([len(size) MC])
sigmaRMS_wav = np.zeros ([len(size) ,MC])
SNR wav_maw = np.zeros ([len(size) ,MC])
signal_wav_maw = np.zeros ([len(size) MC])
sigmaRMS_wav_maw = np.zeros ([len(size) ,MC])

leather_spectrum = Leather_spectrum (400, x)

for m in range (MC):
for i in range(len(size)):

leather_pixels = size[i]

if pixels == ’yes’:
A = MAW(leather_spectrum, total_pixels, leather_pixels, ’'pixels’, method)
Y_pix, Y _pix maw, target = A
B = Ratio_signal_and_noise (Y_pix, target, x, MC degree)
SNR_pix[i][m], signal_pix[i][m], sigmaRMS_pix[i][m] = B
C = Ratio_signal_and_noise (Y_pix_maw, target, x, MC, degree)
SNR_pix_ maw|[i][m], signal_pix_maw/[i][m], sigmaRMS_pix_ maw[i][m] = C

if wavelengths == ’yes’:
A = MAW(leather_spectrum, total_pixels, leather_pixels, ’wavelengths’, method)
Y wav, Y wav_maw, target = A
B = Ratio_signal_and_noise(Y_wav, target, x, MC degree)
SNR wav([i][m], signal wav[i][m], sigmaRMS wav[i]l[m] = B
C = Ratio_signal_and_noise (Y_wav_maw, target, x, MC, degree)
SNR wav_maw| i] [m], signal wav_maw/[i][m], sigmaRMS wav_maw[i][m] = C

if pixels == ’yes’:
plot_SNR (SNR_pix, signal_ pix, sigmaRMS_pix, size, method, ’pixels’, MC)
plot_SNR (SNR_pix maw, signal_pix_maw, sigmaRMS_pix maw, size, method, ’pixels’, MC)
if wavelengths == ’'yes’:
plot_SNR (SNR_wav, signal _wav, sigmaRMS wav, size, method, ’wavelengths’, MC)
plot_SNR (SNR_wav_maw, signal wav_maw, sigmaRMS wav_maw, size, method, ’'wavelengths’, MC)

if pixels == ’yes’ and wavelengths == 'no’:

return SNR_pix, signal_pix, sigmaRMS_pix, SNR_pix maw, signal_pix_maw, sigmaRMS_pix maw
if pixels == 'no’ and wavelengths == ’yes’:

return SNR wav, signal _wav, sigmaRMS_wav, SNR wav_maw, signal wav_maw, sigmaRMS wav_maw
if pixels == ’yes’ and wavelengths == ’yes’:

return SNR_pix, SNR_wav, SNR_pix maw, SNR wav_maw

74 C. Code

return

#%%

Scan of 200 pixels consisting of a varying number of leather pixels
and the rest is teflon pixels with one target pixel.

leather_pixels = [2,3,4,5,6,7,8,9,10,15,20,25,50,75,100,125,150,175]
total_pixels = 200

SNR = MAWMC(leather_pixels, total_pixels, MC, ’yes’, ’yes’)

SNR_pix, SNR wav, SNR_pix maw, SNR wav_maw = SNR

#%6%

Synthetic data, different to teflon
y_datal = np.zeros(len(x))

for i in range(len(x)):

if i < 391:

y_datal [i] = 3400 + 600/(1+np.exp(-((1/10))+(x[i] — 350)))
if i >= 391:

y_datal [i] = 4000 — 600/(1+np.exp(—(1/10)#(x[i]-550)))

plt.plot(x,y_datal)

observations = ’'wavelengths’

plot_ MAW(y_datal ,42,21,0bservations, 'ZCA’)

plot. MAW (Leather_spectrum (500, x),42,21,observations, 'ZCA’)
plot. MAW (Leather_spectrum (475, x),42,21,observations, 'ZCA’)
plot. MAW (Leather_spectrum (450, x),42,21,observations, 'ZCA’)
plot. MAW (Leather_spectrum (425, x),42,21,observations, ’ZCA’)
plot MAW (Leather_spectrum (400, x),42,21,observations, 'ZCA’)
plot. MAW (Leather_spectrum (375, x),42,21,o0bservations, 'ZCA’)
plot. MAW (Leather_spectrum (350, x),42,21,observations, 'ZCA’)
plot. MAW (Leather_spectrum (325, x),42,21,observations, 'ZCA’)

#%6%

leather_spectrum = Leather_spectrum (400, x)

Y, Y_maw, target_index = MAW(leather_spectrum, 42, 21, ’pixels’, ’ZCA’)

plt.plot(x, Y[target_index], label = ’Target_spectrum_after_global ZCA_ whitening’)
plt.plot(x, Y_maw[target_index], label = ’'Target_spectrum_after_multi-area_ZCA_whitening’)
plt.plot(x, baseline_fit(x, Y[target_index], 6), label = ’Fitted_baseline_to_global_\
_ZCA_whitened,_\n _target_spectrum’, color = ’orange’)

plt.xlabel ('Wavelength_ (nm) ’)

plt.ylabel (' Intensity’)

plt.legend(loc = ’lower_right’, ncol=1, fancybox=True, shadow=True)

plt.show()

plt.close ()

#%%
Spectral Angle Mapper, returns a value between 0 and pi, lower = higher similarity
#0 : P=Q
def SAM(P, Q):
theta_up = np.sum(P=Q)
theta_down = (np.sqrt(np.sum(P+P))*np.sqrt(np.sum(Q=Q)))
theta = np.arccos(theta_up / theta_down)
return theta

Cosine similarity, returns a value between -1 and 1,

#-1: P = -Q,

1: P =Q,

0: P and Q orthogonal, P = 0 when Q != 0 and P != 0 when Q = 0

C.6. Multi_area_whitening 75

def cos_similarity (P, Q):
theta_up = np.sum(P=Q)
theta_down = (np.sqrt(np.sum(P=P))=*np.sqrt (np.sum(Q=Q)))
return theta_up/theta_down

#%6%
points = np.linspace(300,500,9, dtype = int)
cossim_pix = np.zeros(len(points))
cossim_wav = np.zeros (len(points))
for i in range(len(points)):
A = plot MAW (Leather_spectrum (points[i], x), 200, 100, ’pixels’, 'ZCA’)
Y_zca_pix, Y_zca_maw_pix, target_index_pix = A
B = plot MAW(Leather_spectrum (points[i], x), 200, 100, 'wavelengths’, 'ZCA’)
Y _zca_wav, Y _zca_maw_wav, target_index_wav = B
cossim_pix[i] = cos_similarity(Y_zca_pix|[target_index_pix], Y _zca_maw_pix[target_index_pix])
cossim_wav[i] = cos_similarity(Y_zca_wav|[target_index_wav], Y_zca maw_wav|[target_index_wav])
print (points[i], cossim_pix[i], cossim_wav[i])

#%%

def MAW_cos_similarity(leather_pixels, MC, epsilon, method, size):
cos_sim_pix = np.zeros ([len(leather_pixels) ,MC])
cos_sim_maw_pix = np.zeros ([len(leather_pixels) ,MC])
cos_sim_wav = np.zeros ([len(leather_pixels) MC])
cos_sim_maw_wav = np.zeros ([len(leather_pixels) ,MC])
x = np.linspace (200, 550, 548)

for j in range(len(leather_pixels)):
for m in range (MC):
A = MAW(Leather_spectrum (400, x), size, leather_pixels[j], ’pixels’, method)
Y _zca_pix, Y_zca_maw_pix, target_index_pix = A
B = MAW(Leather_spectrum (400, x), size, leather_pixels[j], ’'wavelengths’, method)
Y_zca_wav, Y _zca_maw_wav, target_index_wav = B

cos_sim_pix[j][m] = cos_similarity (Y_zca_pix[target_index_pix], Gauss)
cos_sim_maw_pix[j][m] = cos_similarity(Y_zca_maw_pix[target_index_pix], Gauss)
cos_sim_wav([j][m] = cos_similarity (Y_zca_wav|[target_index_wav], Gauss)
cos_sim_maw_wav|[j][m] = cos_similarity(Y_zca_maw wav|[target_index_wav], Gauss)

plt.plot(leather_pixels, cos_sim_pix.mean(1), marker="o’, linestyle="None’,
markersize=8, label = f’Global_{method}_whitening’, color = ’red’)

plt.plot(leather_pixels, cos_sim_pix.mean(1) + cos_sim_pix.std (1), marker="o0’,
linestyle="None’, markersize=8, label = f’Global_{method}_whitening \

- +-_standard_deviation’, color = ’orange’)
plt.plot(leather_pixels, cos_sim_pix.mean(l) - cos_sim_pix.std (1), marker="o0",
linestyle="None’, markersize=8, color = ’orange’)
plt.plot(leather_pixels, cos_sim_maw_pix.mean(1), marker="o’, linestyle="None’,
markersize=8, label = f’Multi-area_{method}_whitening’, color = ’'blue’)

plt.plot(leather_pixels, cos_sim_maw_pix.mean(l) + cos_sim_maw_pix.std (1),
marker="0’, linestyle='None’, markersize=8, label = f’Multi-area_\

—r..imethod} _whitening_ +-_standard_deviation’, color = ’c’)
plt.plot(leather_pixels, cos_sim_maw_pix.mean(1) - cos_sim_maw_pix.std (1),
marker="0’, linestyle="None’, markersize=8, color = ’'c’)
plt.title ('Cosine similarty of target spectrum from a scan of 200 pixels,\
\n where the number of leather pixels is displayed on the x-axis, \
\n pixels used as observations.’)

plt.xlabel (’'Number_of_leather_pixels_of_ total_1000_pixels’)
plt.ylabel (’Cosine_similarity’)

76 C. Code

plt.legend(loc="lower_left’, ncol=1, fancybox=True, shadow=True)

plt.show()

plt.close ()

Target spectrum of global ZCA compared to that of a target pixel

on a 200 pixel teflon scan

Target spectrum of multi—-area ZCA compared to that of a target pixel

on a scan with the same amount of teflon pixels

plt.plot(leather_pixels, cos_sim_wav.mean(1), marker="o’, linestyle="None’,
markersize=8, label = f’Global_{method}_whitening’, color = ’red’)

plt.plot(leather_pixels, cos_sim_wav.mean(1l) + cos_sim_wav.std (1), marker="0’,
linestyle="None’, markersize=8, label = f’Global_{method} \

- whitening_+-_standard_deviation’, color = ’orange’)
plt.plot(leather_pixels, cos_sim_wav.mean(1) - cos_sim_wav.std (1), marker="o0’,
linestyle="None’, markersize=8, color = ’orange’)
plt.plot(leather_pixels, cos_sim_maw_wav.mean(1l), marker="0’, linestyle="None’,

markersize=8, label = f’Multi-area_{method}_whitening’, color = ’'blue’)
plt.plot(leather_pixels, cos_sim_maw_wav.mean(l) + cos_sim_maw_wav.std (1),
marker="0’, linestyle='None’, markersize=8, label = f’Multi-area_\

- {method}_whitening_+-_standard_deviation’, color = ’c’)
plt.plot(leather_pixels, cos_sim_maw_wav.mean(1l) - cos_sim_maw_wav.std (1),
marker="0’, linestyle='None’, markersize=8, color = ’'c’)
plt.title ('Cosine similarty of target spectrum from a scan of 200 pixels,\
\n where the number of leather pixels is displayed on the x-axis,\
\n wavelengths used as observations.’)

plt.xlabel ('Number of leather pixels of total 200 pixels’)
plt.ylabel (’Cosine_similarity’)

plt.legend (loc="lower_left’, ncol=1, fancybox=True, shadow=True)
plt.show()

plt.close ()

return cos_sim_pix, cos_sim_maw_pix, cos_sim_wav, cos_sim_maw_wav

leather_pixels = [2,3,4,5,6,7,8,9,10,15,20,25,50,75,100,125,150,175]
cos_sim = MAW_cos_similarity (leather_pixels, 1, epsilon, ’'ZCA’, 200)
cos_sim_pix, cos_sim_maw_pix, cos_sim_wav, cos_sim_maw_wav = cos_sim

C.7. Normal_test 77

C.7. Normal_test

import sys

sys.path.append(’../..")

sys.path.append("C:/ Users/Gwynn/OneDrive /Documenten/TW_Studie/Master/Jaar _3/\

- Thesis/kaleb/notebooks/Whitening Gwyn")

import numpy as np

import matplotlib. pyplot as plt

import csv

from scipy import stats

with open(’SNR_data/ZCA/SNR/SNR_ZCA_whitening 1000x23_obs=wav.csv’, newline="") as csvfile:
SNR_zca = list(csv.reader(csvfile))
SNR_zca = np.array(SNR_zca, dtype = float)

import scipy
test = scipy.stats.normaltest(SNR_zca, axis=1, nan_policy="propagate’)

import statsmodels.api as sm

size = [9,25,50,75,100,125,150,175,200,225,250,275,300,350,400,450,500,550,600,700,800,900,1000]
for i in range(len(size)):

plt.hist (SNR_zca[i])

plt.title (f’ {size[i]} ")

plt.show()

plt.close ()

#%%

mean_SNR_zca = SNR_zca.mean(1)
std_SNR_zca = SNR_zca.std (1)
alpha = 0.05

from scipy.stats import kstest

stat_ks = np.zeros(len(size))
p_ks = np.zeros(len(size))
for i in range(len(size)):

normed_data=(SNR_zca[i]-mean_SNR zca[i])/std_SNR_zcal[i]

stat_ks[i], p_ks[i] = kstest(normed_data, stats.norm. cdf)

print(size[i], stat_ks[i], p_ks[il])

if p_ks[i] < 0.05:

print ('We_reject _the_hypothesis_that_the_data_comes_from_a normal \

distibution_with_mean_,’, mean SNR zca[i], ’_and standard_deviation,’,
std_SNR_zcali], ’_for_a_scan_of_ ', size[i], ’'_pixels’)

TN |

78 C. Code

C.8. Whitening Figures

import sys

sys.path.append(’../..")

sys.path.append("C:/ Users/Gwynn/OneDrive /Documenten/TW_Studie/Master/Jaar _3/\
- Thesis/kaleb/notebooks/Whitening Gwyn")

import numpy as np

from kaleb.data import NestedDirectory

import seaborn as sns

import matplotlib.pyplot as plt

#%6%

import pandas as pd

file_name = "C:/Users/Gwynn/OneDrive/Documenten/TW_Studie /Master/Jaar_3/\
o Thesis/Data/Teflon_met_Gaussian_function. xlsx"

sheet = 'Data’

df = pd.read_excel(io = file_name, sheet name = sheet)

df = df.to_numpy(dtype = np.float64)

x = np.linspace (200, 550, 548)

y = df[0]

degree = 6

z = np.polyfit(x, y, deg = degree)

plt.plot(x, y, label = ’Average_Teflon_spectrum’)

plt.plot(x, z[0]*(x*%6) + z[1]*(x**5) + z[2]*(x**4) + z[3]*(x**3) + z[4]*(x**2) + z[5]*x + z[6],
label = ’Fitted,_polynomial_with,_degree_6’, color = ’blue’)

plt.legend (loc="upper_left’, ncol=1, fancybox=True, shadow=True)

plt.xlabel ('Wavelength,_ (nm) ’)

plt.ylabel ('Intensity’)

plt.show()

plt.close ()

Z1 = z[0]*(x*%6) + z[1]*(x*%x5) + z[2]*(x*%x4) + z[3]*(x*%3) + z[4]*(x*%x2) + z[5]*x + z[6]
72 = df[3]

Z31 = Z1[117:196]

732 = 72[117:196]

x3 = x[117:196]

plot the main figure

plt.plot(x,Z1, label = ’Fitted_polynomial_with_degree 6’, color = ’'blue’)

plt.plot(x, Z2, label = ’Spectrum, target _substance_on_Teflon’, color = ’'orange’,
linestyle="dashed’)

plt.legend (loc="upper_left’, ncol=1, fancybox=True, shadow=True)

plt.xlabel ('Wavelength_ (nm) ’)

plt.ylabel ('Intensity’)

location for the zoomed portion
sub_axes = plt.axes([.55, .2, .3, .3])
plt.yticks (visible=True)

plot the zoomed portion
sub_axes.plot(x3, Z31, color "blue’)
sub_axes.plot(x3, Z32, color = ’orange’, linestyle=’"dashed’)

insert the zoomed figure
plt.setp (sub_axes)
plt.show ()

C.8. Whitening Figures 79

plt.close ()

#%%

import csv

with open(’SNR data/ZCA/SNR/SNR_ZCA_whitening_1000x23_obs=wav.csv’, newline="") as csvfile:
SNR_zca = list(csv.reader(csvfile))
SNR_zca = np.array(SNR_zca, dtype = float)

mean_SNR_zca = SNR_zca.mean(1)
std_SNR_zca = SNR_zca.std (1)
size_6 = [550,600,700,800,900,1000]
size_9 = [400,450,500,550,600,700,800,900,1000]
size_14 [9,25,50,75,100,125,150,175,200,225,250,275,300,350]
size_17 [9,25,50,75,100,125,150,175,200,225,250,275,300,350,400,450,500]
size_21 = [530,535,540,541,542,543,544,545,546,547,548,549,551,552,553,554,555,556,557,558,559]
size_23 [9,25,50,75,100,125,150,175,200,225,250,275,300,350,400,450,500,550,600,700,800,900,
1000]
size_52 = [155,160,165,170,180,185,190,195,205,210,215,220,230,235,240,245,255,260,265,270,280,
285,290,295,305,310,315,320,325,330,335,340,345,355,360,365,370,380,385,390,395,405,
410,415,420,425,430,435,440,445,475,525]
size_75 = [9,25,50,75,100,125,150,155,160,165,170,175,180,185,190,195,200,205,210,215,220,225,
230,235,240,245,250,255,260,265,270,275,280,285,290,295,300,305,310,315,320,325,330,
335,340,345,350,355,360,365,370,380,385,390,395,400,405,410,415,420,425,430,435,440,
445,450,475,500,525,550,600,700,800,900,1000]
size_85 = [9,25,50,75,100,125,150,155,160,165,170,175,180,185,190,195,200,205,210,215,220,225,
230,235,240,245,250,255,260,265,270,275,280,285,290,295,300,305,310,315,320,325,330,
335,340,345,350,355,360,365,370,380,385,390,395,400,405,410,415,420,425,430,435,440,
445,450,475,500,525,550,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700,
1800,1900,2000]
if len(SNR_zca) == 6:
size = size_6
if len(SNR_zca) == 9:
size = size_9
if len(SNR_zca) == 14:
size = size_14
if len(SNR_zca) == 17:
size = size_17
if len(SNR_zca) == 21:
size = size_21
if len(SNR_zca) == 23:
size = size_23

if len(SNR_zca) == 75:
size = size_75
if len(SNR zca) == 85:

size = size_85

plt.plot(size, mean SNR zca, color="red’, marker="0’, linestyle="None’, markersize=8,
label="Signal-to-noise_ratio_of_target_pixel’)

plt.plot(size, mean_SNR_zca-std_SNR_zca, color='blue’, marker="0’, linestyle="None’,
markersize=8, label="Signal-to-noise_ratio_+-_standard_deviation’)

plt.plot(size, mean SNR_zca+std_SNR_zca, color="blue’, marker="o’, linestyle="None’,
markersize=8)

plt.xlabel ('Number_of_whitened_pixels)

plt.ylabel (’SNR’)

plt.legend (loc="upper_left’, ncol=1, fancybox=True, shadow=True) # bbox_to_anchor=(1.0, 1.015)

plt.show()

plt.close ()

)

80 C. Code

#%%
def Leather_spectrum (n: int, x):
y_data = np.zeros(len(x))
for i in range(len(x)):
if i < n:
y_data[i] = 3400 + 46600/(1+np.exp(-((1/10))*(x[i] - (x[n] -100))))
if i >= n:
y_data[i] = 50000 — 46600/(1+np.exp(—(1/10)=(x[i] - (x[n] + 100))))
return y_data

plt.plot(x, Leather_spectrum (500, x), label = "500")
plt.plot(x, Leather_spectrum (475, x), label = "475")
plt.plot(x, Leather_spectrum (450, x), label = "450")
plt.plot(x, Leather_spectrum (425, x), label = "425")
plt.plot(x, Leather_spectrum (400, x), label = "400")
plt.plot(x, Leather_spectrum(375, x), label = "375")
plt.plot(x, Leather_spectrum(350, x), label = "350")
plt.plot(x, Leather_spectrum (325, x), label = "325")
plt.legend (loc="upper_left’, ncol=1, fancybox=True, shadow=True)
plt.show()

plt.close ()

#%%

import csv

with open(’Multi-area-whitening/CosineSimilarity_Global\
...ZCA_1000x18_obs=wav.csv’, newline="") as csvfile:
global_zca = list(csv.reader(csvfile))

global_zca = np.array(global_zca, dtype = float)

mean_global_zca = global_zca.mean(1)
std_global_zca = global_zca.std (1)

with open(’Multi-area-whitening/CosineSimilarity_Multi_Area\
...ZCA_1000x18_obs=wav.csv’, newline="") as csvfile:
ma_zca = list(csv.reader(csvfile))

ma_zca = np.array (ma_zca, dtype = float)

mean_ma_zca = ma_zca.mean(1)
std_ma_zca = ma_zca.std (1)

leather_pixels = [2,3,4,5,6,7,8,9,10,15,20,25,50,75, 100,125,150,175]

plt.errorbar(leather_pixels, mean_global_zca, std_global_zca, marker="0’, linestyle="None’,
markersize=8, ecolor = ’orange’, elinewidth = 2, capsize = 5, capthick = 2,
label = ’Global ZCA_whitening +-_standard,_deviation’, color = ’'red’)

plt.xlabel ('Number_of_leather_pixels_of_total_200_pixels’)

plt.ylabel (’Cosine_similarity’)

plt.legend(loc="lower_left’, ncol=1, fancybox=True, shadow=True)

plt.show()

plt.close ()

plt.errorbar (leather_pixels, mean_ma_zca, std_ma_zca, marker="o’, linestyle="None’,
markersize=8, ecolor = 'c’, elinewidth = 2, capsize = 5, capthick = 2,
label = ’'Multi-area_ZCA_whitening_+-_standard_deviation’, color = ’blue’)

plt.xlabel ('Number_of_leather_pixels _of total_200_pixels’)

plt.ylabel(’Cosine_similarity’)

plt.ylim (0.85,0.95)

plt.legend(loc="lower_left’, ncol=1, fancybox=True, shadow=True)

plt.show()

C.8. Whitening Figures

81

plt.close ()

	Preface
	Abstract
	List of Variables
	Introduction
	Background
	Hyperspectral Imaging
	The Covariance Matrix
	Whitening Tranformations
	Principal Component Analysis (PCA)
	Standardized PCA
	Zero-phase Component Analysis (ZCA)
	Standardized ZCA
	Canonical Correlation Analysis (CCA)
	Cholesky Whitening
	Characteristics of Whitening Transformations

	Methodology
	Synthetic Data
	Whitening
	Empirical Whitening Process
	Used Whitening Transformations
	PCA and Standardized PCA Whitening
	ZCA and Standardized ZCA Whitening
	CCA Whitening
	Cholesky Whitening

	Signal-to-Noise Ratio
	The Influence of the Number of Pixels in the Scene
	Monte Carlo Simulations

	Multi-area whitening
	Creating the Leather Spectrum
	The Influence of Shifting the Spectrum on the Scenario
	Spectral Angle and Cosine Similarity
	Monte Carlo Simulations

	Results and Discussion
	Without Shot Noise
	Signal-to-Noise Ratio
	Cutting of the Spectrum

	Multi-Area Whitening

	Conclusions
	Recommendations
	Bibliography
	The Empirical Covariance Matrix: Additional Proofs
	Figures
	Code
	whitening_math_functions
	whitening_methods_functions
	whitening_SNR_functions
	Whitening_synthetic_data
	SNR_Monte_Carlo
	Multi_area_whitening
	Normal_test
	Whitening_Figures

