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Abstract. The SAS model (Scale Adapted Simulation) was invented by Menter and co-
workers. The idea behind the SST-SAS k − ω model is to add an additional production
term – the SAS term – in the ω equation, which is sensitive to resolved (i.e. unsteady)
fluctuations. When the flow equations resolve turbulence, the length scale based on velocity
gradients is much smaller than that based on time-averaged velocity gradients. Hence the
von Kármán length scale, LvK , is an appropriate quantity to use as a sensor for detecting
unsteadiness. In regions where the flow is on the limit of going unsteady, the objective of
the SAS term is to increase ω. The result is that k and νt are reduced so that the dissipating
(damping) effect of the turbulent viscosity on the resolved fluctuations is reduced, thereby
promoting the momentum equations to switch from steady to unsteady mode.

The SST-SAS model and the standard SST-URANS are evaluated for three flows: de-
veloping channel flow, the flow in an asymmetric, plane diffuser and the flow around a
three-dimensional axi-symmetric hill. Unsteady inlet boundary conditions are prescribed
in all cases by superimposing turbulent fluctuations on a steady inlet boundary velocity
profile.

1 Introduction

RANS turbulence models, such as two-equation eddy-viscosity models, are highly dis-
sipative. This means that they are not likely to be triggered into unsteady mode unless
the flow instabilities are strong (such as vortex shedding behind bluff bodies [1–3]). It is
a good idea in many flow situations to let the RANS solution go unsteady. First, on a
fine mesh, it may well be that no steady solution exists. In that case there is no point
in trying to force the flow to a steady solution. Second, if some large movements (either
the very largest turbulence structures or some quasi-periodic non-turbulent structure) are
allowed to be resolved, the flow will be more accurately captured. In a way, this is the
idea of DES [4, 5], in which the turbulence in the boundary layers is modelled (RANS)
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Figure 1: Velocity profiles from a DNS of channel flow. Solid line: time-averaged velocity; dashed line:
instantaneous velocity.

and the large detached eddies are resolved (LES). In DES, the switch between the RANS
and LES is dictated by the ratio of the RANS to the LES turbulent length scales. The
latter length scale is defined from the grid (the length of the largest cell side).

The present work evaluates a new approach by Menter and co-workers [6–8] called SAS
(Scale-Adapted Simulation). The SAS term is an additional production term in the ω
equation that increases when the flow equations start to go unsteady. The SAS term
switches itself on when the ratio of the modelled turbulent length scale, k1/2/ω, to the
von Kármán length scale increases. The von Kármán length scale, which is based on
the ratio of the first to the second velocity gradients, is smaller for an unsteady velocity
profile than for a steady velocity profile, see Fig. 1. The idea of the SAS term is that,
when the flow equations resolve unsteadiness, the SAS term detects the unsteadiness and
increases the production of ω. The effect is that ω increases, and hence the turbulent
viscosity decreases because ω appears in the denominator in the expression for νt and
because the magnitude of the destruction term, −β∗kω, in the modelled turbulent kinetic
energy equation increases.

The paper is organised as follows. First, the SST-SAS k − ω model is derived. In
the next section, the von Kármán is evaluated using instantaneous channel data obtained
by DNS (fine mesh) and hybrid LES-RANS (coarse mesh). The numerical method and
the instantaneous inlet boundary conditions are then briefly presented. The results are
reported and discussed, and, finally, conclusions are drawn.

2 The k − kL Turbulence Model

2.1 Derivation

Rotta [9] derived an exact equation for kL based on the integral length scale.

kL =
3

16

∫

Rii(x, η)dη, Rij = ui(x)uj(x + η) (1)
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All two-equation models have one production term and one destruction term. Rotta’s kL
equation includes two production terms, namely (here given in boundary-layer form)

SkL = − 3

16

∂ū(x)

∂y

∫

R21dη
︸ ︷︷ ︸

I

− 3

16

∫
∂ū(x + η)

∂y
R12dη

︸ ︷︷ ︸

II

(2)

To simplify the second term, Rotta used Taylor expansion so that

∂ū(x + η)

∂y
=

∂ū(x)

∂y
︸ ︷︷ ︸

a

+ η
∂2ū(x)

∂y2

︸ ︷︷ ︸

b

+
1

2
η2∂3ū(x)

∂y3

︸ ︷︷ ︸

c

+ . . . (3)

The first term, a, is incorporated in SkL,I . Rotta set the second term, b, to zero

∂2ū(x)

∂y2

∫ +∞

−∞

R12ηdη = 0 (4)

because, in homogeneous shear flow, R12(η) is antisymmetric with respect to η. The
second term in Eq. 2 was consequently modelled with the third term, c, including the
third velocity gradient ∂3ū/∂y3.

Menter & Egorov [7] argue that homogeneous shear flow is not a relevant flow case
because the second velocity gradient here is zero anyway. They propose modelling the
SkL,II term in Eq. 2 using the second velocity gradient as [7, 8]:

SkL,IIb = − 3

16

∫
∂ū(x + η)

∂y
R12dη = − |uv|

∣
∣
∣
∣

∂2ū(x)

∂y2

∣
∣
∣
∣
L2 (5)

The eddy-viscosity assumption for the shear stress gives |uv| = νt|∂ū/∂y|. In three-
dimensional flow the shear stress can be estimated by an eddy-viscosity expression, νt(2s̄ij s̄ij)

1/2.
Using a general formula for the second derivative of the velocity we get [7, 8]

SkL,IIb = −νtS |U ′′|L2

S = (2s̄ij s̄ij)
1/2

U ′′ =

(
∂2ūi

∂xj∂xj

∂2ūi

∂xk∂xk

)1/2
(6)

In the k − kL model the turbulent viscosity, νt, and the dissipation term, ε, in the k
equation have the form

νt = c1
kL

k1/2
(7)

ε =
k5/2

kL
(8)

3



Lars Davidson

Term Skl,IIb in the kL equation is a sink term that reduces kL. The result is that the
turbulent viscosity is reduced because kL appears in the nominator of the expression for
νt, see Eq. 7. This reduction is somewhat diminished since a decrease in kL also reduces
k via an increase in the dissipation term, ε, see Eq. 8. However, since kL appears directly
in νt, it is expected that the overall effect of a large SkL,IIb will be a decrease in νt.

The source term, SkL,IIb, includes the second velocity gradient. The von Kármán length
scale

LvK,1D = κ

∣
∣
∣
∣

∂〈ū〉/∂y

∂2〈ū〉/∂y2

∣
∣
∣
∣

(9)

also includes the second velocity gradient. This is interesting because, as noted in [7],
the von Kármán length scale decreases when the momentum equations resolve (part of)
the turbulence. The von Kármán length scale is smaller for an instantaneous velocity
profile than for a time-averaged velocity, see Fig. 1. When making URANS or DES, the
momentum equations are triggered through instabilities to go unsteady in regions where
the grid is fine enough. In URANS or in DES operating in RANS mode, high turbulent
viscosity dampens out these instabilities. In many cases this is an undesired feature,
because, if the flow wants to go unsteady, it is usually a bad idea to force the equations
to stay steady. One reason is that there may not be any steady solution. Hence, the
equations will not converge. Another reason is that, if the numerical solution wants to
go unsteady, the large turbulent scales will be resolved instead of being modelled. This
leads to a more accurate prediction of the flow.

The role of term SkL,IIb is that this term becomes large when unsteady resolved veloc-
ities appear in the flow. As discussed above, this will lead to reduced turbulent viscosity,
which means that the resolved fluctuations are less likely to be dampened. This feature led
Menter and co-workers [6–8] to introduce the von Kármán length scale in a one-equation
model, in a k − k1/2L model and in a k − ω SST model. In the present study, we will use
and evaluate the modified k − ω SST model.

2.2 The second derivative

To compute U ′′ in Eq. 6, we need to compute the second velocity gradients. In finite
volume methods, there are two main options for computing second derivatives.

Option I: compute the first derivatives at the faces

(
∂u

∂y

)

j+1/2

=
uj+1 − uj

∆y
,

(
∂u

∂y

)

j−1/2

=
uj − uj−1

∆y

and then

⇒
(

∂2u

∂y2

)

j

=
uj+1 − 2uj + uj−1

(∆y)2
+

(∆y)2

12

∂4u

∂y4

Option II: compute the first derivatives at the center
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(
∂u

∂y

)

j+1

=
uj+2 − uj

2∆y
,

(
∂u

∂y

)

j−1

=
uj − uj−2

2∆y

and then

⇒
(

∂2u

∂y2

)

j

=
uj+2 − 2uj + uj−2

4(∆y)2
+

(∆y)2

3

∂4u

∂y4

Option I is used in the present work unless otherwise stated.

2.3 The k − ω SST model

Now we want to transform the SkL,IIb term in the k − kL model to the k − ω model.
The kL equation (expressed in dependent variables k and kL) can be transformed term
by term to the ω equation (expressed in dependent variables k and ω = k3/2/(kL)). The
transformation reads

dω

dt
=

3

2

k1/2

(kL)

dk

dt
− k3/2

(kL)2

d(kL)

dt
(10)

The last term is used to transform the SkL,IIb term (see Eq. 6) which gives

PSAS = − k3/2

(kL)2

(
−νtS |U ′′|L2

)
=

1

k1/2L
νtS |U ′′|L ∝ S |U ′′|L (11)

The second velocity gradient, ∂2ū/∂y2, appears in the definition of the von Kármán
length scale, and it is given in Eq. 9 in boundary layer form. S and U ′′ in Eq. 11 correspond
to one form of first and second velocity gradients in three-dimensional flow. Using S and
U ′′ in Eq. 9 and inserting these into Eq. 11 gives

PSAS = ζ̃2 S2 |U ′′|
κS

L = ζ̃2κS2 L

LvK,3D

LvK,3D = κ
S

|U ′′|

(12)

A term involving derivatives of ω appears when the k − kL equation is transformed.
To preserve the SST model in the URANS region, a term with derivatives of ∂k/∂xi is
also included. The final form of the additional term in the ω equation reads [8]

PSAS = FSAS max (T1 − T2, 0)

T1 = ζ̃2κS2 L

LvK,3D

T2 =
2k

σΦ
max

(
1

ω2

∂ω

∂xj

∂ω

∂xj
,

1

k2

∂k

∂xj

∂k

∂xj

)

L =
k1/2

ωc
1/4
µ

(13)

5



Lars Davidson

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400 500

PSfrag replacements

y/δ

y+

0 0.01 0.02 0.03 0.04 0.05
0

0.02

0.04

0.06

0.08

0.10 5 10 15 20 25

PSfrag replacements

y/δ

y+

Figure 2: Turbulent length scales in fully developed channel flow. Left: global view; right: zoom. DNS.
963 mesh. Reτ = 500. ∆x/δ = 0.065, ∆z/δ = 0.016, y-stretching of 9%. : 〈LvK,3D〉; : LvK,1D;

: (∆x∆y∆z)1/3; ◦: ∆y.

The k − ω SST-SAS can now be written

∂k

∂t
+

∂

∂xj

(ūjk) =
∂

∂xj

[(

ν +
νt

σk

)
∂k

∂xj

]

+ Pk − β∗kω

∂ω

∂t
+

∂

∂xj
(ūjω) =

∂

∂xj

[(

ν +
νt

σω

)
∂ω

∂xj

]

+ Pω − βω2

+ 2(1 − F1)σω2
1

ω

∂k

∂xi

∂ω

∂xi
+ PSAS

F = tanh(ξ4), ξ = min

[

max

{ √
k

β∗ωy
,
500ν

y2ω

}

,
4σω2k

CDωy2

]

νt =
a1k

max(a1ω, SF2)
, Pω = α

Pk

νt

F2 = tanh(η2), η = max

{
2k1/2

β∗ωy
,
500ν

y2ω

}

(14)

where CDω denotes the cross diffusion term.

3 Evaluation of the von Kármán length scale in fully developed channel flow

In Fig. 2 different turbulent length scales are evaluated using DNS data of fully devel-
oped channel flow. Only viscous dissipation of resolved turbulence affects the equations
in DNS. This implies that the smallest scales that can be resolved are related to the
grid scale. The von Kármán length scale based on instantaneous velocities, 〈LvK,3D〉, is
shown in Fig. 2. For y > 0.2, its magnitude is close to ∆y, which confirms that the
von Kármán length scale is related to the smallest resolvable scales. Closer to the wall,
〈LvK,3D〉 increases slightly while ∆y continues to decrease.
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Figure 3: Turbulent length scales in fully developed channel flow. Hybrid LES-RANS. Left: global view;
right: zoom. 32 × 64 × 32 mesh. Reτ = 2000. ∆x/δ = 0.39, ∆z/δ = 0.19, y-stretching of 17%. :

〈LvK,3D〉; : LvK,1D; : (∆x∆y∆z)1/3; ◦: ∆y; +: `k−ω = k1/2/(c
1/4
µ ω).

The von Kármán length scale, LvK,1D (see Eq. 9), based on the averaged velocity profile,
〈ū〉 = 〈ū〉(y), is also included in Fig. 2 and, as can be seen, it is much larger than 〈LvK,3D〉.
Near the wall, LvK,1D increases because the time-averaged second derivative, ∂2〈ū〉/∂y2,
goes to zero as the wall is approached. This behavior is not seen for the three-dimensional
formulation, 〈LvK,3D〉.

Figure 3 uses data from hybrid LES-RANS (taken from [10]). With hybrid LES-RANS,
part of the turbulence is resolved and part of the turbulence is modelled. The resolved
turbulence is dissipated by a modelled dissipation, −2〈νT s̄ij s̄ij〉 (νT denotes SGS or RANS
turbulent viscosity), and νT � ν. As a result, the length scale of the smallest resolved
turbulence is larger in hybrid LES-RANS than in DNS. Close to the wall in the URANS
region (y < 0.031δ), the resolved turbulence is dampened by the high turbulent viscosity,
and, as a result, 〈LvK,3D〉 follows closely LvK,1D.

The RANS turbulent length scale, `k−ω, from a one-dimensional RANS simulation at
Reτ = 2000 made with the SST model is also included in Fig. 3. In the inner region
(y < 0.5δ), its behavior is close to that of the von Kármán length scale, LvK,1D. In the
center region, the RANS turbulent length scale continues to increase whereas the von
Kármán length scale, LvK,1D, goes to zero.

Two filter scales are included in Figs. 2 and 3. In the DNS simulations, ∆y <
(∆x∆y∆z)1/3 near the wall; far from the wall, however, ∆y > (∆x∆y∆z)1/3 because
of both the stretching in the y direction and small ∆x and ∆z. In the hybrid simulations,
it can be noted that the three-dimensional filter width is approximately twice as large as
the three-dimensional formulation of the von Kármán length scale, i.e. (∆x∆y∆z)1/3 >
〈LvK,3D〉.
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4 The Numerical Method

An incompressible, finite volume code with a non-staggered grid arrangement is used [11].
For space discretization, central differencing is used for all terms. The Crank-Nicholson
scheme is used for time discretization of all equations. The numerical procedure is based
on an implicit, fractional step technique with a multigrid pressure Poisson solver [12].

5 Inlet Conditions

For the channel simulations inlet fluctuating velocity fields (u′, v′, w′) are created at
each time step at the inlet y − z plane using synthetic isotropic fluctuations [13, 14].
These are independent of one another, however, and thus their time correlation will be
zero. This is unphysical. To create correlation in time, new fluctuating velocity fields, U ′,
V ′, W ′, are computed as [13, 15, 16]

(U ′)m = a(U ′)m−1 + b(u′)m

(V ′)m = a(V ′)m−1 + b(v′)m

(W ′)m = a(W ′)m−1 + b(w′)m

(15)

where m denotes time step number, a = exp(−∆t/T ) and b = (1 − a2)1/2. The time
correlation of U ′

i will be equal to exp(−∆t/T ), where T is proportional to the turbulent
time scale. The inlet boundary conditions are prescribed as

ū(0, y, z, t) = Uin(y) + u′
in(y, z, t)

v̄(0, y, z, t) = v′
in(y, z, t)

w̄(0, y, z, t) = w′
in(y, z, t)

(16)

The mean inlet velocity, Uin(y), k and ω are taken from one-dimensional channel flow
predicted with the SST model.

For the diffuser flow simulations, the inlet conditions are taken from a DNS of fully
developed channel flow at Reτ = 500. k and ω are taken from one-dimensional channel
flow obtained with the SST model.

For the three-dimensional hill simulations, fluctuations are taken from the same DNS of
channel flow. These fluctuations are then re-scaled and superimposed on the experimental
mean inlet velocity profile. Neumann conditions are used for k and ω.

6 Results

6.1 Channel Flow

A 256 × 64 × 32 node mesh (x, streamwise; y, wall-normal; z, spanwise) was used.
The size of the computational domain is xmax = 100, ymax = 2 (geometric stretching of
17%) and zmax = 6.28, see Fig. 4. This gives a ∆x+ and ∆z+ of approximately 785 and
393, respectively, and y+ < 1 near the walls, expressed in inner scaling. In outer scaling,
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Figure 5: Velocity profiles. : x/δ = 3.33; : x/δ = 23; : x/δ = 97; +: 2.5 ln(y+) + 5.2; 5:
from a 1D simulation with the SST model.

δ/∆x ' 2.5 and δ/∆z ' 5. The time step was set to ∆tuτ/δ = 4.91 · 10−3. The Reynolds
number is Reτ = uτδ/ν = 2000. Neumann boundary conditions are prescribed at the
outlet.

The results using the standard SST-URANS model and the SST-SAS model are pre-
sented below. Figure 5 shows the velocity profiles; the results obtained with the two
models are very similar. Figures 6 and 7 show the predicted resolved Reynolds stresses.
As can be seen, the stresses predicted by the SST-SAS model decay at a slower rate than
those predicted by the SST-URANS model. The reason is that the turbulent viscosity
is smaller with the SST-SAS model than with the SST-URANS model (Fig. 8), which
makes the dissipation of the resolved fluctuations smaller with the former model. It can
be noted that, at the end of the channel (x/δ = 97), the turbulent viscosity obtained with
the SST-URANS model is equal to the turbulent viscosity predicted in a one-dimensional
channel using the SST-URANS model (see Fig. 8b) and that the resolved stresses are
zero. Hence, the flow has returned to fully steady conditions.
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(b) SST-URANS.

Figure 6: Streamwise resolved normal stresses. : x/δ = 3.33; : x/δ = 23; : x/δ = 97.
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Figure 7: Resolved shear stresses. : x/δ = 3.33; : x/δ = 23; : x/δ = 97.

Figure 9a presents the ratio of the turbulent length scale, L = k1/2/(c
1/4
µ ω), to the

von Kármán length scale. As expected, the von Kármán is largest near the inlet, where
the resolved fluctuations are largest. Near the inlet, the von Kármán length scale is
more than twice as large as the turbulent length scale, L. When the resolved stresses far
downstream become very small (i.e. the flow goes towards a steady solution), the ratio
near the centerline increases since the von Kármán length scale for steady flow is small
in this region, cf. Fig. 3a.

The ratio of the production term, Pω, to the SAS term, PSAS, in the ω equation is
presented in Fig. 9b. The SAS term is large near the inlet, more than three times Pω,
and it decreases further downstream as the resolved fluctuations are dampened.
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Figure 8: Turbulent viscosity. : x/δ = 3.33; : x/δ = 23; : x/δ = 97; 5: from a 1D simulation
with the SST model.
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Figure 9: SAS-SST model. SAS terms. : x/δ = 3.33; : x/δ = 23; : x/δ = 97.

Figure 10 shows the maximum of the resolved stresses vs. x. Here it is again illustrated
that the resolved stresses are dampened much faster with the SST-URANS model than
with the SST-SAS model.

The friction velocities are presented in Fig. 11. In the developing unsteady region, the
friction velocity differs from its steady-state value of one and, as the resolved fluctuations
are dampened further downstream, the friction velocity approaches one.

Figure 12 gives the maximum of the resolved stresses vs. x. Options I and II for
computing the second velocity derivatives in U ′′ (see Section 2.2) are compared. Option
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Figure 11: Friction velocities.

II uses only every second node, and hence U ′′ becomes larger (PSAS smaller) than with
Option I. As a result, the turbulent viscosity is smaller with Option I as compared with
Option II, and this explains why the resolved stresses are larger with Option I than with
Option II, see Figure 12.

6.2 Asymmetric Diffuser

The configuration is an asymmetric plane diffuser, see Fig. 13a, with Reynolds number
Re = Ub,inH/ν = 18 000 (Ub,in = H = 1). The opening angle is 10o. Periodic bound-
ary conditions are prescribed in the spanwise direction. The mesh has 256 × 64 × 32
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Figure 12: SAS model. Decay of resolved stresses. Two different options for computing the second
velocity derivatives, see Section 2.2. : 〈u′v′〉/u2
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the hill.

Figure 13: Configurations.

(x, y, z) cells (body-fitted, structured, nearly orthogonal mesh). The CPU time is ap-
proximately 10s per time step on a Linux PC (AMD Opteron 246). A time step of 0.04
is used (CFLmax ' 1), and two global iterations are needed at each time step to reach
convergence.

The velocity profiles are presented in Fig. 14 and it can be seen that the agreement
with experiments is better for the SST-URANS model than for the SST-SAS model. The
reason is that the turbulent viscosity is reduced by the SAS term, which allows part of the
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Figure 14: Diffuser (not to scale). 〈ū〉-velocities. : SST-SAS; : SST-URANS; markers: experi-
ments [17].
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Figure 15: Diffuser (not to scale). Normal stresses. : 〈u′2〉; : 2k/3; markers: experiments [17].
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Psas/Pω, in the ω equation.

Figure 16: Diffuser.

turbulence to be resolved. The problem is that the resolved turbulence is only partially
triggered, and it decays in the diffuser part; at the end of the diffuser part, x/H = 24, (see
Fig. 15a) it has vanished completely in the lower half of the diffuser and is small in the
upper half. With the SST-URANS model the resolved turbulence is already damped out
at x/H = 14, see Fig. 15b. The modelled turbulent kinetic energy, k, is also larger with
the SST-SAS model than with the SST-URANS model. This can probably be explained by
the larger production term in the former case, since part of the turbulence is resolved with
the SST-SAS model which yields a large strain rate s̄ij s̄ij in Pk. The turbulent viscosity is
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(d) SST-URANS model

Figure 17: Three-dimensional hill. Grid and streamlines in the center plane z = 0.

smaller with the SST-SAS model than with the SAS-URANS model (Fig. 16a), however,
and this is due to a larger ω because of the SAS term in the ω equation. The ratio of
the SAS term to the usual production term is shown in Fig. 16b, and it can be seen that
the SAS term is largest below the center of the diffuser. As expected, this corresponds to
the region where the turbulent viscosity predicted by the SAS-SST model is smaller than
that predicted by the SAS-URANS model (14 ≤ x/H ≤ 24, see Fig. 16a)

6.3 Three-Dimensional Hill

A 162 × 82 × 130 (x, y, z) mesh is used (1.7 million cells). It is nearly orthogonal in
the near-wall region of the hill, see Fig. 17a. The inlet is located at x = −4.1H and the
outlet at x = 15.7H, see Fig. 13b. Periodic conditions are used at the side walls and
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(a) SST-SAS model. (b) SST-URANS model.

Figure 18: Three-dimensional hill. Resolved normal stress 〈u′u′〉/U2
b,in. z = 0.

(a) SST-SAS model. (b) SST-URANS model.

Figure 19: Three-dimensional hill. Turbulent viscosity, 〈νt〉/ν. z = 0.

homogeneous Neumann conditions are employed for all variables at the outlet.
The streamlines in the center plane are compared with experiments in Fig. 17b-d.

The predicted height of the recirculating region is close to H for both models whereas
the corresponding height in the experiments is approximately 0.1H. This is similar to
what was found in the Flomania project [18] where all steady RANS simulations gave a
recirculation region similar to that shown in Fig. 17c-d.

The resolved streamwise normal stresses are presented in Fig. 18. The resolved fluctua-
tions with the two models are similar upstream of the crest of the hill, but are much larger
downstream of the crest with the SST-SAS model than with the SST-URANS model, es-
pecially some distance away from the wall (y/H ' 0.8). It can be noted that the ratio
of the resolved turbulence to the modelled turbulence is larger here than for the diffuser
flow.

Figure 19 and 20 present the turbulent viscosity and the modelled turbulent kinetic
energy. As was found for the diffuser flow, the predicted turbulent viscosity is smaller with
the SST-SAS model than with the SST-URANS model. The predicted turbulent kinetic
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(a) SST-SAS model. (b) SST-URANS model.

Figure 20: Three-dimensional hill. Modelled turbulent kinetic energy, k/U 2
in. z = 0.

(a) z = 0 (b) z = 1.13H

Figure 21: Three-dimensional hill. Ratio of SAS term to production term, Psas/Pω, in the ω equation.
z = 0
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(a) Resolved normal stress 〈u′u′〉/U2
b,in. (b) Turbulent viscosity, 〈νt〉/ν.

Figure 22: Three-dimensional hill. Predictions with a hybrid LES-RANS with forcing [19]. z = 0.

energy is, contrary to the diffuser flow, smaller with the SST-SAS model than with the
SST-URANS model. The reason is probably that the SAS term plays a larger role here
compared to the diffuser flow. The ratio of the SAS term to the usual production term is
close to one in a large region in Fig. 21, whereas in the diffuser flow it is mostly smaller
than 0.5, see Fig. 16.

In [19] this flow was computed using hybrid LES-RANS (with forcing) using the same
code and the same mesh as in the present study. The predicted results were in reasonable
agreement with experiments. The resolved streamwise stress and the turbulent viscosity
are shown in Fig. 22. The magnitude of the resolved streamwise stress is similar for the
hybrid LES-RANS (Fig. 22a) and the SST-SAS model (Fig. 18a), but the maximum is
located slightly closer to the wall in the former case. However, the turbulent viscosity
predicted by the hybrid LES-RANS (Fig. 22b) is much smaller than is predicted by the
SST-SAS model (Fig. 19a).

7 Conclusions

The SST-SAS model was compared with the standard SST-URANS model in channel
flow, diffuser flow and the flow over a three-dimensional hill. Unsteady, turbulent inlet
boundary conditions are prescribed in both cases. It was confirmed that the SAS term
acts as expected: it reduces the turbulent viscosity compared to the SST-URANS model
and the resolved fluctuations are much larger with the SST-SAS model than with the
SST-URANS model.

The grid used in the channel flow simulations is very coarse (δ/∆x = 2.5 and δ/∆z = 5,
where δ denotes half-channel width). Hence, resolved turbulent fluctuations can not be
sustained with any of the models. The damping of resolved turbulence by the coarse
grid and the relatively large turbulent viscosities are too large. The prescribed turbulent
fluctuations in the channel flow decay at a much slower rate with the SAS-SST model
than with the SAS-URANS model.

The flow in the asymmetric diffuser is adversely affected by the SAS term. The flow
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predicted with the SST-SAS model is in poorer agreement than that predicted with the
SST-URANS model. The SAS term in the ω equation partly triggers resolved turbulence
by reducing the turbulent viscosity. The problem is that the turbulent viscosity stays too
large and, as a result the equations operate neither in RANS mode nor in LES/URANS
mode but somewhere in between. With the SST-URANS, the imposed fluctuation at the
inlet decays in the throat of the diffuser and the predicted flow in the main part of the
diffuser is steady.

The flow around the axi-symmetric hill is poorly predicted by both models. The
predicted recirculating region in the center plane is much too large compared with experi-
ments. On the lee-side of the hill a rather large unsteadiness prevails in both models, but
the resolved fluctuations are larger with the SST-SAS model than with the SST-URANS
model. However, when compared with hybrid LES-RANS – which does give a flow field
in reasonable agreement with experiments – the turbulent viscosity predicted with the
two models is much too large.

The SAS term is expressed as the ratio of the von Kármán length scale, Lvk,3D, to

the usual RANS turbulent length scale, c
−1/4
µ k1/2/ω. The von Kármán length scale is

evaluated using data from a DNS simulation and from a hybrid LES-RANS simulation.
It is found that when the DNS data are used the von Kármán length scale expressed in
instantaneous velocity gradients closely follows the smallest grid spacing, i.e. the wall-
normal spacing, ∆y. When the hybrid LES-RANS data are used the von Kármán length
scale in the wall region (i.e. the URANS region) is slightly larger than ∆y because of
rather larger turbulent viscosities, which make the smallest, resolved scales larger.

The concept of using the von Kármán turbulent length scale for detecting unsteadiness
is very interesting. This idea should be pursued further and could be used in connection
with other models. In the SST-SAS model the von Kármán length scale is used to trigger
an additional source term. As an alternative it could probably also be used to change the
value of a coefficient in a transport turbulence model.
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