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Abstract

Quantile regression is a useful method to analyse data such that the estimates are more robust to outliers and
the conditional distributions are more reliable for asymmetric distributions with respect to the commonly
used ordinary least squares regression. Besides this, the quantile regression analysis might also include ex-
tra information on the conditional relations between the response variable and the explanatory variables.
Therefore, it is previously used in educational sciences, among many other research areas. Bayesian statistics
is an upcoming approach for computing estimates, as it allows prior knowledge modelling. The Bayesian
quantile regression approach produces accurate parameter estimates by specifying prior distributions, like-
lihood estimators and MCMC methods to model an informative posterior distribution. In this research, the
theory behind the quantile regression and the Bayesian quantile regression approach are considered. Espe-
cially Bayesian quantile regression for ordinal longitudinal data. This theory is then used on data of academic
emotions to analyse its effect on attained grades of engineering students. Multiple aspects of quantile regres-
sion are included to analyse this effect, regarding gender, time and correlations between academic emotions.
It was found that the quantile regression produced insights that were ignored by ordinary least squares re-
gression, as the effects of anxiety altered over different quantiles. Especially when seperating genders, the
effect of anxiety seemed to differ a lot between genders and different fractions of the response variable. Fur-
thermore, an assumption for Bayesian quantile regression is made by specifying an exponentially distributed
prior and by seperating the gender distributions, as was found by the estimates of the quantile regression
approach.

B.D.W. Janssen
Delft, January 2023
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1
Introduction

Do academic emotions have effect on the educational achievements of students? A rather difficult question.
In this thesis the effects are analysed by different approaches. These effects are analysed on a deeper level by
the introduction of quantile regression. Quantile regression allows us to see different effects for different stu-
dent groups. Students with lower grades might experience a very different effect of emotions than students
with higher grades. Therefore quantile regression has been used for educational sciences before.
Bayesian statistics has gained a lot of popularity in analysis as it allows the investigator to use previous
knowledge and research to lead to a posterior distribution. Therefore also the Bayesian quantile regression
approach is introduced.

1.1. Thesis outline
This thesis starts with an introduction to quantile regression to get an intuition of its use and importance. In
Chapter 3 introduces the Bayesian quantile regression. First an introduction to Bayesian statistics and its sig-
nificance in modern statistics is given, of which then the Bayesian method is applied to quantile regression.
This includes information on calculating likelihood functions as well as choosing priors and sampling meth-
ods for Bayesian quantile regression. This method leads to an informative and reliable posterior distribution,
which can be used in further research. Especially the Bayesian quantile regression for ordinal longitudinal
data is elaborated in detail, as quantile regression had not been used for such data before the research of
Alhamzawi and Ali [27] and as the research data is ordinal longitudinal. After the elaboration of the quantile
regression approaches, a way of modelling quantile regression is introduced in chapter 4. Which includes
analysis on how emotions influence the grades of students by using quantile regression on the researched
data. Besides this research, the difference in gender and time are also analysed with the available data. Fol-
lowed by a conclusion and discussion on how this research may be further conducted by modelling Bayesian
quantile regression and using prior knowledge.
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2
Quantile regression

Regression analysis generally investigates the relationship between variables. The variables that are consid-
ered are one quantitative response variable, say Y , which is dependent on one or more explanatory variables,
X . The most common form of regression analysis is linear regression, where the response variable is a lin-
ear combination of the parameters. Therefore, say n is the number of observations and p is the amount of
independent explanatory variables, a basic model for a multiple linear regression is:

Yi =β0 +β1Xi 1 + . . .+βp Xi p +ϵi (2.1)

where i = 1, . . . ,n is the i -th observation, β the vector of parameters that should be estimated and ϵi the error
term, the so called residual.
So linear regression analysis examines the conditional distribution of the response variable Y as a function of
several X’s. Therefore regression analysis can be used to quantify the strength of the correlation of variables.
However, the correlation should rather be interpreted as an estimate than a perfect prediction. The certainty
of the estimate can be analysed by the residual. The bigger the residual, the less certain the information is
about the correlation. However, when the estimates are considered to be reliable, this information can be
used to predict or forecast. When the correlation between the Y and X variables are determined, the future Y
data can be predicted by forming the same regression model on known independent explanatory variables.
In this way regression analysis is used in research in biological, economic, social science, financial and be-
havioral fields, besides others.
A commonly used method to estimate the regression parameters is the least squares approach, which mini-
mizes the squared distance between real data points and the fitted regression line. The quadratic loss function
is defined as:

n∑
i=1

(βT x̂i − yi )2 (2.2)

yi being the actual response data points of each observation i , x̂i is the vector of explanatory variables for
each observation and β̂ is the vector of unknown parameters. The vector parameter β for which this function
is minimized is calculated by the following ordinary least squared formula:

β̂= arg min
β∈R

n∑
i=1

(βT x̂i − yi )2 (2.3)

By this minimization problem, the optimal β values can be estimated for k = 1, . . . , p. The estimated pa-
rameters can be used in the multiple linear regression model introduced in equation 2.1 to plot a line such
that the relationship between the response variable and the explanatory variables is shown. Most commonly
the mean of the response values is used as affine function. As an example the data points in Figure 2.1 are
examined. This is a univariate model with the Grade Point Avarage score as explanatory variable of student
i ranging from 1.0 to 4.0. The response variable is the American College Testing (a standardized test before
college) score on the y-axis corresponding to the same student, ranging from 1 to 36. The parameters are

3



4 2. Quantile regression

estimated by the ordinary least squared method to find the red line estimating the relationship between the
variables. The blue lines represent the distance between the fitted line and the actual data points. From the
data points it is suspected to have a positive relationship between the response variable and the explanatory
variable, the OLS regression makes it possible to plot a line to show the relationship between the variables,
which shows an obviously positive relationship.

Figure 2.1: Least squares fit on 15 datapoints of students

As mentioned, such linear regression models can be useful to analyse the relationship between variables
in data. However linear regression can have some shortcomings, such as its sensitivity to outliers, the as-
sumption of independent covariates and its narrow information causing sensitivity to underfit. Therefore this
chapter investigates the use of quantile regression. This is a form of regression analysis, which is more robust
against outliers and skewed distributions than the common linear regression model. Besides that, quantile
regression may discover predictive relationships between variables when there is a minimal relationship be-
tween the means of such variables. Therefore quantile regression can be used to analyse abnormal growth
or connectivity. Since the research of Koenker and Bassett (1978)[17] on this model, quantile regression has
become increasingly popular in several areas such as ecology, finance, social sciences and healthcare because
of the stated aspects.

2.1. Quantile regression by minimization loss function
Quantile regression observes a predicted response at each quantile. Quantiles are points taken at regular
intervals from the distribution function F. Therefore observing responses at different quantiles is as if the
relationship between the variables is estimated for different interval groups within a distribution function F.

Definition 1 (Quantile)
F being the distribution function of a random variable Y and τ ∈ (0,1), then y is the τ-th quantile if it satisfies:

F (y) = τ

For the τ-th quantile, 100*τ% of the response values is on the left side of the quantile and 100(1-τ)% on
the right side of this quantile. For a probability distribution, the τ-th quantile specifies a value Q(τ) such that
the probability that a random variable is on the left side of this value equals the given probability quantile τ.
So in mathematical notation:

FY (QY (τ)) = P (Y ≤QY (τ)) = τ (2.4)

Therefore the quantile function can be defined by taking the inverse of this distribution, leading to the fol-
lowing definition of the quantile function:

Definition 2 (τ-Quantile) [9]

QY (τ) = F−1
Y (τ) = i n f {y : F (y) ≥ τ}, τ ∈ (0,1). (2.5)
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An illustration of such quantile function can be seen in Fig 2.2. The probabilities τ can be found on the
y-axis, the corresponding τ-th quantile Q(τ) can be found on the x-axis.

Figure 2.2: CDF of exponential-normal mixture wit Quantiles

A median is a quantile of the fraction τ = 0.5. For the median the minimization of the sum of absolute
residuals must equate the number of positive and negative residuals, such that there are the same number
of observations on the left side of the median as on the right of the median. This is an example of the Least
Absolute Value (LAV) regression, as the LAV minimizes the sum of absolute deviations. The LAV is unweighted
in this example as the symmetry of the median is used. However for other quantiles the absolute residuals
must be asymmetrically weighted. The weight is used to adjust the loss function so the relative importance
of each quantile is taken into account. This can be seen as a natural generalization of L1-norm regression ,
to measure the regression relationship at several points of the distribution of y [17]. Therefore the weight is a
function of the quantile level:

Definition 3 (Loss function)
ρτ(u) = u(τ− I(u<0)), (2.6)

I(u<0) being the indicator and u the difference between the real data points and the quantile regression line.
The weight is τ to positive residuals and (1−τ) to negative residuals.

The loss function in this case, contrary to the quadratic loss function of mean regression in equation 2.2,
minimizes the distance between the estimated quantile and real data quantile for the parameter estimation
of the quantile regression. To find the τ-sample quantile regression, the expected loss function must be min-
imized. For random sample {y1, y2, ..., yn}, the estimated quantile is defined by:

Definition 4 (Quantile estimator)

Q̂(τ) = arg min
Q∈R

n∑
i=1

ρτ(yi −Q), (2.7)

= arg min
Q∈R

[
(τ−1)

∑
yi<Q

(yi −Q)+τ ∑
yi≥Q

(yi −Q)

]
(2.8)

2.2. Conditional quantiles
For the conditional quantile regression, to estimate the quantile function, a parametric function of inde-
pendent variables replaces the scalar Q in the quantile estimator in Definition 4. These variables are the
explanatory variables of which the relationship with the response variable is analysed per quantile. Therefore
the τ-th quantile is assumed to be a function of the independent variables. βτ is defined as the vector of un-
known quantile coefficients dependent on τ and X as the covariate vector that is evaluated at τ ∈ (0,1). giving
the following conditional quantile random variable:
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Definition 5 (τ-th conditional quantile of Y given X)
If FYi |Xi (QY |Xi (τ)) = τ as in equation 2.4, the conditional quantile is the inverse cumulative distribution func-
tion of Y given at Xi . The τ-th conditional quantile of Y given X is:

QYi |Xi (τ) = X T
i βτ

Then given the distribution of Y, the values for the τth regression quantile are estimated with parameter
estimations β̂τ, again by minimizing the loss function:

Definition 6 (Parameter estimator)

β̂τ = arg min
β∈Rk

n∑
i=1

(ρτ(Yi −Xiβ)). (2.9)

The estimated β parameters that are drawn from this minimization problem illustrate the estimated ef-
fects of the independent variables on the dependent variable. In the Ordinary Least Squared linear regression,
there is only information on the estimated mean parameter, generalising the effect of the independent vari-
able. From equation 2.9, it can be seen that the estimatedβ is different for every quantile. Therefore the effect
of the independent variable is inspected for different sets of the data.

2.3. Application of quantile regression
As stated earlier, a reason to use quantile regression instead of mean regression is that it is robust to outliers.
An outlier can influence the mean value remarkably as every point is equally weighted. Therefore an outlier
can have a big change on the mean, while it is just a single point in the data set. Contrarily, the median does
not take into account the value of the data points, but rather looks at the place of the points in the distribution
such that the probability of a datapoint is equally predicted to be on the left or right side of this median point.
Therefore the value of an outlier does not have a big effect on the regression line formed by the median or
other quantiles.
In figures 2.3 and 2.4 this is illustrated. The mean regression line has a notable change, only with the change
of two single data points in a data set. The median is more robust to such outliers and does not differ too
much with the first quantile regression line in figure 2.3.

Figure 2.3: Linear Regression (lm) and Quantile Regression (rq) on dataset

Another example for which quantile regression gives more information than simple mean regression, is
if change happens in the tails of the distribution instead of the distribution as a whole. For instance, a new
route for a bus can decrease the mean walking distance for a customer to walk to the bus, as it shortens the
distance a bit for 90% of the customers. However, the walking distance for 10% of the travelers can signifi-
cantly decrease, especially if these are the customers that already had the longest walking distance to the bus
station. A quantile regression line would show this significant unpleasant outcome, where it would not show
in a mean regression line. Therefore, quantile regression is especially useful for asymmetric distributions of
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Figure 2.4: Linear Regression (lm) and Quantile Regression (rq) including Outliers

the response, as conditional effects are investigated in different parts of the distribution.

Quantile regression is also useful when heteroskedasticity occurs. Heteroskedasticity is the non-constant
behaviour of standard deviations of a responsive variable. As quantile regression allows for a more detailed
analysis of the relationship between the response variable and the predictors by focusing on specific quantiles
of the distribution, it does not rely on the same distributional assumptions as ordinary least squares and
thereby more robust to violations of the homoskedasticity assumptions. Furthermore, quantile regression
can be used to identify the outliers and extreme data points, making it more effective in capturing non-linear
relationships

2.4. Bootstrap method
The bootstrap method is often used for quantile regression, as it helps to estimate the uncertainty associated
with the estimated quantiles. It is a statistical technique to estimate sampling distributions by repeatedly
drawing samples from a dataset and creating a new data set with replacement. Therefore it is a useful tool for
making inferences about a population from a smaller sample and thereby providing more accurate parame-
ter estimates.
In Wild bootstrap (Wu and Liu, 1988)[6], the independent values stay on their initial value during the resam-
pling. The resampling is based on the response variable and a modification of the residual values. Therefore
each replicate y is computed by yi = ŷi +êi wi , where wi is generated from a distribution as mentioned in The
Wild Bootstrap procedure 2). To explain the wild bootstrap procedure, the steps of the algorithm are shown
in The Wild bootstrap procedure algorithm below.

The Wild Bootstrap procedure

1) Fit a linear model to the data. yi = x1iβ1 +·· ·+ xniβn +ei . Denote the estimate of the parameter vector by
β̂ and use êi to represent the residuals.

2) Generate wi from an appropriate distribution satisfying the condition e∗i = wi∥êi∥

3) Calculate the bootstrapped sample as y∗
i = X T

i β̂+e∗i

4) Refit the linear model to the bootstrap sample and denote the bootstrap estimate by β̂∗

5) Repeat steps 2-4 multiple times untill the requested amount of population observations are found. Say
this is for repeating the procedure for B times, then estimate the variance of β̂ by the sample variance of the
B copies of β̂∗ formed in step 4.
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The confidence intervals are generated from the range of values obtained from the different samples gen-
erated by this Wild bootstrap procedure.



3
Bayesian Quantile Regression

As illustrated in the previous chapter, quantile regression is a very informative regression analysis to model
conditional expectations. However, only the frequentist linear quantile regression method is considered. In-
troducing Bayesian statistics might provide more accurate estimates of the conditional quantiles by introduc-
ing prior knowledge of the distribution. Keming Yu and Rana A. Moyeed [14] proposed a Bayesian framework
for quantile regression to estimate the conditional quantiles. This Bayesian Quantile Regression (BQR) is
useful for nonlinear distributions and sparse data, as prior knowledge is included. Besides this, the BQR also
provides an estimate of the uncertainty of the estimated quantiles, which is useful to indicate the reliability
of the outcome.
Therefore in this chapter, an introduction to Bayesian statistics, the Bayesian quantile regression and espe-
cially Bayesian quantile regression for ordinal longitudinal data will be further elaborated.

3.1. Bayesian Statistics
In Bayesian statistics, prior information is combined with observed data to generate a posterior distribution
of potential outcomes. In this way it applies probability to statistical problems and tries to preserve and refine
uncertainty by modifying individual beliefs instead of eliminating uncertainty by estimates. The approach of
determining the posterior distribution is based on Bayes’ theorem on conditional probability, stating:

Theorem 1 (Bayes’ Theorem) [21]
For any two events A and B with 0 < P (A) < 1 and P (B) > 0,

P (A|B) = P (B |A)P (A)

P (B)
,

for determining the probability of an event A, given the occurance of another event B.

Hyperparameters are model parameters whose value is used to control the learning process, therefore
they are chosen before the start of an algorithm and estimated without using the actual data. Using Bayes’
Theorem and the hyperparameters θ of the prior distribution, the posterior distribution can be defined as
follows:

Definition 7 (Posterior Distribution) [21] [19]
Let x denote the observed realisation of a (possibly multivariate) random variable X with density function
f (x|θ). Specifying a prior distribution with density function f (θ), allows us to compute the density function
f (θ|x) of the posterior distribution using Bayes’ theorem

f (θ|x) = f (x|θ) f (θ)∫
f (x|θ) f (θ) dθ

,

(For discrete parameters θ, the integral in the denominator has to be replaced with a sum)

This leads to a density function that is conditional on prior knowledge and includes the density function
of the observed realisation. This idea of working with data and prior knowledge for predicting estimates is
also used in quantile regression, as is described in the following section.

9



10 3. Bayesian Quantile Regression

3.2. Bayesian quantile regression
To illustrate the use of Bayesian statistics to estimate useful and reliable parameters for the quantile regres-
sion, the structure of this approach is illustrated in Algorithm 1.

Algorithm 1 Bayesian Quantile Regression

1. Specify a prior for the regression coefficients and hyperparameters. Priors used for Bayesian Quantile
Regression are elaborated in subsection 3.2.2.

2. Calculate the likelihood of the data given the prior. The likelihood function in quantile regression is based
on the Asymmetric Laplace Distribution as described in subsection 3.2.1.

3. Use Markov chain Monte Carlo (MCMC) to generate samples from the posterior distribution of the
regression coefficients and hyperparameters, as illustrated in subsection 3.2.3.

4. Calculate the posterior mean and variance of the regression coefficients and parameters and calculate the
quantile regression predictions.

The steps of this algorithm are further elaborated in the following subsections.

3.2.1. Bayesian inference by forming a likelihood function based on asymmetric Laplace
distribution

In the linear regression approach, the quantile distribution is determined by the minimization of the loss
function. The minimization of the loss function is equivalent to the maximization of the likelihood formed by
combining independently distributed Asymmetric Laplace densities[14] [29], the derivation of this is shown
below. Therefore, Bayesian inference for quantile regression proceeds by forming the likelihood function
based on the Asymmetric Laplace Distribution (ALD), regardless of the actual distribution of the data that is
analysed[17][14].

The ALD is characterized by:

Definition 8
A random variable X has an Asymmetric Laplace Distribution with parameters m,λ,k, noted as ALD(m,λ,k),
when its probability density function is:

f (x;m,λ,k) =
( λ

k + 1
k

)
e−(x−m)λ sgn(x−m)ksgn(x−m)

(3.1)

With parameters:

m = location parameter

λ> 0 = scale parameter

k > 0 = asymmetry parameter

To use this distribution in the quantile regression context, it is useful to use a parametrization of the mean
and variance of the Asymmetric Laplace Distribution (ALD) with the percentile parameter τ involved. The
parametrization parameters are therefore defined as:

µ= m + 1−2τ

τ(1−τ)λ

σ2 = 1−2τ+2τ2

τ(1−τ)
λ2

Concluding the new parameterized probability density function of the ALD:

fτ(u;σ,µ) = τ(1−τ)

σ

{
exp(−((τ−1)/σ)(u −µ)) if u ≤µ
exp(−(τ/σ)(u −µ)) if u >µ (3.2)
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Now using the function introduced in equation 2.6, the following function can be derived:

ρτ

(u −µ
σ

)
= u −µ

σ

(
τ− I(u−µ<0)

)
=

{
−((τ−1)/σ)(u −µ) if u ≤µ
−(τ/σ)(u −µ) if u >µ (3.3)

Therefore the density of the asymmetric Laplace function can be rewritten as:

fτ(u;σ,µ) = τ(1−τ)

σ
e−ρτ( u−µ

σ ) (3.4)

The likelihood function is used to estimate parameters by indicating which parameter values make the
observed data more probable. Therefore the maximization of the likelihood function estimates under which
statistical model the observed data is most probable.
Assuming that yi ∼ ALD(σ,µ,τ) and location parameterµi = x

′
iβ andσ a nuisance parameter, by the Neyman-

Pearson Lemma, the likelihood for n independent observations can be formed.

Lemma 1 (Neyman-Pearson Lemma)
If X1, . . . , Xn is a random sample of size n from a distribution with probability desity function f (y ;θ),
then the joint probability density function of X1, . . . , Xn is denoted by the likelihood function:

L(θ) = L(θ; x1, . . . , xn) = f (x1;θ)×·· ·× f (xn ;θ)

Therefore using this lemma, the likelihood function of β can be generated such that:

L(β,σ; y,τ) = τn(1−τ)nexp
{
−

n∑
i=1

ρτ(yi −x
′
iβ)

}
(3.5)

The maximization in the likelihood of equation 3.5 with respect to parameter β is then equivalent to the
minimization of the loss function described in Chapter 2.

3.2.2. Priors
In Bayesian statistics, a conjugate prior is one that is in the same probability distribution family as the poste-
rior. The parameters of the distribution is then determined by any existing belief or information[4].
However, for the quantile regression formulation of Bayesian statistics, there is not a standard conjugate prior
distribution[14]. Despite this, the MCMC methods described in subsection 3.2.3 allows the use of any prior
distributions to form a posterior distibution. Therefore any available information could form a prior distri-
bution for the bayesian quantile function. However, in practise the use of an improper uniform prior dis-
tribution is common. A prior π(β) is said to be improper if

∫
π(β) =∞. Therefore indeed the uniform prior

π(β) ∝ 1 is clearly improper and noninformative. Therefore this uniform prior distribution is often used, as
the result of the joint posterior distribution is proportional to the likelihood. For this we can use the theorem
of Yu and Moyeed (2001) stating:

Theorem 2 (Improper priors for parameters)

If the likelihood function is equal to L(β,λ; y,τ) = τn(1−τ)nexp
{
−∑n

i=1ρτ(yi − x
′
iβ)

}
and the prior, p(β) = 1,

then the posterior distribution of β, π(β), will have a proper distribution. Therefore,

0 <
∫
π(β|y)dβ<∞.

_
Given the observationsy = (y1, . . . , yn), the posterior distribution of β is then given by: [14]

π(β|y) ∝ L(y |β)p(β) (3.6)

∝ meaning proportional to.

Despite the improper priors can be used, the inference on the data could be more reliable if priors are
based on historical data. Besides this, it may be more reasonable to have different priors for different quan-
tiles instead of having the same parameter values for modelling the quantiles. Therefore, Keming Yu and
Rahim Alhamzawi (2011)[26] defined Power Priors for Bayesian Quantile Regression when historical data is
available. The basic formulation of the power prior by Ibrahim and Chen [13] is specified as follows:
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Definition 9 (Power Prior)
Let current study response data be denoted by D, the corresponding likelihood function L(θ|D) with θ indicat-
ing the parameters. Then suppose historical data D0 is available from a previous study, denote L(θ|D0) as the
likelihood function of the previous study. Then the Power prior is denoted as π(θ|D0, a0) and is proportional to:

π(θ|D0, a0) ∝ L(θ|D0)a0π0(θ|c0),

0 ≤ a0 ≤ 1 being a scalar parameter and c0 being a hyperparameter of the initial (improper) prior.

In this formulation a0 can be interpreted as a precision parameter of the historical data. Therefore when
a0 = 0 the power prior does not depend on the historical data at all. For a0 = 1 the power prior corresponds
to the posterior distribution of θ for historical data. The influence of the historical data on the final posterior
can therefore be controlled by determining the value for a0. However a proper prior distribution for a0 can
also be specified, such that:

π(θ, a0|D0) ∝ L(θ|D0)a0π0(θ|c0)π(a0|δ0).

Therefore the posterior distribution of the parameter θ using the power prior, as it is a function of the formu-
lated power prior and the likelihood as calculated in previous section, is defined as:[13]

π(θ|D,D0, a0) ∝ L(θ|D)L(θ|D0)a0π0(θ|c0) (3.7)

or using a proper prior for a0 on hyperparameter δ0:

π(θ, a0|D,D0) ∝ L(θ|D)L(θ|D0)a0π0(θ|c0)π(a0|δ0) (3.8)

The useful informative prior in Bayesian analysis by Ibrahim and Chen [13]is proven to be a proper joint
prior for Bayesian quantile regression by Keming Yu and Rahim Alhamzawi [26]by the following statement:

Theorem 3 (Proper joint prior distribution in Bayesian quantile regression) Suppose the initial prior dis-
tribution for θ is a uniform prior and a0 has a beta prior. Then the joint prior distribution in quantile regression
for (θτ, a0), τ being the percentile, is proper:

0 <
∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ 1

0
L(θτ|D0)a0 d a0dθτ <∞

This statement is derived by the use of the theorem of the improper priors in Theorem 2 by Yu and Moyeed
(2011) [14].

3.2.3. MCMC method obtaining a proper posterior distribution
The Markov chain Monte Carlo (MCMC) method can be implemented to extract posterior distributions for
unknown parameters[8]. By the MCMC methods, the posterior characteristics will be estimated by obtained
samples. These samples are extracted from a Markov chain which converges to the posterior distribution. A
useful property of the Markov chain is that the probability of going from one sample to another only depends
on the current state and not on the sequence of previous states. In mathematical notation:

Definition 10 (Markov Property) _
A Markov Chain is a sequence of random variables such that:

P (X t+1 = s|X t = st , X t−1 = st−1, . . . , X0 = s0) = P (X t+1 = s|X t = st ).

So the idea is to develop a Markov Chain such that the stationary distribution converges to the distribution of
the target posterior distribution. These chains move around randomly according to an algorithm looking for
places with reasonably high contribution to the integral over the variable, assigning them higher probabili-
ties. Then from the point that the Markov Chain is in the stationary distribution, drawing a sample from the
chain is actually equivalent to sampling from the posterior distribution. The Monte-Carlo approach is then
gaining information of the large sample instead of the distribution’s equations[8].
Therefore Bayesian inference uses the information provided by the observed data in form of a likelihood func-
tion and a prior state about the parameters, to become a posterior state of beliefs. Then the MCMC method
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draws a sequence of samples from the posterior. Then this becomes the next sample in the MCMC chain.

There are several sampling methods for this model. Gibbs sampling is a Markov chain Monte Carlo
(MCMC) algorithm for obtaining a sequence of observations which are approximated from a specified mul-
tivariate probability distribution. Therefore it is only useful in case of a multivariate distribution when sam-
pling from the joint distribution is difficult, while the conditions are easy to sample. So it works by iteratively
sampling from the full conditional distributions of each of the variables in the model, which is then used to
update the values of the other variables[25][9]. Therefore the sequence of samples drawn from the jumping
distribution is a random walk, which is considered to move around slowly. However, the Gibbs sampling is
introduced as it is useful for the ordinal quantile regression model with longitudinal data as there are many
variables that need to be updated. Therefore the constructing by Gibbs sampling of the conditional distri-
butions is very useful to form an efficient posterior computation.[25] The sampler is known to converge to a
unique invariant joint distribution, which is defined as the posterior distribution.
The Algorithm 2 shows the Gibbs Sampling.

Algorithm 2 Gibbs Sampling

1. Start by initializing values for all unknown parameters in the model: (x0, y0).

2. Change one parameter and keep the other parameter values fixed. Then sample from the conditional
distribution of the changed variable: Sample x1 ∼ p(x1|y0).

3. Now sample from the conditional distribution of the other variables, given the new fixed parameter value
that is just sampled: y1 ∼ p(y1|x1)

4. Update the value for the parameters and repeat steps 2-3 untill convergence is reached. For the Gibbs
sampler convergence is reached in the form of a unique invariant joint distribution. Then the output is the
converged values as the approximate parameters of the target posterior distribution.
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3.3. Bayesian Quantile Regression for Ordinal Longitudinal data
In the research of PRIME, ordinal longitudinal data is collected. Ordinal data meaning the data is classified
in ranking, however the distance in value between these categories are unknown. The data is longitudinal
as the same variables, students, are observed in different time periods. Longitudinal studies are often used
for observations of thoughts, behaviors and emotions as the differences that can occur in the results are less
likely to be the result of other external elements like cultural or age differences.
Quantile regression is not an obvious choice for ordinal response variables as it does not yield continuous
quantiles that can be modeled via regression. However, Alhamzawi and Taha Mohammad Ali [25] adopted
a Bayesian method for ordinal quantile regression using latent variable inferential framework of Albert and
Chib [1] and the asymmetric Laplace distribution. Before this research in Bayesian statistics, ordinal longitu-
dinal data had not been approached for estimating parameters for quantile regression.

3.3.1. Modeling ordinal longitudinal data for quantile regression approach
For modelling ordinal longitudinal data, the use of latent variables is very useful. Latent variables are unob-
served response variables that are formed by information of other observable independent variables. This is
advantageous for ordinal data expressing attitudinal statements with response alternatives like "strongly dis-
agree" to "strongly agree" [28]. Therefore for the PRIME research, as mental states are difficult to observe, the
latent variable is useful to translate the abstract concepts. The approach for analyzing the ordinal observed
variables is by generating underlying normally distributed continuous variables [28]. This method is derived
in this section.
The independent variables form the continuous latent random variable li j for student i at time j , are defined
by:

li j =αi +x
′
i jβ+εi j ,

αi being the location-shift random effect. The location-shift random effect captures how different the effect
is in time. This allows the effects to be different in each time period. The location-shift random effects are
not estimated from the model but assumed to follow a multivariate normal distribution with mean zero and
estimated covariance matrix, such that αi ∼ N (0,φ).
As in the frequentist quantile regression model, xi j represents the covariates with the corresponding β pa-
rameter. The εi j is a Skewed Laplace Distribution (SLD), as suggested by Geraci and Bottai (2007) [10], such
that:

f (ε|τ) = τ(1−τ)exp
{
−ρτ(ε)

}
, (3.9)

The unobserved latent response variable li j can then be used to assume the relationship with the actual
observed ordinal data response defined by yi j . The assumed relation between the latent response variable
and the data response variable is as follows:

yi j =


1 if δ0 < li j ≤ δ1;

c if δc−1 < li j ≤ δc ;

C if δC−1 < li j ≤ δC ;

(3.10)

where δ0, . . . , δC are points that define the bounds of intervals containing the observed outcome c such that
the lower bound is δc−1 and the upper bound is δc . Therefore the points satisfy −∞= δ0 < δ1 < ·· · < δC−1 <
δC = +∞ and c = 2, . . . ,C − 1. This is useful as the observed data in yi j is ordinal, therefore the calculated
latent points are classified in groups corresponding to the ordinal points.

Then to find the CDF of yi j , the information of the latent variable can be used. For that, it is useful to
rewrite the SLD of ε such that:

εi j = (1−2τ)vi j +
√

2vi j ϵi j

as introduced by Kozumi and Kobayashi (2011) for Gibbs sampling methods[18]. The new latent variable
that is introduced, vi j now follows an exponential distribution with parameter τ(1−τ). The ϵi j follows the
standard normal distribution. Therefore the CDF of yi j per ordinal response category can be rewritten as:
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[25]

P (yi j ≤ c|li j ,δc ) = P (li j ≤ δc |β,αi , vi j ), (3.11)

= P
(
αi +x

′
i jβ+ (1−2τ)vi j +

√
2vi j ϵi j ≤ δc

)
, (3.12)

= P
(
ϵ≤

δc −αi −x
′
i jβ− (1−2τ)vi j√

2vi j

)
(3.13)

Therefore, as the distribution of ϵ is defined as the standard normal distribution, it can be concluded that:

P (yi j ≤ c|li j ,δc ) =φ
(δc −αi −x

′
i jβ− (1−2τ)vi j√

2vi j

)
(3.14)

P (yi j = c|li j ,δc−1,δc ) = P (δc−1 < li j ≤ δc |β,αi , vi j ), (3.15)

=φ
(δc −αi −x

′
i jβ− (1−2τ)vi j√

2vi j

)
−φ

(δc−1 −αi −x
′
i jβ− (1−2τ)vi j√
2vi j

)
(3.16)

with φ being the standard normal distribution.
Therefore, this can be seen as the response probability function, where every response category is effectively
accounted for. Then for every data point, it can be elaborated how probable it is to happen.

3.3.2. Priors for ordinal longitudinal data
As mentioned in the subsection 3.2.2, any prior can be used to estimate Bayesian quantile regression param-
eters. Therefore, the zero-mean normal prior is usually used. However, when there are big differences in the
size of fixed effects as in ordinal data, the zero-mean normal prior distribution performs poorly.[25]
Therefore, the Laplace prior distribution, which is a scale mixture of normals with an exponential mixing
density, formed by Andrews and Mallows (1974) [2] is introduced:

P (τ|σ) =
p∏

k=1

σ

2
e−σ|τk | (3.17)

=
p∏

k=1

∫ ∞

0
N (τ;0, sk )E xp

(
sk ;

τ2

2

)
d sk (3.18)

Therefore it can be concluded that for each βk the zero-mean normal prior distribution with unknown vari-

ance is assigned. The exponential distribution has a parameter λ2

2 for the variance, assuming it is indepen-
dent.
For the cut-points δ introduced in the previous section, the order statistics are considered from the uniform
U (δmi n ,δmax ), such that:

P (δ) = (C −1)!
( 1

δmax −δmi n

)C−1
I (δ ∈ T ),

with δ= (δ0, . . . ,δC ) and T = {(δmi n , ...,δmax )|δmi n < δ1 < ·· · < δC−1 < δmax }.
In previous section, P (y|l,δ) is defined. Furthermore li j |vi j ∼ N (αi +x

′
i jβ+(1−2τ)vi j ,2vi j ). Now as the prior

for the parameter β is defined in 3.17, the posterior distribution of all parameters and latent variables can be
concluded to:

P (β,α, l,δ,v,s,λ2,φ|y) ∝ P (y|l,δ)P (l|β,α,v)P (δ)P (v)×P (β|s)P (s|λ2)P (α|φ)P (φ), (3.19)

3.3.3. Gibbs Sampling
For an efficient posterior computation of the data, the Gibbs sampler is a useful method as it uses the con-
ditional distributions. From the previous section, it can be concluded that the quantile regression posterior
distribution includes a lot of conditional distributions. Therefore, this sampling algorithm is chosen above
others. In Alhamzawi and Mohammad Ali (2018) [14], the algorithm for finding all parameter values is stated
as follows:
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Algorithm 3 Gibbs sampler for the Bayesian quantile regression posterior

1. Start with initial values for [β0,α0, l 0,δ0, v0, s0,λ0,φ0]

2. Update the initial values in order:
a. Generate v t from P (v |l t−1,βt−1,αt−1)
b. Generate βt from P (β|l t−1, v t ,αt−1, ss−1)
c. Generate s t from P (s|λ2(t−1),βt )
d. Generate λ2(t ) from P (λ2|s t )
e. Generate αt from P (α|l t−1,βt , v t ,φt−1)
f. Generate φt from P (φ|αt )
g. Generate l t from P (l |βt , v t ,αt ,δt−1)
h. Generate δt from P (δ|y, l t )

3. Update the value for the parameters and repeat steps 2 untill convergence is reached. Then the
output is the converged values as the approximate parameters of the target posterior distribution.



4
Application to PRIME research

In the article "Do Our Means of Inquiry Match our Intentions?" by Yaacov Petcher [24], quantile regression
is applied to analyse the relationship between the well-being of children and their reading achievement in
primary education. Quantile regression is a special case of conditional median modeling; the relationship
between the grades and well-being of a child is researched more thoroughly than just by normal ordinary re-
gression. Since the effects of the independent variables are explained on different quantiles of the dependent
variable instead of using the mean, these give a more detailed explanation of this effect.
The following section includes research on education by a quantile regression approach comparrable to the
research of Petscher [24]. However, this time the relationship between emotions of engineering students on a
Mathematics course and the attained grades of these students is investigated. As emotions are difficult to test
and challenging to rephrase into mathematical values, the Achievement Emotions Questionnaire (AEQ)[27]
was used to extract useful data on emotions of the engineering students. This extraction of data was done
by The PRogramme of Innovation in Mathematics Education (PRIME)[7]. Further introduction to this pro-
gramme besides the introduction to the AEQ questionaire are established in this chapter followed by the
quantile regression analysis. The quantile regression analysis gave a more detailed description of the data
than normal mean regression, including results on gender differences, time differences and multi- versus
univariate models of the emotions. The gender differences seemed to include new insights on the data re-
garding the effect of emotions on attained grades. Lastly, the chapter includes further results and conclusions
of the quantile regression approach.

4.1. PRIME research
The Programme of Innovation in Mathematics Education (PRIME)[7] is a programme responsible for re-
designing mathematics courses for TU Delft engineering students. It is active at TU Delft as part of the In-
terfaculty Teaching of the department of Applied Mathematics (DIAM). The intention of PRIME is to improve
the mathematics courses in three different aspects; study results, the connection between mathematics and
engineering and the active participation and motivation of students.
To improve mathematics courses, PRIME is researching the emotions, behaviour and motivations of stu-
dents during their study of the mathematics course. In a recent study this data of engineering students was
collected. This data is useful to inspect the relations between these emotions, behaviour and motivations
and the obtained grades of the same students. Since for this research it is important to find out for whom the
innovation in education is of positive effect, quantile regression can be used to analyse certain groups within
the data group.

4.2. The Achievement Emotions Questionnaire
Emotions, behaviour and motivations are very hard to examine. However, PRIME asked engineering students
from the TU Delft following the "Mathematics 1" course to answer a questionnaire to extract information of
these students on these topics. The questionnaire investigated emotions, behaviour and motivations.The
section on emotions was based on The Achievement Emotions Questionaire (AEQ)[27]. The AEQ is a vali-
dated multidimensional self-report instrument designed to assess college students’ achievement emotions,

17
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developed by two research grants from the German Research Foundation.
The AEQ assesses multiple emotions that are classified by the following four categories:

Positive Activating

Positive Deactivating

Negative Activating

Negative Deactivating

Enjoyment, Hope, Pride

Relief

Anger, Anxiety, Shame

Hopelessness, Boredom

The AEQ includes class-related, learning-related and test-related emotions, to thoroughly research the emotions
of a student on a particular subject. These emotions of a student are scaled from 1 to 5, classified by the
self-reported "strongly disagree"(1) to "strongly agree"(5) of the students to questions related to the multi-
ple emotions. The questions measure the affective, cognitive, motivational and physiological components of
each emotion. The AEQ is advised to be answered voluntarily for a more reliable outcome.
In the questionnaire of PRIME, the emotions of Relief and Hope were excluded from the questionnaire. Fur-
thermore the questionnaire of PRIME included information of the students regarding gender, secondary
school mathematics grade, studies and time spent on the mathematics course. The full questionnaire used
by PRIME can be found in Appendix B .

4.3. Research Question
As the intention of PRIME is to improve the mathematical education for engineering students, it is useful
to research whether the achieved scores of the students of the "Mathematics 1" course are related to the
emotions of the students taking this course. Therefore the main research question is formulated as:

Do academic emotions on mathematics courses of engineers have an effect on their grade attained?

To answer this question, we want to analyse the following subquestions:

Is there a difference between certain groups (quantiles) of the data regarding the effect of academic
emotions on the achieved grade?

Is there a difference between genders regarding the effect of academic emotions on grades?

Is there a difference in the long-run on the effect of the relationship between academic emotions
and grades?

4.4. Hypothesis
To answer the first subquestion, "Is there a difference between certain groups (quantiles) of the data regarding
the effect of academic emotions on the achieved grade?", the emotions will function as explanatory variables
in a regression model. Then the β parameters will be evaluated. Assuming there is a difference between the
parameters and thereby the effect of the emotions on the grades, the parameters must significantly differ
from the β parameter obtained by the Ordinary Least Squares (OLS) mean regression model. Concluding to
the hypothesis that the βτ parameters obtained by the quantile regression approach are not in the 95% con-
fidence interval of the estimated β by OLS.

The research in gender difference, introduced in the second subquestion, is investigated by the use of an
indicator function in the regression model. Thereby it is possible to split the data points into two different
classifications of which the quantile regression parameters can be investigated. The hypothesis on the gender
difference is therefore, are the βFemal e,τ parameters significantly different from the βM al e,τ parameters. Be-
sides this, are the βFemal e,τ and βM al e,τ parameters significantly different from the β parameter in the union
of the distributions.

The research on the long-run effect of the emotions can be investigated by using the significance of the
quantile parameters against the OLS parameters in different time periods. Therefore the hypothesis is that
the significance of the parameter values obtained by the quantile regression approach are different over time.
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4.5. Data Classification
As mentioned, the data used in this research is extracted by dispensing a questionnaire along engineering
students, performed by PRIME. Therefore the scale of agreement of the students aligns between "strongly
disagree"(1) and "strongly agree"(5). This can be classified as ordinal data. Thus the data is classified in rank-
ings, however the distance in value between these categories is unknown.
The research population consists of first year students in the first semester of cohort 2021/2022 from Civil En-
gineering, Mechanical Engineering, Applied Earth Sciences and Maritime Engineering following the course
Mathematics 1. The students were asked to voluntarily take the questionnaires in three different time sched-
ules. One at the start of the mathematics course, one after the first exam and one after the course.
In the first questionnaire at the start of the semester of the course, there were 207 students of which 77 com-
pleted the questionnaire. After the exam, there were 121 students of which 40 completed the questionnaire.
Finally, after the course of the 105 students 45 responsed the questionnaire.
Of the 60 AEQ questions, 9 questions were related to anger, 6 to boredom, 10 to enjoyment, 6 to hopelessness,
6 to pride, 8 to shame and 15 to anxiety. Besides this, the information on gender of these students is extracted
from the questionnaire.
The grade of the first test of the course is used as value for academic performance of the students. This data
was available from 114 students.
To visualize the data of the grades attained by the students, figure 4.1 shows the histogram of the density of
the attained grade. The histogram of density is created by plotting the frequency of data points within equal
intervals of values on a graph. The line is a smoothed version of the histogram used to estimate the probabil-
ity density function. The program R uses the kernel density estimate as non-parametric method to create an
estimation of the underlying probability density by the density() function.[11] The red dotted line is the mean
of the grades.
In Figure 4.1, it is noticeable that the attained grades of the first test are asymmetrically distributed. Fur-
thermore it can be observed that the distribution seems to have two peaks, just before and after the mean.
Therefore the distribution can be considered a bimodal distribution.

Figure 4.1: Distribution of grades

4.6. Implementation of Quantile Regression
From the estimated probability density function of the grades in Figure 4.1, it is assumed to follow an asym-
metric bimodal distribution. By the bimodal characteristics, the data points are not considered to concen-
trate around the mean. Besides this, the grades are asymmetrically weighted and therefore it is favourable to
consider the impact of the covariates on the entire distribution of the grades, instead of the singular condi-
tional mean. As quantile regression allows us to find different conditional effects per fraction of the response
variable, it will give a richer characterization of the data compared to conditional mean of the OLS. Therefore
quantile regression is a useful method to indicate the relationship of emotions at different percentage groups
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of the attained grades of the students.

Primarily to detect how the quantiles of the grades behave, the quantiles are plotted against the sorted
fractions of the data they correspond with in figure 4.2. So the figure represents the values from the quantile
function 2.5 introduced in Chapter 2. The blue dots represent the quantiles for every 10% of the data. The
behaviour of the quantiles of the grades can now be examined. There is not a very significant increase in the
graph between quantile values, however it can be concluded that there is a sharper increase for the lower
fractions of the data. This may suggest a different relationship between the explanatory variables and each
conditional quantile of the response variable rather than a link between the expected grade and its mean as
ordinary linear regression does.[12]

Figure 4.2: Quantiles of Test 1 against fractions of the sample

4.6.1. Univariate Conditional Quantile Regression
To further investigate the relationship between the covariates and the attained grade, the conditional quan-
tile regression function is appropiate. First, the univariate quantile regression is examined, using the Anxiety
as single covariate. As described, there were multiple questions about Anxiety in the questionnaire. Therefore
it is suggested to take the mean outcome of all these questions of one individual respondent to be the total
Anxiety value of this respondent. Therefore the following model of the regression line is examined:

Gi =β0 +β1X1i

With X1i equal to the mean anxiety of individual i and Gi defined as the Attained grades of Test 1 for individual
i . Now the goal by using quantile regression is to find the parameters β0 and β1 to acquire more knowledge
on the effect of Anxiety.
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To find the parameters for the function, the minimization problem in equation (2.9) is considered. The
parameters minimalizing the loss are calculated for several quantiles, finding different parameters per quan-
tile. The intercept is calculated by suggesting the value of the covariate to be equal to zero. The parameter
estimators for the univariate Anxiety regression are plotted in figure 4.7. In this figure the red line represents
the ordinary least squared regression parameter and the red dotted line the 95% interval of this estimation.
The parameter solutions minimizing the weighted absolute values are represented by the black dots.

Figure 4.3: Parameter estimators for Anxiety Questionnaire 1

The intuition behind Figure 4.3 is that for a certain quantile, the optimal intercept and β1 is calculated,
such that the conditional quantile is expected to be Gi = Inter cept +β1 ∗ X1i . Further expansion of the use
of this quantile regression in different periods, genders or with multiple emotions can be found in section 4.7.

4.6.2. Multivariate Conditional Quantile Regression
As mentioned in section 4.2 the emotions that were analysed in the questionnaire are anxiety, anger, bore-
dom, enjoyment, hopelessness, pride and shame. Therefore a multivariate quantile regression with seven
covariates can be investigated, including the conditional effect of all emotions. Therefore the multivariate
regression model including all emotions is:

Gi =β0 +β1 ∗X1i +β2 ∗X2i +β3 ∗X3i +β4 ∗X4i +β5 ∗X5i +β6 ∗X6i +β7 ∗X7i
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Although this assumes to give more information on the effect of emotions on the attained grade, it may also be
less precise due to multicollinearity. In statistics, multicollinearity is present when one independent variable
in a multiple regression model appears to be linearly predicted from the others with a substantial degree of
accuracy.[23] Multicollinearity generally does not deduce reliability on the estimation of the model, however
it could change the coefficient estimates of the multiple regression erratically in response to small changes in
the data. As the main goal of the research is to analyse the effect of emotions on grades rather than estimating
the dependent variable, the multivariate conditional quantile regression might be less informative in case of
multicollinearity.

4.6.3. Implementation in R
There are several software programs featuring quantile regression commands and procedures, especially sta-
tistical programs as Stata, R and SPSS. In this study the R package quantreg is used to perform quantile re-
gression as it contains Estimation and Inference methods for conditional quantile functions and is easy to
use when familiar with R implementations. The code for the analysis of this data can be found in Appendix
A.3.

4.6.4. Data cleaning
Before using the quantreg package, for every individual the answered questions of the questionnaire are di-
vided into sets representing the distinct emotions. For every individual in the data set who fully completed
the questionnaire, the mean of the answers per set of emotions is calculated. Then as the grades were not
collected from the questionnaire, the right grades are connected to the right data of emotions. These are con-
nected by using the anonymised student numbers.

4.6.5. Implementation: Quantreg package in R
As we now have vectors of the same length of the dependent and independent variables, we can use the
quantreg package in R. The rq() function computes and estimates the π-th conditional quantile function of
the response variable, given the covariates. It solves the linear programming problem that minimizes the
weighted sum of absolute residuals as mentioned in the theory.

The summary function returns the estimated intercept and slope coefficient. Intercept represents the es-
timated quantiles of grades for all covariates being equal to zero. Therefore the intercept is higher for upper
quantiles than for lower quantiles of grades.
To gain more information on the parameters, there are several methods for the interference of the coeffi-
cients. One of the methods is forming a confidence interval using the bootstrap function se = boot, which
computes the standard bootstrap errors.

Using the summary option together with the wild bootstrap algorithm by se = boot, bsmethod = "wild",
the parameters, standard error, t value and probability can be obtained. The standard error of the estimated
parameter is the standard deviation of the sampling distribution by the bootstrap method. The standard de-
viation is the amount of variation in this set of values. Therefore the lower the standard deviation, the closer
the values tend to be to the estimated value. In the summary statistics, the confidence interval is then esti-
mated from the distribution of the parameter estimates across the bootstrap samples.

The interpretation of the confidence interval is that "The 95% confidence interval represents values that
are not statistically significantly different from the point estimate at the .05 level" by Cox D.R. (1974)[5].

4.6.6. Bootstrap function
To find a confidence interval for the parameters of the quantiles, we use the bootstrap function. Bootstrap
confidence intervals for βπ are often used as theoretical confidence intervals, but may be hard or impossible
to compute analytically. In R we use the boot.rq function of the package quantreg, which generates standard
errors, confidence intervals and tests of hypotheses by bootstrap replicates of the statistic applied to the data.
There are five methods available in R for the bootstrap function of which the Wild bootstrap is used in this
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case.

A Wild bootstrap function, introduced in Chapter 2, is suited when the model exhibits heteroscedasticity
and the pattern of heteroskedasticity is unknown. Heteroskedasticity refers to a situation where the variance
of the residuals is unequal over a range of measured values. This is true for the present data set as the param-
eters differ between quantiles, indicating the variance or residuals vary throughout the data.

4.6.7. Dichotomous variables for Gender

To answer the research question, it is desired to investigate the difference in gender. Therefore the data should
be divided into gender groups. To this end, a dichotomous variable is formed. A dichotomous variable is a
variable that is limited to a fixed amount of possible values. In this case the students were asked for their gen-
der by "Male"(1), "Female"(2), "non-binary"(3), "rather not say""(4), "different, namely"(5). As the students
were only male or female, the dichotomous variable can be limited to two values representing the two differ-
ent gender options. In the linear regression model, this dichotomous variable is represented by an indicator
dummy variable. This variable is equal to one if the gender is equal to Female, and to zero otherwise. This
leads to the following linear regression model:

Gi =β0 +βg ender D1i

1Di :=
{

1 if i is Female

0 if i is Male .

Then the βg ender shows the parameter that explains the effect of being a female on the grade attained.

The gender of the respondents was included only in the second questionnaire of the total of three ques-
tionnaires. However as the anonymous student number are known, the information about the respondents
gender can be used for the other questionnaires as well. However, this resulted in only a few data points of
which the emotions and gender were both known.
From the gender extraction we know that 35% of the respondents of the questionnaire were female, 65% were
male.
To acquire knowledge on the new regression function including the dummy variable, again rq() function is
used to form a graph on the intercept and βg ender on this variable in Figure 4.11.

Another way of using the dummy variable is to derive more information on the relationship between
emotions and the attained grade per gender. This information can be extracted by forming a multiple linear
regression model including the dummy variable as well as the independent variables on emotions:

Gi =β0 +β1X1i +β2D1i

Gi again being the grade of individual i , β0 the intercept, β1X1i the mean anxiety of individual i with its
parameter and finally the dummy variable depending on gender of individual i , β2D1i . This results in two
different regression lines depending on gender. The dummy variables have the effect of altering the intercept,
but the coefficients of the slope do not change. The effect of using the dichotomous variable for the genders
can be found in Figure 4.4.
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Figure 4.4: Gender difference in affect of anxiety Figure 4.5: Gender difference in affect of anxiety including interaction

If interaction between the gender dummy variable and the anxiety is added in the linear regression, the
coefficients of the slopes could change as well. This is shown in Figure 4.5.

Gi =β0 +β1X1i +β2D1i +β3D1i X1i

It can be concluded that by including the interaction of the dichotomous variable with the other independent
variable, the quantile regression model fits the data better.

4.7. Results
To answer the research questions in section 4.3, the data is investigated in several manners. First the effect
of anxiety on the students’ attained grades is researched, as anxiety is a common stress factor of which the
understanding of the influence on education could be important. The quantile regression indeed shows dif-
ferent β parameters for different quantiles.
After looking at one specific emotion, a multivariate model of multiple emotions is formed to find results on
the influence of all studied emotions by the AEQ on the attained grades of the students. As shown earlier, the
gender might have an influence on the grades of the students. Therefore also the gender is further investi-
gated to answer the research question, as the gender distributions act very differently. From the solutions of
the gender difference, a simpson’s paradox may be of topic.
Finally the change over time during the semester of the students following the mathematics course will be
elaborated.

4.7.1. Anxiety
To investigate the relationship between anxiety and attained grades of the students, for every individual the
grades are plotted against the mean of all anxiety questions in Figure 4.6. The Ordinary Least Squared (OLS)
regression line and the Quantile regression line for the median are included, to see whether there is a relation
between the two variables.
In Figure 4.6 it is noticeable that for the OLS regression as well as for the quantile regression, the coefficient
of the regression line is negative. Implying that a higher anxiety causes a lower attained grade. It can be
concluded that a regression line that is more robust to outliers, the median quantile regression line, has a
more negative regression line. The coefficient of the OLS line is -0.58, while the coefficient of the median
quantile regression is -1.0. Causing the estimation of the effect of the anxiety to be of bigger influence. Besides
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this the p-value of the median quantile regression is 0.081, where this is 0.094 for the OLS regression. Although
both are not considered significant for the α= 0.05, the median quantile regression gives a smaller p-value.

Figure 4.6: Ordinary Least Squared and Quantile Regression on the relationship between anxiety and grades

To see whether the effect of the anxiety differs over the fractions of data, we investigate the parameters of
anxiety by quantile regression.
In Figure 4.7 the red line is the OLS estimation. The dotted red line shows the 95% confidence interval of this

OLS regression coefficient. The horizontal axis shows the quantiles of the response variable and the vertical
axis are the coefficient magnitudes of the explanatory variable. The black dotted line shows the coefficients
of the quanatile regression and the gray boundaries represent the 95% interval of this quantile regression co-
efficient. Therefore if 0 is not included in the 95% interval, the coefficient is significantly different from 0 as
its p-value is below α = 0.05. The results and p-values of the OLS regression and quantile regression can be
found in Table 4.7.1 (* showing significance). From Figure 4.7, it can be seen that the influence of Anxiety is
expected to differ between the different quantiles of the research population. As the dotted line represents
the 95% confidence interval of the OLS estimation, it can be concluded that the influence of Anxiety for the
0.15 quantile is significantly different from the OLS estimation.

Coefficients for different quantiles
Total Grade Intercept Anxiety coefficient P-value
OLS regression 7.0560 -0.5833 0.0938
τ= 0.05 3.74074 -1.11111 0.08817
τ= 0.15 5.62308 -1.55769 0.03194∗
τ= 0.25 5.42500 -0.375 0.65384
τ= 0.35 6.27857 -0.32143 0.70071
τ= 0.45 7.09286 -0.69643 0.28937
τ= 0.55 7.70000 -0.50000 0.39349
τ= 0.65 7.70000 0.0000 1.00000
τ= 0.75 8.45882 -0.26471 0.51713
τ= 0.85 8.90000 -0.30000 0.40616
τ= 0.95 9.77727 -0.57955 0.00425 *
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Figure 4.7: Parameter estimators for Anxiety Questionnaire 1
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4.7.2. Multiple Emotions
To research the regression for all the emotions, the multivariate conditional quantile regression formed in
Chapter 4.6.2 is implemented. The parameters are similarly extracted using the quantreg package for condi-
tional quantile regression. The behaviour of the parameter estimations when all emotions are included are
shown in Figure 4.8

Figure 4.8: Parameters of all emotions

Figure 4.8 can be interpreted as the coefficient Figure in previous subsection. The confidence intervals
seem relatively large, suggesting the parameters vary a lot. Significantly, it can be concluded from the figure
that the β1, which is the parameter representing anxiety, is not negatively related to the grades. Earlier in the
univariate regression model of anxiety, it did conclude a negative relation. This difference in influence can
be due to multicollinearity, as explained in chapter 4.6.2. Therefore the correlation between the explanatory
values can be found in Figure 4.9.
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Figure 4.9: Correlation between emotions

As can be seen from the correlation table, the correlation between anxiety and anger, hopelessness and
shame are very high. Therefore this multicollinearity can change the coefficient estimates of the anxiety
parameter erratically in response to small changes in the model or the data. However, as multicollinearity
assumes the results are not valid for individual predictors, another view of interpreting the change is that it
may be a result of an estimation of the slope parameter with omitted variable bias in the univariate model.
Meaning that the variation in the response variable that is due to another cause is inappropriately linked to
the independent variable.
However in this multivariate model, the coefficients of shame and hopelessness of the 0.05 fraction of the
response variable are significantly different as the 0 is not included in the 95% interval of the parameters.
Besides this, they are also outside the OLS 95% interval.
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4.7.3. Gender

The following section includes investigation on the difference of the effect of emotions on attained grades be-
tween genders. For this research, the dummy variable introduced in Chapter 2 is used to indicate the genders.
To get an intuition on the behaviour of the attained grades of the different genders, the smoothed density()
function is again used to estimate the probability density, now on gender divided sets.

Figure 4.10: Difference Gender

From the Figure 4.10 it can be concluded that the probability density functions act disparate. Therefore
further investigation in the effect of gender may be useful for the conclusion.

Using the indicator dummy variable, the result of the Gender effect on the attained grade is shown in
Figure 4.11. As assumed from the distribution, the βg ender has a positive value, assuming being a female has
a positive effect on the attained grade. However, only information on 40 students of whom both grade and
gender were known are included of which only 14 were female.
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Figure 4.11: Intercept and Beta on Regression using Dummy variable for Gender

To see the effect of anxiety within the different sexes, also a multivariate model is investigated including
anxiety and the dummy variable of the gender. In 4.12 the multivariate model Gi =β0 +β1X1i +βg ender Di is
shown. As the effect of anxiety within the gender is also of importance, the model including the intersection
of both, Gi =β0 +β1X1i +βg ender Di , is shown in Figure 4.13.

Figure 4.12: Anxiety plus Gender Figure 4.13: Anxiety and Gender interaction

The result of this investigation is quite significant. In Figure 4.12, the anxiety has a negative effect on the
attained grade and the gender has an overall positive effect. This is in line with the conclusion with the seper-
ate univariate models. However, in Figure 4.15, the anxiety has a positive effect when the indicator function is
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equal to 1. Therefore it can be concluded that female students experience a less negative or sometimes even
positive effect of anxiety on their grades.
To get a better intuition of this effect, the coefficient lines of both genders for different quantiles are plotted
in Figure 4.14-4.17.

Figure 4.14: Regression line π = 0.15 Figure 4.15: Regression line π = 0.35

Figure 4.16: Regression line π = 0.55 Figure 4.17: Regression line π = 0.75

This occurance is an example of the Simpson’s paradox.
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Definition 11 (Simpson’s Paradox) The Simpson’s paradox is a phenomenon in probability and statistics in
which a trend appears in several groups of data but disappears or reverses when the groups are combined.

Therefore the trend that is explained by researching the genders seperately is different from when the
groups are united. This as the effect of the emotions have different levels for the different genders. Figure
4.18 gives an illustration to explain the simpson’s paradox. The dotted line gives a trend when the data is
united, which are very different when the groups are seperate.

Figure 4.18: Simpson’s paradox example

To handle this paradox, causal relations and con-founders must be well managed in the statistical mod-
elling. "Mathematician Jordan Ellenberg argues that Simpson’s paradox is misnamed as "there’s no constric-
tion involved, just two different ways to think about the same data" and suggests that its lesson "isn’t really to
tell us which viewpoint to take but to insist that we keep both the parts and the whole in mind at once."[13]"

4.7.4. Emotions over time

The questionnaires were distributed at three different time points. One at the start of the course, one after
the first test and one after te course. Due to less responses in the last questionnaires, the multivariate models
were responding very radically to small changes in the data. Therefore the univariate model in the analysis of
the emotions over time may be more valuable as multicollinearity does not appear.
The effect of anxiety on different quantiles just after the exam are plotted in Figure 4.19. The parameters of
the quantile regression line on the data of the questionnaire taken after the course, can be found in Figure
4.20.
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Figure 4.19: Influence Anxiety Period 2

Figure 4.20: Influence Anxiety Period 3

Compared to the effect of anxiety in period one, which is shown in Figure 4.7 in Section 4.7.1, the results
seem to be less negative. The higher quantiles of the data set are even expected to experience a positive effect
of anxiety on their grades.

4.7.5. Bayesian quantile regression for ordinal longitudinal PRIME data
Using Bayesian quantile regression for ordinal longitudinal data is a simulation that makes a probability dis-
tribution for possible ordinal outcomes. Therefore in the simulation using the data of PRIME, the emotions
are considered to be the response variable and the latent variable is as follows:
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li j = x1i jβ1 +x2i jβ2 +εi j ,

Now the independent vectors are for instance the gender or attained grade. Then the emotions are sam-
pled according by the latent variable. The τ-th quantile regression is then considered as:

QYi |Xi (τ) =αi +β0 +β1xGenderi j +β2xGr adei j

As explained, for Bayesian quantile regression, prior knowledge can be used to have a better prediction.
Therefore the data of the questionnaire is analysed, the histogram of the anxiety emotions can be found in
Figure 4.21.

Figure 4.21: Histogram of all anxiety questions

By the figure the prior of an exponential function can be suggested to analyse the emotions as response
variable in the Bayesian approach.
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Conclusion

In this research, several approaches of quantile regression analysis for estimating the effect of emotions on
attained grades of engineering students are considered. The general quantile regression approach as well as
the Bayesian quantile regression approach is elaborated. To illustrate the use of the information that can be
attained by such models, it is applied to data of PRIME.

The quantile regression approach is considered to be robust to outliers and asymmetrical distributions
and may discover relationships between variables for abnormal connectivity as it predicts the conditional dis-
tribution for different quantiles. The model predicts the parameters by minimizing the loss function, which
is a weighted LAV model. The outcome of the model are parameter etimates per quantile that show the re-
lationship between the explanatory variable connected to the parameter value and the response value. The
parameters can be resampled with the Wild bootstrap method, such that a 95% interval of the estimates is
predicted and significance can be tested. This resampling method is based on the response variable and
keeps the indipendent values on their initial value, which is useful as it is a conditional distribution.

The Bayesian approach allows the quantile regression to take into account prior knowledge by first stat-
ing a prior distribution. Then as the minimization of the loss function is equivalent to the maximization
of the likelihood of independently distributed Asymmetric Laplace densities, the likelihood is calculated by
parametrization of the distributions. Furthermore several MCMC methods can be used to form a reliable
posterior distribution by the likelihood and prior distribution, of which the Gibbs sampling method is a use-
ful method for ordinal longitudinal data. The posterior mean and variance of the regression coefficients and
parameters can then be used to illustrate the relation between the regression variables.

To research the effect of academic emotions on attained grades of engineering students, the method of
quantile regression modelling was applied to the data of PRIME. The data was difficult to process and all the
information was only available of a few engineering students. However it was possible to see some effects
of the emotions on attained grades. Although the multivariate model including all emotions is not consid-
ered reliable because of the highly correlated explanatory variables, the quantile regression on the univariate
model showed some significant effects. As the parameter value of lower quantiles of the response variable
was significantly lower, it can be concluded that students attaining a lower grade experience a more negative
effect of anxiety.
Introducing a dummy variable for gender showed another conclusion. The influence of anxiety was assumed
to have an overall more negative effect, however the combination of being anxious and female was surpris-
ingly positive for some quantiles. In that case anxiety is assumed to have a positive effect on the attained
grade by being more prepared or focused for their test due to anxiety. This was not considered by the OLS
regression and assumes the Simpson’s Paradox as this effect was not found when the gender groups were
combined. Therefore the use of quantile regression was indeed very useful to gain more information and to
reconsider conclusions that would have been drawn from the normal OLS regression approach.

Another way of results interpretation might be that females are anxious although their grades are higher.
This as the overall distribution of the female scores assumed higher scores than for male students. In that
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case it is concluded that anxiety seems to exist for any grade. Therefore a new hypothesis about quantiles of
emotions might be interesting to investigate, as they may act differently. Therefore the Bayesian quantile re-
gression approach for ordinal longitudinal data was also introduced. In this case, the emotions (ordinal data)
are considered the response variable and the gender and scores are the explanatory variables. Therefore this
might be interesting to gain more information on how the quantiles of the emotions act. By the conclusion
of the Simpson’s paradox, it might be useful to approach the data in different gender groups for modelling
Bayesian quantile regression. Besides this, the anxiety emotions are considered to act exponentially. There-
fore an exponential prior distribution can be used to analyse the emotions.

An overall conclusion is that the quantile regression approach gave new insights and significancy results
that would not have been shown by OLS regression. Also seperating genders in modelling quantile regression
assumed new conclusions on the effect of emotions, namely positive effects of anxiety. As Bayesian statistics
is a reliable way to estimate a posterior distribution by using prior information, likelihood estimates and the
MCMC method. This is a good analysis method to further conduct on the quantile regression approach on
the effect of academic emotions on attained grades of engineering students.
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Discussion

During the research there were some complications and limitations. Recommendations on future research
are included in this chapter, based on the challenges and limitations of this research.

6.1. Bayesian quantile regression
Although the Bayesian quantile regression for ordinal longitudinal data was investigated and analysed in de-
tail, the method was not applied on the actual PRIME data. Due to the many different insights the quantile
regression method offers, the analysis on the data by the regular quantile regression method took a lot of time.
Researching it for different genders, time periods and multivariate models was very informative but also time
consuming. Therefore the Bayesian quantile regression approach is not applied in R using the data of PRIME,
although by the literature of the Bayesian quantile regression it is assumed to be very reliable and informa-
tive. Therefore it may be very interesting for further research to construct the Bayesian quantile regression
approach and compare it with the general quantile regression.
Besides this, the Bayesian quantile regression for ordinal longitudinal data is explained. In that case the aca-
demic emotions would be considered as the response variable. Therefore further research may see the effects
from another view. As the emotions may be effected by academic achievements and gender, instead of look-
ing at the academic emotions as an explanatory variable. Also, Bayesian quantile regression may be better
for further research as previous information and knowledge can be used for computing the posterior distri-
bution.

6.2. Multicollinearity in multivariate model
As the analysis on the explanatory variables showed a high correlation between the explanatory variables,
the multivariate model can be concluded to be unreliable. However a multivariate model without multi-
collinearity may be more informative then a univariate model, as the variation in the univariate model that
is due to another cause can be inappropriately linked to the independent variable. Therefore for future re-
search, a new multivariate model without multicollinearity is suggested, as multicollinearity can be avoided
by linearly combining predictor variables.

6.3. Clusters
In the quantile regression analysis, many clusters are combined regarding studies, age, gender and prior ed-
ucation. Clustering the gender gave us new insights on the relationship between the variables investigated
in the quantile regression. Although clustering is difficult when there is not a lot of data, for further research
it may be interesting to use clustering for studies, age and prior education as well. These influential factors
may influence groups which are assumed to be independent in this research.

6.4. Data
As mentioned, it is difficult to cluster when not a lot of data is available, as the effect of influential factors
cannot be shown as the groups become very small. The data of the questionnaires was not easy to extract and
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connect to eachother. Therefore for further investigation, it is advised to reconsider the data ordening. It is
useful to extract more data for further investigation in Bayesian quantile regression, as it allows more ordinal
longitudinal data points. The data on gender was only available in the second questionnaire, which was the
least answered questionnaire. When more data is available, the conclusions might also be more reliable.
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Code

A.1. Distribution of grades

#Data van eerste vragenlijst
vragenlijst_1_cijfers
vragenlijst_1_cijfers [1,1]

#Data overzetten in Matrix
vragenlijst1 <- str_split_fixed(vragenlijst_1_cijfers [1:207 ,1] ,"," ,137)
# rij is de leerling , kolom de vragen
vragenlijst1

vragenlijst2 <- str_split_fixed(vragenlijst_2_cijfers [1:121 ,1] ,",", 141)
vragenlijst2

vragenlijst3 <- str_split_fixed(Vragenlijst_3_cijfers [1:105 ,1] , ",", 138)
vragenlijst3

AnxietyKolommen <- c(56 ,57 ,58 ,61 ,75 ,77 ,80 ,84 ,92 ,95 ,97 ,99 ,101 ,105 ,109)
TotalAnxiety = data.frame(NA)

#histogrammen
anxietyVraag2 = vragenlijst1 [,56]
for (i in AnxietyKolommen ){

strQuestion <- as.character(i-54)
strMain <- paste("Histogram␣question␣", strQuestion)
barplot(table(as.numeric(vragenlijst1[,i]))/length(as.numeric(vragenlijst1[,i])), main = strMain ,col = "blue")
TotalAnxiety <-cbind(TotalAnxiety , as.numeric(vragenlijst1[,i]))

}
return(TotalAnxiety)

numTotalAnxiety <- stack(TotalAnxiety)
barplot(table(as.numeric(numTotalAnxiety [,1]))/length(numTotalAnxiety [,1]), main = "Histogram␣of␣all␣Anxiety␣questions", col = "Red")

median(as.numeric(numTotalAnxiety [,1]), na.rm = TRUE)
median(as.numeric(vragenlijst1 [,101]), na.rm = TRUE)
TotalAnxiety [21,]
#conclusie: over het algemeen zijn de anxiety vragen ongeveer exponentieel verdeeld

#cijfers van leerlingen
Anonieme_cijfers
DataCijfers <- str_split_fixed(Anonieme_cijfers [1:114 ,1] , "," ,12)
DataCijfers
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#Histogram Cijfers om distribution te bepalen
# Histogram overlaid with kernel density curve
ggplot(as.data.frame(DataCijfers [,9]), aes(x= as.numeric(DataCijfers [ ,9])))+

geom_histogram(aes(y=.. density ..), # Histogram with density instead of count on y-axis
binwidth =.5,
colour="black", fill="white") +

geom_density(alpha=.2, fill="#FF6666") +
geom_vline(aes(xintercept=mean(as.numeric(DataCijfers [,9]), na.rm=T)), # Ignore NA values for mean

color="red", linetype="dashed", size =1) +
xlab("Grades")

A.2. Quantiles of grades

#STEP 1 QUANTILES OF GRADES
#to see how the variables quantiles behave
cijfers <- as.numeric(MatrixAnxietyGrades [,2][!is.na(MatrixAnxietyGrades [ ,2])])
n <- length(cijfers)
plot ((1:n-1)/(n-1), sort(cijfers), type = "l", ann = FALSE)
title("Quantile␣plot␣of␣grades", xlab = "Sample␣fractions", ylab = "Quantiles␣of␣the␣grades␣of␣Test␣1")
points (((1:n-1)/(n -1))[ seq.int(0, n, n/10)], sort(cijfers )[seq.int(0, n, n/10)], pch = 21, bg = 4)

A.3. Quantile Reg: Anxiety against grades

#################################################
FORMS MEAN OF ANXIETY QUESTIONS PER STUDENT
#################################################
AnxietyKolommen <- c(56 ,57 ,58 ,61 ,75 ,77 ,80 ,84 ,92 ,95 ,97 ,99 ,101 ,105 ,109)
#Calculates the mean anxiety on all questions of a particular student
meananxiety = data.frame(NA)
for (i in 1:207){

meananxiety[i] = mean(as.numeric(vragenlijst1[i, AnxietyKolommen ]), na.rm = TRUE)-1
}

#####################################################
#Forms data for plot of anxiety against grades
#####################################################
nmmr=0
MatrixAnxietyGrades = matrix(NA, nrow = 80, ncol = 4)
for (k in 1:114){

for (l in 1:207){
#if the student numbers are identical
if (DataCijfers[k,2] == vragenlijst1[l,2]){

#they are added to the new dataset
nmmr <- nmmr +1
if (is.na(as.numeric(DataCijfers[k ,9])) == FALSE){

if (is.na(as.numeric(meananxiety[l])) == FALSE){
MatrixAnxietyGrades[nmmr , 1] = DataCijfers[k,2] #student nr in col 1
MatrixAnxietyGrades[nmmr , 2] = DataCijfers[k,9] #grade T1 in col 2
MatrixAnxietyGrades[nmmr ,3] = as.character(meananxiety[l]) #mean anxiety col 3

}
}
}

}
}

x <-MatrixAnxietyGrades [,3] #meananxiety
y <-MatrixAnxietyGrades [,2] #grades
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x <- as.numeric(x[!is.na(x)])
y<- as.numeric(y[!is.na(y)])

summary(lm(y~x))
summary(rq(y~x), se="boot", bsmethod = "wild")

plot(y ~ x, main = "Linear␣and␣Quantile␣Regression",
xlab = "Mean␣Anxiety",
ylab = "Attained␣Grades")

abline(lm(y ~ x), col = "blue", xpd = FALSE) #linear regression
abline(rq(y ~ x), col = "red", xpd = FALSE) #quantile regression
legend("topright", legend=c("OLS␣regression", "Quantile␣regression"),

col=c("blue", "red"), lty=1:2, cex =0.8)

###########################################
#QUANTILE REGRESSION ANXIETY 1
###########################################
QR_GRADES <- rq(y~x, data = as.data.frame(MatrixAnxietyGrades),
tau = seq (0.05 ,0.95 ,by =0.1))
QR.1 <- summary(QR_GRADES , se = "boot", bsmethod = "wild")
plot(QR.1, main = c("Intercept␣Value␣per␣Sample␣Fraction",

"Influence␣of␣Anxiety␣per␣Sample␣Fraction"),
xlab = "Sample␣Fraction",
ylab = "Beta")

A.4. Quantile Reg:Gender analysis

####################################################
#Forms data for plot of sex against grades
####################################################
nmmr=0
MatrixSexGrades = matrix(NA , nrow = 80, ncol = 4)
for (k in 1:114){

for (l in 1:121){
#if student numbers are equal in both data sets
if (DataCijfers[k,2] == vragenlijst2[l,2]){

#they are added to the new dataset
nmmr <- nmmr +1
if (is.na(as.numeric(DataCijfers[k ,9])) == FALSE){

if (is.na(as.numeric(vragenlijst2[l ,6])) == FALSE){
MatrixSexGrades[nmmr , 1] = DataCijfers[k,2] #student number in col 1
MatrixSexGrades[nmmr , 2] = DataCijfers[k,9] #grades attained in col 2
MatrixSexGrades[nmmr ,3] = as.character(vragenlijst2[l,6]) #sex in col 3

}
}

}
}

}

Sex <- as.factor(MatrixSexGrades [,3][!is.na(MatrixSexGrades [ ,3])])
Gradesex <- as.numeric(MatrixSexGrades [,2][!is.na(MatrixSexGrades [ ,2])])

QR_SEX <- rq(Gradesex~Sex , data = as.data.frame(MatrixSexGrades), tau = seq (0.05 ,0.95 ,by =0.10))
QR.3 <- summary(QR_SEX , se = "boot", bsmethod = "wild")
plot(QR.3, main = c("Intercept␣per␣sample␣fraction", "Influence␣of␣being␣a␣Female␣per␣sample␣fraction"))

#################################################################
Gender difference Grade against Anxiety
#################################################################

GenderModel <- rq(GradeEmotions2 ~ Anxiety22 + Gender + (Anxiety22*Gender), data = as.data.frame(MatrixEmotionsGrades2 ))
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mydata <- tibble(Anxiety22 , Gender , GradeEmotions2)
lines_gender <- tribble(~Anxiety22 , ~Gender ,

0,1,
3,1,
0,2,
3,2) %>% mutate(

Gender=factor(Gender )) %>% mutate(
GradeEmotions2=predict.rq(object = GenderModel ,

newdata = .))

ggplot(data= mydata ,
mapping=aes(x=Anxiety22 ,

y= GradeEmotions2 ,
color=Gender )) + scale_color_manual(values = c("#00 BA38","#FF8D00"),

name = "Gender",
breaks = c("1", "2"),
labels = c("Male", "Female"))+

geom_point () +
geom_line(data= lines_gender %>% filter(Gender ==1), na.rm = TRUE) +
geom_line(data= lines_gender %>% filter(Gender ==2), na.rm = TRUE) +
xlab("Mean␣Anxiety␣by␣AEQ␣Questionnaire") +
ylab("Grade␣Attained") + scale_shape_discrete(name = "Gender",

breaks = c("1", "2"),
labels = c("Male", "Female"))

A.5. Quantile Reg:Multiple emotions

######################################
#QUANTILE REGRESSION ALL EMOTIONS
######################################
AngerKolommen <- c(63, 67, 69, 71, 78, 83, 88, 102, 107)
BoredomKolommen <-c(6 ,11 ,14 ,20 ,25 ,31)+54
EnjoymentKolommen <- c(1 ,5 ,8 ,12 ,22 ,28 ,35 ,39 ,46 ,54)+54
HopelessnessKolommen <-c(40 ,42 ,44 ,49 ,52 ,56)+54
PrideKolommen <-c(18 ,19 ,32 ,36 ,58 ,59)+54
ShameKolommen <-c(10 ,16 ,27 ,33 ,37 ,50 ,57 ,60)+54

AngerKolommen2 <- c(63, 67, 69, 71, 78, 83, 88, 102, 107)+ 4
BoredomKolommen2 <-c(6 ,11 ,14 ,20 ,25 ,31)+58
EnjoymentKolommen2 <- c(1 ,5 ,8 ,12 ,22 ,28 ,35 ,39 ,46 ,54)+58
HopelessnessKolommen2 <-c(40 ,42 ,44 ,49 ,52 ,56)+58
PrideKolommen2 <-c(18 ,19 ,32 ,36 ,58 ,59)+58
ShameKolommen2 <-c(10 ,16 ,27 ,33 ,37 ,50 ,57 ,60)+58

meanAnger= data.frame(NA)
meanBoredom = data.frame(NA)
meanEnjoyment = data.frame(NA)
meanHopelessness = data.frame(NA)
meanPride = data.frame(NA)
meanShame = data.frame(NA)

for (i in 1:207){
meanAnger[i] = mean(as.numeric(vragenlijst1[i, AngerKolommen ]), na.rm = TRUE)-1
meanBoredom[i] = mean(as.numeric(vragenlijst1[i, BoredomKolommen ]), na.rm = TRUE)-1
meanEnjoyment[i] = mean(as.numeric(vragenlijst1[i, EnjoymentKolommen ]), na.rm = TRUE)-1
meanHopelessness[i] = mean(as.numeric(vragenlijst1[i, HopelessnessKolommen ]), na.rm = TRUE)-1
meanPride[i] =mean(as.numeric(vragenlijst1[i, PrideKolommen ]), na.rm = TRUE)-1
meanShame[i] = mean(as.numeric(vragenlijst1[i, ShameKolommen ]), na.rm = TRUE)-1
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}

nmmr=0
MatrixEmotionsGrades = matrix(NA , nrow = 80, ncol = 9)
for (k in 1:114){

for (l in 1:207){
#als de studentennummers overeenkomen
if (DataCijfers[k,2] == vragenlijst1[l,2]){

#voegen we ze in een nieuwe dataset
nmmr <- nmmr +1
MatrixEmotionsGrades[nmmr , 1] = DataCijfers[k,2] #stopt leerlingnummer in kolom 1
MatrixEmotionsGrades[nmmr , 2] = DataCijfers[k,9] #stop alle cijfers van TT1 in kolom 2
MatrixEmotionsGrades[nmmr ,3] = as.character(meananxiety[l]) #gemiddelde anxiety op kolom 3
MatrixEmotionsGrades[nmmr ,4] = as.character(meanAnger[l])
MatrixEmotionsGrades[nmmr ,5] = as.character(meanBoredom[l])
MatrixEmotionsGrades[nmmr ,6] = as.character(meanEnjoyment[l])
MatrixEmotionsGrades[nmmr ,7] = as.character(meanHopelessness[l])
MatrixEmotionsGrades[nmmr ,8] = as.character(meanPride[l])
MatrixEmotionsGrades[nmmr ,9] = as.character(meanShame[l])

}
}

}

Anxiety <- MatrixEmotionsGrades [,3]
Anger <- MatrixEmotionsGrades [,4]
Boredom <- MatrixEmotionsGrades [,5]
Enjoyment <- MatrixEmotionsGrades [,6]
Hopelessness <- MatrixEmotionsGrades [,7]
Pride <- MatrixEmotionsGrades [,8]
Shame <- MatrixEmotionsGrades [,9]
GradeEmotions <- MatrixEmotionsGrades [,2]

Anxiety <- as.numeric(Anxiety[!is.na(Anxiety )])
Anger <- as.numeric(Anger[!is.na(Anger )])
Boredom <- as.numeric(Boredom[!is.na(Boredom )])
Enjoyment <- as.numeric(Enjoyment[!is.na(Enjoyment )])
Hopelessness <- as.numeric(Hopelessness[!is.na(Hopelessness )])
Pride <- as.numeric(Pride[!is.na(Pride )])
Shame <- as.numeric(Shame[!is.na(Shame )])
GradeEmotions <- as.numeric(GradeEmotions[!is.na(GradeEmotions )])

QR_ALL <- rq(GradeEmotions ~ Anxiety + Anger + Boredom+Enjoyment+Hopelessness+Pride+Shame , data = as.data.frame(MatrixEmotionsGrades), tau = seq (0.05 ,0.95 ,by =0.10))
QR.ALL <- summary(QR_ALL , se = "boot", bsmethod = "wild")
plot(QR.ALL)

MatCorrelation <- data.frame(NA)
MatCorrelation [1:80 ,1] <- as.numeric(MatrixEmotionsGrades [,3])
MatCorrelation [1:80 ,2] <-as.numeric(MatrixEmotionsGrades [,4])
MatCorrelation [1:80 ,3] <- as.numeric(MatrixEmotionsGrades [,5])
MatCorrelation [1:80 ,4] <-as.numeric(MatrixEmotionsGrades [,6])
MatCorrelation [1:80 ,5] <- as.numeric(MatrixEmotionsGrades [,7])
MatCorrelation [1:80 ,6] <-as.numeric(MatrixEmotionsGrades [,8])
MatCorrelation [1:80 ,7] <-as.numeric(MatrixEmotionsGrades [,9])
colnames(MatCorrelation) <-c("Anxiety","Anger","Boredom","Enjoyment","Hopelessness","Pride", "Shame")

corrplot(cor(as.matrix(MatCorrelation),use="pairwise.complete.obs"), method = "number")

QR_eliminate <- rq(GradeEmotions ~ Anxiety +Boredom+Enjoyment+Pride , data = as.data.frame(MatrixEmotionsGrades), tau = seq (0.05 ,0.95 ,by =0.10))
QR.el <- summary(QR_eliminate , se = "boot")
plot(QR.el)
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###################################################33333
#SEX AND ALL EMOTIONS
########################################################

meanAnger2= data.frame(NA)
meanBoredom2 = data.frame(NA)
meanEnjoyment2= data.frame(NA)
meanHopelessness2 = data.frame(NA)
meanPride2 = data.frame(NA)
meanShame2 = data.frame(NA)

for (i in 1:121){
meanAnger2[i] = mean(as.numeric(vragenlijst2[i, AngerKolommen2 ]), na.rm = TRUE)-1
meanBoredom2[i] = mean(as.numeric(vragenlijst2[i, BoredomKolommen2 ]), na.rm = TRUE)-1
meanEnjoyment2[i] = mean(as.numeric(vragenlijst2[i, EnjoymentKolommen2 ]), na.rm = TRUE)-1
meanHopelessness2[i] = mean(as.numeric(vragenlijst2[i, HopelessnessKolommen2 ]), na.rm = TRUE)-1
meanPride2[i] =mean(as.numeric(vragenlijst2[i, PrideKolommen2 ]), na.rm = TRUE)-1
meanShame2[i] = mean(as.numeric(vragenlijst2[i, ShameKolommen2 ]), na.rm = TRUE)-1

}

nmmr=0
MatrixEmotionsGrades2 = matrix(NA, nrow = 80, ncol = 10)
for (k in 1:114){

for (l in 1:121){
#als de studentennummers overeenkomen
if (DataCijfers[k,2] == vragenlijst2[l,2]){

#voegen we ze in een nieuwe dataset
nmmr <- nmmr +1
if (is.na(as.numeric(meananxiety2[l])) == FALSE){
MatrixEmotionsGrades2[nmmr , 1] = DataCijfers[k,2] #stopt leerlingnummer in kolom 1
MatrixEmotionsGrades2[nmmr , 2] = DataCijfers[k,9] #stop alle cijfers van TT1 in kolom 2
MatrixEmotionsGrades2[nmmr ,3] = as.character(meananxiety2[l]) #gemiddelde anxiety op kolom 3
MatrixEmotionsGrades2[nmmr ,4] = as.character(meanAnger2[l])
MatrixEmotionsGrades2[nmmr ,5] = as.character(meanBoredom2[l])
MatrixEmotionsGrades2[nmmr ,6] = as.character(meanEnjoyment2[l])
MatrixEmotionsGrades2[nmmr ,7] = as.character(meanHopelessness2[l])
MatrixEmotionsGrades2[nmmr ,8] = as.character(meanPride2[l])
MatrixEmotionsGrades2[nmmr ,9] = as.character(meanShame2[l])
MatrixEmotionsGrades2[nmmr ,10] = as.numeric(vragenlijst2[l,6]) #sex op kolom 3

}
}

}
}

Anxiety22 <- MatrixEmotionsGrades2 [,3]
Anger2 <- MatrixEmotionsGrades2 [,4]
Boredom2 <- MatrixEmotionsGrades2 [,5]
Enjoyment2 <- MatrixEmotionsGrades2 [,6]
Hopelessness2 <- MatrixEmotionsGrades2 [,7]
Pride2 <- MatrixEmotionsGrades2 [,8]
Shame2 <- MatrixEmotionsGrades2 [,9]
Gender <- MatrixEmotionsGrades2 [,10]
GradeEmotions2 <- MatrixEmotionsGrades2 [,2]

Anxiety22 <- as.numeric(Anxiety22[!is.na(Anxiety22 )])
Anger2 <- as.numeric(Anger2[!is.na(Anger2 )])
Boredom2 <- as.numeric(Boredom2[!is.na(Boredom2 )])
Enjoyment2 <- as.numeric(Enjoyment2[!is.na(Enjoyment2 )])
Hopelessness2 <- as.numeric(Hopelessness2[!is.na(Hopelessness2 )])
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Pride2 <- as.numeric(Pride2[!is.na(Pride2 )])
Shame2 <- as.numeric(Shame2[!is.na(Shame2 )])
Gender <- as.factor(Gender[!is.na(Gender )])
GradeEmotions2 <- as.numeric(GradeEmotions2[!is.na(GradeEmotions2 )])

QR_ALL2 <- rq(GradeEmotions2 ~ Anxiety22+Anger2+Boredom2+Hopelessness2+Pride2+Shame2+Gender , data = as.data.frame(MatrixEmotionsGrades2), tau = seq (0.05 ,0.95 ,by =0.1))
QR.ALL2 <- summary(QR_ALL2 , se = "boot", bsmethod = "wild")
plot(QR.ALL2)

QR_GENDER <- rq(Anxiety22 ~ Gender , data = as.data.frame(MatrixEmotionsGrades2), tau = seq (0.05 ,0.95 ,by =0.10))
QR.GEN <- summary(QR_GENDER , se = "boot")
plot(QR.GEN , main = c("Intercept", "Influence␣of␣Gender␣on␣different␣quantiles␣of␣Shame" ))
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