
Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://cas.tudelft.nl/

CAS-2022-5269458

M.Sc. Thesis

A New Logarithmic Quantization Technique and
Corresponding Processing Element Design for

CNN Accelerators

Longxing Jiang

Faculty of Electrical Engineering, Mathematics and Computer Science

Abstract

Convolutional Neural Networks (CNN) have become a popular solution
for computer vision problems. However, due to the high data volumes and
intensive computation involved in CNNs, deploying CNNs on low-power
hardware systems is still challenging. The power consumption of CNNs
can be prohibitive in the most common implementation platforms: CPUs
and GPUs. Therefore, hardware accelerators that can exploit CNN paral-
lelism and methods to reduce the computation burden or memory require-
ments are still hot research topics. Quantization is one of these methods.
One suitable quantization strategy for low-power deployments is logarith-
mic quantization.

Logarithmic quantization for Convolutional Neural Networks (CNN):
a) fits well typical weights and activation distributions, and b) allows the
replacement of the multiplication operation by a shift operation that can be
implemented with fewer hardware resources. In this thesis, a new quanti-
zation method named Jumping Log Quantization (JLQ) is proposed. The
key idea of JLQ is to extend the quantization range, by adding a coefficient
parameter ”s” in the power of two exponents (2sx+i).

This quantization strategy skips some values from the standard loga-
rithmic quantization. In addition, a small hardware-friendly optimization
called weight de-zeroing is proposed in this work. Zero-valued weights
that cannot be performed by a single shift operation are all replaced with
logarithmic weights to reduce hardware resources with little accuracy loss.

To implement the Multiply-And-Accumulate (MAC) operation
(needed to compute convolutions) when the weights are JLQ-ed and de-
zeroed, a new Processing Element (PE) have been developed. This new
PE uses a modified barrel shifter that can efficiently avoid the skipped val-
ues. Resource utilization, area, and power consumption of the new PE
standing alone are reported. Resource utilization and power consumption
in a systolic-array-based accelerator are also reported. The results show
that JLQ performs better than other state-of-the-art logarithmic quantiza-
tion methods when the bit width of the operands becomes very small.

ii

A New Logarithmic Quantization Technique and
Corresponding Processing Element Design for CNN

Accelerators

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Longxing Jiang
born in ChengDu, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2022 Circuits and Systems Group
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF

MICROELECTRONICS

The undersigned hereby certify that they have read and recommend to the Faculty of Elec-
trical Engineering, Mathematics and Computer Science for acceptance a thesis entitled “A
New Logarithmic Quantization Technique and Corresponding Processing Element De-
sign for CNN Accelerators” by Longxing Jiang in partial fulfillment of the requirements
for the degree of Master of Science.

Dated: 29th November, 2022

Chairman:
prof.dr.ir. Rene van Leuken

Advisor:
dr. David Aledo Ortega

Committee Members:
prof.dr.ir. Rene van Leuken

dr. David Aledo Ortega

prof.dr. Stephan Wong

List of Acronyms

ASIC Application-Specific Integrated Circuit

BNN Binary Neural Network

CNN Convolution Neural Network

DRAM Dynamic Random Access Memory

FPGA Field Programmable Gate Arrays

GPU Graphical Processing Unit

INQ Incremental Network Quantization

ILSVRC ImageNet Large Scale Visual Recognition Challenge

JLQ Jumping Logarithmic Quantization

LUT Look Up Table

MAC Multiplier And Accumulator

NLR No Local Reuse

OS Output Stationery

PE Processing Element

RS Row Stationery

SRAM Static Random Access Memory

STE Straight Through Estimator

SA Systolic Array

TWN Ternary Weight Network

WS Weight Stationery

iv

Abstract

Convolutional Neural Networks (CNN) have become a popular solution for computer vision
problems. However, due to the high data volumes and intensive computation involved in
CNNs, deploying CNNs on low-power hardware systems is still challenging. The power
consumption of CNNs can be prohibitive in the most common implementation platforms:
CPUs and GPUs. Therefore, hardware accelerators that can exploit CNN parallelism and
methods to reduce the computation burden or memory requirements are still hot research
topics. Quantization is one of these methods. One suitable quantization strategy for low-
power deployments is logarithmic quantization.

Logarithmic quantization for Convolutional Neural Networks (CNN): a) fits well typical
weights and activation distributions, and b) allows the replacement of the multiplication op-
eration by a shift operation that can be implemented with fewer hardware resources. In this
thesis, a new quantization method named Jumping Log Quantization (JLQ) is proposed. The
key idea of JLQ is to extend the quantization range, by adding a coefficient parameter ”s” in
the power of two exponents (2sx+i).

This quantization strategy skips some values from the standard logarithmic quantization.
In addition, a small hardware-friendly optimization called weight de-zeroing is proposed in
this work. Zero-valued weights that cannot be performed by a single shift operation are all
replaced with logarithmic weights to reduce hardware resources with little accuracy loss.

To implement the Multiply-And-Accumulate (MAC) operation (needed to compute con-
volutions) when the weights are JLQ-ed and de-zeroed, a new Processing Element (PE) have
been developed. This new PE uses a modified barrel shifter that can efficiently avoid the
skipped values. Resource utilization, area, and power consumption of the new PE standing
alone are reported. Resource utilization and power consumption in a systolic-array-based
accelerator are also reported. The results show that JLQ performs better than other state-of-
the-art logarithmic quantization methods when the bit width of the operands becomes very
small.

v

vi

Acknowledgments

Words cannot express my gratitude for the invaluable patience and feedback of my professor,
Rene van Leuken. This dissertation could not have been completed without your weekly
guidance, and you have generously provided me with a lot of advice and expertise. Further-
more, this thesis would not have been accomplished without the generous help of Dr. David,
who gave me a lot of helpful feedback on my research. I should also thank Dr. Neeraj and
Professor Alexander, who also inspired me a lot during the weekly meetings. I would also
like to thank my classmates for their company and spiritual support. Finally, I would be re-
miss if I didn’t mention my family, especially my parents. Their trust in me kept my spirits
and motivation high throughout the thesis project.

Longxing Jiang
Delft, The Netherlands
29th November, 2022

vii

viii

Contents

List Of Acronyms iv

Abstract v

Acknowledgments vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Statements And Research Questions 2
1.2 Thesis Contributions . 2
1.3 Thesis Outline . 3

2 Background 5
2.1 Convolutional Neural Networks . 5

2.1.1 Convolutional Layers . 5
2.1.2 Pooling Layers . 6
2.1.3 Fully Connected Layers . 7
2.1.4 Forward Propagation . 8
2.1.5 Backward Propagation . 9

2.2 Classical CNN Architectures . 9
2.2.1 ResNet Architecture . 9
2.2.2 GoogleNet Architecture . 10

2.3 Expensive Data Movement . 11
2.4 Data Reuse In CNN Hardware Implementation 13

2.4.1 Data Reuse . 13
2.4.2 Data Flow Techniques . 14

3 Related Work 19
3.1 An Overview Of Different Log Quantization Methods 19
3.2 State-of-art Logarithmic Quantization Methods 19

3.2.1 Incremental Network Quantization (INQ) 19
3.2.2 DeepShift . 20

3.3 Other Worth-mentioned Low-bit Quantization Methods 21
3.3.1 Binary Net . 21
3.3.2 XNOR-Net . 22
3.3.3 ReActNet . 22
3.3.4 Ternary Weight Networks . 23

ix

4 Jumping Logarithmic Quantization 25
4.1 Assumption . 25
4.2 Quantization Error Estimation Model . 26
4.3 Weight De-zero Optimization . 27
4.4 Parameter Selection . 28

5 Benchmark Results 31
5.1 Benchmark Statement . 31
5.2 CIFAR10 Dataset . 32
5.3 CIFAR100 Dataset . 34
5.4 Tiny ImageNet Dataset . 36

6 Hardware Design 39
6.1 Systolic Array System Overview . 39
6.2 Design Of Processing Element . 40
6.3 Design Of Shifter . 41
6.4 Simulation Results . 42

6.4.1 PE Simulation . 42
6.4.2 CNN Accelerator Simulation . 44

7 Conclusions 47
7.1 Thesis Conclusions . 47
7.2 Addressing Research Questions . 47
7.3 Future Work . 48
7.4 Future Work . 49
7.5 Paper Acceptance . 49

Bibliography 57

x

List of Figures

2.1.1 An example of convolution operation[1]. 6
2.1.2 Examples of activation function[1]. 6
2.1.3 An example of 2 × 2 max pooling[1]. 7
2.1.4 An example of fully connected layer[2]. 8
2.1.5 An example of forward propagation[3]. 8
2.1.6 An example of backward propagation[3]. 9
2.2.1 An example of Residual Block[4]. 10
2.2.2 An example of inception Block[5]. 11
2.3.1 Hardware module prototype[6]. 12
2.3.2 Energy estimation of GoogleNet[7]. 13
2.4.1 Convolution Reuse[6]. 14
2.4.2 Feature Map Reuse[6]. 14
2.4.3 Filter Reuse[6]. 14
2.4.4 Weight Stationary Data Flow[6]. 15
2.4.5 Output Stationary Data Flow[6]. 15
2.4.6 Row Stationary Data Flow[8]. 16
2.4.7 No Local Reuse Data Flow[6]. 17

3.2.1 INQ iteration steps (undergoes from 50%→75%→87.5%→100%)[9]. 20
3.2.2 DeepShift-Q[10]. 21
3.2.3 DeepShift-PS[10]. 21
3.3.1 Forward Pass and Backward Pass In BNN[11]. 22
3.3.2 Convolution In XNOR-Net[12]. 22
3.3.3 ReAct-Sign function[13]. 23
3.3.4 ReAct-PReLU function[13]. 23

6.1.1 Top-level hardware architecture of the Neural Network Accelerator. 39
6.1.2 (1) system timing diagram, (2) inference flow, and (3) Processing unit flow

diagram. 40
6.2.1 Shifter-Based PE (Our PE is the solid part, and the dotted part is what we

remove from traditional shifter-based PE in our optimization). 41
6.3.1 Shifter Design (Our shifter is the solid part and the red part. The dotted part is

what we remove from the traditional 3-bit barrel shifter in our optimization,
and the red part indicates the replacement of multiplexers with AND gates.
The first column of multiplexers can be directly neglected owing to preshift
operation). 42

6.4.1 Normalized LUT Resources. 43
6.4.2 Normalized Area. 43
6.4.3 Normalized Power. 44
6.4.4 Normalized LUT Resources for CNN accelerator. 45
6.4.5 Normalized Dynamic Power for CNN accelerator. 46

xi

xii

List of Tables

4.1 Theoretical Quantization Error Comparison 28
4.2 Estimated Quantization Error . 29

5.1 CIFAR10 benchmark from pre-trained, Acc@1 32
5.2 CIFAR10 ResNet18 based on other parameter settings of JLQ (Method=JLQ-

Q, A=8, Sign=B) . 33
5.3 CIFAR10 ResNet18 result comparison . 34
5.4 ResNet18 CIFAR100 benchmark (Sign=B) 34
5.5 Other combinations CIFAR100 ResNet18 (Method=JLQ-Q, A=8, Sign=B) . 35
5.6 GoogleNet CIFAR100 benchmark (Sign=B) 35
5.7 Other combination CIFAR100 GoogleNet (Method=JLQ-Q, A=8, Sign=B) . 36
5.8 ResNet18 Tiny ImageNet benchmark (Sign=B) 37
5.9 Inception-v3 Tiny ImageNet benchmark (Sign=B) 37

6.1 resources consumption in single PE . 43
6.2 Simple Convolution Network . 44
6.3 Simulation Results Comparison . 45

xiii

xiv

Introduction 1
An overview of this chapter is as follows: First, the relationship between Convolutional
Neural Networks (CNN) optimization and processing elements (PEs) will be explained. Then
the problem statements and research questions of this thesis will be introduced, followed by
a subsequent introduction to the contributions of this thesis. Finally, an outline of this thesis
will be concluded.

CNN is one of the commonly-used networks with practical applications in fields such as
visual analytics and image recognition. Researchers continuously develop different efficient
CNN models. Taking the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as
an example, the champion in 2012 was the AlexNet architecture[14], which not only served
as the first application of machine learning to defeat (by a large margin) all other competi-
tors’ algorithms but also achieved an accuracy comparable with the human accuracy; the
champion in 2014 was the GoogleNet architecture[5]; another worth-mentioned milestone in
2014 was the VGG architecture[15], which demonstrated the efficiency of using mainly 3x3
stacked kernels and then laid the foundation of the nowadays state-of-the-art networks like
ResNet[4]; the champion in 2015 was ResNet-152, whose accuracy rate reach a very high
percentage, 96.5%[4]. Recently, with the rapid development of the Internet of Things and
smart mobile devices, energy-efficient CNN architecture is increasingly popular in resource-
constrained hardware environments. Despite its popularity, due to huge data volume, inten-
sive computation, and frequent memory access in CNNs, deploying a CNN on low-power
hardware systems is still challenging. Therefore, in addition to the continuous exploration
and development of the CNN model, the hardware deployment optimization of the CNN
accelerator gains unprecedented significance.

To make deep neural networks generally easier to deploy on hardware devices like FPGA
and ASIC, various quantization algorithms[16][10][9] have been devised to reduce memory
requirements. Among all quantization methods, logarithmic quantization is very suitable for
low-power inference because as logarithmic weights are represented by powers of two. The
memory only needs to store the integer power index instead of the floating point weight. Be-
sides, they fit better the common CNN Gaussian-like distributions of weights and activations,
than the more uniform integer quantization. And furthermore, they allow the replacement of
the multiplication operation (massively involved in CNN computation) by a shift operation,
which can be implemented with fewer hardware resources. Because of all of the previous
reasons, logarithmic quantization effectively reduces the CNN memory footprint and reduces
the area and power consumption of the PEs involved in CNN computation.

However, current log-quantization methods are facing some challenges. For example,
INQ[9] suffers from poor scalability due to some of its global variables and parameters that
can only be determined through extensive experiments. In addition, according to the pre-
trained baselines of PyTorch implementation of INQ[17], the bit parameter in INQ is a layer-
exclusive parameter but not a global parameter. That is to say, the bit parameter in INQ
can only determine the specific bit that will be used for each layer, but fail to limit the bit

1

that will be used for the overall architecture. Consequently, INQ is friendly to hardware
that is as flexible as GPU but is unsuitable to hardware that does not have the same degree
of flexibility. While DeepShift[10] has poor accuracy in the case of quantization with low
activation bits and weight bits. Besides, considering hardware implementation, previous
logarithmic quantization methods such as INQ require a dedicated allocation of one bit for
zero-value weights that cannot be represented by shift operations. This will increase the
burden of in-memory data transmission.

In addition to the quantization method, the PE, which is in relation to the MAC operation
speed and power consumption of the entire CNN accelerator, is another critical part of CNN
hardware implementation and optimization. Although a single MAC operation is very sim-
ple, the huge amount of iterations in the MAC operation in different tasks incur bulky logic
computation. Therefore, an excellent CNN accelerator must take into account the two design
aspects, logic operations, and memory access, at the same time.

1.1 Problem Statements And Research Questions

Problem statements

This thesis focuses on the following problems:

1. Logarithmic quantization is a good way to reduce memory bandwidth, the bottleneck
of power consumption in CNN accelerators. Meanwhile, by encoding the weights in
a logarithmic way, not only is achieved a wider range for the same amount of bits (al-
though with “bigger” steps) but bit-shifts replace multiplications on CNNs. However,
current state-of-art logarithmic quantization methods still have drawbacks in low-bit
quantization cases.

2. Processing elements are in high relation to the overall performance of CNN accel-
erators. Researchers increasingly explore overall CNN accelerator architecture opti-
mization, but there is still little research into the potential optimization of processing
elements.

Research Questions

The aforementioned problems can engender the following corresponding research questions:

1. How to optimize current state-of-art logarithmic quantization methods in extreme low-
bit quantization cases for low-power hardware implementation?

2. How to optimize shifter-based processing elements based on logarithmic quantization?

1.2 Thesis Contributions

The main contributions of this thesis can be summarized as follows.

1. A new logarithmic quantization technique named Jumping Logarithmic Quantization
(JLQ) is presented. This quantization method can achieve higher accuracy than tradi-
tional logarithmic quantization at low-bit quantization by extending the quantization

2

range. Compared with the state of art logarithmic quantization algorithm, JLQ has
obvious advantages in the low-bit (2 or 3-bit) quantization cases.

2. A hardware-friendly weight de-zeroing optimization is proposed. Hardware resources
are further reduced by replacing zero-valued weights with logarithmic weights that
shift operations can perform.

3. A PE based on JLQ and weight de-zeroing optimization is designed, aiming to perform
MAC operations of CNN models with fewer resources, lower area, and lower power
consumption.

4. The designed PE is implemented on a real systolic-array-based CNN accelerator for
performance verification. Resource utilization, area, and power consumption of the
new PE stand-alone and resource utilization, and power consumption in a systolic-
array-based accelerator are demonstrated.

All of these contributions led to the acceptance of a paper named ”Jumping Shift: A Logarith-
mic Quantization Method For Low-Power CNN Acceleration” at the DATE 2023 conference.

1.3 Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2: Background This chapter introduces the relevant background of CNN,
classical CNN architectures, and commonly-seen CNN data reuse techniques from a
hardware perspective.

Chapter 3: Related Work In this chapter, related work about quantization methods
will be introduced.

Chapter 4: Jumping Logarithmic Quantization Algorithm and Corresponding
PE Design In this chapter, a new logarithmic quantization algorithm named jumping
logarithmic quantization is introduced.

Chapter 5: Benchmark Results This chapter includes relative benchmark results of
the proposed new quantization algorithm and the analysis of corresponding results.

Chapter 6: Hardware Design In this chapter, a PE design of proposed logarithmic
quantization is introduced, followed by relative simulations of the proposed PE and the
analysis of the results.

Chapter 7: Conclusions This chapter first draws conclusions for this thesis followed
by answering all the previous research questions in detail. And then three possible
prospects for future work are presented.

3

4

Background 2
This chapter begins with an introduction to the basic concepts of Convolutional Neural Net-
works (CNNs). After that, the chapter further delves into two classic CNN architectures
to gain a comprehensive understanding of its operational complexity from an algorithmic
perspective.

2.1 Convolutional Neural Networks

In recent years, there has been a great deal of interest in deep learning. Convolutional neural
networks (CNNs), as the most mature type of deep learning models, have naturally attracted
attention in various fields. CNNs are used in fields such as medical research [18][19], lan-
guage processing [20], and visual imagery [14][5][4]. Among them, the most dominant and
widely used field of CNN is the field of visual images. Several characteristics of CNNs make
them very suitable for tasks related to visual imagery. The local connection, weight shar-
ing, and pooling operation of CNNs can effectively reduce the complexity of the network
and the number of parameters, which makes it much easier to train and optimize than other
counterparts. In the ImageNet Large Scale Visual Recognition Competition (ILSVRC), the
architectures that have obtained breakthrough achievements are all based on CNN.

In general, CNN architectures consist of convolutional layers, pooling layers, and fully
connected layers. And two critical processes, forward propagation, and backward propaga-
tion are entailed in every CNN architecture.

2.1.1 Convolutional Layers

The convolutional layer, which consists of convolution operation and activation function, is
an essential component of a CNN architecture. In CNN, the linear part is the convolution
operation, and the nonlinear part is the activation function.

Convolution

An example of convolution operation is shown in Figure.2.1.1. Convolution is a linear oper-
ation used for feature extraction. During the convolution process, a small array of numbers,
which is called ”kernel”, is multiplied and added correspondingly with another array of num-
bers called ”input tensor”. Afterward, the output value at the corresponding position of the
output tensor can be obtained after the convolution operation. In CNN, there are many ker-
nels, and each different kernel will perform such convolution operations.

A key feature of the convolution operation is weight sharing, which means the kernel in
CNN is shared among all input locations. Weight sharing reduces the number of parameters
to learn compared to fully connected neural networks.

5

Figure 2.1.1: An example of convolution operation[1].

Nonlinear activation function
The purpose of the nonlinear activation function is to improve the ability to describe the
target model, so as to solve the problems that the pure linear model cannot solve. If there is
no nonlinear activation function, the output of each layer in CNN is a linear function of the
input of the upper layer. In this case, no matter how many layers the CNN has, the final model
is still a linear model, which is equivalent to a one-layer model in theory. There are many
kinds of nonlinear activation functions. Common types of activation functions are Sigmoid
activation function, Tanh activation function, and Relu activation function, all of which are
shown in Figure.2.1.2. Since the publication of [14], most CNNs use the Relu activation
function. This is because, for the deep network, the sigmoid activation function and the Tanh
activation function are prone to the disappearance of the gradient during backpropagation.

Figure 2.1.2: Examples of activation function[1].

2.1.2 Pooling Layers

Pooling layers provide a down-sampling operation, which is designed to gradually reduce the
number of parameters and computational complexity of the model. If the pooling type is max
pooling, it will perform an operation that finds the largest number in the kernel as the output;
if the pooling type is average pooling, it will perform an operation that finds the average of

6

all numbers in the kernel as the output. Since the pooling layer will be destructive to the
features of the original input data, if the pooling size is too large, the overall performance of
the model will be degraded. Therefore, most CNNs choose 2 × 2 as the pooling size, which
shrinks the activation input to 25% of its original size. And an example of 2 × 2 max pooling
is shown in Figure.2.1.3.

Figure 2.1.3: An example of 2 × 2 max pooling[1].

2.1.3 Fully Connected Layers

The fully connected layer, also known as the dense layer, can be regarded as a special con-
volutional layer, which also performs a multiply-add operation. However, unlike the con-
volutional layer, it does not have a two-dimensional kernel, and the ”kernel” of the fully
connected layer is completely flattened. Due to the similarity between the fully connected
layer and the convolutional layer, in some CNN hardware deployments, convolution layers
and fully connected layers often use the same computing module. And an example of the
fully connected layer is shown in Figure.2.1.4.

7

Figure 2.1.4: An example of fully connected layer[2].

2.1.4 Forward Propagation

In CNN, forward propagation refers to the process of convolution calculation and storage of
any intermediate variables entailed for gradient computation in memory and outputs for a
neural network in order from the input layer to the output layer. A schematic diagram of the
forward propagation process is shown in Figure.2.1.5:

Figure 2.1.5: An example of forward propagation[3].

8

2.1.5 Backward Propagation

In CNN, backward propagation refers to the process of calculating the gradient of neural net-
work parameters. Unlike forward propagation, this process traverses the network in reverse
order, from the output to the input layer, according to the chain rule from calculus. In the
backward propagation process, any intermediate variables in relation to partial derivatives
will be stored to calculate the final gradient of the loss function with respect to the inputs. A
schematic diagram of the backward propagation process is shown in Figure.2.1.6, where L is
assumed to be the loss function:

Figure 2.1.6: An example of backward propagation[3].

2.2 Classical CNN Architectures

There are many classic network architectures in CNN. Among them, those that have won
the championship in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
over the years attract the most attention from researchers. This subsection will introduce the
ResNet architecture and GoogleNet architecture, both of which will be used in subsequent
chapters for testing purposes. These two classical CNN architectures are the champions of
the ILSVRC in 2014 and 2015.

2.2.1 ResNet Architecture

For CNN, by gradually adding layers to the shallow network, the performance of the model
on the training set and test set can often be improved. The model can fit the underlying map-
pings better owing to the incremental model complexity. However, sometimes, the use of a
deeper network will not improve the performance of the model, and even worse, it will cause
the performance of the model to decline rapidly. This phenomenon is called ”degeneration”.
What ResNet architecture [4] can solve is the ”degeneration” problem of this deep neural
network.

ResNet makes the model easier to optimize by adjusting the structure of the model. In
ResNet, the stacked layers are named “block”. For each block, the desired underlying map-
ping is represented as H(x), and the residual function entailed to be fitted is F(x):=H(x)-x. In

9

this case, the original mapping is recast as F(x)+x. The original authors of ResNet contend
that it is much easier to optimize the residual mapping than to optimize the original, unrefer-
enced mapping. Consequently, in ResNet, each stacked layer explicitly fits the layers to the
residual mapping. In Figure.2.2.1, an example of the ResNet residual block is displayed.

Figure 2.2.1: An example of Residual Block[4].

At the same time, ResNet can also solve the problem of gradient disappearance in con-
volutional networks. Due to the existence of the residual term x of mapping F(x)+x, in
backpropagation, the gradient does not vanish quickly for possible causes of F(x) itself.

2.2.2 GoogleNet Architecture

GoogleNet[5] introduces a novel network structure that included a new type of module called
inception. Before the emergence of GoogleNet, other classic network structures, such as
AlexNet[14] and VGG[15], achieved good training results by increasing the number of lay-
ers of the network. However, the increase in the depth of the network will also bring many
negative consequences such as overfitting, gradient disappearance, and gradient explosion.
The Inception module of GoogleNet improves the training results from the perspective of in-
creasing the width of the network instead of the depth of the network. The GoogleNet is only
22 layers deep, and its parameters are about 1/12 and 1/3 of its corresponding counterparts,
AlexNet and VGG, which means that GoogleNet can extract more features under the same
amount of computation resources.

Figure.2.2.2 is the initial inception structure designed by the authors of GoogleNet. Their
idea is to replace a small 3x3 kernel with multiple kernels of different types stacked together.
The advantage of this design is that the extracted features can be diversified, and there will
only be weak correlations between features.

10

Figure 2.2.2: An example of inception Block[5].

2.3 Expensive Data Movement

Use GoogleNet as an example for further analysis. Although GoogleNet has used some
carefully designed optimizations to reduce the overall network parameters as much as possi-
ble, the entire network still involves about 1550× 106 MAC operations and includes about
50MB of weights. This means that for the hardware deployment of high-precision CNN
like GoogleNet, both memory bandwidth and computation are the bottlenecks. Owing to
these bottlenecks, it is almost impossible to deploy a complete high-precision CNN model
on hardware due to the limited resources of most low-consumption hardware. Therefore,
during hardware deployment, dynamic random access memory (DRAM) is needed to relieve
the pressure of the on-chip memory. However, reading data from DRAM is very energy-
consuming and time-consuming. For a simple system like Figure.2.3.1, accessing an ele-
ment from DRAM costs 200 times more than accessing the same element from the register
file (RF)[21].

11

Figure 2.3.1: Hardware module prototype[6].

In theory, without any design strategy, at least 2 memory reads and 1 memory write
involved in each MAC operation require access to external memory, which will seriously
affect the entire throughput, latency, and energy consumption of hardware systems. Take the
GoogleNet introduced earlier for exemplification. Figure.2.3.2 shows the estimated energy
consumption between different layers when using the GoogleNet architecture for inference.
The energy consumption estimates here are generated using an online tool [7], where the en-
ergy unit is measured in terms of the energy required for one MAC operation. Consumption
represents the energy required for calculation in this layer. Input feature map, output feature
map, and weight respectively correspond to the energy required for the data movement in-
volved in the input features, output features, and weights in this layer. It can be seen that
the percentage of energy consumption for data movement in the GoogleNet architecture far
exceeds the energy required for computation. Similar conclusions can also be observed in
other convolutional network architectures.

12

Figure 2.3.2: Energy estimation of GoogleNet[7].

2.4 Data Reuse In CNN Hardware Implementation

In order to reduce the high energy consumption caused by data movement in CNN as much
as possible, aspects of data reuse and data flow techniques in CNN need to be considered
simultaneously when designing a hardware architecture suitable for CNN deployment:

2.4.1 Data Reuse

The inherent parallelism in CNNs makes data reuse possible. There are three specific data
reuse methods: convolution reuse, feature map reuse, and filter reuse.

1. Convolution reuse represents the process where the kernel traverses the input image in
a completely parallel way. In this process, the data from one filter is reused in the input
features of the same channel. The specific schematic diagram of convolution reuse is
shown in Figure.2.4.1:

13

Figure 2.4.1: Convolution Reuse[6].

2. Feature map reuse refers to the situation where the input feature map of one specific
channel is used to adapt the filters of multiple channels. The specific schematic diagram
of feature map reuse is shown in Figure.2.4.2:

Figure 2.4.2: Feature Map Reuse[6].

3. Filter reuse represents the situation where the filter of the same channel is used to
adapt the input features of multiple channels. The specific schematic diagram is shown
in Figure.2.4.3:

Figure 2.4.3: Filter Reuse[6].

2.4.2 Data Flow Techniques

Representative data flow technologies can be divided into the following four categories.
These data flow techniques are Weight Stationery (WS) data flow technique [22], [23], Out-

14

put Stationery (OS) data flow technique [24], [25], Row Stationery (RS) data flow technique
[26], [21], and No Local Reuse (NLR) data flow technique [27],[28] respectively.

1. The WS data flow technique increases the reuse of weighted pixels when performing
MAC operations, aiming to minimize the overall energy consumption of reading filter
weights. The weights are read one-by-one from DRAM into the registers of each pro-
cessing element and then remain static. After that, those weights are utilized multiple
times to run as many MAC operations as possible until they are no longer needed. A
schematic diagram of the WS data flow technique is shown in Figure.2.4.4:

Figure 2.4.4: Weight Stationary Data Flow[6].

2. The OS data flow technique increases the reuse of partial sums when performing MAC
operations, aiming to minimize the energy consumption of writing and reading partial
products. In the OS data flow, each output feature map pixel is stored in a specific PE
and remains stationary, instead of being stored in a specific PE. And the partial sum
of one convolution window from one channel is stored in RF and then added to the
corresponding partial sum from the next channel. A schematic diagram of the OS data
flow technique is shown in Figure.2.4.5:

Figure 2.4.5: Output Stationary Data Flow[6].

3. The RS data flow technique simultaneously increases the reuse of weights and the reuse

15

of partial sums when performing MAC operations. The RS data flow technique stores
the input feature map pixels, weight pixels, and output feature map pixels in registers
of PE, and reuses these pixels. The input feature map pixels are propagated among the
PE arrays in a diagonal way; The weight pixels are propagated between the PE arrays
in a lateral way; The output feature map pixels are propagated between the PE arrays
in a longitudinal way. A schematic diagram of an RS data flow technique is shown in
Figure.2.4.6:

Figure 2.4.6: Row Stationary Data Flow[8].

4. Unlike Weight Stationery, Output Stationery, and Row Stationery data flow techniques,
NLR-based PEs do not use registers to store any input features, weights, or output
features. Instead, the NLR data flow technique uses a large global buffer (memory)
to store input features, weights, and output features. In each cycle, weight pixels are
single-cast, while input feature pixels are multi-cast. A schematic diagram of an NLR
data flow technique is shown in Figure.2.4.7:

16

Figure 2.4.7: No Local Reuse Data Flow[6].

17

18

Related Work 3
An overview of this chapter is as follows: This chapter begins with a brief introduction to
the different log quantization methods. Subsequently, two state-of-art quantization methods,
INQ[9] and DeepShift[10] are analyzed in detail. Finally, other related works in low-bit
quantization are introduced.

3.1 An Overview Of Different Log Quantization Methods

Logarithmic quantization is able to compress the original CNN, so that the final weights
satisfy the form of powers of two, which can be used for power-saving shifting operations
for inference.

LogNN [29] was the first to propose logarithmic quantization for CNNs. They propose
two methods: in the first method, the weights remain fix-point and the activations are log-
quantized. While in the second method, both weights and activations are log-quantized.
The problem with the first method is that the outputs need to be quantized before becoming
inputs of the next layer, which will cause an overhead. It is more efficient to log-quantize
the weights and let activations flow through the network in a fix-point format, which is the
method used in this thesis as in most of the other recent works. In the second method, the PE
does not perform the shift operation. They propose a PE that performs this custom operation,
which is smaller but more complex than a shift operation.

ShiftCNN [30] replaces each multiplication with a set of 2 or 3 shifts, therefore their PE
consumes more hardware resources and has higher power consumption than the PE with only
a single shifter. Similar to ShiftCNN, in [31] and [32], in order to improve the accuracy, they
also replace each multiplication with the sum of two shift operations.

Besides, logarithmic quantization is also applied in approximate computing. In [33], the
author proposes an approximate shifter-based PE. And in [34], an approximate logarithmic
data representation is proposed for CNN training.

3.2 State-of-art Logarithmic Quantization Methods

Most logarithmic quantization methods start with a pre-trained model, among which the
state-of-the-art is INQ [9]. There are also logarithmic quantization methods that support
training models from scratch. These quantization methods can be applied for both inference
and training. And among them, the state of art quantization method is DeepShift[10].

3.2.1 Incremental Network Quantization (INQ)

The main feature of INQ is implementing incremental retraining from a pre-trained model.
The INQ algorithm consists of three steps. The first step is to sort the weights by absolute

19

value and divide them into two groups according to a certain proportion. The second step
is to quantize the group of weights with larger absolute values, and the third step is to re-
train the group of weights with relatively smaller absolute values. After these three steps,
a certain proportion of the weights have been quantified. And the final step is to increase
the quantization scale and repeat the above three steps until the overall quantization is com-
pleted. In INQ, the scale of each quantization is a hyperparameter. Unfortunately, there is
currently no absolute criterion for the selection of this parameter, which is often obtained
through experiments.

Considering the hardware implementation, INQ separates 1 bit for representing zero value
and uses the remaining bits for representing the value of the power of two. However, INQ
cannot fully utilize the bit representation range. For instance, at 4-bit quantization, INQ has
one bit for exclusively representing zero, rendering the remaining 3 bits only able to represent
8 different values rather than represent 16 different values (including or not the zero).

Figure 3.2.1 provides a visualization of the INQ iteration steps.

Figure 3.2.1: INQ iteration steps (undergoes from 50%→75%→87.5%→100%)[9].

3.2.2 DeepShift

In [10], the author proposes two methods: DeepShift-Q and DeepShift-PS. DeepShift-Q can
be regarded as the normal logarithmic quantization without any optimization approach. In
DeepShift-PS, since the power-of-two function is differentiable, the author implements a
derivation extension of the backward pass when the weights are logarithmic-quantized. Be-
sides, both DeepShift-Q and DeepShift-PS support training from scratch. A brief schematic
diagram of the quantization of DeepShift-Q mode is shown in Figure 3.2.2.

20

Figure 3.2.2: DeepShift-Q[10].

A brief schematic diagram of the quantization of DeepShift-PS mode is shown in Figure
3.2.3.

Figure 3.2.3: DeepShift-PS[10].

3.3 Other Worth-mentioned Low-bit Quantization Methods

3.3.1 Binary Net

Binarized Neural Network (BNN)[11] is a neural network that uses only two values of +1
and -1 to represent weights and activations. Compared with the full-precision neural network,
BNN can use very simple operations such as XNOR, and popcount to replace original float-
32 multiply-accumulate operations to realize the convolution operation, thus saving a lot of
memory and computation. The authors of BNN are the first person to propose a way to
train neural networks using both binarized weights and activations using stochastic gradient
descent. In order to solve the problem of gradient transfer in the binarized weights, the author
proposes to use the sign function for float32 weights during the training process to obtain the
binarized weights. A brief schematic diagram of the forward pass and backward pass of BNN
is shown in Figure3.3.1.

21

Figure 3.3.1: Forward Pass and Backward Pass In BNN[11].

3.3.2 XNOR-Net

Due to the limited amount of information that can be expressed by binary values, BNN is
generally much lower than the full-precision model in terms of model accuracy. However,
because BNN can greatly facilitate the deployment of models on resource-constrained de-
vices, researchers have never stopped exploring to improve the accuracy of BNN.

XNOR-Net[12] was proposed shortly after BNN[11]. The authors of XNOR-Net pro-
posed two models, one is BWN (Binary Weight Networks) and the other is XNOR-Net.
BWN only uses binarized weights, while activations are still in float32 precision. However,
according to the definition of BNN, strictly speaking, BWN cannot be counted in the cate-
gory of binary networks.
XNOR-Net considers the quantization error on the basis of the original BNN. The author of
XNOR-Net proposes a method to extract a scaling factor for each output channel direction of
the real-valued weights to restore the information of the binarized weights. At the same time,
XNOR-Net also extracts a scaling factor on each pixel in the HW direction for activation,
which is used to restore the information of binarized activations. These two scaling factors
do not need to be learned and can be obtained by directly calculating the corresponding L1
norm, without affecting the efficient convolution calculation process of binarization. And
experimental results show that XNOR-Net outperforms the initial BNN. A brief diagram of
convolution in XNOR-Net is shown in Figure3.3.2.

Figure 3.3.2: Convolution In XNOR-Net[12].

3.3.3 ReActNet

In addition to XNOR-Net[12], some researchers have used other optimization ideas to im-
prove BNN[11], of which ReActNet[13] is a representative one. BNN initially only had
a Top-1 accuracy of 27% on ImageNet, while ReActNet-C achieved a Top-1 accuracy of

22

71.4% on ImageNet, which is only about 3% behind the accuracy of the corresponding full-
precision model. However, the cost of improving the accuracy is that ReActNet increases
a lot of computation, making it difficult to effectively implement in complex tasks such as
target detection. The authors of ReActNet have found through extensive experiments that the
performance of BNNs is particularly sensitive to changes in the distribution of activations.
In other words, the offset and scaling of activations have a significant impact on the perfor-
mance of the BNN. Therefore, the authors of ReActNet believe that the activations of each
layer in the convolutional neural network model have the most suitable offset value and scal-
ing value to make the performance of the entire model optimal. Therefore, ReActNet intro-
duces learnable channel-wise parameter variables to the sign function and PReLU function,
allowing the model to automatically learn the best offset and scaling values for each layer.
The modified sign function and PReLu function are named ReAct-Sign and ReAct-PReLU
respectively, which are core innovation in ReActNet. Images of the ReAct-Sign function and
ReAct-PReLU function in ReActNet are shown in Figure3.3.3 and Figure3.3.4 respectively.

Figure 3.3.3: ReAct-Sign function[13].

Figure 3.3.4: ReAct-PReLU function[13].

3.3.4 Ternary Weight Networks

After the binary network was proposed, in order to further improve the model accuracy and
network expression ability, the ternary weight network(TWN)[35] was proposed. In the
ternary weight network, the weights are set to 1, -1, and 0. The author of the ternary weight
network believes that ternarization weights have better network expression ability than bina-
rization weights. In state-of-the-art network architectures such as VGG[15], GoogLeNet[5],
and Residual Networks[4], the most commonly used convolutional filter size is 3 × 3. For

23

binary weights, there are 29 (equals 512) different convolution kernels in theory. While for
ternary weights, there are 39 (equals to 19683) different convolution kernels theoretically.
The core part of TWN is the derivation process of threshold delta and scale parameter α.
First, TWN assumes that the distribution of weights is close to a combination of a normal
distribution and a uniform distribution. Then, TWN proposes to use a scale parameter α

to minimize the L2 distance between the weights before ternarization and the weights after
ternarization. That is to say, a threshold parameter δ is determined theoretically based on
prior knowledge of the weight distribution. When the weight is greater than this threshold,
this weight becomes 1; When the weight is less than the negative of this threshold, this weight
becomes -1; In the residual case, the weight becomes 0. It is also worth mentioning that TWN
does not completely eliminate the multiplier operation even though weights are ternarized to
1, -1, and 0. In the actual forward propagation, TWN still needs to multiply each output by
the scale parameter.

24

Jumping Logarithmic
Quantization 4
This chapter is outlined as follows: This chapter starts with the assumption of the Jumping
Logarithmic Quantization (JLQ), then provides a brief introduction to the error estimation
model used. Then this chapter explains the weight de-zero optimization, and subsequently,
covers the parameter selection strategy of JLQ.

4.1 Assumption

Many studies indicated that weights in most mainstream non-sparse CNN models generally
follow a Gaussian-like distribution [35]. That is to say, the majority of the CNN weights have
small values, and only a few outliers have relatively large values. And based on this informa-
tion, some quantization techniques [16] intentionally use fewer sampling points to quantize
weights with large absolute values and use more sampling points to quantize weights with
small absolute values. However, some previous studies show that weights with larger abso-
lute values are not inessential. In fact, they are more critical in feature extraction than those
with smaller values [36]. Besides, according to the experiment in [37], some quantization
methods are highly tolerant of quantization noise, while other quantization methods are not.
That is to say, consider to reduce the quantization noise always serves as a well-intended
strategy.

Normally, when the bit is sufficient, logarithmic quantization will have a small number
of big-absolute-value weights and a large number of small-absolute-value weights, which
makes it a perfect solution based on this assumption.

However, in the extreme low-bit situation, for example, 2-bit quantization or 3-bit quanti-
zation, traditional logarithmic quantization will fail to strike a balance between big-absolute-
value weights and small-absolute-value weights, which might cause great quantization error
and generate poor accuracy.

Therefore, considering the feature extraction and quantization noise reduction, we make
an assumption that if we want to increase the performance of the logarithmic quantization
in the low-bit quantization, both big-value weights and small-value weights need to be taken
into consideration.

Based on this assumption, to strike a balance between big-absolute-value weights and
small-absolute-value weights in low-bit quantization, a new logarithmic quantization tech-
nique called jumping logarithmic quantization (JLQ) is proposed. This quantization tech-
nique extends the quantization range by introducing two external parameters instead of in-
creasing the quantization bits so that both big-value weights and small-value weights can be
taken into consideration in the extreme low-bit quantization case.

To achieve our goal, we introduce a jumping step parameter ”s” and an initial exponent
index parameter ”i” (or pre-shift) in our proposed logarithmic quantization method. In JLQ,
the quantization values can be represented as follows:

25

• Quantization Weights = (±2sx+i)

4.2 Quantization Error Estimation Model

To theoretically determine the hyper-parameters ”s” (jumping step) and ”i” (initial exponent
index) of the JLQ, a quantization error estimation model is proposed. In our model, weights
Wi are assumed to be in the range of [-1, 1], and they follow a Gaussian distribution N(µ, δ),
where µ is very close to 0. In addition, since the slope of the long tail part of the Gaussian
distribution is extremely small, for simplicity, weights located in the [-1, -3δ) and (3δ, 1]
intervals are regarded to have a uniform distribution instead of Gaussian distribution in our
model. For most typical non-sparse CNN models, the value of δ is between 0.01 and 0.09
[38]. In order to facilitate the comparison of quantization errors engendered by different
jumping steps and initial exponent indexes, in this error estimation model, δ is assumed to
be the average of 0.01 and 0.09, which is 0.05. And the total number of CNN weights is set
to k ·106. Consider a quantization interval [Wdown, Wup], the logarithmic quantization weight
corresponding to this interval is Wquan.

Assume that the total number of weights falling in this logarithmic quantization interval
is Q, and there are N (N → ∞) different discrete weights in this logarithmic quantization
interval. The quantization error formula selected by this estimation model is consistent with
the quantization error formula mentioned in [37], which is displayed as (4.2.1):

E(x) =
1
2
· (Quan(x)− x)2 (4.2.1)

When weights obey a uniform distribution, the number of each weight can be conse-
quently regarded as Q/N, and the interval between each weight is (Wup-Wdown)/(N-1). There-
fore, the total quantized error function F(x) can be represented as (4.2.2):

F(x) = lim
N→∞

N−1

∑
i=0

E(Wdown +(Wup −Wdown) ·
i

N −1
) · Q

N

≈ lim
N→∞

N

∑
i=1

E(Wdown +(Wup −Wdown) ·
i
N
)

· Wup −Wdown

N
· Q
Wup −Wdown

=
1
2
·
∫ Wup

Wdown

(Quan(x)− x)2dx · Q
Wup −Wdown

(4.2.2)

When weights obey a Gaussian distribution, the number of each weight can be approxi-
mately regarded as equal owing to the fact that the individual probability of each weight tends
to be infinitely small as N approaches infinity. Consequently, the total quantization error can
still be approximately represented by (4.2.2). The only difference is that the total number
of weights within this interval, in this case, can be further determined through the definite
integral over the probability density function of the normal distribution, which is shown in
(4.2.3):

Q = k ·106 ·
∫ Wup

Wdown

1
δ ·

√
2π

· e−
(x−µ)2

2·δ2 dx (4.2.3)

26

However, in reality, the number of types of weights is not infinite. Therefore, the authority
of the theoretical total quantization error estimated by this model will be slightly degraded.

4.3 Weight De-zero Optimization

In original DeepShift[10], ternary sign operator ({−1,0,+1}) is used. This sign operator
will engender weight with zero value. And in the original INQ[9], one bit is used for zero-
value weights representation exclusively. However, since zero value cannot be represented
with shift operation, an additional multiplexer is entailed in the real hardware implementation
to represent zero value. Consequently, this work proposes a weight de-zero optimization to
replace all zero-value weights with logarithmic weights that can be represented by shifters.
The following example demonstrates the difference between original weight sets and weight
sets after de-zero optimization:

• Quantization weights with ternary operator (3-bit):
(±20,±2−1,±2−2,0)

• Quantization weights with binary operator (3-bit):
(±20,±2−1,±2−2,±2−3)

To test the weight de-zero optimization, quantization error with the different sign operator is
estimated using (4.2.2).

In general, the estimation process of quantization error involves three steps. The first step
is to determine the quantization interval. While there are many ways to determine thresholds
for different quantization intervals, for logarithmic quantization, only two are most com-
monly used.

One way is to use the average of two adjacent logarithmic weights as the threshold of
the quantization interval. For example, there are two adjacent logarithmic weights 2a and 2b.
And corresponding quantization interval threshold is (2a +2b)/2.

The threshold of the second method is still in the form of the n-th power of two, and its
power exponent is the average of the power exponents of two adjacent logarithmic weights.
For instance, for two adjacent logarithmic weights 2a and 2b, the corresponding quantization
interval threshold is 2(a+b)/2.

However, after experiments, the results show that different strategies for determining
quantization interval thresholds are almost insignificant to accuracy. Consequently, this work
does not further explore the optimal threshold in each quantization interval. And this work
uses the second method to determine thresholds of different quantization intervals, which is
also used in [10].

Take the case of bit width = 2, s = 2, i = -1 (binary operator) as an example: There are a
total of 4 quantization intervals in this case:

• 1.(2−2,20] (corresponding quantization weight:2−1)

• 2.(0,2−2] (corresponding quantization weight:2−3)

27

• 3.(−2−2,0] (corresponding quantization weight:−2−3)

• 4.[−20,−2−2] (corresponding quantization weight:−2−1)

The second step is to determine the number of weights in each quantization interval. For
instance, using (4.2.3), the number of weights in [0,3δ] can be calculated as 49.87%·k·106.
The final step is to use (4.2.2) to calculate the estimated quantization error. And in this
example, due to symmetry, the total estimated quantization error can be calculated as
twice the sum of estimation quantization error in the following three quantization intervals
(2−2,20],(3δ,2−2], and (0,3δ], where δ is assumed to be 0.05. And we can repeat the above-
mentioned steps to continuously estimate the quantization error under different quantization
weight sets. Four different weight sets in the 2-bit quantization case are tested to demonstrate
the effect of weight de-zero optimization. Summarizing these results yields the following Ta-
ble 4.1:

Table 4.1: Theoretical Quantization Error Comparison

weight set estimation quantization error
±20,±2−2 16279.95k
±20,0 3595.98k

±2−3,±2−5 573.12k
±2−3,0 958.27k

It can be seen that zero-value weights play a significant role in weight sets without small-
value weights. However, for weight sets with small-value weights, zero-value weights can
be replaced by logarithmic weights with small absolute values. And this substitution theoret-
ically does not accrue more quantization errors, on the contrary, it might reduce quantization
errors. Another possible benefit of this replacement is that the weight sets after replacing
zero have a larger number of different weights, which can improve the network expression
ability.

4.4 Parameter Selection

Since in the proposed quantization error estimation model, both the convolutional network
weights and the logarithmic quantization weights are symmetrical at about zero, the quanti-
zation error will also share such symmetry. In other words, in this model, the quantization
error caused by positive quantization weights and negative quantization weights maintain the
same. In order to obtain the theoretical optimal parameters s and i, it is necessary to calcu-
late and compare the estimated quantization errors of different parameter combinations under
(4.2.2).

The error estimation process is the same as what is mentioned in the previous section.
Summarizing these results yields the following Table 4.2:

28

Table 4.2: Estimated Quantization Error

bit width, s and i estimation quantization error
bit = 2, s = 2, i = 0 16279.95k
bit = 2, s = 2, i = -1 2158.14k
bit = 2, s = 2, i = -2 920.82k
bit = 2, s = 2, i = -3 573.12k
bit = 2, s = 2, i = -4 959.20k
bit = 2, s = 1, i = -3 809.33k
bit = 2, s = 1, i = -4 876.18k
bit = 2, s = 3, i = -2 1244.13k
bit = 2, s = 4, i = -1 1854.92k
bit = 3, s = 2, i = 0 407.23k
bit = 3, s = 2, i = -1 244.77k
bit = 3, s = 2, i = -2 542.38k
bit = 3, s = 2, i = -3 876.18k

It can be seen that for 2-bit and 3-bit logarithmic quantization, ”s=2, i=-3” and ”s=2, i=-1”
are the theoretically optimal parameter sets respectively. It is worth to mention that some pa-
rameter sets such as ”s=1, i=0”, ”s=1, i=-1”, and ”s=1,i=-2” are intentionally neglected since
these parameter sets cannot effectively achieve our purpose of extending the quantization
range.

29

30

Benchmark Results 5
This chapter is outlined as follows: This chapter starts with the statement of the training pro-
cess, then provides the benchmark results of different networks. Then this chapter analyzes
and explains the advantage and disadvantage of JLQ.

We have tested the training results on 3 datasets: CIFAR10[39], CIFAR100[39], and
Tinyimagenet[40]. For the CIFAR10 dataset, the original DeepShift-PS and DeepShift-Q are
set as the baseline, and two DeepShift modes integrated with JLQ are set as the comparison
group to get a preliminary conclusion. And CIFAR100 and Tiny ImageNet datasets are used
to verify the scalability of JLQ.

For a fair comparison, we set all the training parameters consistent with those of
DeepShift[10]. Different from DeepShift, which only shows the best accuracy results, the
accuracy we show is the median after three experiments.

5.1 Benchmark Statement

In order to reduce the burden of memory, researchers often want a quantization method that is
able to reduce bit-width for both, weights as well as activation data. In order to demonstrate
the advantages of our proposed method in low-bit quantization, most of our experiments
are based on 8 activation bits. And since in 4-bit quantization, JLQ might generate smaller
weight values than those produced by the traditional logarithm quantization method, the 8-
bit activation can be easily shifted to 0 owing to the bit width limit. For a fair comparison,
we arranged a small number of experiments with 32 activation bits, which have sufficient bit
width to tolerate the weight range expansion brought by JLQ in 4-bit quantization.

Unlike the original DeepShift which use 3 bits to represent the integer part and 5 bits to
represent the fraction part for 8-bit activations, all the tested methods used 4 bits to represent
the integer part, and 4 bits to represent the fraction part in this case. And since the training
of DeepShift-PS at 8 activation bits fluctuates greatly and its loss curve is difficult to con-
verge in this case according to our experiments, we select the highest accuracy during the
entire training process as the final accuracy value of a single experiment when doing experi-
ments in relation to DeepShift-PS. Meanwhile, according to the results of DeepShift[10] and
Deeplook[37], for logarithmic quantization, the 5-bit quantization only has a slight advantage
over the 4-bit quantization. Consequently, we will not consider the 5-bit quantization case in
our experiments.

In our test strategy, we will first test the jumping logarithmic quantization with the 2-
bit theoretical optimal parameter set ”s=2, i=-3” compared with the DeepShift baseline. At
the same time, in order to test the effect of weight de-zero optimization on the accuracy,
experiments using the ternary sign operator and binary sign operator will also be performed
based on the CIFAR10 dataset. After that, we will test the accuracy of jumping logarithmic
quantization with other parameter sets to verify the optimal parameter set prediction provided

31

by our error estimation model.
In our tables, “W” refers to the number of bits to represent weights, “A” refers to the

number of bits to represent activation bits, “T” refers to the ternary sign operator, and “B”
refers to the binary sign operator, and “Acc@N” accuracy means that the correct class gets
to be in the Top-N probabilities for it to count as “correct”. We also highlight the useful data
in our table to render the data comparison and conclusion extraction more conveniently.

5.2 CIFAR10 Dataset

The accuracy results shown in table 5.1 are based on the results reproduced by us instead of
the results from the original DeepShift paper[10].

Table 5.1: CIFAR10 benchmark from pre-trained, Acc@1

W A Sign Base-PS JLQ-PS Base-Q JLQ-Q
2 8 T 81.75% 90.04% 90.37% 93.03%
2 8 B 81.11% 89.89% 89.46% 93.15%
3 8 T 90.53% 90.07% 92.67% 93.27%
3 8 B 90.37% 89.81% 92.01% 93.31%
4 8 T 93.75% 90.18% 93.95% 93.29%
4 8 B 93.61% 90.06% 93.88% 93.34%
4 32 T 94.06% 90.24% 94.05% 93.46%
4 32 B 93.91% 90.17% 93.95% 93.37%

We can see that in 2-bit quantization, DeepShift-PS integrated with jumping logarithmic
quantization has better performance than the corresponding baseline. Meanwhile, DeepShift-
Q integrating with jumping logarithmic quantization achieves higher accuracy than any base-
line in 2-bit and 3-bit quantization.

Another interesting phenomenon is that in the 2-bit and 3-bit quantization, the baseline
Q using the ternary sign operator has obvious advantages in accuracy compared to the base-
line Q using the binary sign operator. This is because, in the case of low-bit quantization,
the traditional logarithmic quantization does not have enough bits to generate a logarithmic
quantization weight close to 0. And the weight with a value of 0 at this time can be regarded
as an expansion of the quantization range, which can avoid a large amount of quantization
error caused by weight values concentrated around 0. And this advantage is doomed to be-
come more obvious when the network becomes larger owing to the spur in the number of
weights.

This phenomenon is not clearly observed in 4-bit and 5-bit quantization. For the base-
line Q combined with jumping logarithmic quantization, the accuracy obtained by using the
ternary sign operator is slightly lower than that obtained by using the binary sign opera-
tor. This is because when the number of bits becomes sufficient, logarithmic quantization
is able to produce logarithmic weights around 0, which weakens the effect of weights with
zero value. Similarly, since jumping logarithmic quantization extends the quantization range,
generating weight values near 0 in low-bit quantization becomes possible, which makes the
weight value of 0 can be replaced by logarithmic weights without loss of accuracy.

32

We also find some drawbacks of JLQ. For 4-bit or larger bit-width quantization, it brings
little to no accuracy improvement than 3-bit quantization. Meanwhile, we can also observe
that in 4-bit weight and 32-bit activation cases, even though the weights of JLQ are fully
utilized, JLQ still has no advantage over the corresponding baseline. This can be explained
by the following two reasons. The first reason is that JLQ adjusts the step size and overdraws
the accuracy improvement by expanding the quantization range in advance. Another reason
is similar to the reason why 5-bit logarithmic quantization has little improvement over 4-bit
logarithmic quantization. For most non-sparse CNN models when the logarithmic weight is
less than a certain small value, the mutual substitution between those adjacent small loga-
rithmic weights will become very obvious. For example, adding or removing weight value
±2−8,±2−9 or ±2−10 by adjusting the quantization range will have almost no impact when
there exists 2−7 in the original quantization case.

As for the performance of other parameter settings, to fully demonstrate the advantage of
extending the quantization range, we intentionally filter parameter sets such as ”s=1, i=-1”,
”s=1, i=-2” and so on, which only achieve small range extension. And the results are shown
in table 5.2. JLQ-Q results of ”s = 2, i= -3” are mentioned again for the convenience of
conclusion extraction.

Table 5.2: CIFAR10 ResNet18 based on other parameter settings of JLQ (Method=JLQ-Q, A=8,
Sign=B)

Parameters W From pre-trained
s = 1, i = -3 2 89.56%
s = 1, i = -4 2 89.98%
s = 2, i = -1 2 87.81%
s = 2, i = -2 2 90.60%
s = 2, i = -3 2 93.15%
s = 1, i = -3 3 93.01%
s = 1, i = -4 3 91.90%
s = 2, i = -1 3 93.33%
s = 2, i = -2 3 93.10%
s = 2, i = -3 2 93.31%

We can see that in 2-bit quantization, the parameter set that achieves the best accuracy
is ”s=2, i=-3”, and in 3bit quantization, the best parameter set is s=2, i=-1. Both results are
consistent with the prediction of the error estimation model.

To demonstrate our accuracy advantage in low-bit quantization, we also compare our best
results with the best results in the original DeepShift paper. The comparison is demonstrated
in table 5.3. It can be seen that even though our quantization method has fewer activation
bits, it still outperforms its counterpart quantization algorithm.

33

Table 5.3: CIFAR10 ResNet18 result comparison

Method W A Top1 Accuracy
DeepShift-PS[10] 2 32 92.80%

JLQ-Q(s = 2, i = -3) 2 8 93.15%
DeepShift-PS[10] 3 32 92.85%

JLQ-Q(s = 2, i = -1) 3 8 93.33%

We can conclude that the DeepShift-Q benefits greatly from JLQ in extremely low-bit
quantization cases and can integrate weight de-zero optimization with no accuracy loss.

5.3 CIFAR100 Dataset

As for the CIFAR100 dataset, we simplified our experiments based on the results of CI-
FAR10. We intentionally removed experiments in relation to Baseline PS and JLQ-PS, con-
sidering Baseline Q shows more benefits after integrating with JLQ. We conduct experiments
with two network structures, ResNet18 and GoogleNet, to verify the scalability of JLQ. For
the convenience of hardware implementation, we keep the weight de-zero optimization and
apply it to all experiments of CIFAR100. Besides, since DeepShift baseline[10] also sup-
ports training from scratch, we add experiments about training from scratch to further verify
the scalability of JLQ. Additionally, we add a control group named ”original” that does not
implement any quantization to better demonstrate the accuracy comparison. The accuracies
based on ResNet18 are shown in table 5.4. The results of JLQ based on ResNet18 under
other parameter settings are shown in table 5.5.

Table 5.4: ResNet18 CIFAR100 benchmark (Sign=B)

Method W A
From scratch From pre-trained

Acc@1 Acc@5 Acc@1 Acc@5
Original 32 32 74.75% 92.97% - -
Base-Q 2 8 28.05% 58.29% 64.97% 86.69%
JLQ-Q 2 8 71.02% 90.97% 72.33% 91.43%
Base-Q 3 8 61.79% 87.68% 66.84% 88.45%
JLQ-Q 3 8 72.73% 91.40% 73.45% 92.17%
Base-Q 4 8 74.10% 92.46% 73.99% 92.60%
JLQ-Q 4 8 72.75% 91.51% 73.33% 92.13%
Base-Q 4 32 74.33% 92.56% 74.14% 92.71%
JLQ-Q 4 32 73.15% 91.77% 73.57% 92.36%

Since the CIFAR100 dataset has more types of images than the CIFAR10 dataset, it be-
comes more difficult to identify the CIFAR100 dataset. In this case, the advantages of JLQ
are more obvious. In the 2-bit and 3-bit quantization cases, whether the model is trained from
scratch or from a pre-trained model, the accuracy is dramatically improved by implementing
JLQ. However, in the 4-bit quantization case, the JLQ shows no advantages compared to the
baseline as a trade-off.

34

As for the parameter sets, according to the results in table 5.5, the optimal parameter set
maintains the same as those in CIFAR10.

Table 5.5: Other combinations CIFAR100 ResNet18 (Method=JLQ-Q, A=8, Sign=B)

Parameters W
From scratch From pre-trained

Acc@1 Acc@5 Acc@1 Acc@5
s = 1, i = -3 2 67.14% 89.09% 69.58% 89.79%
s = 1, i = -4 2 67.71% 89.35% 71.49% 91.09%
s = 2, i = -1 2 60.23% 86.76% 67.00% 87.91%
s = 2, i = -2 2 68.52% 89.75% 69.71% 89.82%
s = 2, i = -3 2 71.02% 90.97% 72.33% 91.43%
s = 1, i = -3 3 71.90% 91.31% 73.53% 92.38%
s = 1, i = -4 3 71.38% 91.09% 73.36% 92.21%
s = 2, i = -1 3 73.02% 91.70% 73.77% 92.45%
s = 2, i = -2 3 72.81% 91.47% 73.35% 92.14%
s = 2, i = -3 3 72.73% 91.40% 73.45% 92.17%

The accuracies based on GoogleNet are shown in table 5.6. The results of JLQ based on
GoogleNet under other parameter settings are shown in table 5.7.

Table 5.6: GoogleNet CIFAR100 benchmark (Sign=B)

Method W A
From scratch From pre-trained

Acc@1 Acc@5 Acc@1 Acc@5
Original 32 32 78.17% 94.58% - -
Base-Q 2 8 44.97% 76.30% 62.90% 87.07%
JLQ-Q 2 8 76.51% 93.82% 76.36% 93.65%
Base-Q 3 8 67.89% 90.44% 67.73% 89.80%
JLQ-Q 3 8 77.11% 94.19% 77.27% 94.06%
Base-Q 4 8 77.52% 94.37% 78.06% 94.55%
JLQ-Q 4 8 77.15% 94.14% 77.38% 94.19%
Base-Q 4 32 77.80% 94.56% 78.09% 94.47%
JLQ-Q 4 32 77.35% 94.27% 77.63% 94.31%

In terms of accuracy, the conclusions in GoogleNet are consistent with those in ResNet.
The accuracy after implementing JLQ far exceeds that of Baseline in the case of 2-bit and
3-bit quantization, while this advantage disappears in 4-bit quantization.

35

Table 5.7: Other combination CIFAR100 GoogleNet (Method=JLQ-Q, A=8, Sign=B)

Base-Q + JLQ W A
From scratch From pre-trained

Acc@1 Acc@5 Acc@1 Acc@5
s = 1, i = -3 2 8 72.84% 93.09% 74.45% 93.53%
s = 1, i = -4 2 8 68.46% 90.68% 72.03% 92.08%
s = 2, i = -1 2 8 68.37% 91.16% 68.71% 90.09%
s = 2, i = -2 2 8 72.78% 93.12% 73.92% 93.08%
s = 2, i = -3 2 8 76.51% 93.82% 76.36% 93.65%
s = 1, i = -3 3 8 77.19% 94.24% 77.60% 94.21%
s = 1, i = -4 3 8 77.07% 94.17% 77.20% 94.11%
s = 2, i = -1 3 8 77.12% 94.15% 77.31% 94.16%
s = 2, i = -2 3 8 77.34% 94.30% 77.63% 94.23%
s = 2, i = -3 3 8 77.11% 94.19% 77.27% 94.06%

As for the parameter sets, the optimal parameter set in 2-bit quantization still maintains
the same, while the optimal parameter set in 3-bit quantization is different from the prediction
of our error estimation model. The optimal parameter set changes from ”s=2,i=-1” to ”s=2,i=-
2” owing to the variance of weight distribution. However, the accuracy generated in the
”s=2,i=-1” parameter set only has slight differences compared with that generated in the
”s=2,i=-2” parameter set, which manifests that the prediction of our error estimation model
is still very reliable.

5.4 Tiny ImageNet Dataset

In order to test whether JLQ can maintain the accuracy advantage in the case of extremely
low-bit quantization (2-bit and 3-bit) on larger datasets, we conducted experiments based
on the Tiny ImageNet dataset. The Tiny ImageNet dataset [40] is a modified subset of the
original ImageNet dataset [41] with 200 different classes, 100,000 training examples, and
10,000 validation examples. The resolution of the images is only 64x64 pixels, which makes
it more challenging to extract information from it than the original ImageNet dataset. The
experiment settings are almost the same as those in previous CIFAR100 experiments. The
only difference is that we consider two different CNN networks, ResNet18[4], and Incep-
tion v3[42] using pre-trained models this time. To get pre-trained models, we first train the
networks from scratch in 90 epochs based on Imagenet pre-trained weights. In addition,
to increase the baseline of Resnet18, we use the fine-tuning method by removing the max
pooling layer to reduce information loss of the image in the early stage of CNN.

The accuracies based on ResNet18, and Inception-v3 are shown in table 5.8, and 5.9
correspondingly.

36

Table 5.8: ResNet18 Tiny ImageNet benchmark (Sign=B)

Method W A
From scratch

Acc@1 Acc@5
Original 32 32 60.30% 82.10%

Method W A
From pre-trained

Acc@1 Acc@5
Base-Q 2 8 37.40% 62.54%

JLQ-Q(s=2,i=-3) 2 8 58.19% 80.82%
Base-Q 3 8 48.60% 73.51%

JLQ-Q(s=2,i=-1) 3 8 58.53% 81.13%

Table 5.9: Inception-v3 Tiny ImageNet benchmark (Sign=B)

Method W A
From scratch

Acc@1 Acc@5
Original 32 32 68.09% 86.89%

Method W A
From pre-trained

Acc@1 Acc@5
Base-Q 2 8 10.08% 28.81%

JLQ-Q(s=2,i=-3) 2 8 66.02% 85.38%
Base-Q 3 8 59.83% 81.57%

JLQ-Q(s=2,i=-1) 3 8 66.37% 85.63%

It can be clearly seen that although the dataset has become larger, compared to the base-
line, JLQ still maintains the advantage of accuracy in a very low-bit quantization case.

37

38

Hardware Design 6
This chapter is outlined as follows: This chapter starts with a brief introduction of a systolic-
array-based accelerator that will be used to implement proposed PEs later, then provides the
design of the proposed PE and proposed shifter. Then resource utilization, area, and power
consumption of the proposed PE standing alone and in a systolic array prototype are reported.

6.1 Systolic Array System Overview

Figure 6.1.1: Top-level hardware architecture of the Neural Network Accelerator.

Since the proposed PE will be implemented in a systolic-array-based accelerator (shown in
Figure.6.1.1) to test its performance, this section will provide an overview of this systolic-
array-based accelerator. The system flow, systolic array inference flow, and processing ele-
ment flow are shown in Figure. 6.1.2(1), Figure. 6.1.2(2), Figure. 6.1.2(3) respectively. The
computation block is based on systolic arrays and each systolic array is built by 64 Processing
Elements (PEs).

39

Figure 6.1.2: (1) system timing diagram, (2) inference flow, and (3) Processing unit flow diagram.

The systolic-array-based accelerator is mainly composed of three parts: data movement
part, computation part, and control logic part. For the data movement part, since the FPGA’s
internal available BRAM size is often unable to store the data of a complete network, we
load and store data through external DDR3 memory. As for the input data and weight, they
are firstly stored in DDR and then passed to corresponding BRAMs (IMEMs and WMEMs).
Then, when PMEMs were full after computation, the CDMA will transfer the data in PMEMs
to DDR3 to make room for new outputs. The computation part is composed of the systolic
array and some other small computation modules, which achieves the convolution operation
and Relu activation operation. And the control logic part is composed of the CDMA Con-
troller and the fetcher module. The control logic part is responsible for fetching instructions,
controlling CDMA, and coordinating the dependency of different modules and instructions.
The control logic part is the side work of this thesis.

6.2 Design Of Processing Element

The processing element serves as the core of neural network acceleration. Therefore, the
optimization of a PE will directly affect the efficiency of the overall hardware design. A
general weight-stationary shifter-based PE design is illustrated in Figure.6.2.1. The shift

40

operation of the feature and the weight is first conducted, then followed by a negative or
positive value selection and zero value selection.

Figure 6.2.1: Shifter-Based PE (Our PE is the solid part, and the dotted part is what we remove from
traditional shifter-based PE in our optimization).

Since our quantization method does not have the weight of zero value, our PE removes a
multiplexer in relation to zero bit.

6.3 Design Of Shifter

Although JLQ extends the quantization range, it does not mean that it requires a larger shifter
for quantization weights. By modifying the barrel shifter, our PE achieves the purpose of
range extension without adding any hardware burden. Taking the 3-bit jumping log quanti-
zation with step = 2 i = -1 as an example, the logarithmic quantization weights, in this case,
are as follows:(±2−1,±2−3,±2−5,±2−7). These weight values will correspond to the shift
operations of ≫ 1, ≫ 3, ≫ 5, and ≫ 7 respectively. And the operations of ≫ 1, ≫ 3, ≫ 5,
≫ 7 only entail a 2-bit barrel shifter shown in Figure.6.3.1 instead of a traditional 3-bit barrel
shifter to achieve. In this example shifter, the layer of multiplexers that operate right shift
one bit is removed. To further save hardware resources, some multiplexers are substituted
with AND gates or are neglected directly. The first layer of AND gates and multiplexers
represents the ≫ 4 operation, and the second layer represents the ≫ 2 operation. Besides,
the input is preshifted 1 bit in advance. Consequently, ≫ 1, ≫ 3, ≫ 5, ≫ 7 operations can
be achieved using this shifter.

41

Figure 6.3.1: Shifter Design (Our shifter is the solid part and the red part. The dotted part is what
we remove from the traditional 3-bit barrel shifter in our optimization, and the red part indicates
the replacement of multiplexers with AND gates. The first column of multiplexers can be directly
neglected owing to preshift operation).

6.4 Simulation Results

6.4.1 PE Simulation

In order to calculate area and power consumption, different types of PE were synthesized
using the Synopsys Design Compiler(TSMC 28nm technology). And the resource utilization
of different types of PE is tested on Xilinx ARTIX7 XC7A100T using Synplify Pro. The
basic resulting resource utilization, area consumption, and power consumption for different
types of PEs are given in Table6.1. And the normalized results of resource utilization, area,
and power consumption are shown in Figure.6.4.1, Figure.6.4.2, and Figure.6.4.3.

42

Table 6.1: resources consumption in single PE

PE type W LUTa A(µm2)b P(mw)b

multiplier-based PE 3 55 221.186 1.3200
shifter-based PE 3 46 209.720 1.1928

our PE 3 33 203.840 1.1879
multiplier-based PE 2 43 200.900 1.2047

shifter-based PE 2 43 202.664 1.1567
our PE 2 28 192.178 1.1516

aFor Xilinx ARTIX7 XC7A100T FPGA
bFor TSMC 28nm technology (ASIC)

Figure 6.4.1: Normalized LUT Resources.

Figure 6.4.2: Normalized Area.

43

Figure 6.4.3: Normalized Power.

It can be seen that our PE has advantages in LUT utilization, area, and power consump-
tion over both traditional shifter-based PE and multiplier-based PE. Specifically, as shown
in Figure.6.4.1, our PE reduces the 35% and 28.6% LUT compared with traditional shifter-
based PE in the 2-bit quantization case and 3-bit quantization case respectively. As for area
and power consumption, although the differences are not as prominent as those in LUT uti-
lization, our PE still performs better than traditional shifter-based PE.

6.4.2 CNN Accelerator Simulation

An MNIST example is used in the systolic-array-based CNN accelerator to estimate corre-
sponding power consumption. And the network implemented in this accelerator is shown in
Table.6.2.

Table 6.2: Simple Convolution Network

number of layers type kernel size stride input channel output channel padding.a activation function
First layer Convolution 5*5 2 1 16 False ReLu

Second Layer Convolution 3*3 2 16 16 False ReLu
Third Layer Convolution 5*5 1 16 10 False ReLu

a Padding with 0

Table 6.3 shows the results of comparisons with the same systolic-array-based CNN ac-
celerator implemented with different PE on LUT utilization and power consumption. And
the normalized results of LUT utilization and dynamic power consumption are shown in Fig-
ure.6.4.4, Figure.6.4.5. The CNN accelerator implemented with the proposed PE achieves
less LUT consumption and power consumption compared to that implemented with tradi-
tional multiplier-based PE and shifter-based PE under the same bit-width. Specifically, when
the weight bit width is 2, the accelerator with our PE has 6% and 7% dynamic power reduc-
tion compared to the accelerator with multiplier-based PE and the accelerator with shifter-
based PE, respectively. And when the weight bit width is 3, the accelerator with our PE
achieves 8% and 5% dynamic power reduction compared to its above-mentioned counter-
parts respectively.

44

Table 6.3: Simulation Results Comparison

Accelerator type W Quantization Method Acc.a LUT DP(w).b SP(w).c TP(w).d

With multiplier-based PE 2 Floating Point 96.72% 33088 0.107 0.416 0.523
With shifter-based PE 2 Base-Q(ternary) 96.65% 35066 0.108 0.416 0.524

With proposed PE(for s=1) 2 Base-Q(binary)+preshift.e 97.32% 31545 0.102 0.416 0.518
With proposed PE(for s=2) 2 JLQ-Q(S=2,i=-3) 97.57% 31545 0.102 0.416 0.518
With multiplier-based PE 3 Floating Point 97.39% 40686 0.129 0.417 0.546

With shifter-based PE 3 Base-Q(ternary) 97.47% 39920 0.115 0.416 0.531
With proposed PE(for s=1) 3 Base-Q(binary)+preshift.f 97.65% 35725 0.110 0.416 0.526
With proposed PE(for s=2) 3 JLQ-Q(S=2,i=-1) 97.76% 35725 0.110 0.416 0.526

a based on the full-precision pre-trained model (97.70% accuracy) using the aforementioned implemented network
with the same training settings in DeepShift[10]
b Dynamic Power
c Device Static Power
d Total Power
e equivalent to JLQ (S=1,i=-3)
f equivalent to JLQ (S=1,i=-1)

Figure 6.4.4: Normalized LUT Resources for CNN accelerator.

45

Figure 6.4.5: Normalized Dynamic Power for CNN accelerator.

Since the testing network is small, the number of weights that need to be transferred
and the corresponding power consumption are also small. If the dataset and the network
become larger, the power consumption reduction and accuracy advantage of JLQ in the low-
bit quantization case will become more obvious.

46

Conclusions 7
This chapter concludes this thesis work. In addition, it addresses the thesis’s research ques-
tions and then gives some insights about future work based on the thesis results. Afterward,
it ends with the paper accepted by the DATE 2023 conference relating to this thesis.

7.1 Thesis Conclusions

In this thesis, firstly, for the software part, we present JLQ, a new network quantization
method, to address the problem of how to improve the accuracy of logarithmic quantization
in extremely low-bit quantization cases. Unlike existing methods that usually rely on the
retraining strategy to alleviate the impact of quantization noise in extremely low-bit quanti-
zation cases, JLQ achieves the same purpose by using 2sx+i to extend the quantization range.
According to our error estimation model, for JLQ in 2-bit quantization, the optimal param-
eter settings are ”s=2, i=-3”. And for JLQ in 3-bit quantization, the optimal parameter set-
tings are ”s=2, i=-1”. These optimal parameter settings in theory are also verified by our
benchmark results. Our benchmark results also show that JLQ has the accuracy advantage
in 2-bit and 3-bit quantization cases compared to baseline and counterpart algorithms. And
this accuracy advantage will become more obvious for large-scale classification tasks such as
TinyImageNet[40]. The drawback of JLQ is that the accuracy advantage disappears in 4-bit
(or above) quantization cases. Secondly, for the hardware part, a new shifter that can effi-
ciently JLQ-ed the weights is designed. And considering zero value cannot be represented
by the shifter, a weight de-zero optimization is invented, which is already verified in JLQ
benchmark results. By incorporating the new shifter and weight de-zero optimization, a new
PE is designed. According to our simulation results, our PE has advantages in LUT utiliza-
tion, area, and power consumption compared to its counterpart PEs. And the advantages still
remain when our PE is put in a real systolic-array-based accelerator.

7.2 Addressing Research Questions

The research questions that are listed in Chap. 1.1 were:

1. How to optimize current state-of-art logarithmic quantization methods in extreme low-
bit quantization cases for low-power hardware implementation?

2. How to optimize shifter-based processing elements based on logarithmic quantization?

How to optimize current state-of-art logarithmic quantization methods in extreme
low-bit quantization cases for low-power hardware implementation?

Compared with other methods that are good at low-bit quantization, such as ternary
networks[35], the advantage of logarithmic quantization is that logarithmic quantization

47

weights are not fixed to 0 and 1. Logarithmic quantization weights can be represented by
any n-th power of 2. Therefore, a feasible solution is to test the accuracy using various
logarithmic weights sets under low-bit quantization case. And theoretically, a mathemati-
cal model can be built to predict the optimal set of logarithmic weights that minimizes the
quantization error under low-bit quantization. Previous research has shown that both large
and small weights are important. Among them, the importance of the weight with a larger
absolute value is reflected in feature extraction, while the importance of the weight with
a smaller absolute value is reflected in reducing the quantization error of the entire model.
Based on this, this work proposes a logarithmic quantization method called jumping logarith-
mic quantization (JLQ), which introduces two additional parameters to extend the range of
logarithmic weights. By intentionally JLQ-ed some logarithmic weights, the final set of log-
arithmic weights can contain both large logarithmic weights and small logarithmic weights
at the same time. The results show that JLQ is very advantageous in the aspect of accuracy
under low-bit quantization such as 2-bit and 3-bit quantization. The only drawback of JLQ is
that for quantization cases in 4-bit and above, JLQ loses the advantage of accuracy compared
with other logarithmic quantization methods.

How to optimize shifter-based processing elements based on the logarithmic quanti-
zation?

There are two approaches to further optimize shifter-based PE. The first approach is to
delete the parts that are not just needed in PE as much as possible. Since zero-value weights
cannot be processed by the shifter, a multiplexer is entailed in the traditional shifter-based
PE to process zero-value weights. This work replaces all zero-value weights with logarith-
mic weights in the proposed JLQ so that all weights can be processed by shift operations.
Therefore, the proposed shifter-based PE does not require an additional multiplexer to deal
with zero-value weights. The second approach is to optimize the shifter as much as possible.
Since the proposed JLQ in this work intentionally filters some logarithmic weights, this work
optimizes the classical barrel shifter so that the proposed PE can efficiently implement JLQ
with fewer hardware resources.

7.3 Future Work

We have proven that JLQ (with weight de-zero optimization) performs well on small datasets
in extremely low-bit quantization. But the verification based on big datasets such as
Imagenet[41] is not yet provided in this work. It is expected to reach similar conclusions
since the baseline DeepShift-Q[10] are already proved suitable for Imagenet. In addition, in
the aspect of hardware, putting our PE into a real CNN accelerator that can process large net-
works (for example ResNet[4]) and large datasets (for example Imagenet[41]) to evaluate the
overall throughput, resource utilization, and power consumption is not done in our work. We
expect a strong reduction in resource utilization and power consumption since JLQ is able
to dramatically reduce the bit-width of the memory from the common-used bit down to 3-bit
or 2-bit with only little accuracy loss compared to full precision networks. Finally, the in-
tegration of non-conflicting optimizations such as incremental re-training (used in INQ[9]),
quantization range extension (used in JLQ), padding and activation function optimization
(used in ReActNet[13]) and so on is also a very interesting future topic for logarithmic quan-
tization.

48

7.4 Future Work

We have proven that JLQ (with weight de-zero optimization) performs well on small datasets
in extremely low-bit quantization. But the verification based on big datasets such as
Imagenet[41] is not yet provided in this work. It is expected to reach similar conclusions
since the baseline DeepShift-Q[10] are already proved suitable for Imagenet. In addition, in
the aspect of hardware, putting our PE into a real CNN accelerator that can process large net-
works (for example ResNet[4]) and large datasets (for example Imagenet[41]) to evaluate the
overall throughput, resource utilization, and power consumption is not done in our work. We
expect a strong reduction in resource utilization and power consumption since JLQ is able
to dramatically reduce the bit-width of the memory from the common-used bit down to 3-bit
or 2-bit with only little accuracy loss compared to full precision networks. Finally, the in-
tegration of non-conflicting optimizations such as incremental re-training (used in INQ[9]),
quantization range extension (used in JLQ), padding and activation function optimization
(used in ReActNet[13]) and so on is also a very interesting future topic for logarithmic quan-
tization.

7.5 Paper Acceptance

The contributions of this thesis work are also described in the following paper accepted by
the DATE 2023 conference.

49

Jumping Shift: A Logarithmic Quantization Method
for Low-Power CNN Acceleration*

Abstract—Logarithmic quantization for Convolutional Neural
Networks (CNN): a) fits well typical weights and activation
distributions, and b) allows the replacement of the multiplication
operation by a shift operation that can be implemented with
fewer hardware resources. We propose a new quantization method
named Jumping Log Quantization (JLQ). The key idea of JLQ
is to extend the quantization range, by adding a coefficient
parameter ”s” in the power of two exponents (2sx+i). This quan-
tization strategy skips some values from the standard logarithmic
quantization. In addition, we also develop a small hardware-
friendly optimization called weight de-zero. Zero-valued weights
that cannot be performed by a single shift operation are all
replaced with logarithmic weights that to further reduce hard-
ware resources with almost no accuracy loss. To implement the
Multiply-And-Accumulate (MAC) operation (needed to compute
convolutions) when the weights are JLQ-ed and de-zeroed, a
new Processing Element (PE) have been developed. This new
PE uses a modified barrel shifter that can efficiently avoid the
skipped values. Resource utilization, area, and power consumption
of the new PE standing alone are reported. We have found
that JLQ performs better than other state-of-the-art logarithmic
quantization methods when the bit width of the operands becomes
very small.

Index Terms—Convolutional Neural Network, Low-power hard-
ware acceleration, Logarithmic Quantization, FPGA

I. INTRODUCTION

In recent years, there has been a lot of interest in deep
learning. Convolutional Neural Network (CNN), one of the
most mature deep learning models, has attracted attention
in various fields such as medical research [1] [2], language
processing [3], and visual imagery [4] [5] [6]. Despite its
popularity, due to its huge data volume, intensive computation,
and frequent memory access, deploying a CNN on low-power
hardware systems is still challenging. To make deep neural
networks generally easier to deploy on hardware devices like
FPGA and ASIC, various quantization algorithms [7] [8] [9]
have been devised to reduce memory requirements. Among all
quantization methods, logarithmic quantization is very suitable
for low-power inference because as logarithmic weights are
represented by powers of two, the memory only needs to
store the integer power index instead of the floating point
weight. Besides, they fit better the common CNN Gaussian-
like distributions of weights and activations, than the more
uniform integer quantization. And furthermore, they allow the
replacement of the multiplication operation (massively involved
in CNN computation) by a shift operation, which can be
implemented with fewer hardware resources.
Because of all of the previous reasons, logarithmic quantization
effectively reduces the CNN memory footprint and reduces the

area and power consumption of the Processing Elements (PEs)
involved in CNN computation.

In this paper, we introduce a logarithmic quantization tech-
nique named Jumping Logarithmic Quantization (JLQ) that
can achieve higher accuracy than traditional logarithmic quan-
tization at low-bit quantization by extending the quantization
range. We performed tests on CIFAR10 [10], CIFAR100 [10],
and Tiny ImageNet [11] to evaluate the accuracy based on
our quantization technique. Compared with the state of art
logarithmic quantization algorithm, our method has obvious ad-
vantages in the low-bit (2 or 3-bit) quantization cases. Besides,
we develop a hardware-friendly weight de-zero optimization.
Hardware resources are further reduced by replacing zero-
valued weights with logarithmic weights that can be performed
by shift operations. In addition, we design a processing element
(PE) architecture based on JLQ and weight de-zero optimiza-
tion, aiming to perform MAC operations of CNN models
with fewer resources, lower area, and power consumption.
The processing element (PE) realizes the quantization range
expansion of JLQ without introducing additional hardware
resources by optimizing the traditional barrel shifter. For ASIC
testing, we synthesized our PE design, a multiplier-based PE
design, and a traditional shifter-based PE design using TSMC
28nm technology (in the 3-bit and 2-bit quantization case).
Compared with other competitors, our PE design has less area
and power consumption. In addition, we also conduct exper-
iments regarding the resource consumption of different PEs
on Xilinx ARTIX7 XC7A100T FPGA. The results show that
our PE design also has advantages in this aspect. Specifically,
compared with traditional shifter-based PE, our PE achieves
35% and 28.6% LUT reduction in 2-bit and 3-bit quantization
cases respectively.

The rest of this paper is organized as follows. The related
work on log quantification is described in Section II. Then, we
introduce our proposed quantization method, JLQ, in Section
III. Section IV presents the accuracy results of JLQ on various
datasets and network structures. In Section V, we present our PE
design and the corresponding hardware implementation results.
Finally, Section VI is the conclusion.

II. RELATED WORK

LogNN [12] was the first to propose logarithmic quantization
for CNNs. They propose two methods: in the first method, the
weights remain fix-point and the activations are log-quantized.
While in the second method, both weights and activations are
log-quantized.

ShiftCNN [13] replaces each multiplication with a set of 2 or
3 shifts, therefore their PE consumes more hardware resources

and has higher power consumption than the PE with only a
single shifter. Similar to ShiftCNN, in [14] and [15], to improve
the accuracy, they also replace each multiplication with the sum
of two shift operations.

In DeepShift [8], the author proposes two methods:
DeepShift-Q and DeepShift-PS. DeepShift-Q can be regarded
as the standard logarithmic quantization. In DeepShift-PS, since
the power-of-two function is differentiable, they implement a
further derivation of the backward pass when the weights are
logarithmic-quantized, which is the main innovation in this
paper. Besides, both DeepShift-Q and DeepShift-PS support
training from scratch. We have tested our methods using both
DeepShift -Q and -PS equations, however, generally, we got
higher accuracy for the DeepShift-Q versions.

The main feature of INQ [9] is implementing incremental
retraining from a pre-trained model to increase the quantization
accuracy. The INQ algorithm consists of three steps: the first
step is to sort the weights by absolute value and divide them
into two groups according to a certain proportion; the second
step is to quantize the group of weights with larger absolute
value; the third step is to retrain the group of weights with
relatively smaller absolute value. After iterating these three
steps, the overall quantization can be completed. In INQ, the
proportion of each quantization is a hyperparameter. Unfortu-
nately, there is currently no absolute criterion for the selection
of this parameter, which is often obtained through experiments.

In [16], the author also uses incremental retraining and makes
it more adaptive to sparse models through their centralized
quantization method.

Besides, logarithmic quantization is also applied in approx-
imate computing. In [17], the author proposes an approximate
shifter-based PE. And in [18], an approximate logarithmic data
representation is proposed for CNN training. Compared with
these methods, in our JLQ method, once the quantization has
been performed, the computations are exact. And our JLQ
method gets higher accuracy in extreme low-bit quantization
cases: 2-bit and 3-bit quantization with 8-bit activations.

III. JUMPING LOGARITHMIC QUANTIZATION

Many studies indicated that weights in most mainstream non-
sparse CNN models generally follow a Gaussian-like distribu-
tion [19]. That means, the majority of the CNN weights have
small values, and only a few outliers have relatively large val-
ues. Based on this information, some quantization techniques
[7] intentionally use fewer sampling points to quantize weights
with large absolute values and use more sampling points to
quantize weights with small absolute values. However, some
previous studies show that weights with larger absolute values
are not inessential. In fact, they are more critical in feature
extraction than those with smaller values [20]. Therefore, based
on these two facts, we developed the new logarithmic quanti-
zation technique JLQ. This quantization technique extends the
quantization range by introducing two external parameters so
that both big-value weights and small-value weights can be
taken into consideration in the extreme low-bit quantization
case. To achieve our goal, we introduce a jumping step pa-
rameter ”s” and an initial exponent index parameter ”i” (or

pre-shift) in our proposed logarithmic quantization method. In
JLQ, the quantization values can be represented as follows:

• Quantization Weights = (±2sx+i)

A. Quantization Error estimation model

To theoretically determine the hyper-parameters ”s” (jumping
step) and ”i” (initial exponent index) of the JLQ, a quantization
error estimation model is proposed. In our model, weights Wi

are assumed to be in the range of [-1, 1], and they follow a
Gaussian distribution N(µ, δ), where µ is very close to 0. In
addition, since the slope of the long tail part of the Gaussian
distribution is extremely small, for simplicity, weights located
in the [-1, -3δ) and (3δ, 1] intervals are regarded to have a
uniform distribution instead of Gaussian distribution in our
model. For most typical non-sparse CNN models, the value of
δ is between 0.01 and 0.09 [19]. To facilitate the comparison
of quantization errors engendered by different jumping steps
and initial exponent indexes, in this error estimation model,
δ is assumed to be the average of 0.01 and 0.09, which
is 0.05. And the total number of CNN weights is set to
k · 106. Consider a quantization interval [Wdown, Wup], the
logarithmic quantization weight corresponding to this interval
is Wquan Assume that the total number of weights falling
in this logarithmic quantization interval is Q, and there are
N (N → ∞) different discrete weights in this logarithmic
quantization interval. The quantization error formula selected
by this estimation model is consistent with the quantization
error formula mentioned in [21], which is displayed as (1):

E(x) =
1

2
· (Quan(x)− x)2 (1)

When weights obey a uniform distribution, the number of
each weight can be consequently regarded as Q/N, and the in-
terval between each weight is (Wup-Wdown)/(N-1). Therefore,
the total quantization error function F(x) can be represented as
(2):

F (x) =
1

2
·
∫ Wup

Wdown

(Quan(x)− x)2dx · Q

Wup −Wdown
(2)

When weights obey a Gaussian distribution, the number of each
weight can be approximately regarded as equal owing to the
fact that the individual probability of each weight tends to be
infinitely small as N approaches infinity. Consequently, the total
quantization error can still be approximately represented by (2).
The only difference is that the total number of weights within
this interval, in this case, can be further determined through
the definite integral over the probability density function of the
normal distribution, which is shown in (3):

Q = k · 106 ·
∫ Wup

Wdown

1

δ ·
√
2π

· e−
(x−µ)2

2·δ2 dx (3)

B. Parameter Selection

Since in the proposed quantization error estimation model,
both the convolutional network weights and the logarithmic
quantization weights are symmetrical at about zero, the quan-
tization error will also share such symmetry. In other words,

TABLE I
ESTIMATED QUANTIZATION ERROR

bit width, s and i estimation quantization error
bit = 2, s = 2, i = 0 16279.95k
bit = 2, s = 2, i = -1 2158.14k
bit = 2, s = 2, i = -2 920.82k
bit = 2, s = 2, i = -3 573.12k
bit = 2, s = 2, i = -4 959.20k
bit = 2, s = 1, i = -3 809.33k
bit = 2, s = 1, i = -4 876.18k
bit = 2, s = 3, i = -2 1244.13k
bit = 2, s = 4, i = -1 1854.92k
bit = 3, s = 2, i = 0 407.23k
bit = 3, s = 2, i = -1 244.77k
bit = 3, s = 2, i = -2 542.38k
bit = 3, s = 2, i = -3 876.18k

in this model, the quantization error caused by positive quanti-
zation weights and negative quantization weights maintain the
same. In order to obtain the theoretical optimal parameters s
and i, it is necessary to calculate and compare the estimated
quantization errors of different parameter combinations under
(2). Summarizing these results yields Table I. It can be seen
that for 2-bit logarithmic quantization, s=2 and i=-3 is the
theoretically optimal parameter set; while for 3-bit logarithmic
quantization, s=2, i=-1 is the theoretically optimal parameter
set.

IV. BENCHMARK RESULTS

We have tested the training results on 3 datasets: CIFAR10
[10], CIFAR100 [10], and Tinyimagenet [11]. For the CIFAR10
dataset, the original DeepShift-PS and DeepShift-Q are set as
the baseline, and two DeepShift modes integrated with JLQ are
set as the comparison group to get a preliminary conclusion.
And CIFAR100 and Tiny ImageNet datasets are used to verify
the scalability of JLQ. For a fair comparison, we set all the
training parameters consistent with those of DeepShift [8].
Different from the display strategy of DeepShift, which only
shows the best accuracy results, the accuracy we show is the
median after three experiments.

A. Weight de-zero Optimization

In original DeepShift, ternary sign operator ({−1, 0,+1})
is used. To test the weight de-zero optimization, the ternary
sign operator is replaced with the binary sign operator. In the
hardware, the advantage of the binary operator is that all the
weights produced by the binary operator can be represented
using shift operations. An example that can show the difference
between implementing the ternary sign operator and the binary
sign operator is as follows:

• Quantization weights with ternary operator (3-bit):
(±20,±2−1,±2−2,0)

• Quantization weights with binary operator (3-bit):
(±20,±2−1,±2−2,±2−3)

B. Benchmark Statement

In order to reduce the burden of memory, researchers often
want a quantization method that can minimize bit-width for

TABLE II
CIFAR10 BENCHMARK FROM PRE-TRAINED, ACC@1

W A Sign Base-PS JLQ-PS Base-Q JLQ-Q
2 8 T 81.75% 90.04% 90.37% 93.03%
2 8 B 81.11% 89.89% 89.46% 93.15%
3 8 T 90.53% 90.07% 92.67% 93.27%
3 8 B 90.37% 89.81% 92.01% 93.31%
4 8 T 93.75% 90.18% 93.95% 93.29%
4 8 B 93.61% 90.06% 93.88% 93.34%
4 32 T 94.06% 90.24% 94.05% 93.46%
4 32 B 93.91% 90.17% 93.95% 93.37%

both, weights and activation data. In order to demonstrate the
advantages of our proposed method in low-bit quantization,
most of our experiments are based on 8 activation bits. And
since the training of DeepShift-PS at 8 activation bits fluctuates
greatly and its loss curve is difficult to converge in this case
according to our experiments, we select the highest accuracy
during the entire training process as the final accuracy value
of a single experiment when doing experiments in relation to
DeepShift-PS.

In our test strategy, we will first test the jumping logarithmic
quantization with the 2-bit theoretical optimal parameter set
”s=2, i=-3” compared with the DeepShift baseline. At the same
time, in order to test the effect of weight de-zero optimization
on the accuracy, experiments using the ternary sign operator
and binary sign operator will also be performed based on
the CIFAR10 dataset. After that, we will test the accuracy of
jumping logarithmic quantization with other parameter sets to
verify the optimal parameter set prediction provided by our
error estimation model.

In our tables, “W” refers to the number of bits to represent
weights, “A” refers to the number of bits to represent activation
bits, “T” refers to the ternary sign operator, and “B” refers to
the binary sign operator, and “Acc@N” accuracy means that
the correct class gets to be in the Top-N probabilities for it
to count as “correct”. We also highlight the useful data in our
table to make the data comparison and conclusion extraction
more convenient.

C. CIFAR10 Dataset

The accuracy results shown in table II are based on the
results reproduced by us instead of the results from the original
DeepShift paper.

We can see that in 2-bit quantization, DeepShift-PS inte-
grated with jumping logarithmic quantization has better perfor-
mance than the corresponding baseline. Meanwhile, DeepShift-
Q integrating with jumping logarithmic quantization achieves
higher accuracy than any baseline in 2-bit and 3-bit quanti-
zation. Another conclusion is that quantization methods using
the ternary sign operator only have slight accuracy advantages
compared to those using the binary sign operator. That means,
using the binary sign operator that is more hardware-friendly
is feasible.

We also find some drawbacks of JLQ. For 4-bit or larger bit-
width quantization, it brings little to no accuracy improvement
than 3-bit quantization. This can be explained by the following

TABLE III
CIFAR10 RESNET18 BASED ON OTHER PARAMETER SETTINGS OF JLQ

(METHOD=JLQ-Q, A=8, SIGN=B)

Parameters W From pre-trained
s = 1, i = -3 2 89.56%
s = 1, i = -4 2 89.98%
s = 2, i = -1 2 87.81%
s = 2, i = -2 2 90.60%
s = 2, i = -3 2 93.15%
s = 1, i = -3 3 93.01%
s = 1, i = -4 3 91.90%
s = 2, i = -1 3 93.33%
s = 2, i = -2 3 93.10%
s = 2, i = -3 2 93.31%

two reasons. The first reason is that JLQ adjusts the step
size and overdraws the accuracy improvement by expanding
the quantization range in advance. Another reason is that for
most non-sparse CNN models when the logarithmic weight
is less than a certain small value, the mutual substitution
between those adjacent small logarithmic weights will become
very obvious. For example, adding or removing weight value
±2−8,±2−9 or ±2−10 by adjusting the quantization range will
have almost no impact when there exists 2−7 in the original
quantization case. As for the performance of other parameter
settings, to fully demonstrate the advantage of extending the
quantization range, we intentionally filter parameter sets such
as ”s=1, i=-1”, ”s=1, i=-2” and so on, which only achieve small
range extension. And the results are shown in table III(JLQ-Q
results of s = 2, i= -3 are mentioned again for the convenience
of conclusion extraction).

We can see that in 2-bit quantization, the parameter set
that achieves the best accuracy is ”s=2, i=-3”, and in 3-bit
quantization, the best parameter set is s=2, i=-1. Both results
are consistent with the prediction of the error estimation model.

D. CIFAR100 Dataset

As for the CIFAR100 dataset, we simplified our experiments
based on the results of CIFAR10. We intentionally removed
experiments in relation to Baseline PS and JLQ-PS, considering
Baseline Q shows more benefits after integrating with JLQ. We
conduct experiments with two network structures, ResNet18
and GoogleNet, to verify the scalability of JLQ. For the con-
venience of hardware implementation, we keep the weight de-
zero optimization and apply it to all experiments of CIFAR100.
Additionally, we add a control group named ”original” that
does not implement any quantization to better demonstrate the
accuracy comparison. The accuracy results based on ResNet18
are shown in table IV. The accuracy results based on GoogleNet
are shown in table V.

Since the CIFAR100 dataset has more types of images than
the CIFAR10 dataset, it becomes more difficult to identify
the CIFAR100 dataset. In this case, the advantages of JLQ
are more obvious. In terms of accuracy, the conclusions in
GoogleNet are consistent with those in ResNet. In the 2-bit
and 3-bit quantization cases, whether the model is trained
from scratch or from a pre-trained model, the accuracy is
dramatically improved by implementing JLQ. However, in the

TABLE IV
RESNET18 CIFAR100 BENCHMARK (SIGN=B)

Method W A From scratch From pre-trained
Acc@1 Acc@5 Acc@1 Acc@5

Original 32 32 74.75% 92.97% - -
Base-Q 2 8 28.05% 58.29% 64.97% 86.69%
JLQ-Q 2 8 71.02% 90.97% 72.33% 91.43%
Base-Q 3 8 61.79% 87.68% 66.84% 88.45%
JLQ-Q 3 8 72.73% 91.40% 73.45% 92.17%
Base-Q 4 8 74.10% 92.46% 73.99% 92.60%
JLQ-Q 4 8 72.75% 91.51% 73.33% 92.13%
Base-Q 4 32 74.33% 92.56% 74.14% 92.71%
JLQ-Q 4 32 73.15% 91.77% 73.57% 92.36%

TABLE V
GOOGLENET CIFAR100 BENCHMARK (SIGN=B)

Method W A From scratch From pre-trained
Acc@1 Acc@5 Acc@1 Acc@5

Original 32 32 78.17% 94.58% - -
Base-Q 2 8 44.97% 76.30% 62.90% 87.07%
JLQ-Q 2 8 76.51% 93.82% 76.36% 93.65%
Base-Q 3 8 67.89% 90.44% 67.73% 89.80%
JLQ-Q 3 8 77.11% 94.19% 77.27% 94.06%
Base-Q 4 8 77.52% 94.37% 78.06% 94.55%
JLQ-Q 4 8 77.15% 94.14% 77.38% 94.19%
Base-Q 4 32 77.80% 94.56% 78.09% 94.47%
JLQ-Q 4 32 77.35% 94.27% 77.63% 94.31%

4-bit quantization case, the JLQ shows no advantages compared
to the baseline as a trade-off.

E. Tiny ImageNet Dataset

In order to test whether JLQ can maintain the accuracy
advantage in the case of extremely low-bit quantization (2-bit
and 3-bit) on larger datasets, we conducted experiments based
on the Tiny ImageNet dataset. The Tiny ImageNet dataset [11]
is a modified subset of the original ImageNet dataset [22] with
200 different classes, 100,000 training examples and 10,000
validation examples. The resolution of the images is only 64x64
pixels, which makes it more challenging to extract information
from it than the original ImageNet dataset. To get pre-trained
models of Tiny ImageNet Dataset, we train the networks from
scratch in 90 epochs based on Imagenet pre-trained weights.
After that, we train the networks from those pre-trained models
for 15 epochs (Other training parameters are consistent with
those in ImageNet experiments mentioned in [8]). In addition,
to increase the accuracy of the Resnet18 baseline, we use
a fine-tuning method by removing the max pooling layer to
reduce information loss of the image in the early stage of CNN.
The accuracy results based on ResNet18, and Inception-v3 are
shown in table VI, and VII correspondingly.

It can be clearly seen that although the dataset becomes
larger, compared to the baseline, JLQ still maintains the ad-
vantage of accuracy in a very low-bit quantization case.

TABLE VI
RESNET18 TINY IMAGENET BENCHMARK (SIGN=B)

Method W A From scratch
Acc@1 Acc@5

Original 32 32 60.30% 82.10%

Method W A From pre-trained
Acc@1 Acc@5

Base-Q 2 8 37.40% 62.54%
JLQ-Q(s=2,i=-3) 2 8 57.32% 80.02%

Base-Q 3 8 48.60% 73.51%
JLQ-Q(s=2,i=-1) 3 8 58.36% 81.03%

TABLE VII
INCEPTION-V3 TINY IMAGENET BENCHMARK (SIGN=B)

Method W A From scratch
Acc@1 Acc@5

Original 32 32 68.09% 86.89%

Method W A From pre-trained
Acc@1 Acc@5

Base-Q 2 8 10.08% 28.81%
JLQ-Q(s=2,i=-3) 2 8 65.98% 85.28%

Base-Q 3 8 59.83% 81.57%
JLQ-Q(s=2,i=-1) 3 8 66.37% 85.43%

V. HARDWARE DESIGN

A. Design Of Processing Element

The processing element serves as the core of neural net-
work acceleration. Therefore, the optimization of a PE will
directly affect the efficiency of overall hardware design. A
general weight-stationary shifter-based PE design is illustrated
in Fig.1. The shift operation of the feature and the weight is
first conducted, then followed by a negative or positive value
selection and zero value selection.

Since our quantization method does not have the weight of
zero value, our PE removes a multiplexer in relation to zero
bit and can save one extra bit and one multiplexer compared
to traditional PE.

B. Design Of Shifter

Although JLQ extends the quantization range relative to
traditional logarithmic quantization, it does not mean that it
requires a larger shifter to achieve the corresponding quan-
tization. By modifying the barrel shifter, our PE achieves
the purpose of range extension without adding any hardware
burden. Taking the 3-bit jumping log quantization with step =
2 i = -1 as an example, the logarithmic quantization weights
in this case are as follows:(±2−1,±2−3,±2−5,±2−7). These

Fig. 1. Shifter-Based PE (Our PE is the solid part, and the dotted part is what
we remove from traditional shifter-based PE in our optimization)

Fig. 2. Shifter Design (Our shifter is the solid part and the red part. The
dotted part is what we remove from the traditional 3-bit barrel shifter in our
optimization, and the red part indicates the replacement of multiplexers with
AND gates. The first column of multiplexers can be directly neglected owing
to preshift operation).

TABLE VIII
RESOURCES CONSUMPTION IN SINGLE PE

PE type W LUTa A(µm2)b P(mw)b

multiplier-based PE 3 55 221.186 1.3200
shifter-based PE 3 46 209.720 1.1928

our PE 3 33 203.840 1.1879
multiplier-based PE 2 43 200.900 1.2047

shifter-based PE 2 43 202.664 1.1567
our PE 2 28 192.178 1.1516

aFor Xilinx ARTIX7 XC7A100T FPGA
bFor TSMC 28nm technology (ASIC)

weight values will correspond to the shift operations of ≫ 1,
≫ 3, ≫ 5, and ≫ 7 respectively. And the operations of
≫ 1, ≫ 3, ≫ 5, ≫ 7 only entail a 2-bit barrel shifter
shown in Fig.2 instead of a traditional 3-bit barrel shifter to
achieve. In this example shifter, the layer of multiplexers that
operate right shift one bit is removed. To further save hardware
resources, some multiplexers are substituted with AND gates
or are neglected directly. The first layer of AND gates and
multiplexers represents the ≫ 4 operation, and the second layer
represents the ≫ 2 operation. Besides, the input is preshifted 1
bit in advance. Consequently, ≫ 1, ≫ 3, ≫ 5, ≫ 7 operations
can be achieved using this shifter.

C. Implementation Results

In order to calculate area and power consumption, different
types of PE were synthesized using the Synopsys Design
Compiler for TSMC 28nm technology. And resource utilization
is tested on Xilinx ARTIX7 XC7A100T. The basic resulting
resources, area consumption, and power consumption for dif-
ferent PEs are given in Table VIII. And the normalized results
of resource utilization and area are shown in Fig.3.

It can be seen that our PE has advantages in hardware utiliza-
tion, area, and power consumption over both traditional shifter-
based PE and multiplier-based PE. Specifically, as shown in
Fig.3, our PE reduce the 35% and 28.6% LUT compared with
traditional shifter-based PE in 2-bit and 3-bit quantization case
respectively. As for area and power consumption, although the
differences are not as prominent as those in resource utilization,
our PE still performs better than traditional shifter-based PE.

(a) Normalized LUT Resources (b) Normalized Area

Fig. 3. Normalized Results

VI. CONCLUSION

In this paper, we propose a quantization method called
Jumping Logarithmic Quantization (JLQ), a weight de-zero
optimization, and a cost-efficient PE design. In the experiments
of CIFAR10, CIFAR100, and Tiny ImageNet, after integrating
JLQ and weight de-zero optimization, the accuracy of baseline
has been greatly improved in both 2-bit quantization and 3-
bit quantization. Implementation results show that our PE can
maximally reduce the area and power consumption up to 19.7%
and 17.2% compared with traditional multiplier-based PE under
similar accuracy conditions.

REFERENCES

[1] C. M. e. a. Gulshan V, Peng L, “Development and validation of a deep
learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs,” in JAMA-JOURNAL OF THE AMERICAN MEDICAL
ASSOCIATION, vol. 316, 2016, pp. 2402–2410. [Online]. Available:
https://doi.org/10.1001/jama.2016.17216

[2] N. R. e. a. Esteva A, Kuprel B, “Dermatologist-level classification of skin
cancer with deep neural networks,” in NATURE, vol. 542. ICLR 2017,
2017, pp. 115–+. [Online]. Available: https://doi.org/10.1038/nature21056

[3] Y. L. e. a. Chen MC, Ball RL, “Deep Learning to Classify Radiology
Free-Text Reports,” in RADIOLOGY, vol. 286, 2018, pp. 845–852.
[Online]. Available: https://doi.org/10.1148/radiol.2017171115

[4] I. S. A. Krizhevsky and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems 25, L. B. F. Pereira, C. J. C. Burges and E. C. A.
K. Q. Weinberger, Eds., Curran Associates. Inc., 2012, pp. 1097 –
1105. [Online]. Available: https://doi.org/10.1145/3065386

[5] Y. J. P. S. S. R. D. A. D. E. V. V. A. R. Christian Szegedy1,
Wei Liu2, “Going Deeper with Convolutions,” in IEEE Conference on
Computer Vision and Pattern Recognition, M. Razeghi, G. J. Brown,
J. S. Lewis, and G. Leo, Eds. IEEE, 2015, pp. 1 – 9. [Online].
Available: https://doi.org/10.1109/cvpr.2015.7298594

[6] S. R. K. He, X. Zhang and J. Sun, “Deep residual
learning for image recognition,” 2015. [Online]. Available:
https://doi.org/10.48550/arXiv.1512.03385

[7] E. Kalali and R. van Leuken, “A Power-Efficient Parameter
Quantization Technique for CNN Accelerators,” in 24TH
EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN
(DSD 2021), F. Leporati, S. Vitabile, and A. Skavhaug,
Eds. EUROMICRO, 2021, pp. 18–23. [Online]. Available:
https://doi.org/10.1109/DSD53832.2021.00012

[8] S. F. e. a. Elhoushi Mostafa, Chen Zihao, “DeepShift: Towards
Multiplication-Less Neural Networks,” in CVF CONFERENCE ON
COMPUTER VISION AND PATTERN RECOGITION WORKSHOPS
(CVPRW 2021). IEEE, 2021, pp. 2359–2368. [Online]. Available:
https://doi.org/10.1109/CVPRW53098.2021.00268

[9] Y. G. L. X. Y. C. Aojun Zhou, Anbang Yao, “Incremental Network
Quantization: Towards Lossless CNNs with Low-Precision Weights,” in
Computer Vision and Pattern Recognition. ICLR 2017, 2017. [Online].
Available: https://doi.org/10.48550/arXiv.1702.03044

[10] A. Krizhevsky, “Learning multiple layers of features from
tiny images,” in Technical report. University of Toronto,
Department of Computer Science, 2009. [Online]. Available:
https://doi.org/10.48550/arXiv.1409.1556

[11] I. L. Patryk Chrabaszcz and F. Hutter, “A downsampled variant of
imagenet as an alternative to the cifar datasets,” 2017. [Online].
Available: https://arxiv.org/abs/1707.08819

[12] B. M. Daisuke Miyashita, Edward H. Lee, “Convolutional Neural
Networks using Logarithmic Data Representation,” 2016. [Online].
Available: https://doi.org/10.48550/arXiv.1603.01025

[13] L. R. Denis A. Gudovskiy, “ShiftCNN: Generalized Low-Precision
Architecture for Inference of Convolutional Neural Networks,” 2017.
[Online]. Available: https://doi.org/10.48550/arXiv.1706.02393

[14] Y. W. Chen Yang, Bowen Li, “A Fully Quantitative Scheme With
Fine-grained Tuning Method For Lightweight CNN Acceleration,”
in 2019 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS). IEEE, 2017. [Online]. Available:
https://doi.org/10.1109/ICECS46596.2019.8964724

[15] L.-R. Z. Z. Z. Jiawei Xu, Yuxiang Huan, “A Low-Power
Arithmetic Element for Multi-Base Logarithmic Computation on
Deep Neural Networks,” in 2018 31st IEEE International System-
on-Chip Conference (SOCC). IEEE, 2018. [Online]. Available:
https://doi.org/10.1109/SOCC.2018.8618560

[16] D. B. R. M. C.-Z. X. Yiren Zhao, Xitong Gao, “Focused
Quantization for Sparse CNNs,” 2019. [Online]. Available:
https://doi.org/10.48550/arXiv.1903.03046

[17] C. F. B. Fong, J. Mu, and W. Z. 0012, “A cost-effective cnn
accelerator design with configurable pu on fpga,” in 2019 IEEE
Computer Society Annual Symposium on VLSI, ISVLSI 2019, Miami, FL,
USA, July 15-17, 2019. IEEE, 2019, pp. 31–36. [Online]. Available:
https://doi.org/10.1109/ISVLSI.2019.00015

[18] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional
neural networks using logarithmic data representation,” in
Neural and Evolutionary Computing, 2016. [Online]. Available:
https://doi.org/10.48550/arXiv.1603.01025

[19] R. S. Jie Li, “Jizhong dianxing juanji shenjing wangluo de quanzhong
fenxi yu yanjiu[Weight Analysis and Research of Several Typical
Convolutional Neural Networks],” in JOURNAL OF QINGDAO
UNIVERSITY (Natural Science Edition), 2019. [Online]. Available:
https://doi.org/10.3969/j.issn.1006-1037.2019.11.13

[20] L. L. Yu Liu, XueJiao Liu, “Optimize FPGA-Based Neural Network
Accelerator with Bit-Shift Quantization,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2020. [Online].
Available: https://doi.org/10.1109/ISCAS45731.2020.9180919

[21] H. N. Jingyong Cai, Masashi Takemoto, “A Deep Look into
Logarithmic Quantization of Model Parameters in Neural Networks,”
in Proceedings of the 10th International Conference on Advances in
Information Technology. IEEE, 2018, pp. 1–8. [Online]. Available:
https://doi.org/10.1145/3291280.3291800

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

56

Bibliography

[1] N. M. e. a. Yamashita. R, “Convolutional neural networks: An overview and
application in radiology,” Insights into Imaging, vol. 9, p. 611–629, 2018. [Online].
Available: https://doi.org/10.1007/s13244-018-0639-9

[2] “Fully connected layer.” [Online]. Available: https://www.fastaireference.com/
tabular-data/fully-connected-layer

[3] “Data science central.” [Online]. Available: https://www.datasciencecentral.com/
an-elegant-way-to-represent-forward-propagation-and-back/

[4] S. R. K. He, X. Zhang and J. Sun, “Deep residual learning for image recognition,”
2015. [Online]. Available: https://doi.org/10.48550/arXiv.1512.03385

[5] Y. J. e. a. Christian Szegedy1, Wei Liu2, “Going Deeper with Convolutions,” in
IEEE Conference on Computer Vision and Pattern Recognition, M. Razeghi, G. J.
Brown, J. S. Lewis, and G. Leo, Eds. IEEE, 2015, pp. 1 – 9. [Online]. Available:
https://doi.org/10.1109/cvpr.2015.7298594

[6] S. Marigi Rajanarayana, “Sascnn: A systolic array simulator for cnn,” 2019. [Online].
Available: http://resolver.tudelft.nl/uuid:5266a567-9864-4ffd-8e25-0d4d0e5f322a

[7] “Deep neural network energy estimation tool — tool for designing energy-efficient
deep neural networks.” [Online]. Available: https://energyestimation.mit.edu/

[8] P. C. S. e. a. Park Chan, Park Sungkyung, “Roofline-Model-Based Design Space
Exploration for Dataflow Techniques of CNN Accelerators,” vol. 8. IEEE, 2020, pp.
172 509–172 523. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.3025550

[9] Y. G. e. a. Aojun Zhou, Anbang Yao, “Incremental Network Quantization: Towards
Lossless CNNs with Low-Precision Weights,” in Computer Vision and Pattern
Recognition. ICLR 2017, 2017. [Online]. Available: https://doi.org/10.48550/arXiv.
1702.03044

[10] S. F. e. a. Elhoushi Mostafa, Chen Zihao, “DeepShift: Towards Multiplication-Less
Neural Networks,” in CVF CONFERENCE ON COMPUTER VISION AND PATTERN
RECOGITION WORKSHOPS (CVPRW 2021). IEEE, 2021, pp. 2359–2368. [Online].
Available: https://doi.org/10.1109/CVPRW53098.2021.00268

[11] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1.” CoRR, vol. abs/1602.02830, 2016.
[Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1602.html

[12] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks,” 2016, cite arxiv:1603.05279v1.pdf.
[Online]. Available: http://arxiv.org/abs/1603.05279

57

https://doi.org/10.1007/s13244-018-0639-9
https://www.fastaireference.com/tabular-data/fully-connected-layer
https://www.fastaireference.com/tabular-data/fully-connected-layer
https://www.datasciencecentral.com/an-elegant-way-to-represent-forward-propagation-and-back/
https://www.datasciencecentral.com/an-elegant-way-to-represent-forward-propagation-and-back/
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1109/cvpr.2015.7298594
http://resolver.tudelft.nl/uuid:5266a567-9864-4ffd-8e25-0d4d0e5f322a
https://energyestimation.mit.edu/
https://doi.org/10.1109/ACCESS.2020.3025550
https://doi.org/10.48550/arXiv.1702.03044
https://doi.org/10.48550/arXiv.1702.03044
https://doi.org/10.1109/CVPRW53098.2021.00268
http://dblp.uni-trier.de/db/journals/corr/corr1602.html
http://arxiv.org/abs/1603.05279

[13] Z. Liu, Z. Shen, M. Savvides, and K.-T. Cheng, “Reactnet: Towards precise
binary neural network with generalized activation functions.” in ECCV (14), ser.
Lecture Notes in Computer Science, A. Vedaldi, H. Bischof, T. Brox, and J.-M.
Frahm, Eds., vol. 12359. Springer, 2020, pp. 143–159. [Online]. Available:
http://dblp.uni-trier.de/db/conf/eccv/eccv2020-14.html

[14] I. S. A. Krizhevsky and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information Processing Systems 25, L. B.
F. Pereira, C. J. C. Burges and E. C. A. K. Q. Weinberger, Eds., Curran Associates.
Inc., 2012, pp. 1097 – 1105. [Online]. Available: https://doi.org/10.1145/3065386

[15] A. Z. Karen Simonyan, “Very Deep Convolutional Networks for Large-Scale Image
Recognition,” in Computer Vision and Pattern Recognition, 2014. [Online]. Available:
https://doi.org/10.48550/arXiv.1409.1556

[16] E. Kalali and R. van Leuken, “A Power-Efficient Parameter Quantization Technique for
CNN Accelerators,” in 24TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM
DESIGN (DSD 2021), F. Leporati, S. Vitabile, and A. Skavhaug, Eds. EUROMICRO,
2021, pp. 18–23. [Online]. Available: https://doi.org/10.1109/DSD53832.2021.00012

[17] M. Bonnaerens, “A pytorch implementation of ”incre- mental network quantization:
Towards lossless cnns with low-precision weights”.” [Online]. Available: https:
//github.com/Mxbonn/INQ-pytorch

[18] C. M. e. a. Gulshan V, Peng L, “Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in retinal fundus photographs,” in
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, vol. 316, 2016,
pp. 2402–2410. [Online]. Available: https://doi.org/10.1001/jama.2016.17216

[19] N. R. e. a. Esteva A, Kuprel B, “Dermatologist-level classification of skin cancer with
deep neural networks,” in NATURE, vol. 542. ICLR 2017, 2017, pp. 115–+. [Online].
Available: https://doi.org/10.1038/nature21056

[20] Y. L. e. a. Chen MC, Ball RL, “Deep Learning to Classify Radiology Free-Text
Reports,” in RADIOLOGY, vol. 286, 2018, pp. 845–852. [Online]. Available:
https://doi.org/10.1148/radiol.2017171115

[21] K. e. a. Chen, Yu-Hsin, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow
for Convolutional Neural Networks,” in RADIOLOGY, vol. 52. IEEE, 2016, pp.
127–138. [Online]. Available: https://doi.org/10.1109/JSSC.2016.2616357

[22] B. L. Cavigelli Lukas, “Origami: A 803-GOp/s/W Convolutional Network
Accelerator,” vol. 27. IEEE, 2017, pp. 2461–2475. [Online]. Available: https:
//doi.org/10.1109/TCSVT.2016.2592330

[23] D. A. e. a. Gokhale Vinayak, Jin Jonghoon, “A 240 G-ops/s Mobile Coprocessor for
Deep Neural Networks,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, vol. 27. IEEE, 2014, pp. 696–+. [Online].
Available: https://doi.org/10.1109/CVPRW.2014.106

58

http://dblp.uni-trier.de/db/conf/eccv/eccv2020-14.html
https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/DSD53832.2021.00012
https://github.com/Mxbonn/INQ-pytorch
https://github.com/Mxbonn/INQ-pytorch
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1038/nature21056
https://doi.org/10.1148/radiol.2017171115
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/TCSVT.2016.2592330
https://doi.org/10.1109/TCSVT.2016.2592330
https://doi.org/10.1109/CVPRW.2014.106

[24] C. T. e. a. Du Zidong, Fasthuber Robert, “ShiDianNao: Shifting Vision
Processing Closer to the Sensor.” IEEE, 2015, pp. 92–104. [Online]. Available:
https://doi.org/10.1145/2749469.2750389

[25] L. S. e. a. Liu Daofu, Chen Tianshi, “PuDianNao: A Polyvalent Machine
Learning Accelerator,” vol. 50. IEEE, 2015, pp. 369–381. [Online]. Available:
https://doi.org/10.1145/2694344.2694358

[26] E. J. S. e. a. Chen Yu-Hsin, Krishna Tushar, “Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks,” vol. 52. IEEE,
2017, pp. 127–138. [Online]. Available: https://doi.org/10.1109/JSSC.2016.2616357

[27] L. S. e. a. Chen Yunji, Luo Tao, “DaDianNao: A Machine-Learning Supercomputer.”
IEEE, 2014, pp. 609–622. [Online]. Available: https://doi.org/10.1109/MICRO.2014.
58

[28] S. N. e. a. Chen Tianshi, Du Zidong, “DianNao: A Small-Footprint High-Throughput
Accelerator for Ubiquitous Machine-Learning,” vol. 49. IEEE, 2014, pp. 269–283.
[Online]. Available: https://doi.org/10.1145/2541940.2541967

[29] B. M. Daisuke Miyashita, Edward H. Lee, “Convolutional Neural Networks using
Logarithmic Data Representation,” 2016. [Online]. Available: https://doi.org/10.48550/
arXiv.1603.01025

[30] L. R. Denis A. Gudovskiy, “ShiftCNN: Generalized Low-Precision Architecture
for Inference of Convolutional Neural Networks,” 2017. [Online]. Available:
https://doi.org/10.48550/arXiv.1706.02393

[31] Y. W. Chen Yang, Bowen Li, “A Fully Quantitative Scheme With Fine-grained
Tuning Method For Lightweight CNN Acceleration,” in 2019 26th IEEE International
Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2017. [Online].
Available: https://doi.org/10.1109/ICECS46596.2019.8964724

[32] L.-R. Z. e. a. Jiawei Xu, Yuxiang Huan, “A Low-Power Arithmetic Element for
Multi-Base Logarithmic Computation on Deep Neural Networks,” in 2018 31st IEEE
International System-on-Chip Conference (SOCC). IEEE, 2018. [Online]. Available:
https://doi.org/10.1109/SOCC.2018.8618560

[33] C. F. B. Fong, J. Mu, and W. Z. 0012, “A cost-effective cnn accelerator design with
configurable pu on fpga,” in 2019 IEEE Computer Society Annual Symposium on VLSI,
ISVLSI 2019, Miami, FL, USA, July 15-17, 2019. IEEE, 2019, pp. 31–36. [Online].
Available: https://doi.org/10.1109/ISVLSI.2019.00015

[34] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural networks using
logarithmic data representation,” in Neural and Evolutionary Computing, 2016.
[Online]. Available: https://doi.org/10.48550/arXiv.1603.01025

[35] L. Fengfu and L. Bin, “Ternary weight networks.” CoRR, vol. abs/1605.04711, 2016.
[Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1605.html

59

https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1145/2694344.2694358
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.48550/arXiv.1603.01025
https://doi.org/10.48550/arXiv.1603.01025
https://doi.org/10.48550/arXiv.1706.02393
https://doi.org/10.1109/ICECS46596.2019.8964724
https://doi.org/10.1109/SOCC.2018.8618560
https://doi.org/10.1109/ISVLSI.2019.00015
https://doi.org/10.48550/arXiv.1603.01025
http://dblp.uni-trier.de/db/journals/corr/corr1605.html

[36] L. L. Yu Liu, XueJiao Liu, “Optimize FPGA-Based Neural Network Accelerator
with Bit-Shift Quantization,” in 2020 IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 2020. [Online]. Available: https://doi.org/10.1109/
ISCAS45731.2020.9180919

[37] H. N. Jingyong Cai, Masashi Takemoto, “A Deep Look into Logarithmic Quantization
of Model Parameters in Neural Networks,” in Proceedings of the 10th International
Conference on Advances in Information Technology. IEEE, 2018, pp. 1–8. [Online].
Available: https://doi.org/10.1145/3291280.3291800

[38] R. S. Jie Li, “Jizhong dianxing juanji shenjing wangluo de quanzhong fenxi
yu yanjiu[Weight Analysis and Research of Several Typical Convolutional Neural
Networks],” in JOURNAL OF QINGDAO UNIVERSITY (Natural Science Edition),
2019. [Online]. Available: https://doi.org/10.3969/j.issn.1006-1037.2019.11.13

[39] A. Krizhevsky, “Learning multiple layers of features from tiny images,” in Technical
report. University of Toronto, Department of Computer Science, 2009. [Online].
Available: https://doi.org/10.48550/arXiv.1409.1556

[40] I. L. Patryk Chrabaszcz and F. Hutter, “A downsampled variant of imagenet
as an alternative to the cifar datasets,” 2017. [Online]. Available: https:
//arxiv.org/abs/1707.08819

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition. Ieee, 2009, pp. 248–255.

[42] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” 2015, cite arxiv:1512.00567. [Online]. Available:
http://arxiv.org/abs/1512.00567

60

https://doi.org/10.1109/ISCAS45731.2020.9180919
https://doi.org/10.1109/ISCAS45731.2020.9180919
https://doi.org/10.1145/3291280.3291800
https://doi.org/10.3969/j.issn.1006-1037.2019.11.13
https://doi.org/10.48550/arXiv.1409.1556
https://arxiv.org/abs/1707.08819
https://arxiv.org/abs/1707.08819
http://arxiv.org/abs/1512.00567

	List Of Acronyms
	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Problem Statements And Research Questions
	Thesis Contributions
	Thesis Outline

	Background
	Convolutional Neural Networks
	Convolutional Layers
	Pooling Layers
	Fully Connected Layers
	Forward Propagation
	Backward Propagation

	Classical CNN Architectures
	ResNet Architecture
	GoogleNet Architecture

	Expensive Data Movement
	Data Reuse In CNN Hardware Implementation
	Data Reuse
	Data Flow Techniques

	Related Work
	An Overview Of Different Log Quantization Methods
	State-of-art Logarithmic Quantization Methods
	Incremental Network Quantization (INQ)
	DeepShift

	Other Worth-mentioned Low-bit Quantization Methods
	Binary Net
	XNOR-Net
	ReActNet
	Ternary Weight Networks

	Jumping Logarithmic Quantization
	Assumption
	Quantization Error Estimation Model
	Weight De-zero Optimization
	Parameter Selection

	Benchmark Results
	Benchmark Statement
	CIFAR10 Dataset
	CIFAR100 Dataset
	Tiny ImageNet Dataset

	Hardware Design
	Systolic Array System Overview
	Design Of Processing Element
	Design Of Shifter
	Simulation Results
	PE Simulation
	CNN Accelerator Simulation

	Conclusions
	Thesis Conclusions
	Addressing Research Questions
	Future Work
	Future Work
	Paper Acceptance

	Bibliography

