
Delft Center for Systems and Control

Towards orientation estimation
using a loosely attached IMU
with a recurrent neural network

S.J. van den Heuvel

M
as

te
ro

fS
cie

nc
e

Th
es

is

Towards orientation estimation using a
loosely attached IMU with a recurrent

neural network

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

S.J. van den Heuvel

May 18, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Inertial measurement units (IMUs) are getting more and more incorporated into our lives
due to their improving accuracy, lower cost and smaller sizes. Applications for inertial-
based orientation estimation can already be found in the field of computer vision, aerospace
engineering, robotics, navigation, biomechanics, health monitoring and sports. In order to
enable non-intrusive, long-term tracking, this study addresses the problem of orientation
estimation using a loosely attached IMU. To this end, a hybrid model is proposed combining
classical orientation methods with machine learning (ML) techniques. Previous works have
focused only on parts of this task, which is why to date, there are little to no solutions
to this problem. In this study, a model is designed containing three steps that are shown
to be beneficial for reducing the estimation error. With the first step, the model becomes
robust to a misaligned mounting of the loosely attached IMU and it allows to identify which
part of the error can be contributed to the average misalignment. For the second step, two
algorithms are presented which make the model invariant to the absolute heading direction
of the recorded data. In the third step, the data is prepared such that the size of the search
space is reduced by a factor 2. Therefore, less data is required for learning the problem or,
with an equal amount of data, a bigger part of the process can be discovered. Besides these
steps, it is shown that the use of physics-based knowledge in the form of orientation estimates,
as opposed to raw inertial data as input features for the ML method, is beneficial.

Master of Science Thesis S.J. van den Heuvel

ii

S.J. van den Heuvel Master of Science Thesis

Table of Contents

Preface xi

Glossary xiii
List of Acronyms . xiii
List of Symbols . xiv

1 Introduction 1
1-1 Background . 1
1-2 Motivation . 2
1-3 Research goals . 3
1-4 Problem decomposition and contributions . 4
1-5 Organization and content . 5

2 Related Work 7
2-1 Related work on orientation estimation using IMUs and RNNs 7
2-2 Representing orientation . 9

2-2-1 Coordinate frames . 10
2-2-2 Parameterizing orientation . 10

2-3 Inertial-based orientation estimation . 11
2-3-1 Measurement models . 11
2-3-2 The dynamical model . 13
2-3-3 The extended Kalman filter . 14
2-3-4 The LSTM cell . 15

3 General subjects for orientation estimation using a RNN 17
3-1 Dimensions input data . 17
3-2 Overfitting . 18
3-3 Ambiguous data . 20
3-4 Discontinuous sequences . 20

Master of Science Thesis S.J. van den Heuvel

iv Table of Contents

4 Methods 23
4-1 The framework of the model . 23

4-1-1 The extended Kalman filter . 24
4-1-2 The recurrent neural network . 25

4-2 The proposed model . 26
4-3 Removing the average misalignment . 28

4-3-1 The baseline performance . 28
4-4 Removing the absolute heading direction dependency 32

4-4-1 Augmenting the dataset with different absolute heading directions 32
4-4-2 Removing the absolute heading dependency of the dataset 34

4-5 Removing ambiguity and discontinuities from unit quaternions 35
4-5-1 Ambiguity in data . 36
4-5-2 Sequential time-dependencies . 36

4-6 Using physics-based input features as opposed to inertial data 38
4-6-1 Feature scaling the inertial data . 38

5 Experiments 39
5-1 Hardware . 39
5-2 Simulated setup . 39
5-3 Experimental setups . 40
5-4 Datasets . 43

6 Results 45
6-1 Performance measures . 45
6-2 Results and discussion . 46

6-2-1 Removing ambiguity and discontinuities from unit quaternions 46
6-2-2 Removing the average misalignment . 47
6-2-3 Removing the absolute heading direction dependency 51
6-2-4 Using physics-based input features as opposed to inertial data 53
6-2-5 Results for data from experimental setup 3 and 4 54

7 Conclusions and future work 59
7-1 Conclusions . 59
7-2 Future work . 60

A Conversions 63
A-1 Converting unit quaternions to rotation matrices 63
A-2 Converting rotation matrices to unit quaternions 63
A-3 Converting Euler angles to rotation matrices . 64
A-4 Converting rotation matrices to Euler angles . 65

S.J. van den Heuvel Master of Science Thesis

Table of Contents v

B Quaternion algebra 67
B-1 Quaternion operations . 67
B-2 Quaternion properties . 67

C Algorithm: Estimating orientation difference between stationary frames using unit
quaternions 69
C-1 Theorem (Deriving the orientation difference between stationary orientation esti-

mations) . 69
C-2 Proof . 71

D Example: The redistribution of RMSEs parameterized by Euler angles 73

Bibliography 77

Master of Science Thesis S.J. van den Heuvel

vi Table of Contents

S.J. van den Heuvel Master of Science Thesis

List of Figures

1-1 A visualization of a possible decomposition of the error in the data. 4

2-1 The architecture of a single LSTM cell inspired by [1, 2, 3]. 15

3-1 The dimensions of the input tensor. 18
3-2 A plot showing an artificially generated learning curve that indicates overfitting. . 19
3-3 Data and performance of the RNN on ambiguous data. 20
3-4 Data and performance of the RNN on continuous data sequences. 21
3-5 Data and performance of the RNN on discontinuous data sequences. 22

4-1 Basic structure of the hybrid models. 24
4-2 The network’s architecture. 26
4-3 The activation function for cells in the neural network. 26
4-4 Four different orientations a phone can take given a fixed space, like a pocket. . 27
4-5 Basic structure of the hybrid model with preprocessing steps included. 29

5-1 The setup of the simulated experiment designed to show the benefits of prepro-
cessing step 3. 40

5-2 The setup of the first experiment designed to show the benefits of preprocessing
step 1. 41

5-3 The setup of experiment 2 allows mutual movement between the sensors. 41
5-4 The setup of experiment 3 allows mutual movement between the sensors. 42
5-5 The setup of experiment 4 involving a human and a loosely attached IMU. . . . 42

6-1 Basic structure of the hybrid model with preprocessing step 1 included. 47
6-2 The average performance of 20 trained networks plotted against the number of

data points. 48
6-3 The error decomposition of Testset 1A. 49

Master of Science Thesis S.J. van den Heuvel

viii List of Figures

6-4 The error decomposition for Testset 2A. 49
6-5 Basic structure of the hybrid model with preprocessing steps 1 and 3 included. . 50
6-6 The error decomposition of Testset 2B . 53
6-7 The error decomposition of Testset 3B. 55

S.J. van den Heuvel Master of Science Thesis

List of Tables

6-1 The error values before and after removing the misalignment. 49
6-2 The average error of 20 trained RNNs on Testset 1A and Testset 1B. 51
6-3 The average error of 20 trained RNNs on Testset 2A and Testset 2B. 52
6-4 The average error of 20 trained RNNs on Testset 2A and Testset 2B. 53
6-5 The average error of 20 trained RNNs on Testset 3A and Testset 3B. 54
6-6 The average error of 20 trained RNNs on Testset 4A and Testset 4B containing a

diverse set of motions. 55
6-7 The average error of 20 trained RNNs on Testset 4C and Testset 4D containing

data from simpler motions. 56

Master of Science Thesis S.J. van den Heuvel

x List of Tables

S.J. van den Heuvel Master of Science Thesis

Preface

To finish off my Systems and Control Master’s degree program, I wanted to gain some more
hands on experience in the field of ML. Soon, it became clear that little research was con-
ducted in combining the quickly advancing field of ML with traditional ways of orientation
estimation to overcome motion artifacts. My main research goal was born and I worked on the
subject for about a year. In retrospect, this study has made my view on ML methods more
informed. I am also surprised how big the field of orientation estimation actually is and what
is possible with inertial-based orientation estimation. To give an example of my unawareness
at the start of the project, I had never heard of the term unit quaternions. I really liked
the fact that real sensors were involved in this study, it makes the work more practical and
reveals issues that would occur in practice. In the end, this study has brought me several
lessons about how I respond to setbacks and breakthroughs. Also, I am happy to have taken
on this challenge. I have learned a lot about both the field of orientation estimation and the
field of recurrent neural networks (RNNs), for which I am thankful.

I would like to thank my supervisor Dr. Manon Kok whose field of expertise is sensor fusion
(SF) applied to orientation estimation. I must bring up the fact that she always has been
positive and had bright comments on my work. It sometimes even meant that I could regain
my motivation again which is crucial in my opinion. I could not have done this study in the
same amount of time if it were not for her.

I also would like to thank my fellow students, Frida, Evan, Thomas, Bart, Daan, Henri,
Janneke, Marijn, Niels and Jesse, with whom I met once every two weeks. It was nice to get
to know you and hear about your research. Thank you for the curious and critical questions
and views about my research. These helped me as well.

I am grateful for Cora, Robbert-Jan, Wiljo and Coen-Jan who have been proofreading my
work and provided me with lots of feedback.

I want to thank my supporting parents and girlfriend. Thank you for believing in me. This
pandemic period has been a tough time to graduate in and I am grateful that I could escape
from the daily routine of studying when I was with you.

I want to thank my roommates for the occasional discussions we have had about the study
and also the distraction from it during the evenings.

Delft, University of Technology S.J. van den Heuvel
May 18, 2021

Master of Science Thesis S.J. van den Heuvel

xii Preface

S.J. van den Heuvel Master of Science Thesis

Glossary

List of Acronyms

IMU inertial measurement unit
ML machine learning
RNN recurrent neural network
SF sensor fusion
EKF extended Kalman filter
GRU gated recurrent unit
LSTM long short-term memory
FC fully connected
3D three-dimensional
MSE mean squared error
RMSE root mean squared error
MEMS microelectromechanical system
RLG ring laser gyro
FOG fiber optic gyro
CPU central processing unit
GPU graphics processing unit

Master of Science Thesis S.J. van den Heuvel

xiv Glossary

List of Symbols

α Angle of rotation
β Dip angle
δ Euclidean distance
δ Sensor bias
ω Angular velocity
φ Roll angle
ψ Yaw angle
σ Sigmoid function
θ Pitch angle
E The earth frame
e Noise
fs Sampling frequency
g Gravitational acceleration
I The inertial frame
K Kalman gain
l Sequence length
N The navigation frame
n Extra absolute heading directions
q Unit quaternion
R Rotation matrix
S The sensor frame
t Notion of sequential data or time dependence
Ts Sampling period
exp Exponential
m Magnetic field
N Data samples

S.J. van den Heuvel Master of Science Thesis

Chapter 1

Introduction

This chapter starts by touching upon the background related to physics-based orientation es-
timation. Next, the relevance and motivation for the plan of approach of this study are ex-
plained. Then, the main research questions are presented, the contributions delivered by this
study and subsequently an overview of the report’s content is described.

1-1 Background

With the advent of the digital era, multiple systems have been developed that enable the
task of orientation estimation. This task can be an objective in itself, but it is also often
used to compute the velocity and the location of an object [4, 5]. Among the many fields of
application are the field of computer vision, aerospace engineering, robotics, biomechanics,
health monitoring and sports [5, 6, 7, 8, 9].

As illustrated by the many fields of application, orientation estimation is applied for various
purposes. In this study, it is assumed that orientation estimation will be applied to human
motion. The systems to do orientation estimation for this can be divided into three subdo-
mains: optical, mechanical and inertial, of which currently the optical and inertial systems
are dominantly used [9, 10]. Optical systems sometimes use markers on the subject to track
its orientation. An optical system often yields very high accuracy, however, it has its disad-
vantages. The tracking space is limited to what the optical systems can observe. Also, their
performance suffers from obstructions and different illuminations [8, 9, 11]. When doing orien-
tation estimation using inertial-based methods, the sensors are attached to the subject. They
do not depend on an external setup which allows the subject to move in an infrastructure-free
space. Inertial sensors are free from obstructions and different illuminations as they do not use
any kind of vision related technique. Still, they have their own challenges as well. Data from
an inertial measurement unit (IMU) is corrupted with noise and biases. Because the orienta-
tion estimation using IMUs is dependent on the integration of the imperfect angular velocity
data, the orientation estimates suffer from drift. To correct for this drift, the most commonly
occurring methods include measurements from an accelerometer and a magnetometer. The

Master of Science Thesis S.J. van den Heuvel

2 Introduction

latter suffers greatly from magnetic disturbances. As this study focuses on orientation esti-
mation of human motion it is convenient that the tracking space is not confined. Therefore,
using IMUs is the most practical system to do orientation estimation with for this study.

1-2 Motivation

Because of the fact that inertial-based systems suffer from noise and biases, numerous ways of
dealing with these deficiencies have already been developed. These methods and knowledge
are referred to as ‘classical methods’ and ‘physics-based knowledge’ in the rest of the report. In
this study, it is investigated which actions can be taken to improve the orientation estimation
of an object to which an IMU is loosely attached. The notion of ‘loosely’ here can be broadly
defined as not rigidly fixed or not tightly coupled, like a phone with an IMU in a pocket.
The problem with sensors which are not rigidly attached to the object they are supposed to
be tracking, is that they introduce so-called motion artifacts [9, 12, 13, 14]. Motion artifacts
are estimation errors between the sensor and the object which is being tracked, caused by
possibility of the sensor to move to a certain degree with respect to the object. They are
present when a sensor is attached to human tissue by a rubber band and the object that
should be tracked is the bone. These are called soft-tissue artifacts. Because it is unpractical
to obtain ground truth orientation data of a human bone, it has been decided to look into
another class of loosely attached connections that cause motion artifacts. This class comprises
the errors that are introduced when someone attaches a sensor to garments or connects it
via another non-solid material. Improving the performance of orientation estimation using
sensors that are attached as such, would allow users to take sensors with them in a more
comfortable way than strapping them down using a rubber band. For instance, it allows
the use of the IMU in a mobile phone and opens up possibilities to non-intrusive, long-term
tracking. The authors of [9] estimate the Euler angles of human joints by applying classical
inertial methods to loosely attached IMUs, using a kinematic chain starting from the hip to
the extremities of the body. They point out that the errors are the most severe at the upper
body limbs, reaching up to a mean error of ±60° and standard deviation of 120°. While this
is the case, there are little to no solutions found to this problem yet, motivating the goal of
this study. In this study, it is aimed to identify the original error for several experimental
setups containing loosely attached IMUs and to design steps that can be used to improve this
error. These setups are of growing complexity and as a final experiment, a human wearing a
loosely attached IMU is involved.

Over the past several decades, machine learning (ML) techniques have gained more and
more attention. Along with the advancements in computational power of hardware and
the availability of masses of data, ML techniques have already shown promising results in
multiple fields of research [15, 16, 17]. In the field of orientation estimation, several works
have demonstrated superior performance of ML techniques compared to classical methods
[1, 5, 18, 19]. ML methods exploit big amounts of data, rather than using physics-based
knowledge. By doing this, they are capable of finding complex patterns that are latent in the
data. To date, most studies applying ML techniques either use them to supplement classical
methods [20, 21, 22, 23] or replace classical methods all together [1, 5, 12, 13, 18, 19, 24].
The latter is referred to as end-to-end methods. To give an example, by employing such an
end-to-end ML method, a reduction of 69% of the error is reported using multiple loosely

S.J. van den Heuvel Master of Science Thesis

1-3 Research goals 3

attached IMUs on a human body [13]. The authors do, however, point out that their method
is highly dependent on whether data was already seen by the network during training or not.
In other words, an end-to-end method does not generalize very easily if it is not exposed to
sufficient representative data.

The authors of [15] endorse combining ML methods and physics-based methods, not only to
improve the performance, but also to make ML methods more transparent or interpretable.
In this study, that idea is adopted, as it is believed that using two sources of information can
potentially increase the performance compared to using merely one source. These sources are
physics-based knowledge represented by classical methods and knowledge that ML methods
can deduce from data. Another argument to incorporate classical methods is that, by doing
so, one is able to derive more compact representations of the information. Using orientation
estimates instead of raw inertial data reduces the size of the input space. This means that
less data would be required to obtain equal performance. This belief is supported by [17],
where the authors use so-called ‘preintegrated’ input features rather than raw inertial data,
and achieve better performance. Whilst several works focus on the problem of orientation
estimation using ML techniques, the problem of reducing errors due to motion artifacts for
a single loosely attached IMU remains largely unaddressed. Besides this, the possibility of
using both sources of information only adds up to the reasons why it is worth exploring this
area.

Finally, this study focusses on the orientation estimation using only one IMU. This is a big
advantage because it is possible to extend the problem to situations where multiple IMUs
are used [14]. This approach is in contrast to the approaches of [12, 13, 23, 25, 26], which
all employ models that are already dependent on multiple IMUs. Naturally, using multiple
IMUs can potentially yield an accumulative performance increase as pointed out by [13]. In
addition to this, this approach allows users to use only one wearable device containing an
IMU.

1-3 Research goals

The main goal of this study can be subdivided into three research goals that are central to
this study. First, an algorithm to determine the baseline performance is needed in order to be
able to evaluate any improvement on the performance. This way, it is possible to determine
the original error between input and target data before applying any designed steps. Second,
possible ways to improve this original error are explored. For this, it is assumed that adding
physics-based knowledge to ML methods is beneficial for the orientation estimation using a
loosely attached IMU. Lastly, a way of verifing this assumption is being sought. The research
goals are as follows:

1. How can the original error between input and target data best be determined?

2. What steps can be taken to improve the orientation estimation using a loosely attached
IMU by adding physics-based knowledge to ML methods?

3. Is this way of using physics-based knowledge actually beneficial for ML techniques in
the context of this problem?

Master of Science Thesis S.J. van den Heuvel

4 Introduction

1-4 Problem decomposition and contributions

Before going into more details on the contributions, a global overview of the problem is
discussed. All research conducted for this problem contributes to one main goal, illustrated
by the title of this work: Towards orientation estimation using a loosely attached IMU with
a recurrent neural network. For this, the difference between the orientation of the loosely
attached IMU and the target orientation should be reduced. Therefore, possible sources of
error are thought of beforehand. This subdivision and identification of the error is something
that was not encountered in existing literature and is unique to this study.

One of the sources of error can be a differently oriented attachment of the input sensor.
This error source is called the ‘average misalignment’ and has to do with the average relative
orientation between the input and target orientation. Another source of error is the mutual
movement between the input sensor and the object it is supposed to track. This is introduced
by loosely attaching the input sensor. This source is referred to as the ‘process’. It is expected
that a part of this process can be learned and another part that is too complex, unobservable
or just undiscovered and thus will not be learned. A third source of error is introduced by the
possibility that the subject can make identical movements in different directions resulting in
different data. Therefore, it could be that a certain movement is represented in the training
data, but that it is recorded facing a different direction. This movement then, is not recognized
and orientation estimates differ greatly from the target orientation as the network was not
trained for this data. This error source will be referred to as the ‘heading dependency’.
Because the process between two sensors facing a different heading direction can not be
estimated without addressing the heading dependency, the process and heading dependency
are considered a joint part of the error. The sources of error are compactly visualized in
Figure 1-1 where randomly distributed contributions to the error are used as an example.

...%
Average misalignment

...%
Process & Heading dependency

Figure 1-1: A visualization of a possible decomposition of the error in the data.

In order to lower the error between input and target orientation, in this study, three steps have
been designed to preprocess the physics-based input features. By removing a misalignment
between input IMU and object, the first step makes sure that this misalignment can not affect
the baseline performance. This answers to the first research goal. In addition to that, this step
ensures that the network is robust to such misalignments, which contributes to the second
research goal. With the second step, the heading dependency is removed from the data. This
also contributes to the second research goal. For this, two different algorithms are designed
that fulfill this task. The third step, by which an attempt is made to reduce the search
space of the input, also answers to the second research goal. There are a lot of movements
a loosely attached IMU can make in many different situations. Since a trained network is
only able to perform well if the training data represents the test data, it is advantageous if
the process can be described by the least amount of data possible. This step processes the
data in order to reduce the amount needed to achieve a certain degree of performance. This
is done by removing ambiguity and discontinuities from the data. Besides these steps, this

S.J. van den Heuvel Master of Science Thesis

1-5 Organization and content 5

work also presents a short evaluation of the belief that using both physics-based methods and
ML techniques is beneficial.

1-5 Organization and content

In this section an outline of the content of the report is given.

Chapter 2 gives a broad summary about orientation estimation using classical methods. The
notion of coordinate frames is discussed, as well as different parameterizations of orientation.
As a requirement and support for the use of the extended Kalman filter (EKF), the different
type of sensors that are used are addressed together with their measurement models. Next,
the dynamical model and fusion algorithm, the EKF, are presented. After this summary, the
counterpart of this study is shortly addressed, namely, the recurrent neural network (RNN).
Inspired by previous research, details on long short-term memory (LSTM) cells are explained.

Chapter 3 is focused on providing general information on the topic of using RNNs for orien-
tation estimation and on problems that can occur with it. It is an informative chapter, which
is used mainly to motivate the third preprocessing step.

Chapter 4 discusses the ideas to answer the research questions. It starts by discussing the
framework of the hybrid model and the details on the EKF and RNN. Then this model is
extended with three preprocessing steps. The motivation for these steps is given and the
implementation of the preprocessing steps is explained. The first preprocessing step looks
into a manner to improve and make the baseline performance more consistent, regardless of
the mounting orientation of the input sensor. Also, this step contributes to a network that is
robust to a misaligned attachment. For the second preprocessing step, various ways to cope
with differently faced directions of recorded data are explored. This resulted in two powerful
algorithms that either reduce the required amount of data or can increase the available amount
of data artificially. After this, the third preprocessing step is discussed. This step focuses on
properties of the orientation parameterization that pose problems for the RNN. It aims to
remove ambiguity and discontinuities from the data. The last topic this chapter discusses is
a validation of whether the use of physics-based methods is beneficial for the problem.

In Chapter 5, the hardware which is used to train the network, is introduced. To reveal the
working and contribution of the steps, five different test setups have been designed. They
are described in this chapter and the reasons for their designs are explained. There is one
simulated setup and four experimental setups. The latter use real sensor data. After this,
the datasets recorded to show the working of the designed preprocessing steps, are discussed.

The contributions are validated by applying them to data from the different setups. The
results obtained from this are discussed in Chapter 6. A discussion is added to every result
that is presented.

In Chapter 7 a conclusion is drawn based on the results. Added to this is a section that
describes subjects that could be improved and areas that were unexplored and left to future
work.

Master of Science Thesis S.J. van den Heuvel

6 Introduction

S.J. van den Heuvel Master of Science Thesis

Chapter 2

Related Work

This chapter starts off with giving an idea of what research has already been conducted on
the subject of orientation estimation with ML techniques and physics-based knowledge. Sub-
sequently, the reader is given a more in-depth understanding of the subject of classical orien-
tation estimation. The measurement models, the dynamical model and the fusion algorithm
are discussed. After that, more on the RNN part of this study is explained. All information
in this chapter is based on existing literature.

2-1 Related work on orientation estimation using IMUs and RNNs

Supported by [15], it was argued in Section 1-2 that the use of physics-based input features
would be beneficial for the task of orientation estimation using ML techniques and loosely
attached IMUs. To further elaborate on this task, one IMU is loosely attached and another
IMU is tightly attached to the object of which the orientation is desired. In order to derive
the orientation of this object, called the target orientation, the inertial measurements of
the tightly attached IMU are fused. A classical method that uses physics-based knowledge is
employed to do this. For the input of the ML method, the inertial measurements of the loosely
attached IMU are also fused and orientation estimates are computed. This way, physics-based
knowledge is used to obtain the input features. These input orientation estimates are the most
closely related to the target orientation estimates and, therefore, adequate physics-based input
features. Using orientation estimates as inputs to ML techniques is supported by [17] and
incorporates physics-based knowledge into a model. Another study that is known to use
orientation estimates as input features is [23]. The authors of this work compare two ML
techniques to estimate full-body poses using a reduced set (5) of IMUs.

Classical inertial-based orientation estimation relies on the integration of the angular velocity
measurements and a correction by accelerometer and magnetometer measurements. Several
commonly used fusion algorithms that fuse the data from the gyroscope, accelerometer and
magnetometer have been developed and are listed below [27, 28, 29, 30]:

Master of Science Thesis S.J. van den Heuvel

8 Related Work

• A proportional integral control-based Mahony algorithm which is a nonlinear comple-
mentary filter.

• A gradient descent-based filter by Madgwick.

• An EKF and variants of it.

According to [26, 27], the EKF is the most well-known and widely adopted approach to deal
with noisy measurements. It handles Gaussian noise only, by estimating a mean, being the
orientation representation in this case, and a covariance matrix. Since the noise of IMU
measurements are shown by [31] to be Gaussian distributed, this algorithm fits the problem
well. In addition to the aforementioned studies, [4, 12, 20] are also known to use the EKF
to do the orientation estimation. For these reasons, the EKF is used to do inertial-based
orientation estimation in this study.

As mentioned in Section 1-2, the problems caused by a loosely attached IMU concern so-
called motion artifacts. These are considered to be highly nonlinear, complex and unknown
phenomena and because of this, it is not trivial to capture their behavior with hand-crafted
models based on physics. Therefore, instead of addressing knowledge from physics, this study
turns towards data-driven ML techniques. In the field of computer vision and language pro-
cessing, ML methods have shown to outperform classical methods [32]. Also, in a number
of recent studies in the field of orientation estimation they have shown superior performance
with respect to classical physics-based methods [1, 5, 18, 19, 24]. The authors have replaced
the classical orientation estimation methods by ML methods all together for different pur-
poses and in different ways. For example, they use different network configurations, different
methods or different inputs. The use of ML techniques to supplement classical orientation es-
timation methods is also becoming more common. The authors of [20] apply a ML technique
to dynamically estimate the noise parameters of a Kalman filter. This way, they manage
to enhance IMU-based dead-reckoning methods for wheeled vehicles. Another work that ad-
dresses the subject of wheeled vehicles is [21]. The authors employ ML methods in order
to robustly detect situations where there is zero velocity or no lateral slip. Sometimes ML
techniques are used for denoising gyroscope measurements like in [22]. Then, there are works
that try to estimate full-body poses using multiple IMUs and ML techniques [12, 13]. The
latter two aim to use loosely attached IMUs like in this study. The field of ML techniques
has grown too large to fully cover and in order to narrow down the options, related research
serves as a source of inspiration to choices in this study. The majority of orientation esti-
mation related studies addressing ML techniques, use the RNN. This is a neural network
designed specifically to detect patterns in time. The reason for this choice lies in the fact that
the problem of orientation estimation is regarded to be of time dependent nature [16]. In this
study the RNN will be employed as well.

RNNs distinguish themselves from normal neural networks by a special building block. There
are several variants of this block that can be used, each with different properties. They are
listed below:

• The traditional RNN cell

• The gated recurrent unit (GRU)

S.J. van den Heuvel Master of Science Thesis

2-2 Representing orientation 9

• The LSTM cell

As stated in [1, 33], traditional RNN cells suffer from vanishing or exploding gradients during
training when used to detect long-term dependencies. This will prevent the network from
learning. As a result, the LSTM cell was designed which solves this problem [16, 34, 35]. The
LSTM cell contains a memory unit in which information from the inputs can be stored. Access
to the memory is controlled by an input and an output gate. In addition, it contains a forget
gate which can discard the stored information. Later, another cell, the GRU was designed
[36]. This cell contains a reset gate and an update gate. The reset gate controls which inputs
are blocked and the update gate regulates which data is put through. Having fewer gates,
this cell also contains fewer weights which need to be optimized. Although, this results in a
better computationally efficient cell, it comes at a the expense of flexibility compared to the
LSTM cell. Because, in advance, the required degree of flexibility of the model to learn the
process is unknown, the LSTM cell is preferred over the GRU as it offers more flexibility. This
choice is supported by numerous orientation estimation related works [1, 12, 14, 18, 19, 25].
Only [24] is known to use GRUs instead of LSTM cells for an orientation estimation related
problem.
While only a few studies have been concerned with orientation estimation using loosely at-
tached IMUs [12, 13], none of them have looked into the subject of subdividing and identifying
different error sources. Knowing the sources of the error between input and output, allows
the designing of models which are crafted for the specific type of error. Specifying the error
sources like in Section 1-4 is new to the area of orientation estimation using loosely attached
IMUs with a RNN.
Motivated by the presented related works, this study will use orientation estimates of the
loosely attached IMU as input features to incorporated physics-based knowledge. The EKF
will be used as the classical fusion algorithm to compute the input and target orientation
estimates. Lastly, a LSTM-based RNN will be employed as the ML method to estimate
the process between the input and target orientation estimates. The topic of orientation
representation, classical inertial-based orientation estimation methods and the LSTM cell
will be discussed more elaborately in the next sections.

2-2 Representing orientation

An orientation representation is a mathematical description that describes how a coordinate
frame attached to an object or sensor is oriented with respect to another coordinate frame. If
a frame of reference is denoted by N and the object or sensor frame is denoted by S, then the
orientation representation of the sensor with respect to the reference frame is denoted by (·)NS .
There are multiple ways to represent this orientation. Each of these representations have their
own specific characteristics. This section elaborates more on two orientation representations
that are used in this study, namely, unit quaternions and Euler angles. A third way of
representing orientation is by using orientation matrices. These serve as an intermediate step
to convert a unit quaternion representation to an Euler angles representation. Details on this
can be found in Appendix A.
Before going into more detail on these orientation representations, a small discussion on
multiple coordinate frames commonly seen in the field of orientation estimation is described.

Master of Science Thesis S.J. van den Heuvel

10 Related Work

2-2-1 Coordinate frames

Throughout this study, the navigation frame (N) and the sensor frame (S) will be used most.
Below is a summary of what these frames entail [31]:

• The navigation frame: The frame which the IMU navigates in. It is assumed for this
study that the sensor does not travel long distances. Therefore, this frame is considered
to be stationary with respect to the frame which is aligned with the earth (E).

• The sensor frame: The frame which is aligned with the IMU. The gyroscope expresses
its measurements in this frame with respect to any stationary frame. The accelerometer
and magnetometer express their measurements in this frame with respect to N .

2-2-2 Parameterizing orientation

In this section, the orientation parameterizations used in this study are discussed.
The unit quaternion is denoted by q and represents 3D orientations using four components.
The 2-norm of the components of a unit quaternion is always one,

||q||2 =
√
q2

0 + q2
1 + q2

2 + q2
3 = 1, (2-1)

hence the notion ‘unit’ quaternion [37]. The orientation representation is non-singular but
representation q is equal to −q so it is not perfectly unique.
The Euler angles parameterization describes orientation using rotations around three orthog-
onal axes. The Euler angles describe by how much an object is rotated around these axes.
These rotations should be performed in a specific order because by rotating an object around
one axis, the orientation of the other two axes changes [38]. There are multiple orders of ro-
tation resulting in the fact that a set of Euler angles can represent different orientations when
one does not know the order and axes of rotation. The parameterization also suffers from
singularities, called gimbal lock. More on this subject will be discussed in Section 4-3-1. The
advantage of this orientation parameterization is that it is intuitive for orientations defined
in the 3D space. The three angles are usually called roll (φ) for the angle of rotation around
the x-axis, pitch (θ) for the angle of rotation around the y-axis and yaw (ψ) for the angle
of rotation around the z-axis. Those names and symbols will also be used throughout this
report.
Unit quaternions will be the orientation parameterization of main interest. This is due to the
fact that unit quaternions do not suffer from singularities. Also, with regard to orientation
estimation using IMU data, they posses some nice properties, namely the associated differ-
ential equations can be analytically integrated. Last, concerning the ML part, it is beneficial
that the components of the unit quaternions are bounded between -1 and 1 due to (2-1). This
will be further explained in Section 4-6-1.
Sometimes, however, it has turned out to be necessary to perform some operations on the ori-
entation representations using Euler angles. Therefore, the conversion from unit quaternions
to Euler angles and back is required. To do this, the unit quaternions and Euler angles are
expressed in terms of a rotation matrix (R) first. Details on these conversions can be found
in Appendix A.

S.J. van den Heuvel Master of Science Thesis

2-3 Inertial-based orientation estimation 11

2-3 Inertial-based orientation estimation

The inertial data needed to derive orientation estimates for this study is obtained using a
so-called microelectromechanical system (MEMS). It relies on the change in Coriolis force
when the sensor is rotated. From this, the angular velocity is determined. Other examples of
sensors that can be used to measure inertial data are a 3-axis gimbal, a ring laser gyro (RLG)
and a fiber optic gyro (FOG). The former determines the angular velocity by measuring the
rotation difference of one gimbal with respect to another. The latter two use the Sagnac
effect. By inferring the phase shift between two oppositely directed laser beams, the angular
velocity is determined [32]. MEMS are addressed in this study because they are widely used,
cheap and small. Most likely because of these reasons, they can be found in a wide range
of consumer products nowadays. A disadvantage that is brought along with these sensors is
that their accuracy can suffer from noise and biases as already referred to in Section 1-1. The
IMUs used for this study contain a magnetometer.
If one were to have a perfect initial orientation estimate and perfect angular velocity mea-
surements, it is possible to determine perfect orientation estimates by integrating the angular
velocity measurements. However, due to noise, the orientation estimates will drift over time
and the error between the estimate and the ground truth will grow. To correct for this drift,
accelerometer and magnetometer measurements can be used. By fusing the data of these
three sensors, an optimal orientation estimate can be provided [19, 27]. The rest of this
section describes the assumed measurement models, the model used to compute orientation
estimates from these measurements and details on the EKF, the fusion algorithm.

2-3-1 Measurement models

In order to get an insight in possible measurement errors, this section gives a description of
the models that are assumed to be underlying to the measurements.
As [31] points out, the IMU measurements are corrupted by a Gaussian distributed noise (e)
which can be of non-zero mean, a bias (δ).
The angular velocity of an IMU with respect to the inertial frame (I), which is stationary with
the universe, expressed in S is denoted by ωSIS . Note that it is assumed here that the rotation
of the earth is negligible and the sensor does not travel over long distances. Therefore, the
rotation of N with respect to I can be assumed to be constant. Vectors expressed in I can
be transformed to N by RNEREI . To incorporate information about the sensor bias and
measurement noise, the gyroscope measurements are modeled by

yω,t = ωSIS,t + δSω,t + eSω,t = ωSNS,t + δSω,t + eSω,t, (2-2)

where

eSω,t ∼ N (0,Σω).

In line with the assumption made in [30], it is assumed here that the noise over the three axes
is uncorrelated. Therefore, the covariance matrix of the noise here is

Σω =

σ2
ω,x 0 0
0 σ2

ω,y 0
0 0 σ2

ω,z

 . (2-3)

Master of Science Thesis S.J. van den Heuvel

12 Related Work

Measurements obtained from the accelerometer are expressed in S with respect to N . The
acceleration that will be measured is a composition of the gravitational acceleration (g) and
the linear acceleration which the IMU experiences. The orientation of the gravitational force
is known in N and dominant under most circumstances. Therefore, the acceleration measure-
ments contain information about the inclination of the sensor. In addition to that, because
the gravitational force is dominant, it is common practice to assume a zero linear acceleration.
The same holds for the earth’s centrifugal acceleration and the Coriolis acceleration. Both
are assumed to be neglectable with respect to the gravitational force. Like the gyroscope
measurements, the accelerometer measurements are corrupted by Gaussian noise and a bias.
The following model,

ya,t = −RSNt gN + δSa,t + eSa,t, (2-4)

where

eSa ∼ N (0,Σa),

is used [31].
Again, in line with the assumption made in [30], it is assumed that the noise over the three
axes is uncorrelated. Therefore, the covariance matrix of the noise here is

Σa =

σ2
a,x 0 0
0 σ2

a,y 0
0 0 σ2

a,z

 . (2-5)

The magnetometer part of an IMU is used to measure magnetic field, for example that of the
earth. When assumed that the sensor does not travel long distances as mentioned before, it
is possible to infer the inclination of the sensor, as the direction and magnitude of the earth’s
magnetic field (m) is known, location dependent and characterized by the so-called dip angle
(β). This angle has a value of 67.1° for the city of Delft in the Netherlands. As this study was
executed in Delft, this value is used. However, the earth’s magnetic field strength is relatively
small and the magnetometer measurements are subject to many other magnetic fields nearby
caused by electromagnetic devices or magnetic material. The magnetometer will be used
supplement the orientation estimation of the sensor with estimates of the heading direction
with respect to the magnetic north only. The model that is used for the measurements is

ym,t = RSNt mN + em,t, (2-6)

where

em,t ∼ N (0,Σm) and mN =

cos(β)
0

sin(β)

 .
Again, it is assumed that the noise over the three axes is uncorrelated. Therefore, the covari-
ance matrix of the noise here is [30]

Σm =

σ2
m,x 0 0
0 σ2

m,y 0
0 0 σ2

m,z

 . (2-7)

S.J. van den Heuvel Master of Science Thesis

2-3 Inertial-based orientation estimation 13

2-3-2 The dynamical model

To do orientation estimation, a dynamical model is used. In this section, first, the state of
the dynamical model is discussed. Then, the equations of the dynamical model are discussed.
Two commonly used state vectors for estimating orientation are

Xt =
[
qNSt
ωSNS, t

]
and Xt =

[
qNSt

]
. (2-8)

They distinguish themselves by using the measurements of the gyroscope as part of the state
or as direct inputs to the model.
For the state vector containing the gyroscope measurements, an extra motion model describing
its behaviour is required. This can be advantageous as one can include knowledge about the
motion of the sensor. In this study it is not clear what movement the sensor most likely will
perform. Therefore, the best estimate of this motion model would be a random walk model

ωSNS, t+1 = ωSNS, t + wω, t, (2-9)

where

wω, t ∼ N (0,Σw, ω).

A disadvantage is that the effect of newly obtained angular measurements will have a delayed
effect of one sample period on the orientation estimate. The second state vector does not suffer
from this delay and also the process noise has an intuitive meaning, namely, the measurement
noise of the gyroscope [31]. For this reason the angular velocity measurements will be used
as direct inputs to the state for this study. Using the second state vector, the model for the
orientation estimation parameterized by unit quaternions is constructed.
The gyroscope measures the angular velocity of S, which it is attached to with respect to a
stationary frame, N , and expresses these measurements in S. The gyroscope measurements
are thereby related to the derivative of the orientation of S. To infer the actual orientation
of S with respect to N , the measurements should be integrated. Expressing this orientation
derivative using unit quaternions, the differential equation

d

dt
qNSt = qNSt � 1

2 ω̄
S
NS, t, (2-10)

where (̄·) indicates that this value remains constant over the sample interval, is derived. The
operator � is the quaternion multiplication as described in Appendix B. For a derivation of
(2-10), the reader is referred to [31, 39]. Integrating this differential equation yields,

qNSt+1 = qNSt � exp
(
T

2 ω
S
NS, t

)
, (2-11)

where

exp
(
T

2 ω
S
NS, t

)
=

 cos(||T2 ω
S
NS, t||2)

T
2 ω

S
NS, t

||T2 ω
S
NS, t||2

sin(||T2 ω
S
NS, t||2)

 .
This assumption only approximates the reality when the sample frequency of the sensor is
high enough. The orientation of S with respect to N is now described by qNSt+1.

Master of Science Thesis S.J. van den Heuvel

14 Related Work

2-3-3 The extended Kalman filter

The EKF is based on two main steps, named the ‘time update’ and the ‘measurement update’.
Sometimes these steps are also referred to as the ‘process step’ and the ‘correction step’. In the
first step, the angular velocity measurements are used, pretending that they and the dynamical
model are perfect. In the second step, the accelerometer and magnetometer measurements
are used to correct the errors due to incorrect measurements and model errors. In both
steps, the covariance matrix is updated according to the (un)certainty of the measurement.
In the second step, the Kalman gain (K) acts as a weight and is constructed using this
covariance matrix. Lastly, it is possible that the estimate is not normalized after the second
step. Therefore, a third step is included to normalize the orientation estimate again. An
overview of the applied algorithm is shown in Algorithm 1.

Algorithm 1: Orientation estimation using an EKF with quaternion states
Inputs: IMU data {yω,t, ya,t and ym,t}Nt=1 and covariance matrices Σω, Σa and Σm.
Outputs: An estimate of the orientation, q̂NSt , and its covariance Pt for t = 1, . . .N.

1. Calibrate gyroscope, accelerometer and magnetometer and initialize state.

2. For t = 2, . . . N do

(a) Time update

q̂NSt+1 = q̂NSt � exp
(
T
2 ω

S
NS, t

)
Pt+1 = FtPtFt

T +GtQG
T
t

where Q = Σω, Ft =
(
exp

(
T
2 yω,t

))R
and Gt = −T

2

(
q̂NSt

)L ∂exp(eω,t)
∂eω,t

.

(b) Measurement update

q̂NSt+1 = q̂NSt +Kt(yt − ht(q̂NSt))
Pt+1 = Pt −Kt(HtPtH

T
t +R)Kt

where Kt = PtH
T
t (HtPtH

T
t +R)−1, yt =

[
ya,t
ym,t

]
, ht =

[
−R̂SNt gN

R̂SNt mN

]

Ht =

−∂R̂SN

t

∂qNS
t

∣∣∣∣∣
qNS

t =q̂NS
t−1

gN

∂R̂SN
t

∂qNS
t

∣∣∣∣∣
qNS

t =q̂NS
t−1

mN

, R =
[
Σa 0
0 Σm

]
, gN =

 0
0

−9.81

 and mN =

cos(β)
0

sin(β)

.

(c) Renormalize quaternion representation

q̂NSnormalized,t = q̂NS
t

||q̂NS
t ||2

S.J. van den Heuvel Master of Science Thesis

2-3 Inertial-based orientation estimation 15

2-3-4 The LSTM cell

This section provides more detailed information about the architecture of the LSTM cell. In
Figure 2-1 its architecture is displayed. The three gates are highlighted, as well as the weights
of the cell. The yellow boxes indicate activation functions, where σ represents the sigmoid
function. This function takes on values between 0 and 1 and is used for the three gates in
order to pass information on (‘1’) or block information (‘0’).

Tanh σσσ

+x

x

x

Tanh

Σ Σ Σ Σ

W3,i W3,h W4,i W4,hW2,i W2,hW1,i W1,h

Bias
Inputs (t)

Weights

Forget gate Input gate Output gate

Hidden state (t)

Cell state (t)

Output (t)

Hidden state (t-1)

fg (t) ig (t) ii (t) og (t)

Cell state (t-1)

Figure 2-1: The architecture of a single LSTM cell inspired by [1, 2, 3].

For clarity, four signals have been declared in Figure 2-1:

• A forget gate signal, fg(t).

• An input gate signal, ig(t).

• A signal carrying the information of the input, ii(t).

• An output gate signal, og(t).

Their relations, together with the output signal are

Master of Science Thesis S.J. van den Heuvel

16 Related Work

fg(t) = σ

(
~W1,i

[
Bias

Inputs (t)

]
+W1,h Hidden state(t−1)

)
,

ig(t) = σ

(
~W2,i

[
Bias

Inputs (t)

]
+W2,h Hidden state(t−1)

)
,

ii(t) = tanh
(
~W3,i

[
Bias

Inputs (t)

]
+W3,h Hidden state(t−1)

)
,

og(t) = σ

(
~W4,i

[
Bias

Inputs (t)

]
+W4,h Hidden state(t−1)

)
and

Output(t) = og(t) tanh
(
fg(t) Cell state(t−1) + ig(t) ii(t)

)
. (2-12)

The amount of weights that needs to optimized for every cell is

#Weights = (#Inputs + Bias)× 4 + 4×Hidden state. (2-13)

S.J. van den Heuvel Master of Science Thesis

Chapter 3

General subjects for orientation
estimation using a RNN

Before discussing any possibilities to improve orientation estimation related problems with the
use of a RNN, a small study to general subjects and capabilities of RNNs is conducted and
presented here. These subjects are the data format of the input, implications of using LSTM
cells and requirements of input and output data. The last subject is subdivided into problems
of ambiguous data and problems of discontinuities in sequential sequences.

3-1 Dimensions input data

For those who are not familiar with the use of RNNs, this section explains a bit more about the
naming, regarding parts of the input dataset. The input dataset for a normal neural network
usually is a matrix containing the amount of data samples (N) and the amount of features.
In this study, the data is sequential data which will be denoted by a subscript t. Using RNNs
requires sequential sequences of limited length to be fed into them. This leads to the input
dataset being a tensor, with the extra dimension being the length of a sequence (l). The total
number of sequential sequences is still described by N. The shape of the input dataset can
thus be described by [Amount of sequences (N) × Sequence length (l) × Features]. An image
of this input tensor is displayed in Figure 3-1. As it is intended to use unit quaternions as
input features, the features are already denoted by q.

Master of Science Thesis S.J. van den Heuvel

18 General subjects for orientation estimation using a RNN

Samples
(N)

Quaternion
components

(4)

Sequence length (l)

qA qB qC qD qE qF qG qH qI qJ qKqA qB qC qD qE qF qG qH qI qJ

qKqB qC qD qE qF qG qH qI qJ qL

qK qMqC qD qE qF qG qH qI qJ qL

Figure 3-1: The dimensions of the input tensor.

3-2 Overfitting

LSTM layers are powerful in the context of storing information for an arbitrary amount of
time steps and access stored information at any time step [33]. However, they have their
drawbacks too. Besides that they are computationally less efficient than GRU and RNN
layers, as explained in Section 2-1, another disadvantage of LSTM layers lies in the fact that
they are prone to overfitting [19]. A network that is overfitting achieves very high performance
on its training data but generalizes very badly on unseen data. To handle this problem, a
first step is to be able to detect overfitting of the network. Next, it is necessary to know how
to counteract overfitting. These two subjects will be discussed below.

The difference in performance between training data and validation data will be used as an
indication of overfitting. A requirement to the validation data is that it has not been seen
during the training phase. The learning curve of a network can give an indication of the
problem of overfitting. For every epoch during training, it shows the performance of both the
training data and the validation data. If the performance of the validation data decreases
while the performance of the training data gets better, the network is overfitting. In Figure 3-
2 an example of such a learning curve is given. Note that the data needed to generate this
figure was self made-up.

S.J. van den Heuvel Master of Science Thesis

3-2 Overfitting 19

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

0.2

0.4

0.6

0.8

1.0

1.2
M

ea
n

sq
ua

re
d

er
ro

r
Training error
Validation error
Overfitting

Figure 3-2: A plot showing an artificially generated learning curve that indicates overfitting.

If overfitting is detected there are several measures that can be taken to prevent this. Among
those are [40, 41]:

1. Applying dropout. For RNNs, two types of dropout methods are available [41]: A
dropout method which sets random outputs of cells to 0 and a dropout method which
sets random input weights to 0. The latter goes by the name ‘DropConnect’. The goal
of this technique is that every cell learns independent from the others. Both types
are considered very effective but have their disadvantages too. The first method of
dropout is suspected to reduce the capability of detecting long-term dependencies [40].
DropConnect solves this, however, it is not compatible yet with the optimized cuDNN
implementation. This optimized cuDNN implementation accelerates the training pro-
cess by addressing an available graphics processing unit (GPU) alongside the central
processing unit (CPU) [42]. Not being able to use this will cause an increase in the time
it takes to train the network. As training the network already takes quite some time,
this is highly undesirable.

2. Increasing the amount of representative data.

3. Applying batch normalization layers which normalize their input data.

4. Applying weight regularization by penalizing the 2-norm of weights of the network.

5. Early stopping of the training process.

6. Decreasing the amount of parameters in the model by decreasing the network’s size.
This makes the model less flexible and thus also less prone to overfitting.

In this study the learning curve of a trained network without regularization methods will
be examined first. Then, only if overfitting was clearly indicated by the learning curve,
regularization methods will be applied. First, the first dropout method like in [19] will be
applied. The amount of required regularization will be determined empirically. If the network
will be still overfitting then, it will be tried to increase the amount of data.

Master of Science Thesis S.J. van den Heuvel

20 General subjects for orientation estimation using a RNN

3-3 Ambiguous data

One of the things to take into account when using neural networks is that the presented data
should have a unique input-output relation. This means that only one output corresponds to
a given input. To illustrate this requirement, a test is performed on a simple RNN. The loss
function that will be used to train the network is the mean squared error (MSE). For this
test, an input and target output is designed and the neural network should learn the relation
between those. The input is linear data ranging from 0 to 1. To form the output, this input
is multiplied by 100 and mapped by a cosine function to the domain −π to π, meaning that
multiple inputs correspond to the same output hence the input-output relation is not unique.
In Figure 3-3 a plot is shown of the input and output data and the squared error between the
target and predicted output data. In this case, the MSE is minimal if the network just forces
its output to zero, resulting in a network that has not learned anything. This phenomenon
occurs for periodic data, however, it could just as easily happen to other datasets.

0 25 50 75 100 125 150 175 200
time [s]

2.5

0.0

2.5

Am
pl

itu
de Input data

0 25 50 75 100 125 150 175 200
time [s]

2.5

0.0

2.5

Am
pl

itu
de Target output data

Predicted data

0 25 50 75 100 125 150 175 200
time [s]

0.0

0.5

1.0

Am
pl

itu
de MSE

Figure 3-3: Data and performance of the RNN on ambiguous data.

As mentioned, unit quaternions will be used as in- and output data for this study. These unit
quaternions offer multiple advantages over other orientation representations, however, they
are not entirely unique. As discussed in Section 2-2-2, every unit quaternion q represents the
same orientation as −q. For this cause, special care has to be taken using the unit quaternions
as in- and output data.

3-4 Discontinuous sequences

If a trained network is examined carefully, one realizes that in the end it is a huge mathematical
expression composed of continuous functions that depend on the input. This implies that the
output can only be discontinuous if the input is discontinuous. Hence, a certain level of
continuity must be imposed on sequential data. To reveal this, a simple RNN is employed
which is supposed to learn a linear input-output relation. The used loss function for training

S.J. van den Heuvel Master of Science Thesis

3-4 Discontinuous sequences 21

is the MSE again. The input and output data’s range is between -1 and 1. When exceeding
this range, the data is mapped to the other end of the range, meaning that a value of 1.2
becomes -0.8. There is an offset between the input and output that the network should learn.
The first test, shown in Figure 3-4, addresses the situation where there is no discontinuity
in the data. The second test, in Figure 3-5, shows the performance of the network when a
discontinuity exists in the input data sequences. For the first test, the network will most likely
learn a bias to map the input to the output. In contrast, the second requires a ‘discontinuous’
jump to be learned, which is a different operation than simply adding a constant to the input.
The network will try to use its so-called flexibility to minimize the total error during the
learning phase, however, the result will always be an approximation. This becomes clear in
this example, as the error is much higher for the second test. For this reason it is important
to take measures to prevent such situations and to use a model that has the flexibility that
meets the input-output data relation.

0 20 40 60 80 100 120 140
time [s]

2.5

0.0

2.5

Am
pl

itu
de Input data

0 20 40 60 80 100 120 140
time [s]

2.5

0.0

2.5

Am
pl

itu
de Target output data

Predicted data

0 20 40 60 80 100 120 140
time [s]

0

5

Am
pl

itu
de

1e 6
MSE

Figure 3-4: Data and performance of the RNN on continuous data sequences.

Master of Science Thesis S.J. van den Heuvel

22 General subjects for orientation estimation using a RNN

0 25 50 75 100 125 150 175 200
time [s]

2.5

0.0

2.5

Am
pl

itu
de Input data

0 25 50 75 100 125 150 175 200
time [s]

2.5

0.0

2.5

Am
pl

itu
de Target output data

Predicted data

0 25 50 75 100 125 150 175 200
time [s]

0

1

Am
pl

itu
de MSE

Figure 3-5: Data and performance of the RNN on discontinuous data sequences.

S.J. van den Heuvel Master of Science Thesis

Chapter 4

Methods

This chapter starts with describing the framework of the model and details on the EKF and
the RNN which are part of this model. Next, the reader is given an overview of the complete
proposed model. To do this, three preprocessing steps are introduced that are ought to constitute
beneficial steps in the estimation of orientation using a loosely attached IMU with a RNN and
physics-based knowledge. After that, a more in-depth explanation and the implementation of
the preprocessing steps that this study has led to, are given. The first step which is described
removes the average misalignment between the data of two sensors and makes the network
more robust. Then, the second step is discussed. This step deals with irrelevant information
in data about the absolute heading and how either the dataset is extended or how the search
space is reduced. The third step that is explained, removes ambiguity and discontinuities from
the data. This contributes to a reduced need for data samples. The last section of this chapter
gives attention to the decision of using physics-based methods. It presents a way of verifying
whether this decision was beneficial in the context of this problem.

4-1 The framework of the model

This section shortly discusses the main options for combining the EKF and the RNN. The
input of the model is the inertial data that is coming from the loosely attached IMU denoted
by ySloose

(·),t . If this data is fed to the EKF, orientation estimates of the loosely attached IMU
become available and are denoted by q̂NSloose

EKF,t . From this sequential array of unit quaternions,
a matrix of unit quaternions is formed as described in Section 3-1, containing sequential
sequences of unit quaternions denoted by q̂NSloose

EKF,t,l. In this study, this operation is applied to
form the input tensor for the RNN and will not be explicitly mentioned but will be indicated
by the additional subscript l. To denote IMU data of the tightly attached IMU, the notation
y
Stight

(·),t is used. The target output of the model is the orientation of the tightly attached IMU
denoted by qNStight

Target,t. The two parts will be implemented in a cascade fashion where the output
of the first part will be the input to the second part. This hybrid model, as it is called, can
be constructed in two basic ways displayed in Figure 4-1.

Master of Science Thesis S.J. van den Heuvel

24 Methods

IMU EKF RNN

INPUT

ySloose
ω,t

ySloose
a,t

ySloose
m,t

q̂NSloose
EKF,t,l q̂

NStight

Target,t

OUTPUT

IMU RNN EKF

INPUT

ySloose
ω,t,l

ySloose
a,t,l

ySloose
m,t,l

ŷ
Stight

ω,t

ŷ
Stight

a,t

ŷ
Stight

m,t

q̂
NStight

Target,t

OUTPUT

Figure 4-1: Basic structure of the hybrid models.

Because of the properties that the EKF possesses with regard to dealing with Gaussian
noise, it is a logical choice to stick to the first model. This choice is supported by the fact
that unit quaternions represent the information about orientation much more compact than
inertial data. Therefore, the search space of the RNN in the second model is much bigger
and expected is that more data would be required to fully learn the problem. Lastly, as
explained in Section 1-2 and supported by the authors of [17], it is aimed to use physics-based
knowledge. The first model allows to exploit the physics-based knowledge using the EKF
better because signals from the IMU could later still be supplemented to the input features
of the RNN anyway. For these reasons, the first model is implemented in this study.

4-1-1 The extended Kalman filter

For the implementation of the EKF, Algorithm 1 is adopted. As mentioned in Section 2-3-1,
the inertial measurements can contain a bias. For the gyroscope, this bias is slowly time
varying as [43] mentions and can form a serious problem if not taken into account. In order
to account for these time varying biases, a random walk model like

δSω,t+1 = δSω,t + eSδω ,t, (4-1)

where

eSδω ,t ∼ N (0,Σδω),

can be assumed as explained in [31]. However, a simpler method for measurements that are
of short duration is to properly calibrate the gyroscope before the recording and assume it
to be constant during the recording [44]. For coping with biases in gyroscope measurements,
the latter method will be applied in this study.
To cope with possible biases mentioned in the accelerometer measurement model (2-4), the
average norm of measurements from a stationary sensor is verified. If it equals the gravity

S.J. van den Heuvel Master of Science Thesis

4-1 The framework of the model 25

vector, it is assumed that the factory calibration is adequate for this study [44]. This turned
out to be the case.

Also mentioned in Section 2-3-1, the magnetometer measurements are subject to other mag-
netic fields nearby. As a result, disturbed magnetic environments easily corrupt the estimated
heading direction of the sensor. Therefore, a simple fault detection algorithm is employed
as a measure against this. Before the recording, the magnetometer is calibrated such that
the norm of the measured field is scaled to 1. If then the norm of recorded measurement
data exceeds a certain lower or upper bound, the measurement is rejected. These bounds are
empirically determined and set to 0.9 and 1.1.

4-1-2 The recurrent neural network

There are several parameters that have been decided on regarding the configuration of the
RNN displayed in Figure 4-1. The configuration is among others defined by the amount of
layers in the network, the amount of cells in every layer, the activation function of the cells
and the sequence length (l) of the input. These are multiple variables offering many possible
configurations. Optimizing them for the problem of this study requires a lot of time. As
optimizing this is not the goal of the study and time is limited, it is decided to save time on
this part. Therefore, to determine suitable parameters for the configuration, common sense
and information is drawn from successful related studies.

With regard to the number of layers in the network, a distinction is made between LSTM layers
for detecting time dependencies and fully connected (FC) layers. The latter are implemented
to shape the input of the network to a usable input for the LSTM layers and to shape the
output of the LSTM layers to the output of the network. The studies [1, 17, 18, 19, 32, 45]
all use two layers to detect time dependencies. Part of the explanation of why usually not
more layers are used is that it does not improve the performance and the training becomes
more computationally demanding. This amount of LSTM layers is adopted, as well as two
FC layers before and after the LSTM layers.

The six layers are numbered in order to address the amount of cells used in the layers. The
number of cells in the first, second and fifth layer is often around a few dozen. The last layer
contains as many cells as outputs of the network, four in this case. The number of cells in the
first layer is preferably more than the number of inputs or otherwise information may be lost.
This assumes that all inputs contain useful information. To prevent loosing information in
the other layers as well, the number of cells should be higher than or equal to the number of
variables by which the target information can be described. As there is generally no insight
in this information it is better to use too many than too few cells. If cells are redundant, the
neural network is capable of learning this too by setting its input weights to 0. The amount
of cells is set to 40 for the first, second and fifth layer. For the number of cells in the third
and fourth layer, the LSTM layers, inspiration is drawn from [17, 18, 19, 32, 45]. They use
LSTM layers with an amount of cells ranging from 96 up to 258. As for the FC layers, it is
true that it is better to use too many than too few cells and by that line of thought, each
LSTM layer will contain 200 cells for this study.

It is chosen to use the ‘tanh’ function as activation function for the cells. Due to their
nonlinearity they allow the network to learn nonlinear processes. It is a function that is
centered around zero and which is smooth. Therefore, its derivative, which is used during

Master of Science Thesis S.J. van den Heuvel

26 Methods

Input features
FC

layer
(1)

4 FC
layer

(2)

40 LSTM
layer

(3)

40 LSTM
layer

(4)

200 FC
layer

(5)

200 FC
layer

(6)

40 4
Output

Figure 4-2: The network’s architecture.

training, is continuous. An advantage of using the tanh function is that it is compatible with
the ‘cuDNN implementation’ [42]. Figure 4-3a and Figure 4-3b show plots of the function
and its derivative. To obtain the data for these plot, Python was used.

4 2 0 2 4
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ta
nh

(x
)

tanh(x)

(a) The tanh function.

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

ta
nh

(x
)

x

tanh(x)
x

(b) The derivative of the tanh function.

Figure 4-3: The activation function for cells in the neural network.

The amount of samples in sequential sequences that the networks uses to learn and do esti-
mation is another variable. It is sometimes also called the window size. In this study it is
denoted by l and set to 11 samples. This value is inspired by [32], which points out that a
sequence length of that value performs well for orientation inference. This sequence length
value is also used by the authors of [18], who try to predict orientation estimates as well.

4-2 The proposed model

Before explaining the exact working of the three steps of preprocessing the data, the reasons
why and the way they fit into the hybrid model are presented. This way, the reader is provided
with an overview of the whole model in advance.

It is very probable that during usage of the model, the loosely attached IMU is mounted with
a different orientation than when the network was trained. Figure 4-4 shows an example of a
phone that contains an IMU. In this example the phone is used only to illustrate the problem
and any other device with an IMU in it or just an IMU itself could be used.

S.J. van den Heuvel Master of Science Thesis

4-2 The proposed model 27

Figure 4-4: Four different orientations a phone can take given a fixed space, like a pocket.

This phone can take already four different orientations without even using a differently shaped
space. If the space where the IMU is attached to is not fixed, the sensor could be mounted in
any orientation. If the network is presented with differently oriented data than it was trained
for, its estimation performance will deteriorate. It is also highly undesirable that the network
has to be trained every time it is used. Therefore, the aim is to make the network robust to
such misaligned attachments. This is the first step of preprocessing the data. It entails the
removal of the average misalignment between the orientation of the loosely attached IMU and
the orientation of the target or tightly attached IMU, from the orientation estimates of the
loosely attached IMU, q̂NSloose

EKF,t,l. This average misalignment is denoted by qStightSloose

Average misalignment

and is constant. The resulting orientation estimates are denoted by q̂NSloose
Aligned,t,l. This step

answers to the first research question, as it allows to determine the error before removing
the average misalignment and afterwards. This way, the error due to a misaligned mounting
of the IMU can be isolated. In addition, training the network with data of which the av-
erage misalignment has been removed, results in a model that is robust to such misaligned
mountings.

The second step of preprocessing the data is inspired by [19]. The authors of this paper try
to estimate the attitude of an IMU using its corresponding inertial data and ML techniques.
One of the things they do to improve the performance is to add data to the dataset which
makes it invariant to the recorded attitude. They do this by rotating the recorded data by
random rotations and augment their dataset with this new data. Something similar can be
applied to the problem of this study, however, care should be taken. The movement and
thus the orientation of the loosely attached IMU with respect to the tightly attached IMU
can be affected by gravity. For example, the movement of falling downwards is different to
a movement of ‘falling’ upwards which is actually impossible in itself. So, making the data
invariant to all orientations, like they do in [19], would remove relevant information. One can
imagine though, that in the case of the problem of this study, performing the same movement
when facing north, east, south or west should not result in different data describing that
movement, irrespective of what kind of movement that might be. The direction that a sensor
is facing is referred to as the ‘absolute heading’. Inspired by this idea, two different methods
are designed to achieve absolute heading independence. One which is closely related to the

Master of Science Thesis S.J. van den Heuvel

28 Methods

method that is applied in [19] and a second one which was thought of during the study. They
are listed below:

1. Remove dependency of data on absolute heading by augmenting the dataset.

2. Remove dependency of data on absolute heading by removing absolute heading infor-
mation.

The heading dependency gets removed from the aligned orientation estimates q̂NSloose
Aligned,t,l and

the resulting orientation estimates are denoted by q̂NSloose
ψinvariant,t,l

. This step also answers to the
second research question. By making the orientation estimates independent from the heading
direction, it does not matter in which heading direction training data or test data is recorded.

The third step removes possible ambiguity and discontinuities from the data. This is in
response to the problems with data that is fed to a RNN, demonstrated in Section 3-3 and
Section 3-4. The resulting orientation estimates are referred to as q̂NSloose

Unique,t,l. This step is
designed to contribute to answering the second research question as it lowers the amount of
data needed to learn the process or improves the performance.

The resulting hybrid model is displayed in Figure 4-5. Note that for removing the heading
dependency, two methods are designed. The first method directly estimates the heading
direction and in that case the orientation estimates of the RNN are the estimates of the target
orientation q̂NStight

Target,t. The second requires to restore the heading direction of the orientation
estimates of the RNN, this method is indicated by the dashed arrows. The orientation
estimates of the tightly attached IMU made by the RNN for this method are denoted by
q̂
NStight

ψinvariant,t
. The three steps of preprocessing are indicated in the model.

4-3 Removing the average misalignment

In this section the details of the first preprocessing step are explained. This step will address
the part of the error that is described by the ’average misalignment’ in Chapter 1. It serves
two purposes.

1. It can be used to identify the partition of the error between input and output data
caused only by the differently oriented attachment. The remaining part of the error is
likely caused by the process and the heading dependency of the data.

2. It is used to make the model robust to misaligned attachments.

4-3-1 The baseline performance

To be able to compare the performance of the different preprocessing steps and the RNN,
there is a need for a reference or a baseline performance of the data. This baseline performance
should therefore not be determined using any ML method. In the paragraph that follows,
the most basic algorithm is described. Next, a more sophisticated algorithm to set a baseline
performance is presented. The latter applies the first preprocessing step and removes the
average misalignment from the data.

S.J. van den Heuvel Master of Science Thesis

4-3 Removing the average misalignment 29

IMU EKF RNN

R
em

ov
e
m
isa

lig
nm

en
t

R
em

ov
e
ab

so
lu
te

he
ad

in
g
de

pe
nd

en
cy

R
em

ov
e
am

bi
gu

ity
an

d
di
sc
on

tin
ui
ty

R
es
to
re

ab
so
lu
te

he
ad

in
g
if
ne

ed
ed

INPUT

ySloose
ω,t

ySloose
a,t

ySloose
m,t

q̂NSloose
EKF,t,l

q̂NSloose
Aligned,t,l q̂NSloose

ψinvariant,t,l

q̂NSloose
Unique,t,l q̂

NStight

ψinvariant,t

q̂
NStight

Target,t

OUTPUT

Preprocessing steps

Figure 4-5: Basic structure of the hybrid model with preprocessing steps included.

The simplest way to obtain a baseline performance is constructed by taking the last input
samples of all sequences and compare these to the target samples. Describing the input by
q̂NSloose
EKF,t,l and the output by q̂NStight

Target,t, the last samples of the input sequences, q̂NSloose
EKF,t,11, are

compared to the target samples, q̂NStight

Target,t. The last subscript of the input data, denotes the
sample in the sequence. Details on how two orientation representations are compared will be
discussed in Section 6-1.

The performance resulting from this will most likely not form the best baseline performance.
In addition, its performance is highly dependent on how big the average misalignment between
input and target sensor is. Due to the uncertainty as to what the error of this simple way
represents, not much information about the error caused by the loosely attachedness can be
obtained. Because the interest of this study also lies in the mutual movement between the
two sensors, a more advanced algorithm is designed to set a baseline performance.

If the average misalignment is removed from the data, the baseline performance would in
most cases be much better. It would also give a much better indication of what percentage
of the initial error is caused by the loosely attachedness. To this end, a more advanced way
of determining a baseline performance is described here. The average orientation difference
between input and target data is computed and removed from the input data. The aligned
input data, q̂NSloose

Aligned,t,l, and the target data q̂NStight

Target,t are then compared in the same way as
described above. Doing this, the orientation of the input data lies closer to the orientation of
the target data and the error between them is reduced. The increase between the two baseline
performances can be attributed to the removal of the average misalignment as outlined in
Figure 1-1 in Section 1-4. To even further increase the performance, the error caused by the

Master of Science Thesis S.J. van den Heuvel

30 Methods

process and heading dependency should be addressed.

In order to implement the more sophisticated baseline performance, first the orientation
difference between all samples,

q̂
StightSloose

t = (q̂N1Stight

EKF,t)c � q̂N2Sloose
EKF,t,11, (4-2)

is computed. The quaternion conjugate, recognizable by the subscript (·)c, is explained in
Appendix B. The quaternion multiplication is only valid if the navigation frame N1 of the
target data aligns with the navigation frame N2 of the input data. It is unlikely to happen,
but differences between the two frames can occur. They can be caused by biases, faulty
calibrations or externally caused differences in the magnetic field measured by the sensors.
In this study it is expected that this will not pose a problem as identical IMUs are used and
the same calibration procedures are applied to them. Also, the sensors are close to each other
and no interfering material is used during testing. To verify this, the orientation difference
between the two navigation frames is computed for data of experimental setup 1 described
in Section 5-3. There is no difference between them if this orientation difference (q̂N1N2) is
equal to

q̂N1N2 =
[
±1 0 0 0

]T
. (4-3)

Since the navigation frames are considered stationary, the algorithm presented in Appendix
C can be applied [39]. The orientation difference between the two frames is

q̂N1N2 =
[
−1.000 0.00219 0.00122 0.0143

]T
≈
[
±1 0 0 0

]T
. (4-4)

Using Appendix A to convert this orientation difference to Euler angles for a more intuitive
parameterization yields a orientation difference of φ̂N1N2 = −0.00435 [rad], θ̂N1N2 = −0.00251
[rad] and ψ̂N1N2 = −0.0285 [rad]. There is hardly any difference in orientation between the
frames and they are assumed to be aligned during this study: N1 = N2 = N . Note, the unit
quaternion in (4-4) is not normalized. This is caused by rounding errors.

Unfortunately, the algorithm in Appendix C can not be applied to compute the average ori-
entation difference between the two frames Sloose and Stight because the orientation difference
between those frames does not remain constant [39]. There is also no straightforward method
to compute a physically meaningful average of a sequence of unit quaternions which com-
plicates things. To solve this problem, the conversion to Euler angles is used (Appendix A)
which range from −π to π and for θ, the pitch angle, range from −π

2 to π
2 . If the rotation

around an axis exceeds this range the angle gets ‘wrapped’ and information about how many
rotations have been made gets lost. This could ruin the computation of the mean of the
sequence of Euler angles representations. To retrieve this information, it is assumed that the
rotation speed of the performed motions is not higher than π [rad] in one sampling period,
Ts = 1

100[Hz] = 0.01[s]. That assumption makes it possible to unwrap the Euler angles and
to compute their mean. This mean is wrapped to the usual range of Euler angles again if
needed and an average orientation difference expressed using Euler angles is obtained. This
average Euler angles parameterization is converted back to a unit quaternion parameteriza-
tion and forms the constant average misalignment denoted by q̂StightSloose

Average misalignment. Algorithm
2 describes the computation of this average misalignment step-by-step. The sequential se-
quences of orientation estimates computed with the EKF from the loosely attached IMU are

S.J. van den Heuvel Master of Science Thesis

4-3 Removing the average misalignment 31

rotated by this average misalignment and form the previously mentioned q̂NSloose
Aligned,t,l. The last

operation is compactly displayed by

q̂NSloose
Aligned,t,l = q̂NSloose

EKF,t,l � q̂
SlooseStight

Average misalignment. (4-5)

Note that subsequent aligned orientation estimates of the loosely attached IMU (q̂NSloose
Aligned,t,l)

still express the movements of the loosely attached IMU. Therefore, the notation (·)NSloose is
still used here, however, the average orientation of these estimates is aligned with the average
orientation of the orientation estimates of the tightly attached IMU. This might be confusing,
as the quaternion multiplication seems invalid. Therefore, in this paragraph more detailed
information on this is given.

Algorithm 2: Removing the average misalignment between orientation estimates of a
loosely attached IMU and orientation estimates of the target IMU
Inputs: A tensor of sequential sequences of orientation estimates constructed by the
EKF, q̂NSloose

EKF,t,l and q̂
NStight

EKF,t .
Outputs: A tensor of aligned sequential sequences of orientation estimates, q̂NSloose

Aligned,t,l.

1. Obtain the average misalignment between orientation estimates of the loosely attached
IMU and the target IMU, parameterized with Euler angles.

(a) Derive the orientation difference between all input and corresponding target
orientation estimates using the unit quaternion parameterization.

q̂
StightSloose

t = (q̂NStight

EKF,t)c � qNSloose
EKF,t,11.

(b) Convert quaternion differences to the Euler angles parameterization.
(c) Unwrap all sequential Euler angles.
(d) Compute the mean of the Euler angles.
(e) Wrap the mean Euler angles within range.

2. Remove the average misalignment from the orientation estimates of the loosely
attached IMU.

(a) Convert the mean Euler angles to the average orientation difference expressed as
unit quaternion.

q̂
StightSloose

Average misalignment.

(b) Remove the average misalignment from the orientation estimates of the loosely
attached IMU.

q̂NSloose
Aligned,t,l = q̂NSloose

EKF,t,l � (q̂StightSloose

Average misalignment)c.

At inference there is no access to all data from the loosely attached IMU beforehand or during
the test. This problem can be solved by post-processing the data, making this algorithm a

Master of Science Thesis S.J. van den Heuvel

32 Methods

non-realtime algorithm. In addition, one can not be sure that the test subject will make
movements distributed in the same way as the movements in the target dataset used for
training were. This means that the performance of this algorithm can only be achieved in
theory. In practice, its performance will be lower and probably the best way to determine
the constant misalignment for realtime usage is to perform a calibration procedure for this.
One could think of a certain stationary stance like suggested in [6] or performing several
movements. Because the goal is to use this algorithm as an indication of the theoretical
achievable performance without using ML techniques, there will not be any further elaboration
on a possible calibration procedure to implement this algorithm for obtaining a realtime
baseline performance.

Measures to cope with gimbal lock

As one may have noticed, the conversion to Euler angles can cause problems. Like discussed
in Section 2-2, the Euler angles representation suffers from gimbal lock. This occurs when
θ, the pitch angle, approaches −π [rad] or π [rad]. In that case, two axes align and the
orientation representation loses one degree of freedom, meaning that it does not contain
enough information to infer the roll and yaw angle from it. Therefore, a solution is thought
of. Since it is assumed that the orientation estimation will be applied for human motion,
as outlined in Section 1-1, a simple solution to prevent gimbal lock is to position the sensor
in such a way that gimbal lock will not occur due to the constraints of the body. However,
this solution does not always work. For example, the arm can move in any direction and
it is possible to get near a pitch angle of −π [rad] or π [rad] then. To cope with this, the
assumption made in Section 4-3-1 is reused: the motions for this study will not rotate faster
than π

0.01 [rads]. Assuming this, the roll and yaw angle can be derived using an interpolation
of the angles before and after the gimbal lock.

4-4 Removing the absolute heading direction dependency

This section explains more about the second preprocessing step that is designed to improve
the orientation estimation using a loosely attached IMU, ML methods and physics-based
knowledge. This step resolves the problem associated with the dependence of the direction
in which any movement is recorded. As mentioned in Section 4-2, two methods have been
designed to remove this dependency. They are discussed in Section 4-4-1 and Section 4-4-2.

4-4-1 Augmenting the dataset with different absolute heading directions

The goal of this method is to add data to the training dataset in order to include the same
amount of information about the mutual movement between the loosely attached and the
target IMU for all possible absolute heading directions. This is achieved by rotating all
orientation estimates of the loosely attached IMU and their corresponding orientation estimate
of the tightly attached IMU by a given rotation around the z-axis of the navigation frame.
The augmented dataset containing input data for the RNN will be denoted by q̂NSloose

ψinvariant,t,l

and the augmented dataset containing the target data will be denoted by q̂NStight

ψinvariant,t
. This

S.J. van den Heuvel Master of Science Thesis

4-4 Removing the absolute heading direction dependency 33

way, at inference, movements facing any direction will be recognized by the RNN. For this,
the rotation around the z-axis should be discretized. The smaller the discretization step, the
more information is included. However, this also will cause a bigger growth of the dataset,
due to which one might face the computational limitations of the used hardware. The extra
demand for computational resources and time is a disadvantage of this method and has led
to the decision to add only data that is rotated by the average absolute heading of the
target data. This way the size of the training dataset only doubles but one does get a fair
comparison between two datasets that are recorded facing a different absolute heading. A
compact representation of the method of augmenting the training dataset in order to add
information is presented in Algorithm 3.

Algorithm 3: Augment the dataset with data facing different absolute heading directions
Inputs: A dataset containing sequential sequences of aligned orientation estimates of
the loosely attached IMU, q̂NSloose

Aligned,t,l, and a dataset containing sequential orientation
estimates of the tightly attached IMU, q̂NStight

EKF,t .
Outputs: An extended dataset containing sequential sequences of orientation estimates
of the loosely attached IMU, q̂NSloose

ψinvariant,t,l
, and a dataset containing sequential

orientation estimates of the tightly attached IMU, q̂NStight

ψinvariant,t
, both facing all added

heading directions.

1. Declare the absolute heading angles (n) in the navigation frame that should be
included.

ψNrotated nN
Extra absolute heading.

2. Convert the Euler angles representations of the extra absolute heading to unit
quaternions, φNrotated nN

Extra absolute heading and θNrotated nN
Extra absolute heading are 0.

qNrotated nN
Extra absolute heading.

3. Extend the recorded dataset with the rotated data.

(a) Rotate the recorded data with qNrotated nN
Extra absolute heading.

q̂Nrotated nSloose
Aligned,t,l = qNrotated nN

Extra absolute heading � q̂
NSloose
Aligned,t,l and

q̂
Nrotated nStight

EKF,t = qNrotated nN
Extra absolute heading � q̂

NStight

EKF,t .

(b) Add the extra data to the original datasets to form the extended datasets.

q̂NSloose
ψinvariant,t,l

=

q̂NSloose
Aligned,t,l

q̂Nrotated 1Sloose
Aligned,t,l

...
q̂Nrotated nSloose
Aligned,t,l

 and q̂NStight

ψinvariant,t
=

q̂
NStight

EKF,t

q̂
Nrotated 1Stight

EKF,t
...

q̂
Nrotated nStight

EKF,t

.

Master of Science Thesis S.J. van den Heuvel

34 Methods

4-4-2 Removing the absolute heading dependency of the dataset

This section describes another method to make the data invariant to the absolute heading
direction. Instead of adding information to the dataset, it is also possible to actually get rid
of the information that makes the data dependent on the absolute heading direction.

The available data describes the orientation of the sensors with respect to the navigation
frame N : q̂NSloose

Aligned,t,l and q̂
NStight

EKF,t . The absolute heading of a sensor is defined as the angle
of rotation around the z-axis in the navigation frame. In order to remove this information
from the data, it should be isolated first. The Euler angles parameterization, discussed in
Section 2-2-2, suits this goal best as it already uses the angles of rotation around the x, y and
z-axis in its description. To make the yaw angle (ψ) independent from the other angles (φ
and θ) and coincide with the heading in N , the order of rotation around the axes is important
here. There are in total 12 different valid sequences of rotations [38]. The sequence of rotation
that is chosen to rotate from the reference frame to the sensor frame, first rotates around the
z-axis with the corresponding yaw angle (ψ). Since this is the first rotation, the z-axis of
both sensor frame and navigation frame align. The rotated frame is then rotated around its
new y-axis by the pitch angle (θ). Lastly, the frame is rotated around its new x-axis by the
roll angle φ to align the orientation of the frame with the orientation of S which the Euler
angles parameterization described in the first place. This sequence of rotation is denoted by
the Z-Y’-X” sequence. The rotation defining the whole rotation or orientation can be written
as the three consecutive rotations around the orthogonal axes [38, 46]

R(φ, θ, ψ)NS = RZψR
Y
θ R

X
φ . (4-6)

Further details on this rotation matrix and the conversion from Euler angles to the rotation
matrix can be found in Appendix A-3.

Because the average misalignment between the sensors is already removed, one can expect
that the last sample of every input sequence has the absolute heading that is the closest to the
absolute heading of the corresponding target orientation because they are samples of the same
time step. Therefore, in order to remove the absolute heading direction from the input and
target data, this angle is subtracted from the whole input sequence and corresponding target
sample. This way, all data has an absolute heading direction or yaw angle (ψ) of around
0 [rad]. The deviation from this contains useful information about the mutual movement
between the sensors and should not be removed.

To recover the absolute heading of the target sample, one should add the angle which was ini-
tially subtracted from the input sequence to the absolute heading of the orientation estimated
by the RNN.

An overview of the implementation of the second method to the problem of the absolute
heading dependency is given in Algorithm 4.

S.J. van den Heuvel Master of Science Thesis

4-5 Removing ambiguity and discontinuities from unit quaternions 35

Algorithm 4: Remove the dependency on the data on the absolute heading direction
Inputs: A dataset containing sequential sequences of aligned orientation estimates of
the loosely attached IMU, q̂NSloose

Aligned,t,l, and a dataset containing sequential orientation
estimates of the tightly attached IMU, q̂NStight

EKF,t .
Outputs: A dataset containing sequential sequences of aligned orientation estimates of
the loosely attached IMU, q̂NSloose

ψinvariant,t,l
, and a dataset containing sequential orientation

estimates of the tightly attached IMU, q̂NStight

ψinvariant,t
, both from which the absolute

heading dependency is removed.

1. Convert all orientation estimates in both datasets to an Euler angles parameterization.

2. Subtract the yaw angle of the last samples of the aligned orientation estimate
sequences of the loosely attached IMU, ψ̂NSloose

Aligned,t,11 from the yaw angles of all
orientation estimates contained in both datasets, ψ̂NSloose

Aligned,t,l and ψ̂
NStight

EKF,t .

3. Wrap the resulting yaw angles to their range.

4. Convert all orientation estimates parameterized by Euler angles back to unit
quaternions.

q̂NSloose
ψinvariant,t,l

and q̂NStight

ψinvariant,t
.

5. After training the network with this data, the yaw angles of the last samples of the
sequential sequences with aligned orientation estimates of the loosely attached IMU,
ψ̂NSloose
Aligned,t,11, should be restored to the yaw angles of the sequential orientation

estimates of the RNN to obtain the sequential orientation estimates of the tightly
attached IMU, q̂NStight

EKF,t .

This second step of preprocessing the data can be found after the first step, which removes
the average orientation difference from the input. The reader is referred back to Section 4-2,
where Figure 4-5 can be found, which describes the model with all three preprocessing steps.

4-5 Removing ambiguity and discontinuities from unit quaternions

In this section, the last step, which preprocesses the data before feeding it to the RNN,
is addressed. As discussed in Section 3-3 and Section 3-4, the data should be unique and
sequential data should posses a certain level of continuity. Here, first a solution to the problem
of the ambiguity of unit quaternions together with a method that will lower the amount of
needed data, is presented. Next, it is explained how subsequent samples in sequences are
processed to stimulate the capability of detecting time related behavior in the process.

Master of Science Thesis S.J. van den Heuvel

36 Methods

4-5-1 Ambiguity in data

A simple solution to the problem of possible ambiguity, shown in Section 3-3, is to shape
the loss function that is used for training the network. When it is designed such that it is
indifferent to the two possible orientation representations, the network can decide by itself
which of these is easier to estimate given the input data. This adjustment can be implemented
by comparing the estimate of the network to the target sample q but also to its counterpart -q.
Taking the representation which yields the minimum loss will solve the problem of ambiguity.
The performance measures presented in (6-3) and (6-4) already incorporate this indifference
to both orientation representations which describe identical orientations. There is, however,
a disadvantage to this solution. It is likely that the network will learn to estimate both
orientation representations, dependent of the sign of the input representation. Both positive
and negative inputs will be present in the data, and thus also both positive and negative
outputs will be estimated. This requires twice as much data.

One commonly used way to overcome the issue of the non-uniqueness of unit quaternions
is to enforce the first component of all unit quaternions, both input and target data, to be
non-negative. This is a simple method called ‘canonizing’ and is easy to implement. Despite
that this is a simple method, no studies are known which use unit quaternions and ML
methods and apply this method. Often the data is left untreated and only a loss function
that is indifferent to a positive or negative unit quaternion describing a certain orientation is
introduced [1, 47].

Applying these two measures solves the problem of ambiguity and reduces the amount of
data needed. Given a limited amount of data to train the network on, it is expected that the
performance of the network is higher than when this step is not applied. The argument for
this expectation lies in the fact that the search space is reduced by a factor 2.

4-5-2 Sequential time-dependencies

In order to stimulate the ability of detecting time dependencies, it is ensured that all data
samples in the input sequences have minimal Euclidean distance with respect to the previous
sample. This way the data samples of a sequence start with a unit quaternion having positive
first component, and successive samples have minimal Euclidean distance. One could say that
there are no ‘jumps’ between data points in a sequence, apart from the effects of discretization
of course. In order to apply this, the Euclidean distance (δ) from one data point (qA) to the
next data point (qB) is computed. Because the orientation representation q represents the
same orientation as −q, two distances are computed for this. The Euclidean distance from
data point (qA) to data point (qB) is computed using

δ = ||qA − qB||2. (4-7)

For data point qB, the unit quaternion variant (q or −q) is determined by selecting the
one that has the smallest Euclidean distance with respect to data point qA. This way of
treating the data was inspired by [24]. It is supposed to remove discontinuous jumps between
consecutive data points. This minimal Euclidean distance between consecutive samples is a
naturally inherited characteristic of unit quaternions estimated by an EKF. However, due to
canonizing the data, there could be a jump between components of the first (canonized) data

S.J. van den Heuvel Master of Science Thesis

4-5 Removing ambiguity and discontinuities from unit quaternions 37

sample and components of the rest of the sequence. This problem does not occur frequently
but it is taken care of this way if it does.

A compact representation of this step is presented in Algorithm 5.

Algorithm 5: Removing ambiguity and discontinuities from unit quaternions
Inputs: A dataset containing sequential sequences of heading independent orientation
estimates of the loosely IMU, q̂NSloose

ψinvariant,t,l
, and a dataset containing sequential

orientation estimates of the tightly attached IMU, q̂NStight

ψinvariant,t
.

Outputs: Unique and continuous sequential sequences of orientation estimates of the
loosely attached IMU, q̂NSloose

Unique,t,l, and Unique sequential orientation estimates of the
tightly attached IMU, q̂NStight

Unique,t.

1. Canonize all orientation estimates of both input and output.

If q̂NSloose
ψinvariant,t,l

< 0 Then

q̂NSloose
Unique,t,l = −q̂NSloose

ψinvariant,t,l
,

Else

q̂NSloose
Unique,t,l = q̂NSloose

ψinvariant,t,l
.

If q̂NStight

ψinvariant,t
< 0 Then

q̂
NStight

Unique,t = −q̂NStight

ψinvariant,t
,

Else

q̂
NStight

Unique,t = q̂
NStight

ψinvariant,t
.

2. Ensure all sequences of the input are continuous.

For l = 2, . . . 11 do

(a) Compute the Euclidean distance between orientation sample q̂NSloose
Unique,t,l−1 and

q̂NSloose
Unique,t,l.

δpos,t = ||q̂NSloose
Unique,t,l−1 − q̂

NSloose
Unique,t,l||2,

δneg,t = ||q̂NSloose
Unique,t,l−1 + q̂NSloose

Unique,t,l||2.

(b) If δneg,t < δpos,t Then

Replace orientation sample q̂NSloose
Unique,t,l by −q̂

NSloose
Unique,t,l.

This step is implemented just before the RNN, so that the other preprocessing steps can not
spoil the point of this step by altering the data. Figure 4-5 shows where the preprocessing

Master of Science Thesis S.J. van den Heuvel

38 Methods

step is applied.

4-6 Using physics-based input features as opposed to inertial data

This section describes how the belief is verified that using physics-based input features as
opposed to inertial data is beneficial for the problem. So far, the proposed input and output
data has been orientation estimates computed by an EKF and preprocessed with three steps.
This way, knowledge about physics in the form of a physics-based method is used. In order to
verify the belief that this is beneficial, the orientation estimates forming the input to the RNN
are replaced by the IMU measurement data. To compute the orientation estimates, only this
inertial data was used. Therefore, it should be possible to achieve equal performance with a
network using the inertial input features, if the network is capable of estimating the orientation
estimates and then map these to the target orientation estimates. This is considered a bigger
task than merely learning the latter and, therefore, it is expected that when using the same
amount of data and the same network, the performance will be worse. If true, the choice to
use physics-based knowledge made at the beginning of the study, is considered beneficial.

4-6-1 Feature scaling the inertial data

When replacing the input orientation estimates by the gyroscope, accelerometer and magne-
tometer sensor data, one loses the advantages of the unit quaternion representation. Specifi-
cally, the new input data is not scaled between -1 and 1 anymore. Presenting a network with
input features that have different scales can cause the network not to weight them equally.
This means that the input features that are distributed on a bigger scale become the domi-
nant source of information for the network. Scaling the features to a given range is beneficial
for the convergence rate of the network [32]. Leaving out this operation sometimes even
leads to a network that fails to learn. Two common ways to scale input data are normalizing
and standardizing [1, 48]. Standardizing the data means centering the data around 0 with
a standard deviation of 1, assuming the data fits a Gaussian distribution. Normalizing the
data means rescaling it to a range of 0 to 1. For this method, the gyroscope data will have its
bias already removed as described in the calibration procedure Section 4-1-1. Because of this,
possible non-zero mean contains information about the movement of the sensor. Therefore,
it is chosen to only normalize the data and rescale it to a range from -1 to 1 using

ySloose
ωrescaled,t

= 2
ySloose
ω,t − ySloose

ωmin

ySloose
ωmax − ySloose

ωmin

− 1,

ySloose
arescaled,t

= 2
ySloose
a,t − ySloose

amin

ySloose
amax − ySloose

amin

− 1 and (4-8)

ySloose
mrescaled,t

= 2
ySloose
m,t − ySloose

mmin

ySloose
mmax − ySloose

mmin

− 1.

Here, the subscript min and max denote the minimum and maximum value of the data used
for training. The subscript rescaled denotes that the data is rescaled.

S.J. van den Heuvel Master of Science Thesis

Chapter 5

Experiments

This chapter first describes the hardware that was used to implement the methods. Next,
it discusses the experiments that are designed to assess and reveal the advantages of the
preprocessing steps presented in this study. To this end, a simulated setup is designed, as well
as four experimental setups. They are discussed in Section 5-2 and Section 5-3. Lastly, this
chapter describes details about the different datasets that are recorded with these setups.

5-1 Hardware

In order to record the inertial data, two IMUs were used. The wireless Xsens ‘MTw Awinda’
is deployed for this purpose [49]. It offers highly accurate time-synchronized measurements
and is very easy in use. The standard software that Xsens provides, MT Software Suite, is
used to record the inertial data. As a sampling frequency fs, 100 Hz is used throughout the
whole study.

In order to implement and train the RNN, Python (version 3.8.5) was used together with the
Tensorflow package (version 2.2.0) and the Keras package for deep learning (version 2.4.3). All
coding and computations have been performed on a HP ZBook Studio G4 with an Intel(R)
Core(TM) i7-7700HQ (8 CPUs) processor running at 2.80GHz, a NVIDIA Quadro M1200
GPU and 8 GB RAM.

Using this hardware setup, it takes on average 7.5 hours to train 20 networks in order to
compute a single result. This illustrates the limitations which were imposed by the hardware
during this study.

5-2 Simulated setup

In order to create a so-called ‘worst-case’ scenario to show the essence of the third step, a
simulated setup was designed. It comprises a disc rotating around one axis with an IMU

Master of Science Thesis S.J. van den Heuvel

40 Experiments

attached to it at the center. In this experiment the z-axis is used. A rod connected to this
disc moves a lever in different orientations around a hinge joint. Another IMU is attached to
the rotation point of this lever and its rotation range is limited by the x-axis. The IMU on the
disk generates both orientation representations q and −q due to its full rotations. The setup
is used to generate synthetic gyroscope data from which orientation estimates are computed
using the EKF. A picture of the setup is shown in Figure 5-1.

y-axis

z-axis

x-axis

IMU

IMU

Figure 5-1: The setup of the simulated experiment designed to show the benefits of preprocessing
step 3.

5-3 Experimental setups

Then, there are four experimental setups that use real IMUs to collect inertial measurements.
The degree of movement that is possible between the input and output sensors differ, so that
the proposed model can be tested on different setups with loosely attached IMUs. The first
setup has no movements between the two sensors. A picture of the actual setup is shown in
Figure 5-2. With this setup, the average misalignment is the only error source. It will be
used to verify the working of the first preprocessing step.

S.J. van den Heuvel Master of Science Thesis

5-3 Experimental setups 41

Figure 5-2: The setup of the first experiment designed to show the benefits of preprocessing
step 1.

The second experiment involves two solid pieces (wood), which are connected via flexible
tubes. The sensors attached to the solid pieces can move differently from each other but are
dependent due to the connection of the tubes. A picture of the setup is shown in Figure 5-3.

Figure 5-3: The setup of experiment 2 allows mutual movement between the sensors.

The third experiment also allows mutual movement between the input and output sensor
but is constructed differently. Instead of connecting the two sensors using a flexible tube, an
airbag is used. This resembles the situation of using wearable IMUs better. A picture of the
setup is shown in Figure 5-4.

Master of Science Thesis S.J. van den Heuvel

42 Experiments

Figure 5-4: The setup of experiment 3 allows mutual movement between the sensors.

The last experimental setup involves a real human, wearing a loosely attached IMU in the
pocket of his jacket. The target IMU is tightly attached to the upper arm using a rubber
band. Two pictures illustrating the setup are shown in Figure 5-5.

(a) Imitation of a wearable IMU in a
phone.

(b) An IMU tightly strapped to the
body.

Figure 5-5: The setup of experiment 4 involving a human and a loosely attached IMU.

In all experimental setups described above, the loosely attached IMU will serve as the input
sensor providing inertial input data. The true orientation data is constructed by the orien-
tation estimates of the EKF which uses the inertial measurements from the tightly attached
sensor. The orientation estimates computed by the EKF are successfully validated with the
orientation estimates generated by the fusion algorithm of the Xsens sensors.

S.J. van den Heuvel Master of Science Thesis

5-4 Datasets 43

5-4 Datasets

This section describes details on the recorded datasets to reveal the working of the designed
preprocessing steps.
The simulated setup, described in Section 5-2, is used to generate two datasets. Both datasets
do not contain an average misalignment, neither have they different absolute heading direc-
tions. This way, the third preprocessing step can be solely employed in order to demonstrate
its need. One of the datasets is used to validate the performance of the trained RNN. It
contains both orientation representations q and −q. The other dataset is used to train the
RNN. It also contains both orientation representations q and −q, however, not all RNNs that
are trained using this dataset use the whole dataset. Multiple RNNs are trained and each of
them uses a larger part of the dataset.
Using the first experimental setup, a dataset for training and two datasets for validation
are recorded. The data from this experiment contains a constant misalignment between the
input and target IMU. Therefore, this setup suits revealing the working of preprocessing step
1 well. The first dataset that is used to validate the performance is denoted by Testset 1A
and contains the same average misalignment as the dataset used for training. The second
dataset used for validating the performance is denoted by Testset 1B and contains a different
average misalignment than the training data.
Recordings using the second experimental setup have provided three datasets. One which is
used for training, and two that are used to validate performance. The dataset used for training
contains an average misalignment, a process part and is recorded facing in one absolute head-
ing direction. The datasets used for validation both contain the same average misalignment
and also contain mutual movement between the input and target IMU, the process. The first
dataset used for validation is referred to as Testset 2A and is recorded in the same absolute
heading direction as the dataset used for training. The second dataset used for validation,
referred to as Testset 2B, is recorded facing a different absolute heading direction.
With the third experimental setup, also three datasets are recorded. The first dataset is
used for training and the others are used for validation of the preprocessing steps. All three
datasets contain an equal average misalignment and mutual movement between the input and
target IMU, the process. The training data is recorded facing one absolute heading direction.
One of the datasets used for validation, called Testset 3A, contains data that is recorded in the
same absolute heading direction as the training data. The other dataset used for validation
the steps is recorded facing a different absolute heading direction.
The fourth experimental setup has provided six datasets which are split in two groups. The
first group is data describing all kinds of motions performed by the arm. Therefore, this data is
very diverse. The second group is data that only describes motions of the arm drawing circles
in the air. Again, each group contains a dataset used for training which is recorded facing
one absolute heading direction. Then, each group contains a dataset used for validation, with
data that is recorded facing the same absolute heading direction as the training data. These
datasets are referred to as Testset 4A for the dataset of the group containing the diverse data
and Testset 4C for the dataset of the group containing data describing the motions of an
arm drawing circles. Then, both groups contain another dataset which is used for validation
and is recorded facing a different absolute heading direction. The dataset of the first group
is referred to as Testset 4B and the dataset of the second group is referred to as Testset 4D.

Master of Science Thesis S.J. van den Heuvel

44 Experiments

S.J. van den Heuvel Master of Science Thesis

Chapter 6

Results

In order to compare two sets of data and obtain a measure of the error between them, multiple
performance measures can be used. This chapter starts off by addressing three performance
measures used in this study. The rest of this chapter entails a quantitative overview and a
discussion on the results of all preprocessing steps.

6-1 Performance measures

This section discusses three different performance measures. First, the root mean squared
error (RMSE) value of the Euler angles parameterization of the quaternion difference is dis-
cussed. After that, the mean Euclidean distance between estimated and target quaternions
is explained and lastly the mean angle of rotation described by the quaternion difference as
a performance measure is discussed. The orientation differences that are compared differ for
each result. Therefore, in this section, the compared orientation representations parameter-
ized as unit quaternions are denoted by qNS1

A,t and qNS2
B,t .

The quaternion difference between two orientation representation parameterized by unit
quaternion is determined by

q̂S1S2
t = (qNS1

A,t)c � q̂NS2
B,t . (6-1)

Note that qNS1
A,t is considered to be the true orientation. If the estimated orientations, q̂NS2

B,t ,
perfectly match the true orientations, then the orientation difference between them, q̂S1S2

t ,
should be all zeros.
Converting this to Euler angles using Appendix A, gives the Euler angles which define how
the estimated orientations are oriented with respect to the target sensor orientations. Then,
to compute a RMSE value for each Euler angle, the formula,

φ̂θ̂
ψ̂

S1S2

RMSE

=

√√√√√√ N∑
t=1

(([
φ̂ θ̂ ψ̂

]S1S2

t

)T)2

N
, (6-2)

Master of Science Thesis S.J. van den Heuvel

46 Results

is applied where N is the total amount of samples. This definition of the error is only appli-
cable if the quaternion difference is small enough and does not approach gimbal lock. This
performance measure gives the most information about the performance as it is subdivided
over three angles of rotation which are intuitive in the 3D space. However, due to averaging
these angles obtained from individual samples that (can) have differently oriented coordinate
systems, as well as the error being distributed over three angles, the final performance can
be a bit misleading from this measure. For this reason it is best to look at performance
differences as a whole rather than looking at individual angles.

An illustrative example of a simple case where this issue occurs is given in Appendix D.

The next and most dominantly used performance measure in this study is the Euclidean
distance between two quaternions [1],

δ̂mean = 1
N

N∑
t=1

min(||qNS1
A,t − q̂

NS2
B,t ||2, ||q

NS1
A,t + q̂NS2

B,t ||2). (6-3)

This performance measure takes into account how far off each element of the quaternion is.
Also, it takes into account that the representation q is equal to −q and uses the variant which
has minimal distance. This performance measure is used as the loss measure during training
of the neural network.

The last performance measure is the angle of rotation between two unit quaternions. To
compute this angle of rotation α,

α̂mean = 2
N

N∑
t=1

arccos(|qNS1
A,t · q̂

NS2
B,t |), (6-4)

is used [1, 47]. Note that · is a dot product between the two quaternions. This perfor-
mance measure is also indifferent to the two equal orientation representations q and −q. The
performance measure could be used as loss measure for training the neural network as well.

6-2 Results and discussion

In this section results of the different methods presented in Chapter 4 are presented and
discussed. In response to Section 3-2, the learning curves of the trained networks discussed
in this section have been examined. They have shown no signs of overfitting and, therefore,
no regularization methods have been applied.

6-2-1 Removing ambiguity and discontinuities from unit quaternions

This section examines the working of preprocessing step 3. This step is validated first because
it will be applied for all other tests which validate the working of the other preprocessing steps.
This is done because all other tests benefit from a need for less data. An overview of the used
model here is shown in Figure 6-1.

To validate this step, datasets generated by the simulated setup, presented in Section 5-2,
are used. After computing the orientation estimates using the EKF of the simulated IMU

S.J. van den Heuvel Master of Science Thesis

6-2 Results and discussion 47

IMU EKF RNN

R
em

ov
e
am

bi
gu

ity
an

d
di
sc
on

tin
ui
ty

INPUT

ySloose
ω,t

ySloose
a,t

ySloose
m,t

q̂NSloose
EKF,t,l q̂NSloose

Unique,t,l

q̂
NStight

Target,t

OUTPUT

Preprocessing steps

Figure 6-1: Basic structure of the hybrid model with preprocessing step 1 included.

measurements, several networks are trained on a given number of samples of the trainset.
Their performance on the validation set is denoted in Figure 6-2. The results are shown by a
plot of the network performance expressed by (6-3) plotted against the amount of data points
the network trained on. The performance is computed by averaging the performance of 20
differently initialized networks.

By inspecting the plot shown in Figure 6-2, it becomes clear that the expectation about the
required amount of data is correct. When preprocessing the data using Algorithm 5, the error
on the validation set decreases with fewer data points. In fact, adding information about the
orientation representation −q hardly improves the performance since optimal performance is
already achieved. Without preprocessing the data with Algorithm 5, the error of the network
on the validation set is high when trained on small amounts of data points. If the training
data, however, contains both information about orientation representation q and −q, the error
decreases and equal performance is achieved.

For this reason, in all other experiments the applied loss function is indifferent to the non-
uniqueness of unit quaternions and the data is preprocessed according to Algorithm 5.

6-2-2 Removing the average misalignment

In this section the working of Algorithm 2, removing the average orientation difference, is
examined. This is the first preprocessing step that was designed in this study. The baseline
performance using Algorithm 2, which was presented in Section 4-3-1, removes the average
misalignment from the data and will often set a better baseline performance than when

Master of Science Thesis S.J. van den Heuvel

48 Results

0 200 400 600 800 1000 1200
#Datapoints

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Eu

cli
de

an
 d

ist
an

ce

Original error
Error using preprocessed data

Figure 6-2: The average performance of 20 trained networks plotted against the number of data
points.

ignoring the misalignment. In addition, applying this step before training a network, makes
the network invariant to differently oriented attachments. As already mentioned in Section 4-
3, this method is designed to serve two purposes. The results presented in this section will
address the two purposes in order. Firstly, the partition of the error caused by a misalignment
is identified. Secondly, it is verified that a trained network using this algorithm is robust to
misaligned attachments.

Results on the identification of the partition of the error due to misalignment

To show results corresponding to this goal, Testset 1A and Testset 2A, described in Section 5-
4, are used. Both contain errors caused by a misalignment between the sensors. The difference
between the two datasets is that the sensors generating the data contained in Testset 2A are
able to move differently from each other. Therefore, mutual movement between the sensors,
a process, is also a part of the error between input and target data. For this cause, it is
expected that a part of the error will remain after applying the method. Table 6-1 displays
the error values of the baseline performance when ignoring the misalignment between the
loosely attached and target sensor, as well as the baseline performance using Algorithm 2
which aligns the two sensors first. The actual percentages of partitions of the error derived
from the data differ for every experiment and dataset. The results here do show that and
when the use of Algorithm 2 is beneficial.

With these results it is possible to identify how big the part of the error was due to an average
misalignment. Expected is that for Testset 1A, this is the main part. The error in Testset
2A, however, will also be composed of a part that is due to mutual movement between input
and target sensor. The baseline performance without using Algorithm 2 indicates what the
entire error is before removing the average misalignment or applying the RNN.

S.J. van den Heuvel Master of Science Thesis

6-2 Results and discussion 49

Mean angle
Mean Euclidean of rotation,

φ̂RMSE θ̂RMSE ψ̂RMSE distance, δ̂mean α̂mean

[10−3 rad] [10−3 rad] [10−3 rad] [10−3] [10−3 rad]
Baseline performance, Testset 1A 1576 31.0 2470 1238 2670
using Algorithm 5 Testset 2A 1655 333 128 817 1685

Baseline performance, Testset 1A 22.0 25.0 32.0 21.3 42.5
using Algorithms 2 & 5 Testset 2A 114 267 135 153 306

Table 6-1: The error values before and after removing the misalignment.

For Testset 1A, the results using untreated data are compared to the results using data of
which the average misalignment was removed by Algorithm 2. From this the conclusion can
be drawn that 98.28% of the error was composed by an average misalignment. Figure 6-3
gives a clear overview of this error distribution. To perform calculations like this, the mean
Euclidean distance is used.

98.28%
Average misalignment

1.72%
Process &

Heading dependency

Figure 6-3: The error decomposition of Testset 1A.

For Testset 2A, the results from Table 6-1, yield a different error decomposition. For 81.27%,
the error in the data can be contributed to a misalignment in the attachment. A visualization
is shown in Figure 6-4.

81.27%
Average misalignment

18.73%
Process &

Heading dependency

Figure 6-4: The error decomposition for Testset 2A.

These results are in line with the expectation as only Testset 2A are able to move differently
from each other.

Master of Science Thesis S.J. van den Heuvel

50 Results

Results on the invariance of a network to misalignment

The model displayed in Figure 6-5 is used to be able to identify the working of this purpose
of Algorithm 2.

IMU EKF RNN

R
em

ov
e
m
isa

lig
nm

en
t

R
em

ov
e
am

bi
gu

ity
an

d
di
sc
on

tin
ui
ty

INPUT

ySloose
ω,t

ySloose
a,t

ySloose
m,t

q̂NSloose
EKF,t,l

q̂NSloose
Aligned,t,l

q̂NSloose
Unique,t,l

q̂
NStight

Target,t

OUTPUT

Preprocessing steps

Figure 6-5: Basic structure of the hybrid model with preprocessing steps 1 and 3 included.

Two neural networks are trained. For training and testing the second network, Algorithm 2
is applied to the data. The first network will use data to which Algorithm 2 is not applied
and thus this data still contains misalignment between the input and output data. After
training the networks, their performance is compared using two different datasets. Testset 1A
contains the same misalignment as the network was trained on. Testset 1B, however, contains
a different misalignment. This could occur easily in practice as described in Section 4-2 and
the results are expected to deteriorate if not taken care of. For this reason, it is expected that
the second network is robust to the differently misaligned data and will have a low error on
Testset 1B compared to the first network. The data fed to the first network still contains the
different misalignment for Testset 1B. All data used to compute these results are generated
by experimental setup 1. This setup is sufficient to show the robustness of the network to
misaligned attachments.
Because at training, the weights of a neural network are initialized with random values,
one could get a rather biased indication of the performance of this preprocessing step. To
overcome this problem, 20 differently initialized networks are trained for every trainset. From
the results of these networks, the mean and the standard deviation are computed. The results
shown in Table 6-2 first show the mean error followed by the standard deviation around this
mean.
Next, the importance of removing the average misalignment before training a network or

S.J. van den Heuvel Master of Science Thesis

6-2 Results and discussion 51

Mean angle
Mean Euclidean of rotation,

φ̂RMSE θ̂RMSE ψ̂RMSE distance, δ̂mean α̂mean

[10−3 rad] [10−3 rad] [10−3 rad] [10−3] [10−3 rad]
RNNs, using Testset 1A 22.4 23.7 27.1 19.1 38.2
Algorithm 5, ± 3.62 ± 5.53 ± 4.7 ± 3.16 ± 6.32
preserving Testset 1B 3092 36.9 303 1396 3089

misalignment ± 5.05 ± 5.06 ± 5.93 ± 1.93 ± 5.37
RNNs, using Testset 1A 20.9 21.2 26.8 17.5 35.0

Algorithms 5 & 2, ± 4.03 ± 3.61 ± 5.53 ± 2.56 ± 5.12
removing Testset 1B 30.3 35.2 31.3 26.0 52.0

misalignment ± 5.71 ± 8.52 ± 9.07 ± 3.68 ± 7.37

Table 6-2: The average error of 20 trained RNNs on Testset 1A and Testset 1B.

inferring orientation estimates is identified. For this the results in Table 6-2 are used. The
observations for the first RNN, for which the data was untreated, are denoted below.

1. The conclusion can be drawn based on results of Testset 1A, that a network is able to
learn a constant misalignment rather well. This is expected as it is regarded as a simple
task. Besides that, this is not the result why this test was conducted and it is left alone.

2. The performance deterioration is striking when Testset 1B, a dataset with a different
average misalignment, is applied to the trained network. The performance is 73.1× as
bad for this different misalignment (using the mean Euclidean distance again). This
illustrates the problems that can occur if the data is left untreated.

In order to test the robustness to different misaligned attachments, the second RNN was
trained on data of which the average misalignment was removed. The possible non-zero
average misalignment is removed by applying Algorithm 2 to the training data and test data
before using it for the network. The results of Testset 1B on the network are much better
than before removing the misalignment. In addition, the performance of Testset 1A does not
seem to suffer from the removal of the misalignment. These results prove the necessity of
applying Algorithm 2 before using any data on a network. For the rest of the tests that will
be conducted, this step will be applied.

Another thing that can be noticed is that the performance measures mean Euclidean distance
and the mean angle of rotation follow the same trend. If the one of them increases then the
other also increases. The other experiments will confirm this and it serves as an indication
that they both measure something that is related, which is expected because they both should
give an impression of the performance, of how close the estimated data is to the target data.

6-2-3 Removing the absolute heading direction dependency

In order to examine the working of Algorithm 3 and 4, preprocessing step 2 which remove the
absolute heading dependency, the model shown in Figure 4-5 is employed. Datasets Testset
2A and Testset 2B from experimental setup 2 are used for this. It is expected that Testset
2B does not perform well on a RNN that is not trained on data to which either Algorithm 3

Master of Science Thesis S.J. van den Heuvel

52 Results

or Algorithm 4 is applied. If the absolute heading dependency is removed, it is expected that
the performance on Testset 2B improves.

Mean angle
Mean Euclidean of rotation,

φ̂RMSE θ̂RMSE ψ̂RMSE distance, δ̂mean α̂mean

[10−3 rad] [10−3 rad] [10−3 rad] [10−3] [10−3 rad]
Baseline performance, Testset 2A 1655 333 128 817 1685
using Algorithm 5 Testset 2B 1652 383 120 818 1686

Baseline performance, Testset 2A 114 267 135 153 306
using Algorithms 2 & 5 Testset 2B 114 302 135 168 337

RNNs, using Testset 2A 30.1 38.3 36.6 27.2 54.5
Algorithms 2 & 5, ± 4.67 ± 3.88 ± 2.54 ± 2.21 ± 4.42
absolute heading Testset 2B 98.6 192 134 110 220

dependent ± 22.6 ± 48.7 ± 22.1 ± 17.6 ± 35.5
RNNs, using Testset 2A 29.5 40.2 37.0 27.8 55.5

Algorithms 2, 3 & 5, ± 4.78 ± 3.75 ± 2.76 ± 2.03 ± 4.06
absolute heading Testset 2B 43.1 79.2 54.4 46.6 93.1

independent ± 5.48 ± 5.68 ± 4.24 ± 3.2 ± 6.4
RNNs, using Testset 2A 29.4 40.1 37.9 27.9 55.9

Algorithms 2, 4 & 5, ± 4.72 ± 5.07 ± 3.69 ± 2.95 ± 5.89
absolute heading Testset 2B 37.1 70.4 52.4 43.0 85.9

independent ± 4.32 ± 4.98 ± 5.09 ± 3.06 ± 6.11

Table 6-3: The average error of 20 trained RNNs on Testset 2A and Testset 2B.

Note that when using Algorithm 3, the only additional data which is appended to the training
set is the training data rotated to the mean absolute heading direction of Testset 2B. Since
adding a mean absolute heading is not the same as adding every absolute heading, this means
that only a portion of the effect is discovered rather than its full potential. Computational
effort is the limiting factor here.

After inspecting the results for Algorithms 3 and 4, two major points stand out.

1. The error for a dataset which has the same absolute heading direction as the training
data (like Testset 2A) is hardly affected when using Algorithm 3 or 4. This is because
these algorithms try to remove an absolute heading dependency from the dataset that
is identical to the absolute heading dependency of the training data. That won’t make
a big difference.

2. When using the algorithms on Testset 2B, containing data with different absolute head-
ing direction, Algorithm 3 decreases the error by a factor 2.36. Algorithm 4 manages
to decrease the error by a factor 2.56. The final obtained error for both algorithms lie
very close to each other and it can be concluded that the algorithms work and also do
about the same thing.

The obtained results were expected. An overview of the error decomposition of data in Testset
2B can be viewed in Figure 6-6. Only 5.26% of the error could not be estimated by the RNN
when using Algorithm 4.

S.J. van den Heuvel Master of Science Thesis

6-2 Results and discussion 53

79.46%
Average misalignment

20.54%
Process &

Heading dependency

Figure 6-6: The error decomposition of Testset 2B

6-2-4 Using physics-based input features as opposed to inertial data

This section presents the error values of the orientation estimates of the RNN when it is
fed with calibrated and scaled inertial data, rather than orientation estimates of the loosely
attached sensor. For this, again, data from experimental setup 2 is used. The performance of
datasets Testset 2A and Testset 2B is assessed. First, the results are displayed using physics-
based input features, together with the use of Algorithms 2, 4 and 5. Next, the performance
is assessed on the same datasets, however, this time using inertial input data.

Mean angle
Mean Euclidean of rotation,

φ̂RMSE θ̂RMSE ψ̂RMSE distance, δ̂mean α̂mean

[10−3 rad] [10−3 rad] [10−3 rad] [10−3] [10−3 rad]
RNNs, using Testset 2A 29.4 40.1 37.9 27.9 55.9
physics-based ± 4.72 ± 5.07 ± 3.69 ± 2.95 ± 5.89
inputs and Testset 2B 37.1 70.4 52.4 43.0 85.9

Algorithms 2, 4 & 5 ± 4.32 ± 4.98 ± 5.09 ± 3.06 ± 6.11
RNNs, using Testset 2A 99.4 107 117 77.6 155
calibrated and ± 32.2 ± 18.9 ± 21.7 ± 13.6 ± 27.2
scaled inertial Testset 2B 706 632 1011 555 1131
input data ± 90.9 ± 40.5 ± 119 ± 51.5 ± 108

Table 6-4: The average error of 20 trained RNNs on Testset 2A and Testset 2B.

By inspecting the results presented in Table 6-4, it becomes clear that a network trained on
calibrated and scaled inertial data is not able to outperform a network that uses physics-
based inputs. This was presumed from the beginning of the study and is confirmed by this
result. Although the network achieves 2.78× higher error with this amount of data, it is worth
mentioning it is not totally failing to learn the process. From this, it can be concluded that
by using physics-based inputs, a part of the process is already resolved and the remaining
process is smaller or easier to learn.

Another important result is that the error difference for Testset 2B (12.9×) is remarkably
higher than for Testset 2A (2.78×). As the main difference between the two datasets is
that the data contains a different absolute heading direction, the reason for this should be
sought there. The gyroscope measurements are indifferent to the heading direction, but the
accelerometer and magnetometer measurements are not. This indicates that those input

Master of Science Thesis S.J. van den Heuvel

54 Results

features are used by the network and to solve this issue, one should apply an operation to
the accelerometer and magnetometer data similar to the removal of the absolute heading
dependency described in Section 4-4.

6-2-5 Results for data from experimental setup 3 and 4

So far, the effects of the designed preprocessing steps are shown for the simulated setup and
for experimental setup 1 and 2. They are found to be beneficial to the problem of estimating
orientation using a loosely attached IMU. In order to support these findings, two other
experimental setups were designed (Section 5-3). In Table 6-5 the results of different steps
are displayed for experimental setup 3. Results on experimental setup 4 can be found in
Table 6-6 and Table 6-7.

Mean angle
Mean Euclidean of rotation,

φ̂RMSE θ̂RMSE ψ̂RMSE distance, δ̂mean α̂mean

[10−3 rad] [10−3 rad] [10−3 rad] [10−3] [10−3 rad]
Baseline performance, Testset 3A 167 202 1583 780 1603
using Algorithm 5 Testset 3B 204 203 1575 778 1599

Baseline performance, Testset 3A 203 161 32.0 114 229
using Algorithms 2 & 5 Testset 3B 205 202 45.0 128 257

RNNs, using Testset 3A 20.2 21.7 18.5 15.0 30.0
Algorithms 2 & 5 ± 1.36 ± 3.0 ± 1.86 ± 1.1 ± 2.21

Testset 3B 342 271 1165 609 1239
± 118 ± 115 ± 133 ± 65.8 ± 138

RNNs, using Testset 3A 19.5 21.3 17.3 14.4 28.8
Algorithms 2,4 & 5 ± 1.02 ± 3.18 ± 1.23 ± 1.17 ± 2.33

Testset 3B 24.8 30.9 24.3 20.2 40.4
± 1.64 ± 2.74 ± 1.35 ± 1.17 ± 2.35

RNNs, using Testset 3A 23.0 24.9 46.1 23.3 46.6
calibrated and ± 1.73 ± 3.35 ± 4.07 ± 2.14 ± 4.27
scaled inertial Testset 3B 471 333 1191 641 1306
input data ± 28.4 ± 20.3 ± 34.8 ± 15.9 ± 33.6

Table 6-5: The average error of 20 trained RNNs on Testset 3A and Testset 3B.

As becomes clear from the difference in results displayed by the first two rows of Table 6-
5, both datasets benefit from the removal of the average misalignment. The performance
of Testset 3A improves by a factor 6.84 and that of Testset 3B by a factor 6.08. This
improvement is dependent on the degree of misalignment between the sensors and on the
initial error in the data. Next, the RNN is applied, which is supposed to estimate the process
between the sensors caused by the movements of the object and the loosely attachedness of
the input sensor. As Testset 3A is recorded facing the same absolute heading direction as
the training data of the network, it is expected the performance will improve for this dataset.
It does so by a factor 7.6. The data in Testset 3B is recorded facing a different absolute
heading direction than the training data. As reported by [13] and considered to be common
knowledge, neural networks perform bad on unseen data. This is in line with the results, as
the performance deteriorates by a factor 4.76 again. In order to improve the performance on
Testset 3B as well, the absolute heading difference is addressed. Applying Algorithm 4 and

S.J. van den Heuvel Master of Science Thesis

6-2 Results and discussion 55

the RNN improves the performance by a factor 6.34. Also, the performance of Testset 3A
does not suffer from removing the absolute heading dependency by Algorithm 3. In total,
applying the preprocessing steps results in a performance increase of 54.2× for Testset 3A and
38.5× for Testset 3B. With that, the remaining error for both datasets is 1.85% for Testset 3A
and 2.60% for Testset 3B of the initial error. This percentage can be contributed to a part of
the process that was too complex, unobservable or undiscovered as explained in Section 1-3.
The error distribution for Testset 3B is compactly visualized in Figure 6-7.

83.55%
Average misalignment

16.45%
Process &

Heading dependency

Figure 6-7: The error decomposition of Testset 3B.

Again, it can also be concluded that using calibrated and scaled inertial measurements as
input features does not outperform the use of physics-based input features.

Next, the results of experimental setup 4 are displayed in Table 6-6. The datasets used to
assess the performance to this setup are Testset 4A and Testset 4B. These contain a diverse
set of motions.

Mean angle
Mean Euclidean of rotation,

φ̂RMSE θ̂RMSE ψ̂RMSE distance, δ̂mean α̂mean

[10−3 rad] [10−3 rad] [10−3 rad] [10−3] [10−3 rad]
Baseline performance, Testset 4A 893 119 44.0 442 892
using Algorithm 5 Testset 4B 795 122 37.0 396 797

Baseline performance, Testset 4A 128 30.0 38.0 59.0 118
using Algorithms 2 & 5 Testset 4B 111 33.0 34.0 54.5 109

RNNs, using Testset 4A 120 28.5 35.6 49.3 98.7
Algorithms 2 & 5 ± 6.84 ± 3.11 ± 3.62 ± 2.24 ± 4.49

Testset 4B 280 317 602 346 698
± 73.7 ± 97.6 ± 141 ± 48.7 ± 99.5

RNNs, using Testset 4A 163 39.0 53.8 65.9 132
Algorithms 2,4 & 5 ± 16.4 ± 3.63 ± 2.6 ± 4.64 ± 9.32

Testset 4B 186 52.1 49.1 81.3 163
± 11.5 ± 4.19 ± 3.01 ± 4.51 ± 9.04

RNNs, using Testset 4A 129 34.6 66.8 57.0 114
calibrated and ± 6.04 ± 4.24 ± 3.08 ± 2.6 ± 5.21
scaled inertial Testset 4B 503 599 891 579 1176
input data ± 65.9 ± 44.4 ± 62.1 ± 25.1 ± 52.5

Table 6-6: The average error of 20 trained RNNs on Testset 4A and Testset 4B containing a
diverse set of motions.

Master of Science Thesis S.J. van den Heuvel

56 Results

As becomes clear from Table 6-6, the RNN and algorithm 4 are not able to reduce the
estimation error for data obtained from this setup compared to the baseline performance
using Algorithms 2 and 5. In search for an explanation for this, the suspicion grew that the
process was much more complex and, therefore, the amount of recorded training data was not
sufficient for the network to properly learn the process. In order to verify this, another dataset
was recorded. This time, instead of trying to capture all possible movements, the amount
of different motions of the subject was reduced. This way, more data of fewer motions was
recorded. Testset 4C and Testset 4D contain data from motions performed by the arm which
only draws circles in the air. Table 6-7 shows the obtained results.

Mean angle
Mean Euclidean of rotation,

φ̂RMSE θ̂RMSE ψ̂RMSE distance, δ̂mean α̂mean

[10−3 rad] [10−3 rad] [10−3 rad] [10−3] [10−3 rad]
Baseline performance, Testset 4C 1837 114 55.0 886 1837
using Algorithm 5 Testset 4D 1844 51.0 37.0 887 1839

Baseline performance, Testset 4C 137 74.0 36.0 75.9 152
using Algorithms 2 & 5 Testset 4D 145 75.0 64.0 81.2 162

RNNs, using Testset 4C 78.4 26.1 18.1 35.3 70.7
Algorithms 2 & 5 ± 3.64 ± 3.5 ± 2.42 ± 1.43 ± 2.87

Testset 4D 516 228 325 279 561
± 50.8 ± 44.1 ± 44.9 ± 19.2 ± 39.1

RNNs, using Testset 4C 109 101 85.2 78.2 156
Algorithms 2,4 & 5 ± 6.62 ± 4.62 ± 5.17 ± 2.48 ± 4.96

Testset 4D 179 61.7 86.8 75.8 152
± 10.9 ± 4.45 ± 2.68 ± 3.31 ± 6.65

RNNs, using Testset 4C 80.4 51.5 38.2 45.3 90.5
calibrated and ± 2.67 ± 2.44 ± 1.77 ± 1.35 ± 2.71
scaled inertial Testset 4D 633 278 701 462 935
input data ± 38.3 ± 54.7 ± 47.0 ± 25.7 ± 52.8

Table 6-7: The average error of 20 trained RNNs on Testset 4C and Testset 4D containing data
from simpler motions.

As it can be observed, using the RNN and Algorithm 4 now show a slight reduction in error for
Testset 4D. For Testset 4C, adding Algorithm 4 increases the error. A possible explanation
for this is that the data in Testset 4C and the training data are so similar and that the
network had used the absolute heading direction to compute the target orientation estimates.
When removing this information, there is less information the network can rely on and the
performance is dropped. The superior performance on Testset 4C can be explained by the
fact that Testset 4C contains the same absolute heading direction information as the training
data. However, it is undesirable to rely on that dependency. It is good to see that the error
when using Algorithm 4 is about the same. This is a nice example of trading generalizability
for performance. It is better to have a network performing well in many possible situations
(Testset 4C and Testset 4D) rather than it being better for only a particular part of the
possible data (Testset 4C). Another property of this experimental setup that could be the
cause to these less convincing results is that the baseline error using Algorithms 2 and 5 is
much lower. Put differently: There is just fewer process to be learned, making the RNN less
necessary. The final error is not as low as it was for data obtained from experimental setup 2

S.J. van den Heuvel Master of Science Thesis

6-2 Results and discussion 57

and 3. This result supports the suspicion that the process is much more complex, since even if
the data represents only a small portion of the possible motions, identical performance is not
obtained. With this observation, the conclusion is drawn that in order to learn the process
of experimental setup 4, at least a lot more data and computational power is required. This
is beyond the scope of this study.

The last conclusion that can be drawn is that again, using calibrated and scaled inertial data
does not outperform the employment of the RNN using physics-based input features.

The reduced error for experimental setup 1, 2 and 3 caused by the designed preprocessing
steps sufficiently demonstrate that these steps are beneficial for estimating orientation using
a loosely attached IMU.

Master of Science Thesis S.J. van den Heuvel

58 Results

S.J. van den Heuvel Master of Science Thesis

Chapter 7

Conclusions and future work

This chapter describes the general conclusions that are drawn from this study and its results.
Next, possible future steps are discussed.

7-1 Conclusions

In this work, four algorithms that constitute three preprocessing steps, were presented to im-
prove orientation estimation using a loosely attached IMU, a RNN and physics-based knowl-
edge. It was shown that the estimation of orientation using a loosely attached IMU can really
benefit from these steps. These steps made it possible to decompose the error which has not
been seen in literature yet. In addition, it was shown that using physics-based input features
outperforms the use of calibrated and scaled inertial data.
The first preprocessing step, removing an average misalignment, answers to the first and
second research goal, presented in Section 1-3. Using two experimental setups, this step has
proven to be beneficial for two purposes. Firstly, by removing the average misalignment, it
was possible to obtain a baseline performance that was not affected by a misaligned mounting
of the sensor. This way, the part that contributed to the error due to this misalignment could
be isolated. Secondly and possibly more important, by removing the average misalignment
from data fed to the network during the training phase and inference phase, it was possible
to train a network that is robust to misaligned attachments. This allows the proposed model
to be deployed for an enlarged set of situations.
The second preprocessing step in the proposed model has aimed to remove the dependency on
the absolute heading direction of the data. Two algorithms to do this have been designed, one
which added artificially generated data to the dataset and one that removes the dependency
from the data. The former showed good results, however, it was computationally much more
demanding. The latter achieved equal results without the extra computational burden which
makes it a powerful algorithm to address the second research goal.
The last preprocessing step answers to the second research goal. By removing ambiguity and
discontinuities from data it was managed to reduce the amount of data required by a factor

Master of Science Thesis S.J. van den Heuvel

60 Conclusions and future work

2 for the worst-case scenario. Results on a simulated setup have shown such situations can
occur and that this step is of crucial importance.

In response to the last research goal, the designed network was fed with calibrated and scaled
inertial data. The goal was to verify that using physics-based input features is beneficial for
the performance of the network. The results on experimental setup 2, 3 and 4 have confirmed
that this is true. Another advantage of using the physics-based input features is that it is
possible to reduce the task of the RNN. This way, there is more insight in what the network
actually learns to do the estimation.

Algorithm 2 and Algorithm 4 make use of the conversion to the Euler angles parameterization.
This parameterization suffers from gimbal lock. This does not occur too often but is a
disadvantage of these steps. A way to cope with this is thought of, namely, interpolating
the unobservable angles. This, however, remains an approximation of reality. Given the low
frequency of occurring of gimbal lock, it is assumed that this approximation is not able to
ruin the results.

Another issue that was encountered, was the difficulty of quantifying the effect of the designed
algorithms. The results are highly dependent on the kind of setup that is used and also differ
a bit dependent on the content of the recorded data. To address the dependency on the kind
of setup, the use of the algorithms should be selected according to what a setup requires. It
does not do any harm though, using the algorithms when they are not required. The problem
of dependency on the recorded data could be addressed by using better hardware, which
allows training the network with much more data. This way the dependency on the recorded
data is reduced because ML methods draw their power from data, meaning more data could
potentially result in better performance.

7-2 Future work

As the subject under investigation was rather broad, there are multiple steps that can be
addressed by future studies. A number of them are discussed below.

As already described, the computational power of the hardware setup was a limiting factor in
some cases. One could improve the effect of the preprocessing steps by recording more data
and learning the process more thoroughly this way.

The robustness of the RNN could be examined for the case in which the orientation estimates
from the EKF are slightly off or when a part of the test data is faulty. This could occur for
example, when the magnetic field is disturbed but the measurements are still within bounds.
Then the orientation estimates from the EKF are affected by this.

In this study, parameters of networks that had shown to be successful in literature are adopted
in order to save time. These parameters could be optimized for this problem. While this is
probably not the hardest task, the process will take a lot of time due to long training times.
One could consider doing a grid search over the parameter space.

The orientation estimates computed by the EKF were compared with the orientation estimates
from the fusion algorithm of the Xsens IMUs and it was concluded that they were sufficiently
accurate. The orientation estimates computed by the algorithm of Xsens are considered to

S.J. van den Heuvel Master of Science Thesis

7-2 Future work 61

be correct. Although, this is an accurate orientation estimation algorithm, the orientation
estimates of the EKF could be compared to the orientation estimates of an optical system.

The use of different IMUs has not been explored in this study. Future work could be to verify
the working of the proposed model using a different kind of IMUs, which might have an effect
due to different noise characteristics or sampling frequencies.

While this study focused on the orientation estimation using a single IMU on purpose, em-
ploying multiple loosely attached IMUs could be beneficial. This area is unaddressed and
could be explored in future studies.

While there are good reasons to use RNNs for orientation estimation related problems, occa-
sionally conducted research in this area have employed deep neural networks or convolutional
neural networks. Comparing the performance using these networks and other ML methods
are left for future studies as well.

Master of Science Thesis S.J. van den Heuvel

62 Conclusions and future work

S.J. van den Heuvel Master of Science Thesis

Appendix A

Conversions

This appendix describes how unit quaternions are converted to Euler angles and visa versa.
In order to do this an intermediate conversion to and from rotation matrices is applied. Below
the conversions from a unit quaternion to a rotation matrix is described. Then the rotation
from a rotation matrix to a unit quaternion. Next, the conversion from a rotation matrix to
Euler angles is explained and lastly, the conversion from Euler angles to a rotation matrix
will be discussed.

A-1 Converting unit quaternions to rotation matrices

The conversion in (A-1) is used to convert unit quaternions to rotation matrices. In this
case the orientation representation used as example describes the orientation of a sensor
frame S with respect to the navigation frame N . The quaternion that is converted should be
normalized beforehand. If this is the case, the following conversion,

R(q)NS =

q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q0q2 + 2q1q3
2q0q3 + 2q1q2 q2

0 − q2
1 + q2

2 − q2
3 2q2q3 − 2q0q1

2q1q3 − 2q02q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

 , (A-1)

is used [37].

A-2 Converting rotation matrices to unit quaternions

Having obtained a rotation matrix from an Euler angles representation, it can be converted
to a unit quaternion representation. To do this, several measures are taken to prevent square
roots having a negative argument [38, 37]. This way it is possible to convert unit quaternions
to rotation matrices and converting them back yielding the same unit quaternions that was
started with.

Master of Science Thesis S.J. van den Heuvel

64 Conversions

The rotation matrix is parameterized by

RNS =

r00 r01 r02
r10 r11 r12
r20 r21 r22

 . (A-2)

If r11 > −r22 ∩ r00 > −r11 ∩ r00 > −r22, then RNS is converted to qNS by

q(R)NS = 1
2

1 + r00 + r11 + r22

r21 − r12
r02 − r20
r10 − r01

/√1+r00+r11+r22. (A-3)

Otherwise if r11 < −r22 ∩ r00 > r11 ∩ r00 > r22, then RNS is converted to qNS by

q(R)NS = 1
2

r21 − r12

1 + r00 − r11 − r22
r01 + r10
r02 + r20

/√1+r00−r11−r22. (A-4)

Otherwise if r11 > r22 ∩ r00 < r11 ∩ r00 < −r22, then RNS is converted to qNS by

q(R)NS = 1
2

r02 − r20
r01 + r10

1− r00 + r11 − r22
r12 + r21

/√1−r00+r11−r22. (A-5)

Otherwise RNS is converted to qNS by

q(R)NS = 1
2

r10 − r01
r02 + r20
r12 + r21

1− r00 − r11 + r22

/√1−r00−r11+r22. (A-6)

A-3 Converting Euler angles to rotation matrices

This section describes how an Euler angles representation is converted to a rotation matrix.
This conversion is dependent on the order of rotation around the orthogonal axes of an object
as described in Section 2-2-2. The order that will be presented here is the Z-Y’-X” order.
This is in accordance with the constraint imposed on the sensor frame’s z-axis, which need
to align with the navigation frame’s z-axis. This was described in Section 4-4-2. An Euler

S.J. van den Heuvel Master of Science Thesis

A-4 Converting rotation matrices to Euler angles 65

angles representation is converted to a rotation matrix representation using

R(φ, θ, ψ)NS

= RZψR
Y
θ R

X
φ

=

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

1 0 0

0 cosφ − sinφ
0 sinφ cosφ

=

cosψ cos θ − sinψ cosφ+ cosψ sin θ sinφ sinψ sinφ+ cosψ sin θ cosφ
sinψ cos θ cosψ cosφ+ sinψ sin θ sinφ − cosψ sinφ+ sinψ sin θ cosφ
− sin θ cos θ sinφ cos θ cosφ

 . (A-7)

A-4 Converting rotation matrices to Euler angles

The conversion from a rotation matrix representation to an Euler angles representation can
be derived by inspecting (A-7). Using the parameterization of the rotation matrix as denoted
in (A-2) the angles are defined as

φ(RNS) = atan2 R21
R22

, (A-8)

θ(RNS) = − asinR20 and (A-9)

ψ(RNS) = atan2 R10
R00

. (A-10)

The range of the angles is from −π [rad] to π [rad] for the roll (φ) and yaw angle (ψ) and
from −π

2 [rad] to π
2 [rad] for the pitch angle (θ). Note here that gimbal lock can occur as the

pitch angle reaches near −π
2 [rad] or π

2 [rad]. Then the rank of the rotation matrix decreases
by one and the roll and yaw angle cannot be distinguished from each other.

Master of Science Thesis S.J. van den Heuvel

66 Conversions

S.J. van den Heuvel Master of Science Thesis

Appendix B

Quaternion algebra

This appendix provides a number of operations that can be applied to quaternions as well as
a number of properties of quaternions [39, 31]. Most of them are used in Appendix C and in
Algorithm 1.

B-1 Quaternion operations

The quaternion consists of four elements
[
q0 q1 q2 q3

]T
. Operations that involve quater-

nions which are used in this work are listed below [39].

• The quaternion conjugate is denoted by qc =
[
q0 −q1 −q2 −q3

]T
.

• The quaternion multiplication is denoted by p � q =

p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 + p2q0 + p3q1 − p1q3
p0q3 + p3q0 + p1q2 − p2q1

, where
p and q are both quaternions.

• The right multiplication operator qR =

q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0

 and (p � q) = qRp.

• The conjugate of a quaternion multiplication is given by (p � q)c = qc � pc.

B-2 Quaternion properties

In this section the proof of two properties is given.

Master of Science Thesis S.J. van den Heuvel

68 Quaternion algebra

1. q + qc = 2q0

2. (a� b)0 = aT bc

Item 1 is derived by

q =

q0
q1
q2
q3

 , qc =

q0
−q1
−q2
−q3

 and q + qc =

q0 + q0
q1 − q1
q2 − q2
q3 − q3

 = 2

q0
0
0
0

 . (B-1)

Item 2 is derived by

a =

a0
a1
a2
a3

 , b =

b0
b1
b2
b3

 , (a� b)0 = a0b0 − a1b1 − a2b2 − a3b3 and

aT bc =
[
a0 a1 a2 a3

]
b0
−b1
−b2
−b3

 = a0b0 − a1b1 − a2b2 − a3b3. (B-2)

S.J. van den Heuvel Master of Science Thesis

Appendix C

Algorithm: Estimating orientation
difference between stationary frames

using unit quaternions

The author of [39] mentions an algorithm that can be used to estimate the orientation dif-
ference between two stationary frames using unit quaternions as orientation representations.
This is often used in order to calibrate two reference systems measuring the same orientation.
In this study, however, it was used to verify whether two reference frames are aligned or not.

C-1 Theorem (Deriving the orientation difference between station-
ary orientation estimations)

Assume you have {quvn }Nn=1 and {qxwn }Nn=1. So multiple (N) orientation estimations describing
the orientation of frame v with respect to frame u, and multiple (N) orientation estimations
describing the orientation of frame w with respect frame x. Then for every n it should hold
that

quvn � qvw ≈ qux � qxwn . (C-1)

Where qvw and qux are the unknown rotations that are being sought. This should hold because
at both sides of the equation one tries to calculate quw. In order to compute the rotation qvw
and qux, the sum of the squared so-called residual errors is constructed from (C-1) [39],

en = quvn � qvw − qux � qxwn , (C-2)
||en||22 = (quvn � qvw − qux � qxwn)2. (C-3)

Master of Science Thesis S.J. van den Heuvel

70 Algorithm: Estimating orientation difference between stationary frames using unit quaternions

This can be rewritten as

||en||22 = (quvn � qvw − qux � qxwn)(quvn � qvw − qux � qxwn)c, (C-4)
= (quvn � qvw)(quvn � qvw)c − (quvn � qvw)(qux � qxwn)c (C-5)
− (qux � qxwn)(quvn � qvw)c + (qux � qxwn)(qux � qxwn)c,

= ||quw||22 − (quvn � qvw)(qux � qxwn)c − (qux � qxwn)(quvn � qvw)c + ||quw||22, (C-6)
= 1− (quvn � qvw)(qux � qxwn)c − (qux � qxwn)(quvn � qvw)c + 1, (C-7)
= ||quu||22 − (quvn � qvw)(qux � qxwn)c − (qux � qxwn)(quvn � qvw)c + 1, (C-8)
= ||quu||22 − (quvn � qvw � qwxn � qxu)− (qwxn � qxu)c(quvn � qvw)c + 1, (C-9)
= ||quu||22 − (quvn � qvw � qwxn � qxu)− (quvn � qvw � qwxn � qxu)c + 1, (C-10)
= ||quvn � qvw � qwxn � qxu||22 − (quvn � qvw � qwxn � qxu) (C-11)
− (quvn � qvw � qwxn � qxu)c + 1,

= (quvn � qvw � qwxn � qxu)(quvn � qvw � qwxn � qxu)c − (quvn � qvw � qwxn � qxu) (C-12)
− (quvn � qvw � qwxn � qxu)c + 1,

= (quvn � qvw � qwxn � qxu − 1)((quvn � qvw � qwxn � qxu)c − 1), (C-13)
= (quvn � qvw � qwxn � qxu − 1)(quvn � qvw � qwxn � qxu − 1)c, (C-14)
= ||quvn � qvw � qwxn � qxu − 1||22. (C-15)

Equation (C-15) corresponds with the squared residual error stated in [39]. The sum of
squared residual errors is denoted by

V (qux, qvw) =
N∑
n=1
||en||22 =

N∑
n=1
||quvn � qvw � qwxn � qxu − 1||22. (C-16)

Minimizing V (qux, qvw) yields the best estimations of qux and qvw. This term is minimal if
q̂ux and q̂vw equal the first left and right singular vectors of the singular value decomposition
of matrix A.

A = UΣV T , (C-17)

=
N∑
n=1

quv
LT

n qxw
R

n . (C-18)

S.J. van den Heuvel Master of Science Thesis

C-2 Proof 71

C-2 Proof

To get to this result, the argument of the loss function (C-16) is rewritten to

||en||22 = ||quvn � qvw � qwxn � qxu − 1||22, (C-19)
= (quvn � qvw � qwxn � qxu − 1)(quvn � qvw � qwxn � qxu − 1)c, (C-20)
= (quvn � qvw � qwxn � qxu − 1)((quvn � qvw � qwxn � qxu)c − 1), (C-21)
= (quvn � qvw � qwxn � qxu)(quvn � qvw � qwxn � qxu)c (C-22)
− (quvn � qvw � qwxn � qxu)− (quvn � qvw � qwxn � qxu)c + 1,

= ||quvn � qvw � qwxn � qxu||22 − (quvn � qvw � qwxn � qxu) (C-23)
− (quvn � qvw � qwxn � qxu)c + 1,

= ||quu||22 − (quvn � qvw � qwxn � qxu)− (quvn � qvw � qwxn � qxu)c + 1, (C-24)
= 2− (quvn � qvw � qwxn � qxu)− (quvn � qvw � qwxn � qxu)c. (C-25)

Now making use of (B-1) yields

||en||22 = 2− ((quvn � qvw � qwxn � qxu) + (quvn � qvw � qwxn � qxu)c), (C-26)
= 2− 2(quvn � qvw � qwxn � qxu)0. (C-27)

Now using (B-2)

||en||22 = 2− 2(quvn � qvw)T (qwxn � qxu)c. (C-28)

Using Appendix B-1 gives

||en||22 = 2− 2(quvL

n qvw)T (qux � qxwn),

= 2− 2(qvwT
quv

LT
n)(qxwR

n � qux),

= 2− 2qvwT
quv

LT
n qxw

R

n � qux. (C-29)

Minimizing ||en||22 means maximizing qvwT
quv

LT
n qxw

R

n � qux. We define

A =
N∑
n=1

quv
LT

n qxw
R

n . (C-30)

The maximization problem then reads

argmin
N∑
n=1
||en||22 := argmax qvwT

Aqux, (C-31)

subject to ||qux||22 = 1, ||qvw||22 = 1.

The solution for which ||en||22 is minimized then is

A = UΣV T ,

q̂ux = v1, the first right singular vector,
q̂vw = u1, the first left singular vector.

Master of Science Thesis S.J. van den Heuvel

72 Algorithm: Estimating orientation difference between stationary frames using unit quaternions

S.J. van den Heuvel Master of Science Thesis

Appendix D

Example: The redistribution of RMSEs
parameterized by Euler angles

This appendix provides the code and results to show that the RMSE of a single Euler angle
can increase while the overall error decreases.

1 import numpy as np
2 from HelperFunctions import RToEulerAngles , qToR , quaternionConjugate
3 from HelperFunctions import eulerAnglesToR , RToQ , quatMultiply
4

5 # Def ine three s t a r t i n g o r i e n t a t i o n r ep r e s en t a t i o n s
6 Euler0 = np . array ([0 , 0 , 0]) ∗np . pi/180 # Euler ang l e s [deg] sample 0
7 Euler1 = np . array ([4 5 , 0 , 0]) ∗np . pi/180 # Euler ang l e s [deg] sample 1
8 Euler2 = np . array ([0 , 45 , 0]) ∗np . pi/180 # Euler ang l e s [deg] sample 2
9

10 # Convert the Euler ang l e s paramete r i za t i on to un i t quate rn ions
11 q0 = RToQ (eulerAnglesToR (Euler0)) # uni t quatern ion sample 0
12 q1 = RToQ (eulerAnglesToR (Euler1)) # uni t quatern ion sample 1
13 q2 = RToQ (eulerAnglesToR (Euler2)) # uni t quatern ion sample 2
14

15 # Compute the quatern ion d i f f e r e n c e between subsequent samples
16 diff1 = quatMultiply (quaternionConjugate (q0) , q1)
17 diff2 = quatMultiply (quaternionConjugate (q0) , q2)
18

19 # Convert the quatern ion d i f f e r e n c e to Euler ang l e s
20 EulerDiff1 = RToEulerAngles (qToR (diff1))
21 EulerDiff2 = RToEulerAngles (qToR (diff2))
22

23 # Compute the mean Euler ang l e s o f the o r i e n t a t i o n d i f f e r e n c e
24 EulerMeanDiff = (EulerDiff1 + EulerDiff2) / 2
25 print ("The mean Euler ang l e s [deg] o f o r i e n t a t i o n d i f f e r e n c e are : " ,

EulerMeanDiff ∗180/np . pi)
26

27 # Convert the mean o r i e n t a t i o n d i f f e r e n c e to un i t quatern ions

Master of Science Thesis S.J. van den Heuvel

74 Example: The redistribution of RMSEs parameterized by Euler angles

28 qMeanDiff = RToQ (eulerAnglesToR (EulerMeanDiff))
29

30 # Rotate the o r i e n t a t i o n samples by the mean o r i e n t a t i o n d i f f e r e n c e
31 q1Rotated = quatMultiply (q1 , quaternionConjugate (qMeanDiff))
32 q2Rotated = quatMultiply (q2 , quaternionConjugate (qMeanDiff))
33

34 # Compute the o r i g i n a l and rota ted o r i e n t a t i o n d i f f e r e n c e s
35 q1OriginaldifferenceQuaternion = quatMultiply (quaternionConjugate (q0) , q1

)
36 q1RotateddifferenceQuaternion = quatMultiply (quaternionConjugate (q0) ,

q1Rotated)
37 q2OriginaldifferenceQuaternion = quatMultiply (quaternionConjugate (q0) , q2

)
38 q2RotateddifferenceQuaternion = quatMultiply (quaternionConjugate (q0) ,

q2Rotated)
39

40 # Convert o r i g i n a l and rota ted o r i e n t a t i o n d i f f e r e n c e to Euler ang l e s
41 q1OriginalDifferenceEulerAngles = RToEulerAngles (qToR (

q1OriginaldifferenceQuaternion))
42 q1RotatedDifferenceEulerAngles = RToEulerAngles (qToR (

q1RotateddifferenceQuaternion))
43 q2OriginalDifferenceEulerAngles = RToEulerAngles (qToR (

q2OriginaldifferenceQuaternion))
44 q2RotatedDifferenceEulerAngles = RToEulerAngles (qToR (

q2RotateddifferenceQuaternion))
45

46 # Compute the RMSE of the Euler ang l e s d e s c r i b i n g the mean o r i e n t a t i o n
d i f f e r e n c e

47 RMSEOriginal = np . array ([
48 np . round (np . sqrt ((np . square (q1OriginalDifferenceEulerAngles [0])

/2) + (np . square (q2OriginalDifferenceEulerAngles [0]) /2)) , 3) ,
49 np . round (np . sqrt ((np . square (q1OriginalDifferenceEulerAngles [1])

/2) + (np . square (q2OriginalDifferenceEulerAngles [1]) /2)) , 3) ,
50 np . round (np . sqrt ((np . square (q1OriginalDifferenceEulerAngles [2])

/2) + (np . square (q2OriginalDifferenceEulerAngles [2]) /2)) , 3) ,
51])
52

53 RMSERotated = np . array ([
54 np . round (np . sqrt ((np . square (q1RotatedDifferenceEulerAngles [0]) /2)

+ (np . square (q2RotatedDifferenceEulerAngles [0]) /2)) , 3) ,
55 np . round (np . sqrt ((np . square (q1RotatedDifferenceEulerAngles [1]) /2)

+ (np . square (q2RotatedDifferenceEulerAngles [1]) /2)) , 3) ,
56 np . round (np . sqrt ((np . square (q1RotatedDifferenceEulerAngles [2]) /2)

+ (np . square (q2RotatedDifferenceEulerAngles [2]) /2)) , 3) ,
57])
58

59 # Print the r e s u l t s
60 print ("Mean o r i g i n a l o r i e n t a t i o n d i f f e r e n c e in Euler ang l e s : " , np . round (

RMSEOriginal ∗180/np . pi , 3) , " [deg] ")
61 print ("Mean rota ted o r i e n t a t i o n d i f f e r e n c e in Euler ang l e s : " , np . round (

RMSERotated ∗180/np . pi , 3) , " [deg] ")

S.J. van den Heuvel Master of Science Thesis

75

The output of the program is denoted below:

> The mean Euler angles [deg] of orientation difference are: [22.5 22.5 0.]
> Mean original orientation difference in Euler angles: [31.799 31.799 0.] [deg]
> Mean rotated orientation difference in Euler angles: [20.970 22.288 9.110] [deg]

The Euler angles in the output are ordered as follows: [roll, pitch, yaw]. The first line indicates
that the yaw angle of the average orientation difference was zero. Also, the original average
orientation difference had zero yaw, visible in line two. Despite this, the average misalignment
of the rotated data has an increased yaw error, indicated by the last line.

Master of Science Thesis S.J. van den Heuvel

76 Example: The redistribution of RMSEs parameterized by Euler angles

S.J. van den Heuvel Master of Science Thesis

Bibliography

[1] A. Fransson and O. Lundström, “Learning a better attitude: A recurrent neural filter
for orientation estimation,” Master’s thesis, Chalmers University of Technology, 2020.

[2] H. Fan, M. Jiang, L. Xu, H. Zhu, J. Cheng, and J. Jiang, “Comparison of long short
term memory networks and the hydrological model in runoff simulation,” Water, vol. 12,
p. 175, 01 2020.

[3] S. Varsamopoulos, K. Bertels, and C. G. Almudever, “Designing neural network based
decoders for surface codes,” 2018.

[4] S. Sun, D. Melamed, and K. Kitani, “Idol: Inertial deep orientation-estimation and
localization,” 02 2021.

[5] D. Weber, C. Gühmann, and T. Seel, “Robust neural networks outperform attitude
estimation filters,” 2021.

[6] T. Beravs, P. Rebersek, D. Novak, J. Podobnik, and M. Munih, “Development and
validation of a wearable inertial measurement system for use with lower limb exoskele-
tons,” in Proceedings of the International Conference on Humanoid Robot, IEEE-RASs,
pp. 212–217, 10 2011.

[7] R. Gurchiek, N. Cheney, and R. McGinnis, “Estimating biomechanical time-series with
wearable sensors: A systematic review of machine learning techniques,” Sensors, vol. 19,
p. 5227, 11 2019.

[8] M. Trumble, A. Gilbert, C. Malleson, A. Hilton, and J. Collomosse, “Total capture: 3d
human pose estimation fusing video and inertial sensors,” 09 2017.

[9] X. Xiao and S. Zarar, “A wearable system for articulated human pose tracking under
uncertainty of sensor placement,” in Proceedings of the 7th International Conference on
Biomedical Robotics and Biomechatronics, pp. 1144–1150, 2018.

[10] G. B. Guerra-filho, “Optical motion capture: Theory and implementation,” Theoretical
and Applied Informatics, vol. 12, no. 2, pp. 1–29, 2005.

Master of Science Thesis S.J. van den Heuvel

78 Bibliography

[11] D. Nagaraj, E. Schake, P. Leiner, and D. Werth, “An RNN-ensemble approach for real
time human pose estimation from sparse IMUs,” in Proceedings of the 3rd International
Conference on Applications of Intelligent Systems, pp. 1–6, 2020.

[12] S. Mohammed and I. Tashev, “Unsupervised deep representation learning to remove
motion artifacts in free-mode body sensor networks,” in Proceedings of the 14th IEEE
International Conference on Wearable and Implantable Body Sensor Networks, pp. 183–
188, 2017.

[13] X. Xiao and S. Zarar, “Machine learning for placement-insensitive inertial motion cap-
ture,” in Proceedings on the IEEE International Conference on Robotics and Automation,
pp. 6716–6721, IEEE, 2018.

[14] T. Zimmermann, B. Taetz, and G. Bleser, “IMU-to-segment assignment and orientation
alignment for the lower body using deep learning,” Sensors, vol. 18, no. 1, p. 302, 2018.

[15] T. Bikmukhametov and J. Jäschke, “Combining machine learning and process engineer-
ing physics towards enhanced accuracy and explainability of data-driven models,” Com-
puters & Chemical Engineering, vol. 138, p. 106834, 2020.

[16] Y. Guan and T. Plötz, “Ensembles of deep LSTM learners for activity recognition using
wearables,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 1, no. 2, pp. 1–28, 2017.

[17] R. Khorrambakht, H. Damirchi, and H. Taghirad, “Preintegrated imu features for effi-
cient deep inertial odometry,” 07 2020.

[18] M. A. Esfahani, H. Wang, K. Wu, and S. Yuan, “OriNet: Robust 3-D orientation es-
timation with a single particular IMU,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 399–406, 2020.

[19] D. Weber, C. Gühmann, and T. Seel, “Neural networks versus conventional filters for
inertial-sensor-based attitude estimation,” 2020.

[20] M. Brossard, A. Barrau, and S. Bonnabel, “AI-IMU dead-reckoning,” IEEE Transactions
on Intelligent Vehicles, 2020.

[21] M. Brossard, A. Barrau, and S. Bonnabel, “Rins-w: Robust inertial navigation system
on wheels,” pp. 2068–2075, 11 2019.

[22] M. Brossard, S. Bonnabel, and A. Barrau, “Denoising imu gyroscopes with deep learning
for open-loop attitude estimation,” IEEE Robotics and Automation Letters, 06 2020.

[23] F. J. Wouda, M. Giuberti, G. Bellusci, and P. H. Veltink, “Estimation of full-body poses
using only five inertial sensors: An eager or lazy learning approach?,” Sensors, vol. 16,
p. 2138, 2016.

[24] D. Pavllo, D. Grangier, and M. Auli, “Quaternet: A quaternion-based recurrent model
for human motion,” in Proceedings of the 29th British Conference on Machine Vision,
2018.

S.J. van den Heuvel Master of Science Thesis

79

[25] Y. Huang, M. Kaufmann, E. Aksan, M. J. Black, O. Hilliges, and G. Pons-Moll, “Deep
inertial poser: Learning to reconstruct human pose from sparse inertial measurements in
real time,” ACM Transactions on Graphics, vol. 37, no. 6, pp. 1–15, 2018.

[26] T. von Marcard, B. Rosenhahn, M. J. Black, and G. Pons-Moll, “Sparse inertial poser:
Automatic 3D human pose estimation from sparse IMUs,” Computer Graphics Forum,
vol. 36, no. 2, pp. 349–360, 2017.

[27] K. Feng, J. Li, X. Zhang, C. Shen, Y. Bi, T. Zheng, and J. Liu, “A new quaternion-based
Kalman filter for real-time attitude estimation using the two-step geometrically-intuitive
correction algorithm,” Sensors, 2017.

[28] A. Harindranath and M. Arora, “MEMS IMU sensor orientation algorithms-comparison
in a simulation environment,” in Proceedings of the International Conference on Net-
working, Embedded and Wireless Systems, pp. 1–6, 2018.

[29] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of imu and marg
orientation using a gradient descent algorithm,” in 2011 IEEE International Conference
on Rehabilitation Robotics, pp. 1–7, 2011.

[30] Y. Xu, J. Quo, and Y. Guan, “EKF based multiple-mode attitude estimator for quadrotor
using inertial measurement unit,” in Proceedings of the 36th Chinese Control Conference,
2017.

[31] M. Kok, J. D. Hol, and T. B. Schön, “Using inertial sensors for position and orientation
estimation,” Foundations and Trends in Signal Processing, vol. 11, no. 1-2, pp. 1–153,
2017.

[32] Q. A. Dugne–Hennequin, H. Uchiyama, and J. P. S. Do Monte Lima, “Understanding
the behavior of data-driven inertial odometry with kinematics-mimicking deep neural
network,” 2021.

[33] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural nets
and problem solutions,” International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 06, pp. 107–116, 1998.

[34] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: continual prediction
with lstm,” in Proceedings of the Ninth International Conference on Artificial Neural
Networks, vol. 2, pp. 850–855, 1999.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[36] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties of neural
machine translation: Encoder-decoder approaches,” CoRR, 2014.

[37] G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma, and R. Sutton, “A recipe on the
parameterization of rotation matrices for non-linear optimization using quaternions,”
tech. rep., 2012.

[38] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,”
Matrix, vol. 58, 2006.

Master of Science Thesis S.J. van den Heuvel

80 Bibliography

[39] J. D. Hol, Sensor fusion and calibration of inertial sensors, vision, ultra-wideband and
GPS. Dissertation no. 1368, Linköping University, Linköping, Sweden, 2011.

[40] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing LSTM language
models,” CoRR, 08 2017.

[41] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization of neural net-
works using dropconnect,” in Proceedings of the 30th International Conference on Ma-
chine Learning, vol. 28, pp. 1058–1066, 2013.

[42] “tf.keras.layers.lstm.” https://www.tensorflow.org/api_docs/python/tf/keras/
layers/LSTM, 2021. Accessed: 2021-02-04.

[43] A. M. Sabatini, “Kalman-filter-based orientation determination using inertial/magnetic
sensors: Observability analysis and performance evaluation,” Sensors, vol. 11, no. 10,
pp. 9182–9206, 2011.

[44] M. Pedley, “High precision calibration of a three-axis accelerometer,” 2013.

[45] C. Chen, X. Lu, A. Markham, and N. Trigoni, “Ionet: Learning to cure the curse of
drift in inertial odometry,” in Proceedings of the 32’th AAAI Conference on Artificial
Intelligence, vol. 32, 2018.

[46] “Orientation output specifications.” https://base.xsens.com/knowledgebase/s/
article/Orientation-output-specifications-1605869709222, feb 2021. Accessed:
2021-03-12.

[47] D. Q. Huynh, “Metrics for 3d rotations: Comparison and analysis,” Journal of Mathe-
matical Imaging and Vision, vol. 35, no. 2, pp. 155–164, 2009.

[48] A. Lindholm, N. Wahlström, F. Lindsten, and T. B. Schön, “Supervised machine learn-
ing,” 2020.

[49] “Mtw awinda.” https://www.xsens.com/products/mtw-awinda, 2021. Accessed: 2021-
04-28.

S.J. van den Heuvel Master of Science Thesis

https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://base.xsens.com/knowledgebase/s/article/Orientation-output-specifications-1605869709222
https://base.xsens.com/knowledgebase/s/article/Orientation-output-specifications-1605869709222
https://www.xsens.com/products/mtw-awinda

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Glossary
	List of Acronyms
	List of Symbols

	Main Matter
	Introduction
	Background
	Motivation
	Research goals
	Problem decomposition and contributions
	Organization and content

	Related Work
	Related work on orientation estimation using IMUs and RNNs
	Representing orientation
	Coordinate frames
	Parameterizing orientation

	Inertial-based orientation estimation
	Measurement models
	The dynamical model
	The extended Kalman filter
	The LSTM cell

	General subjects for orientation estimation using a RNN
	Dimensions input data
	Overfitting
	Ambiguous data
	Discontinuous sequences

	Methods
	The framework of the model
	The extended Kalman filter
	The recurrent neural network

	The proposed model
	Removing the average misalignment
	The baseline performance

	Removing the absolute heading direction dependency
	Augmenting the dataset with different absolute heading directions
	Removing the absolute heading dependency of the dataset

	Removing ambiguity and discontinuities from unit quaternions
	Ambiguity in data
	Sequential time-dependencies

	Using physics-based input features as opposed to inertial data
	Feature scaling the inertial data

	Experiments
	Hardware
	Simulated setup
	Experimental setups
	Datasets

	Results
	Performance measures
	Results and discussion
	Removing ambiguity and discontinuities from unit quaternions
	Removing the average misalignment
	Removing the absolute heading direction dependency
	Using physics-based input features as opposed to inertial data
	Results for data from experimental setup 3 and 4

	Conclusions and future work
	Conclusions
	Future work

	Appendices
	Conversions
	Converting unit quaternions to rotation matrices
	Converting rotation matrices to unit quaternions
	Converting Euler angles to rotation matrices
	Converting rotation matrices to Euler angles

	Quaternion algebra
	Quaternion operations
	Quaternion properties

	Algorithm: Estimating orientation difference between stationary frames using unit quaternions
	Theorem (Deriving the orientation difference between stationary orientation estimations)
	Proof

	Example: The redistribution of RMSEs parameterized by Euler angles

	Back Matter
	Bibliography

