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ABSTRACT
The advent of consumer and industrial Unmanned Aerial Vehi-
cles (UAVs), commonly referred to as drones, has opened business
opportunities in many fields, including logistics, smart agricul-
ture, inspection, surveillance, and construction. In addition, the
autonomous operations of UAVs reduce risks by minimizing the
time spent by human workers in harsh environments and lowering
costs by automating tasks. For reliability and safety, the drones
must sense and avoid potential obstacles and must be capable of
safely navigating in unknown environments. UAVs’ perception
requires reliability in various settings, such as high dust levels,
humidity, intense sun glare, dark, and fog that can severely ob-
struct many conventional sensing methods. Radar systems have
unique strengths; they can reliably estimate how far an object is
and measure its relative speed via the Doppler effect. In addition,
because radars exploit radio waves to sense, they perform well in
rain, fog, snow, or smoky environments. This stands in contrast
to optical technologies, such as cameras or LIght Detection And
Ranging (Lidars), which are more susceptible to the same chal-
lenges as the human eye. This survey paper aims to address the
signal processing challenges for the exploitation of radar systems
in unmanned aerial vehicles for advanced perception, considering
recent integration trends and technology capabilities. The focus is
on signal processing techniques for low-cost and power-efficient
radar sensors, which operate onboard the UAVs in real-time to en-
sure their needs in terms of perception, situational awareness, and
navigation. Additionally, we highlight the challenges that remain
to be tackled and the opportunities that lie ahead in the search for
a more efficient, safe, and autonomous way for UAVs to perceive
and interact with the world.

CCS CONCEPTS
• Computer systems organization → System on a chip; Em-
bedded hardware;
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1 INTRODUCTION
Modern UAVs offer easy maneuverability, stable flight, waypoint
navigation, geofencing, and return to home abilities in autopilot
mode. They take advantage of sensory fusion and exploit sensors
such as inertial measurement units (IMUs) with integrated gyro-
scope and accelerometers, barometric sensors, ultrasonic sensors,
and the Global Navigation Satellite Systems (GNNS). Some modern
UAVs also exploit vision sensors (cameras) to detect and follow tar-
gets, mainly for kinematic applications. However, to obtain safe and
autonomous mission execution, UAVs must be capable of reliably
sensing the whole environment and must act autonomously. Target
detection and collision avoidance are necessary to autonomously
maneuver around obstacles that are not predictable in waypoint
navigation scenarios, such as power lines, trees, birds, other UAVs,
or other unexpected objects.

Up to now, visual perception is by far dominating in consumer
and industrial drones. Computer vision-based navigation, pose es-
timation, tracking, obstacle detection, and avoidance are becoming
exploited in tiny commercial UAV systems [3]. This is mainly driven
by the large availability of cheap, small, and high-resolution cam-
eras and by the advent of embedded deep learning models that
meet the memory and power constraints of embedded computing
platforms.

To ensure safe and reliable UAV systems, state-of-the-art per-
ception systems for UAVs are based on a combination of infrared,
ultrasonic, and vision-based sensors (monocular or stereo vision).
In addition to these sensing modalities, especially when paired
with machine learning algorithms, radar-based perception systems
can be used to classify and identify several targets, for example,
by analyzing their micro-Doppler signatures [7, 27]. Radar-based
perception systems are also commonly used in remote sensing ap-
plications. For example, they can estimate water reserves, monitor
crops, and can be used in agriculture applications [23].
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Lidars and cameras are the main competing sensing technologies
with radars to detect targets and measure their distances, motion di-
rections, and speed. However, their main limitation compared with
radar is the detrimental effect on their performance in bad weather
and visibility conditions. Lidars are also still relatively heavy and
costly. As a possible alternative, the use of ultrasonic technologies
is, however, limited to very short ranges (<10m) for the detection of
targets in the vicinity of vehicles in low-speed and urban scenarios
(e.g., automotive parking assistant). In addition, ultrasound sen-
sors are point-based and have difficulty in sensing soft or curved
edges at large incidence angles [4]. Event-based cameras are also
competitive sensors to traditional cameras in high-speed motion.
They can solve the phenomenon called blur, which causes a loss of
scene information [15]. Moreover, event-based cameras are popular
in drone research as they enable high-speed control and a high-
dynamic range. Nevertheless, these passive sensor technologies
ultimately suffer from light conditions.

This survey focuses on radar-based sensing technologies because
they are less sensitive to weather conditions and provide excellent
sensory information. Traditionally, radar sensors have been expen-
sive, bulky, and power-hungry. Only recently, these factors have
been overcome, and the production of cheap, lightweight radar
sensors is becoming part of the modern mobile applications [20].
Current radar sensors come in the form of compact, millimeter-
wave frequency-modulated continuous-wave (FMCW) radars. They
can provide range and radial velocity in multi-target scenarios. In
addition, the tremendous expansion of automotive radar technology
has also produced compact MIMO (Multiple Input Multiple Output)
radars capable of estimating the angular position of the targets
beyond just range and velocity. Several lightweights demonstrate
this tremendous progress in radar technologies, small and cheap
radar systems that have entered the consumer market in Systems
on Chip (SoC) solutions [16, 28, 31, 40, 43].

This paper provides an overview of radar technologies, focusing
on their application onboard UAV systems for enhancing perception
to enable high levels of autonomy and assisted/autonomous naviga-
tion. We will present a survey of radar sensing technologies, their
working principles and advantages, and their challenges as novel
onboard perception sensors for UAV systems. In section Principle of
Operations of Radars and Signal Processing, we will discuss several
methodologies commonly used to extract information from radar
output and discuss some of the most widely used signal processing
techniques for obtaining range, velocity estimations, and angle of
arrival. In section Radar Perception onboard of UAV, we will review
applications of UAVs from low-level to high-level autonomous tasks
and some of the algorithms that have been recently proposed to
attain safe, reliable, and autonomous control of UAVs. Finally, we
will discuss opportunities for future research and open challenges,
such as the development of advanced machine learning and deep
neural networks for processing the information of radar systems.

2 PRINCIPLE OF OPERATIONS OF RADARS
AND SIGNAL PROCESSING

2.0.1 ContinuousWave (CW) radar. ContinuousWave radars trans-
mit a sinusoidal high-frequency signal continuously. The backscat-
tered power from the environment is constantly received and

processed. As CW-based radars transmit an unmodulated signal,
they can only measure the speed of targets by using the Doppler
effect. CW radars cannot measure the range, nor can they differenti-
ate between two or more targets. When backscattered power (echo)
is received, this carries only the information that there is an obsta-
cle in the direction of propagation of the electromagnetic waves. To
some extent, the properties of the obstacles may be inferred from
certain properties of the backscattered power. For example, the size
of the target can be estimated by the strength of the backscattered
signal, but since this parameter, or more formally the Radar Cross
Section (RCS), depends on many factors beyond the size of the tar-
get, this approach is usually not exploited in CW radar. The received
signal can have its frequency shifted by the Doppler effect, depend-
ing on the radial velocity component of a reflecting target. CW
radars are also called ’Doppler radars,’ and they cannot determine
distances or distinguish different targets in the same direction but
can estimate radial velocity via the Doppler frequency, i.e., by mea-
suring the phase difference of transmitted versus received signal.
CW radars are not typically employed in advanced UAVs, as they
cannot provide crucial multi-target range and speed information.

2.0.2 Frequency Modulated Continuous Wave (FMCW) radar. In
multi targets scenarios, the most widely used radar in UAVs is
the Frequency Modulated Continuous Wave radar with fast chirp-
ing [46]. FMCW radar emits continuous signals while changing its
operational frequency during measurements, i.e., the transmission
of power is modulated in frequency. The bandwidth of the radar
is the frequency range of the signal, often referred to as ’chirp’ or
’sweep’, from B = fn − f0, being fn the higher and f0 the lower
frequency. The most common modulation form for the emitted
signal is a linear frequency ramp. Concretely, the instantaneous
frequency f has a linear dependency with time t , as follows:

f (t) = f0 +
B

Tc
(t − t0) = f0 + S(t − t0) (1)

in which Tc is the chirp duration or period, B is the bandwidth
and f0 is the starting frequency at time t = t0. S denotes the rate
of frequency change (i.e., the frequency slope, sometimes called
’chirp rate’). The time-domain function that describe the phase, ϕ,
is obtained by integrating the angular frequency ω(t) = 2π f (t):

ϕ(t) = ϕ0+2π
∫ t

t0
f (t)dt = ϕ0+2π

[
f0(t − t0) +

B

2Tc
(t2 − t20 )

]
(2)

A linear chirp has a corresponding time-domain function, as
indicated in [24]

ytx (t) = Acsin

(
ϕ0 + 2π f0t + π

B

Tc
(t −mTc )

2
)

(3)

Where Ac represents the chirp’s amplitude,m refers to themth

chirp in a sequence of many chirps and t0 = 0, with the assumption
that chirps are continuously transmitted. The carrier frequency is
defined as fc = f0 + B/2, and it is the central frequency for the
spectrum band.

Contemporary FMCW radars can be fully integrated into a sys-
tem on a chip solution, consisting of single or multiple transmitters
(TX) and single or multiple receivers (RX) antennas and processing
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chains. Figure 1A shows a simplified block diagram for a system-on-
a-chip FMCW radar. First, a synthesizer generates an appropriate
chirp signal, modulated with a modulation scheme involving a
phase-locked loop (PLL) and an oscillator. Then, the signal is sent
to a power amplifier (PA) that amplifies the sweep, which is later
transmitted by the transmitting antenna. The backscattered power
from the environment and the targets are captured by the receiving
antenna that sends the signal through a low-noise amplifier (LNA).
Before the analog baseband block in figure 1, a downconversion
frequency mixer multiplies the RX and TX signals to generate an
intermediate frequency (IF) signal at the output. This IF signal is of-
ten referred to as ’beat frequency’ and contains useful information
about the possible targets. The beat signal is low-pass filtered in the
analog baseband block and sampled by analog to digital converters.

2.0.3 FMCW Range processing. For a single static target, the beat
frequency signal, fbeat , has a constant frequency proportional to
the reflected signal’s round-trip delay, which can be easily found
by spectral analysis (e.g., Fast Fourier Transform).

fbeat =
2r
c
S =

2B
cTc

r (4)

where r is the target-radar distance, c is the speed of light, and
S is the slope coefficient. Therefore, in a situation with multiple
targets at different locations, there will be several beat frequencies
at the RX antenna, each directly proportional to the target-radar
distance of each of the objects. Figure1B shows a cartoon of an SoC
radar receiving backscattered power with distinct beat frequencies
fb1, fb2, indicating the presence of the two targets at respective
distances r1 and r2, with the assumption of the distance between
the two targets higher than the range resolution.

2.0.4 FMCW Doppler processing. In the case of moving targets,
the beat frequencies of the round-trip delays will be affected by the
Doppler shift. This can be estimated in the frequency domain by
applying two successive Fourier Transformations (FT) over multiple
chirps. FMCW radars with fast chirps assume that the duration of
the transmitted waveform is longer than the round-trip time delay
related to the desired range to measure. Because of the rapid chirps,
the velocity influence on the first FT can be, in normal situations,
neglected while obtaining the range information [46]. Velocity
estimation is obtained with a second FT over multiple chirps at
the resulting range of the target. The second FT extracts motion-
induced phase changes from chirp to chirp, and such motion is
proportional to the velocity of the targets [38]. Figure 1C shows the
typical signal processing pipeline for radar frames. A radar frame
is a commonly used format in radar signal processing. It comprises
a number of digital samples per chirp over a set of multiple chirps.
Typical radar frames have small dimensions (8x64,64x128,256x256)
and are compatibles with Micro Controller Boards (MCUs) (as in
figure 1A). By storing 2D radar frames, a first Fast Fourier Transform
(FFT) on the data estimates the range information. A second FFT
obtains the Doppler shifts proportional to the velocities of the
targets.

2.0.5 Direction of Arrival (DoA) Estimation in FMCW radar. To
obtain angular information at high resolution, it is required to
have a radar with a large aperture (i.e., with multiple antennas).

Because modern high-frequency (60-140 GHz) radar can be inte-
grated into an SoC and their antennas have dimensions of a few
millimeters, multiple-input, multiple-output (MIMO) radars can
be used onboard UAVs. MIMO radars are capable of generating
large virtual apertures with a limited number of transmitters and
receivers. Most of the time, for example, in [8, 42], a time-division
multiplexing (TDM) technique is employed to switch transmitters
on and off consecutively. The actual direction of arrival estimation
can be calculated using several techniques such as MUltiple SIgnal
Classification (MUSIC) [37], Maximum likelihood methods [41],
and single snapshot DOA estimation [17, 33], amongst others. One
limitation of TDM techniques is the presence of phase errors when
the targets and/or the radar is in motion between the switching
among the transmitters. This phase error may lead to inaccuracies
in the angular estimation. For this reason, one possible solution is
to use virtual apertures with overlapping elements where the phase
offset between the active transmitters can be readily measured and
corrected [2].

A simple way of resolving the direction of arrival of the targets
can be employed when the radar platform has multiple receiving
antennas. DoA estimation can be carried out by looking at the
phase difference of the range maps from the several receiving an-
tennas. Once the location of a target has been identified in the
range-Doppler map (see figure 2A), a phase difference among the
signals from the two antennas can be estimated. Given a fixed
wavelength λ, the one corresponding to the carrier frequency of
the radar, and given a d spacing between the antennas, the phase
signal relates to the DoA by means of the physical relation shown
in figure 2A.

2.0.6 Synthetic Aperture Radar. Synthetic-Aperture Radar (SAR) is
traditionally used in remote sensing applications and through cloud
sensing when traditional optical sensors would fail [39]. In SAR
radar systems, a sequence of acquisitions from a smaller antenna
are combined to simulate a much larger virtual antenna aperture,
as in figure 2B. This synthetic larger aperture provides higher reso-
lution cross-range data, as the resolution is inversely proportional
to the antenna aperture. SAR processing and its applications are
particularly interesting for radars placed on UAVs, as they provide
a cheaper platform than larger aircraft to construct the synthetic
aperture for ground observations.

3 RADAR PERCEPTION ONBOARD OF UAV
While there is a significant body of literature on UAVs signatures
seen by ground-based radars [7, 27, 32], radar perception onboard
of UAVs and the related algorithms are still relatively unexplored.
This section summarises some of the notable contributions in state-
of-the-art.

3.1 Radar Odometry
Radar odometry (RO) is a technique to estimate the relative motion
of the UAV with respect to the environment by analyzing scans
obtained by the onboard radar sensor [25]. Radar odometry can
be viewed as a two-step process. First, there is the need to detect
essential features from the radar scans. Second, there is the need to
track the scattered points in radar data that directly relates to the
target objects over time.
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Figure 1: FMCW radar and signal processing. A) Simplified block diagram for a system-on-a-chip FMCW radar with single TX
and single RX antenna and a picture of a modern mm-wave radar [16]. B) Static multi-target detection using beat frequencies
measurements. C) Range andVelocity estimation via double FFT (first across the digital samples per chirp, then acrossmultiple
chirps).

Figure 2: A DoA estimation with two receiving antennas. B Synthetic aperture radar concept.

The first step can be accomplished by accumulating a grid map
from the radar scan and transforming it into a grayscale image.
Interesting points can then be detected using features extraction
techniques, e.g., Scale-Invariant Feature Transform [5]. An example
of estimating motion from a fixed-wing drone using only radar
odometry can be found in [29]. In [29] the authors exploited a range-
compressed image togetherwith aHough transform to detect strong
scatters by searching for hyperbolas in the range-compressed image.
They demonstrated that radar odometry for motion estimation of
lightweight UAVs is feasible and offers an interesting alternative
to visual odometry systems. In [30], an extension of this work
proposes the use of a threshold for better performance in natural
and cluttered environments. More recently, in [35], they proposed

an end-to-end multiple-target tracking strategy that exploits both
range and bearing measurements provided by radar onboard a
lightweight UAV. Their method detect strong and stable scatters in
two steps by employing a range-bearing estimation and Constant
False AlarmRate (CFAR) detection. The bearing anglewas estimated
using a range-compressed signal generated by two channels by
subtracting their phase components. To enhance the detection,
remove clutter, and therefore reduce the computational cost, the
ordered static CFAR algorithm was applied.

In the second step, i.e., for tracking the scattered points, sev-
eral methods have been used. In [30] a recursive-RANSAC method
was employed to track effectiveness scatters from the radar range-
compressed images. In [44] a matching method was proposed to
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track features over several radar scans. The extracted features are
aligned, and a cost function is minimized using matching algo-
rithms, such as iterative closest point. The drawback of these algo-
rithms is their inability to rely on poor initial estimates. For this
reason, the authors in [34] proposed an outlier rejection scheme
for use onboard UAVs for radar odometry.

3.2 Radar-Inertial Odometry
Radar-Inertial Odometry refers to the fusion of radar data with IMU
measurements to increase the robustness and precision of the mo-
tion estimation. The fusion of radar and IMU data was performed
with an extended Kalman filter (EKF) to estimate the state of small
aircraft already in [29, 30]. In [11] there is an implementation of
radar inertial odometry directly on board a lightweight drone. They
extended a filter-based approach to 3D Radar Inertial Odometry
with yaw aiding for indoor environments. Their system enabled
instantaneous yaw aiding using only a single radar scan from an
FMCW 60GHz radar in 3Tx and 4Rx configuration running at 10Hz
and mounted on a lightweight quad-copter. To overcome the limi-
tation of inconsistent features matching between consecutive radar
frames, the detrimental effect of multipath and other environmen-
tal scattering phenomena, and the low RCS of some targets, radar
sensors are also combined with sensing modalities such as cameras
and lidar. For example, in [26] a localization system to accurately
estimate the forward velocity was proposed by fusing information
from the five primary sensors of a UAV (i.e., radar, camera, IMU,
barometer, and magnetometer). All the sensors were fused in a
loosely-coupled fashion via an extended Kalman filter, yielding
improved performances compared to using radar and IMU only.

3.3 Obstacle Detection and Tracking
Algorithms for radar-based detection and tracking of multiple ob-
jects in the air or on the ground exist, providing relatively low
computational complexity and fast implementation on cheap MCUs.
However, the ability to distinguish different target categories, such
as people, other UAVs, walls, or trees, without resorting to SAR pro-
cessing requires more advanced processing for classification, for in-
stance, based on micro-Doppler signatures. As this analysis is data-
intensive and typically requires the execution of power-hungry
deep learning models, to the best of our knowledge, there is little
evidence of these functionalities implemented onboard small, light-
weight drones in the open literature. Nevertheless, this functionality
is well explored in automotive settings. For example, in [10], a deep
convolutional neural network model (U-Net) was weakly trained
on radar cubes data. The radar cube is a 3D data structure con-
taining range-azimuth-Doppler maps. The authors experimentally
evaluated the performance of the CNN model, achieving detection
performance compared to classical techniques when identifying
vulnerable road users (pedestrians and cyclists) in an automotive
setting. Bringing these functionalities into small UAVs will require
solving the challenge of executing memory and compute-intensive
CNN models at fast micro-Doppler frame rates. The lack of exam-
ples of drones’ onboard radar-based classification using deep neural
network models with high-resolution radar can be partially due to
the lack of labeled radar data and the significant power required to
run deep neural networks on embedded systems.

In [45] a commercial FMCW 24GHz radar was used in an indoor
environment to perform detection and avoidance of fixed obsta-
cles. The radar had 1TX and 2RX with a bandwidth of 200MHz.
Experiments demonstrated the ability of a Micro Aerial Vehicle
(MAV) to resolve objects 0.75m apart in range, with an accuracy of
about 15cm and an angular accuracy of 2◦ from 0 − 20◦, and up to
about 8◦ from 20 − 65◦. The radar board weighed about 12g and
was mounted on a lightweight drone of less than 0.5 kg of Mass at
Take Off (MOT). In [12] an active drone detection system exploiting
an mm-wave radar was mounted on a drone with the objective of
detecting, tracking, and pursuing target drones. The work offers
a solution for each component, including detection, search, and
actively pursuing. However, their approach has the limitation that
the intruding drone was the only airborne object.

3.4 Swarm in flight formation
In [42], a MIMO 77GHz automotive radar with 4TX and 16RX was
integrated into a custom-designed 15x15 cm board and mounted
on a commercial UAV of about 4kg MOT. The use of this radar
demonstrated the capabilities of the perception system to perform
three-dimensional sensing in UAV formation flight and obstacle
avoidance.

3.5 Environmental Monitoring and Remote
Sensing

In remote sensing applications, SAR is commonly used to enhance
the aperture for high-angular resolution. SAR imaging radars are
still heavy, and they can fit in larger drones, such as the example
of the 85Kg drone equipped with a 94GHz SAR with a bandwidth
of 1GHz [13]. SAR radar has the potential of sensing small-scale
features. The integration of SAR radar technology in smaller com-
mercial drones with a MOT of less than 5 kg is currently possi-
ble, as it was demonstrated in [14, 19, 22] where 3.1 GHz and 5.3
GHz SAR imaging radars were used for surface and subsurface
imaging. Recently [9] demonstrated the possibility of achieving a
lightweight, 250g, multi-frequency radar module (0.5 to 3 GHz) to
detect buried mines. Interestingly, they offered a novel approach
based on multi-static observations directly onboard the UAV to
create nearly arbitrary azimuth sampling trajectories. The system
and methodology used have identified the mines thanks to their
spatial radar-cross section distribution in the SAR images.

3.6 Above Ground Level (AGL) measurements
Radar-based sensing of altitude or AboveGround Level (AGL)with a
24GHz FMCW radar fused with an accelerometer was first validated
with a motion caption system [21]. Recently, these systems have
become commercially available as long-range radar altimeters for
autonomous landing and AGL measurements [1]. With a power
consumption of about 11W and 250MHz bandwidth, these sensors
weigh only 300g and can measure altitude values from 1.4m up
to 500m with a precision of less than 1m. To reduce hardware
complexity and costs, [36] proposed a pulse-correlation radar for
AGL measurements. The radar is based on a 26GHz system with an
update rate of up to 40Hz. A particle filter tracks the AGL altitude.
Compared to a low-cost lidar and Real-Time Kinematic Positioning
(RTK) based on GNNS, the radar system outperformed the lidar
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that was measuring the distance to vegetation instead of the AGL
altitude.

4 DISCUSSION AND OUTLOOK
Looking at the state-of-the-art, improved onboard capabilities for
detecting, tracking, and classifying multiple objects are needed
to unlock fully autonomous operations of small UAVs and their
safer integration in the airspace. For this, radar systems and related
algorithms require novel solutions to fit the constraints of small
UAVs’ onboard operations in terms of size, weight, power, and cost.
This affects both the hardware, i.e., how the radar and processing
units are implemented, and the software, i.e., how radar signal
processing is executed, unlike in ground-based radar systems.

System in package radar solutions have made notable progress in
1) packaging antenna-array design; 2) integration of multi-channel
radio-frequency transceivers in system-on-chip (SoC) endowed
with high-performance Analog To Digital converters; and 3) sig-
nal processing algorithms embedded in real-time, low-power com-
puting platforms and in deep learning accelerators (e.g., neural
processing hardware units).

The first two points are critical enablers for a compact and light
radar that small UAVs can physically carry, even if the precise spec-
ifications depend on the speeds envelope of the UAVs system and
its intended use (e.g., functionality for DOA, AGL, or others). At the
same time, this hardware progress enables improving general per-
formances in terms of waveform quality (e.g., bandwidth and SNR)
and the number of MIMO channels for better angular resolution.
The latter point is fundamental to operating the required signal
processing for perception and situation awareness while meeting
the latency, computational complexity, memory, and power require-
ments. It is unlikely that conventional radar processing pipelines of
feature extraction and classification and related deep learning mod-
els can be directly used onboard UAVs. Therefore, reformulating
such algorithms is needed by limiting the amount of accumulated
data for processing (e.g., the classic ’radar cube’ or multiple shots
for estimation of covariance matrices) in favor of techniques that
can exploit the natural intra-frame sparsity and the inter-frame
temporal correlations.

Because scaling up on-device intelligence by scaling sensor res-
olution, model size, and computing needs is not a viable solution
on edge devices, much research is devoted to developing devices
capable of accelerating the inference of deep learning workloads [6].
In addition, dynamically-reconfigurable computing approaches of-
fer the possibility of accelerating several workloads with the same
hardware, which is appealing to accelerate distinct workloads for
the different phases of autonomous UAVs’ missions [18]. The field
of neuromorphic sensing and computing addresses the challenges
of scaling up on-device intelligence using a more bio-inspired ap-
proach. For example, in machine vision, neuromorphic sensing
has already brought significant contributions with the advent of
event-based cameras [15]. The same principles can be applied to
mm-wave radar sensors using sparse event-based sampling directly
at the radar front-end. This could potentially reduce computations
by exploiting on-demand approaches while exploring the natural
temporal relations in the world. Thus, a new approach to radar sens-
ing should include both sensing and computing strategies. Only

then, at the system level, many opportunities and challenges can be
tackled, e.g., by performing closed-loop front-end adaption based
on high-level representations of the scene. For these reasons, neuro-
morphic sensing and bio-inspired computing can drive innovation
in the next generation of cognitive radar systems for drones.

ACKNOWLEDGMENTS
This project received funding from the ECSEL Joint Undertaking
(JU) under grant agreement No. 826610.

REFERENCES
[1] Ainstein.ai. 2021. Aintein AI Product Description. https://ainstein.ai/drone-

makers-drone-service-providers/lr-d1/#LRD!datasheet
[2] Jonathan Bechter, Fabian Roos, and Christian Waldschmidt. 2017. Compensation

of motion-induced phase errors in TDM MIMO radars. IEEE Microwave and
Wireless Components Letters 27, 12 (2017), 1164–1166.

[3] Lidia María Belmonte, Rafael Morales, and Antonio Fernández-Caballero. 2019.
Computer vision in autonomous unmanned aerial vehicles—a systematicmapping
study. Applied Sciences 9, 15 (2019), 3196.

[4] Johann Borenstein and Yoram Koren. 1988. Obstacle avoidance with ultrasonic
sensors. IEEE Journal on Robotics and Automation 4, 2 (1988), 213–218.

[5] Jonas Callmer, David Törnqvist, Fredrik Gustafsson, Henrik Svensson, and Pelle
Carlbom. 2011. Radar SLAM using visual features. EURASIP Journal on Advances
in Signal Processing 2011, 1 (2011), 1–11.

[6] Jiasi Chen and Xukan Ran. 2019. Deep LearningWith Edge Computing: A Review.
Proc. IEEE 107, 8 (2019), 1655–1674.

[7] Carmine Clemente, Francesco Fioranelli, Fabiola Colone, and Gang Li (Eds.). 2021.
Radar Countermeasures for Unmanned Aerial Vehicles. The IET, Institution of
Engineering and Technology.

[8] JJM De Wit, WL Van Rossum, and AJ De Jong. 2011. Orthogonal waveforms for
FMCW MIMO radar. IEEE.

[9] Stephan Dill, Eric Schreiber, Marius Engel, Andreas Heinzel, and Markus Peichl.
2019. A drone carried multichannel Synthetic Aperture Radar for advanced
buried object detection. In 2019 IEEE Radar Conference (RadarConf). IEEE, 1–6.

[10] Martin Dimitrievski, Ivana Shopovska, David Van Hamme, Peter Veelaert, and
Wilfried Philips. 2020. Weakly supervised deep learning method for vulnerable
road user detection in FMCW radar. In 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 1–8.

[11] Christopher Doer and Gert F Trommer. 2021. Yaw aided Radar Inertial Odometry
using Manhattan World Assumptions. In 2021 28th Saint Petersburg International
Conference on Integrated Navigation Systems (ICINS). IEEE, 1–9.

[12] Sedat Dogru and Lino Marques. 2020. Pursuing drones with drones using mil-
limeter wave radar. IEEE Robotics and Automation Letters 5, 3 (2020), 4156–4163.

[13] Helmut Essen, Winfried Johannes, Stephan Stanko, Rainer Sommer, Alfred
Wahlen, and Joern Wilcke. 2012. High resolution W-band UAV SAR. In 2012 IEEE
International Geoscience and Remote Sensing Symposium. IEEE, 5033–5036.

[14] Giancarmine Fasano, Alfredo Renga, Amedeo Rodi Vetrella, Giovanni Ludeno,
Ilaria Catapano, and Francesco Soldovieri. 2017. Proof of concept of micro-UAV-
based radar imaging. In 2017 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 1316–1323.

[15] GuillermoGallego, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Brian Taba,
Andrea Censi, Stefan Leutenegger, Andrew Davison, Jörg Conradt, Kostas Dani-
ilidis, et al. 2019. Event-based vision: A survey. arXiv preprint arXiv:1904.08405
(2019).

[16] Vito Giannini, Davide Guermandi, Qixian Shi, Kristof Vaesen, Bertrand Parvais,
Wim Van Thillo, Andre Bourdoux, Charlotte Soens, Jan Craninckx, and Piet
Wambacq. 2014. 14.2 A 79GHz phase-modulated 4GHz-BW CW radar TX in
28nm CMOS. In 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC). IEEE, 250–251.

[17] Patrick Häcker and B Yang. 2010. Single snapshot DOA estimation. Advances in
Radio Science 8 (2010), 251–256.

[18] Hasan Irmak, Federico Corradi, Paul Detterer, Nikolaos Alachiotis, and Daniel
Ziener. 2021. A Dynamic Reconfigurable Architecture for Hybrid Spiking and
Convolutional FPGA-Based Neural Network Designs. Journal of Low Power
Electronics and Applications 11, 3 (2021), 32.

[19] Chenchen J Li and Hao Ling. 2015. Synthetic aperture radar imaging using a
small consumer drone. In 2015 IEEE international symposium on antennas and
propagation & USNC/URSI national radio science meeting. IEEE, 685–686.

[20] Jaime Lien, Nicholas Gillian, M Emre Karagozler, Patrick Amihood, Carsten
Schwesig, Erik Olson, Hakim Raja, and Ivan Poupyrev. 2016. Soli: Ubiquitous
gesture sensing with millimeter wave radar. ACM Transactions on Graphics (TOG)
35, 4 (2016), 1–19.

19

https://ainstein.ai/drone-makers-drone-service-providers/lr-d1/#LRD!datasheet
https://ainstein.ai/drone-makers-drone-service-providers/lr-d1/#LRD!datasheet


Radar Perception for Autonomous Unmanned Aerial Vehicles: a Survey DroneSE and RAPIDO ’22, June 21, 2022, Budapest, Hungary

[21] Wei Liu, Changbin Yu, Xiangke Wang, YongWei Zhang, and YangGuang Yu. 2017.
The altitude hold algorithm of UAV based on millimeter wave radar sensors.
In 2017 9th International Conference on Intelligent Human-Machine Systems and
Cybernetics (IHMSC), Vol. 1. IEEE, 436–439.

[22] G Ludeno, I Catapano, G Gennarelli, F Soldovieri, AR Vetrella, A Renga, and
G Fasano. 2017. A micro-UAV-borne system for radar imaging: A feasibility
study. In 2017 9th International Workshop on Advanced Ground Penetrating Radar
(IWAGPR). IEEE, 1–4.

[23] Daniel Madroñal, Francesca Palumbo, Alessandro Capotondi, and Andrea
Marongiu. 2021. Unmanned Vehicles in Smart Farming: a Survey and a Glance at
Future Horizons. In Proceedings of the 2021 Drone Systems Engineering and Rapid
Simulation and Performance Evaluation: Methods and Tools Proceedings. 1–8.

[24] Vladimir M Milovanović. 2018. On fundamental operating principles and range-
doppler estimation in monolithic frequency-modulated continuous-wave radar
sensors. Facta universitatis-series: Electronics and Energetics 31, 4 (2018), 547–570.

[25] Sherif AS Mohamed, Mohammad-Hashem Haghbayan, Tomi Westerlund, Jukka
Heikkonen, Hannu Tenhunen, and Juha Plosila. 2019. A survey on odometry for
autonomous navigation systems. IEEE Access 7 (2019), 97466–97486.

[26] Mostafa Mostafa, Shady Zahran, Adel Moussa, Naser El-Sheimy, and Abu Sesay.
2018. Radar and visual odometry integrated system aided navigation for UAVS
in GNSS denied environment. Sensors 18, 9 (2018), 2776.

[27] Jarez S. Patel, Francesco Fioranelli, and David Anderson. 2018. Review of radar
classification and RCS characterisation techniques for small UAVs or drones. IET
Radar, Sonar & Navigation 12, 9 (2018), 911–919.

[28] Francesco Pieri, Cristian Zambelli, Andrea Nannini, Piero Olivo, and Sergio
Saponara. 2018. Is consumer electronics redesigning our cars?: Challenges of
integrated technologies for sensing, computing, and storage. IEEE Consumer
Electronics Magazine 7, 5 (2018), 8–17.

[29] Eric B Quist and Randal W Beard. 2016. Radar odometry on fixed-wing small
unmanned aircraft. IEEE Trans. Aerospace Electron. Systems 52, 1 (2016), 396–410.

[30] Eric B Quist, Peter C Niedfeldt, and Randal W Beard. 2016. Radar odometry
with recursive-RANSAC. IEEE Trans. Aerospace Electron. Systems 52, 4 (2016),
1618–1630.

[31] Karthik Ramasubramanian and Brian Ginsburg. 2017. AWR1243 sensor: Highly
integrated 76–81-GHz radar front-end for emerging ADAS applications. Texas
Instruments White Paper (2017).

[32] Matthew Ritchie, Francesco Fioranelli, Hervé Borrion, and Hugh Griffiths. 2017.
Multistatic micro-Doppler radar feature extraction for classification of un-
loaded/loaded micro-drones. IET Radar, Sonar & Navigation 11, 1 (2017), 116–124.

[33] Fabian Roos, Philipp Hügler, Lizette Lorraine Tovar Torres, Christina Knill, Jo-
hannes Schlichenmaier, Claudia Vasanelli, Nils Appenrodt, Jürgen Dickmann,
and Christian Waldschmidt. 2019. Compressed sensing based single snapshot

DoA estimation for sparse MIMO radar arrays. In 2019 12th German Microwave
Conference (GeMiC). IEEE, 75–78.

[34] Antonio F Scannapieco, Maria D Graziano, Giancarmine Fasano, and Alfredo
Renga. 2019. Improving radar-based mini-UAS navigation in complex environ-
ments with outlier rejection. In AIAA Scitech 2019 Forum. 2379.

[35] Antonio Fulvio Scannapieco, Alfredo Renga, Giancarmine Fasano, and Antonio
Moccia. 2018. Experimental analysis of radar odometry by commercial ultralight
radar sensor for miniaturized UAS. Journal of Intelligent & Robotic Systems 90, 3
(2018), 485–503.

[36] Markus Schartel, Ralf Burr, Pirmin Schoeder, Gilberto Rossi, Philipp Hügler,
Winfried Mayer, and Christian Waldschmidt. 2018. Radar-based altitude over
ground estimation of UAVs. In 2018 11th German Microwave Conference (GeMiC).
IEEE, 103–106.

[37] Ralph Schmidt. 1986. Multiple emitter location and signal parameter estimation.
IEEE transactions on antennas and propagation 34, 3 (1986), 276–280.

[38] Christoph Schroeder and Hermann Rohling. 2010. X-band FMCW radar system
with variable chirp duration. In 2010 IEEE Radar Conference. IEEE, 1255–1259.

[39] Arindam Sengupta, Feng Jin, Reydesel Alejandro Cuevas, and Siyang Cao. 2020.
A Review of Recent Advancements Including Machine Learning on Synthetic
Aperture Radar using Millimeter-Wave Radar. In 2020 IEEE Radar Conference
(RadarConf20). IEEE, 1–6.

[40] Jasbir Singh, Brian Ginsburg, Sandeep Rao, Karthik Ramasubramanian, et al.
2017. AWR1642 mmWave sensor: 76–81-GHz radar-on-chip for short-range
radar applications. Texas Instruments (2017), 1–7.

[41] Petre Stoica and Kenneth C Sharman. 1990. Maximum likelihood methods for
direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech, and Signal
Processing 38, 7 (1990), 1132–1143.

[42] Brian B Tierney and Christopher T Rodenbeck. 2019. 3D-SensingMIMO Radar for
UAV Formation Flight and Obstacle Avoidance. In 2019 IEEE Radio and Wireless
Symposium (RWS). IEEE, 1–3.

[43] Tatsunori Usugi, Tomotoshi Murakami, Yoshiyuki Utagawa, Shuya Kishimoto,
Masato Kohtani, Ikuma Ando, Kazuhiro Matsunaga, Chihiro Arai, Tomoyuki
Arai, and Shinji Yamaura. 2020. A 77 GHz 8RX3TX transceiver for 250 m long
range automotive radar in 40 nm CMOS technology. In 2020 IEEE Radio Frequency
Integrated Circuits Symposium (RFIC). IEEE, 23–26.

[44] Damien Vivet, Paul Checchin, and Roland Chapuis. 2013. Localization and
mapping using only a rotating FMCW radar sensor. Sensors 13, 4 (2013), 4527–
4552.

[45] Nikhil Wessendorp, Raoul Dinaux, Julien Dupeyroux, and Guido de Croon. 2021.
Obstacle Avoidance onboard MAVs using a FMCW RADAR. arXiv preprint
arXiv:2103.02050 (2021).

[46] Volker Winkler. 2007. Range Doppler detection for automotive FMCW radars. In
2007 European Radar Conference. IEEE, 166–169.

20


	Abstract
	1 Introduction
	2 Principle of Operations of Radars and Signal Processing
	3 Radar Perception onboard of UAV
	3.1 Radar Odometry
	3.2 Radar-Inertial Odometry
	3.3 Obstacle Detection and Tracking
	3.4 Swarm in flight formation
	3.5 Environmental Monitoring and Remote Sensing
	3.6 Above Ground Level (AGL) measurements

	4 Discussion and outlook
	Acknowledgments
	References

