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Abstract

The use of Solar Electric Propulsion (SEP) as a primary propulsion system for Earth­centered spacecraft is rapidly
increasing, due to its high efficiency and development throughout the last decades. An expanding proportion of
commercial satellites uses electronic propulsion, where this was formerly the domain of Solar­System explo­
ration or station­keeping. make it an increasingly attractive choice. Compared to traditional chemical propulsion
systems, significant amounts of propellant can be saved, and thus lowering costs. With this development come
additional challenges from a trajectory optimization perspective, but also new applications that can benefit from
these developments.

The problem of low­thrust trajectory optimization is by no means a novel area of study, having a heritage tracing
back multiple decades. Despite this, it remains an active field of research, especially for the Earth­centered many­
revolution trajectory design. One of the applications is Active Debris Removal (ADR), aiming to reduce the
space debris problem, by performing a rendezvous transfer to a debris object, attach to it and perform a combined
maneuver to a decay orbit. Clearly, using a limited amount of propellant opens up the possibility to target and
retrieve a series of debris objects, so it has a potential benefit over chemical propulsion implementations. This
thesis project encompasses a hybrid implementation using control parametrization and Orbital Averaging (OA)
that aims to optimize such a trajectory, for preliminary design of many­revolution, Earth­centered, low­thrust
trajectories.

The method uses control parametrization to reduce the complexity of the optimization problem, by discretizing
the control history at select points. This parametrization is done by using the necessary conditions from optimal
control theory. The spacecraft state, governed by the resulting design parameters, is then propagated using OA to
vastly reduce the computations required and allowing the computation of a large number of trajectories. Finally,
these trajectories are then optimized using a self­adaptive variant of Differential Evolution (DE), greatly reduc­
ing user input and manual tuning required. Furthermore, several improvements and enhancements compared to
previous authors were implemented to increase robustness and computation times.

Results for the minimum­time and minimum­propellant GTO­to­GEO transfer problem are presented. Solutions
for the minimum­time transfer demonstrated robust convergence within 0.06% or 0.1 days of each other. When
including the effect of Earth’s shadow on thrust, the optimizer was unable to reliably converge for the worst­
case scenario, i.e. the apogee of the initial orbit lies in Earth’s shadow. With local optimal differences of up
to 5.39%, as much as 6 days, its performance could not be verified. Adjusting the initial orbit with perigee in
Earth’s shadow, showed significant improvement in terms of convergence reliability (within 0.33%), as well as
improved consistency compared to the results obtained by previous authors. The minimum­propellant solutions,
using coasting arcs, closely resembled the optimal results obtained by Jimenez­Lluva (2017).

The second case deals with the problem of ADR, studying the minimum­time orbit­to­orbit transfer problem
from a parking orbit in Low Earth Orbit (LEO) to the orbit of a derelict Vostok second stage. Both a simple co­
planar transfer without additional perturbations and a more complex transfer were considered, the latter requiring
a plane change in inclination of 2° and an additional change in Right Ascension of the Ascending Node (RAAN).
Without any additional tuning or a­priori estimates, consistent results were obtained, within 0.7% (0.12 days)
for the simple transfer and 2.6% (0.88 days) for the more complex transfer. When requiring additional plane
changes and a final RAAN of −45°, the time­of­flight showed an increase of 97%, emphasizing the importance
of minimizing required plane changes.

Although the implemented hybrid optimization method using OA shows great performance, there is room left
for improvement, in particular for the OA propagation. Several approximations can yield an unacceptable error
accumulation, especially in the perturbed LEO environment, where the orbital elements display significant short­
period variations. Furthermore, taking into account shadow conditions needs further improvement to ensure its
validity in the averaging expression. Nonetheless, the method has shown a large amount of flexibility, requiring
minimal user input and no manual tuning of the optimization algorithm. Taking into account additional perturba­
tions or operational constraints is possible without the need of further derivations. Additionally, no initial guess
is required to find near­optimal solutions, increasing its flexibility further.
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1
Introduction

The concept of Electric Propulsion (EP) systems for spacecraft propulsion was introduced in the early 20th cen­
tury (Choueiri, 2004), it has been regarded as an attractive option for spacecraft propulsion due to its high effi­
ciency compared to traditional chemical propulsion. The high­thrust chemical propulsion engines are generally
limited to a specific impulse of a few hundred seconds, whereas EP can reach specific impulses in the order of
thousands of seconds, allowing significantly larger velocity changes for equal propellant mass. This comes at the
cost of reduced thrust and consequently significantly longer burn times as the low­thrust force of the engine is
applied continuously during the maneuver. Initially, its use was limited to station­keeping, technology demon­
stration, and attitude control (Martinez­Sanchez and Pollard, 1998). Later, in the late 1990s and early 2000s
it saw use as a primary propulsion system for solar system exploration missions such as National Aeronautics
and Space Administration (NASA) Deep Space 1 (Rayman et al., 2000), Japan Aerospace Exploration Agency
(JAXA) Hayabusa (Kawaguchi et al., 2008) and European Space Agency (ESA) SMART­1 (Racca et al., 2002).
The technology eventually also made its way to the commercial domain and started seeing use for Earth­orbit
purposes, such as Eutelsat or Airbus ABS­3 (Henry, 2017).

A Solar Electric Propulsion (SEP) system is characterized by its low thrust and high efficiency when compared to
traditional chemical propulsion systems and its use of solar panels to provide the power required for the propulsion
system. From a trajectory optimization point of view, using a low­thrust propulsion system such as SEP1 presents
a different set of challenges. Thrust is now acting continuously during (parts) of the transfer trajectory instead of
being modeled as impulsive shots at discrete points in the trajectory, changing the dynamics of the problem and
vastly increasing the domain of possible solutions.

Earth­centered transfer trajectories show additional properties that need to be taken into account. The low orbital
period, when compared to interplanetary trajectories means that an arbitrary transfer will consist of many orbital
revolutions about the Earth, i.e. a many­revolution transfer trajectory. Additionally, Earth’s irregular gravity field
and aerodynamics due to its atmosphere present an extra set of challenges. However, these properties can also be
exploited. From the perspective of low­thrust trajectory optimization, the many­revolution nature of the problem
can be used in an Orbital Averaging (OA) approach, reducing required propagation time. From a mission design
point of view, Earth’s oblateness can be used to design specific trajectories such as Sun­Synchronous Orbit (SSO)
trajectories, exploiting the effects caused by the irregular gravity field of the Earth.

A mission concept that can take full advantage of both low­thrust propulsion systems and the previously men­
tioned optimization problems is the concept of Active Debris Removal (ADR). The number of space debris ob­
jects, i.e. the objects in Earth orbit with no active control or functionality, is increasing. Collision events such
as the collision between the Iridium­33 communication satellite and the derelict Russian Kosmos­2251 in 2009
could cause a cascading effect, dubbed the Kessler Syndrome (Kessler and Cour­Palais, 1978). As the launches
to LEO have an increasing rate and simulations show that the number of objects in LEO will keep increasing,
even with adherence to mitigation and no future launches (Liou et al., 2013), the necessity for ADR becomes
apparent.

1Other examples are solar sailing or Nuclear Electric Propulsion (NEP)
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2 1. Introduction

It was exactly this problem that sparked the idea for this thesis project, to contribute to solutions for the optimiza­
tion of Earth­centered many­revolution low­thrust transfer trajectories to objects in LEO for the purpose of ADR.
In particular, through the use of a low­thrust propulsion system, reducing propellant needs, the targeting of multi­
ple debris objects in a single mission, i.e. Multiple Active Debris Removal (MADR). The research in this project
aims to develop a low­thrust trajectory optimization tool, taking into account most relevant perturbations, to allow
preliminary mission design of ADR transfer trajectories. Based on an extensive literature study (Klavers, 2020),
a hybrid methodology, or control parametrization technique was selected (Jimenez­Lluva, 2017). The remainder
of this section will formalize the project goal and research questions.

1.1. Problem Statement
During the literature study performed prior to this thesis project (Klavers, 2020), low­thrust transfer trajectory op­
timization techniques were studied to identify promising areas of study, and aim to improve the capabilities of the
preliminary low­thrust trajectory design tools available in TU Delft Astrodynamics Toolbox (Tudat). Eventually,
a control parametrization method, utilizing OA, was selected with the goal of optimizing transfer trajectories to
space debris in LEO. This method has great flexibility, utilizing the strengths of direct and indirect optimization
techniques, and can exploit the specific properties of Earth­centered low­thrust transfer trajectories by using an
OA approach.

It was concluded that the area of active space debris removal is an area of research with many open unanswered
questions, one of which is the optimization of transfer trajectories to debris objects, using a low­thrust propulsion
system. Specifically, to find optimal trajectories between decay orbits and specific debris objects. Ultimately
the purpose of which is to automatically find time­optimal sequences of debris that allow removal of at least
five objects per year from certain orbital regimes. Several techniques for low­thrust trajectory optimization for
preliminary design were discussed and a hybrid control parametrization method was selected. This method com­
bines the strengths of both indirect and direct optimization and is a promising development that could yield good
results for this specific problem.

The work in this thesis is considered an iteration on the MSc thesis by Jimenez­Lluva (2017). He included
mass as part of the control parametrization derivation, which allows optimization of minimum­propellant transfer
problems that can benefit from coasting arcs. However, Jimenez­Lluva limited himself to transfer trajectories to
GEO and included limited perturbations. Therefore this project aims to improve in certain areas: Take into
account relevant perturbations for transfers problems in LEO, and improve the performance of the OA algorithm
employed.

From these conclusions, several research questions and project goals were derived. The former is aimed a devel­
oping a scientific understanding and better understand the applicability of the hybrid method. The latter is aimed
at the project itself, and the expansion of the capabilities of Tudat.

1.1.1. Research Questions
The following research question was formed based on the literature study performed:

To what extent can the hybrid control parametrization optimization method, including
orbital averaging, be used to find optimal low­thrust transfer trajectories to space debris
objects in low Earth orbit, with the ultimate purpose of enabling its use in preliminary
trajectory design of active debris removal missions?

This question can be divided into a number of sub­questions to allow easier discussion and prioritization:

1. To what extent can the method be improved by implementing recommendations by the original author.

(a) To what extent will self­adaptive DE in Parallel Global Multiobjective Optimizer (PaGMO) improve
the overall optimization process?

(b) To what extent will variable­step integration improve the computational effort, especially for OA?

2. Can the hybrid optimization method be successfully used to optimize low­thrust transfer trajectories in
LEO?

(a) How do the atmospheric drag and gravity field perturbations in LEO impact the optimization process?

(b) How do requirements such additional plane changes influence the results?
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Initially, the research questions included an additional focus on multiple ADR, i.e. finding optimal trajectories
between sequences debris objects. However, at an early stage, this was deemed infeasible. The requirement of de­
bris sequence selection and sequence optimization would increase the scope excessively. Nonetheless, Chapter 5
will briefly touch upon this problem. The main research question of this project was therefore slightly adapted
from the literature study.

1.1.2. Project Goals
These research questions are translated to overall project goals, the overall research goal is stated as:

Expand theTudat low­thrust optimization suitewith anovel hybrid optimizationapproach
in order to improve optimization capabilities for the many­revolution problems, such that
we can find optimal solutions for the multiple active space debris removal problem.

from which the following sub­goals are derived:

1. Implement and Test the hybrid optimization method

(a) Implement and test Orbital Averaging

(b) Implement and test optimization algorithm improvements

(c) Perform verification using the cases presented by Jimenez­Lluva

(d) Implement coasting arc mechanism

2. Perform a case study on single debris object transfer optimization.

(a) Set up single transfer from parking/decay orbit to debris object orbit

(b) Investigate performance of the hybrid method

3. Find time­optimal sequence of debris objects using manual target selection.

(a) Investigate the viability of OA optimization for target selection purposes

(b) Set up manual debris removal sequence (based on achievable range)

(c) Attempt automatic (global) optimization procedure for sequence selection

1.2. Report Structure
This thesis project report is divided into six chapters. Chapter 2 describes all methods and techniques used to
implement the method, including fundamental astrodynamics, numerical integration and propagation methods,
optimal control, and optimization algorithms. Chapter 3 discusses how the implemented methodology was tested,
this includes testing of the perturbations and the implementation of the propagator. Chapter 4 describes the results
obtained for the Geostationary Transfer Orbit (GTO)­to­Geostationary Earth Orbit (GEO) transfer problem and
the discussion thereof. Chapter 5 consists of the results and analysis of several transfer trajectory optimizations
to the orbit of a space debris object in LEO. Finally, Chapter 6 finishes with the conclusions gained from this
project and several recommendations for future work and research.





2
Methodology

This chapter will discuss everything that is required for the implementation of the hybrid methodology in an
Optimization Tool (OT). A high­level overview of the followed methodology is shown in Figure 2.1 in the form
of a flowchart. In general terms: the global DE optimization method is used to find an optimal design vector.
To find this optimal solution, many different trajectories will need to be propagated, given a user­defined initial
spacecraft state and a design vector generated by the DE algorithm. These are propagated through either a Con­
tinuous Integration (CI) process or through the use of OA, which uses an ’embedded’ CI. Through the use of OA,
computation times can be greatly reduced. The final state obtained by the propagator is used by the optimizer to
compute a fitness value, which is fed back into the optimizer to compute a new set of design vectors, ultimately
arriving at an optimal solution.

Pro

input

output

intermediate data

process

decision

Initial state
(x0)

Desired state
(xd)

Design vector
(λ0, λf, tf)

Final state (xf)

OA

CI

OA / CI

Compute nk state
derivatives

propagate to tf

Variable step
integrator 

propagate  
single revolution

propagate to tf

CI Propagator
(ΔE = 2π/nk) 

Compute average
state derivative 

Aggregate Objective
Function (AOF)FitnessDifferential Evolution

Optimizer

Optimal design
vector

Figure 2.1: High­level overview flowchart of the Optimization Tool (OT).

TheOptimization Tool (OT) leans on two concepts: 1) hybrid optimization of the optimal control problem (control
parametrization), and 2) orbital averaging for reducing computation times. The hybrid methodology aims to use
the advantages of indirect optimization methods in a direct approach, using the strengths of both. It uses control
parametrization to reduce the number of parameters defining the control history, by using the optimality conditions
from the Optimal Control Problem (OCP) to find the optimal control (thrust steering angles and magnitude) as
a function of the system state and co­states. Indirect methods fully derive the resulting equations to solve the
Two Point Boundary Value Problem (TPBVP), whereas the direct approach uses these expressions directly to
parametrize the control history.

Before describing the full methodology in detail, Section 2.1 briefly summarizes previous work on the hybrid
method. Then, Section 2.2 describes all relevant fundamental astrodynamics required, such as references frames,
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6 2. Methodology

Equations of Motion (EOM), and orbital perturbations. Section 2.3 discusses propagation methods, namely nu­
merical integration and state propagation, detailing the CI and OA algorithms. Finally, Section 2.4 deals with the
optimization problem. This encompasses the optimal control theory used to parameterize the problem and the
global optimization method, DE, in more detail.

2.1. Hybrid Low­Thrust Trajectory Optimization
The specific control parametrization approach was initially proposed by Kluever and Pierson (1995), where the
problem was transformed to a Non­linear Programming (NLP) problem. They assumed constant thrust and only
optimized the two steering angles. Later, they expanded this approach by incorporating OA, averaging the state
derivatives over a single revolution, and propagated the state averages for a set number of days (Kluever, 2010).
They showed competitive performance for the minimum­time LEO­to­GEO and GTO­to­GEO transfer prob­
lems.

Work in preceding theses included the work done by Boudestijn (2014), he re­derived the optimal control ex­
pressions in terms of Modified Equinoctial Elements (MEE) and included eclipse conditions. This was further
improved upon by Gómez­Jenkins (2015), incorporating perturbations due to non­spherical distribution of Earth’s
gravity field and gravitational attraction due to third bodies. This was done by deriving averaged expressions for
the state derivatives caused by these perturbing accelerations. Jimenez­Lluva (2017) added a coasting arc mech­
anism by incorporating thrust in the control law, leading to a bang­bang control problem, based on the switching
function derived by Gao and Kluever (2004). A summary of reference implementations and their specific prop­
erties is presented in Table 2.1: The propagation logic used to represent system state and control law derivations.
The perturbations that were incorporated such as non­spherical gravity distribution, aerodynamic drag, or third­
body gravitation attractions. Options for the thrust magnitude, all allow constant thrust and incorporating zero
thrust in Earth’s shadow.

As introduced in Section 1.1, the work in this project is considered an iteration of the work by Jimenez­Lluva
(2017), aiming to further refine the optimization process and increasing its applicability. This is done by imple­
menting several enhancements to improve optimization behavior, such as co­state scaling and using Self­Adaptive
Differential Evolution (SaDE). Additionally, aerodynamic drag perturbations are also taken into account as the
additional case of low­thrust transfers in LEO are investigated. With these improvements, the novel application
to transfer trajectories to space debris object orbits in LEO will be investigated.

Table 2.1: Properties of hybrid optimization implementation by previous authors. Propagation describe spacecraft state and
control law derivations

Source Propagation Perturbations Thrust Opts. Optimizer

(Kluever, 2010) Keplerian gravity constant
Earth­shadow
variable 𝐼𝑠𝑝

SQP
(fmincon)

(Boudestijn, 2014) Keplerian, MEE None constant
Earth­shadow

DE

(Gómez­Jenkins, 2015) MEE gravity, drag
third bodies

constant
Earth­shadow

DE

(Jimenez­Lluva, 2017) MEE, mass gravity constant
Earth­shadow
coasting arcs

DE

This project MEE, mass gravity, drag constant
Earth­shadow
coasting arcs

SaDE
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2.2. Astrodynamics
2.2.1. Reference Frames
Three reference frames are used in this work: The Earth­Centered­Inertial (ECI) frame is used for the trajectory
output and internally by Tudat. Furthermore, ephemerides of additional bodies such as the Sun are also obtained
in this frame. The RSW­frame, as shown in Figure 2.2, is used to describe all perturbing accelerations on the
spacecraft, this is the frame used by previous authors. Additionally, the EOM based on orbital elements can be
described in this frame through the Gaussian form of Lagrange’s planetary equations. Closely related to the RSW­
frame is the NTW­frame, whose direction is instead related to the velocity vector. This frame is occasionally used
to represent the thrust vector, and thrust steering angles, with respect to the velocity.

Inertial Frame
To represent the state of the spacecraft and ephemerides of other celestial bodies, an ECI reference frame is
typically used. An ECI frame is an inertial frame, i.e. fixed with respect to the stars. More specifically, the
J2000 ECI frame is used. Its origin is at the center of the Earth, with the x­ and y­axes in the equatorial plane and
the z­axis in the direction of the North Pole. The J2000 frame defines the fixed x­axis as the direction of mean
equinox at noon on January 1st, 2000. J2000 was selected as it is commonly used and is directly available in
Tudat. Note that the definition ECLIPJ2000 is also encountered, specifically in the SPICE software; this frame is
defined with respect to Earth’s mean ecliptic and equinox at epoch J2000, i.e. the x­ and y­axes are in the ecliptic
plane, as opposed to the equatorial plane.

Local Frame
A local, co­moving frame is often used to study effects relative to the spacecraft such as relative motion, or
perturbing forces. This project uses the RSW­frame (radial, transverse, cross­track), and is defined as:

𝐐 = [�̂�, �̂�, �̂�] = [ 𝐫
‖𝐫‖ ,

(𝐫 × 𝐯) × 𝐫
‖𝐫 × 𝐯‖‖𝐫‖ ,

𝐫 × 𝐯
‖𝐫 × 𝐯‖] (2.1)

where 𝐫 and 𝐯 are the Cartesian position and velocity, respectively. The 𝑅­direction aligned with the radius
vector, the 𝑊­direction is in line with the angular momentum vector and the 𝑆­direction completes the right­
handed frame in the direction of, but not necessarily in line with, the velocity vector. The RSW­frame will be
used to represent the perturbing accelerations and for the derivation of the optimal steering angles, as will be
discussed in Section 2.4.2. In contrast, for the similar NTW­frame (Normal, Tangential, Cross­track) the 𝑁­
direction is normal to the velocity vector, 𝑇­direction is tangential to the orbit and the𝑊­direction completes the
right­handed system equal to the RSW­frame. Both frames are shown in Figure 2.2.

Figure 2.2: Illustration of the RSW­ and NTW­frames (Vallado and McClain, 2001).
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2.2.2. Coordinate Systems
In this project, three coordinate systems are used to represent the spacecraft state: Cartesian coordinates repre­
senting position and velocity in inertial space, and the two orbital element sets: Keplerian elements and Modified
Equinoctial Elements (MEE), which are used to represent the orbital shape and orientation, and the position of
the spacecraft therein.

Cartesian Coordinates
In a Cartesian coordinate system in three dimensions the values 𝑥, 𝑦, 𝑧 denote the distance from the origin to the
projection of the point on each of the three axes. The state vector includes this position 𝐫 and its time derivative,
the velocity 𝐯:

𝐱 = [𝑥, 𝑦, 𝑧, ̇𝑥, ̇𝑦, ̇𝑧]T (2.2)

Orbital Elements
As Cartesian coordinates are generally unwieldy when representing orbits, other element sets are often used. The
traditional Keplerian orbital elements are the most known:

œ = [𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝜃]T (2.3)

These consist of the semi­major axis 𝑎, eccentricity 𝑒, inclination 𝑖, RAANΩ, argument of pericenter 𝜔, and true
anomaly 𝜃. In Figure 2.3 a geometric representation of the angular parameters [𝑖, 𝜔,Ω, 𝜃], is shown.

Figure 2.3: Illustration of the angular parameters in the classical Keplerian elements (Curtis, 2008).

Instead of the true anomaly, the mean anomaly, 𝑀 or eccentric anomaly 𝐸, can also be used. The eccentric
anomaly is measured with respect to the center of the ellipse. The mean anomaly is directly related to time:

𝑀 = 𝑛(𝑡 − 𝜏) (2.4)

where 𝑛 is the mean motion, 𝑡 the current time, and 𝜏 the time of perigee passage. Its relationship to the eccentric­
and true anomaly is described through Kepler’s Equation:

𝑀 = 𝐸 − 𝑒 sin𝐸 (2.5)

where 𝑒 is the eccentricity. As there is no closed­form solution when solving for 𝐸, it is solved numerically. For
example through Newton’s method.

Although these elements are intuitive to use and have several attractive properties such as the slow change of each
element, apart from 𝜃, there are two singularities that can cause problematic behavior. Ω is undefined for 𝑖 = 0, 𝜋
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and 𝜔 is undefined for 𝑒 = 0. To circumvent his, MEE are used. MEE are an alternative set of six elements,
introduced by Walker et al. (1985). These elements only show a singularity for 𝑖 = 𝜋. Because pure retrograde
trajectories are not studied in this project, this singularity can be safely ignored. MEE are defined in terms of the
Keplerian elements by Equations 2.6:

𝑝 = 𝑎(1 − 𝑒2) (2.6a)

𝑓 = 𝑒 cos(𝜔 + Ω) (2.6b)

𝑔 = 𝑒 sin(𝜔 + Ω) (2.6c)

ℎ = tan( 𝑖2) cos(Ω) (2.6d)

𝑘 = tan( 𝑖2) sin(Ω) (2.6e)

𝐿 = Ω + 𝜔 + 𝜃 (2.6f)

and can be converted back to Keplerian elements using Equations 2.7:

𝑎 = 𝑝
(1 − 𝑓2 − 𝑔2) (2.7a)

𝑒 = √𝑓2 + 𝑔2 (2.7b)

𝑖 = 2 arctan(√ℎ2 + 𝑘2) (2.7c)

Ω = atan2( 𝑘
√ℎ2 + 𝑘2

, ℎ
√ℎ2 + 𝑘2

) (2.7d)

𝜔 = arctan( 𝑔𝑓) − arctan(𝑘ℎ) = atan2(𝑔ℎ − 𝑓𝑘, 𝑓ℎ + 𝑔𝑘) (2.7e)

𝜃 = 𝐿 − Ω − 𝜔 (2.7f)

When required, the state inMEE can be converted to Cartesian position and velocity by Equations (2.8) and (2.9) (Betts,
2000).

𝐫 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑟
𝑠2 (cos𝐿 + (ℎ2 − 𝑘2)2 cos𝐿 + 2ℎ𝑘 sin𝐿)
𝑟
𝑠2 (sin𝐿 − (ℎ2 − 𝑘2)2 sin𝐿 + 2ℎ𝑘 cos𝐿)

2𝑟
𝑠2 (ℎ sin𝐿 − 𝑘 cos𝐿)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.8)

𝐯 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 1
𝑠2√

𝜇
𝑝
(sin𝐿 + (ℎ2 − 𝑘2)2 sin𝐿 − 2ℎ𝑘 cos𝐿 + 𝑔 − 2𝑓ℎ𝑘 + (ℎ2 − 𝑘2)2𝑔)

− 1
𝑠2√

𝜇
𝑝
(− cos𝐿 + (ℎ2 − 𝑘2)2 cos𝐿 + 2ℎ𝑘 sin𝐿 − 𝑓 + 2𝑔ℎ𝑘 + (ℎ2 − 𝑘2)2𝑓)

2
𝑠2√

𝜇
𝑝
(ℎ cos𝐿 + 𝑘 sin𝐿 + 𝑓ℎ + 𝑔𝑘)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.9)

2.2.3. Equations of Motion
In general, the motion of a spacecraft about a central body, subject to one or more perturbing forces, can be
described as:

̈𝐫 = − 𝜇
𝑟3 𝐫 + 𝐚𝑝𝑒𝑟𝑡 (2.10)
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where 𝜇 is the gravitational parameter of the central body, 𝐫 the position vector, and 𝐚𝑝𝑒𝑟𝑡 the acceleration due to all
perturbing forces acting on the spacecraft. The acceleration vector generally consists of multiple perturbations
such as aerodynamic drag, the influence of Earth’s non­spherical gravity field, or thrust. These perturbations
are further discussed in Section 2.2.4. In general, no analytical solution can be found for Equation (2.10), and
numerical methods are required. This is also called the special perturbations method. In contrast, analytical
techniques for finding approximate solutions are called general perturbation methods. The most simple special
perturbation method is Cowell’s method, which means direct numerical integration of Equation (2.10). Another
approach is the method of variation of orbital elements, discussed in the remainder of this section. The specific
numerical methods used to solve these problems will be discussed in Section 2.3.

Method of Variation of Orbital Elements
By the method of variation of orbital elements, a set of equations can be derived that describe the variation of
each osculating orbital element in terms of a perturbing potential, or perturbing function. This set of first­order
differential equations are called Lagrange’s planetary equations. From these equations, another set of differential
equations can be derived, describing the variation of the orbital elements in terms of perturbing accelerations:
Gauss’ form of Lagrange’s planetary equations. The six differential equations for the classical Keplerian elements
are given by Equation (2.11), the derivation of which can be found in numerous astrodynamics textbooks. The
form stated here can be found in (Wakker, 2015).

d𝑎
d𝑡 = 2 𝑎2

√𝜇𝑝
[𝑎𝑅 𝑒 sin 𝜃 + 𝑎𝑆

𝑝
𝑟 ] (2.11a)

d𝑒
d𝑡 = √

𝑝
𝜇[𝑎𝑅 sin 𝜃 + 𝑎𝑆(cos𝐸 + cos 𝜃)] (2.11b)

d𝑖
d𝑡 = 𝑎𝑊

𝑟
√𝜇𝑝

cos𝑢 (2.11c)

d𝜔
d𝑡 = −√

𝑝
𝜇[𝑎𝑊

𝑟
𝑝 cot 𝑖 sin𝑢 + 1

𝑒 {𝑎𝑅 cos 𝜃 − 𝑎𝑆(1 +
𝑟
𝑝) sin 𝜃}] (2.11d)

dΩ
d𝑡 = 𝑎𝑊

𝑟
√𝜇𝑝 sin 𝑖

sin𝑢 (2.11e)

d𝑀
d𝑡 = 𝑛 − 𝑎𝑅[

2𝑟
√𝜇𝑎

− 1 − 𝑒2
𝑒 √

𝑎
𝜇 cos 𝜃] − 𝑎𝑆

1 − 𝑒2
𝑒 √

𝑎
𝜇(1 +

𝑟
𝑝) sin 𝜃 (2.11f)

where 𝐚 = [𝑎𝑅, 𝑎𝑆 , 𝑎𝑊 ]T describe the perturbing accelerations in the 𝑅­, 𝑆­ and 𝑊­directions, as previously
discussed in Section 2.2.1, and 𝑢 = 𝜃 + 𝜔 is the argument of latitude. As stated in Section 2.2.2, the classical
orbital elements show various singularities, making their use for propagation unattractive in certain cases. The
planetary equations can therefore also be derived in terms of the MEE, given by Equations 2.12 (Walker et al.,
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1985):

d𝑝
d𝑡 = √

𝑝
𝜇
2𝑝
𝑤 𝑎𝑆 (2.12a)

d𝑓
d𝑡 = √

𝑝
𝜇{𝑎𝑅 sin𝐿 +

(𝑤 + 1) cos𝐿 + 𝑓
𝑤 𝑎𝑆 −

𝑔(ℎ sin𝐿 − 𝑘 cos𝐿)
𝑤 𝑎𝑊} (2.12b)

d𝑔
d𝑡 = √

𝑝
𝜇{−𝑎𝑅 cos𝐿 +

(𝑤 + 1) sin𝐿 + 𝑔
𝑤 𝑎𝑆 +

𝑓(ℎ sin𝐿 − 𝑘 cos𝐿)
𝑤 𝑎𝑊} (2.12c)

dℎ
d𝑡 = √

𝑝
𝜇
𝑠2 cos𝐿
2𝑤 𝑎𝑊 (2.12d)

d𝑘
d𝑡 = √

𝑝
𝜇
𝑠2 sin𝐿
2𝑤 𝑎𝑊 (2.12e)

d𝐿
d𝑡 = √

𝑝
𝜇
ℎ sin𝐿 − 𝑘 cos𝐿

𝑤 𝑎𝑊 +√𝜇𝑝(𝑤𝑝 )
2

(2.12f)

where 𝑤 and 𝑠2 are auxiliary variables, defined as:

𝑤 = 𝑝
𝑟 = 1 + 𝑓 cos𝐿 + 𝑔 sin𝐿 (2.13)

𝑠2 = 1 + ℎ2 + 𝑘2 (2.14)

To complete the full set of EOM, the spacecraft mass is also taken into account. From the general equation for
the spacecraft mass due to propulsion:

d𝑚
d𝑡 = − 𝑇

𝑔0𝐼𝑠𝑝
(2.15)

With thrust 𝑇, standard gravity 𝑔0, and specific impulse 𝐼𝑠𝑝. The full state vector is therefore:

𝐱 = [𝑝, 𝑓, 𝑔, ℎ, 𝑘, 𝐿,𝑚]T (2.16)

2.2.4. Orbital Perturbations
As shown in the previous section, the spacecraft motion is modeled by separately considering the two­body
and perturbing effects. This section will discuss how these perturbing accelerations can be modeled to allow
their use in the variational EOM. This section will discuss thrust, Earth’s non­spherical gravity distribution and
aerodynamic drag as the main perturbations under consideration.

Thrust
The effect of thrust on the spacecraft mass 𝑚 is given by Equation (2.15). In addition, thrust can be considered
a perturbing acceleration, 𝐚𝑡ℎ𝑟𝑢𝑠𝑡. The thrust acceleration can be obtained from the thrust pitch and yaw angles:

𝐚𝑡ℎ𝑟𝑢𝑠𝑡 =
𝑇
𝑚 [sin𝛼 cos 𝛽, cos𝛼 cos 𝛽, sin 𝛽]T (2.17)

where𝑚 is the spacecraft instantaneous mass and 𝑇 the thrust. In the RSW­frame, the thrust acceleration vector,
𝐚𝑡ℎ𝑟𝑢𝑠𝑡, is defined by the thrust magnitude and the two steering angles 𝛼 and 𝛽, the yaw­ and pitch steering angles,
respectively, as illustrated in Figure 2.4. Here the yaw steering angle is defined with respect to the 𝑆­direction.
Note that the yaw­angle can sometimes also be defined w.r.t. the velocity vector, requiring an additional rotation
by the flight­path angle 𝛾.
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Figure 2.4: yaw­ and pitch angles in the RSW­frame

Although thrust 𝑇 is generally used directly in this work, it can also be described in terms of the engine parameters
thruster efficiency 𝜂 and total propulsion system electrical power 𝑃𝑒:

𝑇 = 2𝜂𝑃𝑒
𝑔0𝐼𝑠𝑝

(2.18)

where 𝑔0 is Earth’s standard gravity and 𝐼𝑠𝑝 the specific impulse. This definition is used to allow comparison
with reference material.

Earth’s Oblateness
The non­spherical distribution of Earth’s gravity field will have a perturbing effect on any orbiting object. This
distribution can be described by the gravitational potential (geopotential) 𝑈 (Wakker, 2015):

𝑈 = −𝜇𝑟 [1 −
∞
∑
𝑛=2

𝐽𝑛(
𝑅𝐸
𝑟 )

𝑛
𝑃𝑛(sin𝜙) +

∞
∑
𝑛=2

𝑛
∑
𝑚=1

𝐽𝑛,𝑚(
𝑅𝐸
𝑟 )

𝑛
𝑃𝑛,𝑚(sin𝜙) {cos𝑚(Λ − Λ𝑛,𝑚}] (2.19)

where 𝑟, 𝜙, Λ are the spherical coordinates relative to the geocentric rotating reference frame. 𝑅𝐸 is the mean
equatorial radius of the Earth and 𝐽𝑛,𝑚 and Λ𝑛,𝑚 are constant model parameters of degree 𝑛 and order𝑚, respec­
tively. For convenience 𝐽𝑛 ≡ 𝐽𝑛,0 = −𝐶𝑛,0. Finally, 𝑃𝑛(sin𝜙) and 𝑃𝑛,𝑚(sin𝜙) are Legendre polynomials and
their associated Legendre functions. The terms with 𝑚 = 0 are the zonal harmonics, which are independent of
longitude. The terms with 𝑛 = 𝑚 are the sectoral harmonics, and terms with 𝑚 ≠ 0 and 𝑛 ≠ 𝑚 are tesseral
harmonics (Wertz et al., 2011). Figure 2.5 shows a representation of these harmonics. The boundaries between
the shaded regions are the locations where the expansion terns change sign.

Figure 2.5: Illustration of spherical harmonic expansions, with a) zonal, b) tesseral and c) sectoral terms (Markley and Cras­
sidis, 2014).

The coefficients then scale and hence define the geopotential model of the Earth. As the 𝐽𝑛 coefficients correspond
with the zonal harmonics, the term corresponding with the 𝐽2 coefficient defines the equatorial bulge, also called
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oblateness or flattening. Given that 𝐽2 = 1.083 × 10−3 and the other coefficients are smaller than 2.6 × 10−6,
the term with 𝐽2 dominates the perturbing force (Wakker, 2015), causing a secular drift of the right ascension of
the ascending node and the argument of perigee. This effect can be utilized for specialized Earth orbits such as
ground­track repeat orbits and sun­synchronous orbits.

When only considering the 𝐽2 term, the perturbing acceleration in terms of MEE and given in the RSW­frame
are (Kechichian, 1997):

𝑎𝑅 = −3𝜇𝐽2𝑅
2
𝐸

2𝑟4 [1 − 12(ℎ sin𝐿 − 𝑘 cos𝐿)2
𝑠4 ] (2.20a)

𝑎𝑆 = −12𝜇𝐽2𝑅
2
𝐸

𝑟4 ⋅ (ℎ sin𝐿 − 𝑘 cos𝐿)(ℎ cos𝐿 + 𝑘 sin𝐿)
𝑠4 (2.20b)

𝑎𝑊 = −6𝜇𝐽2𝑅
2
𝐸

𝑟4 ⋅ (ℎ sin𝐿 − 𝑘 cos𝐿)(1 − ℎ2 − 𝑘2)
𝑠4 (2.20c)

For a preliminary analysis of the oblateness effect, it can be useful to investigate the effects of this perturbation in
terms of Keplerian Elements. The 𝐽2 perturbation has an oscillatory effect on the semi­major axis 𝑎, eccentricity
𝑒, and inclination 𝑖. In contrast, the argument of perigee 𝜔, and right ascension of the ascending node, Ω, will
show a secular drift due to the 𝐽2 perturbation. This secular drift is given by Equations (2.21) and (2.22) (Wakker,
2015):

Ω̇𝐽2 = −32𝑛𝐽2(
𝑅𝐸

𝑎(1 − 𝑒2))
2
cos 𝑖 (2.21)

�̇�𝐽2 =
3
4𝑛𝐽2(

𝑅𝐸
𝑎(1 − 𝑒2))

2
(5 cos2 𝑖 − 1) (2.22)

where 𝑛 = √𝜇/𝑎3 is the mean motion.

Aerodynamic Drag
The acceleration of a satellite due to aerodynamic drag is given by:

𝐚𝑑𝑟𝑎𝑔 = −𝐶𝐷
1
2𝜌

𝐴
𝑚|𝐯|𝐯 (2.23)

where 𝜌 is the atmospheric density, 𝐯 the velocity vector w.r.t. the (rotating) atmosphere,𝑚 the satellite mass, 𝐶𝐷
the drag coefficient corresponding to the cross­sectional area 𝐴. The ballistic coefficient of the vehicle is defined
as 𝐵𝐶 = 𝑚/(𝐴 ⋅ 𝐶𝐷). Although the vehicle mass and velocity are generally known quantities, determining 𝜌,
𝐴 and 𝐶𝐷 can present some challenges. Several assumptions will need to be made on the atmospheric model
used and the vehicle properties. As a first approximation an exponential atmospheric model can be used as the
atmospheric density decreases approximately exponentially with increasing altitude (Wertz et al., 2011):

𝜌 ≈ 𝜌0𝑒−Δℎ/ℎ0 (2.24)

where 𝜌 and 𝜌0 are the densities at two different altitudes, Δℎ is this altitude difference, and ℎ0 is the atmo­
sphere scale height. In reality, atmospheric density can vary significantly and the exponential model is generally
not sufficient for accurate calculations, and also not for preliminary design. Instead, tabulated values for the
mean atmospheric density at certain altitudes can be used, using exponential interpolation to determine the values
between these altitudes. Tudat has already provided this functionality with values based on the United States
Standard Atmosphere (USSA) 1976 model. The atmospheric density is also largely depending on the solar cy­
cle, with a large difference between solar minimum and maximum. Although the tabulated atmosphere model
is considered sufficient for the first­order approach taken, if higher accuracy is required, Tudat also provides an
implementation of the empirical NRLMSISE­00 atmosphere model, which is a more accurate atmospheric model
that takes into account these environmental effects.
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Earth eclipse conditions
The eclipse model implemented in Tudat is based on a conical shadow model, as presented in Section 3.4 of
Montenbruck and Gill (2000). This model is used to determine when the position of the spacecraft is in eclipse
conditions, i.e. in the shadow region of the Earth, during which no energy can be generated by the solar panels
and thus no thrust is produced. This section summarizes the conical shadow model and briefly investigates its
implication on the implementation of the propagation.

Figure 2.6: Conical shadow model as shown in Montenbruck and Gill (2000).

In the conical shadow model shown in Figure 2.6, the shadow conditions are determined by the position of the
spacecraft with respect to the occulting body, i.e. Earth and the occulted body, i.e. the Sun, and their respective
radii. When the spacecraft is in the umbra region, the radiation coming from the occulted body is entirely blocked
by the occulting body. When in penumbra, the occulted body is only partially blocked. From the position of the
orbiting spacecraft, a shadow function, 𝜈, is constructed to quantify the occultation of the Sun, where

𝜈 = 0 when spacecraft is in umbra
𝜈 = 1 when spacecraft is in sunlight
0 < 𝜈 < 1 when spacecraft is in penumbra

This is done by using a simple model of two overlapping circular disks, shown in Figure 2.7.

Figure 2.7: Circular overlapping disks, modeling the occultation of the Sun by the Earth from the viewpoint of the orbiting
spacecraft (Montenbruck and Gill, 2000).

Given the position of the spacecraft with respect to the occulting body:

𝐬 = 𝐫 − 𝐫𝐵 (2.25)

where 𝐫 is the position of the spacecraft and 𝐫𝐵 the position of the occulting body. Together with the radius of
the Sun 𝑅⊙ and radius of the occulting body 𝑅𝐵, the apparent radii, 𝑎 of the Sun, and 𝑏 of the Earth, are given
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by

𝑎 = arcsin( 𝑅⊙
||𝐫⊙ − 𝐫||)

(2.26)

𝑏 = arcsin(𝑅𝐸𝑠 ) (2.27)

and the apparent separation 𝑐 of the bodies is given by

𝑐 = arccos(
−𝐬T(𝐫⊙ − 𝐫)
𝑠‖‖𝐫⊙ − 𝐫‖‖

) (2.28)

Under the condition

|𝑎 − 𝑏| < 𝑐 < 𝑎 + 𝑏 (2.29)

and the definitions 𝑥 ≡ 𝐴𝐸, 𝑦 ≡ 𝐸𝐶, and 𝛼 ≡ ∠𝐶𝐴𝐸, the occulted area 𝐴 is given by

𝐴 = 2(𝐴𝐵𝐶𝐹 − 𝐴𝐵𝐶𝐸) + 2(𝐴𝐴𝐶𝐷 − 𝐴𝐴𝐶𝐸)

= 𝑎2 arccos 𝑥𝑎 + 𝑏2 arccos 𝑐 − 𝑥
𝑏 − 𝑐𝑦

(2.30)

where

𝑥 = 𝑐2 + 𝑎2 − 𝑏2
2𝑐 (2.31)

𝑦 = √𝑎2 − 𝑥2 (2.32)

Finally, the fraction of sunlight is given by the shadow function 𝜈:

𝜈 = 1 − 𝐴
𝜋𝑎2 (2.33)

When the condition Equation (2.29) does not hold, either no occultation, total occultation, or partial occultation
takes place. An overview of these conditions is given in Table 2.2.

Table 2.2: Occulting conditions based on the apparent radii 𝑎, 𝑏 and apparent distance 𝑐, between the occulted and occulting
body, respectively.

Condition Occultation

𝑎 + 𝑏 ≤ 𝑐 No
𝑐 < 𝑏 − 𝑎, implying 𝑎 < 𝑏 Total
𝑐 < 𝑎 − 𝑏, implying 𝑎 > 𝑏 Partial

Boudestijn (2014) and Gómez­Jenkins (2015) simplified the influence of eclipse conditions by setting thrust
levels to zero only when in total occultation. In contrast, Jimenez­Lluva (2017) used a minimum light percentage
threshold of 80% to determine when to switch thrust on. In this work, the simplified approach is taken as this
vastly simplifies the implementation and is considered sufficient for preliminary analysis as is the goal of this
project. Furthermore, the position of the Sun with respect to the Earth needs to be known at each propagation
epoch. In Tudat these are directly available through a connection to the information system, SPICE. This toolkit
provided by NASA’s Navigation and Ancillary Information Facility (NAIF) at Jet Propulsion Laboratory (JPL)
containing navigation and other data, including ephemerides of planetary bodies (Acton, 1996), and is used for
this purpose.
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Other perturbations
In addition to the perturbations discussed in this section, there are several other perturbing effects that are not
taken into account but can be relevant for certain cases. These are the gravitational effect of thirst bodies, most
notably solar and lunar attraction, solar radiation pressure, and electromagnetic forces. For an in­depth discussion
on third body effects, Gómez­Jenkins (2015) provides an analysis and derivation of their average contribution.
Solar radiation pressure can become relevant for spacecraft orbiting at higher altitudes or for spacecraft using
solar radiation as their primary means of propulsion, i.e. solar sailing. Perturbations due to Earth’s magnetic field
are generally extremely small (Wakker, 2015).

2.3. Propagation
Propagation deals with solving the Initial Value Problem (IVP), given a set of initial conditions and a set of
differential equations, i.e. the EOM, find its evolution over time. For the OT this means propagating the spacecraft
trajectory forwards in time, given an initial state. In the context of this project, numerical methods for solving
ordinary differential equations are referred to as numerical integration methods, or integrators. Three different
propagation methods (propagators) are used in the project and are briefly summarized in Table 2.3:

Table 2.3: Summary of propagation methods used in this project.

method propagator integrator description

benchmark Cowell RKF7(8) Generates high­accuracy reference trajectories using small step­sizes
in the order of several seconds.

CI Gauss MEE RK4 Uses the Gaussian’ form of Lagrange’s Planetary equations to prop­
agate with a fixed step­size in eccentric anomaly, 𝐸, as opposed to
time.

OA Gauss MEE RKF4(5) Uses average state derivatives, obtained by ’embedded’ CI, to propa­
gate forward in time with large step sizes in the order of days.

The benchmark propagator is used to allow verification of the OT and will be further explained in Chapter 3.
The CI and OA approaches are the main subject of this section. Section 2.3.1 will first introduce the numerical
integration methods used. Subsequently, Section 2.3.2 describes the CI and OA methods.

2.3.1. Numerical Integration
Formally numerical integration deals with solving the IVP:

�̇� = 𝐟(𝐱, 𝑡) ; 𝐱(𝑡0) = 𝐱0 (2.34)

This section will summarize the relevant integration techniques used for this project. This is based on a previously
performed literature survey. For a more in­depth discussion on numerical methods, the reader is referred to
existing literature such as the book by Burden and Faires (2011). Although a fixed­step integrator such as fourth­
order Runge­Kutta (RK4) was considered sufficient for preliminary optimization based on the literature survey,
variable step­size integration schemes such as Runge­Kutta Fehlberg (RKF) will also be discussed as their use
can yield a major advantage in specific cases, especially when considering the OA propagation.

One of the most well­known multi­stage (i.e. using multiple function evaluations per time­step) methods, is the
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fourth­order method, RK4:

𝐤1 = 𝐟 (𝐱, 𝑡) (2.35a)

𝐤2 = 𝐟 (𝐱 + 1
2𝐤1, 𝑡 +

1
2ℎ) (2.35b)

𝐤3 = 𝐟 (𝐱 + 1
2𝐤2, 𝑡 +

1
2ℎ) (2.35c)

𝐤4 = 𝐟 (𝐱 + 𝐤3, 𝑡 + ℎ) (2.35d)

𝐱(𝑡 + ℎ) = 𝐱 + ℎ16(𝐤1 + 2𝐤2 + 2𝐤3 + 𝐤4) (2.35e)

where ℎ is the (fixed) step size. Other orders of (explicit) Runge­Kutta methods are easily constructed but are still
limited by their fixed step­size, ℎ. These methods perform poorly when the dynamics change significantly over
the integration time. Variable step­size or adaptive integration schemes vary the size of ℎ based on the changing
dynamics. For example, in an elliptical orbit, the dynamics can change orders of magnitude faster at periapsis
than during apoapsis.

RKF is a common adaptive step­size integrator. It uses an embedded Runge­Kutta integrator to first estimate a
local truncation error which is then used to determine an appropriate step size that reduces the error to be within a
certain threshold. A common implementation uses a fifth­order integrator to estimate the local error of a fourth­
order integrator, i.e. RKF4(5). These are chosen such that their coefficients overlap, i.e. embedded. Therefore
only one extra function evaluation is needed to estimate the error. For a general Runge­Kutta method:

𝐱(𝑡 + ℎ) = 𝐱0 +
𝑁
∑
𝑖=1

𝑐𝑖𝐤𝑖 (2.36)

note that generally the order of the method 𝑝, is not equal to the number of stages 𝑁. In general 𝑝 < 𝑁 except
for 𝑁 < 5. For equal evaluations 𝐤𝑖 we can construct a second method (of order 𝑝 − 1):

𝐱∗(𝑡 + ℎ) = 𝐱0 +
𝑁−1
∑
𝑖=1

𝑐∗𝑖 𝐤𝑖 (2.37)

While the coefficients 𝑐𝑖 and 𝑐∗𝑖 are different, the function evaluations 𝑘𝑖 are the same, therefore the number of
function evaluations required is significantly lower when compared to two arbitrary methods of a different order.
The error is then estimated:

𝜖 ≈ 𝐱∗(𝑡 + ℎ) − 𝐱(𝑡 + ℎ) (2.38)

From this error, a new time step is determined when the estimated error is higher than some threshold. In practice,
tolerances are used to ensure some minimal sufficient step size. After the new step size is determined both
the higher­ and lower­order method can be used to perform the propagation. In practice, both approaches are
used.

In contrast to single­step integration schemes, multi­step integrators such as Adams­Bashford also make use of
previous function evaluations to compute future steps.

𝐱(𝑡𝑛+1) = 𝐱(𝑡𝑛) + ℎ
𝑠
∑
𝑗=0

𝑏𝑗𝐟(𝑡𝑛−𝑗 , 𝐱𝑛−𝑗) (2.39)

This uses 𝑠 evaluations for every time step. This means the computational resources are more efficiently used
and allows easier interpolation between steps. However, varying the time­step is not as straightforward as for
single­step methods. Furthermore, some initialization is required. The above method is an explicit method; im­
plicit approaches such as Adams­Moulton require the next step to be solved indirectly using a predictor­corrector
approach.
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Kluever (2010) and Boudestijn (2014) limited themselves to using a fixed­step Heun integrator which produced
adequate results. Further testing by Gómez­Jenkins (2015) showed that the use of RKF variable step integration
reduces the number of function evaluations while maintaining similar accuracy. Jimenez­Lluva (2017) uses RK4
integration for his CI implementation but does not explicitly state the method by which OA is propagated.

2.3.2. State Propagation
In this section, three methods of propagation were introduced: Cowell propagation, which will be used to generate
benchmark trajectories, CI, andOA. The first will be further discussed in Chapter 3, the latter twowill be described
in the remainder of this section. The EOM obtained from Gauss’ form of Lagrange’s planetary equations in terms
of MEE, can be numerically integrated using any method introduced in the previous section. In addition, the
independent parameter is changed from time 𝑡, to eccentric anomaly 𝐸, to ensure a good spread of integration
points over a single revolution. This approach of ’continuously integrating’ the EOM is called CI. However, this
will require integration of a large number of steps per orbit for a large number of revolutions. For trajectories in the
order of tens of days, this can quickly become computationally expensive. Instead, two properties of low­thrust
many­revolution transfer trajectories can be exploited. Firstly, five of the six orbital elements generally change
slowly for low­thrust propulsion trajectories. Secondly, the change in orbital elements from one revolution to the
next is small.

The OA method uses these properties by sacrificing accuracy in the fast­changing parameter, true anomaly 𝜃,
to greatly reduce the number of function evaluations required. The remainder of the section will describe the
OA methodology in more detail. The OA methodology used in this project, as based on the work in Jimenez­
Lluva (2017), uses an ’embedded’ CI propagation, that propagates the trajectory for a single revolution to find
the average state progression over this orbital revolution.

Continuous Integration
CI propagates the state in MEE from 𝑡0 to 𝑡𝑓, using 𝑛𝑘 steps per revolution with a fixed size in eccentric anomaly
Δ𝐸 = 2𝜋/𝑛𝑘. This change in independent parameters was done firstly, to allow re­use of the propagation logic
’embedded’ in the OA approach and secondly, to ensure a good spread of integration points over a single rev­
olution when compared to the use of time as independent parameter. This is especially important for eccentric
trajectories, such as 𝐺𝑇𝑂. At each integration step, the time­step is calculated through:

Δ𝐸 = 2𝜋
𝑛𝑘

(2.40)

Δ𝑡 = Δ𝐸 d𝑡
d𝐸 (2.41)

Given the variational equation of the eccentric anomaly d𝐸/d𝑡 (Gao and Kluever, 2005):
d𝐸
d𝑡 =

𝑛𝑎
𝑟 + 1

𝑛𝑎𝑒[𝑎𝑅(cos 𝜃 − 𝑒) − 𝑎𝑆(1 +
𝑟
𝑎) sin 𝜃] (2.42)

where mean motion 𝑛 = √𝜇/𝑎3. When assuming that 𝑎𝑅 and 𝑎𝑆 are significantly smaller than the gravitational
acceleration, d𝐸/d𝑡 can be approximated by

d𝐸
d𝑡 ≈

𝑛𝑎
𝑟 (2.43)

where 𝑟 is the magnitude of the radius vector and follows from Equation (2.13):

𝑟 = 𝑝
1 + 𝑓 cos𝐿 + 𝑔 sin𝐿 (2.44)

The approximation in Equation (2.43) was shown by Boudestijn (2014) and Gómez­Jenkins (2015) to be suffi­
ciently accurate for the purpose of OA. This is immediately apparent for eccentric orbits, where the term 1/𝑛𝑎𝑒
in combination with small perturbing accelerations results in a very small second term. For near­circular orbits,
the first term is approximately 𝑛. The term 1/𝑛𝑎𝑒 is of course no longer small for 𝑒 → 0, but this effect is never­
theless still canceled out for low perturbing accelerations. As shown by Gao and Kluever (2005), for 𝑒 = 0.001
and 𝑎 = 1.05 ⋅ 𝑅𝐸 , i.e. a near­circular LEO, and a perturbing acceleration of 𝑎 = 10−5 ms−1, the second term is
about two orders of magnitude smaller.
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Note that Jimenez­Lluva uses the true anomaly 𝜃 to determineΔ𝑡: Δ𝑡 = Δ𝜃d𝑡/d𝜃, and the approximation:

d𝜃
d𝑡 ≈

𝑛𝑎
𝑟 (2.45)

However, the author suspects this has been in error, as the approximation for d𝐸/d𝑡, as given by Equation (2.43),
was shown to be valid for the eccentric anomaly 𝐸 (Kluever, 2010). An approximation for d𝜃/d𝑡 would instead
follow from Equation (2.46) (Vallado and McClain, 2001, p. 566).

d𝜃
d𝑡 =

𝐻
𝑟2 +

√1 − 𝑒2
𝑛𝑎𝑒 [𝑎𝑅 cos 𝜃 − 𝑎𝑆

2 + 𝑒 cos 𝜃
1 + 𝑒 cos 𝜃 ] (2.46)

where 𝐻 = √𝜇𝑝 is the specific orbital angular momentum.
Furthermore, using the eccentric anomaly as opposed to the true anomaly to distribute the integration segments
over the full trajectory ensures a denser distribution near perigee, where the dynamics change more significantly
for eccentric orbits, which was the reasoning used by Jimenez­Lluva for using equidistant steps in 𝜃. Neverthe­
less, because 𝑛𝑎/𝑟 is used to determine the time­step, the actual implementation is the same, thus still allowing
comparison of results for verification purposes.

Orbital Averaging
OAwas initially proposed by Gao and Kluever (2005) as an analytical approach as a means to drastically decrease
the number of evaluations required to propagate the spacecraft state using a low­thrust propulsion system, for
many­revolution planetocentric trajectories. OA achieves this by using the average progression of the orbital
elements for a single revolution to propagate the full trajectory over a larger time span.

When considering the classical orbital elements œ = [𝑎, 𝑒, 𝑖, 𝜔,Ω, 𝜃]T these change slowly and gradually over
the course of a single revolution, with the exception of 𝜃. This highlights the main disadvantage of OA: Loss of
accuracy for the fast­changing element. The same holds when considering MEE: All elements change slowly and
gradually, with the exception of the true longitude 𝐿. When only the target orbit is of importance, and the exact
location in this orbit can be disregarded, OA is an attractive option to significantly decrease the computational
load.

The implementation of OA uses the existing propagation logic, i.e. CI to propagate the state over a single rev­
olution. A similar approach is implemented as stated by Jimenez­Lluva (2017) and summarized in this section.
To ensure the secular changes are accurately taken into account the orbit is fully propagated for exactly a single
revolution. This is done by changing the independent variable to the eccentric anomaly, 𝐸 and subsequently
propagating from 𝐸 = 0 to 𝐸 = 2𝜋, using 𝑛𝑘 equidistant steps in 𝐸.
Propagating for a single revolution yields 𝑛𝑘 values for �̇�. These are subsequently numerically averaged to obtain
�̇� following the expression in Equation 2.47.

�̇� = Δ𝐱
𝑇𝑝

= 1
𝑇𝑝

∫
𝑡2𝜋

𝑡0

d𝐱
d𝑡 d𝑡 =

1
𝑇𝑝

∫
2𝜋

0

d𝐱
d𝑡

d𝑡
d𝐸 d𝐸 (2.47)

where 𝑇𝑝 is the orbital period. The orbital period results directly from the integration to 𝐸 = 2𝜋 and is simply
taken as 𝑡2𝜋 − 𝑡0. This is in contrast to the original method where the orbital period is approximated through
𝑇𝑝 = 2𝜋√𝑎3/𝜇.
The original method by Kluever (2010) uses the shadow exit and entry angle 𝐸𝑒𝑥 and 𝐸𝑒𝑛 as integration bounds
to account for the loss of thrust during eclipse conditions:

�̇� = 1
𝑇𝑝

∫
𝐸𝑒𝑛

𝐸𝑒𝑥

d𝐱
d𝑡

d𝑡
d𝐸d𝑡 (2.48)

However, as other perturbations such as aerodynamic drag or the effect of spherical harmonics are still present
during this period, the full revolution will be taken into account. When eclipse conditions need to be taken into
account, the shadow function Equation (2.33) is used to determine thrust levels during propagation.
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The integral Δ𝐱 in Equation (2.47) is approximated using a trapezoidal scheme, Equation 2.49

Δ𝐱𝑡𝑟𝑎𝑝 ≈
𝑛𝑘−1
∑
𝑖=0

⎛
⎜⎜
⎝

[ d𝐱
d𝑡

d𝑡
d𝐸
]
𝐸=𝐸𝑖

+ [ d𝐱
d𝑡

d𝑡
d𝐸
]
𝐸=𝐸𝑖+1

2 Δ𝐸
⎞
⎟⎟
⎠

(2.49)

with 𝐸𝑖+1 = 𝐸𝑖 + Δ𝐸.
At this point, an important observation is made. When using a fully numerical approach to determine the average
state derivative �̇�, i.e. using CI to propagate the full state, including perturbations for a single revolution, the
use of a numerical quadrature to approximate Δ𝐱 is not strictly necessary. After all, Δ𝐱 follows directly from
the difference between the initial and final state (in MEE). There are several reasons why this additional step
is nevertheless maintained. Firstly, the method is based on the implementation by the previous author Jimenez­
Lluva (2017), who uses a fully numerical approach as well as the quadrature approximation. Only at a later stage
it was determined that this step was redundant. Secondly, for sufficiently large 𝑛𝑘, the result obtained for Δ𝐱
will not be significantly different, making the result still valid, but more computationally intensive than required.
Finally, this approximation is only redundant in this specific case.

Another method by which the average state derivatives can be obtained is by not propagating the full state, but by
assuming each orbital element is constant over a single revolution and using the approximation 𝑇𝑝 = 2𝜋√𝑎3/𝜇.
Then the state derivatives are obtained by evaluating the EOM at 𝑛𝑘 points, spread equidistantly through the
eccentric anomaly 𝐸 or true longitude 𝐿. Furthermore, when averaged expressions for perturbations can be found
analytically, such as for Earth gravitational potential or third body perturbations, these can be simply added to the
average state derivative and are not part of the trapezoidal quadrature. Nonetheless, independent of the means
by which average state derivatives are obtained in Equation (2.47), these can be numerically integrated using a
significantly larger step­size than used in the CI approach.

Using a lower­order method such as Euler, for example as used by Jimenez­Lluva (2017), will quickly lead
to under­ or overestimation and is generally not accurate enough. Using a higher­order method would quickly
diminish the advantage of OA in terms of computational speed. Boudestijn (2014) also found the accuracy of a
second­order technique to be sufficient for OA. Furthermore, Heun’s method was also used by Kluever (2010) in
the initial proposal. However, for many trajectories, the ’best’ arc length varies over the course of the trajectory
while maintaining similar accuracy. For example, when considering a LEO­to­GEO transfer trajectory, the orbital
period will vary from about 90 minutes to 24 hours. In the later parts of the transfer a larger OA step size can be
used, ultimately to significantly reduce computation times. Therefore, the variable step­size integrator RKF was
selected, as was also recommended by (Gómez­Jenkins, 2015).

2.4. Optimization
This section aims to discuss and explain all techniques that are directly relevant to the optimization process. This
encompasses the optimal control theory used to obtain the control parametrization. Co­state linearization is used
to construct a design vector, greatly reducing the number of parameters left. Following this, the objective function
that is to be optimized is explained. Finally, the optimizer itself is discussed. The method selected to optimize the
low­thrust trajectories is a direct method that uses control parametrization to derive control laws for the optimal
thrust angles and magnitudes. Although this is a direct method, it relies on optimal control theory to parametrize
the OCP. This section briefly introduces the necessary background in optimal control and the way in which the
control is parameterized to allow the direct approach. Lastly, the optimization algorithm, SaDE, is introduced,
together with the Aggregate Objective Function (AOF).

2.4.1. Optimal Control
Optimal control deals with the problem of finding expressions for the control inputs that minimize a certain
objective function. In this case, the specific objective is to find expressions for the optimal thrust steering angles
𝛼∗ and 𝛽∗ and thrust level 𝑇∗. This section aims to summarize the required background, an introduction of control
parametrization. For a more comprehensive overview of optimal control theory, the reader is referred to more
extensive literature, such as existing books on the subject (Longuski et al., 2014; Visser, 2014).

In general, the OCP consists of the state 𝐱(𝑡), control inputs 𝐮(𝑡) and the system of differential equations:

�̇�(𝑡) = 𝑓[𝐱(𝑡), 𝐮(𝑡), 𝑡] (2.50)
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The objective function is defined as

min
𝐮(𝑡)

𝐽 = Φ[𝐱(𝑡𝑓), 𝑡𝑓] + ∫
𝑡𝑓

𝑡0
F[𝐱(𝑡), 𝐮(𝑡), 𝑡]d𝑡 (2.51)

where Φ and F are the Mayer and Lagrange terms, representing the final and integral cost, respectively, and
𝐮(𝑡)T = [𝛼, 𝛽, 𝑇] is the control vector. Following Pontryagain’s Minimum Principle, the optimal conditions that
give the optimum of the corresponding TPBVP are those minimizing the Hamiltonian equations (Pontryagin,
1987):

H = F + 𝛌T ⋅ �̇� (2.52)

where 𝛌 is the co­states vector, or sometimes referred to as the Lagrange multipliers corresponding to the state
equations:

𝛌 = [𝜆𝑝, 𝜆𝑓, 𝜆𝑔, 𝜆ℎ, 𝜆𝑘, 𝜆𝑚]
T

(2.53)

These co­states correspond to each equinoctial element, with the exception of the fast­changing true longitude,
and the spacecraft mass 𝑚. The true longitude is excluded as it will become obsolete through the use of OA, as
was discussed in Section 2.3.2.

The co­states vector 𝛌(𝑡) can be interpreted as representing the relative importance of each state parameter as
a function of time. The necessary optimality conditions state that the first­order derivative of the Hamiltonian
with respect to the control variables has to be zero, i.e. the Karush­Kuhn­Tucher conditions as shown in Equa­
tion (2.54). Furthermore, the second­order derivative has to be positive definite, the Legendre­Clebsch condition
as stated in Equation (2.55).

∂H
∂𝐮 = 0 (2.54)

∂2H
∂𝐮2 > 0 (2.55)

With these conditions, expressions for the optimal thrust steering angles and thrust magnitudes can be obtained,
as a function of the co­state equations. To complete the modeling of the TPBVP these equations are not sufficient
for optimality, this requires deriving the co­states equations given in Equation (2.56) for each co­state.

d𝛌
d𝑡 = −∂H∂𝐱 (2.56)

Solving Equation (2.56) for each co­state leads to a system of equations for the optimal co­states, 𝛌(𝑡), only as a
function of a set of initial co­states, 𝛌0. This is the approach taken by indirect methods, using the co­state equations
to determine 𝛌(𝑡). However, having to re­derive Equation (2.56) for every addition to the problem, such as
different perturbations, limits its general applicability. Furthermore, by parametrizing the thrust control input, the
dimensionality of the problem is reduced (Kluever, 2010). In contrast, this work will focus on how the optimality
conditions can be used to derive expressions for the optimal thrust, without having to derive Equation (2.56),
as this condition hinders the general applicability. This method of parametrizing the control input is outlined in
Section 2.4.2.

2.4.2. Control Parametrization
In contrast to indirect methods, the goal is to circumvent the requirement of the full derivation of all optimality
conditions. Instead, only the derivatives with respect to the control inputs are used to derive expressions for the
optimal control inputs 𝛼∗, 𝛽∗ and 𝑇∗. The work by Kluever (2010) used the following Hamiltonian to derive the
optimal thrust­steering control laws:

H = 𝜆𝑎
d𝑎
d𝑡 + 𝜆𝑒

d𝑒
d𝑡 + 𝜆𝑖

d𝑖
d𝑡 (2.57)
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limiting themselves to only the first three Keplerian elements. Boudestijn (2014) and later Gómez­Jenkins (2015)
expanded this approach by deriving the equations forMEE. Finally, Jimenez­Lluva and Root (2020) expanded the
derivationwith the addition of the spacecraft mass co­state, to allow for a coasting arcmechanism and dropping the
continuous thrust assumption. This is the method used here and thus using the following Hamiltonian (Jimenez­
Lluva, 2017):

H = 𝜆𝑝
d𝑝
d𝑡 + 𝜆𝑓

d𝑓
d𝑡 + 𝜆𝑔

d𝑔
d𝑡 + 𝜆ℎ

dℎ
d𝑡 + 𝜆𝑘

d𝑘
d𝑡 + 𝜆𝑚

d𝑚
d𝑡 (2.58)

Note that the fast­changing true longitude, 𝐿, is discarded as it will disappear by using OA. By applying the
first­order necessary conditions Equation (2.54) to the Hamiltonian Equation (2.58) with respect to 𝛼 and 𝛽, the
optimal steering angles 𝛼∗ and 𝛽∗can be found. Applying the first condition, i.e. ∂H/∂𝛼 = 0 and ∂H/∂𝛽 = 0
results in

tan𝛼∗ =
Λ𝛼𝑓,1 − Λ𝛼𝑔,1

Λ𝛼𝑝 + Λ𝛼𝑓,2 + Λ𝛼𝑔,2
(2.59)

tan 𝛽∗ =
Λ𝛽𝑓,3 + Λ𝛽𝑔,3 + Λ𝛽ℎ + Λ𝛽𝑘

Λ𝛽𝑝 + Λ𝛽𝑓,1 + Λ𝛽𝑓,2 − Λ𝛽𝑔,1 + Λ𝛽𝑔,2
(2.60)

where Λ𝑞𝛼 and Λ𝑞𝛽 represent the constants in the partial derivatives of the HamiltonianH with respect to the thrust
steering angles 𝛼 and 𝛽, corresponding to the 𝑞𝑡ℎ element in the state vector 𝐱 and are given by Equations (2.61)
to (2.74):

Λ𝛼𝑝 = 𝜆𝑝√
𝑝
𝜇
2𝑝
𝑤 cos 𝛽 (2.61)

Λ𝛼𝑓,1 = 𝜆𝑓√
𝑝
𝜇 cos 𝛽 sin𝐿 (2.62)

Λ𝛼𝑔,1 = 𝜆𝑔√
𝑝
𝜇 cos 𝛽 cos𝐿 (2.63)

Λ𝛼𝑓,2 = 𝜆𝑓√
𝑝
𝜇
[(𝑤 + 1) cos𝐿 + 𝑓] cos 𝛽

𝑤 (2.64)

Λ𝛼𝑔,2 = 𝜆𝑔√
𝑝
𝜇
[(𝑤 + 1) sin𝐿 + 𝑔] cos 𝛽

𝑤 (2.65)
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where the common terms √𝑝/𝜇 and cos 𝛽 will cancel out. The partial derivatives with respect to 𝛽 are:

Λ𝛽𝑝 = 𝜆𝑝√
𝑝
𝜇
2𝑝
𝑤 cos𝛼∗ (2.66)

Λ𝛽𝑓,1 = 𝜆𝑓√
𝑝
𝜇 sin𝐿 sin𝛼∗ (2.67)

Λ𝛽𝑔,1 = 𝜆𝑔√
𝑝
𝜇 cos𝐿 sin𝛼∗ (2.68)

Λ𝛽𝑓,2 = 𝜆𝑓√
𝑝
𝜇[(𝑤 + 1) cos𝐿 + 𝑓] cos𝛼∗ (2.69)

Λ𝛽𝑔,2 = 𝜆𝑔√
𝑝
𝜇[(𝑤 + 1) sin𝐿 + 𝑔] cos𝛼∗ (2.70)

Λ𝛽𝑓,3 = 𝜆𝑓√
𝑝
𝜇
𝑔
𝑤(ℎ sin𝐿 − 𝑘 cos𝐿) (2.71)

Λ𝛽𝑔,3 = 𝜆𝑔√
𝑝
𝜇
𝑓
𝑤(ℎ sin𝐿 − 𝑘 cos𝐿) (2.72)

Λ𝛽ℎ = 𝜆ℎ√
𝑝
𝜇
𝑠2 cos𝐿
2𝑤 (2.73)

Λ𝛽𝑘 = 𝜆𝑘√
𝑝
𝜇
𝑠2 sin𝐿
2𝑤 (2.74)

where 𝑤 = 1+𝑓 cos𝐿+𝑔 sin𝐿, and 𝑠2 = 1+ℎ2 +𝑘2. By using the second necessary condition Equation (2.55)
and some trigonometric manipulation, the sine and cosine of the optimal steering angle 𝛼∗ and their proper signs
can be found:

sin𝛼∗ =
−(Λ𝛼𝑓,1 − Λ𝛼𝑔,1)

√(Λ𝛼𝑓,1 − Λ𝛼𝑔,1)
2
+ (Λ𝛼𝑝 + Λ𝛼𝑓,2 + Λ𝛼𝑔,2)

2
(2.75)

cos𝛼∗ =
−(Λ𝛼𝑝 + Λ𝛼𝑓,2 + Λ𝛼𝑔,2)

√(Λ𝛼𝑓,1 − Λ𝛼𝑔,1)
2
+ (Λ𝛼𝑝 + Λ𝛼𝑓,2 + Λ𝛼𝑔,2)

2
(2.76)

The sine and cosine of the optimal steering angle 𝛽∗ and proper signs are similarly found:

sin 𝛽∗ =
−(−Λ𝛽𝑓,3 + Λ𝛽𝑔,3 + Λ𝛽ℎ + Λ𝛽𝑘)

√(−Λ𝛽𝑓,3 + Λ𝛽𝑔,3 + Λ𝛽ℎ + Λ𝛽𝑘)
2
+ (Λ𝛽𝑝 + Λ𝛽𝑓,1 − Λ𝛽𝑔,1 + Λ𝛽𝑓,2 + Λ𝛽𝑔,2)

2
(2.77)

cos 𝛽∗ =
−(Λ𝛽𝑝 + Λ𝛽𝑓,1 − Λ𝛽𝑔,1 + Λ𝛽𝑓,2 + Λ𝛽𝑔,2)

√(−Λ𝛽𝑓,3 + Λ𝛽𝑔,3 + Λ𝛽ℎ + Λ𝛽𝑘)
2
+ (Λ𝛽𝑝 + Λ𝛽𝑓,1 − Λ𝛽𝑔,1 + Λ𝛽𝑓,2 + Λ𝛽𝑔,2)

2
(2.78)

The control laws thus far are equal to those derived in (Boudestijn, 2014). However, with the addition of the mass
co­state, the constant thrust assumption can be dropped and an optimal control law for thrust 𝑇 can be derived.
This approach is based on the work in Gao and Kluever (2004) but then re­derived for MEE in Jimenez­Lluva
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(2017). By evaluating the Hamiltonian derivative with respect to thrust 𝑇:
∂H
∂𝑇 = Λ𝛽𝑝 cos 𝛽

1
𝑚

+ [Λ𝛽𝑓,1 cos 𝛽 + Λ𝛽𝑓,2 cos 𝛽 − Λ𝛽𝑓,3 sin 𝛽]
1
𝑚

+ [−Λ𝛽𝑔,1 cos 𝛽 + Λ𝛽𝑔,2 cos 𝛽 + Λ𝛽𝑔,3 sin 𝛽]
1
𝑚

+ Λ𝛽ℎ sin 𝛽
1
𝑚 + Λ𝛽𝑘 sin 𝛽

1
𝑚 − 𝜆𝑚

1
𝑔0𝐼𝑠𝑝

= 𝑆𝑡

(2.79)

As the Hamiltonian is linear in thrust 𝑇 (see Equation (2.15)), this results in a switching function 𝑆𝑡 = ∂H/∂𝑇
and thus bang­bang control:

𝑇∗ = {
0, if 𝑆𝑡 > 0

𝑇𝑚𝑎𝑥, if 𝑆𝑡 < 0
(2.80)

Note that a third condition where 𝑆𝑡 = 0 and ̇𝑆𝑡 = 0, causing a potential thrust between 0 and 𝑇𝑚𝑎𝑥 is neglected.
Firstly, the numerical nature of the propagationmeans this condition is rarely reached. Furthermore, these singular
arcs have a small duration in practice (Jimenez­Lluva, 2017).

In summary, the optimal thrust steering angles 𝛼∗, 𝛽∗ and 𝑇∗ are given by Equations (2.75) to (2.78) and the
optimal thrust bang­bang control 𝑇∗ from Equation (2.80). Note that the computation of the actual thrust steering
angle is generally not required as the sine and cosine terms can be directly substituted in Equation (2.17) to obtain
the thrust acceleration vector 𝐚𝑇 .

2.4.3. Co­state Linearization
We now have derived expressions for the optimal thrust steering angles, 𝐮∗(𝑡), as a function of the individual
co­states 𝛌, current state 𝐱, and time 𝑡. So, given a time history of co­states, the optimal control parameters can
be determined and subsequently the full EOM propagated. To achieve this the co­states can be set at fixed points,
or nodes, and interpolated between them. This parametrization of the control parameters can be done among an
arbitrary number of 𝑛 nodes, spaced along the semi­major axis (Kluever, 2010) or in time (Gómez­Jenkins, 2015).
An example of this is shown in Figure 2.8.

Figure 2.8: Example of two (left) or three (right) nodes, equally distributed in semi­major­axis (Gómez­Jenkins, 2015).

Gómez­Jenkins (2015) shows that using more than two nodes increases the solution accuracy slightly but at the
cost of a significant increase in computational effort. This is supported by Kluever (2010) who also argues that
the performance gain is relatively small when compared to the computation cost. Therefore in this work, only a
single co­state arc will be considered, i.e. from initial co­states 𝛌0 to final co­states 𝛌𝑓. Finally, the time­of­flight
𝑡𝑓, is considered a free parameter and part of the design vector:

𝐲T = [𝑡𝑓, 𝛌T0, 𝛌T𝑓] (2.81)
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Co­state Scaling
In an effort the improve optimizer convergence, it is desirable to be able to scale some co­states to ensure they vary
in similar orders of magnitude. Especially the co­state elements corresponding with the semi­parameter 𝑝 and
mass𝑚 can be considerably larger and smaller than the other ones, respectively. Firstly, as seen in Equation (2.61)
and Equation (2.67), the term 2𝑝/𝑤 requires 𝜆𝑝 to be very small. Similarly, in Equation (2.79) for similar values
of 𝜆𝑞, the term with 𝜆𝑚 will dominate the switching function. In other words, for comparable bounds for the
co­state vector, only a small region will yield actual coasting arcs.

To counteract this behavior, either the bounds for each co­state 𝜆𝑞 can be individually determined, or some co­
states of the initial design vector can be scaled by some parameter. Therefore instead of 𝜆𝑝, the design vector
uses 𝑝 ⋅ 𝜆𝑝 and 𝑚−1 ⋅ 𝜆𝑚 instead of 𝜆𝑚. So using co­state vector in Equation (2.81):

𝛌 = [𝑝 ⋅ 𝜆𝑝, 𝜆𝑓, 𝜆𝑔, 𝜆ℎ, 𝜆𝑘, 𝑚−1 ⋅ 𝜆𝑚]
T

(2.82)

2.4.4. Objective Function
Recall that the formulation of the optimization problem can be stated as the problem of minimizing some objective
function 𝐽 = 𝑓(𝐲), where 𝐲T = [𝑡𝑓, 𝛌T0, 𝛌T𝑓], subject to some final constraint𝚿𝑓. For example, when considering
purely a minimum­time problem, a cost­function could be purely be determined by the time­of­flight 𝑡𝑓:

𝐽 = 𝑡𝑓 (2.83)

For the case of a minimum­propellant problem, the cost function would depend on the initial mass 𝑚0 and final
mass 𝑚𝑓, or propellant mass:

𝐽 = (1 −
𝑚𝑓
𝑚0

) (2.84)

In practice, both 𝑡𝑓 andminimumpropellant might need to be targeted, in addition to other possible objectives such
as minimum radiation exposure. Generally, these consist of conflicting objectives, e.g. minimizing propellant
mass causes an increase of the minimal 𝑡𝑓 . This multi­objective optimization problem can be handled by utilizing
a weighted objective function, assigning weights to each objective, and summing their results (Michalewicz,
1995):

𝐽 =
𝑛
∑
𝑖=1

𝑤𝑖𝑓𝑖(𝐲) (2.85)

where 𝑤𝑖 is the weight assigned to the objective function 𝑓𝑖. Such an objective function is called the Aggregate
Objective Function (AOF). By varying the individual weights a Pareto front of the problem can be determined.
The Pareto front describes the solutions for which no other objectives can be improved, without sacrificing any
other objective. In spacecraft trajectory optimization a common Pareto front is propellant mass at the cost of
transfer time and vice versa. Figure 2.9 demonstrates this with an example for the Cassini benchmark model,
describing an interplanetary space mission to Saturn (Schlueter et al., 2021).
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Figure 2.9: Pareto front of Cassini1 GTOP Benchmark problem (Schlueter et al., 2021).

To simplify the optimization problem, the final constraints can be incorporated into the objective function, trans­
forming the problem into an unconstrained optimization problem. The AOF then incorporates both the target
state and optimization target by adding an additional error, or penalty term to the cost function:

𝐽𝑒𝑟𝑟𝑜𝑟 =
6
∑
𝑖=1

𝑤𝑖( ̃𝜀𝑖)2 (2.86)

where 𝑤𝑖 is the weight assigned to a scaled error ̃𝜀𝑖, corresponding to each of the targeted orbital elements œ =
[𝑎, 𝑒, 𝑖, 𝜔,Ω, 𝜃]T. Note that Keplerian elements are used for the final target orbit, instead of the MEE that are
used for the propagation of the trajectory. This allows easier handling of the target orbit and makes interpreting
the optimization results more intuitive when inspecting intermediate fitness calculations. Furthermore, the true
anomaly 𝜃 is included here to allow rendezvous targeting. While this will not be possible through OA, it is
maintained here as the corresponding weight is set to 0 when OA is used. Finally, to improve convergence
behavior and reduce weight tuning, the final orbit error is scaled with respect to the bounds set by the user. Given
the absolute error of the propagated trajectory:

𝛆 = ||œ𝑡𝑎𝑟𝑔𝑒𝑡 − œ𝑓𝑖𝑛𝑎𝑙|| (2.87)

where œ𝑡𝑎𝑟𝑔𝑒𝑡 and œ𝑓𝑖𝑛𝑎𝑙 are the targeted and final orbital elements, respectively. The relationship in Equa­
tion (2.88) is used to determine ̃𝛆, i.e. the scaled orbit error corresponding to the elements in œ:

̃𝛆 = 1 + 𝛆 − 𝛆𝑈𝐵
𝛆𝑈𝐵 − 𝛆𝐿𝐵

(2.88)

where 𝛆𝑈𝐵 and 𝛆𝐿𝐵 the user­determined upper and lower bound vectors of the final orbit error. Through this
procedure, the error will be given a value ̃𝜀𝑗 ∈ (0, 1] when within the constraints, and a value ̃𝜀𝑗 ∈ (1,∞) when
outside of the constraints.

The full objective function used in the remainder of this work will therefore be

𝐽 = 𝑤𝑡𝑡𝑓 + 𝑤𝑚(1 −
𝑚𝑓
𝑚0

) +
6
∑
𝑗=1

𝑤𝑗( ̃𝜀𝑗)2 (2.89)

The choice of the allowed final orbit error bounds is left free and generally depends on several factors such as
mission requirements, trajectory type, or launcher characteristics. For example, Jimenez­Lluva (2017) uses the
trajectory requirements as recommended by GMV for preliminary mission design shown in Table 2.4. Note he
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targeted GEO applications, hence the use of final geodetic longitude, Λ, as a constraint. For rendezvous opti­
mization a constraint on final true anomaly would be used for example. Boudestijn (2014) based his constraints
on a maximum final error tolerance of 1 deg as accepted for preliminary design and Gómez­Jenkins (2015) bases
accuracy requirements on the Ariane 5 launcher injection error.

Table 2.4: Upper bounds on the allowed final error in Keplerian orbital elements as used by Jimenez­Lluva (2017).

element Upper Bound

𝑎 [km] 100.0
𝑒 [­] 0.01
𝑖 [deg] 0.1
Ω [deg] 1.0
𝜔 [deg] 1.0
Λ [deg] 1.0

2.4.5. Differential Evolution
To solve the optimization problem as defined in the previous section, the self­adaptive DE algorithm in PaGMO,
DE1220, i.e. pagmo Differential Evolution (pDE), was selected. This global optimization algorithm was selected
for three main reasons. Firstly, based on an extensive literature survey on global optimization methods, DE was
determined to be one of the best meta­heuristics available for this type of optimization problems (Klavers, 2020).
However, the performance of the traditional DE version is very susceptible to the tuning of its optimization
parameters crossover rate 𝐶𝑅, weight coefficient 𝐹, and population size 𝑁𝑝, as well as the mutation variant used.
The self­adaptive implementation of the DE algorithm in PaGMO circumvents the need for this tuning process
by making use of two different adaptation schemes for 𝐶𝑅 and 𝐹, as well as randomly mutating the mutation
variant used. Therefore, greatly reducing required user input while maintaining good convergence for different
problems.

Secondly, in support of this, using pDE is also the approach recommended by previous authors Jimenez­Lluva
(2017), Gómez­Jenkins (2015), and Boudestijn (2014). Thirdly, as an additional benefit from an implementation
point of view, the connection between Tudat and PaGMO is already well­implemented and tested. This also
allows the use of the generalized island model (Izzo et al., 2012), which provides parallel computing mecha­
nisms as well as other advantages, such as parallel populations to further prevent premature convergence to local
minima.

Traditional Differential Evolution
DE is a meta­heuristic optimization method introduced by Storn and Price (1997). Similar to other evolutionary
algorithms such as Genetic Algorithms (GAs), a population of individual solutions is evolved over multiple gen­
erations to find a globally optimal individual. This section summarizes the basic mechanisms of DE, for further
reading the reader is referred to either the original publication (Storn and Price, 1997) or the book outlining its
mechanics in full detail by the same author (Price et al., 2005).

DE is based on four steps: initialization, mutation, crossover, and selection.

Initialization The population of size 𝑁𝑝 is defined as:

𝑥𝑖,𝐺 , 𝑖 = 1, 2, … , 𝑁𝑝 (2.90)

where 𝑖 is the individual in generation 𝐺. The initial population is generally chosen randomly, covering the
entire parameter space. By default, this is a uniform random distribution, but can also be created using a normal
distribution around the values of a previous solution, for example, obtained through an analytical approximation
method.

Mutation The various individuals in the parameter vector 𝑥𝑖,𝐺 are combined to form a mutant vector 𝑣:

𝑣𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + 𝐹 ⋅ (𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺) (2.91)
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where 𝑟1, 𝑟2, 𝑟3 ∈ 1, 2, … , 𝑁𝑝 are random integer indices, and the weight coefficient 𝐹 > 0 and 𝐹 ∈ [0, 2]. The
random integer indices are also mutually different and different for each individual 𝑖. 𝐹 controls the weight or
amplification of the differential variation.

Crossover To diversify the mutated parameter vectors, and prevent local convergence, a crossover mechanism
is used. To do this a new vector is formed, the trial vector 𝑢:

𝑢𝑖,𝐺+1 = (𝑢1𝑖,𝐺+1, 𝑢2𝑖,𝐺+1, … , 𝑢𝐷𝑖,𝐺+1) (2.92)

where

𝑢𝑗𝑖,𝐺+1 = {
𝑣𝑗𝑖,𝐺+1 if (𝑟𝑎𝑛𝑑𝑏(𝑗) ≤ 𝐶𝑅) or 𝑗 = 𝑟𝑛𝑏𝑟(𝑖)

𝑥𝑗𝑖,𝐺 if (𝑟𝑎𝑛𝑑𝑏(𝑗) > 𝐶𝑅) and 𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑖)

𝑗 = 1, 2, … , 𝐷

(2.93)

where 𝑟𝑎𝑛𝑑𝑏(𝑗) ∈ [0, 1] is the 𝑗𝑡ℎ evaluation of a uniform random number, 𝑟𝑛𝑏𝑟(𝑖) ∈ 1, 2, … , 𝐷 is a random index
and 𝐶𝑅 ∈ [0, 1] is the crossover rate. Figure 2.10 gives an example of this mechanism for 7 parameters.

Figure 2.10: Illustration of the crossover operation (Storn and Price, 1997).

Selection Finally the trial vector 𝑢𝑖,𝐺+1 is compared with the parameter vector 𝑥𝑖,𝐺. If the fitness of the trial
vector is larger than that of the parameter vector, it is selected to be part of the new generation. If not, the original
parameter vector is maintained for the next generation.

Variations on the outlined scheme are possible, denoted using the notation 𝐷𝐸/𝑥/𝑦/𝑧 where:

1. 𝑥 is the vector that is mutated, either randomly chosen (”rand”) or the best vector of the population (”best”),
i.e. with the best fitness.

2. 𝑦 is the number of difference vectors used

3. 𝑧 is the crossover scheme used, for example, in this section, a binomial crossover is used (”bin”), although
exponential crossover (”exp”) was used in the original proposition (Storn and Price, 1995).

Thus the variation outlined in this section is denoted as 𝐷𝐸/𝑟𝑎𝑛𝑑/1/𝑏𝑖𝑛. The implementation of DE in PaGMO
provides the variations shown in Table 2.5.
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Table 2.5: Available variants in DE implementation in PaGMO (Differential Evolution — Pagmo 2.17.0 Documentation
2021).

variant

best/1/exp
rand/1/exp
rand­to­best/1/exp
best/2/exp
rand/2/exp
best/1/bin
rand/1/bin
rand­to­best/1/bin
best/2/bin
rand/2/bin

Self­Adaptive Differential Evolution
pDE uses the self­adaptation schemes proposed by Brest et al. (2006) and Elsayed et al. (2011), also called jDE
and iDE, respectively. Furthermore, pDE implements an additional self­adaptation mechanism to specify the
mutation variant used. Before the mutation step, the individual 𝑖 is augmented with an additional integer 𝑉𝑖,
specifying the variant to be used to generate the next trial individual. This variant 𝑉𝑖 is selected as:

𝑉𝑖 = {
𝑟𝑎𝑛𝑑𝑜𝑚 𝑟𝑖 < 𝜏

𝑉𝑖 otherwise
(2.94)

where 𝑟𝑖 ∈ [0, 1] is a random uniformly distributed number, and 𝜏 = 0.1 by default. 𝑟𝑎𝑛𝑑𝑜𝑚 gives a randomly
selected mutation variant from the set of available variants. The available variants are given in Table 2.6 and are
in addition to those given in Table 2.5. The additional variants are introduced in the jDE implementation (Elsayed
et al., 2011).

Table 2.6: Available variants in the jDE implementation of DE (Elsayed et al., 2011).

variant

rand/3/exp
rand/3/bin
best/3/exp
best/3/bin
rand­to­current/2/exp
rand­to­current/2/bin
rand­to­best­and­current/2/exp
rand­to­best­and­current/2/bin

With the use of SaDE, the only remaining required user input is the population size 𝑁𝑝. The original method
recommends a population size between 𝑁𝑝 = 5𝐷 and 𝑁𝑝 = 10𝐷 where 𝐷 is the number of design parameters,
i.e. 𝐷 = 11 for the minimum­time problem (5 for each initial and final co­states, and 𝑡𝑓), and 𝐷 = 13 for the
minimum­propellant problem. The reference implementation in Jimenez­Lluva (2017) employed 𝑁𝑝 = 10𝐷,
which he showed provided generally reliable results. Because the optimization performance was not the primary
focus of this project, no further analysis of the impact of the population size on the optimizer performance was
done, and this same rule­of­thumb is used in the OT, and was confirmed to yield satisfactory results. Nevertheless,
it should be noted that there can be room for improvement in general optimization performance (in terms of
computation times) by further analyzing the effect of 𝑁𝑝 for each specific problem, as well as the selection of
mutation variants available to SaDE.
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2.5. Summary
In summary, MEE are used to describe the spacecraft state. Several perturbations can be taken into account, the
EOM of which are readily available in terms of MEE. Through the use of OA the spacecraft state is efficiently
propagated for long periods of time, but at the cost of the loss in accuracy of the fast­changing orbital element.
OA uses an ’embedded’ CI propagation to propagate the spacecraft state for a single revolution, the average state
progression obtained from these are then propagated using a variable­step integrator. Through this approach, the
computational requirements for propagating a single trajectory can be reduced.

To perform the optimization process, the spacecraft control is parameterized to reduce the search space. This is
accomplished by deriving the optimal control laws in terms of MEE co­states. In contrast to indirect techniques,
only expressions for the optimal steering inputs are derived by using the optimality conditions. This control
parametrization technique results in 𝑛 nodes, defining the co­state arcs. Based on previous work, two nodes are
used, i.e. a single co­state arc. Thus, the decision vector consists of 11 parameters for the minimum time problem
and 13 for the minimum propellant problem. Furthermore, a co­state scaling method is used to ensure the design
vector parameters are of similar magnitude, to improve convergence behavior.

The propagated trajectory will have an associated fitness value, defined by an Aggregate Objective Function
(AOF), which incorporates the final orbit error, time­of­flight, and propellant mass; weights can be assigned to
each, or even fully disabled. The self­adaptive variant of DE is used to optimize the overall optimization problem,
avoiding the need for optimizer tuning, and therefore expected more robust convergence which comes at the cost
of slower convergence.
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Validation, Verification, and Propagator

Testing

In Chapter 2 an implementation of an optimization technique was introduced, using OA to propagate a trajectory,
and SaDE to optimize the parameterized control inputs, resulting in an Optimization Tool (OT) in Tudat. This
chapter discusses the testing efforts of the implementation and an analysis of the integration parameters required
to accurately capture a specific trajectory. In the context of this project, validation deals with testing against the
physical reality and verification with testing against other models. Because validation is a difficult activity for
such a project we generally limit ourselves to verification of the OT. Likewise, comparing propagated trajectories
to results obtained from a properly validated tool is considered verification for consistency; for the purpose of
this project we limit ourselves to the verification of the OT. Nevertheless, it is emphasized that it is critical to
verify the obtained solutions with a properly validated propagation tool for actual applications. Closely related to
verification is the testing of the propagator to determine the parameters required to ensure reliable results.

Not all components require thorough testing as many are either already available, such as SaDE in PaGMO,
or have been extensively used previously as part of Tudat. Firstly Section 3.1 discusses the implementation of
the orbital perturbations and the thrust under shadow conditions. Section 3.2 moves to verify the implemented
propagation, both CI and OA by comparing with reference benchmark trajectories obtained from high­accuracy
propagation methods in Tudat. These high­accuracy benchmark trajectories are obtained through the Cowell
propagator in Tudat using a RK7(8) integrator with step­sizes in the order of tens of seconds.

3.1. Orbital Perturbations
As mentioned in Section 2.2.4, each perturbation implemented in the hybrid propagation model has been im­
plemented in Tudat already and can be considered extensively tested. However, as they are part of a novel
propagation implementation, the actions in this section serve as an additional test, to make sure they each behave
as expected. The perturbations due to the 𝐽2 effect and aerodynamic drag on a trajectory are evaluated. Addi­
tionally, the impact of the reduction of thrust due to eclipse conditions is verified. This section aims to verify
that the CI implementation properly implements these perturbations, i.e. does a resulting trajectory from a CI
propagation subject to certain perturbations, behave as expected. This will be accomplished by comparing the
CI result to known solutions or approximations to verify their behavior. The behavior of OA will be discussed in
Section 3.2.

3.1.1. Secular Drift due to Oblateness
As shown in Section 2.2.4, the oblateness of the Earth causes a secular drift of the RAAN Ω, and argument of
periapsis𝜔. This drift can be approximated by Equations (2.21) and (2.22). It should be noted that these equations
only describe a first­order approximation of the secular drift. The other (mean­mean) orbital elements are taken
as constant. A trajectory with initial Keplerian elements 𝑎 = 10 000 km, 𝑒 = 0.1, 𝑖 = 60° is propagated for 60
days. The trajectory is propagated using CI and 𝑛𝑘 = 40. Only the 𝐽2 effect is taken into account, with no other
perturbations, nor thrust.

31
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The absolute differences, |𝜀Ω| = ||Ωanalytic −ΩCI||, and |𝜀𝜔| = ||𝜔analytic − 𝜔CI|| between the analytically predicted
mean elements and the CI propagated are shown in Figure 3.1.
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Figure 3.1: Absolute difference of Ω and 𝜔 between analytically expected drift and CI propagated trajectory.

Figure 3.1 clearly shows that both Ω and 𝜔 have a short­period variation, reflecting the secular approximation.
More importantly, Ω shows a small secular error, which can be attributed to the first­order approximation of Ω̇.
Although Figure 3.1 demonstrates the general effect of the 𝐽2 is as expected, i.e. the first­order secular drifts
are accurately captured, comparison with a reference benchmark trajectory shows higher­order effects are also
accurately captured. Again, Figure 3.2 shows the absolute error between the trajectory propagated with the hybrid
implementation and a high­accuracy benchmark trajectory.
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Figure 3.2: Absolute difference of Ω and 𝜔 between high­accuracy reference trajectory and CI propagated trajectory.

For this example, the maximum relative error compared to the expected drifts is in the order of 10−4 % and 10−2 %
for Ω and 𝜔, respectively. Based on this we can conclude that the implementation of CI does not significantly
influence the effect of the 𝐽2 perturbation on the propagated trajectory.

3.1.2. Aerodynamic Drag
The influence of aerodynamic drag depends on the spacecraft shape and size, orientation, mass, and atmospheric
density. The atmospheric density 𝜌 is especially difficult to determine as it is largely determined by the atmo­
spheric conditions at specific altitudes, which in turn are largely influenced by the solar cycle. For example,
Figure 3.3 shows the satellite lifetimes during solar minimum and maximum for a range of ballistic coeffi­
cients.



3.1. Orbital Perturbations 33

Figure 3.3: Satellite lifetime as a function of altitude, solar cycle phase, ballistic coefficient (Wertz, 2001).

The choice of atmospheric model, i.e. how 𝜌 is determined, is a prime source of uncertainty. As mentioned in
Section 2.2, this atmosphere model is approximated using tabulated values, available in Tudat, which is consid­
ered sufficient for first­order approximations. The spacecraft drag coefficient 𝐶𝐷 and frontal surface area 𝐴 are
assumed constant. This allows preliminary analysis of drag on the CI.

An approximation of the expected decay of the semi­major axis, 𝑎, due to aerodynamic drag and assuming a
circular orbit, is given by (Wakker, 2015):

Δ𝑎𝑟𝑒𝑣 = −2𝜋(𝐶𝑑𝐴𝑚 )𝜌𝑎2 (3.1)

where Δ𝑎𝑟𝑒𝑣 is the change in semi­major axis per orbital revolution. 𝐶𝐷 is the drag coefficient, 𝐴 the cross­
sectional area, and 𝜌 atmospheric density. It should be noted that this is a simplified approximation, but it does
demonstrate the behavior of our propagation is as expected, as seen in Figure 3.4. This holds for a circular orbit
with initial conditions 𝑎 = 6678.0 km, 𝑒 = 0, 𝑖 = 79°. Using a satellite with constant mass 𝑚 = 2.0 kg, frontal
area𝐴 = 0.028m2 and constant drag coefficient𝐶𝐷 = 2.2, which is representative of a CubeSat (Sundaramoorthy
et al., 2010). The atmospheric density 𝜌 is obtained from the tabulated value at that altitude.
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Figure 3.4: Decay of the semi­major axis due to aerodynamics drag.

Although this shows a similar decay pattern for the CI propagated trajectory as the expected analytical decay,
comparison with a reference trajectory further confirms consistency. As the atmosphere models and aerodynamic
perturbing equations of motion in Tudat have also been extensively used and tested, we can use a similar approach
to verify the CI propagation. Again, a reference trajectory is compared to a trajectory propagated using the hybrid
method.
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Figure 3.5: Absolute difference in semi­major axis between CI and benchmark propagated trajectories.

From Figure 3.5 it is clear that the implemented aerodynamic model does not create any noticeable error term,
with the error only increasing somewhat at low altitudes, i.e. ℎ < 100 km, but remaining small.

3.1.3. Thrust Under Eclipse Conditions
As discussed in Section 2.2.4, the eclipse model has previously been implemented in Tudat, therefore the shadow
function is assumed to function as expected. Nevertheless, its effect on the expected thrust profile is briefly inves­
tigated. A LEO trajectory with 𝑎 = 6927.0 km, 𝑒 = 0.01 and 𝑖 = 0°, is propagated for 50 days, using a tangential
continuous­thrust model. The effect of disabled thrust during eclipse conditions can then be observed.
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Figure 3.6: Top­down view of the propagated trajectory, showing regions with thrust in yellow and thrust off in purple.

In Figure 3.6 a top­down view of the propagated trajectory is shown. Areas during which thrust is disabled are
shown in dark purple, thrust enabled is shown in yellow. It can be seen the areas of solar shadow rotate with
the rotation of Earth about the Sun. Secondly, it is apparent that the semi­major axis increases, as well as the
eccentricity.
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Figure 3.7: Semi­major axis and eccentricity for two propagated trajectories, with and without eclipse conditions.

This is also shown in Figure 3.7, showing the progression of the semi­major axis and eccentricity. Unsurprisingly
the obtained change in semi­major axis is lower when thrust during eclipse is disabled. For constant tangential
thrust in a near­circular orbit, the eccentricity will remain approximately constant as can be derived from Equa­
tion (2.11). When thrust is only possible during specific parts of the trajectory, an increase of the eccentricity is
to be expected, as apogee will be raised predominantly in the shadow of the Earth. But, because the spacecraft is
initially in shadow near perigee, the eccentricity will first decrease (as perigee is raised near apogee when thrust
is enabled), before increasing again.

3.1.4. Summary
Based on the previous sections we conclude the implemented perturbations for the hybridMEE propagator behave
as expected. The secular drift induced by the oblateness of the Earth corresponds to the expected drift based on a
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first­order analysis, as well as the observed drift in a numerically propagated, high­accuracy reference trajectory.
The orbital decay caused by aerodynamic drag is also accurately captured by the (simplified) drag model. Finally,
the effect of disabled thrust during eclipse conditions on the propagated trajectory is as expected and thrust is
properly switched off during shadow conditions. It is worth repeating that the reference benchmark trajectory
was propagated using a different Cowell propagator, to ensure little overlap with the implemented hybrid MEE
propagation. Furthermore, the goal of this section was to verify the effect of the perturbations on the propagation,
the implementation of the perturbations is considered properly tested due to their heritage in Tudat.

The remainder of the section will further verify the implemented propagator and investigate the required integra­
tion segments for OA.

3.2. Propagator
Verification of the implemented propagator is vital to ensure good performance of the optimization algorithm,
both CI and OA. For the CI propagator, or more accurately: propagation using MEE and fixed step size in
eccentric anomaly 𝐸. The number of integration epochs 𝑛𝑘, will largely determine its accuracy. Work by previous
authors includes an analysis of required 𝑛𝑘. This is done to both evaluate its performance and determine suitable
parameters that will be used for the optimization process, ultimately requiring a trade­off between accuracy and
computational performance. Both Boudestijn (2014) and Jimenez­Lluva (2017) used a value of 𝑛𝑘 = 40 for their
propagation. Gómez­Jenkins (2015) included atmospheric drag and third body perturbations in his analysis and
used 𝑛𝑘 = 70 as the value best meeting his requirements. Because the work in this project includes the additional
𝐽2 and thrust under eclipse conditions, and uses a fully numerical approach for the OA method, the impact of
these perturbations on the propagation will be tested.

Two different initial orbits are used for the various test cases. The first test case uses an inclined GTO with high
eccentricity and a low perigee. This orbit was selected for two reasons. Firstly, these are the same conditions
used by Geffroy and Epenoy (1997) on which subsequently Jimenez­Lluva (2017) based his work. This allows
us to compare the performance of the propagator to external references. No perturbations are taken into account
for this test case as they are also not used in the reference results. The other spacecraft parameters are equal to
those in the reference case: 𝑇 = 0.350N, 𝑚0 = 2000 kg, and 𝐼𝑠𝑝 = 2000 s.

For the second test case, the initial trajectory is a polar orbit in LEO. This orbital regime is used later in the
project for investigating transfers to space debris objects. Furthermore, the low altitude and high inclination
mean both the oblateness of the Earth and aerodynamic drag perturbations will play a role. This test case serves
to investigate the impact of the additional perturbations on the integration requirements. Finally, the low orbital
period will present different challenges for the OA approach when compared to the relatively larger orbital period
of the GTO trajectory. The full input parameters of the verification cases are given in Table 3.1.

Table 3.1: Parameters used in both validation cases. Case 1 represents the initial conditions of a GTO. Case 2 represents the
initial conditions of a polar orbit in LEO.

Case 1 Case 2

𝑎0 [km] 24 505.9 7103.0
𝑒0 [­] 0.725 0.01
𝑖0 [deg] 7.0 95.5
𝜔0 [deg] 0.0 0.0
Ω0 [deg] 0.0 0.0
𝜃0 [deg] 0.0 0.0
𝑇 [N] 0.35 0.5
𝐼𝑠𝑝 [s] 2000.0 2000.0
𝑚0 [kg] 2000.0 2000.0
𝐽2 no yes
drag no yes
eclipse no yes

The propagator performance is verified using three simplified thrust profiles: tangential, out­of­plane, and radial



3.2. Propagator 37

thrust. To allow an accurate comparison, final orbit error constraints are taken equal to those used by Jimenez­
Lluva (2017) as shown in Table 2.4. The reference trajectories are propagated by Tudat using the same parameters,
but using a high­accuracy variable step size integrator and general Cowell propagation instead. Because this
propagator has been extensively used in existing research and shares no implementation with the CI and OA
approach as discussed in this work, this reference propagation can be considered thoroughly validated and usable
as reference ’ground truth’.

The constant yaw­ and pitch steering angles used for the three thrust profiles are defined as:

tangential: 𝛼 = 𝛾 ; 𝛽 = 0
radial: 𝛼 = 𝜋

2
; 𝛽 = 0

out­of­plane: 𝛼 = 𝛾 ; 𝛽 = sgn(cos(𝜔 + 𝜃))𝜋
2

It is worth repeating that 𝛼 is defined with respect to the 𝑆­direction, therefore the tangential direction is defined
through the flight­path angle 𝛾. Equivalently for the out­of­plane thrust profile (aimed at maximizing inclination
change), thrust is in the positive out­of­plane direction for 𝑣𝑧 > 0 and in the negative direction for 𝑣𝑧 < 0:

𝛼𝑇𝑊 ≡ {1 if 𝑣𝑧 > 0
−1 if 𝑣𝑧 < 0 (3.2)

where 𝑣𝑧 is obtained from Equation (2.9). A geometric representation of these three profiles is shown in Fig­
ure 3.8.

Figure 3.8: Geometric representation of the three simplified thrust profiles (Jimenez­Lluva, 2017)

For both test cases, we first look at the difference between the CI and benchmark trajectory, to both verify its
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performance and determine the step size required to accurately capture the dynamics, similarly to the previous
section but now incorporating a thrust model and the full perturbations for the second test case. Following this, an
analysis on the OA performance is done, investigating the impact of 𝑛𝑘 on the averaging approach, i.e. the number
of state derivatives used in the numerical quadrature. It is worth repeating that 𝑛𝑘 corresponds to the number of
propagation epochs, and thus the fixed step­size in eccentric anomaly: Δ𝐸 = 2𝜋/𝑛𝑘, as described in Section 2.3.
Therefore, 𝑛𝑘 also corresponds to the number of integration segments used in the numerical quadrature, as was
shown in Equation (2.49).

3.2.1. Case 1: GTO Trajectory
The progression of the first three Keplerian elements, 𝑎, 𝑒 and 𝑖, as a result of tangential, radial, and out­of­plane
thrust is shown in Figures 3.9 to 3.11, as propagated by the reference benchmark. For tangential thrust a secular
increase in semi­major axis and a decrease in eccentricity can be observed, which is as expected based on Gauss’
planetary equations. For radial thrust, only a short­period variation in eccentricity, with no secular effects can be
seen. For out­of­plane thrust, an increase in inclination, with no effect on the other elements is seen, again as
expected.
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Figure 3.9: Progression of the first three Keplerian elements for the tangential thrusting program, propagated by the reference
benchmark.
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Figure 3.10: Progression of the first three Keplerian elements for the radial thrusting program, propagated by the reference
benchmark.
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Figure 3.11: Progression of the first three Keplerian elements for the out­of­plane thrusting program, propagated by the ref­
erence benchmark.

CI Analysis
Figures 3.12 to 3.14 show the absolute difference between the CI propagated trajectory and the benchmark tra­
jectory for the last 10 days and a range of 𝑛𝑘. Only the last part is shown here demonstrating the behavior of the
difference in more detail. Although each element, for each propagation type, remains well within the required
boundaries as previously discussed in Section 2.4, 𝑛𝑘 = 20 and 𝑛𝑘 = 30 shows a distinct secular trend. For
𝑛𝑘 ≥ 40 the behavior of the error is consistent.
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Figure 3.12: Error between the CI propagation and benchmark trajectory for the tangential thrust case.
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Figure 3.13: Error between the CI propagation and benchmark trajectory for the out­of­plane thrust case.
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Figure 3.14: Error between the CI propagation and benchmark trajectory for the radial thrust case.

The absolute error at 𝑡𝑓 = 30 days and the computational CPU time are given in Table 3.2, i.e. only the time used
by the CPU to perform the propagation. The computational speed is averaged over 100 runs, to ensure random
variations are averaged out. Although computational speeds can vary significantly, each additional 10 integration
segments increases computation times by about 25%. 𝑛𝑘 = 40 provides a good balance between accuracy and
computational time as any lower shows a distinctly increasing error, which can accumulate for large propagation
times. Note that the CPU times given in Table 3.2 cannot be compared to work by other authors as these largely
depend on the specific implementation and machinery used. Finally, because there are still some short­period
variations in the difference between the two propagations, especially for lower 𝑛𝑘, the final error at 𝑡𝑓 = 30 days is
of course to some extent somewhat arbitrary. Nonetheless, because the amplitude of these short­period variations
remains well within the previously discussed constraints, this is still valid. In summary, we conclude that the
CI propagation for the GTO trajectory is verifiably accurate for 𝑛𝑘 ≥ 40, which supports the same conclusion
reached by previous authors.

Table 3.2: Absolute difference between reference trajectory and CI trajectory for each thrust profile at 𝑡𝑓 = 30 days, and
average CPU time per individual run, averaged over 100 runs.

𝑛𝑘 |𝜀𝑎| [m] |𝜀𝑒| [­] |𝜀𝑖| [deg] CPU time [ms]

tangential 20 8.44 × 102 2.42 × 10−5 4.85 × 10−12 19.1
30 1.83 × 102 5.15 × 10−6 1.08 × 10−11 25.5
40 6.07 × 101 1.70 × 10−6 9.97 × 10−12 33.2
60 1.19 × 101 3.33 × 10−7 4.89 × 10−12 50.4
80 3.68 1.03 × 10−7 1.04 × 10−11 68.8

radial 20 1.16 × 10−1 1.35 × 10−5 4.82 × 10−12 19.3
30 2.30 × 10−2 2.08 × 10−6 6.46 × 10−12 29.2
40 1.21 × 10−2 5.84 × 10−7 3.29 × 10−12 44.8
60 9.23 × 10−3 9.24 × 10−8 4.42 × 10−12 70.0
80 8.89 × 10−3 2.71 × 10−8 3.41 × 10−12 93.2

out­of­plane 20 8.94 × 10−3 1.10 × 10−10 1.15 × 10−3 21.7
30 8.82 × 10−3 1.09 × 10−10 2.66 × 10−4 34.8
40 8.81 × 10−3 1.09 × 10−10 8.91 × 10−5 40.2
60 8.80 × 10−3 1.09 × 10−10 1.81 × 10−5 72.4
80 8.80 × 10−3 1.09 × 10−10 5.77 × 10−6 98.8

OA analysis
To investigate the behavior of theOApropagation, a similar approach as in the previous section is taken. However,
in contrast, only the secular trend of the differences is taken into account, as short­period variations disappear
through the use of OA. This is accomplished by observing the error at each apogee passage, i.e. for 𝜃 = 𝜋 rad.
This is done because we are most interested in the secular trend of the differences, to gain a better understanding
of its behavior. Near apogee, the dynamics change slowest and thus are less impacted by a small error in true
anomaly. In contrast, the difference between each OA epoch and the benchmark trajectory could be arbitrarily
within a short­period variation. To enable comparison at exact epochs, a cubic spline interpolator is used to
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approximate the error at shared epochs between the reference benchmark and the trajectory propagated through
OA. To propagate the state derivative averages a fourth­order RKF integrator is used, with tolerances 𝜖𝑎𝑏𝑠 = 𝜖𝑟𝑒𝑙 =
10−3 and initial step size ℎ0 = 1 d. These parameters were tested by Gómez­Jenkins (2015) and were found to be
sufficient. This was confirmed by performing several with varying the relative and absolute tolerances. Indeed,
lower tolerances yielded solutions with unacceptable errors, whereas higher tolerances did not yield a noticeable
accuracy improvement.

tangential thrust From Figure 3.15 the secular increasing difference in semi­major axis is immediately most
apparent. As expected, for increasing 𝑛𝑘, the difference decreases, which is explained by the trapezoidal integra­
tion scheme used to compute Δ𝐱. The increasing difference in 𝑎 is also expected and can be explained by the OA
approximation. The second­order increase of the semi­major axis, caused by the acceleration in the tangential
direction, will be under­ or overestimated by the OA technique. Nevertheless, the difference in the order of a few
tens of kilometers is still deemed acceptable for preliminary design, in the case of transfer trajectories to GEO.
Furthermore, it is noted that the difference in semi­major axis is already drastically reduced compared to the re­
sults obtained by Jimenez­Lluva (2017). For 𝑛𝑘 = 40: approximately 100 km after 20 days compared to 20 km
for the current implementation. This is the result of the use of both a multi­step integration scheme and adaptive
OA step size. Nevertheless, the tangential thrust case highlights a limitation of the OA method. The difference
in eccentricity is sufficiently small for all 𝑛𝑘 > 30 and the difference in inclination,O(10−11 deg), are numerical
errors, as can be expected due to the lack of an out­of­plane acceleration component. It should be noted that
the error accumulation of the semi­major axis, does not cause for major concern, as realistic trajectories will not
consist of purely tangential thrust. For example, a GTO to GEO requires both a plane change and circularization
effort.
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Figure 3.15: Interpolated absolute error at apogee between OA and benchmark trajectory for tangential thrust.

radial thrust The radial thrust profile is dominated by short­term oscillations (Figure 3.10) with only a very
small secular component for the change in orbital elements. Again, 𝑛𝑘 = 20 shows an unacceptable error behavior
(Figure 3.16), in this case for the eccentricity, as it fails to accurately capture the short­period variations.
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Figure 3.16: Interpolated absolute error at apogee between OA and benchmark trajectory for radial thrust.

out­of­plane thrust Surprisingly, the out­of­plane thrust profile reveals a small error in 𝑎 and 𝑒 (Figure 3.17),
that cannot be attributed to rounding or numerical errors. It is suspected this error is caused by the implementation
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of the thrust profile in the MEE propagation. Still, this is acceptable as the error is sufficiently small and only
occurs for these simplified thrust profiles. The error in inclination again decreases for increasing 𝑛𝑘.
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Figure 3.17: Interpolated absolute error at apogee between OA and benchmark trajectory for out­of­plane thrust.

Nonetheless, each case shows a significant improvement over the results obtained by Jimenez­Lluva (2017).
The author suspects this can be largely attributed to the numerical integration employed, which is believed to
be standard Euler integration, although not explicitly stated. A large accumulation of under­ or overestimation
is visible, especially for the tangential­thrust case used, which is often the case for the Euler approximation,
and which can be eliminated by using a higher­order numerical integration method. Jimenez­Lluva also notes
the apparent higher accuracy achieved by Boudestijn (2014). The complete reference results are provided in
Appendix A.2.

Overall the accuracy of the OA approximation is deemed acceptable for preliminary design, showing improved
results compared to the reference implementation, Jimenez­Lluva (2017), for each thrust profile. Nevertheless,
for certain elements and certain cases, the difference will show a diverging behavior, most apparent for the semi­
major axis in the tangential­thrust case. Although these types of trajectories are not considered in this project, care
should be taken when employing the OA approximation for trajectories such as Lunar transfer trajectories.

3.2.2. Case 2: LEO Trajectory
Like Case 1, each initial state is propagated for 30 days using a tangential, radial, and out­of­plane thrust profile.
First, the CI propagations are compared to the reference benchmark. Because the orbital period is significantly
smaller, only a section of about 2 hours, near the end of the propagation is shown. The full results of the benchmark
trajectories and error behavior are found in Appendix A.1. The error between the CI and benchmark trajectory
for the tangential thrust case is shown in Figure 3.18. The other thrust cases behave comparably and can also be
found in Appendix A.1.
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Figure 3.18: Error between the CI propagation and benchmark trajectory for the tangential thrust case.

Because the error shows oscillatory behavior, caused to the short­period variations of the trajectory due to the
perturbations, direct numerical analysis of the error at 𝑡𝑓 has little extra value. Therefore, the discussion is limited
to the average behavior of the error. In general, the error behaves as expected: increasing 𝑛𝑘 increases the
accuracy, as the changing dynamics due to perturbations can be more accurately captured (Figure 3.18). Again,
𝑛𝑘 = 20 and to a lesser degree 𝑛𝑘 = 30 show an unacceptable error. For the tangential thrust case, the error using
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𝑛𝑘 = 40 is actually larger than for 𝑛𝑘 = 30. Additionally, the general oscillatory behavior of the error appears
exactly mirrored. However, it should be noted this is no cause for concern, for the simple reason that the amplitude
of the short­period variations of each element due to perturbations, is considerably larger. Because these short­
period variations disappear through the use of OA, these errors are acceptable as long as their amplitude remains
well within this range. For example, the amplitude of the short­period variation of the inclination, Δ𝑖𝑠ℎ,𝑚𝑎𝑥, can
be approximated by (Wakker, 2015):

Δ𝑖𝑠ℎ,𝑚𝑎𝑥 =
|||
3
8𝐽2(

𝑅𝐸
𝑎 )

2
sin 2𝑖

||| (3.3)

where 𝑎 and 𝑖 are the mean semi­major axis and eccentricity, respectively. For the example trajectory with 𝑎 =
7103.0 km and 𝑖 = 95.5 deg this yields Δ𝑖𝑠ℎ,𝑚𝑎𝑥 = 0.00358 deg, which is larger than the differences shown in
Figure 3.18.

Based on the behavior of the error, 𝑛𝑘 = 60 is considered as providing a reasonable trade­off between computation
times and predictable propagation performance. As shown previously, computation times increase linearly with
increasing 𝑛𝑘. Any higher number of segments does not significantly increase performance, any lower either
shows too large an error. This is for example apparent in the radial thrust case, where the eccentricity has slightly
accumulated, while the mean of the error for 𝑛𝑘 ≥ 60 remains approximately 0 (Figure 3.18).
Repeating the same exercise for the LEO case with OA propagation does not yield any useful results, as is apparent
from Figure 3.19. Although the magnitude of the error remains within acceptable boundaries, its behavior is
seemingly random and has no evident dependence on the number of segments 𝑛𝑘. For these cases, the error is no
longer dominated by the number of integration segments 𝑛𝑘, but by the limitations of the OA method to capture
the short­term oscillations caused by the various perturbations. This can be interpreted as a failure to accurately
sample the difference at identical locations. The magnitude of these oscillations is significantly larger than their
secular effects, including thrust. Because of the averaging effect, these variations disappear.
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Figure 3.19: Error between the OA propagation and benchmark trajectory for the tangential thrust case.

This effect is illustrated by Figure 3.20, showing the values of the first three Keplerian elements of the propa­
gated benchmark trajectory and the OA propagated trajectories. Firstly, it can be seen that the magnitudes of the
semi­major axis, eccentricity, and inclination short­periodic variations are as much as 20 km, 0.03, and 0.01°, re­
spectively. The OAmethod still captures the secular trend but can be seen diverging from the oscillatory changes,
in particular for the inclination. The overall trend of semi­major axis and eccentricity is considered good. It is sus­
pected this diverging difference is caused by the approximation used for the time­step conversion: d𝐸/d𝑡 ≈ 𝑛𝑎/𝑟
(Equation (2.43)). The full expression for d𝐸/d𝑡 follows from the derivation of the Gaussian form of the planetary
equations as given by Equation (2.42):

d𝐸
d𝑡 =

𝑛𝑎
𝑟 + 1

𝑛𝑎𝑒[𝑎𝑅(cos 𝜃 − 𝑒) − 𝑎𝑆(1 +
𝑟
𝑎) sin 𝜃] (3.4)

The disturbing accelerations 𝑎𝑅 and 𝑎𝑆, although small, are suspected to no longer be negligible. This means the
trapezoidal quadrature for the averaged effect of each orbital element will be slightly over or under exactly one
revolution. Due to the sinusoidal behavior of the elements, this results in an interpreted secular effect, even if
there are no actual secular or long­period variations present.
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Figure 3.20: Propagation values obtained through OA overlaid on the amplitude range of the benchmark trajectory for the
tangential­thrust case.

Nonetheless, because this effect is relatively small, i.e. for the example above about 5.0 × 10−5 deg per revolution,
using the OA propagation for inclined LEO trajectories can still be considered valid. Furthermore, because this
error is approximately equal in magnitude to the amplitude of the short­period variations, the impact of this error
drift is limited, as the required final error constraints are generally larger than this boundary.

A suggested method for improving this behavior is by deriving analytical expressions for the average contribution
of the non­spherical gravity field perturbations, instead of the fully numerical OA implementation in the OT.
As this would require a fundamental restructuring of the methodology, it was decided to continue using the
current approach as the error remained acceptable. However, when more predictable error behavior is desired
or higher accuracy requirements need to be used, it is recommended to rework the OA methodology by deriving
analytical expressions for the averaged change due to Earth’s gravity potential and then assuming constant orbital
elements. As described in Section 2.3, this way 𝑛𝑘 state derivatives can be evaluated over this constant orbit and
numerically integrated using a trapezoidal quadrature to arrive at the averaged state derivatives. The analytically
derived expressions for the gravity field perturbations are then simply added to these. This way, the short­period
variations due to Earth’s non­spherical gravity field, will not be interpreted as a secular effect, due to a small
error in the approximation of the time­step conversion. Instead, the short­period variations are already discarded
through the analytical approximation. For a derivation of this average perturbing potential, the reader is referred
to Gómez­Jenkins (2015).



4
Transfer from GTO­to­GEO

One of the project goals set in advance of this thesis project was to improve and streamline the Hybrid Method
based on Jimenez­Lluva (2017), including the novel coasting arc mechanism. This chapter aims to investigate the
performance of the implemented method and compare its performance to the reference material of Jimenez­Lluva
(2017) and previous authors.

The type of transfer trajectories studied is the category of GTO­to­GEO transfers. These trajectories were selected
as they are a common problem in Earth­centered trajectory optimization, particularly due to their commercial
applications. Furthermore, theywere also studied by previous authors, allowing comparisonwith previous results.
The first case is minimum­time GTO­to­GEO optimization as found in Jimenez­Lluva (2017), who based this
case on the work by Geffroy and Epenoy (1997) and Sanchez and Campa (2014). As the work in this project is
a continuation of the work done by Jimenez­Lluva (2017), this case aims to demonstrate the expected improved
performance.

4.1. Minimum­Time GTO­to­GEO Transfer
4.1.1. Without Perturbations
The first minimum­time problem is considered in its simplest form: transfer trajectory starting from a slightly
inclined GTO trajectory targeting GEO, without any perturbations. No perturbations are taken into account,
as these were also not considered in the mentioned references. The initial and target conditions are given in
Table 4.1.

Table 4.1: Initial and target Keplerian elements for minimum­time GTO­to­GEO optimization.

𝑎 [km] 𝑒 [­] 𝑖 [deg] Ω [deg] 𝜔 [deg] 𝜃 [deg]
initial state 24505.9 0.725 7.0 0 0 0
target state 42165.0 0 0 0 0 0

As discussed in Section 2.3, a single co­state arc is used, which means 11 parameters are optimized. For each
case, OA propagation is used. The result is verified using a CI propagation, to ensure the errors are within the
set boundaries. The number of segments 𝑛𝑘 = 40 was chosen based on the analysis performed in Section 3.2.
The error boundaries are also taken equal to the reference, i.e. 𝜀𝑎 = 100 km, 𝜀𝑒 = 0.01 and 𝜀𝑖 = 0.1 deg, as
discussed in Section 2.4. As the final trajectory is a non­inclined, circular trajectory, the RAAN and Argument
of Periapsis (AOP) are not taken into account. Four runs of the optimization were performed to both ensure
consistent convergence and prevent interpreting results as local optima. The population size 𝑁𝑝 was set to 110
individuals, following the rule­of­thumb 𝑁𝑝 = 10𝐷 where 𝐷 is the number of design parameters, i.e. 11 for the
minimum­time problem. All other optimization parameters and settings are given in Table 4.2.

45
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Table 4.2: Parameters for Case 1: Minimum­time GTO­to­GEO transfer trajectory.

Parameter Value

Propulsion 𝑇 [N] 0.350
𝑚0 [kg] 2000
𝐼𝑠𝑝 [s] 2000

Simulation Initial Epoch 01­01­2000, 12:00
𝑛𝑘 [­] 40
OA yes
𝜖𝑎𝑏𝑠 10−3
𝜖𝑟𝑒𝑙 10−3

initial step size [day] 1.0
min step size [day] 0.1
max step size [day] 10

𝑡𝑓,𝑙𝑜𝑤𝑒𝑟 [day] 100
𝑡𝑓,𝑢𝑝𝑝𝑒𝑟 [day] 150

Perturbations 𝐽2 no
drag no

eclipse no

Optimization 𝑁𝑝 [­] 10𝐷
𝑁𝑔𝑒𝑛 [­] 2000
𝑤𝑎 [­] 1.0
𝑤𝑒 [­] 1.0
𝑤𝑖 [­] 1.0
𝑤Ω [­] 0.0
𝑤𝜔 [­] 0.0
𝑤𝜃 [­] 0.0
𝑤𝑡𝑓 [­] 1.0
𝑤𝑚 [­] 0.0

The initial epoch was arbitrarily set to J2000 (January 1st, 2000, 12:00), as thrust during eclipse conditions are not
taken into account, and the initial epoch will not influence results. The bounds on the Time of Flight (TOF) were
somewhat arbitrarily set to be between 100 and 150 days, based on an expected 𝑡𝑓 ≈ 137 days (Jimenez­Lluva,
2017). The number of generations is limited to 2000, although generally convergence is reached earlier as seen
in Figure 4.1. This serves to limit the optimizer as no stopping mechanism has been implemented. Table 4.3
shows the TOFs found for each run and their corresponding final orbit errors, i.e. the difference with respect to
the targets orbit given by Table 4.2.

Table 4.3: Results and final orbit error for four optimization runs for the minimum­time GTO­to­GEO transfer, without per­
turbations, for both the OA and CI propagations.

run 𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg] Δ𝑎 [km] Δ𝑒 [­] Δ𝑖 [deg]
1 OA 136.503 210.462 0.5571 0.0062 0.0093

CI ­ ­ 17.3777 0.0084 0.0004
2 OA 136.575 210.573 1.9234 0.0058 0.0039

CI ­ ­ 94.7096 0.0080 0.0005
3 OA 136.585 210.588 1.2251 0.0058 0.0042

CI ­ ­ 97.1021 0.0082 0.0006
4 OA 136.512 210.476 0.4015 0.0063 0.0018

CI ­ ­ 88.3908 0.0086 0.0005
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The results show a very good internal consistency in terms of found TOF, within 0.1 days of each other. This
convergence consistency is also demonstrated by the progression of the fitness for each generation as shown in
Figure 4.1. This is considered a good improvement over the reference method, Jimenez­Lluva notes allowed
bounds of the TOF required incremental adjustment to arrive at a global optimum. This can be attributed to the
co­state scaling mechanism and the SaDE algorithm. The optimal initial and final co­states found for each run
are shown in Table 4.4. As seen, the co­states related to the semi­latus rectum (𝜆𝑝) are similar in magnitude to
the other co­states. Additionally, while there are some differences between each solution, the obtained optimal
co­states are similar. Recall, the co­states can be interpreted as being the relative importance of changing that
specific element at some point in time, with respect to the other elements. In other words, their absolute magnitude
is of little importance but their relative magnitudes are.
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Figure 4.1: Fitness of each run, for each generation, for the GTO­to­GEO minimum­time optimization problem.

Table 4.4: Best initial and final co­states for four optimization runs for the minimum­time GTO­to­GEO transfer, without
perturbations.

run 𝜆𝑝 𝜆𝑓 𝜆𝑔 𝜆ℎ 𝜆𝑘
1 𝛌0 −1690.48 −2572.20 103.34 1092.15 −113.92

𝛌𝑓 −1166.96 7993.65 −62.19 4840.60 148.24
2 𝛌0 −2036.57 −3342.74 −124.19 1348.97 −69.54

𝛌𝑓 −1181.06 9675.82 41.83 5491.69 38.83
3 𝛌0 −1931.62 −3224.31 −147.14 1608.70 90.93

𝛌𝑓 −1088.28 9162.13 49.29 4360.31 −157.65
4 𝛌0 −2033.02 −3236.36 −87.22 1298.97 −122.66

𝛌𝑓 −1142.04 9493.38 23.71 5593.87 108.74

Surprisingly, when compared to results obtained by previous authors, the results obtained by the OT show a
slightly improved result in terms of TOF of approximately 1 day, i.e. approximately one orbital revolution at
𝑡𝑓. This is less than the expected optimum of around 137.45 days as obtained by the reference methods, see
Table 4.5.
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Table 4.5: Summary of the best TOFs and propellant mass results obtained by previous authors for the minimum­time GTO­
to­GEO optimization without perturbations.

𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg]

(Jimenez­Lluva, 2017) 137.45 211.91
Montealegre 137.41 211.86
Sanchez 137.5 212

(Geffroy and Epenoy, 1997) 137.5 212
This project 136.50 210.46

Because four independent references arrived at a best solution of approximately 137.5 days, the obtained results
cannot directly be considered superior but might be attributed to a suspected difference in implementation. As
the final orbit error of the CI propagated trajectories are within the boundaries, and thus yield similar fitness,
albeit only marginally with a maximum error of 97.1 km, they are still considered feasible, i.e. a propagation
using CI would have a similar fitness. Therefore this discrepancy cannot be attributed to the OA approximation.
Furthermore, as no perturbations are taken into account, their implementation will also not impact the obtained
solutions. Nevertheless, the behavior of the obtained solutions will be discussed here to analyze and verify these
solutions. The Keplerian elements versus time are shown in Figure 4.2 and behave as expected. During the early
phase of the transfer, more emphasis is placed on changing the semi­major axis, moving to circularization during
the later phases.
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Figure 4.2: First three Keplerian elements and apogee, perigee radii versus time for run 1 solution of the minimum­time
GTO­to­GEO transfer without perturbations.

The representation of the trajectory in Figure 4.3 also demonstrates this behavior. The color indicates the pro­
gression in time and shows the simultaneous increase in semi­major axis and decrease in eccentricity, evident as
an increase and subsequent decrease of the apogee altitude.
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Figure 4.3: Transfer orbit representation of run 1 solution of the minimum­time GTO­to­GEO transfer without perturbations.
Left: top­view, right: side view.

To further investigate the behavior of the OA technique and optimizer, a second GTO­to­GEO transfer was opti­
mized, based on the work presented by Kluever (2010) and subsequently Boudestijn (2014) and Gómez­Jenkins
(2015). This transfer will take into account the effect of zero thrust during eclipse conditions.

4.1.2. Including Eclipse Conditions
To investigate the influence of the eclipse conditions on the optimization results, a slightly different minimum­
time GTO­to­GEO transfer is investigated. This case is based on the original OA implementation from Kluever
(2010) and describes to transfer between GTO (28.5°) to GEO. Furthermore, the transfer takes into account a loss
of thrust during eclipse conditions, and the initial orbit is chosen such that the apogee of the initial trajectory is in
Earth’s shadow. The initial and target Keplerian elements for the minimum­time GTO­to­GEO transfer are given
in Table 4.6.

Table 4.6: Initial and target Keplerian elements for minimum­time GTO­to­GEO case in Kluever (2010).

𝑎 [km] 𝑒 [­] 𝑖 [deg] Ω [deg] 𝜔 [deg] 𝜃 [deg]
initial state 24364.0 0.7306 28.5 0 0 0
target state 42164.0 0 0 0 0 0

All settings and parameters used for the optimization are given in Table 4.7. The upper and lower boundary for the
TOF were selected based on the expected time of flight of about 118 days (Kluever, 2010). The vehicle properties
are chosen equal to the reference, where the thrust is obtained from the engine power and engine efficiency stated
in the reference and using Equation (2.18). No perturbations are taken into account as they were not considered
in the reference. Again, only the first three Keplerian elements are considered, as the target orbit is non­inclined
and circular, making Ω and 𝜔 undefined. The initial epoch was given as March 22, 2000, at noon (12:00); at
which point the apogee of the initial trajectory will be in Earth’s shadow. All other optimization and simulation
parameters remain equal to the previous case.
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Table 4.7: Parameters for Case 1: Minimum­time GTO­to­GEO transfer trajectory.

Parameter Value

Propulsion 𝑇 [N] 0.31158
𝑚0 [kg] 1200
𝐼𝑠𝑝 [s] 1800

Simulation Initial Epoch 22­03­2000, 12:00
𝑛𝑘 [­] 40
OA yes
𝜖𝑎𝑏𝑠 10−3
𝜖𝑟𝑒𝑙 10−3

initial step size [day] 1.0
min step size [day] 0.1
max step size [day] 10

𝑡𝑓,𝑙𝑜𝑤𝑒𝑟 [day] 100
𝑡𝑓,𝑢𝑝𝑝𝑒𝑟 [day] 150

Perturbations 𝐽2 no
drag no

eclipse yes

Optimization 𝑁𝑝 [­] 10𝐷
𝑁𝑔𝑒𝑛 [­] 2000
𝑤𝑎 [­] 1.0
𝑤𝑒 [­] 1.0
𝑤𝑖 [­] 1.0
𝑤Ω [­] 0.0
𝑤𝜔 [­] 0.0
𝑤𝜃 [­] 0.0
𝑤𝑡𝑓 [­] 1.0
𝑤𝑚 [­] 0.0

The best TOF and propellant mass 𝑚𝑝 of each run are given in Table 4.8. Note there is not necessarily a direct
connection between the time of flight and propellant mass, as this is now influenced by the time spent in shadow
conditions. Still, the lowest 𝑡𝑓 does correspond with the least amount of propellant used.

Table 4.8: Results for four optimization runs, for 𝜔0 = 0°.

run 𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg] Δ𝑎 [km] Δ𝑒 [­] Δ𝑖 [deg]
1 122.853 176.173 3.3043 0.0079 0.0495
2 118.375 170.270 16.3597 0.0018 0.0396
3 118.625 170.050 20.6081 0.0064 0.0389
4 116.560 168.026 4.9808 0.0039 0.0187

It is immediately clear there is a larger spread in obtained solutions, indicating that this specific case is susceptible
to finding local optima, with the optimizer struggling to find a global optimum. This is suspected to be caused
by the high sensitivity to eclipse conditions, with the OA approximation failing to accurately average and/or
propagate the effects of eclipse conditions. To gain a better understanding of these local optima we can first
inspect the progression of the Keplerian elements for runs 1, 2, and 4 (Figures 4.4 to 4.6). Run 3 was nearly
identical to run 2 and therefore left out. While the eccentricity and inclination change similarly for each case and
follow a similar pattern, the semi­major axis is distinctly different.
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Figure 4.4: Semi­major axis, eccentricity and inclination versus time for the minimum­time GTO­to­GEO trajectory found
by run 1.
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Figure 4.5: Semi­major axis, eccentricity and inclination versus time for the minimum­time GTO­to­GEO trajectory found
by run 2.
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Figure 4.6: Semi­major axis, eccentricity and inclination versus time for the minimum­time GTO­to­GEO trajectory found
by run 4.

The fourth run showed the smallest time of flight (Table 4.8). For this one, the semi­major axis changes most
during the first part of the trajectory, after which most effort is spent circularizing and reducing the inclination.
By looking at the maximum amplitude of the thrust steering angles 𝛼 and 𝛽, in Figure 4.7 we see that the general
pattern is the same. Around 50 days into the trajectory, themaximum pitch steering angle increases to 180 degrees,
at which point thrust will be retrograde near perigee.
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Figure 4.7: Maximum thrust steering angles for the first, second and fourth run.

To verify these results they can be compared to the results obtained by Kluever (2010), showing the progression
of each orbital element in Figure 4.8 and the maximum steering angles in Figure 4.9. Note that the steering angle
shown 𝛼 in Figure 4.9 was defined with respect to the velocity vector (Kluever, 2010). Hence, the difference
between the maximum amplitude of 𝛼 Figure 4.7 and Figure 4.9 for the first part of the trajectory. The general
pattern of the change in orbital elements and steering angles is similar. The maximum amplitude of 𝛼 increases
to 180° after approximately 50 days, at which point the maximum amplitude of 𝛽 shows a peak.

Figure 4.8: Semi­major axis, eccentricity and inclination versus time for the minimum­time GTO­to­GEO transfer trajectory
found by Kluever (2010).
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Figure 4.9: Maximum steering angle amplitudes for the minimum­time GTO­to­GEO transfer trajectory found by Kluever
(2010).

In addition to the results obtained by the OT, there is also a large discrepancy in the results obtained by previous
authors, summarized in Table 4.9.

Table 4.9: Summary of the results obtained by previous authors for a minimum­time GTO­to­GEO transfer optimization,
including eclipses, with 𝜔0 = 0°.

𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg]

(Kluever, 2010) 118.894 ­
(Boudestijn, 2014) 114.294 174.307

(Gómez­Jenkins, 2015) 112.425 162.687
this project 116.560 168.026

This shows that the inclusion of thrust during eclipse conditions, especially for a worst­case scenario such as
an apogee in shadow, complicates the optimization problem. Therefore, an additional case was run by Kluever
(2010) and Boudestijn (2014), where the initial argument of perigee 𝜔0, was changed to 180°. This corresponds
to an initial orbit where perigee is in Earth’s shadow. All other parameters remain the same. For this case,
the results obtained as shown in Table 4.10 show better accordance with reference results, as summarized in
Table 4.11.

Table 4.10: Results for four optimization runs, for 𝜔0 = 180°.

run 𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg] Δ𝑎 [km] Δ𝑒 [­] Δ𝑖 [deg]
1 113.060 162.273 10.5616 0.0028 0.0097
2 112.728 162.141 16.1517 0.0027 0.0069
3 112.682 161.961 7.2403 0.0036 0.0153
4 112.974 163.644 23.7307 0.0031 0.0449
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Table 4.11: Summary of the results obtained by previous authors for a minimum­time GTO­to­GEO transfer optimization,
including eclipses, with 𝜔0 = 180°.

𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg]

(Kluever, 2010) 112.11 ­
(Boudestijn, 2014) 112.63 171.76

this project 112.68 161.96

The obtained results by the OT show better consistency, both internally compared to each run, and compared
to the reference results. Based on these results, we conclude that the additional consideration of thrust under
eclipse conditions increases the likelihood of the optimizer converging to local optima, at least in its current
implementation. Therefore the use of eclipse conditions will not be used in the remainder of this work. Although
this limits the applicability of themethod, it will yield better insights into the obtained solutions when convergence
is guaranteed. Furthermore, because the obtained solutions for the second case, where eclipses play a smaller role,
are consistent with the reference materials, the implementation is still considered valid. Nevertheless, it should
be noted that more extensive testing will be required to ensure the validity of obtained solutions.

4.2. Minimum­Propellant with Coasting Arcs
The addition of a coasting arc mechanism in Jimenez­Lluva (2017) can be an attractive option for finding opti­
mal minimum­propellant trajectories. This section briefly examines the obtained results and the influence of the
implemented enhancements. Although the coasting arc mechanism was a primary focus of this project, its inclu­
sion in Tudat is a valuable addition. Therefore this section aims to demonstrate the coasting arc performance for
the minimum­propellant GTO­to­GEO trajectory optimization, following the implementation by Jimenez­Lluva
(2017), but with the enhancements made in this project. To perform this comparison the same parameters as
the reference material are used. Multiple optimizations were run for a fixed TOF; they were fixed at 150, 175,
200, 225, and 250 days. OA is again used to improve performance. The mass optimizer weight is set to 1000,
to a ensure similar magnitude of the mass contribution to the cost function. All other parameters are given in
Table 4.12.
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Table 4.12: Parameters for minimum­propellant cases of the GTO­to­GEO transfer trajectory.
*: Adjusted to 175, 200, 225, 250 for each run.

Parameter Value

Propulsion 𝑇 [N] 0.350
𝑚0 [kg] 2000
𝐼𝑠𝑝 [s] 2000

Simulation Initial Epoch 01­01­2000, 12:00
𝑛𝑘 [­] 40
OA yes
𝜖𝑎𝑏𝑠 10−3
𝜖𝑟𝑒𝑙 10−3

initial step size [day] 1.0
min step size [day] 0.1
max step size [day] 10

𝑡𝑓,𝑙𝑜𝑤𝑒𝑟 [day]* 150
𝑡𝑓,𝑢𝑝𝑝𝑒𝑟 [day]* 150

Perturbations 𝐽2 no
drag no

eclipse no

Optimization 𝑁𝑝 [­] 10𝐷
𝑁𝑔𝑒𝑛 [­] 1500
𝑤𝑎 [­] 1.0
𝑤𝑒 [­] 1.0
𝑤𝑖 [­] 1.0
𝑤Ω [­] 0.0
𝑤𝜔 [­] 0.0
𝑤𝜃 [­] 0.0
𝑤𝑚 [­] 1000.0
𝑤𝑡𝑓 [­] 0.0

The full results of each GTO­to­GEO minimum­propellant optimization run, for each 𝑡𝑓 are given in Table 4.13.
Additionally, the optima in terms of propellant mass, for each run, are plotted in Figure 4.10a and the results
found by Jimenez­Lluva (2017) in Figure 4.10b, which also shows the theoretical analytical Pareto front based
on his reference. Because no factual reference of the numerical results was available, only a visual comparison
is performed.
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Figure 4.10: Resulting propellant masses obtained in this project and those in Jimenez­Lluva (2017)

Table 4.13: Results of all GTO­GEO minimum propellant optimization runs

𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg] Δ𝑎 [km] Δ𝑒 [­] Δ𝑖 [deg]
150 193.57 0.77 0.0099 0.0402
150 193.71 44.89 0.0130 0.0242
150 191.69 7.74 0.0075 0.0288
150 190.60 9.50 0.0123 0.0114
175 173.76 18.24 0.0074 0.0123
175 173.74 12.89 0.0059 0.0300
175 173.32 1.36 0.0049 0.0069
175 176.36 1.94 0.0014 0.0111
200 165.97 98.80 0.0100 0.1305
200 164.92 15.11 0.0108 0.0618
200 165.50 2.18 0.0079 0.0092
200 165.61 22.54 0.0045 0.0296
225 163.99 25.97 0.0112 0.1199
225 176.16 50.12 0.0065 0.0252
225 160.38 17.31 0.0018 0.0568
225 194.25 112.22 0.0091 0.0651
250 176.32 8.23 0.0078 0.0507
250 176.46 62.47 0.0102 0.0114
250 183.92 5.72 0.0098 0.0664
250 158.93 25.40 0.0031 0.0394

Surprisingly, the coasting behavior for the example 150­day trajectory, as shown in Figure 4.11, where the gray
areas indicate coasting, is slightly different. As expected, the main coasting areas are near perigee, as raising
perigee is most efficient near apogee. However, The coasting areas are distributed somewhat differently, with
the implemented method yielding no coasting during later parts of the transfer, whereas the solution found by
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Jimenez­Lluva (2017) includes coasting in each revolution, but with decreasing duration. Nonetheless, the pro­
gression of the orbital elements as shown in Figure 4.12 shows similar behavior: the apogee is initially raised,
before being decreased to circularize the trajectory during the latter part of the transfer trajectory.
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Figure 4.11: Illustration of the coasting arcs for a 150­day GTO­to­GEO trajectory.
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Figure 4.12: Progression of the semi­major axis, eccentricity, inclination, and perigee and apogee radii for fixed 150­day
GTO­to­GEO trajectory.

It’s important to note that based on the results in this study do not allow us to definitively conclude an improved
performance over the reference implementation. Although better convergence was shown for transfers with a
lower TOF, e.g. 200 days or less, this was not the case for transfers with longer flight times. Nevertheless, for
each case, the OT was able to find solutions near the expected global optima, based on the reference material.
As previously mentioned, the inclusion of coasting arcs was not a primary goal, but this result is considered
promising as these results were again obtained without any manual tuning of parameters or tweaking of the
implementation.
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4.3. Conclusions
This chapter has investigated the GTO­to­GEO transfer problem and compared results to several reference re­
sults. The implementation of the minimum­time GTO­to­GEO case, as used by Jimenez­Lluva (2017), showed
a significantly improved convergence behavior. No tuning of the TOF range was required to yield consistent
results. However, the inclusion of the eclipse model, as was done in the initial implementation by Kluever (2010)
and later in the work by Boudestijn (2014), showed a flawed behavior when its effect on the propagation was
large. The author is confident that this flaw can be attributed to the difference in the specific implementation
of the eclipse conditions, and not by the hybrid method, as the references obtained better results using a similar
approach, i.e. switching thrust off during umbra. However, more work is needed to ensure the validity of the
implementation, and therefore eclipse conditions are not be taken into account for the remaining optimization
cases, to ensure consistency of the results. Additionally, because this problem arises for the worst­case scenario,
it is not deemed a significant deficiency, as these conditions would be avoided.

The minimum­propellant case was also briefly discussed. Although ensuring acceptable behavior of the coasting
arc mechanism was not the main focus of this project, its performance was already considered an improvement
over the reference method. Nonetheless, for trajectories with a longer TOF, the optimizer had difficulty to consis­
tently arrive at the expected global optimum, requiring multiple runs. Nevertheless, this result is still considered
remarkable as it highlights the strengths of this method, no tuning or tweaking was done, and no good a­priori
estimate is required. Furthermore, it is expected that some manual tuning of the co­state scaling and DE imple­
mentation can further improve convergence.



5
Space Debris Transfer

Ultimately the main motivation for this thesis work was to contribute to the tools available for the preliminary
design of MADR missions. MADR remains one of the most promising options for reducing the space debris
problem and can even be argued to become a necessity if stabilization of the debris population requires removal
of at least five pieces of debris per year. Two general approaches for a MADR mission are identified: The first
consists of a mothership carrying several ’de­orbit’ packages, which attach themselves to a space debris object and
perform a combined de­orbit maneuver. The second approach uses a single spacecraft which, after rendezvous
with a particular debris object, attaches itself to this object and then transfers to a decay orbit. It will then detach
itself and perform a transfer to the next debris object, repeating the process. The second approach is considered
here, as currently the methods by which ADR will be performed, such as a tether system, would imply such an
approach. For a more in­depth discussion on the space debris problem and ADR, the reader is referred to the
literature survey (Klavers, 2020) accompanying this project.

In this chapter two transfer types are investigated. The first case is the most simple case: a transfer trajectory
from an initial parking orbit to a debris object, with only a change in semi­major axis and a small change in
inclination and eccentricity. The only perturbation taken into account is the 𝐽2 effect, as the change in RAAN due
to Earth’s oblateness during the transfer is an important effect to consider. This case serves as a base to which
the following cases can be compared. These cases will discuss the effect of adding an additional RAAN change
to the maneuver, i.e. other than the natural drift. Additionally, the effect of atmospheric drag is considered, with
the goal of demonstrating the benefits and limitations of the hybrid method for these types of transfer trajectory
optimization problems. It is worth noting that we still only consider transfer trajectories between two specific
orbits, as the rendezvous problem cannot be solved through the use of OA. First, Section 5.1 describes the design
parameters used for the cases, including any assumptions made and their motivation. Section 5.2 describes the
results obtained for the basic transfer optimization, and Section 5.3 the results of the more complex transfer
problem.

5.1. Design Parameters
The transfer problem under consideration is the optimization of a low­thrust transfer trajectory, from an initial
parking orbit in LEO, to a target object. The parking orbit is either the initial orbit after launch injection or in­
terim de­orbit trajectory. From a mission design perspective, we can make several observations before defining
the problem. Firstly, the required Δ𝑉for changing semi­major axis and inclination, using a low­thrust propul­
sion system and assuming circular initial and target orbits, can be approximated using Edelbaum’s approxima­
tion (Edelbaum, 1961):

Δ𝑉 =√𝑣20 + 𝑣2𝑓 − 2𝑣0𝑣𝑓 cos(
𝜋
2 Δ𝑖) (5.1)

where 𝑣0 and 𝑣𝑓 are the circular velocities of the initial and final trajectories, and Δ𝑖 is the desired change in
inclination. Because the Δ𝑉 , i.e. propellant mass, required for this specific transfer cannot be further reduced,
the trajectory with the lowest TOF is consequently also the trajectory using the lowest amount of propellant.
Because both target and initial orbits are near­circular, differences in eccentricity and argument of perigee can be
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ignored for this first­order approximation analysis. However, the remaining element, RAAN, can be significantly
different between possible target objects. Furthermore, due to the non­spherical distribution of Earth’s gravity
field, the RAAN will show a secular drift, as shown in Section 2.2.4.

This effect needs to be taken into account in two ways: Firstly, if we want to minimize TOF and propellant usage
it is beneficial to select a target object such that no, or a small change in RAAN is required, whilst taking into
account RAAN drift for both chaser and target during the transfer. Secondly, if two or more targets are fixed,
and have a large difference in RAAN, a different mission strategy such as using a second interim drift orbit could
be beneficial. This second case is not considered in this project, as this requires a different approach than the
coasting arc mechanism in the hybrid method provides. A recent example is the line of research by Jorgensen
and Sharf (2020), where optimal drift orbits for RAAN changes were investigated. Therefore, it is assumed that
the target object can be chosen such that it will require a limited change in RAAN. Finally, it should be noted
that through the use of OA only the transfer between initial and final orbit is considered, i.e. not the rendezvous
problem.

5.1.1. Debris Selection
Candidate debris objects for removal can be selected based on several parameters, such as collision risk, orbital
properties, mass, or size. Based on these properties clusters of debris, sharing common orbital elements such
as altitude or inclination can be identified. Because plane­change maneuvers are expensive when compared to
changing altitude and eccentricity it is desirable to focus on objects in the same inclination range. Figure 5.1 shows
examples of these clusters, for the 500 objects with the largest target selection criteria, defined as a function of
collision probability and object mass (Liou, 2011). Based on this analysis the SL­3 rocket bodies were selected as
rendezvous candidates, which are derelict second stages of the Soviet Vostok launcher, about 2.6m by 3.8m and
a dry mass of 1440 kg, orbiting at inclinations of around 𝑖 ≈ 81.2° and altitudes ranging between approximately
750 and 950 km.

Figure 5.1: Perigee and apogee altitudes versus inclination for top 500 objects with the highest target selection criteria (Liou,
2011).

Because we only consider a single transfer in this project, the target object is the somewhat arbitrarily selected
object SL­3 R/B with NORAD ID 6393. Its orbital parameters are given in Table 5.1:
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Table 5.1: Initial orbital parameters for the target object, a derelict Vostok second stage.

NORAD ID 𝑖 [deg] 𝑎 [km] 𝑒 [­]
6393 81.25 7254.617 0.0057

For completeness sake, a full overview of possible target objects is given by Table 5.2. The (approximate) orbital
elements can be obtained from the publicly available Two­Line Element set (TLE). Their format is described in
Appendix B.2.

5.1.2. Assumptions
To simplify the problem several assumptions are made, which are discussed and motivated in this section. For
each case, an initial parking orbit at an altitude of 200 km is assumed. It should be noted that a higher orbit is
desired, as the orbital decay of objects at those altitudes is considerable and would require significant amounts of
propellant when using a low­thrust propulsion system to counteract aerodynamic drag. However, this altitude was
selected precisely for the considerable presence of aerodynamic effects, to analyze their effect on the optimization.
At this altitude, the object will decay within several weeks1, depending on solar conditions, whilst not requiring
significant amounts of propellant for the chaser to maintain the orbit (Wertz, 2001).

The chaser maximum thrust is set to 𝑇𝑚𝑎𝑥 = 0.5N, a specific impulse of 𝐼𝑠𝑝 = 2000 s, the and initial mass is set to
𝑚0 = 2000 kg; similar to those used for the GTO­to­GEO case and representative of modern electric propulsion
platforms. The drag coefficient and frontal area are assumed constant and taken as 𝐶𝐷 = 4, 𝐴 = 10m2. In
reality, both drag coefficient and frontal area can vary significantly depending on the orientation of the chaser.
The inclusion of drag serves to understand its impact on the optimization; for a full scenario both attitude and
vehicle shape will need to be taken into account, as well as a more accurate atmospheric model. The requirements
on the final orbit error are lower than for the GTO­to­GEO case and are given in Table 5.3, based on the expected
OA error, as discussed in Section 3.2. The number of segments was increased to 𝑛𝑘 = 60 to accurately capture
the perturbing effects. Finally, as discussed in Chapter 4, thrust under shadow conditions is not considered. All
parameters are given in Table 5.4.

Table 5.3: Upper bound of final orbit error for the space debris transfer case.

element Upper Bound

𝑎 [km] 10.0
𝑒 [­] 0.001
𝑖 [deg] 0.01
Ω [deg] 1.0

1Based on 𝐶𝐷 ≈ 2.7 for a cylindrical shape and a frontal area of 10m2
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Table 5.4: Parameters for space debris transfers.

Parameter Value

Propulsion 𝑇 [N] 0.50
𝑚0 [kg] 2000
𝐼𝑠𝑝 [s] 2000

Simulation Initial Epoch 01­01­2000, 12:00
𝑛𝑘 [­] 60
OA yes
𝜖𝑎𝑏𝑠 10−3
𝜖𝑟𝑒𝑙 10−3

initial step size [day] 1.0
min step size [day] 0.1
max step size [day] 10

𝑡𝑓,𝑙𝑜𝑤𝑒𝑟 [day] 0
𝑡𝑓,𝑢𝑝𝑝𝑒𝑟 [day] 100

Perturbations 𝐽2 yes
drag no

eclipse no

Optimization 𝑁𝑝 [­] 10𝐷
𝑁𝑔𝑒𝑛 [­] 500
𝑤𝑎 [­] 1.0
𝑤𝑒 [­] 1.0
𝑤𝑖 [­] 1.0
𝑤Ω [­] 1.0
𝑤𝜔 [­] 0.0
𝑤𝜃 [­] 0.0
𝑤𝑡𝑓 [­] 1.0
𝑤𝑚 [­] 0.0

5.1.3. RAAN Drift
For the selection of a rendezvous target object, an additional limitation needs to be taken into consideration. As
shown in Section 2.2.4, the oblateness of the Earth causes a drift in RAAN Ω. The change in RAAN that can
be obtained by active orbit control is limited by the propulsion system. These two effects imply there is a limit
on the obtainable orbits, from a given initial orbit, depending on inclination, semi­major axis, and TOF. When
assuming a transfer between two near­circular trajectories, which is valid for the initial parking orbit and debris
target objects in Sun­Synchronous Orbit (SSO), an approximation can be found for this RAAN range.

The secular drift of Ω for a circular orbit due to oblateness follows from Equation (2.21) and is:

Ω̇𝐽2 = −32𝑛𝐽2(
𝑅𝐸
𝑎 )

2
cos 𝑖 (5.2)

The maximum change in Ω due to thrust is obtained from the planetary equations Equation (2.11e), again under
the assumption of a circular trajectory:

Ω̇𝑇 = 𝑎𝑊
𝑎 sin 𝜃
𝐻 sin 𝑖 (5.3)

where 𝐻 = √𝜇𝑝 and 𝑎𝑊 = (𝑇/𝑚) sin 𝛽. So to maximize the change in Ω it follows that 𝛽 = (𝜋/2) sgn(sin 𝜃).
The minimum and maximum obtainable RAAN can be approximated:

ΔΩ𝑚𝑎𝑥 = ΔΩ𝐽2 ± ΔΩ𝑇 (5.4)
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This approximation can be obtained by numerically integrating the combined effect of Ω̇𝐽2 and Ω̇𝑇 from 𝑡0 to 𝑡𝑓,
assuming the semi­major axis and inclination change linearly during the transfer. 𝑡𝑓 follows from Edelbaum’s
approximation (Equation (5.1)) and the ideal rocket equation:

Δ𝑉 = 𝑔0𝐼𝑠𝑝 ln
𝑚0
𝑚𝑓

(5.5)

as thrust and 𝐼𝑠𝑝 are assumed constant:

�̇� = − 𝑇
𝑔0𝐼𝑠𝑝

=
𝑚0 −𝑚𝑓

𝑡𝑓
(5.6)

5.2. Case 1: Co­planar transfer without RAAN change
The initial and final Keplerian elements for the basic transfer case are given by Table 5.5.

𝑎 [km] 𝑒 [­] 𝑖 [deg] Ω [deg]

initial state 6579.0 7.0e­4 81.15 0
target state 7254.617 0.0057 81.25 ­19.5467

Table 5.5: Initial and target Keplerian elements for a basic chaser to target transfer

The small difference in inclination and eccentricity accounts for injection errors and is simply twice the standard
deviation of the injection error of the Ariane 5 launcher for a typical SSO (Arianespace, 2016). The target RAAN
is obtained by using the approximation described in the previous section. The range of obtainable RAANs is
shown in Figure 5.2. This approximation is valid for finding the natural change inΩ due to 𝐽2 in order to minimize
the required thrust for changing the RAAN. The expected 𝑡𝑓 and 𝑚𝑝𝑟𝑜𝑝 are then given in Table 5.6:

Table 5.6: Expected time of flight and propellant mass based on analytical analysis.

time of flight propellant mass
𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg]

17.05 37.56

In Figure 5.2 the solid line can be interpreted as the natural drift due to 𝐽2, the shaded area then represents the
actual values of Ω that can be obtained due to thrust.
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Figure 5.2: Approximation of the RAAN range obtainable for the given initial and target conditions.

Again, the optimization was run four times with different seeds, to ensure consistency and quality of the results.
Table 5.7 shows the resulting 𝑡𝑓,𝑚𝑝𝑟𝑜𝑝 and final orbit differences for the OA results and the CI verification runs.
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Immediately, it is clear the results for the simple transfer case show great consistency, the best and worst results
only differing by 0.12 days (0.17%).

Table 5.7: Results for four optimization runs

run 𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg] Δ𝑎 [km] Δ𝑒 [­] Δ𝑖 [deg] ΔΩ [deg]

1 OA 17.097 37.657 0.5867 1.396 × 10−4 9.175 × 10−4 0.0047
CI ­ ­ 20.0615 8.284 × 10−4 2.000 × 10−3 0.1607

2 OA 16.988 37.416 0.9275 2.405 × 10−4 8.895 × 10−4 0.0211
CI ­ ­ 32.6779 2.469 × 10−3 7.300 × 10−3 0.1981

3 OA 17.040 37.531 0.3919 1.250 × 10−5 7.496 × 10−4 0.1528
CI ­ ­ 10.3139 7.424 × 10−4 8.900 × 10−3 0.3393

4 OA 16.973 37.383 4.7461 2.284 × 10−5 3.880 × 10−3 0.2415
CI ­ ­ 28.604 7.604 × 10−4 2.400 × 10−3 0.4004

A geometrical representation of the transfer is shown in Figure 5.3, clearly demonstrating the precession of the
RAAN and the increasing semi­major axis. The color indicates the time, ranging from 𝑡0 in blue, to 𝑡𝑓 in yellow.
When looking at the progression of the Keplerian elements in Figure 5.4 it is seen that the semi­major increases
approximately linear. Furthermore, the small short­period variations of the inclination and eccentricity are clearly
visible.

(a) Top view (b) side view

Figure 5.3: Representation of the optimal transfer trajectory found by run 1 of the simple debris transfer optimization, from
𝑡0 (blue) to 𝑡𝑓 (yellow)).
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Figure 5.4: Progression of the semi­major axis, eccentricity, inclination and RAAN versus time for run 1 of the simple debris
transfer.

This behavior is supported by the control history of the thrust acceleration, shown in Figure 5.5. The thrust is
predominantly in the direction of velocity, which is expected for a co­planar transfer between two near­circular
trajectories.
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Figure 5.5: Thrust acceleration components in the NTW­frame

The best time­of­flight found was was 16.97 days, which is close to the approximated required time 𝑡𝑓 =
17.05 days. While the optimization result for this problem is perhaps not surprising, it is worth noting that
no additional tuning or tweaking of the OT was required. The process followed compared to the GTO­to­GEO
was identical, with the most significant difference being adjustment of the final orbit error constraints. This case
served as a baseline to which a more complex transfer problem can be compared against.

5.3. Case 2: Complex transfer with planar changes
The second case aims to investigate the performance of the optimizer for a more complex transfer problem. By
starting from the same initial parking orbit, the transfer to a target object, requiring a plane change is considered.
Additionally, the impact of aerodynamic drag is taken into account. The initial orbit is equal to the previous case
but with a higher initial orbital altitude of 300 km. At lower altitudes the orbital decay would be too large, as
illustrated by Figure 5.6; active low­thrust propulsion cannot compensate for this. The target orbit now requires a
significant change in RAAN, as well as a small change in inclination of 2°. This case can for instance arise when
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the next target object can not be selected based on the ideal transfer properties but is for example based on a general
requirement for certain debris objects. The target and initial orbital elements are given in Table 5.8.

Table 5.8: Initial and target Keplerian elements for complex chaser to target transfer, with inclination and significant addi­
tional change in RAAN.

𝑎 [km] 𝑒 [­] 𝑖 [deg] Ω [deg]

initial state 6679.0 7.0e­4 79.25 0
target state 7254.617 0.0057 81.25 ­45
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Figure 5.6: Illustration of the effects of aerodynamic drag on a trajectory with initial orbital height of 200 km and 300 km.

Again, four runs are done to test consistent behavior, and ensure the quality and reliability of the obtained so­
lutions. Before investigating the simulation results, we expect a longer TOF to obtain the required additional
change in RAAN and inclination. Furthermore, while the thrust vector for the previous case was almost entirely
in line with the velocity, we now expect a larger out­of­plane component, as will be required to attain the re­
quired plane changes. The resulting errors, with respect to the target elements given by Table 5.8 are given by
Table 5.9.

Table 5.9: Results and final orbit error for four optimization runs for the complex minimum­time debris transfer, for both the
OA and CI propagations.

run 𝑡𝑓 [day] 𝑚𝑝𝑟𝑜𝑝 [kg] Δ𝑎 [km] Δ𝑒 [­] Δ𝑖 [deg] ΔΩ [deg]

1 OA 34.407 75.784 3.0877 3.968 × 10−5 1.479 × 10−3 0.0026
CI ­ ­ 41.8021 1.000 × 10−4 2.990 × 10−2 0.7306

2 OA 33.772 74.385 0.9929 8.025 × 10−5 8.461 × 10−4 0.0705
CI ­ ­ 188.0963 4.727 × 10−3 1.830 × 10−2 2.5593

3 OA 34.292 75.531 3.2277 3.007 × 10−4 2.008 × 10−3 0.2624
CI ­ ­ 41.4482 2.248 × 10−3 1.590 × 10−2 0.1220

4 OA 33.524 73.839 0.0293 7.337 × 10−5 9.423 × 10−4 0.7015
CI ­ ­ 7.6056 2.900 × 10−4 3.550 × 10−2 0.3424

Firstly, it is immediately apparent that only a single run remains within the constraints. Three out of four runs show
an error of the semi­major axis of 40 to 180 km. This error is attributed to the deficiency of the OA approximation.
Because aerodynamic drag plays a significant role at these altitudes, an over­estimation of the altitude increase
can quickly lead to an error accumulation. Additionally, as the eccentricity is increased throughout the first part
of the transfer, the perigee altitude will drop, increasing the impact of the drag perturbation further. The author is



5.3. Case 2: Complex transfer with planar changes 67

confident that this is not a flaw of the implemented optimization method, as the method demonstrates acceptable
convergences to similar results, improving the OA approximation will yield more reliable results and is expected
to further improve convergence. It is worth repeating that the CI error here is the difference between the target
orbit and the trajectory propagated with CI, using the design vector obtained from the optimizer, which used OA.
That is, the CI propagation verifies the feasibility of the obtained solution.

For the obtained best solution, run 4 (in terms of 𝑡𝑓), coincidentally showing the smallest CI error, the progression
of the semi­major axis, eccentricity, inclination, and RAAN is shown in Figure 5.7. The figure shows the CI
propagated trajectories, with the thickness of each lining indicating the magnitude of the short­period variations,
most notably for the semi­major axis and inclination.
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Figure 5.7: Progression of the semi­major axis, eccentricity, inclination and RAAN versus time for run 1 of the complex
debris transfer.

Compared to the simple transfer, the change in semi­major axis is more gradual, and not linear. This can also
be seen by looking at the components of the thrust accelerations in Figure 5.8, showing the magnitudes of each
direction, in the NTW­frame. The thrust effort is both in­plane and out­of­plane, to achieve a simultaneous change
of each element.
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Figure 5.8: Thrust acceleration components in the NTW­frame.
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5.4. Summary
This chapter detailed the trajectory optimization for a low­thrust trajectory, starting from a polar orbit in LEO to
a target object. Two cases were considered: a simple co­planar transfer case, close to the analytical optimum, and
a more complex transfer that included significant plane changes and additional orbital perturbations. The effect
of the oblateness of the Earth on the mission design process was demonstrated by looking at the RAAN envelope,
detailing the obtainable RAAN changes, assuming near­optimal trajectory transfers.

For the simple transfer case, the global optimum was reliably found, and the results are in accordance with the
expected results based on an analytical approximation. The optimizer reliably converged for the more complex
transfers, consisting of plane changes and taking into account aerodynamic drag. Nonetheless, the verification
using CI propagation demonstrated an unacceptable error in semi­major axis for three out of four runs. This is
caused by the OA approximation, because an over­estimation of the semi­major axis increase, combined with
an increase in eccentricity, i.e. decrease in perigee altitude, leads to an under­estimation of the drag. This is
not considered a flaw of the implementation method, and it is expected that improving the OA approximation
accuracy will also improve the reliability of these cases.
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Table 5.2: SL­3 R/B data currently in orbit

NORAD ID 𝑖 [deg] 𝑎 [km] 𝑒 [­] ℎ𝑎 [km] ℎ𝑝 [km]
877 65.08 7073.216 0.0079 751 639

13819 81.12 6895.267 0.0030 538 496
4814 81.14 6833.171 0.0024 472 439
12155 81.16 6842.407 0.0028 484 445
7493 81.16 7245.648 0.0083 928 807
14453 81.17 7187.453 0.0104 884 735
13771 81.17 6911.231 0.0046 565 501
13403 81.17 6921.863 0.0033 567 521
13154 81.18 6948.409 0.0039 597 543
12904 81.18 6926.211 0.0028 568 529
13121 81.18 6916.548 0.0016 549 527
13068 81.20 6921.380 0.0022 558 528
8294 81.21 7242.343 0.0106 941 787
11608 81.21 7250.841 0.0054 912 833
8846 81.22 7242.343 0.0039 892 836
7715 81.22 7248.481 0.0053 909 832
12646 81.23 7217.289 0.0067 887 791
5918 81.23 7251.785 0.0057 915 832
6660 81.23 7251.785 0.0048 908 839
7364 81.23 7250.841 0.0050 909 836
11822 81.23 6782.998 0.0008 410 399
4420 81.23 7230.530 0.0088 916 789
7575 81.24 7233.839 0.0049 891 820
7275 81.24 7248.953 0.0055 911 831
7210 81.24 7226.749 0.0080 906 791
4394 81.24 6850.664 0.0037 498 447
6080 81.24 7268.767 0.0048 926 856
10515 81.24 7241.870 0.0028 884 843
11289 81.24 7231.948 0.0076 909 799
11166 81.24 7224.384 0.0066 894 798
12465 81.24 6898.655 0.0034 544 497
6393 81.25 7254.617 0.0057 918 835
13719 81.25 7221.547 0.0070 894 793
8800 81.25 7237.146 0.0096 928 789
5732 81.25 7251.313 0.0052 911 836
6257 81.26 7249.425 0.0059 914 829
9904 81.26 7248.009 0.0054 909 831
5118 81.26 6898.655 0.0047 553 488
9482 81.26 7246.120 0.0086 930 806
12457 81.27 7247.065 0.0061 913 824
9662 81.28 7268.767 0.0053 929 852
8520 81.28 7240.926 0.0029 884 842
11963 81.28 7238.564 0.0076 915 805
8027 81.30 7246.593 0.0053 907 830
10114 97.37 6890.426 0.0012 521 504
19046 97.39 6935.866 0.0040 585 530
14208 97.45 6909.781 0.0038 558 505
16111 97.47 6718.425 0.0008 346 335
12586 97.66 6910.748 0.0017 544 521
18961 99.17 7269.710 0.0053 930 853
21689 99.34 7265.466 0.0026 906 868





6
Conclusions and Recommendations

This final chapter of the report will discuss the conclusions that can be drawn from the work presented, and outline
recommendations for future work on this subject.

6.1. Conclusions
This section aims to answer the main research question as discussed in Chapter 1:

To what extent can a hybrid control parametrization optimization method, including Or­
bital Averaging (OA), be used to find optimal low­thrust transfer trajectories to space de­
bris objects in Low Earth Orbit (LEO), with the ultimate purpose of enabling its use in
Active Debris Removal (ADR) trajectory optimization?

The hybrid optimization method, or control parametrization method, as presented by Jimenez­Lluva (2017) and
based on work by previous authors such as Kluever (2010), Boudestijn (2014), and Gómez­Jenkins (2015), was
implemented as part of the TU Delft Astrodynamics Toolbox (Tudat). The implementation was further devel­
oped, implementing several improvements in terms of accuracy and convergence. The optimization model was
expanded with the additional aerodynamic drag perturbation in addition to the non­spherical gravity distribution
and the absence of thrust in Earth’s shadow.. Their implementation was tested for both CI and OA propagation,
by comparing to benchmark trajectories and references in literature. However, it was found that the approxima­
tion used to convert from time to eccentric anomaly as independent parameter, was insufficient in the perturbed
LEO environment.

The use of an adaptive integrator for the propagation of the averages used in OA decreased the number of function
evaluations and fixed the deficiency of OA as observed by Jimenez­Lluva (2017). In addition to co­state scaling,
the use of SaDE improved convergence, and further improved the flexibility of the method by reducing themanual
tuning required. Nonetheless, it is expected that a properly tuned implementation of a well­chosen DE method,
depending on the application, will show better behavior in terms of convergence speed as no time is spent by
the optimizer ’tuning itself’. The performance of the implemented method was shown for the GTO­to­GEO
transfer trajectories and compared to the reference results. This comparison showed the implementation of eclipse
conditions was insufficient. However, the author is confident this is a deficiency of the implementation, not of
the method, as the results obtained by Boudestijn (2014) and Gómez­Jenkins (2015) did not show this behavior.
Nevertheless, to ensure consistent behavior, eclipses were turned off for the space debris transfer case.

A transfer from a parking orbit to a space debris object, in a polar LEO orbit, was modeled and optimized.
A simple transfer, with parameters as close to an analytical optimum as possible, served as a baseline. The
method reliably found the near­optimal results. Following this, a more complex case, including plane changes
and aerodynamic drag was optimized. Consistent results were found. This highlights the remarkable properties
of this method: With barely any manual tuning, a significantly different case compared to the GTO to GEO
transfer can be optimized, yielding satisfactory results. No a­priori estimate is required, but good solutions are
nonetheless obtained.

Based on this work, most research questions can now be answered. The use of SaDE improves convergence
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and decreases manual tuning, at the cost of convergence speed. The use of variable­step integration for OA
propagation decreases computational cost, at no cost of accuracy loss. Themethod successfully finds time­optimal
Earth­centered many­revolution transfer trajectories to a space debris object, including relevant perturbations,
answering the main research question.

Expand theTudat low­thrust optimization suitewith anovel hybrid optimizationapproach
in order to improve optimization capabilities for the many­revolution problems, such that
we can find optimal solutions for the multiple active space debris removal problem.

In terms of project goals, the work presented in this document yields another powerful addition to the low­thrust
trajectory design module of Tudat. Next to recent additions such as shape­based methods and the Sims­Flanagan
trajectory model, the hybrid method provides an additional option to the toolbox. Although the large effort
needed for the method implementation meant fully investigating the MADR problem was infeasible, the author
is confident that this method provides a powerful option for generating near­optimal solutions for this category
of transfer trajectories.

6.2. Recommendations
Based on the conclusions drawn from this project and the work done therein, several recommendations for future
work are stated here.

Improve implementation, verification and validation of thrust shadow conditions
The implementation of eclipse conditions, their contribution to thrust in the OA propagation, was deemed flawed
and insufficient for the optimization. The author recommends verifying its implementation and effect on the
propagation in more detail, to ensure its reliability. When this reliability can be verified it is recommended
to repeat the space debris transfer optimization with RAAN changes. Although many SSO trajectories are in
constant dusk/dawn orbits, i.e. in near­permanent sunlight, this is not always true and will not be the case for
derelict objects, implying trajectories that avoid shadow conditions can yield better results.

Improve OA performance for perturbed environments
The approximation used to determine a fixed step size in eccentric anomaly is suspected to be inaccurate for
trajectories with relatively large short­period variations of the orbital elements. This would result in an apparent
secular variation whereas the true trajectory shows only short­period variations. It is recommended to investigate
this behavior in more detail and confirm this cause. This problem can be approached by either improving the time­
step calculation, by taking into account the perturbing accelerations. A different approach is to derive expressions
for the average effect of certain perturbations. Although this is not possible for every possible perturbation, this
can be done for the 𝐽2 effect. This would limit the flexibility of the method, as each additional perturbation
required deriving averaged expressions for each.

Analyze rendezvous problems with enhancements
Because OAwas used from the outset of this project, the problem of rendezvous was discarded at an early phase of
the project, as the fast­changing element is lost. Nonetheless, the described enhancements are expected to improve
the results for the geodetic longitude targeting. It is recommended to re­evaluate the minimum­propellant longi­
tude targeting. Additionally, the space debris rendezvous problem should be considered. This problem contains
the additional challenge of the simultaneous propagation of the target object, subject to perturbations.

Exploit PaGMO strengths
SaDEwas used in the project with default settings, running each optimization single­threaded. It is recommended
to further exploit the powerful options PaGMO provides, especially the generalized island model (Izzo et al.,
2012), a method allowing parallel, asynchronous cooperative optimization. This is expected to further improve
the performance of the optimizer.

Computational performance improvements
The author was limited by the Tudat environment, as well as working with an old version. Additionally, the focus
of the implementation phase was not on computational performance but on results. Therefore, there is still a
significant improvement possible in terms of computational speed. Several shortcuts were taken to ensure com­
pliance with the existing Tudat code, which causes a lot of data to be shuffled around and additional unnecessary
coordinate conversion.
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A.1. SSO Trajectory
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Figure A.1: Progression of the first three Keplerian Orbital Elements for tangential thrusting program.
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Figure A.2: Progression of the first three Keplerian Orbital Elements for radial thrusting program.
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Figure A.3: Progression of the first three Keplerian Orbital Elements for out­of­plane thrusting program.
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A.1.1. Error CI
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Figure A.4: Error between the CI propagation and benchmark trajectory for the out­of­plane thrust case.
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Figure A.5: Error between the CI propagation and benchmark trajectory for the radial thrust case.

A.1.2. Error OA
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Figure A.6: Error between the OA propagation and benchmark trajectory for the out­of­plane thrust case.
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Figure A.7: Error between the OA propagation and benchmark trajectory for the radial thrust case.
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A.2. Reference Results
A.2.1. OA Propagation Implementation comparison

Figure A.8: Validation results of Jimenez­Lluva (2017) for the tangential thrust case
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Figure A.9: Validation results of Jimenez­Lluva (2017) for the out­of­plane thrust case

Figure A.10: Validation results of Jimenez­Lluva (2017) for the radial thrust case
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A.2.2. GTO to GEO minimum propellant results

Figure A.11: Minimum­time and minimum­propellant results for the 150­, 200­, and 250­day trajectories.



B
Implementation Details

Figure B.1: Propagation Flowchart

B.1. Development Platform
All simulations were run on a desktop computer with specifications:

OS Ubuntu 20.04.3 LTS
CPU Intel® Core™ i5­4690K CPU @ 3.50GHz × 4
RAM 16GB DDR3

All simulation code was developed in C++ as part of the Tudat suite1, supported by the Boost and Eigen
libraries. All analysis was done using Python 3, using the matplotlib and mayavi packages for data visual­
ization, numpy for data handling and mathematical analysis and a custom library was used, providing a range of

1https://tudat.tudelft.nl/

83
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generic plotting and utilities2. This report was written using LATEX, in a heavily modified version of the TU Delft
LATEX report template.

B.2. Two­line Element Sets
A TLE is a common data format used to encode the orbital elements of Earth­orbiting satellites and other objects,
at any given time epoch. The TLE of many objects orbiting Earth are tracked by the United States Air Force,
and made publicly available. In the context of this project, TLE are used to obtain accurate orbital elements for
target objects and orbits. This section briefly summarizes the TLE format and the method by which it is used.
TLE consist of an (optional) satellite name, and two lines containing all data. Their full format is described in
Table B.1.

Table B.1: https://www.celestrak.com/NORAD/documentation/tle­fmt.php

Column Description

Line 1 1 Line Number of Element Data
03­07 Satellite Number
8 Classification (U=Unclassified)
10­11 International Designator (Last two digits of launch year)
12­14 International Designator (Launch number of the year)
15­17 International Designator (Piece of the launch)
19­20 Epoch Year (Last two digits of year)
21­32 Epoch (Day of the year and fractional portion of the day)
34­43 First Time Derivative of the Mean Motion
45­52 Second Time Derivative of Mean Motion (Leading decimal point assumed)
54­61 BSTAR drag term (Leading decimal point assumed)
63 Ephemeris type
65­68 Element number
69 Checksum (Modulo 10) (Letters, blanks, periods, plus signs = 0; minus signs = 1)

Line 2 1 Line Number of Element Data
03­07 Satellite Number
09­16 Inclination [Degrees]
18­25 Right Ascension of the Ascending Node [Degrees]
27­33 Eccentricity (Leading decimal point assumed)
35­42 Argument of Perigee [Degrees]
44­51 Mean Anomaly [Degrees]
53­63 Mean Motion [Revs per day]
64­68 Revolution number at epoch [Revs]
69 Checksum (Modulo 10)

For example, the TLE of a Vega Secondary Payload Adapter (VESPA) upper part, is

AVUM DEB (ADAPTOR)
1 39162U 13021D 21244.09511911 .00000256 00000­0 78198­4 0 9998
2 39162 98.7786 121.7892 0094151 284.1787 74.8959 14.48416320439567

The orbital elements given by a TLE can be directly converted to a set of classical Keplerian orbital elements.
The semi­major axis is obtained from the mean motion 𝑛. The true anomaly is obtained from the mean anomaly,
through conversion to the eccentric anomaly, using Kepler’s Equation. For obtaining a general orbit to demon­
strate the optimization process, this would be sufficient. However, for practical applications, care needs to be
taken with this approach. The TLE are updated sporadically, so the elements need to be propagated to the re­
quired time epoch. TLE are specifically presented with the simplified perturbations model in mind. Therefore,
to accurately obtain the object state, it will need to be propagated using one of the SGP models to propagated to
the time epoch of interest.

2https://github.com/RobertKlavers/spacestuff

https://www.celestrak.com/NORAD/documentation/tle-fmt.php
https://github.com/RobertKlavers/spacestuff
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