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B I O C H E M I S T R Y

A lipid atlas of the human kidney
Melissa A. Farrow1,2†, Léonore E. M. Tideman3†, Elizabeth K. Neumann1,2†‡, Lukasz G. Migas3, 
Nathan Heath Patterson1,2§, Madeline E. Colley1,2, Jamie L. Allen2,4, Ellie L. Pingry2,4,  
Martin Dufresne1,2, Haichun Yang5, Maya Brewer5, Emilio S. Rivera1,2¶, Carrie E. Romer1,2,  
Katerina Djambazova2,4, Kavya Sharman2,4, Angela R. S. Kruse2,4, Danielle B. Gutierrez1,2#, 
Raymond C. Harris5,6,7, Agnes B. Fogo5,6,7, Mark P. de Caestecker5, Richard M. Caprioli1,2,7,8,  
Raf Van de Plas1,2,3*, Jeffrey M. Spraggins1,2,4,6,9*

Tissue atlases provide foundational knowledge on the cellular organization and molecular distributions across 
molecular classes and spatial scales. Here, we construct a comprehensive spatiomolecular lipid atlas of the human 
kidney from 29 donor tissues using integrated multimodal molecular imaging. Our approach leverages high-
spatial-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry for untargeted lipid 
mapping, stained microscopy for histopathological assessment, and tissue segmentation using autofluorescence 
microscopy. With a combination of unsupervised, supervised, and interpretable machine learning, the atlas pro-
vides multivariate lipid profiles of specific multicellular functional tissue units (FTUs) of the nephron, including the 
glomerulus, proximal tubules, thick ascending limb, distal tubules, and collecting ducts. In total, the atlas consists 
of tens of thousands of FTUs and millions of mass spectrometry measurements. Detailed patient, clinical, and 
histopathologic information allowed molecular data to be mined on the basis of these features. As examples, we 
highlight the discovery of how lipid profiles are altered with sex and differences in body mass index.

INTRODUCTION
The human kidney is a highly organized organ responsible for filter-
ing waste products from the blood, maintaining ion and fluid 
balance, releasing hormones that regulate blood pressure, and 
controlling the production of red blood cells. Filtration and mainte-
nance of ion and water balance are achieved in the nephron, 
which is vital for maintaining homeostasis. Each human kidney has 
~1 million nephrons composed of distinct multicellular functional 
tissue units (FTUs) surrounded by a network of capillaries. FTUs of 
the nephron include the glomerulus (GL), where blood filtration 
and formation of ultrafiltrate are initiated, as well as a series of tu-
bules that are composed of proximal convoluted tubules, the loop of 
Henle, distal convoluted tubules, and collecting ducts (CDs). Each 
renal FTU specializes in balancing ion and nutrient concentration and 
osmolality of the urine by mechanisms of secretion and absorption.

Fundamental to comprehending the architectural and functional 
complexity of an organ are determining the organization of cell 
types and FTUs and cataloging the localized molecular profiles of 

these tissue features. Model systems, such as cell cultures and organ-
oids, have provided insight into aspects of tissue function but not 
necessarily into the spatial anatomical and cellular organization of 
tissue. Animal models are better suited to yield the latter but may 
not fully recapitulate human physiology. Therefore, recently, there 
has been a push to develop cellular atlases of human tissue instead. 
Nevertheless, such studies have primarily focused on transcriptional 
data with limited spatial context (1–3). To address these gaps, mul-
tiple large-scale research consortia have been established to develop 
and deploy spatial technologies for deep molecular profiling and 
mapping of the transcriptome, proteome, lipidome, and metabo-
lome of human tissues. Comprehensive spatiomolecular atlases of-
fer a means to generate new hypotheses and advance biomedical 
research by providing an unprecedented view into tissue at cellular 
resolution (4–6). Exploring relationships between cellular and mo-
lecular organization of tissues enables the discovery of underlying 
drivers of functional efficiency, transition to disease, and disease se-
verity as a function of key patient factors (e.g., age, sex, race, and 
comorbidities). Recently, the National Institutes of Health and pri-
vate organizations have funded various atlas efforts to address this 
grand challenge, such as the Human Biomolecular Atlas Program 
(HuBMAP) (6), Human Cell Atlas (7), BRAIN Initiative (8), Kidney 
Precision Medicine Project (9), and Human Tumor Atlas Network 
(10), targeting an array of normal and/or diseased organs.

Integration of multimodal molecular imaging technologies can 
provide a more rounded, systems biology view of organ function 
(and dysfunction) across a wide range of molecular classes (e.g., 
lipids, metabolites, proteins, and RNA) and spatial scales (e.g., 
whole organs to single cells). The HuBMAP is a consortium funded 
by the National Institutes of Health that is leading research efforts in 
this area with the goal of creating an open, comprehensive molecular 
atlas of the human body at cellular resolution (6). Here, as part of 
HuBMAP, we have developed an FTU-specific lipidomic atlas of the 
human kidney to characterize the molecular organization of the 
nephron in normal-appearing tissue. This atlas incorporates untargeted 
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imaging mass spectrometry (IMS) data (11, 12) that are fully inte-
grated with various forms of microscopy (13, 14) to enable the dis-
covery of spatially specific molecular marker candidates for key 
patient factors such as obesity and sex. Each component of the atlas 
is publicly available (https://portal.hubmapconsortium.org/). This 
atlas spans multiple scales of spatial granularity, ranging from large 
tissue areas including multiple anatomical regions to specific FTUs 
and cell types and from averaged populations to individual subjects, 
serving as a resource for exploring the biomolecular landscape that 
informs renal function and disease. To punctuate the potential of this 
resource, we demonstrate how our integration of IMS and micros-
copy can be used to reveal spatiomolecular relationships that are dif-
ficult to access through other means and how these unique insights 
can yield key lipidomic marker candidates for, e.g., obesity for vari-
ous functional components of the nephron. Although this work is 
focused on the human kidney, the analytical and computational 
pipelines we have developed as part of our atlasing efforts have broad 
utility and are applicable to any organ system or disease type. To-
gether, these developed pipelines provide critical insight into how 
molecules and cells are organized into multicellular functional com-
ponents that work in concert to drive macroscopic tissue function.

RESULTS
We have collected nephrectomies from 29 donors (table  S1) and 
analyzed these tissues with a customized workflow that integrates 
pathological assessment and image segmentation on the basis of 
autofluorescence (AF) microscopy with high-spatial-resolution 
matrix-assisted laser desorption/ionization (MALDI) imaging IMS 
and unsupervised and supervised machine learning (ML) approaches 
that exploit the spatial co-registration of the different data types 
(Fig.  1). The spatial match achieved by acquisition of microscopy 
images and IMS data from the same tissue section outperforms what 
would be possible with measurements from subsequent tissue sec-
tions. Whole slide microscopy images were segmented into GL, 
proximal tubule (PT), thick ascending limb (TAL), distal tubule 
(DT), and CD features, and spatially associated untargeted IMS data 
were mined to discover FTU-specific lipid profiles. This approach 
provides insight into the FTU-level organization of the kidney at the 
molecular level.  Figure  2 (A.a to A.c) shows example whole slide 
microscopy images collected from a selected donor (56-year-old 
white female). AF microscopy (Fig. 2A.a) was used to drive image 
co-registration and FTU segmentation (Fig. 2A.b). Periodic acid–
Schiff (PAS)–stained images (Fig. 2A.c and fig. S1) were collected 
after MALDI IMS acquisition for histological assessment of overall 
specimen composition (i.e., % cortex versus medulla), tubular atro-
phy, glomerular sclerosis, and measures of other key tissue features 
and pathologies (table  S2). AF images (fig.  S2), acquired before 
MALDI IMS, were used to automatically segment the FTUs of the 
nephron, including GLs, PTs, TAL, DTs, and CDs (fig. S3), as de-
scribed previously (15). MALDI IMS measurement regions were 
selected to capture a mixture of FTUs and anatomical regions in 
both positive and negative ion modes (Fig. 2, A.d to A.f). It is noted 
that both polarities are collected from each tissue section. Examples 
of IMS-provided lipid distribution images are shown in Fig. 2 (B.a to 
B.e). All MALDI IMS data in the atlas were collected with a pixel 
size of 10 μm, which, together with multimodal acquisition from the 
same tissue section, provided sufficient spatial specificity and accu-
racy to associate mass spectrometry (MS) signals with specific FTUs 

in situ. For example, the sphingomyelin SM(34:1);2O [mass/charge 
ratio (m/z) 687.545] was found to localize to the GLs and other 
surrounding structures (Fig. 2B.a). The phosphatidylethanolamine 
PE(36:4) (m/z 738.508) localized primarily to the PTs (Fig. 2B.b), 
whereas PE(36:1) (m/z 744.555) was found with greater abundance 
in the CDs (Fig. 2B.c). The substantial variation in distribution be-
tween these latter two lipids is particularly notable given that they 
only differ by the number of double bonds in their fatty acyl tails. 
Last, the sulfatide SHexCer(42:1);3O (m/z 906.635) was found spe-
cifically in the TAL (Fig. 2B.d). The overlay of these four lipid spe-
cies (Fig. 2B.e) highlights the localized diversity of these molecules 
and their ability to differentiate FTUs as compared to complimen-
tary microscopy. Besides a spatial view into a selection of the hun-
dreds of lipid species recorded, the atlas can also yield spectrum-wide 
molecular signatures for each FTU. One approach is demonstrated 
in  Fig.  2B.f, where cohort-wide average mass spectra specific for 
each FTU type are provided. Using the automated AF microscopy–
based FTU segmentations and the common spatial coordinate sys-
tem as a guide, MALDI IMS mass spectra (i.e., IMS pixels) specific 
to each FTU type can be collected at a scale from across all tissues in 
the atlas. These FTU-specific mass spectra are then combined to 
provide donor cohort-wide average mass spectra for each FTU in 
both negative (figs.  S4 and S5) and positive (figs.  S6 and S7) ion 
modes. The negative ion mode average mass spectra for each FTU 
are also shown in Fig. 2B.f for a selected mass window (m/z 650 to 
900). While subtle changes in ion intensity or in the presence of low 
abundant molecular species can be difficult to discern in average 
spectra, the manner in which average spectra diverge between FTUs 
is more readily apparent when these data are shown as difference 
spectra (figs. S8 to S27). For example, the difference spectrum com-
paring GLs to PTs in negative ion mode shows variations in lipid ion 
intensities between these two critical structures of the nephron 
more clearly (Fig. 2B.g).

Characteristics of the donor tissue cohort
The molecular atlas was constructed with normal portions of fresh-
frozen renal cancer nephrectomy tissue (i.e., remnant tissue) col-
lected from 29 human donors (table S1). All tissues were collected 
through the Cooperative Human Tissue Network at Vanderbilt Uni-
versity Medical Center. Warm and cold ischemia times were shorter 
than 5 and 30 min, respectively. Figure 3A highlights the distribu-
tions of sex, age, and body mass index (BMI) of the donor cohort. 
The cohort includes 14 female and 15 male donors with an age dis-
tribution ranging from 20 to 78 years and an average age of 60. The 
BMI values of the included donors were similar to averages for the 
population of the United States (16), ranging from 22.3 to 45.5 with 
an overall average of 30.6, and averages of 31.8 and 29.5 for female 
and male donors, respectively. It is noted that the cohort used for 
this study is limited on the basis of tissues available and currently 
only includes non-Hispanic white individuals. This limitation will 
be specifically addressed in future versions of the atlas.

Although it is difficult to obtain tissues from completely normal 
individuals and most adult tissues display some pathological fea-
tures, histopathological analysis by expert clinical pathologists de-
termined that all tissues included in the atlas were age-appropriate 
normal tissues (table S2). PAS-stained images show no clear indica-
tion of cancer or immune cell infiltration. Tissues were assessed for 
anatomical composition (i.e., percentage of cortex and medulla) to 
ensure that all key renal FTUs are represented. Tissue normalcy was 
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Fig. 1. Construction of the FTU lipid atlas of the human kidney. Multimodal molecular imaging data were collected from 29 donor kidney tissues. Each tissue section 
was subjected to AF microscopy, MALDI IMS, and PAS-stained microscopy, in sequential order (A). Each modality is processed individually to provide AF-driven FTU seg-
mentations, to ensure that MALDI IMS measurements are comparable and to remove potential batch effects, and to provide histopathological assessment of each tissue  
(B). These datasets are then integrated by spatially co-registering them onto the same spatial coordinate system and by performing a combination of unsupervised and 
cross-modal supervised machine learning (ML) analyses (C).  Interpretable machine learning is then used to uncover spatially distinct biomarker candidates for FTUs across 
the overall data cohort as well as scoped to specific donor metadata such as BMI or sex.
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Fig. 2. Example of multimodal molecular characterization of human kidney tissue. Whole slide microscopy images from donor VAN0028 (56-year-old white female) were col-
lected using AF (A.a and A.b) before high-spatial-resolution (10-μm pixel size) MALDI IMS measurement, and PAS-stained microscopy (A.c) data were acquired post-IMS. AF micros-
copy data were automatically segmented into renal FTUs (A.b), including the GLs (green), PTs (magenta), TAL (light green), DTs (brown), and CDs (red). MALDI IMS measurement 
regions (white boxes) were selected to include a mixture of tissue features. The microscopy data for the MALDI IMS measurement region are highlighted in (A.d) to (A.f). Selected 
individual molecular distribution images from the negative ion mode MALDI IMS measurement and an overlay image are provided in (B.a) to (B.d) and (B.e), respectively. The se-
lected ions demonstrate unique localizations within the kidney without the need for prior labeling, and these are just four of the hundreds of lipids that make up this molecular atlas. 
The mean mass spectrum associated with each FTU, obtained by averaging FTU-specific IMS-pixels across all donors, displays subtle differences in the lipids detected and their in-
tensities (B.f). It is noted that full size versions of the spectra can be found in the Supplementary Materials. Variations in intensity profiles of FTUs are more evident using difference 
spectra, as shown in the comparison between the normalized (between 0 and 1 to allow for direct comparison) average spectrum of PTs subtracted from that of the GLs (B.g).
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Fig. 3. Global characteristics of the atlas. Key donor characteristics such as age and BMI (A) and detailed histopathology (B) are available for 29 donors. Selected measures 
of tissue normalcy are highlighted in the bar plot, including % global glomerular sclerosis, % interstitial fibrosis tubular atrophy, and % interstitial inflammation. AF microscopy 
was used to comprehensively segment renal FTUs such as the GL (C.a), PT (C.b), DT (C.c), TAL (C.d), and CD (C.e). The total number of detected instances for each FTU was 
quantified within the cortex (Co), outer medulla (OM), and inner medulla (IM) of the kidney across all AF whole slide images (dark gray) and specific to the MALDI IMS measure-
ment regions in both negative (light gray) and positive ion (medium gray) modes. The example immunofluorescence data show how markers used to train the AF-based 
segmentation algorithms were also able to differentiate the broader anatomical zones of the kidney. The integrated MALDI IMS data underwent data preprocessing to address 
nonbiological variability, including peak alignment, calibration, and intensity normalization. Boxen plots show the variability of the TIC (log10 intensity) for the negative ion 
mode data following intrasample normalization (D.a) and the consistency after intersample normalization (D.b). (D.c) Mass error in parts per million for selected negative ion 
mode lipids. The black line represents the mean mass error from all pixels collected from all samples, and the gray dots represent the spread of the data for each m/z. Following 
preprocessing, m/z features are annotated using mass accuracy to compare to LC-MS/MS–based identifications and on-tissue fragmentation. The provided pie chart summa-
rizes the number of annotations for various lipid classes from the negative ion mode data (D.d). It is noted that 28 of the 29 samples were analyzed in negative ion mode.
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determined using measures of interstitial fibrosis tubular atrophy, 
arteriosclerosis, global glomerular sclerosis, arteriolar hyalinosis, 
and interstitial inflammation. The frequency of key pathologies 
determined for each donor tissue is summarized in Fig. 3B. As 
expected, the levels of tissue pathologies vary greatly in human sub-
jects, yet our analytical and computational pipelines were still able 
to uncover lipidomic profiles for specific FTUs that were consistent 
across the entire atlas donor cohort.

FTU frequency and distribution
Multimodal analysis of renal tissue provides a means of connecting 
rich molecular information from IMS with relevant tissue cell types 
and structures when integrated with complementary microscopy 
and the derived FTU segmentation masks (fig. S3). By applying the 
multimodal collection pipeline to 29 donors, FTU segmentation la-
bels and molecular profiles (i.e., mass spectra) on the order of mil-
lions of data points are obtained and tied to specific spatial tissue 
areas with high fidelity. Figure 3C shows the number of instances 
(discrete FTUs) found across the AF microscopy images overall as 
well as specific to the MALDI IMS measurement regions. Each do-
nor sample has similar numbers of FTU instances per class, but rela-
tive counts are influenced by the gross morphology of each section, 
which was calculated as the percent of cortex or medulla in a section 
during pathological assessment (15) (table S2). FTU instances were 
distributed as expected, with GLs and PTs almost exclusive to the 
cortex (Fig. 3, C.a and C.b, respectively), TAL segments found in the 
outer medulla and cortex (Fig. 3C.d), DTs in the cortex (Fig. 3C.c), 
and CDs found both in medullary and cortical regions (Fig. 3C.e). 
In terms of the robustness of the atlas and the FTU-specific molecu-
lar signatures provided by MALDI IMS, it is critical to note that the 
analyses highlighted herein are based on thousands of individual 
FTU instances for each targeted kidney structure, together with mil-
lions of MS measurements that are co-registered and integrated with 
them. For example, positive ion mode MALDI IMS measurements 
from all 29 donors amassed 6,779,166 mass spectra (individual IMS 
pixels). From this, ~68.8% (4,662,712 pixels) were spatially anno-
tated into the five targeted FTUs: GLs, PTs, TAL, DTs, and CDs. 
Similarly, in negative ionization mode, 6,568,017 mass spectra were 
collected from 29 of the donor samples, with 70.8% assigned to 
FTUs. The fraction of MALDI IMS data that could be labeled as part 
of targeted FTUs is as expected. The unlabeled fraction of the data is 
partially due to how the segmentation models were constructed, 
namely with an emphasis on avoiding false positives. Given the 
number of instances available, for integration with MALDI IMS 
data, it is less important to detect every last FTU than it is to be sure 
that the FTU label assignments are of high confidence. Therefore, 
the resulting segmentation masks label rather conservatively and 
only high-confidence FTUs so that only high-quality data are in-
cluded in subsequent IMS data mining and modeling approaches. 
Furthermore, the current version of the kidney lipid atlas does not 
include tissue features such as vasculature and extracellular matrix, 
which also account for a nontrivial tissue area. More granular delin-
eation of the nephron and the addition of these other key tissue fea-
tures will be the focus of future extensions of the atlas.

IMS data quality and annotations
Ensuring MALDI IMS data quality was essential when constructing 
the kidney FTU lipid atlas. Extensive quality control procedures 
and data preprocessing were performed to minimize nonbiological 

variability and to ensure comparability of the data. Peak alignment 
and calibration were critical for enabling high-confidence annotation 
of IMS data. IMS peak intensity normalization was performed both 
on a per-sample basis (i.e., intrasample normalization) and across the 
entire data cohort (i.e., intersample normalization). Following intra-
sample normalization, the sample-level intensity variance across the 
entire cohort was ±8% (Fig. 3D.a and fig. S28) and ±9% (fig. S31) for 
negative and positive ion modes, respectively. This was improved 
upon further with intersample normalization reducing the global in-
tensity variance for negative ion mode to ±2% (Fig. 3D.b and fig. S28) 
and ±3% (fig. S31) for positive ion mode. A combination of liquid 
chromatography–tandem MS (LC-MS/MS) and on-tissue fragmen-
tation (table S4) was used to identify lipids from serial tissue sections 
from each of the donor samples. Although thousands of MS features 
were detected, the current atlas is built around 212 (negative ion 
mode) and 211 (positive ion mode) peaks that were either annotated 
or that remain unidentified at the moment but that do exhibit a high 
signal-to-noise ratio and that are clearly distinguishable from the iso-
topic envelopes of other annotated molecular species. All IMS peak 
annotations were made on the basis of mass accuracy with a thresh-
old of less than 5 parts per million (ppm) to link to the theoretical 
m/z of the lipids identified by MS/MS. Plots are provided to highlight 
the consistency of the data, showing the spread of the mass error for 
selected negative (Fig. 3D.c and fig. S29) and positive (fig. S30) ion 
mode lipids. The MALDI IMS analysis detected a wide range of lipid 
classes. Negative ion mode data included annotations and images 
from phosphatidylethanolamines (PEs), sulfatides [sulfatidyl hexose 
ceramides (SHexCers)], sphingomyelins (SMs), phosphatidylserines 
(PSs), cardiolipins (CLs), phosphatidylinositols (PIs), and others 
(Fig.  3D.d and fig.  S32A). In positive ion mode, the atlas includes 
lipid classes such as phosphatidylcholines (PCs), SMs, ether-linked 
PCs (etherPC), and nonpolar lipids such as diglycerides (DGs) and 
monoglycerides (MGs), among others (fig. S32B). Full datasets are 
available as part of the atlas, and additional features can be added to 
future analyses if other ions are identified or found to be important.

Unsupervised analysis
IMS measurements were acquired in both negative and positive ion-
ization modes, yielding two data cohorts. All mass spectra within a 
cohort (one mass spectrum per IMS pixel) have been preprocessed 
to remove nonbiological variation where possible and to enable ion 
intensity values to be compared across experiments. This prepro-
cessing phase includes m/z alignment, m/z calibration, ion intensity 
normalization, and peak picking, and it is complemented with 
sample-specific variation removal by means of reComBat (17). Each 
cohort dataset consists of all IMS pixels (i.e., spectra) collected 
across donor tissue samples and uses the same set of peak-picked 
features throughout. Specifically, the negative ionization mode co-
hort dataset entails 6,568,017 pixels, each reporting a vector of 212 
features. The features correspond to peak intensities of a selection 
of 212 lipid species (table  S4) that were chosen for identifiability 
and broad coverage from all peaks reported by the full profile mass 
spectra acquired.

Initial insight into the variation captured by this dataset was 
obtained through an unsupervised machine learning approach, 
uniform manifold approximation and projection (UMAP) (18), 
with a focus on exploring the structure underlying the measure-
ments. This resulted in the dimensionality-reduced representation 
of the spectral data in  Fig.  4. The latent space representation of 
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chemical variation (irrespective of donor origin) is shown color 
coded for the donor origin (Fig.  4A) and for the FTU type 
(Fig. 4C). Using the cosine distance, this visualization captures 
primarily overall variation across all 212 measured features. The 
presence of sample-specific variation is apparent in  Fig.  4A, 
where certain sample-specific measurement sets tend to cluster 
away from other measurements. However,  Fig.  4C shows that 
besides sample-specific variation, FTU-specific variation is also 
clearly present in the data. Specifically, subsets of measurements 

that share FTU membership tend to cluster together regardless 
of their donor origin (e.g., note PT concentration in the bottom 
right corner of  Fig.  4C).  Figure  4 (A and C) suggests that the 
measurements collected as part of this atlas effectively capture 
different types of biological variation. Furthermore, because a 
rather low-dimensional representation is pursued here, it is ex-
pected that the resulting manifold tends to be dominated by the 
more prominent variabilities captured by the data, which in-
clude sample-related and FTU-related chemical variation.

Fig. 4. Pixel-level chemical variation of MALDI IMS measurements across 28 of the donors analyzed by negative ion mode. Two-dimensional visualization of 
chemical variation in the negative ionization mode experiment cohort using UMAP to cast a matrix of 6,568,017 observations (i.e., IMS pixels across 28 donor tissues) by 
212 features (i.e., lipid species) into a table of 6,568,017 observations by two latent variables while retaining neighborhood relationships between observations as cap-
tured by a cosine distance measure. (A) Latent space representation of chemical variation after preprocessing, with pixels color coded for donor origin. (C) Same latent 
space representation as in (A), with pixels color coded for FTU type (as automatically recognized from microscopy). (B) Latent space representation of chemical variation 
after preprocessing and reduction of donor variation by reComBat, with pixels color coded for donor origin. (D) Same latent space representation as in (B), with pixels 
color coded for FTU type (as automatically recognized from microscopy). Note that while reComBat has not been optimized for use on MS data, it is applied here to dem-
onstrate that if sample-specific variation can be removed, FTU-related variation becomes more readily discernable in an unsupervised context.
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To further our unsupervised exploration toward FTU-specific 
chemical differentiation, we removed a substantial part of the sample-
related variation using the batch normalization method reComBat 
(17) before conducting a secondary UMAP analysis with identical 
hyperparameters. Although reComBat has not been optimized for 
use on MS data, it is applied here as a proof-of-concept demonstra-
tion of how, in an unsupervised context, FTU-related variation 
becomes more readily discernable when at least part of the sample-
specific variation can be reduced. This effect is apparent in Fig. 4 (B 
and D). While  Fig.  4 (A and B) shares the sample-origin color-
coding, in panel (A), certain sample-specific subsets are clearly sep-
arated, and in panel (B)’s visualization, it is harder to discern 
sample-related subsets. This suggests that latent space sample-
related variation has been relatively reduced from Fig. 4 (A and B). 
In  Fig.  4 (C and D), the FTU-type color-coding suggests that as 
sample-related variation is reduced, the FTU-related variation in 
these measurements tends to come more to the foreground in the 
chemical variation reported by the cohort dataset. The visualization 
in Fig. 4D demonstrates that on the basis of the 212 lipid species 
tracked in this dataset, the 302,142 GL measurements acquired 
across all tissue experiments (in green) tend to group together, 
which suggests that these data capture genuine biological variation 
across different human donors. This is further supported by 462,935 
CD pixels (in orange), 253,961 DT pixels (in red), 2,575,639 PT pix-
els (in purple), and 1,049,658 TAL pixels (in brown) clustering to-
gether, regardless of donor. Similar groupings can be observed 
whether the analysis is done on a per-pixel basis (Fig. 4 and fig. S33) 
or whether a mean spectrum is calculated for each FTU instance 
and the unsupervised analysis is performed at the FTU instance 
level (fig. S34). These observations suggest that the data collected as 
part of this atlas reports several biologically relevant underlying 
trends. Some of these chemical variations are sample specific, while 
other trends are sample agnostic and hold up across the cohort ir-
respective of the particular donor sampled, supporting the biologi-
cal validity of the atlas dataset.

Similar observations on chemical variation can be discerned in 
the positive ionization mode IMS data (Fig. 5 and figs. S35 and S36). 
This cohort dataset comprises 6,779,166 pixels, each reporting a 
vector of 211 features that report the peak intensities of a selection 
of 211 lipid species (table S4). Figure 5 shows that the chemical vari-
ation captured by the data tends to group measurements according 
to the FTU type they represent, regardless of the donor origin, and 
their chemical differentiation between FTUs. Figure 5D depicts the 
FTU instance–level grouping of 290,321 GL mean spectra (orange), 
524,092 CD mean spectra (green), 271,080 DT mean spectra (red), 
2,557,196 PT mean spectra (purple), and 1,020,023 TAL mean spec-
tra (brown). In figs. S33 to S36, we provide colorings for metadata 
such as sex and BMI in addition to the FTU-type and donor origin 
labels shown here. However, those visualizations show less clear 
separation, which is possibly the result of the two-dimensional rep-
resentation acquired through UMAP being too low-dimensional to 
accurately represent and separate all these different variation types 
in one cohesive two-dimensional space. While this is a testament to 
the richness of the atlas cohort datasets, it also highlights some of 
the limitations that come with open-ended exploration by unsuper-
vised machine learning for these data and it hints at the need for 
deeper and more targeted analyses to discern how chemical varia-
tion relates to particular donor metadata. To this end, in the next 
section, a more in-depth and targeted supervised machine learning 

approach using interpretable machine learning concepts is used in 
combination with this atlas to uncover potential relationships that 
are hard to discern through unsupervised means.

Supervised analysis and spatially driven discovery of 
biomarker candidates
While informative, the unsupervised machine learning analysis of 
the atlas tends to show the dominant types of variation present in 
the datasets. This is not necessarily the chemical variation most rel-
evant to certain questions of biological interest. For example, inves-
tigations into which lipid species are specific to certain FTUs or 
which species vary with sex or other donor characteristics require a 
more narrowly focused, in-depth analysis. To this end, we have de-
veloped an interpretable supervised machine learning workflow that 
enables automated discovery of which molecular species, among the 
hundreds tracked, are potential biomarker candidates for a specific 
FTU or which species seem to be informative when differentiating 
sex or other donor characteristics (19). Unlike unsupervised meth-
ods, supervised machine learning algorithms are guided by a spe-
cific prediction objective and they therefore tend to disregard data 
variation that is not relevant to the defined classification task. This 
ability to focus on variation that aids the recognition task at hand, 
while attenuating other types of variation, makes supervised ma-
chine learning—particularly the training of classification models—
an effective means of filtering high-dimensional data down to a 
more compact set of features relevant to a certain biological ques-
tion of interest. With a deepening of the molecular mapping of the 
kidney in mind, the following classification tasks were defined and 
models were built: recognition (one-versus-all classification) of five 
FTUs, namely GLs, PTs, TAL, DTs, and CDs, with the goal of obtain-
ing lipid marker candidates for each FTU type, binary classification 
of female versus male donors with the aim of discerning sex-related 
marker candidates, and binary classification of normal-BMI (22 < 
BMI < 25) versus high-BMI (BMI > 35) donors directed at suggest-
ing lipid marker candidates that differentiate these two classes. The 
interpretability method used, Shapley additive explanations (SHAP) 
(20), is used in each classification task to quantitatively estimate, for 
each of the hundreds of IMS-detected lipid species, the relevance of 
a particular molecular species for recognizing the target biological 
class. This provides, for each task, a ranked list of each molecular 
species’ relative predictive importance for that task, offering an 
experiment-wide heuristic for a lipid’s biomarker potential in a spa-
tially driven manner. While a lipid’s relevance in a classification task 
aimed at recognizing a certain FTU does not necessarily imply that 
it is a genuine biomarker for that FTU, such a relevance heuristic can 
help suggest which out of hundreds of lipid species have a potential 
relationship to the FTU and could merit further investigation. The 
automated process furthermore avoids the human bias and drift in-
volved with performing such a task manually, and it can be per-
formed at a scale across a whole cohort of datasets, increasing the 
robustness of the suggested marker candidate panels. For a given 
classification task, our SHAP workflow quantifies the importance 
(as reported by a SHAP value) of each molecular species, reporting 
its donor cohort-wide relevance (i.e., averaged across all donors), its 
tissue sample-wide relevance (i.e., specific to a donor but averaged 
across that donor’s tissue sample), and its pixel-specific relevance 
(i.e., specific to a location within a tissue sample). Because the 
cohort-wide SHAP importance scores report marker candidate po-
tential across many donors, these scores are more robust cues than 
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Fig. 5. Pixel-level and FTU instance–level chemical variation in positive ionization mode of IMS measurements across 28 donors. Note that, for consistency, only 
the 28 samples that had been analyzed by negative ion mode as well were included in this visualization. (A and C) Two-dimensional visualizations of chemical variation in 
the positive ionization mode experiment cohort using UMAP to cast a matrix of 6,779,166 observations (i.e., IMS pixels across 28 donor tissues) by 211 features (i.e., lipid 
species) into a table of 6,779,166 observations by two latent variables while retaining neighborhood relationships between observations as captured by a cosine distance 
measure. (FTU instance–level column) Two-dimensional visualizations of chemical variation in the positive ionization mode experiment cohort using UMAP to cast a matrix 
of 75,846 FTU instances (i.e., mean spectrum per FTU instance found across 28 donor tissues) by 211 features (i.e., lipid species) into a table of 74,959 observations by two 
latent variables while retaining neighborhood relationships between observations as captured by a cosine distance measure. (A) Pixel-level latent space representation of 
chemical variation after preprocessing and reduction of donor variation by reComBat, with pixels color coded for donor origin. (C) Same pixel-level latent space representa-
tion as in (A), with pixels color coded for FTU type (as automatically recognized from microscopy). (B) FTU instance–level latent space representation of chemical variation 
after preprocessing and reduction of donor variation by reComBat, with pixels color coded for donor origin. (D) Same FTU instance–level latent space representation as in 
(B), with pixels color coded for FTU type (as automatically recognized from microscopy). Note that while reComBat has not been optimized for use on MS data, it is applied 
here to demonstrate that if sample-specific variation can be reduced, FTU-related variation becomes more readily discernable in an unsupervised context.
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sample-specific estimates. We therefore use the cohort-wide SHAP 
scores to extract from the atlas subsets of highly discriminative mo-
lecular species that may be biologically relevant marker candidates 
for each specific FTU, sex, and BMI category. It is noted that the se-
lected comparisons (i.e., FTU, sex, and BMI classifications) are just 
example comparisons that can be made with this atlas. The assem-
bled and integrated data that provide the foundation of the atlas are 
a valuable resource that can be mined further to ask other biologi-
cally relevant questions and to include additional molecular species 
detected beyond the 212 (negative ion mode) and 211 (positive ion 
mode) lipids that have been annotated and examined here.

Lipid profiles of renal FTUs
In figs. S37 to S46, for each FTU, the top 20 cohort-wide SHAP im-
portance scores and the corresponding suggested top 20 biomarker 
candidates for a specific FTU are provided, both in negative and 
positive ionization modes. While these plots give a cohort-wide 
overview of a lipid’s relevance to an FTU, an analysis of marker po-
tential down to the sample-specific level is also provided for both 
modes in the form of bubble plots (fig.  S47, negative ion mode; 
fig. S48, positive ion mode). For simplicity, selected ions that were 
found to be defining molecular features of one or multiple FTUs are 
represented in a summary bubble plot in Fig. 6, combining both po-
larities. The bubble plot data representations provide an effective 
means of visualizing complex molecular species-FTU relationships 
in a way that makes trends for specific lipid species across the donor 
cohort very apparent. Molecular species that are consistent, strong 
marker candidates for a specific FTU across all donor samples are 
represented by columns of large bubbles in the chart, and the color 
of the bubbles indicates whether the molecular marker candidate’s 
signal intensity is positively (red) or negatively (blue) correlated 
with the FTU. Ion images for the top 10 molecular markers for each 
FTU for both negative and positive ion modes are provided in 
figs. S49 to S148.

The most robust glomerular molecule detected is SM(34:1;2O) 
having the highest SHAP scores in both negative (m/z 687.545) 
(Fig.  6B and figs.  S37, S47, and S49) and positive ion modes (m/z 
703.575, H+ adduct) (Fig. 6A and figs. S38, S48, and S59). While pre-
vious work has tentatively identified SM(34:1;2O) as having glomeru-
lar localization (21), we have annotated this lipid by on-tissue MS/MS 
and correlative LC-MS/MS to confirm its identity as SM(34:1;2O) 
(Fig.  6B and figs.  S37, S47, and S49) and further classified it as 
SM(18:1;2O/16:0) (Fig. 6A and figs. S38, S48, and S59). Other positive 
ion mode adducts of SM(18:1;2O/16:0) (Na+: m/z 741.531; K+: m/z 
725.557) were detected with correlation to GLs (Fig. 6A and figs. S38, 
S48, and S63). SHAP analysis also revealed a negative correlation of 
SM(34:1;2O) with the TAL (m/z 687.545), DTs (m/z 666.434, m/z 
687.545, and m/z 703.575) and CDs (m/z 687.545 and m/z 703.575) 
(Fig. 6, A and B, figs. S41 and S43 to S46). SM species are enriched in 
GLs and PTs (Fig. 6, A and B, and figs. S47 and S48), but the distinct 
spatial distributions of SM(34:1;2O) to GLs (Fig.  6, A and B, and 
figs. S49, S59, and S63) indicate a functionally specific localization. In 
addition, we found multiple gangliosides to be specific to GLs, includ-
ing GA1(18:1;2O/16:0) (m/z 1225.743) and GA1(18:1;2O/24:1) (m/z 
1335.852) (Fig. 6B and figs. S37, S47, S50, and S54).

Our analysis of the lipid atlas showed that the PT was the most 
SM-enriched FTU, with nine SM species detected and identified as 
having a high positive association with PTs based on cohort-wide 
SHAP importance scores (negative mode: m/z 769.623 and m/z 

797.654; positive mode: m/z 701.559, m/z 729.590, m/z 757.622, m/z 
785.653, m/z 811.666, m/z 813.684, and m/z 835.666) (Fig. 6, A and 
B, and figs. S39, S40, S47, S48, S74, S75, S80, S81, S83, S84, S86, and 
S88). Of those, eight were exclusively discriminative for PTs (nega-
tive mode: m/z 769.623 and m/z 797.654; positive mode: m/z 
701.559, m/z 729.590, m/z 785.653, m/z 811.666, m/z 813.684, and 
m/z 835.666). The acyl chain identity for five of the eight SM species 
was revealed to contain long-chain fatty acids (>C18 up to C26 in 
length) (m/z 729.590, m/z 757.622, m/z 785.653, m/z 813.684, and 
m/z 835.666).

In addition to an SM-rich environment in PTs, phosphatidylserine 
PS(38:4) (m/z 810.529) was identified as being a highly discriminative 
marker for PTs (Fig. 6B and figs. S39, S47, and S73). Also, of the 11 
polyunsaturated PEs detected in the atlas (m/z 528.273, m/z 556.304, 
m/z 714.508, m/z 722.513, m/z 738.508, m/z 750.544, m/z 762.508, 
m/z 764.524, m/z 766.539, m/z 778.576, and m/z 816.530), four were 
measured with cohort-wide SHAP importance scores that were high-
ly associated with PTs. These are PE(21:4) (m/z 528.273), PE(36:4) 
(m/z 738.508), PE(38:4) (m/z 766.539), and PE(38:6) (m/z 762.508) 
(Fig. 6B and figs. S39, S47, S69, S71, and S76). Of those, PE(38:4) has 
been shown to directly stimulate Na+- and K+-dependent adenosine 
triphosphatase (Na+/K+ ATPase) pump activity (22), and this lipid 
was found to be a notable biomarker candidate of PTs.

The kidney is rich in sulfatides, a class of glycosphingolipids that 
contain a ceramide bound to a sulfated carbohydrate. Within the 
kidney, SHexCer are strongly associated with the TAL (Fig. 6B and 
figs. S41 and S47). In the TAL, six of the seven SHexCer species (m/z 
778.514, m/z 876.624, m/z 878.603, m/z 892.619, m/z 904.619, and 
m/z 906.635) detected had positive discriminatory values for this 
FTU (fig. S41). Furthermore, among the atlas-measured species, the 
SHexCers detected at m/z 876.624, m/z 892.619, m/z 904.619, and 
m/z 906.635 are the most robustly associated TAL biomarker candi-
dates detected (Fig. 6B and figs. S41, S47, and S89 to S92). In positive 
ion mode, of the five species with the highest cohort-wide SHAP 
importance scores (m/z 758.569, m/z 760.585, m/z 801.684, m/z 
811.666, and m/z 813.684) (fig. S42), none are unique to TAL and 
they were not considered as discriminatory biomarker candidates of 
this FTU specifically (Fig. 6A and fig. S48). These observations sug-
gest that the SHexCer signature in the TAL represents a defining 
feature for this FTU.

The most robust biomarker candidates for DTs include lysophos-
phatidylcholine (LPC) (m/z 496.340 and m/z 522.355) in  Fig.  6A 
(and figs. S44, S48, S119, and S120) and lysophosphatidylethanol-
amine (LPE) (m/z 480.310) in Fig. 6B (and figs. S43, S47, and S109). 
Lysophospholipids are present at low cellular concentrations. How-
ever, both LPC(16:0) (m/z 496.340; fig. S119) and LPE(18:0) (m/z 
480.310; fig. S109) are discriminative for DTs and have the highest 
cohort-wide SHAP importance scores in positive and negative ion 
modes, respectively. In addition, LPE(18:1) (m/z 478.294) and 
LPE(20:1) (m/z 506.325) are DT biomarker candidates (figs.  S47 
and S115). Various SMs (m/z 731.60, m/z 801.68, and m/z 759.63) 
and SHexCers (m/z 906.63, m/z 924.63, and m/z 890.63) also have 
high cohort-wide SHAP importance scores for this FTU, but none 
of these are exclusive to DTs (Fig. 6, A and B, and figs. S47 and S48). 
The prevalence of lysolipids is a defining feature of DT FTUs.

The lipid profile of the CDs was found to be enriched in PCs 
(Fig. 6A and figs. S46 and S48) and PEs (Fig. 6B and figs. S45 and 
S47), both of which serve as discriminatory markers for CDs as per 
our SHAP analysis. Figures S45 and S46 show that four of the top 
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Fig. 6. Summary of biomarker candidates for five FTUs, namely GLs, PTs, DTs, CDs, and the TAL, obtained by applying our SHAP-based workflow to the atlas. The 
bubble plot reports both positive ion mode (A) (left) and negative ion mode (B) (right) findings. The columns correspond to a selection of molecular species (in increasing 
order of m/z ratios) that are biomarker candidates for one (or multiple) of the five FTUs under study. The rows correspond to different donors, each row labeled with its 
donor ID number and followed by the donor’s age, sex, and BMI. Each bubble marker is informative of the direction (positive or negative correlation) and magnitude 
(relatively large or small) of a molecular species’ influence on the classification model designed to recognize one of the five FTUs. The marker size represents the magni-
tude of the molecular species’ influence, as measured by its tissue sample-wide SHAP importance score for a given donor sample. The marker color indicates the direction 
of the molecular species’ influence, as measured by Spearman’s rank correlation coefficient between the molecular species’ mean-centered ion intensity values and its 
local pixel-specific SHAP scores. A positive Spearman’s rank correlation coefficient indicates that a high intensity of the molecular species correlates with the FTU. Conversely, 
a negative Spearman’s rank correlation coefficient indicates that a low intensity of the molecular species correlates with the FTU.

D
ow

nloaded from
 https://w

w
w

.science.org at D
elft U

niversity on July 17, 2025



Farrow et al., Sci. Adv. 11, eadu3730 (2025)     11 June 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

12 of 23

m/z markers for CDs were either PCs (m/z 734.569, m/z 760.585, 
and m/z 788.616) (figs. S139, S142, and S143) or PEs (m/z 744.555) 
(fig. S129). PE(36:1) (m/z 744.555) is the most prominent biomarker 
candidate of CDs detected in negative ion mode (fig. S45). While 
not exclusive to CDs, its relative cohort-wide SHAP importance is 
higher than in DTs and the TAL, where it was determined to be a 
less prominent positive marker (Fig. 6B and figs. S41, S43, and S45). 
In positive ion mode, PC(16:0_18:1) (m/z 760.585) has the highest 
cohort-wide SHAP importance score for CDs (Fig. 6A and figs. S46 
and S48) but is also positively associated with the TAL (Fig. 6A and 
fig. S42). PC(32:1) (m/z 732.554), PC(35:1) (m/z 774.601), and PE 
(38:1) (m/z 772.586) are nearly exclusive markers of CDs (Fig. 6, A 
and B, and figs. S37 to S46, S147, and S148). Three additional PC 
(m/z 758.569) (fig. S46) or PE lipids (m/z 528.273 and m/z 716.524) 
(fig.  S45) are also positively associated biomarker candidates for 
CDs (figs.  S45 and S46), albeit not as robustly. Although none of 
these three are exclusively discriminatory, the overall number of 
positively associated PC and PE biomarker candidates for CDs as 
determined by our SHAP analysis is 12 in total, the highest number 
for any FTU (figs. S45 and S46).

The sulfatidyl hexose ceramide SHexCer(t18:0/h24:0) (m/z 924.639) 
also has strong positive association with the CD, the second highest 
positively associated biomarker candidate detected in negative ion 
mode (Fig.  6B and figs.  S45, S47, and S131). It is anticorrelated 
with the preceding DT segment (Fig.  6B and figs.  S43 and S47), 
suggesting a CD-specific function. SHexCer(t18:0/h24:0) (m/z 
924.639) incorporates a phytosphingosine as the sphingoid base as 
well as a hydroxy fatty acid. It is of note that it is one of only two 
phytosphingosine ceramides detected in the dataset and the only 
one positively correlated with an FTU. SHexCer(t18:0/h24:0) (m/z 
924.639) has been reported to specifically localize to the CD (23). 
Other lipids that are functionally important for the membrane struc-
ture were also identified, including the long-chain sphingomyelins 
SM(40:0;2O) (m/z 805.679) and SM(42:0;3O) (m/z 833.711), which 
are two of the top CD biomarker candidates (Fig. 6 and figs. S45 to 
48, S140, and S141).

Sex and BMI comparisons
Using the demographic information provided in the donor meta-
data of the atlas, we can go beyond the discovery of FTU-level 
biomarker candidates and explore lipid associations with sex and 
other important characteristics such as BMI. Binary classifica-
tion of female versus male donors and binary classification of 
normal-BMI (22 < BMI < 25) versus high-BMI (BMI > 35) do-
nors, in conjunction with our SHAP-based interpretable machine 
learning workflow, enables the discovery of lipid biomarker can-
didates that are associated with these donor categories. The 
cohort-wide SHAP importance scores, highlighting the top bio-
marker candidates for the classification of female from male do-
nor tissue overall (i.e., not specific to an FTU) for both negative 
and positive ion modes, are provided in figs. S149 and S150 and 
summarized in bubble plots (Fig. 7, A and B). FTU-specific anal-
yses were also performed, differentiating female from male kid-
ney FTUs for both polarities (figs.  S151 to S160). While our 
SHAP approach is inherently multivariate, we can also analyze 
univariate ion intensity distribution comparisons. These are pro-
vided as split violin plots for a selection of biomarker candidates 
for both polarities (positive ion mode, Fig. 7C and fig. S162; neg-
ative ion mode, Fig. 7D and fig. S161). Ion images for the top 10 

overall sex biomarker candidates for both negative and positive 
ion modes are provided in figs. S163 to S182.

Stratifying the dataset for females versus males reveals enrich-
ment in PC and LPC in females. There are nine molecular signals, 
representing PC species, presenting as positively correlating marker 
candidates for females (m/z 572.335, m/z 650.439, m/z 728.522, m/z 
732.554, m/z 754.536, m/z 758.569, m/z 786.601, m/z 810.601, and 
m/z 848.557), compared to four species positively correlating with 
males (m/z 720.554, m/z 784.585, m/z 812.614, and m/z 822.541) 
(Fig.  7A and figs.  S150, S173, S175, S176, and S178 to S180). For 
LPCs, none are positively correlated with males, while five (m/z 
496.340 slightly, m/z 518.322, m/z 524.371, m/z 544.33, and m/z 
614.456) show positively correlating discriminative association to 
females (Fig. 7, A and B, and fig. S150), consistent with the PC pat-
tern. Our analysis suggests that phospholipids containing arachidon-
ic acid LPE(20:4) (m/z 500.281), PE(O-16:1_20:4) (m/z 722.513), 
PC(18:0_20:4) (m/z 810.601), and PI(18:0_20:4) (m/z 885.55) are 
more (positively correlating) associated with females (Fig. 7, A to D, 
and figs. S149, S150, S163, and S167). Out of the molecular species 
captured by this atlas, PI(18:0_20:4) (m/z 885.55) is suggested to be 
the most robust sex biomarker candidate, positively correlating in 
females (Fig. 7, B and D).

Figure 7 (B and D) shows that PSs play a consistent role in dif-
ferentiating females and males, with our analysis reporting that sev-
eral PS lipids have a negative Spearman’s rank correlation coefficient, 
indicating that low intensity of these molecular species correlates 
with the female sex and high intensity correlates with males. This is 
further apparent when evaluated by individual FTU (figs.  S151, 
S153, S155, S157, and S159). In a recent study, it was shown that PSs 
comprise 60% of the urine lipidome in males and 45% in females, 
with PS(36:1) (m/z 788.545) being the most abundant urine lipid. In 
our analysis, PS(36:1) (m/z 788.545) was found to be a biomarker 
candidate for males overall (Fig. 7, B and D, and fig. S149) and an 
even higher-ranked differentiating marker for the TAL (fig. S155). 
PS(36:2) was also found to be higher in male urine, and in our atlas, 
this PS was also found to be an overall molecular marker for male 
kidney tissue (Fig. 7B and figs. S149 and S171), with PS(36:2) (m/z 
786.529) having a high ranking cohort-wide SHAP importance 
score in PTs (fig. S153) relative to other FTUs and the overall tissue 
ranking.

To identify molecular signatures for obesity, 14 donors were se-
lected from the atlas to compare those with a normal BMI range 
(BMI 20 to 25, seven donors) to those with BMI values classified as 
obese (BMI > 35, seven donors). The cohort-wide SHAP importance 
scores highlighting the top biomarker candidates for the classifica-
tion of obese from normal donor tissue overall (i.e., not specific to an 
FTU) for both negative and positive ion modes are provided in 
figs. S183 and S184 and summarized in bubble plots (Fig. 8, A and 
B). FTU-specific analysis was also performed, differentiating kidney 
FTUs from normal donors and donors with obesity for both polari-
ties (figs. S185 to S194). Intensity distribution comparisons are pro-
vided as split violin plots for a selection of obesity biomarker 
candidates for both positive ion mode (Fig. 8C and fig. S195) and 
negative ion mode (Fig. 8D and fig. S196). Ion images for the top 10 
overall obesity biomarker candidates for both negative and positive 
ion modes are provided in figs. S197 to S216.

LPE species, including LPE(18:1) (m/z 478.284), LPE(18:0) (m/z 
480.310), and N-acyl-lysophosphatidylethanolamine LPE-N(FA3:0) 
(m/z 554.289), were found to be differentiators and positively 
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Fig. 7. Summary of biomarker candidates for sex, obtained by applying our SHAP-based workflow to the atlas. The bubble plots report positive ion mode (A) and 
negative ion mode (B) findings. The columns correspond to a selection of molecular species (in increasing order of m/z ratios) that are biomarker candidates for the female 
sex. The rows correspond to the different donors. Each bubble marker is informative of the direction and magnitude of a molecular species’ influence on the classification 
model designed to recognize female donor tissue from male donor tissue. A molecular species with a large marker acts as a differentiator between sexes. The marker color 
indicates the direction of the molecular species’ influence, as measured by the Spearman’s rank correlation coefficient between the molecular species’ mean-centered ion 
intensity values and its local pixel-specific SHAP scores. Molecular species that are positively correlated with female sex are negatively correlated with male sex, and vice 
versa. A positive Spearman’s rank correlation coefficient indicates that a high intensity of the molecular species correlates with either the female sex (A/B top) or the male 
sex (A/B bottom). Conversely, a negative Spearman’s rank correlation coefficient indicates that a low intensity of the molecular species correlates with the female sex (A/B 
top) or the male sex (A/B bottom). The split violin plots on the right report the ion intensity distributions of select sex biomarker candidates in positive mode (C) and negative 
mode (D), approximated using kernel density estimation. The violin plots are cropped at the 99th percentile of the distribution of one of the two sexes (whichever is larger) 
to facilitate visual comparison. The full line of each violin plot indicates the median of each class’ distribution, whereas the dashed lines indicate its interquartile range.
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Fig. 8. Summary of biomarker candidates for BMI, obtained by applying our SHAP-based workflow to the atlas. The bubble plots report positive ion mode (A) and 
negative ion mode (B) findings. The columns correspond to a selection of molecular species (in increasing order of m/z ratios) that are biomarker candidates for the char-
acteristic of obesity. The rows correspond to the different donors. Each bubble marker is informative of the direction and magnitude of a molecular species’ influence on 
the classification model designed to recognize high-BMI donor tissue from normal-BMI donor tissue. A molecular species with a large marker acts as a differentiator be-
tween BMI classes. The marker color indicates the direction of the molecular species’ influence, as measured by the Spearman’s rank correlation coefficient between the 
molecular species’ mean-centered ion intensity values and its local pixel-specific SHAP scores. Molecular species that are positively correlated with high BMI are nega-
tively correlated with normal BMI, and vice versa. A positive Spearman’s rank correlation coefficient indicates that a high intensity of the molecular species correlates with 
either high BMI (A/B top) or normal BMI (A/B bottom). Conversely, a negative Spearman’s rank correlation coefficient indicates that a low intensity of the molecular species 
correlates with either high BMI (A/B bottom) or normal BMI (A/B bottom). The split violin plots on the right report the ion intensity distributions of select obesity bio-
marker candidates in positive mode (C) and negative mode (D), approximated using kernel density estimation. The violin plots are cropped at the 99th percentile of the 
distribution of one of the BMI categories (whichever is larger) to facilitate visual comparison. The full line of each violin plot indicates the median of each class’ distribution, 
whereas the dashed lines indicate its interquartile range.
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correlating to normal donors (Fig.  8, B and D, and figs.  S183 and 
S205). Although many PCs were found to be markers for both nor-
mal and obese BMI kidney tissues (Fig. 8, A and C, and figs. S183 and 
S184), PC(32:1) (m/z 732.554) was found to be the greatest discrimi-
nator of these tissues. PC(32:1) (m/z 732.554) is a positively corre-
lating discriminative marker candidate for obesity and appears 
negatively correlated to normal tissue, with the greatest cohort-wide 
SHAP importance score (Fig. 8A and figs. S184 and S207). Phos-
phatidylcholine PC(36:2) (m/z 786.601) [most likely PC(18:0_18:2) 
based on LC-MS/MS data] was found to be one of the most consis-
tent (positively correlating) biomarker candidates for normal BMI, 
and PC(O-34:4) (m/z 778.515) and PC(34:1) (m/z 798.541) suggest 
less prominent but similar behavior (Fig.  8A and figs.  S184, S209, 
S211, and S214). In negative ion mode, the ion detected at m/z 
664.420 was the most discriminant of BMI, reporting the highest ab-
solute cohort-wide SHAP importance score and correlating positive-
ly with obesity and negatively with normal BMI (Fig. 8B and figs. S183 
and S197). We were able to confirm the identity of this molecule by 
MS/MS as a PAz-PC lipid species (i.e., 1-palmitoyl-2-azelaoyl PC), 
an oxidized PC previously observed in kidney disease (24, 25).

Other marker candidates for obesity included PSs and SMs. 
Phosphatidylserines PS(36:4) (m/z 782.498), PS(36:1) (m/z 788.545), 
and PS(38:4) (m/z 810.529) were all (positively correlating) molecu-
lar indicators of normal BMI donor tissues (Fig. 8B and figs. S183 
and S201). PS(36:1) (m/z 788.545) was also a positively correlating 
biomarker candidate for GLs and a negatively correlating marker for 
PTs (not considering obesity), although it showed a relatively high 
degree of variability as an FTU indicator (Fig. 6B). When consider-
ing the classification of normal versus obese BMI categories, PS(36:1) 
(m/z 788.545) was found to be a more consistent marker candidate 
positively associated with normal BMI donor tissues (Fig. 8, B and D, 
and figs. S183 and S201). This is an example of how our SHAP analy-
sis of the kidney lipid atlas can differentiate consistent biomarker 
candidates from those that are rather variable and linked to specific 
donor comorbidities. The sphingomyelins SM(18:1;2O/16:0) (m/z 
725.557 and m/z 741.531) and SM(18:1;2O/16:1) (m/z 701.559) were 
found to be discriminant for samples from donors with obesity 
(Fig. 8, A and C, and figs. S184 and S213), correlating positively with 
high BMI. Given that SM(18:1;2O/16:0) is a robust glomerular bio-
marker candidate as well (Fig. 6A), the specific SM profile of GLs in 
donors with obesity versus normal donors was analyzed further. 
SM(18:1;2O/16:0) (m/z 725.557) demonstrated the highest cohort-
wide SHAP importance score of all measured SM species and showed 
positive correlation to obesity (fig. S186). This observation appears 
consistent with the trend of the percentage of glomerular sclerosis 
found in the histopathological reports of the PAS-stained tissues. 
The average glomerular sclerosis for donors with obesity was 15.96% 
compared to 7.8% in normal donor tissues (table S2). The positive 
correlation of high SM(18:1;2O/16:0) (m/z 725.557) intensity to GLs 
in tissues from donors with obesity (fig.  S186) and increased glo-
merular pathology indicates that perturbation of SM(18:1;2O/16:0) 
(m/z 725.557) may be a molecular signature of glomerular disease.

DISCUSSION
We have built a multimodal, high-dimensional atlas of the human 
kidney, including lipid, multicellular FTU, and histological imaging 
data, as well as pathophysiological information for each human sub-
ject. It is constructed from millions of mass spectral measurements 

with spatial annotations delineating more than 100,000 FTU in-
stances across 29 donor whole slide kidney tissue sections. As part 
of the NIH HuBMAP (6), the data are freely accessible to the greater 
scientific community (https://portal.hubmapconsortium.org; table 
S3). As an initial demonstration of the atlas’ potential, we highlight 
lipid differences between specific FTUs of the nephron, between 
subjects with BMIs classified as normal (BMI 20 to 25) and obese 
(BMI > 35), and between men and women. Additional insight into 
the molecular variance associated with demographics may help 
explain the functional ramifications resulting in differential severity 
in diseases such as chronic kidney disease, cancer, and diabetes (26–
28). Lipids, particularly in the context of FTUs and cellular neigh-
borhoods, are chronically understudied compared to their transcript 
and protein counterparts despite their clear involvement in health 
and disease (29, 30). Many large studies assume that genetic expres-
sion is sufficient for understanding disease states. While likely true 
in some cases, there is a known discordance in gene expression and 
metabolomic profiles, indicating that further research in this area is 
required to understand complex physiology. Defining spatially spe-
cific molecular profiles is necessary for realizing the promise of per-
sonalized medicine and improved therapeutics. As a step toward 
this goal, our kidney lipid atlas serves to catalog lipid profiles on a 
multiscale level. Ultimately, multidimensional and multiscale atlas 
efforts, such as the one discussed here, can provide key findings for 
a defined, targeted validation and serve as a resource for others to 
use to generate new hypotheses and corroborate orthogonal studies. 
Our multimodal lipid atlas and comprehensive analyses, including 
both unsupervised and supervised interpretable machine learning 
approaches, can establish the basal lipid signature of normal renal 
tissue against which diseased tissue can be compared, providing 
further insight into pathobiological mechanisms.

Extraction of biological insight into FTU lipid function
Tissue atlases depend on harmonization with previous studies to 
anchor outputs and provide a reliable foundation for new observa-
tions. For example, phosphatidic acid PA(36:1) has previously been 
found to mark GLs using IMS (at a 30-μm pixel size) (21). Our higher 
spatial resolution multimodal imaging workflows and SHAP analy-
sis are consistent with this observation, finding the presence of 
PA(36:1) to be a marker candidate for GLs (Fig. 6B and figs. S37 and 
S47). Other lipids localized to GLs include SM(34:1;2O), which was 
putatively identified in murine and human kidney sections previ-
ously (21). Specifically, we confirmed the glomerular localization of 
SM(34:1;2O) (Fig. 6B and figs. S37, S47, and S49) and further identi-
fied it as SM(18:1;2O/16:0) (Fig.  6A and figs.  S38, S48, and S59), 
which has previously been shown to be a relevant lipid in plasma 
and urine studies of chronic kidney disease (31, 32). SM(18:1;2O/16:0) 
requires the podocyte-specific enzyme ceramide synthase 6 (CERS6) 
for synthesis. Genetic ablation of CERS6 leads to the loss of F-actin 
fibers and down-regulation of synaptopodin and CD2AP (CD2-
associated protein), which facilitates nephrin binding to the actin 
cytoskeleton (33). The CD2AP, synaptopodin, nephrin, and cyto-
skeleton complex localizes to lipid rafts to anchor the podocyte slit 
diaphragm. It is known that lipid raft formation is governed by the 
interaction of cholesterol with locally available phospholipids with 
SMs containing 16:0 acyl chains having the highest affinity for cho-
lesterol in ternary PC:SM:cholesterol bilayers, the highest lateral 
segregation tendency, and the highest thermostability (34), suggest-
ing that SM(18:1;2O/16:0) is critical for the formation of lipid rafts. 
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Given that SM(18:1;2O/16:0) is specifically correlated with the GLs 
and CERS6 down-regulation destabilizes the slit diaphragm, we 
propose that SM(18:1;2O/16:0) is mechanistically linked to the slit 
diaphragm by providing a local lipid environment that stabilizes the 
architecture of, or regulates the formation of, the specific lipid raft 
microdomain associated with the slit diaphragm.

In addition to sphingomyelin SM(18:1;2O/16:0) being enriched 
in GLs, we observed a robust positive association of gangliosides 
with GLs (Fig. 6B and figs. S37, S47, S50, and S54), consistent with a 
previous publication (35). While GA1 species have not previously 
been reported to be specifically localized to the GL, products of the 
GA1 ganglioside biosynthesis pathway, GM1b and GD1a, have been 
detected as part of the lipid profiles of podocytes (36), a unique and 
important cell type contributing to the filtration barrier in the GL.

Long-chain fatty acid–containing phospholipids combined with 
cholesterol lead to plasma membranes with high rigidity and higher 
viscosity (37). While SM(18:1;2O/16:0) was determined to be a 
strong biomarker candidate for GLs (among the species measured 
in this atlas), a more diverse set of six SMs was found to exhibit 
positive marker potential for PTs (Fig. 6, A and B, and figs. S39, S40, 
S47, S48, S74, S75, S80, S81, S83, S84, S86, and S88). The PT, which 
is the primary site of glucose reabsorption in the nephron, is known 
to have an unusually rigid apical membrane (38). Decreased mem-
brane fluidity is commonly associated with a high ratio of SMs (37). 
Membrane fluidity is a critical regulator of glucose uptake in the 
PT, as increasing fluidity inhibits glucose reabsorption by sodium-
glucose cotransporter-2 (SGLT2) (39). This enrichment in SMs, 
taken together with the tendency for these PT-specific SMs to have 
very long chain fatty acid tails which drive leaflet interdigitation and 
a higher propensity for fluid-to-gel phase transition in lipid mem-
branes (40), is consistent with the rigid apical membrane and lower 
membrane fluidity of PTs. Under pathological conditions such as 
diabetes, membrane fluidity is increased and results in the reduction 
of glucose transport mediated by the sodium-glucose cotransporter 
SGLT2 (38, 39, 41), thereby abrogating a key function of the PT seg-
ment of the nephron where the majority of glucose is reabsorbed. 
This suggests that the maintenance and regulation of membrane flu-
idity by the local lipid environment are critical for PT function.

In addition to membrane fluidity as a regulator of SGLT2, its 
function is also regulated by protein kinase C (PKC) (42). While 
PKC binds membranes enriched in SM, it also requires PS for activa-
tion in such environments (43). Of the two PS species that emerged 
as biomarker candidates in the atlas, the PT-specific PS(38:4) could 
be critical for activating PKC in an SM-rich environment. While 
PKC can bind to SM-rich membranes with high affinity, this lipid 
microenvironment inhibits PKC activity. This inhibition is relieved 
by the binding of PS, resulting in full kinase activity (43). The phos-
phatidylserine PS(38:4) is uniquely associated with PTs (Fig. 6B and 
figs. S39, S47, and S73), which suggests a putative regulatory role for 
Na+/K+ ATPase activity in this FTU.

In PTs, a sodium gradient must be established by the basolateral 
Na+/K+ ATPase pump for the uptake of sodium, and subsequently 
glucose, from the lumen across the apical membrane via SGLT2. 
Na+/K+ ATPase activity is known to be modified by neutral phos-
pholipids, particularly polyunsaturated PEs. While Na+/K+ ATPase 
and the aforementioned PKC are widely expressed, they have site-
specific regulatory mechanisms of SGLT2 in the PT (42, 44). The 
identification of specific lipids in PTs that can serve as regulators for 
these proteins suggests that they could be critical for modifying 

PKC and Na+/K+ ATPase activity, which could then fine tune SGLT2 
activity and glucose reabsorption. Similar to PKC activation, Na+/K+ 
ATPase is stimulated by certain lipids, including polyunsaturated 
PEs. PTs had five polyunsaturated PE lipids with (positively correlat-
ing) discriminative association (Fig. 6B and figs. S39, S47, S69, S71, 
and S76), more so than the TAL and DTs, which express higher levels 
of the sodium pump (45). Within this group, PE(38:4) directly stimu-
lates Na+/K+ ATPase pump activity (22). This enrichment in specific 
PEs suggests that these may be regulatory molecules that can be lev-
eraged to adjust the sodium gradient by modifying Na+/K+ ATPase 
activity in response to glucose absorption cues from the lumen.

Sulfatides provide a molecular signature for the TAL (Fig. 6B and 
figs. S41, S47, and S89 to S92). These lipids present an anionic charge 
on the plasma membrane, where they are available to modulate 
membrane ion fluxes by binding cations. They have been proposed 
to act as counterions to interstitial ammonium (NH4

+), leading to 
its accumulation in the TAL (46). In addition, sulfatides have been 
proposed to be regulators of Na+/K+ ATPase by binding K+ directly 
or modulating its localization (46). The ceramide moiety of SHexCer 
is a bioactive second messenger known to activate phosphatases as 
well as kinases and modulate several TAL-specific ion channels. The 
ceramide target protein phosphatase 1 (PP1) (47) dephosphorylates 
sodium-hydrogen antiporter 3 (NHE3), alleviating inhibition of this 
Na+/H+ antiporter (48). If PP1 activity is inhibited, the dephosphor-
ylation of Na+/K+ ATPase is perturbed, and pump activity is negated 
(49). Last, PP1 can suppress epithelial sodium channel activity and 
regulate sodium reabsorption. The enrichment of SHexCer in the 
TAL and putative roles of both sulfatide and ceramide in regulating 
ion balance suggest that SHexCers are mechanistically important 
for TAL function.

While the nephron as an entire unit is taxed with filtrate reab-
sorption, the DT FTU is distinct from preceding nephron segments 
in how it executes reabsorption. The DT relies more on transcellular 
transport for a tightly controlled approach to regulating water and 
ion balance. It is critical for absorption of divalent cations, including 
magnesium and calcium, as well as for maintaining sodium and po-
tassium homeostasis (50). The DT is unique in that it is highly plas-
tic and can fine tune ion uptake and secretion in response to luminal 
ion concentration by modulating ion channel expression and activ-
ity. The ability to adjust the activity of ion channels is critical to the 
function of DTs. Second messengers allow cells to be highly plastic 
and adapt to environmental cues, such as the change in electrolyte 
concentration. Reactive oxygen species (ROS) are a class of second 
messengers that function in signaling cascades that target ion 
channels and transporters (51). LPCs were recognized early on to 
be an inducer of ROS (52). Subsequently, it was discovered that 
LPC(16:0) is the most potent ROS inducer, followed by LPC(18:0) 
and LPC(18:1) (53). In our atlas, LPC(16:0), LPC(18:1), LPE(18:0), 
LPE(18:1), and LPE(20:1) were all determined to be (positively cor-
relating) biomarker candidates for DTs (Fig. 6, A and B, and figs. S43, 
44, S47, 48, S109, S115, S119, and S120), providing a lipid landscape 
capable of driving ROS production for modulation of ion channel 
activity. ROS has been implicated in the up-regulation of the DT 
sodium-chloride cotransporter (54). Also, K+ channels in the baso-
lateral membrane can be stimulated by prostaglandin F2α in a ROS-
dependent mechanism (54). Recently, ROS was shown to modulate 
the DT-specific Mg2+ channel TRPM6 (55). These observations, 
coupled with finding LPC and LPE molecular markers in DTs, point 
to a role for lipid-induced ROS regulation of ion channels in DTs.
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The renal filtrate from tubules drains into the CDs, the final stage 
where nutrients are reabsorbed to adjust the final concentration of 
the electrolyte and acid-base components of the resulting urine. The 
CD is responsible for achieving the final electrolyte, pH, and fluid 
balance of urine before reaching the calyces and renal pelvis. The 
CD is composed of principal and intercalated cells. Principal cells 
express the epithelial sodium channel and Na+/K+ ATPase to regu-
late sodium reabsorption and potassium secretion. Intercalated cells 
primarily participate in acid-base secretion and reabsorption and 
are part of a class of proton-secreting cells known as mitochondria-
rich cells (56). Consistent with the presence of mitochondria-rich 
cells, PCs and PEs are highly enriched in the CD (Fig. 6, A and B, 
and figs. S45 to S48). PC and PE are the most abundant lipids in the 
mitochondrial membrane (57) with the outer mitochondrial mem-
brane rich in PC and PE, while the inner mitochondrial membrane 
contains PE (58). PC is well suited for the smooth outer mitochon-
drial membrane as its physical properties make it ideal for forming 
a smooth bilayer (58). The inner mitochondrial membrane lipidome 
is rich in non–bilayer-forming PE to maintain stability and render it 
impermeable to solutes (58). Given the critical role these phospho-
lipids play in the structure function of mitochondria and their se-
lective enrichment in CDs, their detection as strong biomarker 
candidates in this atlas is likely aligned with the mitochondria-rich 
intercalated cells of this FTU.

The phytosphingosine ceramide SHexCer(t18:0/h24:0) also has 
discriminative positive association with the CD (Fig.  6B and figs. 
S45, S47, and S131). Phytosphingosine ceramides are unique in that 
they are 4-hydroxylated molecules. These phytoceramides are found 
in the skin barrier, where it is proposed that they introduce hetero-
geneity into the membrane and expand the mechanisms of perme-
ability restrictions (59). While their membrane packing is less 
ordered, the hydrogen bonding of their head group adds structure 
to the membrane in a manner that is divergent from other cerami-
des (60). Given that the CD must maintain strict permeability regu-
lation, it is intriguing that the same phytoceramide that comprises 
the skin barrier is detected here. Nakashima et al. (23) also observe 
SHexCer(t18:0/h24:0) in CDs and propose that its hydroxylation 
state is critical for regulating the transport of NH3 and H+ by 
strengthening lateral interactions of the plasma membrane. Long-
chain SM species that can stabilize membrane domains (61) are also 
found to be associated with the CDs (Fig. 6 and figs. S45 to 48, S140, 
and S141). Together, the phytosphingosine ceramide and SM spe-
cies of the CD could create leakproof but flexible membranes for the 
regulation of ammonia transport. It is speculated that tuning these 
lipid components of the CD membrane could allow for strict control 
of NH3 and H+ transport via a transcellular route exclusively.

Molecular characteristics of sexual dimorphism
Our analysis of the atlas suggests that lipidomic signatures of fe-
males are enriched with increased PC and LPC compared to males 
(Fig. 7, A and B, and figs. S150, S173, S175, S176, and S178 to S180). 
This enhanced association of PCs with females could be attributed 
to phosphatidylethanolamine-N-methyltransferase levels, which are 
regulated by estrogen (62). Our SHAP-based analysis also found 
arachidonic acid–containing phospholipids to be marker candidates 
for female donor tissue (Fig. 7, A to D, and figs. S149, S150, S163, 
and S167). Arachidonic acid is liberated from phospholipids by 
phospholipases and can be metabolized into prostanoids PGE2 and 
PGI2, which act in the kidney to regulate blood pressure. Studies 

have shown that females produce higher levels of PGE2 and that these 
levels correlate with lower blood pressure compared to age-matched 
males (63). The observation that PCs are key components of the mo-
lecular signature of the kidney for females indicates that this impor-
tant class of lipids should be investigated further related to hormonal 
regulation of phosphatidylethanolamine-N-methyltransferase and 
the sexual dimorphism of prostanoids and blood pressure regulation.

Lipid signatures in normal donors and donors with obesity
In the comparison of donors classified as those with obesity versus 
normal based on BMI values, LPEs were one of the primary lipid 
classes to show an association with normal BMI donor tissues 
(Fig. 8, B and D, and figs. S183 and S205). This is consistent with 
previous observations that LPEs are negatively correlated with BMI 
(64). While SHAP analyses of FTU and sex detected differences in 
overall lipid class enrichments, the lipid profiles when using BMI as 
a classifier showed a pronounced difference in specific PC and SM 
molecules. This may be a function of sex and FTU being physiologi-
cally stable aspects, while BMI occurs on a spectrum and is more 
heterogeneous throughout the population. The strongest biomarker 
for obesity was PC(32:1) (Fig. 8A and figs. S184 and S207), which 
has previously been shown to be associated with BMI (65). SMs also 
showed differences in their glomerular profiles of donors with obe-
sity compared to normal donors. SM(18:1;2O/16:0)’s discriminative 
association with obesity (Fig. 8, A and C, and figs. S184 and S213) 
combined with an elevated detection of glomerular sclerosis in this 
population suggests a mechanistic link between alterations in SM 
lipids and the development of glomerular disease. Obesity repre-
sents a chronically inflamed state, and under these conditions, co-
agulation factors are aberrantly expressed or regulated, promoting 
increased prothrombotic risk (66, 67). The oxidized phospholipid, 
PAz-PC (Fig. 8B and figs. S183 and S197), could be an important 
molecule in the feedback loop that exists between obesity and risk 
factors for cardiovascular disease as PAz-PC inhibits the tissue fac-
tor pathway inhibitor (68). The tissue factor pathway inhibitor in-
hibits the tissue factor-dependent, or extrinsic coagulation, pathway 
by directly and indirectly perturbing the activation of the serine 
protease factor Xa that interacts with fibrin, a marker of obesity (69) 
and linked to cardiovascular disease (70).

Future directions and refinements
The kidney lipid atlas that we have constructed provides a publicly 
available, comprehensive foundation for exploring the relationships 
between spatiomolecular information, defined FTUs of the nephron, 
histopathological data, and key donor characteristics. Now, these 
analyses provide detailed lipid information with FTU-level specific-
ity. This work is limited in molecular breadth and structural specific-
ity, as well as cohort diversity. Future studies will expand the cohort 
with additional and more varied demographics including age, race, 
sex, and BMI. Furthermore, workflows are being developed to in-
crease the molecular coverage and structural specificity through 
multimodal and multiomic assay integration (14). The ability to con-
nect deep molecular information to specific tissue features with im-
proved granularity, from FTUs to specific cell types and, eventually, 
single cells, is necessary for building multiscale molecular atlases of 
human organs associated with normal aging and disease. This goal is 
now central to the efforts of many large-scale research consortia, 
such as the HuBMAP (6), Kidney Precision Medicine Project (9), 
Human Tumor Atlas Network (10), and others. The broader goals of 
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these research efforts and the focus of future releases of this kidney 
lipid atlas are the expansion of our MALDI IMS lipid coverage and 
integration of additional modalities to capture cellular organization 
and additional molecular classes more thoroughly. For example, mul-
tiplexed immunofluorescence microscopy assays use dozens of well-
characterized protein markers to identify distinct cell types and their 
organization at cellular resolution. On the other hand, transcrip-
tomics and MS-based proteomics assays are often collected from bulk 
samples (no spatial information) or in a profiling mode with limited 
spatial resolution targeting anatomical features or specific FTUs. 
High-spatial-resolution approaches to transcriptomic and MS-based 
proteomics are emerging but with limited molecular coverage. An 
integrated approach, building on what we have developed as part of 
the current version of the kidney atlas, will be necessary to refine the 
atlas in later iterations and leverage the strengths of many individual 
assays to provide a comprehensive picture of how molecular distribu-
tions relate to cellular organization and localized changes in biomo-
lecular pathways in normal and diseased kidney tissue.

MATERIALS AND METHODS
Materials
Acetone, isopentane, tetrahydrofuran, acetonitrile, and methanol 
were purchased from Thermo Fisher Scientific (Pittsburgh, PA). 
1,5-Diaminonaphthalene and carboxymethylcellulose were pur-
chased from Sigma-Aldrich Chemical Company (St. Louis, MO).

Sample preparation
Human kidney tissue was surgically removed during a full nephrec-
tomy, and remnant tissue was processed for research purposes by the 
Cooperative Human Tissue Network at Vanderbilt University Medi-
cal Center. Remnant biospecimens were collected in compliance 
with the Cooperative Human Tissue Network standard protocols 
and National Cancer Institute’s Best Practices for the procurement of 
remnant surgical research material. Participants were consented for 
remnant tissue collection in accordance with Institutional Review 
Board policies. The study received ethical approval from the Vanderbilt 
University’s Institutional Review Board (no. 210190). This commit-
tee is responsible for reviewing and approving research involving 
human subjects to ensure that ethical standards are met. Donor de-
mographics including age, sex, race, weight, height, BMI, and co-
morbidities are recorded in table S1. Half of the excised tissue was 
flash frozen over an isopentane-dry ice slurry, embedded in car-
boxymethylcellulose, and stored at −80°C until use. Kidney tissues 
were cryosectioned to a 10-μm thickness and thaw mounted onto 
indium tin oxide–coated glass slides (Delta Technologies, Loveland, 
CO) for IMS analysis or regular glass slides for histological staining. 
Slides were stored at −80°C and returned to ~20°C within a vacuum 
desiccator before further processing. The remaining excised tissue 
was formalin fixed and paraffin embedded. Formalin-fixed and 
paraffin-embedded tissue was sectioned to a 10-μm thickness and 
stained using PAS staining methods for pathological assessment as 
done previously (14). Briefly, the percentage of cortex, medulla, and 
other structures was determined within the tissue section. In addi-
tion, a histological assessment is reported in table S2.

AF microscopy and tissue segmentation
AF microscopy images were acquired on each tissue before analysis 
using 4′,6-diamidino-2-phenylindole, enhanced green fluorescent 

protein, and DsRed filters on a AxioScan Z1 slide scanner (Carl 
Zeiss Microscopy GmbH, Oberkochen, Germany) (71). After IMS 
analysis, an additional AF image was acquired using bright-field and 
enhanced green fluorescent protein filters to locate MALDI laser ab-
lation marks for image registration between the marks and their 
corresponding MALDI IMS pixels. Segmentation of FTUs based on 
AF images was performed as described previously (15).

Imaging mass spectrometry
Samples for IMS analysis were coated with a solution (20 mg/ml) of 
1,5-diaminonaphthalene dissolved in tetrahydrofuran using a TM 
Sprayer M3 (HTX Technologies, LLC, Chapel Hill, NC), yielding a 
1.67 mg/cm2 coating (0.05 ml/hour, four passes, 40°C spray nozzle). 
Tissue samples were imaged immediately after matrix deposition. 
MALDI IMS was performed on a timsTOF fleX mass spectrometer 
(Bruker Daltonics, Bremen, Germany). The ion images were col-
lected in positive and negative ion modes at a 10-μm pixel size with 
the beam scan set to 6 μm2 using 150 laser shots per pixel and 18.6% 
laser power (30% global attenuator and 62% local laser power) at 
10 kHz. A total of 75,150 to 400,250 pixels was acquired from each 
tissue. Data were collected from m/z 150 to 2000 for lipid analysis. 
Imaging data were visualized using SCiLS Lab Version 2019 (Bruker 
Daltonics, Bremen, Germany) or custom software described be-
low. Lipids were identified using a combination of mass accuracy 
(≤5 ppm), orthogonal LC-MS experiments, and LIPIDMAPS (72, 
73) database searching. Approximately 200 lipids were identified 
from each patient sample.

LC-MS/MS
Three to five 10-μm sections were collected per patient into Eppen-
dorf tubes. Samples were transferred into glass vials with 200 μl of 
methanol. Lipids were extracted using a modified methyl-tert-butyl 
ether protocol (74). Two hundred microliters of cold methanol was 
added to samples on ice and vortexed for 1 min. Eight hundred mi-
croliters of cold methyl-tert-butyl ether was added, and samples were 
homogenized by sonication in four rounds of 10 min each on ice. 
Two hundred microliters of cold water was then added, and samples 
were allowed to rest for 10 min. Samples were centrifuged at 1000g 
for 10 min at 4°C, and the upper organic layer was removed and 
evaporated to dryness. Samples were reconstituted in 500 μl of meth-
anol for analysis with 500–parts per billion Avanti Equisplash inter-
nal standards. A Thermo Fisher Scientific Q Exactive HF with a 
Vanquish UHPLC+ and a Bruker TimsTof FleX mass spectrometer 
with a Waters Premier UHPLC were used for analysis with a Waters 
Premier reversed-phase C18 BEH column (2.1 mm by 100 mm) at 
50°C. Lipids were separated with a binary gradient of (A) 10 mM am-
monium acetate and 0.1% formic acid in water/acetonitrile (4:6) and 
(B) 10 mM ammonium acetate and 0.1% formic acid in 2-propanol/
acetonitrile (9:1) with a flow rate of 250 μl/min for 15 min on the 
Thermo system and 30 min on the Bruker system. Ten microliters 
was injected in both negative and positive ion modes. Samples were 
pooled to create a reference sample for quality control. Data were 
analyzed and annotated in MS-DIAL version 4.90 (75).

MALDI IMS data preprocessing
MALDI IMS data were processed using in-house developed soft-
ware. All datasets were first converted into a custom binary format 
optimized for storage and speed of analysis of IMS data. Each spec-
trum was m/z aligned using between 6 and 10 alignment peaks that 
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were automatically selected for each dataset. The alignment peaks 
are selected by their frequency of occurrence throughout the dataset 
and ensure that several anchor points are available for each spec-
trum. This is in contrast to using a predefined set of peaks that might 
not be present in every spectrum, hindering the alignment process. 
The alignment process was accomplished using the Python msalign 
library (version 0.2.0) (76, 77). Subsequently, the spectra were cali-
brated using at least four calibration points in both polarities. Two 
vectors of normalization factors were calculated for each dataset, 
namely the total ion current (TIC) and an outlier-insensitive TIC 
variant that only includes intensity data lying between the 5th and 
95th percentiles of each mass spectrum (5/95% TIC). Normaliza-
tion aims to counteract noise factors and to project all mass spectra 
onto a consensus intensity scale so that intensities can be compared 
between spectra. Because the subsequent analyses compare multiple 
datasets from different patients, the normalization factors of a single 
dataset have no knowledge of the intensity scales another dataset 
has, which means that if normalization is performed on a dataset-
by-dataset basis, ion intensities in one dataset might not be compa-
rable to ion intensity of another. To counteract this, all normalization 
vectors were concatenated (TIC and 5/95% TIC were processed 
separately) into one large vector, which was divided by its median 
factor. This ensures that intensities are comparable between datas-
ets. At this point, rather than creating a copy of the data for both 
normalization factors, we keep the IMS data in the m/z-aligned and 
calibrated state and apply the normalization factors when needed. 
Following the preprocessing, we calculate the average mass spec-
trum for each dataset, which is subsequently annotated using 
in-house–developed software (see below). The unsupervised and 
classification workflows (discussed in depth below) require that a 
common set of features (peaks) is present for each analyzed dataset; 
hence, a set of annotated peaks was used to extract ion images from 
the processed binary data. The data were extracted into a matrix of 
size (N × M) where N is the number of pixels and M is the number 
of identified peaks. An image is created by summing the intensity of 
a specified peak within a ±3- to 5-ppm extraction window. Before 
further analysis, the image intensity matrix is normalized using one 
of the available normalization factors.

MALDI IMS tentative identification
The average mass spectrum was scaled between 0 and 1, peak picked, 
deisotoped, and filtered using a signal-to-noise ratio threshold of 0.03 
(calculated as the fraction of the base peak of the mass spectrum). 
Features below this threshold were excluded from the identification 
process. IMS identification was performed using in-house–developed 
software that associated detected peaks with tentative lipids from 
the LIPID MAPS Structure Database and custom LC-MS/MS data-
base (discussed above). Parameters for annotating peaks include 
[M + H]+, [M + Na]+, and [M + K]+ adducts in positive mode and 
[M − H]− and [M − CH3]− in negative mode and a search window of 
±5 ppm. To provide more confident identification, IMS identification 
was subsequently associated with LC-MS/MS identifications.

MALDI IMS-microscopy and microscopy-microscopy 
image registration
MALDI IMS pixels were registered to microscopy using IMS Micro-
Link, an in-house–developed, open-source plug-in developed for 
the napari image viewer. Within IMS MicroLink, the theoretical 
coordinate (i.e., the x,y integer coordinates) of each IMS pixel was 

extracted from the IMS metadata and visualized as an IMS pixel 
map with randomized intensities and the post-AF image was regis-
tered to the IMS pixel map by selecting five corresponding fiducials 
where a fiducial is an IMS pixel in the IMS pixel map image and a 
laser ablation mark in the post-AF image. This creates an exact reg-
istration of the IMS pixel to its origin in microscopy coordinates, the 
laser ablation mark. After the alignment of the post-AF image to 
IMS, the preacquisition AF [pre-AF (IMS)] image is automatically 
registered to the registered post-AF image [post-AF (IMS)] using 
wsireg, an in-house–developed, open-source Python package to 
perform whole slide image registration. The CODEX image is also 
automatically registered with wsireg to the post-AF (IMS) image by 
concatenating transformations from modality to modality. After all 
registrations and alignments are completed, all microscopy images 
and IMS are sampled into a common coordinate space.

Unsupervised machine learning
UMAP was used to uncover molecular trends across all datasets. 
UMAP aims to preserve the global neighborhood structure of the 
data while producing low-dimensional embedding. UMAP em-
bedding was performed at the pixel level where each pixel across 
all samples was considered as an observation (6,779,166 in posi-
tive mode and 6,568,017 in negative mode) and at the FTU level 
where an average profile was obtained for each detected FTU 
(78,190 in positive mode and 74,959 in negative mode). In both 
cases, 211 and 212 features were used in positive and negative 
modes, respectively.

UMAP projection was performed in Python using the umap-
learn (version 0.5.2) (18, 78) and scikit-learn (version 1.0.2) (79) li-
braries. In our analysis, the purpose of UMAP was to identify a 
low-dimensional projection; hence, the number of target dimen-
sions was limited to 2 (n_components = 2). Several other parame-
ters were adjusted, including the distance metric (metric = ‘cosine’), 
minimum number of neighbors (n_neighbors = 250), and the min-
imal distance (min_dist = 0). The random seed was also specified to 
allow us to reproduce the results.

Because of the multidataset nature of the data, two normaliza-
tion approaches were explored. First, standard TIC normalization 
was used, which results in internormalized data. The second ap-
proach was to remove inherent batch effects caused by the fact that 
each sample came from different patients with vastly different BMI, 
age, or gender. Batch effects were removed using the reComBat al-
gorithm (17).

Supervised machine learning and Shapley 
additive explanations
The identification of biomarker candidates was performed computa-
tionally following a workflow similar to that previously presented 
(19). The first step of the workflow consists in learning a classifica-
tion model from a set of labeled IMS datasets via supervised ma-
chine learning (28 datasets in negative ion mode and 29 in positive 
ion mode). The following classification tasks were performed: recog-
nition (one-versus-all classification) of five FTUs (GLs, DTs, PTs, 
CDs, and TAL), binary classification of male versus female donors, 
and binary classification of normal-BMI (22  <  BMI  <  25) versus 
high-BMI (BMI > 35) donors. In the case of the FTU recognition 
task, segmentation by AF provided pixel-wise labeling of the IMS 
data. In the case of the sex and BMI classification, each IMS dataset 
was labeled using its corresponding donor metadata (female or 
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male; high BMI or low BMI). We choose eXtreme Gradient Boosting 
(XGBoost) models (80) for the classification of IMS data for the fol-
lowing reasons: XGBoost can encode nonlinear dependencies be-
tween molecular species, does not make assumptions about the data 
distribution, does not depend on measuring distances between 
high-dimensional mass spectra, and does not require the scaling of 
ion intensity values. Rather than use one XGBoost model, as per 
Tideman et al. (19), we use an ensemble of XGBoost models for each 
classification task. The reason for using an ensemble of XGBoost 
models is to ensure that our SHAP-based biomarker candidate dis-
covery workflow is robust to correlated inputs (e.g., molecular spe-
cies with similar ion images). The problem posed by correlated 
inputs is that multiple models may fit the data equally well without 
necessarily being faithful to the true biological relationships. There is 
therefore a risk that spurious correlations influence the results pro-
duced by SHAP on one single model and that the results vary from 
one model to the next. Given that our aim is to select a shortlist of 
biologically relevant candidate biomarkers, we cannot allow for cor-
relation between molecular species to cause inconsistencies. The so-
lution we propose is to stabilize the output of SHAP by applying it to 
an ensemble of 10 XGBoost models. The training process of each of 
these XGBoost models is initialized using a different random seed, 
and the models are trained on slightly different training datasets (the 
split between training and testing datasets is done by sampling with-
out replacement with 10 different random seeds). Spurious patterns 
because of correlated inputs cancel out across the different XGBoost 
models, whereas the true correlations are reinforced by the ensem-
bling process. The patterns that dominate the decision-making pro-
cess (and the ensuing SHAP explanations) of the ensemble are 
therefore likely to be biologically relevant.

The second step of the workflow consists in quantifying the im-
portance of each molecular species with respect to a given classifica-
tion task using SHAP (20). We apply SHAP to the ensemble of 10 
XGBoost models obtained in the previous step. The Shapley value, 
or local SHAP importance score, of a molecular species for a given 
mass spectrum is the mean of the Shapley values obtained by apply-
ing SHAP to the 10 classification models making up the ensemble. 
As discussed by Tideman et al. (19), we have one Shapley value per 
molecular species and per pixel: The Shapley value of a molecular 
species measures the magnitude and direction of its effect on the 
classification of one spatially localized mass spectrum. We have 
multiple IMS datasets, each of which corresponds to the renal tissue 
sample of a different donor. The datasets are labeled according to the 
donor’s metadata: VAN - donor ID - donor age - donor sex - donor 
BMI. The global SHAP importance score is a summary heuristic for 
a molecular species’ biomarker potential that is computed by taking 
the mean of the magnitude of its Shapley values across all mass spec-
tra in a given dataset. The global SHAP importance score is a 
sample-specific measure of a molecular species’ relevance to a given 
classification task. In the summary bubble plots (Figs. 6 to 8), the 
size of each marker corresponds to the global SHAP importance 
score of a given molecular species (column) for a given dataset 
(row). Last, the total SHAP score of a molecular species is an 
experiment-wide summary heuristic for its biomarker potential: It 
is computed by taking the mean of the molecular species’ global 
SHAP scores across all datasets. The molecular species are ranked in 
descending order of total SHAP score to facilitate the selection of a 
shortlist of molecular species that are likely to be useful biomarker 
candidates for a given FTU, sex, or BMI.

The next question is whether a biomarker candidate is positively 
or negatively correlated with a given FTU, sex, or BMI. We measure 
the direction and magnitude of the relationship by computing the 
Spearman rank-order correlation coefficient ρ between the mean-
centered intensity and the Shapley values of a given molecular 
species. The Spearman rank-order correlation coefficient ρ also pro-
vides a way of assessing the statistical significance of the relation-
ship: ρ ranges from −1 to 1, and we consider ρ to be significant if its 
magnitude exceeds 0.2. In the summary bubble plots (Figs. 6 to 8), 
the marker color corresponds to the Spearman rank-order correla-
tion coefficient per molecular species (column) and per dataset 
(row). We distinguish between the following three scenarios:

1) Positive Spearman rank-order correlation coefficient (ρ > 
0.2)—Red marker: Pixels with high (above the mean) ion intensity 
have positive Shapley values, and conversely, pixels with low (below 
the mean) ion intensity have negative Shapley values. A pixel’s likeli-
hood of belonging to the target class increases monotonically as the 
ion intensity of the molecular species increases. A high intensity of 
the molecular species is indicative of the target characteristic.

2) Negative Spearman rank-order correlation coefficient (ρ < 
−0.2)—Blue marker: Pixels with low (below the mean) ion intensity 
have positive Shapley values, and conversely, pixels with high (above 
the mean) ion intensity have negative Shapley values. A pixel’s likeli-
hood of belonging to the target class decreases monotonically as the 
ion intensity of the molecular species increases. A low intensity of 
the molecular species is indicative of the target characteristic.

3) Nonsignificant Spearman rank-order correlation coefficient 
(−0.2 < ρ < 0.2)—Gray marker: The relationship between the mo-
lecular species and the target class is either monotonic but nonsig-
nificant or nonmonotonic (and therefore not well-captured by the 
Spearman rank-order correlation coefficient).

For example, we consider the BMI classification task, where an 
ensemble of XGBoost classification models is made to differentiate 
between high-BMI donors, donors with obesity, and normal-BMI 
donors. The characteristic of interest, for which we need biomark-
ers, is obesity. A molecular species with a high total SHAP score is 
one whose ion intensity distribution varies from one BMI category 
to the other, which enables classification. It may therefore be a useful 
biomarker for obesity and should be investigated further. The next 
step is to determine whether the molecular species is positively or 
negatively correlated with our characteristic of interest. If the ion 
intensity of a given molecular species is higher in high-BMI donors, 
the relationship between the ion intensity and the target character-
istic is positive: A high ion intensity of the molecular species is a 
marker of obesity. Conversely, if it is lower in high-BMI donors, the 
relationship is negative: A low ion intensity of the molecular species 
is a marker of obesity.

Supplementary Materials
This PDF file includes:
Figs. S1 to S216
Tables S1 to S4
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