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Summary

Departure epoch T0 of an interplanetary space mission can slip due to various unforeseen rea-

sons. The consequences can be mitigated by having a backup departure opportunity at a time

∆T0 after the first possibility (21 days in this research). The design of a trajectory is usually

approached as a minimization of the velocity (∆V ) budget; designing a trajectory with a backup

(a trajectory pair) is then a minimization of the maximum ∆V of the pair (∆Vrb). In this study,

two different approaches to this problem (the a priori and the a posteriori approaches, explained

below) are compared on their performance (computational efficiency1, accuracy) and algorithm

characteristics (complexity, influence of design parameters, versatility2). High-thrust trajectories

are considered, they are modeled using the linked-conics approximation and include gravity-assists

and (optionally) deep space maneuvers. Differential evolution is used for optimization.

The a priori approach minimizes ∆Vrb as a function of the control variables of both trajec-

tories, given a ∆T0. Since two trajectories with close departure epochs are likely to be similar,

three (mutually exclusive) methods that exploit this similarity have been devised: 1) Symmetric

initialization biases optimization by initializing paired trajectories equally. 2) The variable mirror

operator biases optimization (in the optimization loop) by overwriting the control variables of an

unfit trajectory with those of a fit paired trajectory. 3) The narrow relative constraints algorithm

prunes the solution space by constraining the difference between the control variables of both tra-

jectories.

The a posteriori approach first computes the minimum ∆V for a range of departure epochs

by solving minimization problems for discrete departure epoch values. To increase computational

efficiency, the solution of a previous departure epoch is used as initial guess for a following depar-

ture epoch. The pair with the lowest ∆Vrb is then selected from the minimized ∆V values. Two

variants are proposed, one on the full T0 range (1000 days) and one on a limited range of ±∆T0

around the global minimum (it prunes the other 958 days).

By applying the methods to three by Cassini inspired trajectories to Saturn, the following con-

clusions are drawn. The performance of the a posteriori approach scales better with an increasing

dimensionality D, than the a priori approach. On the simplest trajectory (D = 3), the former

requires ten times more function evaluations than the latter, but on the most difficult trajectory

(D = 22), it requires five times fewer function evaluations than the latter. Between the variants of

the a priori method, the variable mirror and narrow relative constraints algorithms perform best.

The performance of the first is determined by a design parameter, while the second requires the

user to formulate the boundaries. Regarding the a posteriori approach, the limited range method

can be highly efficient. Compared to optimizing a single trajectory, it requires just 3% more func-

tion evaluations to optimize a pair, on the difficult trajectory. However, it did not find the optimal

solution of the simple trajectory because it was outside its range. Furthermore, the accuracy of the

a posteriori approach is limited at 0.5 m/s by the chosen resolution of T0 (0.1 day), the a priori

approach does not have such a limit.

The algorithm review leads to the conclusion that the a posteriori approach is more complex

than the a priori approach due to its initial guess algorithm. Furthermore, symmetric initialization

is the only algorithm that does not rely on design parameters. Regarding versatility, the array

of ∆V values computed by the a posteriori approach has the advantage that it can be used for a

general launch window analysis. Lastly, the a posteriori approach has been adapted most to the

considered problems, therefore it is likely to be less generally applicable.

1 Number of objective function evaluations required to reach a specified objective function value.
2 Applicability to other purposes than minimizing a trajectory pair.
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Chapter 1

Introduction

Designing propellant-efficient interplanetary spacecraft trajectories is one of the key challenges

of space exploration. The vast distances, multitude of possibilities, and large relative velocities

between planets push our engineering capabilities to their limit. Generally, trajectory design is ap-

proached as an optimization problem, aimed at minimizing the total velocity change (∆V ) during

the journey. According to Tsiolkovsky (1903), this guarantees to minimize propellant mass,1 which

in turn reduces complexity and costs. Depending on the mission characteristics, other optimization

objectives (such as the time of flight) may also be formulated, but minimizing ∆V forms the core

of any trajectory design.

An ingenious technique for reducing ∆V has been found in the application of gravity-assist maneu-

vers (GAMs). These hyperbolic flybys of third bodies (usually planets) can result in considerable

savings of propellant (Minovitch 1963). Together with short periods of thrust during interplanetary

coasting (deep space maneuvers or DSMs), they form a powerful combination that has opened up

the entire solar system for exploration. Nowadays, GAMs and DSMs are ubiquitous in deep space

travel.

A consequence of the application of GAMs and/or DSMs is that the optimization problem be-

comes more difficult. A specifically challenging set of trajectory optimization problems is encoun-

tered in the early conceptual stage of mission design. Here, preliminary options are analyzed

and compared, to be potentially further developed into mission concepts. The difficulty is that

these trajectories are obtained by solving a global optimization problem, contrary to trajectories of

higher fidelity that are obtained through local optimization of a reasonably accurate initial guess.

Some complicating factors associated with global trajectory optimization include the following.

– The solution space spans many dimensions, more than twenty is not uncommon.

– The solution space has many local optima.

– Boundary constraints can be nonlinear.

– Expressions may lack a closed form.

– The target and destination bodies’ states are functions of time.

To deal with these issues, current methods rely on metaheuristic optimization algorithms.2 How-

1 Valid for engines that expel mass.
2 Metaheuristic optimization algorithms approximate the global minimum solution to a satisfactory degree. They

do so by letting the optimization process be (partially) guided by randomly generated variables. Several different

metaheuristic optimization techniques are discussed in Chapter 2.
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Chapter 1. Introduction

ever, a typical problem solved by NASA’s Evolutionary Mission Trajectory Generator, an open-

source trajectory optimization tool, may still take several days to compute (Englander 2013).

Besides making it difficult to identify the global minimum in the first place, the issues stated

above also make that this global minimum is often not robust.3 This is an undesirable property,

since control variables require a margin for safe and reliable operations. A variable that is specif-

ically prone to uncertainty is departure epoch T0. Various reasons may lead to delays, including

bad (space) weather, failed tests, programmatic delays, and budget cuts (Biesbroek 2016). It is

argued that one can deal with this uncertainty by providing a guaranteed backup departure oppor-

tunity for each trajectory. Then, the spacecraft should be designed for the highest ∆V of the two

trajectories. The minimization of the maximum ∆V of these two trajectories is the fundamental

problem that is addressed in this thesis.

A global optimization algorithm that is capable of finding two such trajectories (a robust tra-

jectory pair) is Python EMTG Automated Trade Study Application (PEATSA) developed by

Knittel et al. (2017). This software works as an outer shell around the earlier mentioned EMTG;

a series of optimizations yields the minimum ∆V budget for a range of departure epochs (optimal

∆V budget curve). Consequently, the user may select the trajectories that fulfill the requirements

for robustness. Remembering the computation times of EMTG, this seems a resource-expensive

exercise. In this study, such a method is classified as a posteriori, because it first computes the

optimal ∆V budget curve and afterwards lets user select a trajectory pair. Alternatively, the a

priori approach has been devised. Here, the user needs to specify the interval between the de-

parture epochs (departure epoch interval ∆T0) beforehand, allowing the control variables of both

trajectories to be simultaneously optimized. The a priori approach is hypothesized to require fewer

objective function evaluations than the a posteriori approach.

It has been found that departure epoch uncertainty is a largely uncharted field within global

optimization of gravity-assist trajectories. No methods capable of selecting robust gravity-assist

trajectories, other than PEATSA, have been identified. Because of this blind spot, a specific need

for more research has been formulated by Airbus Defence and Space, the commissioner of this

research. Taking departure uncertainty into account from an early stage leads to better substan-

tiated decisions in their mission design process. It is therefore desired to gain more knowledge on

the different methods that can be used for minimizing the ∆V budget of a robust trajectory pair.

1.1 Purpose

The purpose of this research is to gain knowledge on the relative performance of the a posteriori

and a priori approaches4 to optimizing robust trajectory pairs. To that end, both methods are first

developed, then implemented and consequently tested. The following scope and research questions

provide a framework for this process.

1.1.1 Scope

A first demarcation is the exclusive focus on high-thrust trajectories. That is, only chemical and

thermal rocket propulsion are considered, as opposed to long duration thrust from, for example,

3 Generally defined as being able to avoid large changes in the output for small changes in the input. A formal

definition is provided Chapter 3.
4 They are mentioned in this (counterintuitive) order because the a posteriori approach refers to an existing

method, while the a priori approach is newly proposed.
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ion engines. This is at the explicit request of Airbus Defence and Space since the majority of

proposals that it receives, is for high-thrust missions. Consequently, two high-thrust trajectory

models (developed by ESA’s Advanced Concepts Team) are used. Furthermore, optimization is

done using a metaheuristic optimizer named differential evolution, which has demonstrated its

capability to optimize these trajectory models.

The developed methods are applied to three different problems, all inspired by the Cassini mission

to the Saturnian system. The trajectory of Cassini involved four GAMs (Venus-Venus-Earth-

Jupiter), leading to a highly efficient ∆V budget of 5.3 km/s (Englander 2013). Much literature is

available on the performance of the aforementioned model and optimizer on this trajectory, making

it suitable for verifying the algorithms developed in this work.

1.1.2 Research questions

The a posteriori and a priori approaches that are described above demand further research before

they are sufficiently specified to be implemented. The following two research questions address two

fields of this development.

Development-oriented research questions

1. Into which sub optimization problems can the a posteriori and a priori approaches be de-

composed, and what are the associated objective functions?

2. Which solution space pruning5 techniques and optimizer biasing mechanism can be used to

improve computational efficiency,6 and what are their working principles?

For the second research question, a limited number of five algorithms is developed, leading to

different variants of the a posteriori and a priori methods. These variants are sought to be diverse.

Having developed and implemented the algorithms, the final three research questions address their

performance and characteristics.

Results-oriented research questions

3. How accurate and computationally efficient are the a posteriori and a priori approaches?

4. What are the characteristics of the a posteriori and a priori approaches in terms of algorithm

complexity, influence of design parameters, and versatility?

5. How do the results of the a posteriori and a priori approaches compare on the aforementioned

fields (4 and 5)?

In the last research question, versatility is defined as applicability beyond the scope of the problems

of this research. More definitions are stated in the List of definitions.

1.2 Structure

The structure of this report is as follows. In Chapter 2, a survey of literature on global optimization

of gravity-assist trajectories is presented. Also, three concepts that are related to departure epoch

uncertainty are discussed. In Chapter 3, the methodology of this research is laid out. This includes

5 Reducing the size solution space by excluding regions from the search, that are not likely to contain the solution

(see Chapter 7).
6 The number of objective function evaluations that is required to obtain a certain result (see Section 3.5).
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formal definitions of the a posteriori and a priori approaches. The two trajectory models that are

used in this research are explained in Chapter 4, which is concluded with the characteristics of

the three trajectory problems to which the methods are applied. Thereafter, in Chapter 5, an

answer to the first research question is presented, through a detailed analysis of both methods. It

is followed by Chapter 6, in which the working principle of differential evolution is explained. Also,

appropriate settings of the design parameters that determine differential evolution’s performance

are determined. Consecutively, two pruning techniques and three biasing mechanisms are proposed

in Chapter 7, answering the second research question. Finally, answers to the third and fourth

research question are found in Chapter 8. Here, the results are presented and discussed. Finally,

a conclusion on the comparison between both methods is drawn in Chapter 9. This last chapter

ends with suggestions for future research.
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Chapter 2

Theoretical context

Global optimization of gravity-assist trajectories is a much researched topic. In this chapter, the

reader is guided through the developments in this field, that are most relevant to this research.

First, the historical context of global trajectory optimization is (briefly) outlined in Section 2.1.

Next, an overview of the current state-of-the art methods is split between the trajectory models,

explained in Section 2.2, and the optimization methods, explained in 2.3. Contrary to general tra-

jectory optimization, the effect of departure epoch uncertainty on interplanetary mission design is

much less researched. Three relevant concepts have been identified in this field, they are addressed

in Section 2.4.

2.1 Historical background

During the early years of spaceflight, mission analysts had to generate a limited number of reason-

ably accurate suggestions for trajectories, which would then be further optimized using (quasi-)

Newton optimization or optimal control theory. The large number of possible flyby sequences, and

many parameters that determine a trajectory made generating these initial guesses a challenging

task. This issue could be dealt with when, towards the end of the 1980s, computing power had

progressed sufficiently to enable optimization algorithms to find optimal trajectories without an

initial guess.

The first algorithm that was specifically aimed at global optimization of interplanetary trajec-

tories was the Satellite-Tour Design Program (S-TOUR). This software was originally developed

at the Jet Propulsion Laboratory (JPL) for the Galileo mission to the Jovian system1 and has later

been transformed into a general trajectory optimization algorithm at Purdue University (Longuski

and Williams 1990). It made use of a grid search method for finding the control variable values.

Combined with a graphical approach to identifying possible flyby sequences, S-TOUR formed a

chain that was capable of finding an optimal trajectory including the flyby sequence (Strange and

Longuski 2002). However, unsurprisingly for a grid search approach, the computation times quickly

became intractable for more complex missions.

Since the development of S-TOUR, computation times have been brought down by a combination

of further increasing computing power and more intelligent algorithms. Specifically the applica-

tion of meta-heuristic optimization algorithms has proven to be a lasting paradigm change (Vasile

and Pascale 2006; Izzo et al. 2007; Conway 2010). Current methods make use of various different

1 Galileo departed in 1989 and arrived at Jupiter in 1995 after a Venus-Earth-Earth flyby sequence (Meltzer

2013).

5



Chapter 2. Theoretical context

non-deterministic algorithms of which the computation time does not scale exponentially with the

dimensionality of the solution space (Vasile, Minisci, and Locatelli 2010).

2.2 Physical models

Before there is zoomed in on the state-of-the-art optimizers, the trajectory models that are the

objective of optimization are explained. First, a high-level distinction between analytical and

numerical propagation is pointed out in Section 2.2.1. Next, the linked- and patched-conics ap-

proximations are explained in Section 2.2.2. This lays the foundation for the analysis of four

comprehensive trajectory, presented in Section 2.2.3.

2.2.1 Orbit propagation

The state (position and velocity) of a spacecraft can be propagated (in time) using several tech-

niques. Below, first a distinction between analytical and numerical optimization is pointed out,

then two different types of analytical propagation are explained.

Analytical versus numerical propagation

Arguably the most high-level distinction that can be made in orbit propagation, is between an

analytical and numerical approach (Vallado 2006). The former requires one to make use of the

two-body approximation, thus neglect (gravitational) perturbations. Consequently, the state can

be propagated using the computationally inexpensive Lambert and Kepler methods.2 Contrary,

numerical propagation allows any number of forces to be modeled with an accuracy that is inversely

related to the propagation step size, leading to potentially very accurate models. However, high

accuracy comes at the cost of a long computation time. Current limits on computing power make

numerical propagation too expensive to be used in global optimization of trajectories that include

multiple GAMs.

Two-body orbit propagation

Two techniques for propagating a two-body orbit are the aforementioned Kepler and Lambert

methods. The former propagates the state of a spacecraft given a time of flight. Lambert’s problem

is concerned with finding the two velocities given two positions and the time of flight. Both Kepler

and Lambert propagation are used by the trajectory models that are used in this research, the

implementations are explained in Section 4.1. Figure 2.1 shows the inputs and outputs of Kepler

and Lambert propagation.

2.2.2 Conic approximations

A trajectory that includes GAMs can be simplified by approximating it as a series of two-body

problems. The following two approximations are based in this simplification, they allow for fast

propagation of complex trajectories.

Patched-conics approximation

The patched-conics approximation models the trajectory as a planetocentric orbit within the sphere

of influence of a planet, and as a heliocentric orbit outside it. This renders the entire trajectory a

2 The reader may realize that Kepler and Lambert propagation require iterations, thus also exhibit some numerical

behavior (see Section 4.1). However, it is common practice to refer to them as analytical methods, this convention

adopted in this study.
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Figure 2.1: An arc (orbital section modeled as a two-body problem) with two states and a time of flight.

Kepler propagation calculates a position and a velocity, given the other state and the time of flight.

Lambert propagation calculates two velocities given the positions and time of flight.

Linked-conics example trajectory

 

Earth

Jupiter GAM

(link)

Saturn

Figure 2.2: Example of a simple linked-conics trajectory transcription. It represents a mission to Saturn

with one GAM at Jupiter, the elliptic arcs are ’linked’ here. The full ellipses of the orbits between the

planets are indicated by dotted lines.

series of patched planetocentric and heliocentric conic sections, hence the name. Both the position

and velocity of the spacecraft are continuous in time.

Linked-conics approximation

The spheres of influence of planets are small compared to the semi-major axes of their orbits around

the sun. The highest ratio is reached by Jupiter, the radius of its sphere of influence is 6.2% of its

semi-major axis (Curtis 2013). Therefore, an additional simplification may be applied: neglecting

the radii of the spheres of influence. The result is that the velocity changes due to GAMs are

instantaneous, hence they show discontinuities at planetary flybys. The resultant model consists

only of heliocentric conic sections and can be propagated faster than the patched-conics model,

at the expense of some accuracy (Conway 2010). Figure 2.2 shows an example of a trajectory to

Saturn with one GAM at Jupiter, modeled using the linked-conics approximation.
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2.2.3 Comprehensive trajectory models

Using the techniques described above, it is possible to formulate comprehensive models of gravity-

assist trajectories. Four different models have been identified in literature, all use the linked-conics

approximation. They are explained and analyzed below.

Multiple gravity-assist model

The multiple gravity-assist (MGA) model allows for a burn at the perigee of each planetary flyby,

as well as at arrival and departure. A GAM that includes a burn is also known as an Oberth

maneuver. Applying thrust at the perigee of an orbit is most propellant efficient, since velocity

increments at higher velocity yield a larger energy increase (Oberth 1929).

Since the positions of planets are known as a function of time,3 taking the departure epoch and

times of flight as control variables allows each arc between two planets to be solved as a Lambert

problem. A clear drawback of this model is that it prohibits DSMs. This limits the types of

trajectories that can be modeled. For example, it rules out a V∞-leveraging maneuver4 as used in

the Cassini mission.

The number of control variables in this model is limited; just one per planetary encounter (includ-

ing departure and arrival), thus dimensionality D of the solution space is equal to the planetary

sequence length (including the departure and arrival planets). This makes the MGA model easiest

to optimize of the ones considered here, for a given flyby sequence. Implementations of the MGA

model are available for download in several different programming languages from ESA’s Advanced

Concepts Team web page,5 where some test case trajectories are also available (Izzo 2010).

Multiple gravity-assist and deep space maneuver model

The multiple gravity-assist and deep space maneuver (MGADSM) model includes one DSM be-

tween each planetary transfer, which makes it more flexible than the MGA model. As explained

above, a velocity discontinuity occurs at each GAM and at each DSM. A fundamental difference

between these maneuvers is that the location of a DSM is not known as a function of time, contrary

to the location of a GAM. Therefore, Kepler’s problem is solved on the arc from a planet to a DSM.

Consecutively, the arc from the DSM to the next planet can be solved using Lambert’s method.

The GAMs are ballistic, but it is still capable of modeling a much wider variety of trajectories

than the MGA model, due to the availability of DSMs (Izzo 2010; Englander 2013).

The number of control variables is significantly higher than for in MGA model, it increases by

four with each leg (trajectory section between two planets). The identity of the control variables

is explained in Chapter 4. Also, this model is sensitive to small parameter changes, making op-

timization of this model relatively difficult. Implementations are available at the same source5 as

the MGA model, including several test cases (Izzo 2010).

Multiple Lambert model

As an alternative to the trajectory formulations described above, another formulation for the MGA

and MGADSM model has been proposed by Brennan (2015). This formulation only uses Lambert

3 In the implementation of this model that has been made available by Izzo (2010), the planetary orbital elements

are estimated using a fifth-order polynomial least squares fit.
4 In these maneuvers, a relatively small DSM some time before a GAM enables a high ∆V increase in the

maneuver; the effect of the GAM is leveraged (Hollenbeck 1975; Strange and Sims 2002).
5 http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html
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arcs, also to DSMs. Therefore, analogously to the MGA model, the control variables of Bren-

nan’s model are the departure time and the times of flight between maneuvers. Additional control

variables are the positions of the DSM expressed in Cartesian coordinates, leading to four control

variables per DSM (three Cartesian coordinates plus the a time of flight).

Although this formulation eliminates the restriction of only one DSM per leg and also allows for

powered GAMs, a major defect is that Cartesian coordinates are inconvenient control variables.

Since their definition is not relative to a planet or any other part of the trajectory, it is not possible

to formulate boundary constraints efficiently, making it unsuitable for global optimization. The

source code of this propagator has been made available by Brennan, it has been sent in a personal

e-mail.

Multiple-shooting model

An innovative new model for multiple gravity-assist trajectories with an arbitrary number of DSMs

per leg has been proposed by Vavrina, Englander, and Ellison (2016). Figure 2.3 provides a

schematic interpretation of this multiple-shooting method. Here, ∆v is the velocity change at a ma-

neuver (control variable), ∆t the time of flight between maneuvers (control variable), [v−, r−,m−]

and [v+, r+,m+] are states at respectively the left and right side of the match point (MP).

The method propagates the beginning and end states of the spacecraft in a Keplerian fashion,

forward and backward respectively, to the match point in the middle of the trajectory. Continu-

ity of position, velocity and mass are enforced at the match point through nonlinear constraints.

Importantly, these are guaranteed through analytical derivatives. Finite differencing would be

theoretically possible, but it would involve more calculations.

An advantage of the multiple-shooting method seems to be the lack of a limit on the number

of DSMs. However Vavrina, Englander, and Ellison (2016) do not report finding better trajec-

tories when more than one DSM per leg is allowed on a by OSIRIS-REx6 inspired test case. A

less obvious but valuable other advantage of this method is the decreased sensitivity of the cost

function, compared to the MGADSM model. Multiple-shooting is the successor of this model in

EMTG and brings down the computation time by an order of magnitude when combined with a

monotonic basin hopping algorithm (an optimizer, explained in Section 2.3.3).

Despite the superior performance of the multiple-shooting formulation, there is a practical prob-

lem. Unfortunately, this formulation is only available in the source code of EMTG. EMTG itself

requires licensed optimization software (SNOPT) and neither SNOPT nor an equivalent substi-

tute has been available for this research. Furthermore, interfacing EMTG with other optimization

software would be much work for an uncertain outcome. It can be concluded that the multiple-

shooting method is promising, but too deeply embedded in the EMTG ecosystem to be used in

this research.

2.3 Optimization techniques

Many different optimization algorithms have been used for global optimization of gravity-assist

trajectories. In this section, an overview is presented of the ones that have attained noteworthy

performances. A general theorem that deserves to be mentioned is the ”no free lunch” theorem

6 An asteroid sample return mission that uses a single Earth GAM. It has been launched in 2016 and is scheduled

to return at Earth in 2023 (Lauretta 2012).
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Figure 2.3: Schematic transcription of the multiple-shooting model (Vavrina, Englander, and Ellison 2016)

.

(Wolpert and Macready 1997; Wolpert, Field, and Macready 2005). It states that an improved

performance of an optimization algorithm on any class of problems, is paid for with a deteriorated

performance on another class of problems. The challenge of formulating an optimization algo-

rithm is therefore to guarantee that the class of optimization problems that pays for the improved

performance, does not contain any problem that is of interest. Each of the optimizers that are

listed below, handle this challenge differently. They can be categorized in evolutionary algorithms,

social behavior algorithms, and repeated local searches. These are addressed respectively in Sec-

tions 2.3.1 to 2.3.3. The reader should note that the working principles of the algorithms are not

explained in great detail. Instead, the focus is on their performance on gravity-assist trajectory

optimization problems.

2.3.1 Evolutionary algorithms

Evolutionary algorithms emulate the mechanism of natural selection in a species. The three variants

that have been used most in global trajectory optimization are introduced below.

Genetic algorithm

In a genetic algorithm, solutions are encoded (often using binary bits) in members of a population.

Each generation (iteration), members (’parents’) are randomly combined to form new members

(’children’). The members that are allowed to go to the next generation are selected based on

their fitness (objective function value), then the process repeats itself. The genetic algorithm has

been proposed by Holland (1975) and its implementation has not changed significantly since then.

It was the first evolutionary approach to be suggested for use in trajectory optimization (Janin

and Gòmez-Tierno 1985). The performance on fixed GAM sequence trajectory optimization has

been demonstrated to be rather poor compared to other metaheuristic methods (Vinko and Izzo

2008). A problem to which it does find much applicability is the generation of flyby sequences. The

recombination mechanism makes it capable of dealing with members of variable lengths, which is

critical for expressing GAM sequences (Englander 2013).
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Differential evolution

Differential evolution is similar to the genetic algorithm, with the key difference that solutions

are represented by vectors in a solution space and reproduced through addition and subtraction

of random members. It was first proposed by Storn and Price (1997) and has come into wide

use for many applications in engineering. It has been proven to be successful on the MGA and

MGADSM trajectory models (Vasile, Minisci, and Locatelli 2011). A disadvantage is that it is

rather sensitive to the settings that are used. Differential evolution requires the user to select three

design parameter values and a strategy, these are often crucial for success. Musegaas (2012) has

done an excellent study on the appropriate parameter values to be used on the several problems

in the MGA and MGADSM models. Differential evolution is used in this study and explained in

detail in Chapter 6.

Covariance matrix adaptation evolutionary strategy

This relatively recent advancement in evolutionary computation uses a multivariate Gaussian dis-

tribution for producing offspring, contrary to the recombination strategies of the former two op-

timizers. It is characterized by a wide applicability to many different objective functions and a

major advantage is that it lacks parameters that need to be tuned, arguably except for the pop-

ulation size. Scarce results of CMA-ES on gravity-assist trajectories are ambiguous (Hansen and

Ostermeier 2001; Izzo et al. 2013; Izzo, Hennes, and Riccardi 2015).

2.3.2 Social behavior algorithms

Social behavior algorithms are inspired by the interaction between individuals in a group of animals.

Indeed, cooperation can lead to results that cannot be obtained by individualistic behavior only.

Particle swarm optimization

In particle swarm optimization, particles move through the solution space, similarly to a flock of

birds. The position and velocity of each particle is updated in iterations, based on the fitness of the

particle and the fitness of its neighbors. The performance of particle swarm optimization on gravity-

assist trajectories has been the topic of various studies, converging to the same conclusion that

it performs reasonably, but is significantly outperformed by differential evolution (Vasile, Minisci,

and Locatelli 2008; Vasile, Minisci, and Locatelli 2010; Musegaas 2012). An interesting finding

by Vinko and Izzo (2008) is that a cooperative (or hybrid, if you will) approach to differential

evolution and particle swarm optimization (named COOP), in which the population is passed

between both algorithms for a fixed number of iterations, yields better results than both particle

swarm optimization and differential evolution individually, on a specific set of problems.

Ant colony optimization

In ant colony optimization, acquired information about the fitness of regions of the solution space

is shared by members of the population. Consequently, members base their movement on this

information. It has been used by Ceriotti (2010) and forms the core of the MIDACO solver

(Schlueter, Egea, and Banga 2009), of which the development has been co-funded by ESA and

Astrium (predecessor of Airbus Defence and Space7). In a study on its performance on the MGA

and MGADSM models, it was found that MIDACO almost always identifies the global minima,

but requires a high number of function evaluations as well (Schlueter 2014). It is outperformed (in

terms of function evaluations) by differential evolution algorithm by an order of magnitude.

7 A license for this software has not been available for this study.

11



Chapter 2. Theoretical context

2.3.3 Repeated local searches

Repeated local searches consist of, as the name suggest, multiple local optimization efforts. Two

algorithms are stated below.

Multi-start

The multi-start principle is simple; it involves starting local optimization efforts from various

locations. Its ability to identify the global minimum is inversely related to the size of the basin8

that contains the global optimum (the global minimum basin). An (possible) advantage is that

its computational efficiency can be increased by including numerical derivatives, if available. The

reported success rate is outstanding on simpler problems, but deteriorates quickly with more

GAMs; it does not perform well Cassini-like trajectories (Vasile, Minisci, and Locatelli 2010).

Monotonic basin hopping

The starting points of the local searches in monotonic basin hopping are generated by randomly

perturbing the solution of a previous local optimization effort (Englander and Englander 2014).

This optimizer only works well if the fitness values decrease over a long range towards the global

minimum, which is the case for many objective functions of gravity-assist trajectories. It is cur-

rently used in EMTG (Vavrina, Englander, and Ellison 2016) and has previously demonstrated

the ability to handle MGA and MGADSM problems (Vasile, Minisci, and Locatelli 2010). Its per-

formance is greatly influenced by the local optimization method, which poses practical difficulties

to this research. Indeed, the state-of-the-art solver used by EMTG is unfortunately not available

for this research. Also, it does not cope well with discontinuities of the fitness value; the a priori

approach introduces many discontinuities (this is explained in Section 5.2).

2.3.4 Other optimizers

The optimizers mentioned above are not all that have been used in global optimization of gravity-

assist trajectories. Other (less successful) methods include a social algorithm named artificial bee

colony (ABC) optimization (Karaboga and Basturk 2007), the deterministic divided rectangle (DI-

RECT) method (Jones, Perttunen, and Stuckman 1993) and the by metallurgy inspired simulated

annealing (SA) technique (Kirkpatrick, Gelatt, and Vecchi 1983).

2.4 Sensitivity analyses

Not much literature has been published on the robustness of interplanetary trajectories with respect

to the control variables (or the departure epoch specifically). Three relevant concepts have been

identified identified in this context: the pork chop plot, a sensitivity analysis, and PEATSA, which

uses the EMTG optimization engine. They are respectively addressed in this section.

2.4.1 Pork chop plots

A famous graphical method to gain insight in the characteristics of possible trajectories is the pork

chop plot. These graphs plot iso-∆V contour lines on a background of departure epoch versus time

of flight or departure epoch versus arrival epoch. Figure 2.4 shows an example of the latter variant

for a ballistic transfer to Mars. The sensitivity to a change of the departure epoch is equivalent

to the gradient of ∆V in the horizontal direction. Therefore, where the iso-∆V contour lines are

8 A basin contains all the points in a multidimensional space, from which a (local) minimum can be reached via

a continuously descending path.
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Figure 2.4: Pork chop plot of potential ballistic transfers to Mars (Woolley and Whetsel 2013). The Mars

InSight mission used the departure opportunity in May 2018 (Abilleira et al. 2014).

close together in the horizontal direction, sensitivity to departure epoch slip is high.

Using the two-body approximation, a direct ballistic transfer is fully determined by the arrival

epoch and the departure epoch; the ∆V budget can be obtained by solving Lambert’s problem.

However, when the number of control variables is three or more, each combination of a departure

and an arrival epoch requires an optimization problem to be solved. This last approach has been

taken by Ishimatsu, Hoffman, and Weck (2011), yielding an integrated pork chop plot of both

direct and Venus-GAM trajectories to Mars. However, when longer GAM sequences and/or DSMs

are considered, the computation time quickly becomes intractable. Therefore no pork chop plots

are available for complex interplanetary missions.

2.4.2 Sensitivity analyses

A hybrid global optimization algorithm that uses a combination of differential evolution, CMA-ES

and DIRECT has been developed by Stracquadanio et al. (2011). It is named Self-Adaptive Gaus-

sian Evolutionary Strategy (SAGES) and has been applied to the MGA and MGADSM trajectory

models. In this same publication, the authors recognize that the solutions of these minimization

problems can be very unstable, so a sensitivity analysis is done. The authors research how large

perturbations of each variable may be before the increase of the objective function exceeds a pre-

defined limit.

The sensitivity analysis has yielded some insights; it showed for example that the timing of a

DSM between Venus and Mercury is particularly sensitive in a trajectory inspired by the Messen-

ger mission.9 However, from an operational point of view, the effect of a perturbation of a single

variable, while all others remain fixed, seems of little interest. It is likely that the effect of a per-

turbed variable can be mitigated by re-optimizing others. It can be argued that only those control

variables that can still be changed when a perturbation in a variable has come to light, may be

subjected to re-optimization. For example, if the epoch of the first DSM slips in a MGADSM tra-

9 A mission to Mercury that departed from Earth in 2004 and injected into orbit in 2011, after an Venus-Venus-

Mercury-Mercury GAM sequence, excluding arrival and departure (McAdams et al. 2006; Bedini 2017).
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Chapter 2. Theoretical context

Figure 2.5: Output of a launch window study of a hypothetical mission to Uranus, performed by PEATSA.

Different curves correspond to different GAM sequences. Notice that arrival mass is on the y-axis, which

is inversely related to the ∆V budget (Knittel et al. 2017).

jectory, a re-optimization effort may include the timing of the second DSM, but not the departure

epoch since this cannot be changed anymore. This seems an interesting approach for studies on

the robustness of all control variables in a trajectory. Regarding the departure epoch uncertainty

that is considered in this study, all variables are free for re-optimization since it is chronologically

the first control variable.

2.4.3 Python EMTG automated trade study application

The Python EMTG automated trade study application (PEATSA), developed by Knittel et al.

(2017), is the only identified algorithm that can be used for optimizing the robust trajectory pair.

It works as a shell around EMTG and (therefore) takes an a posteriori approach. Figure 2.5 is

generated by PEATSA and shows the arrival mass of a hypothetical mission to Uranus, for a range

of departure epochs. This is the only high-thrust mission of which results of PEATSA have been

published, a lack of details on the computational performance makes that they cannot be used for

verifying the methods developed in this study.

A noteworthy feature of PEATSA is that it intelligently exploits similarity between trajectories of

which the departure epochs are close; a previous solution is used as an initial guess for the current

departure epoch. Nonetheless, it took 36 hours of computation time on a 64 core (!) processor

to generate the graph in Figure 2.5. In this respect, it is also important to note that Figure 2.5

considers bi-level optimization (determining both the GAM sequence and the control variables),

which is much more difficult than optimizing a trajectory of a fixed GAM sequence. Therefore,

it can be concluded that PEATSA has capabilities that are outside the scope of the proposed re-

search, since this thesis focuses on fixed GAM sequences exclusively. Still, the use of initial guesses

is a powerful mechanism that is further developed in Chapter 7.
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Chapter 3

Methodology

The methodology that is used in this thesis research is composed of various different elements that

have been adopted from literature, but a substantial part is self-developed as well. The following

chapter has six sections that each address distinct elements of the methodology. A section that is

very specific to the formulated approach to departure epoch uncertainty, is Section 3.1. It contains

formal definitions that are fundamental to the rest of the methodology.

3.1 Definitions

In this section, three central concepts are defined: the robust trajectory pair, the a posteriori

approach and the a priori approach. The latter two are based on the definition of the former.

3.1.1 Definition of robustness with respect to departure epoch

The following definition of the robust trajectory pair is used in this research.

Definition of a robust trajectory pair: A trajectory is ro-

bust if it has a backup departure opportunity at a user-specified

interval ∆T0 after the first departure epoch. ∆V budget ∆Vrb
of the consequent trajectory pair is equal to the highest of the

∆V budgets of the two trajectories.

The reader should note that minimizing a robust trajectory pair causes the ∆V budgets of both

trajectories to converge to the same value (for a continuous optimal ∆V budget curve), this can

be observed in Figure 3.1.

Two considerations have led to the definition stated above.

1. Fixed departure epoch interval. The fixed departure epoch interval ∆T0 leads to a

simpler algorithm than allowing a range for the second departure epoch. Still, the a posteriori

and a priori methods can be relatively easily extended to allow ∆T0 to be defined as a range.

For the former, the same optimal ∆V budget curve can be used, in case of the latter it would

involve an extra optimization variable. This may be done in a future research, the departure

epoch interval is kept fixed in this study.

2. Discrete departure epochs. This discrete formulation is significantly simpler than a for-

mulation that would demand ∆Vopt to be be continuously below ∆Vrb during ∆T0. Although
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Figure 3.1: A fictitious optimal ∆V budget curve ∆Vopt(T0) and the minimum robust trajectory pair for

a specified ∆T0 (not in the global minimum basin).

∆Vrb is continuously below ∆T0 in the problems studies in this report, and also in Figure

3.1, it is not considered to be required. Two discrete departure opportunities are deemed

sufficient.

Correspondence with aerospace engineer Jacob Englander from NASA Goddard Space Flight Cen-

ter made clear that the order of magnitude of departure epoch interval ∆T0 on which robustness

is required is weeks. The critical value is approximately three weeks, according to Mr. Englander.

Therefore, in this work departure epoch interval ∆T0 = 21 days unless indicated explicitly other-

wise. The ∆T0 value can easily be changed in the developed algorithms.

An observation regarding Figure 3.1 is that it illustrates a situation in which the minimum ro-

bust trajectory pair is not in the same basin as the global minimum. Hence, only exploring this

global minimum basin would yield a suboptimal robust trajectory pair. Some of the methods

proposed in Chapter 7 prune the solution space drastically, thereby potentially missing minimum

robust trajectory pairs like the one in Figure 3.1.

A specifically interesting other characteristic of the robust trajectory pair, besides its velocity

budget ∆Vrb, is the difference in time of flight between paired trajectories. One of the problems

considered in this research (Cassini0, Section 4.3) yields a global minimum pair with five years

and five months between the two trajectories’ times of flight. In this case, choosing a suboptimal

pair reduces this difference to one year and three months, at the cost of a mere 67 m/s. One can

imagine that this latter trajectory can be found overall more attractive. It illustrates that ∆Vrb
is not the only relevant property of a robust pair. However, as outlined in Chapter 1, the focus is

exclusively on the ∆V budget as a measure of the fitness of the trajectories.

3.1.2 Definitions of the a posteriori and a priori approaches

The following definition of the a posteriori approach is used in this research.
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Definition a posteriori approach: The a posteriori approach

first computes minimum ∆V budget ∆Vopt for a range of depar-

ture epochs T0 (optimal ∆V budget curve). Thereafter, robust

∆V budget ∆Vrb is obtained from pairs of ∆Vopt values that

are departure epoch interval ∆T0 apart.

Similarly, the definition of the a priori approach is formulated as follows.

Definition a priori approach: The a priori approach mini-

mizes robust ∆V budget ∆Vrb directly as a function of the con-

trol variables of both trajectories (except the second departure

epoch T02), given a departure epoch interval ∆T0.

In Chapter 5, these definitions are extended into architectures of both approaches.

3.2 Use of existing methods

The trajectory models and the optimization algorithm are selected from the methods listed in

Chapter 2. It must be noted that the a posteriori and a priori method are frameworks that can be

applied to any trajectory model or optimization algorithm.

3.2.1 Use of MGA and MGADSM trajectory models

Table 3.1 shows a systematic assessment of the four trajectory models that have been identified

in Section 2.2, with respect to four criteria. It can be seen that the MGA and MGADSM models

have a reasonable overall performance, they can also be relatively easily implemented. Therefore,

these have been seleceted. The multiple-shooting model is discarded because its implementation

poses difficulties.

Table 3.1: Assessment of the trajectory models on four criteria. Criterion ’flexibility’ indicates possibilities

in modeling different maneuvers and trajectories.

MGA MGADSM M Lambert M shooting

Implementability Easy Easy Easy Difficult

Flexibility Low Medium High High

Verification problems available Some Many None Some

Optimizability Medium Medium Bad Good

3.2.2 Use of differential evolution

There is made use of the differential evolution optimization algorithm. This derivative free opti-

mizer has demonstrated its effectiveness on the MGA and MGADSM models and is derivative-free.

A disadvantage is its sensitivity to design parameters, this is specifically addressed in Chapter 6. It

must be noted that an implementation of monotonic hopping has been developed as well, which is

described in Appendix B. Unfortunately, this did not lead to a performance comparable to values

reported in literature. This is attributed to the perturbing operator that was used.
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3.2.3 Use of MATLAB and C++ programming languages

MATLAB is used as the programming language for developing and testing algorithms, its superior

user-friendliness makes it the method of choice. However, its computational performance is rather

poor (Eichorn et al. 2016). Therefore, C++ implementations of the trajectory models are compiled

as MEX functions1, these are interfaced with MATLAB. It has been found that compiling C++

source code as a MEX function decreases the computation time of an objective function evaluation

by a factor twenty, compared to the MATLAB implementations of the models. The source code of

the MGA and MGADSM functions is available for download from the web page of ESA’s Advanced

Concepts Team.2 The used differential evolution code has been made available as devec3.m on

the web page of Rainer Storn,3 one of the inventors of differential evolution.

3.3 Development of new algorithms

Several new algorithms are designed and developed, most notably those described in Chapter 7.

In this chapter, five different concepts that are aimed at exploiting the similarity between paired

trajectories, with a limited ∆T0, are proposed. Two key principles that are adhered to in the

generation of the concepts, are the following.

1. Concepts are sought to be diverse, with their distinctions on a high level. This is to maximize

the coverage of the ’solution space’ of the concepts.

2. Concepts are mutually exclusive. This allows one to distinguish between individual effects

on the basis of experimental results.

The latter condition makes that the concepts can be displayed in a tree structure, as done in Figure

7.1 in Chapter 7.

3.4 Algorithm verification

External software is verified by testing it and comparing the results to values reported in literature.

Self-developed software is verified by cross-referencing it to known solutions. Also, chapters that

describe the implementation of code, notably Chapter 6 and 7, include sections in which verification

is specifically addressed.

3.5 Assessment of results

The results of this research consist of performances of both the a posteriori and a priori methods,

as well as an analysis of the methods themselves (an algorithm review). The methodology that is

used for obtaining results in both categories, is explained below.

3.5.1 Performance

The performance of the methods is split in accuracy and computational efficiency. In evolutionary

optimization, both are often communicating vessels. However, due to the decoupling of optimiz-

ing ∆V and finding ∆Vrb in the a posteriori method, they are not as directly related anymore.

Therefore, accuracy and computational efficiency are addressed separately.

1 More information on MATLAB MEX functions: https://nl.mathworks.com/help/matlab/matlab_external/

introducing-mex-files.html
2 http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html
3 http://www1.icsi.berkeley.edu/~storn/code.html
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Accuracy

The accuracy of an optimization effort is calculated as the difference between the objective function

value that is attained, and the best known objective function value on that problem. Since robust

trajectory pairs on the MGA and MGADSM models have not been researched before, the best

solutions attained in this research are the best known solution in general.

Computational efficiency

In many optimization problems, the lion’s share of the computational effort is taken by the nu-

merous objective function evaluations. Therefore, the number of trajectory function evaluations

(a trajectory function calculates the ∆V budget as a function of control variables) is taken as a

measure of the computational effort, rather than computation time. This approach allows for com-

parison between computers of different processing power. On the other hand, one should realize

that this method implies that any difference in the overhead computation time of the optimizer is

not taken into account. This simplification is common in literature and also used in this research.

In case of the a posteriori method, the total number of trajectory function evaluations NT is doc-

umented. It consists of the optimization runs that are required for computing the optimal ∆V

budget curve.

A first note on the a priori method, is that its objective function calls twice to the trajectory

function per objective function evaluation (see Section 5.2). Furthermore, calculating the compu-

tational efficiency is slightly more complicated than for the a posteriori method because not every

differential evolution run converges to the global minimum. The here proposed measure is named

performance indicator N95 and is closely related to the number of trajectory function evaluations

that is required to be 95% confident that a user-specified target value V TR has been found at

least once Olds, Kluever, and Cupples (2007). It is calculated as follows. Let p be the chance

that a certain optimizing run of Nfe function evaluations is successful, Nruns the number of runs

and pthresh the desired confidence interval, thus here pthresh = 0.95. Then the maximum allowed

chance that out of Nruns runs, none reach V TR is 1− pthresh. This is mathematically transcribed

below.

(1− p)Nruns = 1− pthresh (3.1)

Rewriting as function of Nruns leads to the following formulation.

Nruns = log(1−p) (1− pthresh) (3.2)

Changing the base of the logarithm yields the following equation. One should notice that the

logarithms in Equation 3.3 can have any base, as long as they are the same for the numerator and

denominator.

Nruns =
log (1− pthresh)

log (1− p)
(3.3)

Finally, to find N95, Equation 3.3 is multiplied with the average number function evaluations per

run.

N95 = Nfe ·Nruns = Nfe ·
log (1− pthresh)

log (1− p)
(3.4)

The reason why N95 is closely related to, and not exactly, the number of function evaluations that

is required to be 95% confident that V TR has been reached, is because the distribution of Nfe is
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neglected. The added complexity of including the distribution of Nfe, which has been observed

to be asymmetrical, would make the performance indicator opaque, while the current formulation

of N95 already provides sufficient measure of relative performance. Therefore, the approximation

using Nfe is made. Furthermore, a result of the formulation of N95 is that the stopping criterion

of differential evolution plays a role in the quantification of its performance. This is inevitable

when comparing the a posteriori and a priori approach. Stopping criteria are addressed in Chapter

6.

Standard deviation of the success rate

The uncertainty of the results is quantified using the standard deviation σp of the success rate.

Given that the success rate is the same for each run, any series of Nruns can be modeled as a

binomial experiment. The standard deviation of the success rate is calculated as follows (Dekking

et al. 2005).

σp =

√
p (1− p)
Nruns

(3.5)

The standard deviation can consequently be used to calculate high and low estimates of the per-

formance indicator.

3.5.2 Algorithm review

Besides the quantitative comparison, the following features of the developed algorithms will be

compared qualitatively.

1. Algorithm complexity. Besides an analysis of the different subroutines of an algorithm,

the need for human oversight is also taken into account. This indicates that some task are

not automated because of complexity.

2. Influence of design parameters. These parameters need to be set by the user. Although

they provide control over an algorithm, they are generally considered unfavorable features.

Referring to the no free lunch theorem (Wolpert and Macready 1997), optimal settings on

one problem lead to suboptimal settings on another. Moreover, the non-physical nature of

design parameters makes it difficult to estimate reasonable values. This makes an algorithm

prone to suboptimal settings.

3. Versatility. This concept is defined as the applicability beyond the strict scope of the

problem formulation. It is further split into the following two categories.

(a) Results. It is analyzed if the results of a robust optimization campaign have any

additional value for analysis of the mission.

(b) Method. It is assessed if the methods are applicable to similar (isomorphic) problems.

3.6 Application to the Cassini mission

Although the a posteriori and a priori approach are designed to work on any gam sequence, they

are specifically applied to three problems that are inspired the trajectory of Cassini. This mission

to Saturn and its moons was launched on October 17th 1997 and arrived at Saturn on July 1st

2004, after consecutive flybys of Venus (twice), Earth and Jupiter. Only on September 15th 2017

has the orbiter been decommissioned after many ground-braking discoveries. It has been one of
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Figure 3.2: Overview of the Cassini trajectory.4

the most successful interplanetary missions in history (Coates 2017).

Figure 4.6 shows the trajectory of Cassini. The following three reasons have led to selecting it

as a case study.

1. It is a challenging trajectory with four gravity-assist maneuvers (GAMs).

2. Although the actual trajectory contains deep space maneuvers (DSMs), it can be approxi-

mated without DSMs as well.

3. It has been well researched, therefore sufficient verification material is available in literature.

In Chapter 4, three variants of the Cassini trajectory are proposed as test problems.

4 https://saturn.jpl.nasa.gov/resources/1776/cassini-trajectory/
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Chapter 4

Trajectory models

To understand the capabilities and limitations of the MGA and MGADSM trajectory models, it

is vital to gain insight into their working principles. This chapter explains how they calculate

the ∆V budget from a set of control variables (together contained in the decision vector). The

structure of this chapter is threefold. First, the iterative nature of Kepler and Lambert propagation

is addressed in Chapter 4.1. In the following section, it is explained how the events of departure,

DSMs, GAMs, and arrival are modeled. Finally, a description of the three test problems (Cassini0,

Cassini1, and Cassini21) is provided in Section 4.3.

4.1 Two-body problem propagators

Kepler propagation is explained first, thereafter Lambert propagation. Full analytical relations are

omitted since they are not required for understanding how the a posteriori and a priori approach

work, they can be found in Bate, Mueller, and White (1971) and Izzo (2014) respectively. The

focus of this section is to point out the key challenges and characteristics of both propagation

methods.

4.1.1 Kepler propagation

Propagating a spacecraft’s position and velocity given a time of flight involves transforming the

Cartesian state (x, y, z, ẋ, ẏ, ż) to an orbit in terms of Kepler elements (a, e, i, ω,Ω, E) and back (the

quantities can be found in the List of symbols). The analytical relations for both transformations

are well known, the implementation used in the implementation by Izzo (2010) are based on Bate,

Mueller, and White (1971). A limitation of this method is that there are two singularities in the

transformation from Kepler elements to Cartesian coordinates (for i = 0 and when an intermediate

parameter equals π), but no errors due to these singularities have occurred during this research. To

find the new position after the transformation to Kepler elements, mean anomaly M is required.

It can be calculated as follows.

M = E − e · sinE (4.1)

The difference between two mean anomalies M1 and M2 is calculated as a function of time of flight

T . The sign before gravitational parameter µ is positive for ellipses and negative for hyperbolas.

M2 −M1 =

√
±µ
a3
· T (4.2)

1 The self-developed problem Cassini0 is simpler than both known problems, Cassini1 and Cassini2 (Izzo 2010).

Therefore, the self-developed problem is given a lower number, hence counting starts at zero.
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Using the inverse of Equation 4.1 leads to the new state in Kepler elements. However, there is no

closed-form expression for eccentric anomaly E, therefore its value is determined iteratively using

the Newton-Rhapson method (Raphson 1702). This is one of the issues that hinder analytical

optimization (see Chapter 1). Finally, the new Cartesian coordinates can be calculated using the

new eccentric anomaly.

4.1.2 Lambert propagation

The reader is reminded that Lambert’s problem is concerned with solving the boundary value

problem of finding two velocities, given the two associated positions and a time of flight. Since

the first accurate solution was found by Gauss (1857), various different approaches have been

suggested. The key challenges are, analogously to Kepler propagation, singularities (see below)

and the lack of explicit relations. The method that is implemented in the trajectory models has

been developed by Izzo (2014). The main innovation of Izzo’s approach is the introduction of a

new variable k that is updated in iterative loops. It is defined as follows.

k = log

(
1 + cos

(
β

2

))
(4.3)

Angle β is a function of two angles φ and ψ.

β = φ+ ψ (4.4)

Furthermore, φ and ψ are functions of the eccentricity and eccentric anomalies.

ψ =
E2 − E1

2
(4.5a)

cosφ = e · cos

(
E2 − E1

2

)
(elliptic) (4.5b)

cosφ = e · cosh

(
E2 − E1

2

)
(hyperbolic) (4.5c)

Then, parameter k is calculated as a function of the time of flight (see Equation 4.1 and 4.2) and

updated in an iterative loop, until convergence is declared. The Newton-Rhapson method is used

here as well (Raphson 1702).

A result of this new formulation is an improved accuracy of the initial guess for the iterations,

with respect to previous solution methods. Also, the velocity estimates do not show singular be-

havior for a transfer angle close to π (half an orbit), but k remains undefined for a transfer angle

of zero.

4.2 Trajectory events

Figure 4.1 shows schematic overviews of the MGA and MGADSM trajectories. It can be seen that,

from left to right (thus forward in time), the following types of events are encountered.

1. Departure

2. A DSM (only in the MGADSM model)

3. A GAM (powered in the MGA model and ballistic in the MGADSM model)

4. Arrival
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Figure 4.1: Schematic description of the MGA and MGADSM trajectory models.

Table 4.1: Control variables of the MGA model. The last column indicates the number of the control

variables as function of the number of GAMs NGAM .

Symbol Quantity Units Number

T0 Departure epoch MJD2000 1

T Time of flight between planets days NGAM + 1

The control variables of both trajectory models are stated in Table 4.1 and 4.2. In the following

sections, the formulas that express ∆V in terms of these variables are explained, by analyzing the

events in the respective order.

4.2.1 Departure

Departure is modeled as an impulse that contributes directly to the ∆V budget, its magnitude is

denoted by ∆V 0. Both trajectory transcriptions only account for the hyperbolic excess velocity in

∆V 0, assuming that escape from Earth’s gravity well is handled by a launch vehicle.

In the case of the MGA model, the magnitude of ∆V 0 follows from solving Lambert’s problem

between departure and the first GAM. In the MGADSM model, propagation from the departure

planet to the first DSM is done using Kepler’s method, requiring the velocity vector at departure

to be fully determined. This is done by including right ascension αLA and declination δLA (both

of the launch asymptote) as well as ∆V 0 in the decision vector. Definitions of the former two

variables, relative to a non-rotating Earth, are shown in Figure 4.2.

4.2.2 Deep space maneuvers (MGADSM only)

DSMs are short bursts of thrust that are modeled as discrete changes of the velocity vector. The

location of a DSM is determined by ratio η; it states at which fraction of time of flight T between
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Table 4.2: Control variables of the MGADSM model. The last column indicates the number of the control

variables as function of the number of GAMs NGAM .

Symbol Quantity Units Number

T0 Departure epoch MJD2000 1

∆V 0 Departure impulse magnitude km/s 1

αLA Right ascension of the launch asymptote radians 1

δLA Declination of the launch asymptote radians 1

T Time of flight between planets days NGAM + 1

η Fraction of T at which the DSM takes place ratio NGAM + 1

R Ratio between the flyby perigee and planetary radius ratio NGAM
γ b-plane insertion angle radians NGAM

Figure 4.2: Departure trajectory with right ascension αLA and declination δLA (both of the launch asymp-

tote). The subscripts are omitted in this figure (Biesbroek 2016).
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Figure 4.3: Schematic drawing of a powered GAM.

two planets a DSM takes place. Therefore, Kepler propagation from the last planet over an interval

ηT yields the location and incoming velocity of the DSM. Then, Lambert’s problem can be solved

between the DSM and the next planet, the time of flight is (1−η)T , yielding the outgoing velocity

of the DSM. Simple vector calculus reveals the ∆V contribution of the DSM.

4.2.3 Gravity-assist maneuvers

Two different types of GAMs are considered in this work: the powered variant in the MGA model

and the ballistic variant in the MGADSM model. They are explained in this order because the

equations of the ballistic GAM can be easily derived from the relations that hold for the powered

variant.

Powered gravity-assist maneuver (MGA only)

Figure 4.3 shows a GAM with an impulse (parallel to the direction of flight) at the perigee of the

flyby. The general expression for the outer asymptote angle δ is stated in Equation 4.6 (Englander

2013), in which µpl is the gravitational parameter of the planet. Furthermore, the magnitudes

of incoming and outgoing velocities at an infinite radial distance from the planet are denoted by

V−∞,P and V+∞,P .

δ = sin−1

(
1 +

rpV
2
−∞,P

µpl

)−1

+ sin−1

(
1 +

rpV
2
+∞,P

µpl

)−1

(4.6)

The incoming an outgoing heliocentric velocities are obtained by solving Lambert’s problem on

the trajectory legs between planets. Transforming both velocities as well as the angle between

them to the planetocentric reference frame yields V−∞,P , V+∞,P and δ. This leaves rp the only

unknown in Equation 4.6. There is no closed-form expression for rp, consequently the Newton-

Rhapson method is used again (Raphson 1702). Then, after the flyby radius is determined, the

magnitude of the burn at the perigee ∆VGAM can be obtained by applying conservation of angular

momentum in ballistic flight. When rp violates a predefined constraint relative to the planetary
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radius (to avoid atmospheric entry or collision), the magnitude of the violation is multiplied with a

factor and added as a penalty to the ∆V budget.2 This steers any optimizer away from infeasible

flyby geometries.

Ballistic gravity-assist maneuver (MGADSM only)

Since no burn is applied during the GAMs in the MGADSM model, the magnitudes of the incoming

and outgoing velocities are equal. This leads to the following equality.

V−∞,P = V+∞,P (4.7)

This means that both terms of Equations 4.6 are equal. Since the arc after the GAM is propagated

using Kepler’s method (see Figure 4.1), the direction of outgoing velocity vector V+∞,P needs to

calculated. This is done as follows.

The ratio between rp and the planetary radius is denoted as R and is included in the decision

vector.3 Since V−∞,P has been obtained by solving the Lambert arc between the DSM and the

GAM, δ can be calculated. Next, the plane in which δ is defined, is obtained from the last opti-

mization variable, b-plane insertion angle γ. This b-plane is perpendicular to the incoming velocity

asymptote and passes through the center of the body. Figure 4.4 shows its orientation with respect

to a hyperbolic flyby trajectory. The angle between the spacecraft’s velocity and vector B at the

moment of crossing the b-plane, is γ. The outgoing velocity is calculated as follows, with
[̂
i, ĵ, k̂

]
unit vectors describing the b-plane.

V+∞,P = V−∞,P ·
(

cos δî+ cos γ cos δĵ + sin γ sin δk̂
)

(4.8)

The unit vectors of the b-plane in the heliocentric frame are obtained as follows, where VP,H is

the heliocentric velocity vector of the planet (Englander 2013).

î =
V−∞,P
V−∞,P

(4.9a)

ĵ =
î×VP,H

||̂i×VP,H||
(4.9b)

k̂ = î× ĵ (4.9c)

The MGADSM model can be relatively easily extended to allow for powered flybys. This would

require a single extra control variable per GAM (for a perigee burn parallel to the direction of

flight), for example the magnitude of the impulse. This can be implemented as part of a follow-up

study, but it is not expected to play a significant role in the relative performance of the a posteriori

and a priori methods.

4.2.4 Arrival

There are two different manners in which arrival is modeled. A first option is that the spacecraft

is injected into an arrival orbit that is determined by its eccentricity and perigee (where it also

joins the orbit), the inclination is equal to the that of the incoming trajectory. The magnitude of

the contribution to the ∆V budget is obtained by equating potential, kinetic and orbital energy

in the planetocentric frame. The second option is a ’rendez-vous’ arrival, which eliminates the

2 The values that are used have been suggested by Izzo (2010). Jupiter has a penalty factor of 0.001 and all other

planets 0.01.
3 One should note that this makes the penalty function redundant.
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Figure 4.4: Schematic drawing of the b-plane (Jones 2016). Vector B points through the b-plane to the

incoming asymptote of the spacecraft.

relative velocity between the spacecraft and the target (planet), the gravity of the arrival body is

neglected. Although this last arrival type is not realistic for planetary missions, it is used in the

Cassini2 verification problem (Izzo 2010).

4.3 Application to the trajectory of Cassini

Three different problems have been formulated, each of different optimization difficulty. While

the first (Cassini0) is self-developed, the second and third problems (Cassini1 and Cassini2) are

obtained from the web page of ESA’s Advanced Concepts Team4 and have also been used to

verify the performance of the implementations of the trajectory models. The exact same values as

reported by ESA’s Advanced Concepts Team have been obtained, therefore the trajectory models

are considered verified.

4.3.1 Cassini0 MGA trajectory

The Cassini0 trajectory is a highly simplified version of the actual trajectory: it omits the GAMs of

the inner planets and does not allow for DSMs. At arrival, the spacecraft injects into an eccentric

orbit with e = 0.98 and perigee radius rp = 108950 km, these are the same values as in Cassini1.

The minimum ∆V trajectory is displayed in Figure 4.5, the parameter boundaries and numeric

solution are shown in Table 4.3. Figure 4.5 shows that the Jupiter GAM is virtually ballistic.

In total, 95% of the ∆V budget stems from the departure impulse. Impulses yield more energy

gain at higher velocities; in the trajectory in Figure 4.5 the heliocentric velocity is highest near

departure.

4 http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html
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Cassini0 MGA trajectory

 

Earth departure

1999 - 7 - 7

V = 8.92 km/s

Jupiter GAM

2002 - 1 - 4

V = 0 km/s

Saturn arrival

2014 - 1 - 30

V = 0.43 km/s

Figure 4.5: Global minimum trajectory of the Cassini0 MGA problem.

Table 4.3: Best attained solution on the Cassini0 MGA problem. The limited dimensionality makes it

highly likely that it is the global minimum solution.

Variable Units Lower boundary Upper boundary Solution

T0 MJD2000 -1000 0 -177.810

T1 days 400 2000 911.903

T2 days 2000 6000 4409.37

∆V km/s 9.352
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4.3.2 Cassini1 MGA trajectory

The Cassini1 MGA problem has the same planetary sequence as the actual mission: Earth, Venus,

Venus, Earth, Jupiter, Saturn. Its global minimum trajectory is displayed in Figure 4.6. The first

two flybys, both at Venus, are separated by a resonant leg; its period is twice the orbital period

of Venus; both GAMs occur at the same location. In the solution space analysis in Appendix A

it is demonstrated that the ∆V budget is very sensitive to the duration of this second leg. Also,

at the fourth GAM (Jupiter), a low flyby radius results in a sharp transfer angle. Table 4.4 shows

the control variable values of the global minimum solution. The associated ∆V budget is 4.931

km/s, which is considerably lower than the 9.352 km/s of the Cassini0 problem. This illustrates

the effectiveness of GAMs.

Table 4.4: Global minimum solution to the MGA Cassini1 problem (Izzo 2010).

Variable Units Lower boundary Upper boundary Solution

T0 MJD2000 -1000 0 -789.812

T1 days 30 400 158.302

T2 days 100 470 449.386

T3 days 30 400 54.7490

T4 days 400 2000 1024.36

T5 days 1000 6000 4552.31

∆V km/s 4.931

4.3.3 Cassini2 MGADSM trajectory

Figure 4.7 shows the global minimum solution of the Cassini2 MGADSM problem in the inner

solar system. It resembles the actual trajectory of Cassini more than the MGA transcription,

due to the V∞-leveraging maneuver between the two successive Venus flybys. Interestingly, the

direction of this DSM 2 is opposite to the heliocentric velocity of the spacecraft. Intuitively, it

seems counterproductive to reduce the orbital velocity en-route from Earth to the Jovian system.

Apparently, the leveraging effect outweighs the orbital energy decrease of DSM 2. Furthermore,

Figure 4.8 shows the rest of the trajectory as well, DSMs 3, 4 and 5 are negligible.

Table 4.4 shows the numerical values of the control variables of the best known solution. Two

values lie on a boundary constraint, T5 = 2200 days and R2 = 1.05. One can imagine that relax-

ing the constraint on T5 may be feasible and worth the extra flight time, while the lower limit on

R2 is physical. It stems from the radius of Venus and its atmosphere.

The global minimum ∆V budget is 8.385 km/s. The reason that this is higher than the ∆V

budget of the MGA trajectory, is because of a rendez-vous arrival at Saturn. The ∆V budget

including arrival orbit injection (into the same orbit as Cassini0 and Cassini1) would be 4.610

km/s, showing the merit of the MGADSM over the MGA trajectory, which has a ∆V budget of

4.931 km/s and a longer time of flight.

4.3.4 Comparison with the actual trajectory

Cassini0 has a higher ∆V budget than the actual Cassini mission, due its shorter flyby sequence.

However, both Cassini1 and Cassini2 are more propellant-efficient than the actual mission, with

∆V budgets of respectively 4.931 and 4.610 km/s (when orbit injection is considered instead of
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Cassini1 MGA trajectory

 

Earth departure

1997 - 11 - 2

V = 2.75 km/s

Venus

GAM 1: 1998 - 4 - 9

V = 1.09 km/s

GAM 2: 1999 - 7 - 3

V = 0.62 km/s

Earth GAM 3

1999 - 8 - 27

V = 0 km/s

Jupiter GAM 4

2002 - 6 - 16

V = 0 km/s

Saturn arrival

2014 - 12 - 2

V = 0.47 km/s

Figure 4.6: Global minimum trajectory of the Cassini1 MGA problem.
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Table 4.5: Global minimum solution to the MGADSM Cassini2 problem (Izzo 2010).

Variable Units Lower boundary Upper boundary Solution

T0 MJD2000 -1000 0 -779.047

∆Vdep km/s 3 5 3.25911

αLA radians 0 1 0.52598

δLA radians 0 1 0.38086

T1 days 100 400 167.379

T2 days 100 500 424.028

T3 days 30 300 53.2897

T4 days 400 1600 589.767

T5 days 800 2200 2200.00

η1 ratio 0.01 0.9 0.76948

η2 ratio 0.01 0.9 0.51329

η3 ratio 0.01 0.9 0.02742

η4 ratio 0.01 0.9 0.26399

η5 ratio 0.01 0.9 0.59998

R1 ratio 1.05 6 1.34878

R2 ratio 1.05 6 1.05000

R3 ratio 1.15 6.5 1.30730

R4 ratio 1.7 291 69.8090

γ1 radians −π π -1.59374

γ2 radians −π π -1.95953

γ3 radians −π π -1.55499

γ4 radians −π π -1.51346

∆V km/s 8.385
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Cassini2 MGADSM inner planet trajectory

Earth departure

1997 - 11 - 13

V = 3.26 km/s

DSM 1

1998 - 3 - 22

V = 0.48 km/s

Venus

1998 - 4 - 29

GAM 1

DSM 2

1998 - 12 - 3

V = 0.4 km/s

Venus

1999 - 6 - 27

GAM 2

DSM 3

1999 - 6 - 29

V = 0 km/s

Earth

1999 - 8 - 20

GAM 3

Figure 4.7: Zoomed-in view of the global minimum trajectory of the Cassini2 MGADSM problem.

rendez-vous) versus 5.33 km/s on the actual mission (Englander 2013). This can be ascribed to

the significantly shorter time of flight of the latter: 2451 days. The Cassini1 and Cassini2 times

of flight are respectively 7028 (!) and 3434 days. This illustrates the trade between conflicting

objectives of minimizing both ∆V and time of flight.
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Cassini2 MGADSM full trajectory

DSM 4

2000 - 1 - 22

V = 0 km/s

Jupiter

2001 - 3 - 31

GAM 4

DSM 5

2004 - 11 - 10

V = 0 km/s

Saturn arrival

2007 - 4 - 9

V = 4.25 km/s

Figure 4.8: Full view of the global minimum trajectory of the Cassini2 MGADSM problem.
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Objective functions

Both the a posteriori and a priori methods can be decomposed into several sub optimization

problems. These are identified through a problem analysis of both approaches, consequently it

is assessed which of these optimization problems is the most challenging part of the respective

method. Finally, objective functions and the associated decision vectors are formulated. In case

of the a priori approach, two different formulations are proposed.

5.1 A posteriori problem analysis

The a posteriori approach has been defined in as follows.

Definition a posteriori approach: The a posteriori approach

first computes minimum ∆V budget ∆Vopt for a range of depar-

ture epochs T0 (optimal ∆V budget curve). Thereafter, robust

∆V budget ∆Vrb is obtained from pairs of ∆Vopt values that

are departure epoch interval ∆T0 apart.

This definition shows the separation between optimizing ∆V and identifying the minimum robust

trajectory pair. This section is structured analogously.

Δ𝑉𝑜𝑝𝑡 (𝑇01) Δ𝑉𝑜𝑝𝑡(𝑇01)

Δ𝑉𝑜𝑝𝑡(𝑇01 + Δ𝑇0)

Δ𝑉𝑟𝑏(𝑇01)

Δ𝑉

ΔVopt

𝑇01

ΔVopt

𝑇01

ΔVrb

𝑇01

Δ𝑉1

Δ𝑉2

max(Δ𝑉1, Δ𝑉2)

Δ𝑉 Δ𝑉

Figure 5.1: Visual representation of the algorithm that finds the minimum robust trajectory pair from the

optimal ∆V budget curve ∆Vopt(T0).
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5.1.1 Computing the optimal ∆V budget curve

Due to the lack of several closed-form expressions, no general analytical expression for optimal ∆V

budget curve ∆Vopt(T0) can be obtained. Therefore, the following numerical approach is taken.

Departure epoch T0 is discretized into Ndps values, for each of which ∆V is optimized (yielding

∆Vopt).

Minimization of ∆V with the departure epoch fixed is an optimization problem of dimension-

ality D− 1 because T0 is not an optimization variable. Here, D is the number of control variables

that are provided to the trajectory function (the function that calculates a ∆V budget, given

control variables). The dimensionalities of the optimization problems are therefore 2, 5 and 21

respectively on the Cassini0 to Cassini2 problems. The associated objective function is named the

a posteriori objective function and the decision vector is denoted by xpt. It can be concluded

that to compute the optimal ∆V budget curve, one has to solve Ndps times a D − 1 dimensional

optimization problem.

5.1.2 Determining the minimum robust trajectory pair

The robust trajectory pair can be relatively easily obtained from the optimal ∆V budget curve.

Figure 5.1 shows graphically how it is found. This figure should be interpreted as follows.

1. The first graph shows a optimal ∆V budget curve of the first departure opportunities.

2. The second figure includes the optimal ∆V budget curve of the associated backup trajectories.

3. The maximum of both ∆V budgets is ∆Vrb, depicted in the rightmost graph.

Consequently, minimizing ∆Vrb(T01) yields the minimum robust trajectory pair. Taking a strict

mathematical definition, the step from the optimal ∆V budget curve to the minimum robust pair

comprises of two optimization problems: first a maximization of ∆Vopt(T01) and ∆Vopt(T01+∆T0)

for each discrete departure epoch, to generate ∆Vrb(T01), and then a minimization of this last func-

tion. However, both are one-dimensional optimizations of discrete values and can be solved rapidly

by a simple algorithm that finds the extreme values of an array. The challenge of the a posteriori

method lies in the Ndps optimization problems of dimensionality D − 1.

The problem analysis is synthesized into the flow diagram of Figure 5.2 and the pseudo code

of Algorithm 1.

Algorithm 1 Pseudo code of the a posteriori approach

1: establish a departure epoch vector T0

2: for each entry of T0 do

3: ∆Vopt(T0) := min(∆V (T0,xpt)) . differential evolution

4: end for

5: establish a first departure epoch vector T01

6: for the each entry of T01 do

7: ∆Vrb := max(∆Vopt(T01), ∆Vopt(T01 + ∆T0)) . maximum of a two-value array

8: end for

9: min ∆Vrb(T01) . minimum value of an array
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ΔVrb(𝑇01)

Δ𝑉𝑜𝑝𝑡 𝑇0

ΔVrb 𝑇01

Δ𝑇0

Figure 5.2: Flow diagram of the a posteriori approach.
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5.2 A priori problem analysis

The a priori approach has been defined as follows.

Definition a priori approach: The a priori approach mini-

mizes robust ∆V budget ∆Vrb directly as a function of the con-

trol variables of both trajectories (except the second departure

epoch T02), given a departure epoch interval ∆T0.

By definition, ∆Vrb is the maximum of the ∆V ’s the two trajectories (indicated by ∆V1 and ∆V2).

These trajectories are each determined by D control variables, thus 2D in total. However, T02 is

fixed at an interval ∆T0 from T01, therefore either one is not free for optimization; T02 is chosen.

This leads to an optimization problem of dimension 2D − 1, so 5, 11, and 43 respectively on the

Cassini0 to Cassini2 problems. The associated objective function is named the a priori objective

function.

The result is a minimax1 optimization problem, due to the nested maximization of the two trajecto-

ries inside the minimization of ∆Vrb. The minimization problem is a one dimensional optimization

of two discrete values, arguably the simplest possible form of optimization. Figure 5.3 shows a flow

diagram of the a priori approach.

A high-level distinction between two types of formulations for the decision vector of the a pri-

ori objective function has been identified. The first formulation describes both trajectories using

absolute values of the control variables. It is named the absolute decision vector formulation. An

alternative approach is found in the decision vector formulation, where the control variables of

the second trajectory are defined relative to the those of the first. This allows one to prune the

solution space efficiently, which is addressed in Chapter 7.2.3.

The implementations of both objective functions have been verified by feeding them decision vec-

tors of which the individual ∆V budgets are calculated as well.

5.2.1 Absolute decision vector formulation

The control variables of both trajectories are contained in absolute decision vector xab, with the

exception of T02. This is illustrated by the following example for the MGA case. The MGADSM

problem follows the same structure (it is provided in Table 5.1 at the end of this chapter).

xab =
[
T01, T11, T21, . . . , Tn1, T12, T22, . . . , Tn1

]
(5.1)

The control variables of two trajectories are then extracted as follows. Note that by definition

T02 = T01 + ∆T0.

x1 =
[
T01, T11, T21, . . . , Tn1

]
(5.2a)

x2 =
[
T01 + ∆T0, T12, T22, . . . , Tn2

]
(5.2b)

The procedure is schematically described in Algorithm 2.

1 A minimax optimization problem is a minimization problem with a maximization problem nested in it. This

type of problem is common in game theory where it is often desired to minimize the maximum score of a competitor

(Du and Pardalos 2013).
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ΔV1, ΔV2

Δ𝑉𝑟𝑏

Δ𝑉𝑟𝑏



Figure 5.3: Flow diagram of the a priori approach. The difference between xab and xre (middle right

block) is explained in the text.

Algorithm 2 Absolute objective function formulation

1: function ∆Vrb(xab)

2: get parameters of first trajectory x1 := xab [1 to D]

3: get parameters 2 to last of second trajectory x2 := xab [D + 1 to last]

4: calculate T02: x2[1] := x1[1] + ∆T0

5: evaluate ∆V budgets ∆V1 := ∆V (x1) and ∆V2 := ∆V (x2)

6: define ∆Vrb := max (∆V1,∆V2)

7: end function
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5.2.2 Relative decision vector formulation

Instead of using absolute values for the control variables of the second trajectory, one can define

them relative to x1. The resultant variables are named the relative optimization variables. Illus-

trating this formulation also with an MGA trajectory leaves the following formulation for relative

decision vector xre.

xre =
[
T0, T1, T2, . . . , Tn, ∆T1, ∆T2, . . . , ∆Tn

]
(5.3)

Consequently, the MGA control variables are obtained as follows. Algorithm 3 shows a pseudo

code description of the relative objective function.

x1 =
[
T0, T1, T2, . . . , Tn

]
(5.4a)

x2 =
[
T01 + ∆T0, T1 + ∆T1, . . . , Tn+ ∆Tn

]
(5.4b)

The solution space of the T0 to Tn control variables is named the absolute solution space, the

solution space of the ∆T1 to ∆Tn variables is named the relative solution space. The elegance

of this formulation is that it allows boundary constraints on the differences between the control

variables. This property is further explored in Section 7.2.3.

Algorithm 3 Relative objective function formulation

1: function ∆Vrb(xre)

2: get parameters for first trajectory x1 := xre [1 to D]

3: calculate x2 [2 to last] := x1 [2 to last] + xre [D + 1 to last]

4: calculate T02: x2[1] := x1[1] + ∆T0

5: evaluate ∆V budgets ∆V1 := ∆V (x1) and ∆V2 := ∆V (x2)

6: define ∆Vrb := max (∆V1,∆V2)

7: end function

5.3 Conclusion

Both the a posteriori and the a priori approach include multiple sub optimization problems. For

the a posteriori approach, the highest dimension is D − 1, while for the a priori approach it is

2D − 1. An overview of the trajectory, a posteriori, and a priori objective functions is provided

in Table 5.1. The entries of each of the decision vectors considered in this work can be found in

Table 5.2.
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Table 5.1: Overview of the characteristics of three different objective functions.

Function name Trajectory A posteriori A priori

Description Function that evaluates

the ∆V budget of a trajec-

tory (MGA or MGADSM)

Trajectory function with

the departure epoch fixed

Objective function that

evaluates two trajectories

with ∆T0 between the de-

parture epochs

Input Control variables of the

trajectory

Control variables except

for T0

Control variables of both

trajectories except for sec-

ond departure epoch T02

Output ∆V of the trajectory ∆V of the trajectory ∆Vrb, equal to the highest

of the ∆V ’s of the trajec-

tories

Dimensionality D D − 1 2D − 1
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Table 5.2: Specification of the optimization variables of the various objective functions that are considered in this work.

Cassini0 MGA Symbol Dimensionality Optimization variables

Trajectory x 3 T0 T1 T2

A posteriori xpt 2 T1 T2

A priori absolute xab 5 Trajectory 1 optimization variables

T0 T11 T21

Trajectory 2 optimization variables

T12 T22

A priori relative xre 5 Absolute optimization variables

T0 T1 T2

relative optimization variables

T1re T2re

Cassini1 MGA

Trajectory x 6 T0 T1 T2 T3 T4 T5

A posteriori xpt 5 T1 T2 T3 T4 T5

A priori absolute xab 11 Trajectory 1 optimization variables

T0 T11 T21 T31 T41 T51

Trajectory 2 optimization variables

T12 T22 T32 T42 T52

A priori relative xre 11 Absolute optimization variables

T0 T1 T2 T3 T4 T5

relative optimization variables

T1re T2re T3re T4re T5re

Cassini2 MGADSM

Trajectory x 22 T0 ∆V 0 δLA αLA T1 T2 T3 T4 T5 η1 η2 η3 η4 η5 R1 R2 R3 R4 γ1 γ2 γ3 γ4

A posteriori xpt 21 ∆V 0 δLA αLA T1 T2 T3 T4 T5 η1 η2 η3 η4 η5 R1 R2 R3 R4 γ1 γ2 γ3 γ4

A priori absolute xab 43 Trajectory 1 optimization variables

T0 ∆V 01 δLA1 αLA1 T11 T21 T31 T41 T51 η11 η21 η31 η41 η51 R11 R21 R31 R41 γ11 γ21 γ31 γ41

Trajectory 2 optimization variables

∆V 02 δLA2 αLA2 T12 T22 T32 T42 T52 η12 η22 η32 η42 η52 R12 R22 R32 R42 γ12 γ22 γ32 γ42

A priori relative xre 43 Absolute optimization variables

T0 ∆V 0 δLA αLA T1 T2 T3 T4 T5 η1 η2 η3 η4 η5 R1 R2 R3 R4 γ1 γ2 γ3 γ4

relative optimization variables

∆V 0re δLAre αLAre T1re T2re T3re T4re T5re η1re η2re η3re η4re η5re R1re R2re R3re R4re γ1re γ2re γ3re γ4re

42



Chapter 6

Optimization

In the previous chapter, the sub optimization problems of the a posteriori and a priori methods

have been identified. The objective functions will be optimized using differential evolution.1 This

optimizer has demonstrated its capability solve various MGA and MGADSM trajectories, but it is

sensitive to the settings of its parameters. Therefore, two different variants are tested, leading to

the selection of a single variant to be used in the remainder of the research. The structure of this

chapter is as follows. First the working principle and implementation of differential evolution is

explained in Section 6.1. Thereafter, the performance of the two variants is reported and discussed

in Section 6.2, followed by a conclusion in Section 6.3.

6.1 Differential evolution

Differential evolution is a simple, yet very effective, metaheuristic optimization algorithm. It is

important to understand how differential evolution works, to appreciate the different performances

of the a posteriori and the a priori approach. Therefore, a description of the core optimization loop

is provided in Section 6.1.1. Next, Section 6.1.2 and 6.1.3 respectively handle how constraints and

stopping criteria are applied. Verified results of the used implementation are presented in Section

6.1.4.

6.1.1 Algorithm description

Differential evolution emulates evolutionary behavior in a population P with NP vectors u that

each represent a solution in the N dimensional solution space. They are also referred to as mem-

bers. In each generation (iteration), a mutant vector m is created for each member u. The creation

of mutants happens through addition and subtraction of random members of the previous genera-

tion, although several slightly different procedures for recombination are available. These various

procedures are referred to as different strategies, they are explained in more detail below. When

a mutant has been created for each member, crossover ratio CR ∈ [0, 1] determines which entries

of the mutant are placed in competing member c. The entries of c that are not filled by entries

of m are filled with the respective entries of original member u. Two distinct crossover operators

are possible, bin (binary) and exp (exponential) crossover. The bin operator does a binomial ex-

periment for each entry individually, the latter assigns entries of m to c until the first binomial

experiment fails. The experiments consist of checking if a random value between 0 and 1 is lower

than crossover ratio CR. Also, crossover is guaranteed for one random entry per member. In

1 Appendix B describes the implementation of a monotonic basin hopping variant that has been tested on the

objective functions but did not lead to any success. This is attributed to the perturbing operator.
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general, the difference between the crossover operators is marginal (Price, Storn, and Lampinen

2005). Finally, the fitness of each c is compared to the fitness of the associated m; when it has

improved, c will replace m. This scheme is looped until a user-defined stopping criterion is satisfied

(Storn and Price 1997). A pseudo code transcription of the differential evolution variant that is

used in this work is included as Algorithm 4.

Algorithm 4 Pseudo code of differential evolution best/2/exp

1: generate initial population P

2: evaluate fitness of each member in population P

3: identify best member b

4: while both stopping criteria are not satisfied do

5: for for each member u do

6: pick randomly four members d, e, f and g

7: create mutant m := b + F (e− f + g − h)

8: for each dimension, starting randomly, do

9: while a random value between 0 and 1 < CR do

10: assign value of mutant m to competing member c

11: end while

12: assign values of u to c for remaining entries

13: ensure crossover at random entry

14: end for

15: calculate fitness of competing member c

16: if fitness c is better than fitness u then

17: replace u by c

18: end if

19: end for

20: identify and save best member b

21: check stopping criterion 1: calculate the average distance

22: check stopping criterion 2: count number of stalled generations

23: end while

Strategies for mutant creation

Strategies for differential evolution are indicated in the format a/n/b. Here, a refers to the base

member of each mutant (b in Algorithm 4), which can either be a random member (rand), the

best member of the population (best) or a combination of both (rand-to-best). Next, n indicates

using how many vector pairs the perturbing term of m is created. Generally n is either 1 or 2,

this corresponds to respectively 2 or 4 vectors (e to h in Algorithm 4). Finally, b indicates the

crossover strategy: either bin or exp.

Design parameters

Besides selecting the strategy, differential evolution requires the user to set values for three param-

eters. They are explained below.

1. Scaling factor F ∈ [0, 2] determines the magnitude of the perturbing term of m (see Algorithm

4). Higher scaling vectors correspond to more exploratory behavior.

2. Crossover ratio CR ∈ [0, 1] determines the chance that an entry from m goes to c. Lower val-

ues result in a higher convergence (Zaharie 2009). This potentially reduces the computational
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effort but also increases the chance on premature convergence.

3. Population size NP . Many different population sizes for the MGA and MGADSM trajectories

have been proposed, from a fixed number of 20 (Vinko and Izzo 2008) to 20N (Englander

2013) and many values in between. Small populations have little diversity and will experience

difficulty exploring the solution space exhaustively. On the other hand, large populations have

a tendency to converge into local minima (Price, Storn, and Lampinen 2005). This behavior

has been observed during this study as well.

Proposed variants

The strategy and design parameter settings have a decisive impact on the performance of differential

evolution. Values that are generally considered good first guesses are F = 0.8, CR = 0.9 and

NP = 10N combined with the DE/rand/1/bin strategy. However, several studies have yielded

significantly enhanced performance on the MGA and MGADSM trajectories, either by tuning

parameters to a specific problem or by creating self-adapting schemes (Vasile, Minisci, and Locatelli

2011; Musegaas 2012; Zuo, Dai, and Peng 2017). In this respect, especially the work of Musegaas

(2012) is valuable. He was able to improve the performance of differential evolution significantly

by tuning the design parameters. These results still represent the best attained performance of

differential evolution on the Cassini1 and Cassini2 trajectories. Therefore, the two best performing

variants of Musegaas are selected to be tested for use in this work. The settings are summarized

in Table 6.1

Table 6.1: The two most promising differential evolution variants, proposed by Musegaas (2012).

Strategy F CR NP

DE variant 1 best/1/exp 0.7 0.9 4.5 ·N
DE variant 2 best/2/exp 0.5 0.94 3 + 3.7 ·N

6.1.2 Constraint handling

The MATLAB implementation of differential evolution that has been made available by Rainer

Storn (one of its inventors) is used.2 A limitation of this implementation is that it does not for

enforce boundary constraints. Therefore, a bounce-back mechanism is implemented; members are

bounced back into the solution space by a magnitude equal to the boundary constraint violation.

Trials showed that the effect of using of a different constraint handling strategy, reinitialization in

the full range of the respective dimension (as used in PaGMO3), is negligible on the considered

problems. This insignificance of the precise boundary handling strategy has also been described

by Price, Storn, and Lampinen (2005). The nonlinear constraints on the flyby radius in the MGA

trajectory model are handled by a penalty function, described in Section 4.2.3.

Algorithm 5 Equal bounce-back constraint handling

for each dimension i do

if entry ci of competing member c violates entry qi of boundary constraint q then

ci := 2qi − ci
end if

end for

2 It is named devec3.m and can be downloaded from http://www1.icsi.berkeley.edu/~storn/code.html.
3 A bundle of implementations of optimizers that has been developed by ESA https://esa.github.io/pagmo2/
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6.1.3 Stopping criteria

Differential evolution converges after a number of generations. The definition of the performance

indicator stated in Chapter 3 rewards quick termination of runs after convergence, because N95

is linearly dependent on the average number of function evaluations Nfe. Two stopping criteria

are used in this research. The first criterion is the average distance between population members,

the loop is terminated when it drops below a threshold. The second criterion counts the number

of generations without significant improvement and stops the optimizer when it exceeds a limit.

Both stopping criteria are explained below.

Average distance calculation

A comparison of the average distance between the members of the population to a user-specified

limit, is a very powerful criterion that can be used to declare convergence (Vasile, Minisci, and

Locatelli 2008). Since reproduction occurs by adding and subtracting members (vectors), the

population is unable to move away from a minimum after the average distance between members

drops below a certain threshold. The computational effort of calculating this average distance is

considerable since the number of combinations of members Nc is a function of the population size

NP , it adheres to the following relation.

Nc =
NP (NP − 1)

2
(6.1)

To mitigate the computational effort, the average distance between the members is calculated

once every ten generations. For proper comparison, the solution space needs to be scaled. In

the algorithm developed for this research, it is scaled down to the range [-1, 1]. One should also

note that the distance between members increases with the dimensionality of the solution space.

Distance d between a member e and a member f in an N dimensional space is calculated as follows.

d =

√√√√ N∑
i=1

(ei − fi)2 (6.2)

Pseudo code of the average distance stopping criterion is included as Algorithm 6.

Algorithm 6 Algorithm that calculates the average distance between members

1: let population matrix P have NP rows and N columns

2: initialize total distance as 0

3: calculate number of combinations Nc (Equation 6.1)

4: for i = 1 to NP − 1 do

5: A := P(first to last - i row)

6: B := P(first + i to last row)

7: C := A - B

8: for each row of C do

9: take the root-sum-square (rss) and add to total distance

10: end for

11: end for

12: divide the total distance by number of combinations

13: verify that the number rss values is equal to Nc
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Figure 6.1: Cross-sections of the solution space along the DSM ratios of the global optimum. The (small)

oscillations near the minima of η3 to η5 are likely due to the iterations of the Lambert and Kepler

propagators (see Section 4.1).

Insensitivity of DSM ratios

During trials with the stopping criterion on the Cassini2 trajectory, an undesirable property of the

MGADSM trajectory function revealed itself. As shown in Chapter 4, the solution of the Cassini2

problem includes three DSMs of negligible magnitude; the velocity increments range between 0.036

m/s and 0.20 m/s. The result of these low velocity increments is that the associated DSM ratios

η have no significant impact on the ∆V budget, thereby eliminating the mechanism that leads to

convergence of the DSM ratios. That in turn makes that the average distance has much difficulty

reaching values lower than 0.01 in the normalized solution space. This insensitivity of η3 to η5

is illustrated by Figure 6.1. It shows cross sections of the solution space along the DSM ratios

through the global optimum. This issue has been solved by not taking the DSM ratios into account

in the average distance stopping criterion. This reduces the number of dimensions in which the

average distance is calculated from 22 to 17 for the Cassini2 trajectory.

Convergence of only one trajectory in the a priori approach

The fact that ∆Vrb is determined only by the highest ∆V of the robust trajectory pair has a similar

effect on the minimum distance stopping criterion, as the DSM ratios. The control variables of the

trajectory with the lowest ∆V do not affect ∆Vrb, as long as this trajectory remains fitter than

the other trajectory. Therefore, these control variables can navigate relatively freely through the

solution space. Because this hinders simultaneous convergence of all control variables, the stopping

criterion only takes the distances between control variables of the momentarily fittest trajectory

into account, where T01 is considered to be a control variable of both trajectories. Therefore,
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the numbers of control variables that are considered for calculating the average distances are

respectively 3, 6 and 17 for the test problems.

Average distance limit values

The numerical values of the average distance stopping limits are 0.001, which is adopted from

Musegaas (2012). These values are somewhat conservative as many observed objective functions

reach the global minimum when the average distance is around 0.01. However, most populations

reach an average distance of 0.001 soon after 0.01. An exception is Cassini2, of which convergence

is very slow below 0.01. Therefore, the following additional stopping criterion is defined as well.

Maximum stall generations stopping criterion

A second stopping criterion is implemented in the differential evolution algorithm in the form of a

maximum number of stalled generations MSG. That is, the algorithm stops if it fails to improve

by more than fitness threshold FT over MSG generations. The following values are used in this

research, they are adopted from Englander (2013).

1. Minimum fitness improvement threshold FT = 1 · 10−6 km/s.

2. Maximum number of stalled generations MSG = 10 ·N .

This stopping criterion has only been satisfied frequently on the Cassini2 problem.

Discussion on stopping criteria

The stopping criteria have a direct influence on the performance of the algorithm, through average

number of function evaluations Nfe. If they are too lenient, the average number of function eval-

uations is unnecessarily high, but when they are too strict, the success rate suffers. This suggests

that an optimum exists. Specifically optimizing the stopping criteria has not been addressed in this

research, but it is a field in which further incremental improvement of the performance is expected

to be possible. For a fair comparison between the two different differential evolution variants that

are tested in this chapter, it is deemed most important that all are subjected to the same stopping

criteria, which requirement has been fulfilled by the approach proposed in this section.

6.1.4 Verification of the differential evolution algorithm

Although devec3.m has been used in many studies, a peculiar difference between this code and the

description provided by Storn and Price (1997) came to light when it was attempted to reproduce

results on two standard optimization testing functions, the Rosenbrock saddle and the Rastrigin

function.4 That is, devec3.m lacks the mechanism that ensures that at least one random entry

from m is crossed over to c. This does not lead to large performance differences for high CR and

D values, but is critical when CR is equal to zero. Inspection of the source code of the differential

evolution implementation in PaGMO revealed that here the minimum crossover mechanism is used

only in the exponential crossover variant. Again, this differs from the implementation proposed by

Storn and Price (1997). We may conclude that there is no consensus in the scientific community

whether or not to use the minimum crossover mechanism. In this work it is included, but the high

dimensionality of the solution spaces and high CR values selected in Section 6.1.1 limit its effect.

After having modified devec3.m such that it matches the descriptions in the respective publi-

cations precisely, it was possible to reproduce results from literature. An overview can be found

4 Equations are provided in Appendix C
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in Table 6.2. The first problem counts the number of function evaluations to reach a value (0.9),

the second reports the fitness after 1000 iterations. The performance measure n95 that is used on

the third verification function is not the same as N95. The difference is that n95 is calculated for

each successful run individually, using the number of function evaluations of that run until V TR

is reached (Olds, Kluever, and Cupples 2007).

The stopping criterion calculation scheme (Algorithm 6) is verified in the code itself (line 13),

as well as by a thorough review and by feeding a population matrix P of four members with all

combinations of coordinates −1 and 1 in two dimensions, yielding an average distance of 2.2761.

This is verified analytically. Algorithm 5 is of such limited complexity that careful inspection of

the code suffices as verification of its functionality.

Table 6.2: Three problems using which the implementation of differential evolution is verified. Sources:

Storn and Price (1997), Mezura-Montes, Velázquez-Reyes, and Coello Coello (2006), and Musegaas (2012).

Settings Rastrigin Rastrigin Cassini1

Strategy rand/1/bin best/1/exp best/2/exp

Dimension 20 30 6

Initial parameter range [-600, 600] [-5.12, 5.12] Section 4.3.2

Bounds No No Section 4.3.2

Value-to-reach 0.9 −∞ 4.98

Population size 25 60 25

Scaling factor 0.5 0.5 0.5

Crossover ratio 0 0.8 0.94

Max iterations ∞ 1000 ∞
Performance measure Nfe fitness n95

Verification

Average value 13171 39.9391 431

Sample size 1000 100 100

Literature

Average value 12971 40.0040 412

Sample size 20 100 400

6.2 Performance on the objective functions

Both proposed differential evolution variants have been tested on objective functions that are used

in this study. In this section, the setup of these trials is explained first and consequently the results

are presented in Section 6.2.2.

6.2.1 Experimental set-up

The two variants have been tested on the trajectory and a priori objective functions of each of the

three test problems (so six in total). The solution spaces of the a posteriori objective functions

are subsets of those of the trajectory functions and therefore not tested separately. The V TR that

should be reached for declaring success varies per objective function, these values are included as

well as the ∆V budget of the global minimum ∆Vmin. It can be observed that the margins are
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reasonably strict on the Cassini0 and Cassini1 trajectories, while a more lenient V TR is applied

to the Cassini2 trajectory because of its high dimensionality.

Table 6.3: Performance indicator N95 for the two variants of differential evolution.

Objective function N ∆Vmin V TR DE1 DE2

- km/s km/s N95 N95

Cassini0 MGA Trajectory 3 9.352 9.4 5.34 · 103 5.01 · 103

A priori 5 9.517 9.6 2.86 · 104 2.46 · 104

Cassini1 MGA Trajectory 6 4.931 5.0 8.15 · 105 8.64 · 105

A priori 11 5.028 5.1 2.10 · 108 1.52 · 108

Cassini2 MGADSM Trajectory 22 8.385 8.5 6.47 · 108 3.81 · 108

A priori 43 8.455 8.8 No success No success

6.2.2 Optimization results and discussion

The results in terms of N95 are shown in Table 6.3. Between the differential evolution variants, it

can be concluded that DE2 performs overall better than DE1. The slightly better performance of

DE1 on the Cassini1 trajectory function is deemed insignificant, therefore DE2 is selected as the

differential evolution variant to be used in this work. Table 6.3 also shows that both variants are

capable of reaching the V TR values on three out of four problems, but not on the 43-dimensional

Cassini2 a priori objective function. The fact that neither variant found a solution that exceeded

the V TR (the best results were 10.309 km/s and 9.681 km/s respectively), despite the lenient

threshold, is somewhat disappointing. On the other hand, this 43 dimensional optimization prob-

lem is rather difficult.

In Table 6.4, several extra parameters are provided for both differential evolution variants. These

are success rate p, standard deviation σp of the success rate and the average number of function

evaluations Nfe. The following observations have been made.

1. Uncertainty (σp) is relatively large due to the low success rates on the higher dimensional

objective functions. This makes the decision between DE1 or DE2 less certain on those

objective functions. Still larger samples lead to intractable computation times.

2. Performance indicator N95 increases with N . For the trajectory function, the increase is

approximately a factor 200 from Cassini0 to Cassini1, and approximately 500 from Cassini1

to Cassini2 (both for DE2). This increase of N95 is limited, compared to the exponentially

expanding solution spaces. It illustrates the favorable behavior of metaheuristic optimization

on solution spaces of high dimensionality.

3. The number of function evaluations of DE1 and DE2 are similar on the Cassini0 and Cassini1

trajectories, but different on the Cassini2 objective functions. This can be attributed to the

fact that one the former two, most optimization runs are terminated by the average distance

stopping criterion, while on the Cassini2 problem the maximum number of stalled generations

is leading. DE2 stalled sooner than DE1.

The Cassini0 problem has been generated for this study, so no verification data is available. How-

ever, the Cassini1 and Cassini2 problems have been generated by Izzo (2010) and the performance

of differential evolution on their trajectory functions has been studied before (Vasile, Minisci, and

Locatelli 2010; Musegaas 2012). The low success rates of both are subscribed. As the verification of

Section 6.1.4 has demonstrated, the success rate reported for DE2 on Cassini1 complies with value
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described by Musegaas (2012). The maximum number of stalled generations stopping criterion

that is applied to Cassini2 makes that a direct comparison is not possible for Cassini2.

Table 6.4: Success rate p, its standard deviation σp and the number of function evaluations Nfe for both

differential evolution variants that have been tested.

Objective function DE1 DE2

N Samples p σp Nfe p σp Nfe

Cassini0 MGA Trajectory 3 5 · 103 44.0% 0.70% 1.03 · 103 49.4% 0.71% 1.14 · 103

A priori 5 5 · 103 32.4% 0.66% 3.73 · 103 37.6% 0.69% 3.88 · 103

Cassini1 MGA Trajectory 6 2 · 104 1.45% 0.08% 3.97 · 103 1.37% 0.08% 3.98 · 103

A priori 11 2 · 104 0.040% 0.014% 2.80 · 104 0.055% 0.017% 2.79 · 104

Cassini2 MGADSM Trajectory 22 1 · 104 0.120% 0.035% 2.36 · 105 0.100% 0.032% 1.22 · 105

A priori 43 1 · 104 0% - 7.89 · 105 0% - 6.85 · 105

6.3 Conclusion

In this chapter, the differential evolution optimization algorithm that is used on the objective

functions has been explained. Optimization is terminated if the average distance between the

members drops below 0.1% of the normalized side length of the solution space, or if the fitness

has not improved more than 10−6 km/s over 10N generations. Also, appropriate settings for

the differential evolution optimizer have been selected. Two different variants have been tested,

leading to a small performance difference. The optimal settings have been found to be scaling

factor F = 0.5, crossover ratio CR = 0.94 and population size NP = 3 + 3.7 ·N for a best/2/exp

strategy. An area of improvement is the formulation of the stopping criteria.
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Pruning and biasing

An important characteristic of the robust trajectory pairs has, until now, remained unexplored:

the similarity between paired trajectories. The extend of this similarity depends on the departure

epoch interval; for the three weeks considered in this study, it promises potential for improving the

optimization performance. Five methods for pruning the solution space and biasing the optimizer

are proposed. An overview of these similarity exploitation methods is presented in Figure 7.1,

the methodology stated in Section 3.3 has been used to generate the concepts. A notable feature

of Figure 7.1 is that there is no method that biases the optimization process of the a posteriori

approach; no viable concept has been generated in this category. Furthermore, there are two al-

gorithms of which the design is based on a performance comparison of several options. The first

is the initial guess generator of the a posteriori method, here four different variants in two degrees

of freedom are compared. The second is the variable mirror operator; it includes a parameter of

which the value needs to be tuned. This is done through a grid search on Cassini1.

It is challenging to improve the computational efficiency while avoiding to exclude potentially

optimal solutions. Referring back to the no free lunch theorem (Wolpert and Macready 1997), it is

desired that improved performance on robusttrajectorypairs is payed for by a worse performance

on irrelevant problems. However, a difficulty is that it is likely that the trajectories of a robust

trajectory pair are similar, but not guaranteed. The proposed methods each handle this ambiguity

differently. In the following sections, first the a posteriori (green blocks) and then the a priori (blue

blocks) methods are explained.

7.1 A posteriori approach

Two measures are proposed to enhance the performance of the a posteriori approach. The first

biases optimization by providing an initial guess for the generation of ∆Vopt values of neighboring

departure epochs. The second prunes the solution space to a section around the global minimum

∆Vmin. Both are discussed respectively in the following two sections.

7.1.1 Generating an initial guess (biasing)

The similarity of trajectories with a limited interval between their departure epochs has been recog-

nized by Knittel et al. (2017) and used in PEATSA (remember that this is an automated sensitivity

analysis algorithm that calls to EMTG). However, the precise implementation of this algorithm

remains unclear. Therefore, in this section an independently developed method is proposed.
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Figure 7.1: Tree structure with the similarity exploitation methods presented in this chapter, the methods

are ordered conceptually. The green blocks are a posteriori methods, the blue blocks a priori methods.

The impact of the following two aspects on the quality of the initial guess is researched.

1. The extrapolation method used to generate the initial guess

2. The departure epoch step size δT0

Both characteristics are addressed below. After that, the performances of four algorithms with

different settings, are compared. The results are used to synthesize a final initial guess algorithm.

Extrapolation method

Two different extrapolation methods are considered. The first strategy simply uses the solution of

the previously optimized departure epoch xi−1 as initial guess xiig for the current time step. It is

named the previous solution strategy. For completeness, it is mathematically transcribed below.

xiig = xi−1 (7.1)

A second proposed strategy extrapolates the past two solutions linearly to make an initial guess for

the current departure epoch, hence it is named the linear extrapolation strategy. It is implemented

as follows.

xiig = xi−1 + (xi−1 − xi−2) (7.2)

The strategies are graphically illustrated in Figure 7.2 for both forward and backward propagation.

Note that this optimal ∆V budget curve does not correspond to an actual trajectory.

Departure epoch step size

A second factor that has a major impact on the quality of initial guesses is step size δT0 of the

departure epoch; the smaller, the more accurate initial guesses are. On the other hand, each
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∆𝑉(𝑇0)∆𝑉(𝑇0)

Figure 7.2: Graphical interpretation of the previous solution an linear extrapolation initial guess strategies,

for generating an initial guess for departure epoch n.

discrete departure epoch value requires an optimization problem to be solved. Also, the departure

epoch interval imposes a requirement on the step size, the latter should fit a positive integer times

in the former. These considerations can be synthesized into the hypothesis that an optimum value

(in terms of minimum computation time) for the step size exists, although this optimum depends on

the local properties of the solution space. Since a variable step size would lead to high complexity,

a constant departure epoch step size is used. Two step sizes are tested: 1 and 0.1 day.

Comparison of different initial guess algorithms

Taking each combination of the two extrapolation methods and two step sizes yields four different

initial guess algorithms. Their performances been evaluated on a 12 week interval around the

Cassini1 global minimum. The performance measure of the algorithms is the difference between

the ∆V budget (fitness) of the initial guesses and the minimized ∆V budget at that epoch,1 also

referred to as the error. Furthermore, each variant is tested using both forward and backward

propagation of T0; differences between the performances in different directions can be large. Con-

sequently, the conclusions drawn from the performance on this section are generalized for the

Cassini0, Cassini1 and Cassini2 solution spaces. This extrapolation avoids a costly assessment of

all methods on all trajectories, but introduces the assumption that the twelve week window of

Cassini1 is representative for the solution spaces. This window contains two different basins and

on one switch between these basins; the local characteristics of the solution space have influence

on the results. Anticipating the results of Chapter 8, no clear indications of the invalidity of the

extrapolation have surfaced. Still, there are various starting points for future, more elaborate,

studies on initial guess algorithms. The results on the twelve week window are graphically dis-

played in Figure 7.3. In this figure, the optimal ∆V budget curve has a basin switch at around

T0 = −770 MJD2000. The following observations have been made.

1 It can be claimed with confidence that the obtained curve (see Figure 7.3) is globally optimal, it is smooth and

includes the global minimum described by (Izzo 2010).
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Comparison of step sizes and extrapolation methods
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Figure 7.3: Comparison of step sizes and extrapolations methods on a twelve week window around the

global minimum of Cassini1.

1. The accuracy changes with the basin switch. In the top left graph it can be seen that the

resolution of 1 day yields rather poor initial guesses for T0 > −770 MJD2000.

2. The top right figure illustrates that linear extrapolation provides a poor initial guess around

the basin switch. The magnitude of the error is about the same for both 1 and 0.1 day

resolution.

3. The bottom left figure shows that the error of the linear extrapolation strategy is much larger

than the error of the previous solution strategy around the basin switch (note the logarithmic

y-axis).

4. The bottom right figure shows that the at the basin switch, the relative performance of

the propagation direction switches. In other words: in the left basin, forward propagation

performs best while in the right basin, backward propagation performs best.

Table 7.1 provides quantitative insight into the four different methods. Two important metrics are

the median and maximum errors. The former is an indicator of the accuracy within a basin while

the latter indicates how bad the performance is around basin switches. It is desired to have a low

value for both.

It is concluded that the previous solution strategy with a resolution of 0.1 days provides the

best performance. It generates reasonably accurate initial guesses in both propagation directions.
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Table 7.1: Comparison between the median and maximum errors of eight different initial guess strategies

around the global minimum of Cassini1

Direction Strategy Resolution Median error Max error

- - days km/s km/s

Forward Previous solution 0.1 3.2 · 10−2 4.6 · 101

Forward Previous solution 1.0 4.2 · 10−1 4.5 · 100

Forward Linear extrapolation 0.1 3.6 · 10−5 4.7 · 101

Forward Linear extrapolation 1.0 1.3 · 10−3 4.8 · 101

Backward Previous solution 0.1 2.5 · 10−1 5.9 · 101

Backward Previous solution 1.0 2.4 · 100 6.0 · 100

Backward Linear extrapolation 0.1 3.7 · 10−5 1.5 · 102

Backward Linear extrapolation 1.0 1.2 · 10−3 1.5 · 102

Linear extrapolation is much more accurate within a basin, but performs worse around the basin

switch. Therefore, the previous solution strategy is selected as the method of choice.

Initializing method

The use of an initial guess is somewhat uncommon in differential evolution, or any global opti-

mization method indeed. Often, global optimization efforts are undertaken precisely when there is

no initial guess. Still, the algorithm allows fairly easily for an initial guess to be included. In this

study it is simply inserted into the initial population, the rest of the initial members are still uni-

formly generated over the solution space. This assures a very diverse population to maximize the

chances of identifying a potentially more optimal basin. An alternative method would be a Gaus-

sian initialization around the initial guess (Kazimipour, Li, and Qin 2014a). Two disadvantages

are that it includes a parameter (the standard deviation) that needs to be tuned, and centering the

population around the initial guess reduces diversity, thus the chance to identify a more optimal

basin. For these reasons, the first approach is used.

Automated retries

While the initial guess strategy increases the chances of finding the global minimum ∆V for a given

departure epoch, the success rate is still not 100% for each departure epoch. Several measures for

dealing with this, while minimizing number of function evaluations, are proposed. The first is

focused on retrying optimization. This is done if the following conditions are true.

1. The slope between the current and the previous departure epoch (numerical approximation

of the first derivative
∂∆Vopt

∂T0 ) exceeds 1 km/s per day.

2. The change between the current and previous slopes (numerical approximation of the second

derivative
∂2∆Vopt

∂T02 ) exceeds 1 km/s per day per day.

The magnitudes of the thresholds have been obtained through trial and error. The conditions

are only true for a sudden and large deflection upwards, which is interpreted as a failure to solve

the optimization problem. Sudden and large deflections downwards are allowed, these occur when

there is switched from a suboptimal curve to a more optimal one (see Figure 7.5, it is explained

below). To avoid getting stuck in an infinite loop of retries, the number of retries is limited, the

limit is set on ten. Areas in which this limit is reached are later revisited for propagation using a

different extrapolation method and/or from a different direction.
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Entry points

The initial guess algorithm makes ∆Vopt values of the optimal ∆V budget curve consecutively

dependent: following departure epochs rely on previous ones for their initial guesses. This consec-

utive generation of the optimal ∆V budget curve is referred to as propagation. Furthermore, the

points from which propagation is started, are named entry points.

While the initial guess algorithm has a good performance for propagation within a basin, it has

been seen that it does not always cope well with basin switches. An accurate initial guess gives

the optimizer a strong bias to remain in the current basin, while, as propagation advances, other

basins may become optimal. The initial guess propagation technique has been found to identify

more optimal basins late, and sometimes not at all. This weakness is handled by starting propa-

gation from multiple entry points. These points are generated as follows.

The departure epoch range is divided into Ns (10 in this study) sections and on each of these

sections a number of trajectory function optimization runs is done. The number of entry points is

decided to be equal to the number of runs required to be 99% sure that the V TR has been reached

by the trajectory function. Using the relations described in Section 3.5, number of entry points

Neps is calculated as follows, with p the success rates (respectively 49.4%, 1.37%, and 0.1%) and

pthresh = 0.99%.

Neps =
log (1− pthresh)

log (1− p)
(7.3)

Rounding leads to 10, 320 and 4600 entry points (in total) on Cassini0 to Cassini2. Propagation

of the optimal ∆V budget curve begins at the fittest entry point (the global minimum) and moves

to the upper boundary of the departure epoch range, thereafter the procedure is repeated from the

fittest entry point to the lower boundary. When, during propagation, entry points with a better

∆V than the initial guess are encountered, these replace the initial guess. Figure 7.4 shows an

example of a (fictional) fully optimized, optimal ∆V budget curve and the entry points from which

it has been generated. Not every entry point has converged to the optimal ∆V budget curve. This

is because differential evolution not always converges to the global minimum.

The aforementioned consecutive dependency of the optimizations is also a vulnerability. Failure

to converge to the minimum of certain departure epoch will affect all following departure epochs

through bad initial guesses. This is an inherent weakness of the initial guess method.

Smoothening

When the ∆V has been minimized for each departure epoch, there may remain spiky regions

as well as too late transitions between basins, recognizable by the sudden drops of the optimal

∆V budget curve. In these areas, the optimization algorithm is rerun in a different direction

and/or using a different propagation strategy, until all the transitions are smooth. Figure 7.5

shows an example of smoothening of a too late basin transition. This procedure has not been fully

automated, smoothening is started manually.

Algorithm verification

The algorithm has first been verified by doing a thorough inspection. Furthermore, the extrap-

olation mechanisms are implemented modularly, they are verified by feeding simple examples of

which the outcome is known. Also, the algorithm has been designed such that the values of vari-

ables (the fitness of the initial guess, number of tries per departure epoch, value of the minimized
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D

D

D

Figure 7.4: Schematic interpretation of an optimal ∆V budget curve ∆Vopt(T0). It can be seen that not

all entry points converge to the ∆Vopt(T0) curve.

D

Figure 7.5: Example of smoothening. Propagating to the right results in a too late basin switch. By

propagating to the left, the transition is smoothened.
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Algorithm 7 Pseudo code of the a posteriori approach including initial guesses

1: discretize the range of departure epochs in Ndps values of T0

2: discretize the range of departure epochs in Ns sections

3: initialize matrix M of size Ndps ×D
4: for each section do

5: generate entry points

6: round T0 of the solution to the nearest discretized value

7: place the solution in the corresponding row of M

8: end for

9: start at the row after (forward in time) the fittest entry point

10: for current row to last row do

11: while criteria for terminating retrying are not satisfied do

12: initial guess is previous row from M

13: optimize a posteriori objective function

14: place solution in M

15: end while

16: go to next departure epoch

17: end for

18: repeat rows 10 to 17 the other way

19: re-optimize on spiky sections using different direction and/or propagation (human work)

20: find the minimum robust pair (Algorithm 1)

velocity budget) can be continuously monitored during test runs. This enables one to determine

if performance is as expected. Lastly, plots such as Figure 7.3, but also Figure 8.2 and 8.3 in the

next chapter, allow for confirmation of the functionality of the full algorithm.

Conclusion of the initial guess approach

The pseudo code of the a posteriori approach including the initial guess method can be found in

Algorithm 7. A resolution of 0.1 day is combined with the previous solution extrapolation method

for propagation, the linear extrapolation can be used to smoothen spiky sections of the optimal

∆V budget curve.

The proposed algorithm is the result of several comparisons and analyses, the chosen approach

has been found to work satisfactory. However, it is likely that the performance can be further im-

proved by assessing more extrapolation mechanisms, initialization methods and automated retry

strategies on a wider sections than the twelve week window around the global minimum of Cassini1.

The most comprehensive approach would be to compare the average number of function evalua-

tions on various objective functions. This would be an elaborate study, but could yield substantial

efficiency gains. It is recommended as a follow-up research.

7.1.2 Limited departure epoch range (pruning)

The second strategy applied to the a posteriori method limits the departure epoch range to

[−∆T0,∆T0] around the global minimum.2 This means that the solution space for finding the

entry point (global minimum) remains intact, while the solution space for the robust trajectory

is pruned relative to the global minimum. The number of function evaluations used for identify-

ing the global minimum (the entry point) is (decided to be) the value of performance indicator N95.

2 For ∆T0 = 21 days, the limited range is 4.2% of the full range.
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This strategy only yields the minimum robust pair if it is near the global minimum, which is

not guaranteed (illustrated in Figure 3.1). Still, it is interesting to research how much computa-

tional efficiency can be gained by this drastic pruning mechanism. Furthermore, the initial guess

algorithm is applied to this method as well. This conflicts somewhat with the second principle

formulated in the methodology of this chapter.3 However, it is clear that not using the initial

guess algorithm leads to exorbitant computation times, since this implies that a large series of

D − 1 dimensional optimization problems needs to be solved. Therefore, the limited departure

epoch range algorithm also includes the propagation technique described in the previous section.

A pseudo code tanscription of the limited departure epoch range method is provided in Algorithm

8. it has been verified in the same manner as described in Section 7.1.1.

Algorithm 8 Pseudo code of the limited departure epoch range method

1: initialize matrix M of size Ndps ×D
2: minimize ∆V to find the entry point (the global minimum)

3: place the solution of the entry point in the middle row of M

4: discretize T0 in a range [−∆T0,∆T0] around the entry point

5: start at the row after the entry point (forward in time)

6: for current row to last row do

7: while criteria for terminating retrying are not satisfied do

8: initial guess is previous row from M

9: optimize a posteriori objective function

10: place solution in M

11: end while

12: go to next departure epoch

13: end for

14: repeat rows 4 to 8 the other way

15: find the minimum robust pair (Algorithm 1)

7.2 A priori approach

Three different algorithms that exploit similarity between trajectories, have been developed for the

a priori approach. Section 7.2.1 argues for a specific initialization method and in Section 7.2.2, an

additional operator is added to the differential evolution optimizer. Both leave the solution space

intact, but bias the optimizer. The third method, which is proposed in Section 7.2.3, prunes the

solution space.

7.2.1 Symmetric initialization (biasing)

The effect of the initialization method on the performance of differential evolution can be signifi-

cant (Kazimipour, Li, and Qin 2014b). In this section, a tailored initialization strategy for the a

priori approach, is proposed. It applies to the absolute objective function formulation.

The principle is simple: initialize decision vector xab symmetrically. That is, assign identical

values to pairs of T1 to Tn, so T11 = T12, T21 = T22 et cetera. Taking the MGA decision vector

3 The second principle is that concepts should be mutually exclusive.
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as example, this yields the following structure for each initial member, where the magnitudes of

the variables are still uniformly randomly generated.

xab =
[
T01 T11 T21 . . . Tn1 T11 T21 . . . Tn1

]
(7.4)

The rationale behind this method is the hypothesis that a population with members that start

with the same control variable values for both trajectories, are also likely to find trajectories with

similar control variable values.

In differential evolution, a mutant vector m is created for each member u by adding and sub-

tracting random members of the population (see Section 6.1). Thus, a symmetrical population

leads to symmetrical mutants m. Then, crossover ratio CR determines the chance for individual

entries of m to go into competing member c; for each entry that is not crossed over from m to

c, the resultant c becomes less symmetrical. It can thus be concluded that the magnitude of CR

plays a role in the rate of dilution of the symmetry in the population. Since CR plays a role in

the effectiveness of symmetric initialization, it is likely that a different optimum value for it exists

than in differential evolution without symmetric initialization. In this work, CR is left on the value

determined in Chapter 6.

The form of symmetric initialization that is suggested above, is not possible for the relative objec-

tive function formulation. It would result in the initial values of the optimization variables of the

second trajectories being all zeros. No addition or subtraction could lead to any of these parame-

ters becoming non-zero. Research on alternative approaches that would avoids this characteristic,

like Gaussian initialization, are recommended for future studies. Lastly, the functionality of the

symmetrical initialization algorithm has been verified by inspecting initial populations that are

generated by it. It has been verified that the populations are indeed symmetric.

7.2.2 Variable mirror algorithm (biasing)

A second manner to bias the optimization process towards solutions with similar values for both

trajectories, is found in the new variable mirror operator. It is applied to the absolute objective

function formulation. In this section, the working principle of the operator is explained first.

After that, a design parameter named mirror threshold MT is tuned to the Cassini1 problem. It

determines the threshold for executing the variable mirror operations.

Variable mirror algorithm description

By definition, fitness ∆Vrb of a robust trajectory pair is determined by the highest of the two ∆V ’s

of the trajectories. This implies the classification method in the left graph of Figure 7.6. Only

members that have a fit value for both trajectories, are classified as overall fit. For example, a very

fit ∆V1 combined with a very unfit ∆V2 leads to a very unfit ∆Vrb = ∆V2. One could criticize this

method for wasting of potentially interesting (partial) solutions, since it also discards an entire

member when just one the two trajectories is unfit.

The following remedy is proposed. It is suggested that for each member, the ratio between the

two ∆V ’s is calculated. If the highest divided by the lowest exceeds a threshold MT , then the

variables of the fit trajectory are copied to the entries of the unfit trajectory. This procedure is

referred to as variable mirroring. The new classification is schematically displayed in the right

graph of Figure 7.6. Blue areas indicate members that qualify for mirroring. The reader can view

pseudo code of the mirror operator in Algorithm 9. It should be noted that application of the
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D

D

D
D

Figure 7.6: Classification of members with and without the variable mirror operator. The ∆V1 and ∆V2

axes correspond to the ∆V budgets of the respective trajectories that are represented by a single member,

so every member corresponds to a location in the plot.

mirror operator does not depend on the fitness of the resultant (mirrored) member; there is no

check after mirroring if the member as improved or not.

The variable mirror operator is applied in the iterative loop, before the standard differential evolu-

tion operations, as seen in Algorithm 10. The introduction of a new operator makes the resultant

algorithm closely related to hybrid evolutionary algorithms. These techniques combine or alter-

nate multiple (evolutionary) optimizers to achieve a better performance than the optimizers can

achieve individually (Grosan and Abraham 2007). Often, it can only be confirmed experimentally

if a specific combination of works or not. Hybrid evolutionary algorithms have been applied to

spacecraft trajectories as well (remember COOP in Section 2.3.1 and SAGES in Section 2.4.2).

A disadvantage of the mirror operator is that it requires a design parameter that needs to be

tuned, namely the mirror threshold MT . This is addressed in the following section.

Algorithm 9 Variable mirror operator

1: for each member in population P do

2: get ∆V1 and ∆V2

3: if ∆V1/∆V2 exceeds mirror threshold MT then

4: mirror variables: xrb [2 to D] := xrb[D + 1 to D − 1]

5: else if ∆V2/∆V1 exceeds mirror threshold MT then

6: mirror variables: xrb [D + 1 to D − 1] := xrb[2 to D]

7: end if

8: end for
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Algorithm 10 Differential evolution including variable mirroring

1: while stopping criteria are not satisfied do

2: execute variable mirror function (Algorithm 9)

3: apply standard differential evolution for one loop

4: end while

Methodology mirror threshold optimization

To determine the optimal value of mirror threshold MT , twenty sets of 104 optimization runs have

been performed for the following MT values.

[ 1.01 1.02 1.03 1.04 1.05 1.06 1.07 . . .

. . . 1.08 1.09 1.1 1.4 1.8 2.3 3 . . .

. . . 4 6 8 10 20 ∞ ]

(7.5)

One should note that MT = ∞ corresponds to standard differential evolution optimization, this

value is included for verification. Of each set of 104 runs, the success rate p, average number of

function evaluations Nfe and the number of mirror operations Nmirror are reported. This implies

that the performance of the mirror algorithm is (partially) reported in this chapter already (the

following chapter presents all results); this is inevitable due to the tuning of MT .

The tuning study has been done on the Cassini1 trajectory. This trajectory involves reasonable

computation times, while it is still relatively difficult. Furthermore, a similar research is done on

Cassini0 for verification (see Appendix D). It is not practically feasible to tune the mirror thresh-

old to on the Cassini2 problem, because of the long computation times. In this respect, it must

also be said that the variable mirror algorithm is only of value if it does not need to be tuned

to the Cassini2 problem, or any individual trajectory. Tuning MT takes a lot more time than

optimization itself.
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Figure 7.7: The success rate for various mirror threshold values on the Cassini1 trajectory.

Observations on the success rate

It can be seen in Figure 7.7 that the success rate is inversely correlated to the mirror threshold

value. The graph is volatile (especially so for MT = [1.01, 1.1]), but this volatility remains within
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the range of the +/-2σp confidence interval. In general, it is concluded that there is a significant

improvement of the success rate for a decreasing mirror threshold. For comparison, the success

rate of the standard a priori algorithm is included as a dashed line in the left graph.
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Figure 7.8: The average number of function evaluations for various mirror threshold values on the Cassini1

trajectory.

Observations on the number of function evaluations

Figure 7.8 shows that the average number of function evaluations Nfe is approximately constant

for the MT range [1.1, 20], but increases soon after MT drops below 1.1 (middle two graphs). The

right graph shows that the maximum Nfe is attained for MT = 1.01, Nfe is expected to increase

further when the mirror threshold approaches 1. The increase of the average number of function

evaluations with a decreasing mirror threshold comes from two sources.

1. Mirror operations directly lead to function evaluations. Namely, each member that has

undergone a mirror operation needs its fitness to be re-evaluated.

2. Populations that that are subjected to mirror operations require more iterations to converge.

It has been found that both sources contribute about equal to the increase in function evaluations.

Observations on the performance indicator

Performance indicator N95 is shown in Figure 7.9. The inverse relation with the success rate is

clearly recognizable and the volatility of the success rate is transferred to the performance indicator.

The lowest performance indicator value is attained for MT = 1.06, namely 1.15 ·107. This is a very

significant improvement compared to the 1.52 ·108 value of N95 of the standard a priori approach.

It must be mentioned that the difference with MT = 1.04 is very small and all values are well

within the +/-2σ confidence interval, making the choice for the precise value uncertain.

Observations on the mirror ratio

The mirror ratio divides the number of mirror operations Nmirror by the number of function

evaluations Nfe.

MR =
Nmirror
Nfe

(7.6)
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Figure 7.9: The performance indicator for various mirror threshold values on the Cassini1 trajectory.
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Figure 7.10: Mirror ratio as function of the mirror threshold (left) and the fitness and mirror ratio per

iteration for a typical successful run on Cassini1 (MT = 1.06).

Figure 7.10 shows that the curve MR(MT ) is extremely steep for low MT values (note the log-

arithmic y-axis). There are very few mirror operations for the high MT = 20; the mirror ratio

is in the order of magnitude of 10−6. However, the success rate for this mirror threshold value is

still significantly higher than for the a posteriori approach without the variable mirror operator.

It is remarkable that very few mirror operations already have a significant impact on the results.

A potential explanation is that mutant vectors are composed of five different population members.

In Algorithm 4, it is stated that the following vector equation is used to generate mutants.

m = b + F · (e− f + g − h) (7.7)

The fact that each mutant is composed of five other members, may result in symmetrical members

spreading quickly through the population. An interesting experiment to test this hypothesis would

be to verify if the best/1/exp strategy (see Section 6.1) performs worse; its mutants are composed

of only three other vectors.

In the right graph of Figure 7.10, the development of both the fitness of a member and the mirror
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ratio per iteration are displayed for a successful run with MT = 1.06. The maximum mirror ratio

is approximately 0.8, so about 80% of the members underwent a mirror operation in that iteration.

Furthermore, the fitness does not monotonically decrease, which it normally does in differential

evolution. A decrease of the fitness of the population occurs when the best member undergoes a

mirror operation that deteriorates its fitness. It has been analyzed what the effect is of discarding

mirror operations that lead to worse fitness values. This meant that the vast majority of mirror

operations was rejected and led to both a lower success rate and a lower number of function eval-

uations. These have opposite effects on the performance indicator, but the net effect of the lower

success rate proves dominant. Therefore, only applying mirror operators when it leads to a better

fitness, results in a worse overall performance.

Verification

The variable mirror operator has been implemented modularly. Its functionality has been confirmed

by feeding it (small) populations of ten members and checking if the expected mirror operations

have been executed. Furthermore, the results of the mirror threshold tuning study have been

verified by doing a similar campaign on the (much simpler) Cassini0 problem. The results are

included in Appendix D. An optimal mirror threshold of 1.05 has been observed, which is very

close to the 1.06 on Cassini1.

Conclusion mirror threshold research

A mirror threshold MT of 1.06 leads to an N95 value that is an order of magnitude lower than

without the mirror algorithm, on Cassini1. Other values in the range [1.03, 1.1] produce similar

results, volatility and uncertainty remain large. Verification on Cassini0 led to an MT of 1.05,

while computation times prohibit a tuning study on Cassini2. The value of 1.06 is used in the

remainder of this study.

7.2.3 Narrow relative boundary constraints (pruning)

The final method that is proposed in this chapter prunes the solution space of the relative objec-

tive function. This objective function has the convenient property that the control variables of

the second trajectory can be constrained relative to the first. Therefore, a set of narrow boundary

constraints is applied to the relative optimization variables. When these relative boundary con-

straints violate the absolute ones, the latter prevail.

The values of the narrow boundary constraints have been derived from the minimum robust tra-

jectory pair, they are formulated moderately tightly around its coordinates. More conservative

boundaries may be used in actual mission design, since one wants to avoid pruning the minimum

robust trajectory pair. However, since this study is interested in the potential of this method, the

values below are used; it provides an indication of the upper limit of the performance of the narrow

relative constraints algorithm.

Cassini0 relative boundary constraints

Table 7.2 provides an overview of how the boundary constraints have been generated on Cassini0.

The first five columns stem from the problem definition in Section 4.3. Column six and seven show

the numerical values of the control variables of both trajectories of the minimum robust pair.4 In

4 These values have been obtained in the study on the optimal mirror threshold value of in Section 7.2.2.
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Table 7.2: Overview of the values that are used for generating the narrow relative boundary constraints

for the Cassini0 problem.

Column 1 2 3 4 5 6 7 8 9 10 11 12 13

Variable Units Absolute boundaries Solutions Relative boundaries

Lower Upper Range 1 2 Difference Normalized Lower Upper Range Ratio

T0 MJD2000 -1000 0 1000 -583.81 -562.81 21.00 0.021 NA NA NA NA

T1 days 400 2000 1600 736.42 1181.7 445.3 0.278 -500 500 1000 0.625

T2 days 1000 6000 5000 2133.0 3668.2 1535 0.307 -2000 2000 4000 0.80

Normalized volume of the relative solution space 0.5

Table 7.3: Overview of the values that are used for generating the narrow relative boundary constraints

for the Cassini1 problem.

Column 1 2 3 4 5 6 7 8 9 10 11 12 13

Variable Units Absolute boundaries Solutions Relative boundaries

Lower Upper Range 1 2 Difference Normalized Lower Upper Range Ratio

T0 MJD2000 -1000 0 1000 -800.81 -779.81 21.00 0.021 NA NA NA NA

T1 days 30 400 370 167.63 149.87 -17.75 -0.048 -50 50 100 0.27

T2 days 100 470 370 449.39 449.39 1.1 · 10−4 3.1 · 10−7 -50 50 100 0.27

T3 days 30 400 370 55.84 53.70 -2.146 -0.006 -50 50 100 0.27

T4 days 400 2000 1600 1012.11 1034.18 22.07 0.014 -50 50 100 0.06

T5 days 1000 6000 5000 4532.96 4566.59 33.63 0.007 -50 50 100 0.02

Normalized volume of the relative solution space 2.47 · 10−5

column eight, the differences between the variables are provided: 21 days for T0 (as expected), 445

days for T1 and 1535 days for T2.5 The relative boundary constraints are obtained by rounding

these differences up with a resolution of 500 days, yielding 500 days for T1 and 2000 days for T2

(remember that T0 does not have a relative optimization variable). The lower and upper boundary

constraints are equal in magnitude, the values are displayed in columns ten and eleven.

The rightmost column (Ratio) divides relative optimization variable ranges by the absolute ones.

Taking the product of this column yields the ratios of the volumes of the relative solution space

and the absolute solution space, 0.5 for this problem.

Cassini1 relative boundary constraints

The relative boundary constraints of Cassini1 are generated in a similar manner, as can be seen

in Table 7.3. Here, the highest difference is rounded to 50 days, this value is uniformly adopted as

both a lower and upper boundary constraint. This means that the solution space of the relative

boundary constraints is a hypercube with side lengths of 100 days. The ratio between the volumes

of the relative solution space and the absolute solution space is 2.468 · 10−5. This is a significant

reduction.

Cassini2 relative boundary constraints

The relative boundary constraints of the Cassini2 trajectory can be found in Table 7.4 and have

been established in a slightly different fashion. The key difference is here that, because the control

variables have various different units, it was found convenient to derive the relative boundary

constraints from the normalized values. That is, the normalized values in column nine have been

rounded up and multiplied by two (because the lower and upper boundaries are chosen to be

equal), yielding the values in the rightmost column. Consequently, the ranges of the lower and

upper boundaries are obtained by multiplying the values of column thirteen by the ranges in column

five, yielding column twelve. Finally, the lower and upper boundary constraints are obtained by

5 These differences are so large because trajectories of the robust pair each lie in different basins (this will be

shown in Section 8.1.1).
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Chapter 7. Pruning and biasing

centering the ranges around zero. The size of the relative solution space is in this case 5.033 ·10−18,

compared to a normalized absolute solution space of volume 1.

Hypercube side length comparison

An interesting analysis is to calculate the side lengths of a hypercube of the same volume as

the normalized relative solution space, by taking the Dre-th root of the volumes, with Dre the

dimensionality of the relative solution space. Realizing that Dre = D − 1 (since ∆T0 is not a

relative optimization variable), Dre is 2, 5 and 21 respectively for Cassini0 to Cassini2. This leads

to the following hypercube side lengths for the respective trajectories.

Cassini0: 0.51/2 = 0.707

Cassini1:
(
2.47 · 10−5

)1/5
= 0.120

Cassini2:
(
5.03 · 10−18

)1/21
= 0.150

(7.8)

As expected, the side lengths are large for Cassini0. Furthermore, the side lengths on the Cassini1

problem (0.12) are slightly larger than those on the Cassini2 problem (0.15). Still, the relative

solution space of Cassini2 is several orders of magnitude smaller due to its higher dimensionality.

In absolute terms, 2.47 · 10−5 and 5.03 · 10−18 are both very small, one can conclude that the

boundary constraints proposed in this chapter roughly half the volume of the global (11 and 43

dimensional) solution spaces for Cassini1 and Cassini2.
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Table 7.4: Overview of the values that are used for generating the narrow relative boundary constraints for the Cassini2 problem.

Column 1 2 3 4 5 6 7 8 9 10 11 12 13

Variable Units Absolute boundaries Solutions Relative boundaries

Lower Upper Range 1 2 Difference Normalized Lower Upper Range Ratio

T0 MJD2000 -1000 0 -1000 -791.45 -770.45 21.00 0.021 NA NA NA NA

∆V 0 km/s 3 5 -2 3.4945 3.2778 -0.22 -0.108 -0.4 0.4 0.8 0.40

δLA radians 0 1 -1 0.5702 0.4923 -0.08 -0.078 -0.1 0.1 0.2 0.20

αLA radians 0 1 -1 0.4026 0.3653 -0.04 -0.037 -0.1 0.1 0.2 0.20

T1 days 100 400 -300 178.47 160.38 -18.09 -0.060 -30 30 60 0.20

T2 days 100 500 -400 425.28 422.43 -2.84 -0.007 -40 40 80 0.20

T3 days 30 300 -270 53.335 53.288 -0.05 −1.7 · 104 -27 27 54 0.20

T4 days 400 1600 -1200 589.78 589.77 -0.01 −7.1 · 106 -120 120 240 0.20

T5 days 800 2200 -1400 2200.0 2200.0 −2.2 · 104 −1.6 · 107 -140 140 280 0.20

η1 ratio 0.01 0.9 -0.89 0.7946 0.7421 -0.05 -0.059 -0.089 0.089 0.178 0.20

η2 ratio 0.01 0.9 -0.89 0.5496 0.5101 -0.04 -0.044 -0.089 0.089 0.178 0.20

η3 ratio 0.01 0.9 -0.89 0.1333 0.0105 -0.12 -0.138 -0.178 0.178 0.356 0.40

η4 ratio 0.01 0.9 -0.89 0.4578 0.0100 -0.45 -0.503 -0.534 0.534 1.068 1.20

η5 ratio 0.01 0.9 -0.89 0.0201 0.0100 -0.01 -0.011 -0.089 0.089 0.178 0.20

R1 ratio 1.05 6 -4.95 1.2072 1.5117 0.30 0.062 -0.495 0.495 0.99 0.20

R2 ratio 1.05 6 -4.95 1.0512 1.0500 −1.2 · 103 −2.4 · 104 -0.495 0.495 0.99 0.20

R3 ratio 1.15 6.5 -5.35 1.3060 1.3074 1.4 · 103 2.6 · 104 -0.535 0.535 1.07 0.20

R4 ratio 1.7 291 -289.3 69.819 69.808 -0.01 −3.9 · 105 -28.93 28.93 57.860 0.20

γ1 radians −π π 2π -1.5816 -1.6062 -0.02 -0.004 −0.01π −0.01π 0.02π 0.02

γ2 radians −π π 2π -1.9598 -1.9596 0.00 0.000 −0.01π −0.01π 0.02π 0.02

γ3 radians −π π 2π -1.5545 -1.5550 0.00 0.000 −0.01π −0.01π 0.02π 0.02

γ4 radians −π π 2π -1.5134 -1.5134 0.00 0.000 −0.01π −0.01π 0.02π 0.02

Normalized volume of the relative solution space 5.03 · 10−18
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Results

In this chapter, the results attained by six different algorithms (shown in Figure 8.1) are presented

and discussed. Besides the five pruning and biasing variants described in Chapter 7, a ’standard’

a priori approach is included as well, to quantify the improvements of the pruning and biasing

mechanisms. A variant of the a posteriori approach without the initial guess mechanism is omitted,

because of its evident computational inefficiency. The results of the two a posteriori variants are

first presented, followed by the four different a priori variants.

Figure 8.1: Overview of all tested algorithms.

8.1 Results of the a posteriori approach

The presentation of the results of the a posteriori approach follows a threefold structure. First,

several graphs of the optimal ∆V budget curve ∆Vopt(T0) are presented in Section 8.1.1. Next,

the performance is analyzed and finally the algorithm is reviewed.

8.1.1 Visualization of the optimal ∆V budget curve

Figure 8.2 and 8.3, printed on the next two pages, show the optimal ∆V budget curve for all three

problems. These graphs form the core of the a posteriori approach, each is accompanied by several

observations that have been made.

70



Chapter 8. Results

-1000 -800 -600 -400 -200

Departure epoch T0 [MJD2000]

0

10

20

30

40

50

60

70

V
op

t [k
m

/s
]

Cassini0 full departure epoch range

1 2 3

Global minimum
Entry points
Putative V

opt
(T0)

Range of other plots  

-1000 -990 -980 -970 -960 -950 -940

Departure epoch T0 [MJD2000]

9

9.5

10

10.5

11

11.5

12

V
op

t [k
m

/s
]

Cassini0 around a local minimum (1)

Putative V
opt

(T0)

T0= 35 days, V
rb

= 9.788 km/s

T0= 49 days, V
rb

= 9.894 km/s

-590 -580 -570 -560 -550 -540

Departure epoch T0 [MJD2000]

9

9.5

10

10.5

11

11.5

12

V
op

t [k
m

/s
]

Cassini0 around a local minimum (2)

Putative V
opt

(T0)

T0= 21 days, V
rb

= 9.517 km/s

-200 -190 -180 -170 -160 -150

Departure epoch T0 [MJD2000]

9

9.5

10

10.5

11

11.5

12

V
op

t [k
m

/s
]

Cassini0 around the global minimum (3)

Global minimum
Putative V

opt
(T0)

T0= 7 days, V
rb

= 9.380 km/s

T0= 21 days, V
rb

= 9.584 km/s (ltd. range)

Limited range

Figure 8.2: The putative optimal ∆V budget curve for Cassini0 and minimum robust trajectory pairs for

several different different departure epoch intervals.

– The top left graph in Figure 8.2 shows that Cassini0 has three minima with very similar

∆V budgets. In the three close-up plots, it can be seen that depending on the value of the

departure epoch interval, the minimum ∆V robust pair is at opposing sides of a different

minimum. As a result, the limited range method has found a suboptimal robust pair near

the global minimum (∆V = 9.584 km/s), with a ∆V budget that is 67 m/s higher than the

global minimum robust pair (near the second local minimum, ∆V = 9.517 km/s).

– Both trajectories of the ∆T0 = 21 days minimum robust pair lie in different basins (note that

the graph is not smooth between them). The differences between T1 and T2 are respectively

445 and 1535 days. In other words, one trajectory has a time of flight that is five years and

five months longer than the other. It seems likely that in mission design, such differences are

avoided, if possible. For comparison, the suboptimal robust pair near the global minimum

has two trajectories that differ only one year and three months in time of flight, at the cost

of a mere 67 m/s higher ∆V budget.

71



Chapter 8. Results

-800 -600 -400 -200 0

Departure epoch T0 [MJD2000]

0

5

10

15

20

25

V
op

t [k
m

/s
]

Cassini1 full departure epoch range

Global minimum
Entry points
Putative V

opt
(T0)

Range of right plot
Unstable area

-820 -800 -780 -760 -740

Departure epoch T0 [MJD2000]

5

5.5

6

6.5

7

7.5

V
op

t [k
m

/s
]

Cassini1 around the global minimum

Global minimum
Putative V

opt
(T0)

T0= 7 days, V
rb

= 4.943 km/s

T0= 21 days, V
rb

= 5.038 km/s

T0= 35 days, V
rb

= 5.216 km/s

T0= 49 days, V
rb

= 5.331 km/s

Limited range

-1000 -800 -600 -400 -200

Departure epoch T0 [MJD2000]

5

10

15

20

25

V
op

t [k
m

/s
]

Cassini2 full departure epoch range

Global minimum
Entry points
Putative V

opt
(T0)

Range of right plot

-820 -800 -780 -760 -740

Departure epoch T0 [MJD2000]

8.5

9

9.5

10

10.5

11

V
op

t [k
m

/s
]

Cassini2 around the global minimum

Global minimum
Putative V

opt
(T0)

T0= 7 days, V
rb

= 8.392 km/s

T0= 21 days, V
rb

= 8.456 km/s

T0= 35 days, V
rb

= 8.574 km/s

T0= 49 days, V
rb

= 8.635 km/s

Limited range

Figure 8.3: The putative optimal ∆V budget curve for Cassini1 and Cassini2 and minimum robust trajec-

tory pairs for several different different departure epoch intervals.

– The departure epochs of the global minima of Cassini1 and Cassini2 in Figure 8.3 are similar.

Away from this minimum, the resemblance between the graphs is much less outspoken; their

shapes differ significantly, despite having the same flyby sequence.

– For both Cassini1 and Cassini2, the minimum robust trajectory pair is in the global minimum

basin.

– During the generation of the optimal ∆V budget curve for Cassini1, there were three regions

identified that did not allow a smooth line to be established, indicated as blue dotted rect-

angles in Figure 8.3. The trajectory function is unstable in these areas because the penalty

function is very sensitive to changes in the control variables here. Since the MGADSM model

lack a penalty function, no sections of similar (severe) instability have been encountered in

the optimal ∆V budget curve of Cassini2, but it is still generally sensitive to changes in the

control variables.
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In the following pages, there will be periodically referred back to Figure 8.2 and 8.3.

8.1.2 Accuracy

Table 8.1 shows that the full range a posteriori method comes to approximately 0.5 m/s from the

best attained solutions on each trajectory. The limited range method reaches the same values,

with the exception of Cassini0, where a suboptimal solution (described above) led to a 67 m/s

higher ∆Vrb.

The differences between ∆V1 and ∆V2 of the trajectories illustrate that the remaining errors are

due to the limited resolution of T0 and the slope of the optimal ∆V budget curve. They prohibit

the ∆V budgets to converge further. It can be concluded that the used resolution of 0.1 day leads

to an accuracy in the order of magnitude of 0.5 m/s, which seems sufficient for a trajectory that

is modeled using the linked-conics approximation.

Table 8.1: The accuracy of the a full range a posteriori method for ∆T0 = 21 days. One should note that

∆Vrb = max (∆V1,∆V2). Furthermore, ∆Vbest is the ∆V budget of the best obtained solution in this

research (including by the a priori method).

Problem ∆V1 ∆V2 ∆Vrb ∆Vbest Error

km/s km/s km/s km/s km/s

Cassini0 9.51658 9.51719 9.51719 9.51671 0.00049

Cassini1 5.03751 5.03620 5.03751 5.03702 0.00049

Cassini2 8.45566 8.45527 8.45566 8.45513 0.00054

8.1.3 Computational efficiency

The numbers of function evaluations NT of the full and limited range methods are provided in

Table 8.2 and 8.3. In the following section, these numbers are discussed. Also, an analysis of the

influence of the dimensionality on the accuracy of initial guesses is included.

The number of function evaluations of the full range method

Table 8.2 shows the specification of the number of function evaluations of the full range method.

In the second last row, the total number of function evaluations NT is provided. The last row

calculates the ratio between NT , and N95 on the trajectory function optimization problem (see

Section 6.2.2). This figure compares the number of function evaluations that is required for finding a

single trajectory (N95), and for finding the robust trajectory pair (NT ). There is a clear decreasing

trend, from 4.49 ·103 to 2.86. This is because propagation and smoothening are relatively cheap on

the more difficult problems, while N95 increases. The following two reasons have been identified.

1. The number of runs per departure epoch is of the same order of magnitude for each of the

problems. Therefore, the number of a posteriori objective function optimization runs does

not increase when problems become more difficult (see Table 5.1 for the objective function

definitions).

2. The average number of function evaluations Nfe per run of the a posteriori objective function

(for propagating and smoothening) is lower than Nfe per run of the trajectory function (for

generating entry points). This reduction is greatest on Cassini2 with 83%, compared to 22%

and 18% on Cassini0 and Cassini1. As a result, propagation and smoothening are cheaper on
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Figure 8.4: Relative contributions to the total number of function evaluations.

Table 8.2: Specification of the total number of function evaluations of the a posteriori full departure epoch

range method. The last row shows the NT values divided by N95 on the trajectory function. The subtotals

do not precisely eqaul the products of the terms above them, since the numbers of function evaluations

are distributed.

Cassini0 Cassini1 Cassini2

MGA MGA MGADSM

Entry points

Number of runs 1 · 101 3.2 · 102 4.6 · 103

Number of function evaluations per run
(
Nfe

)
1.14 · 103 3.98 · 103 1.21 · 105

Subtotal 1.03 · 104 1.27 · 106 5.58 · 108

Propagation

Number of departure epochs 1.00 · 104 1.00 · 104 1.00 · 104

Number of function evaluations per run
(
Nfe

)
8.88 · 102 3.27 · 103 2.12 · 104

Number of runs per departure epoch 1.52 1.60 1.32

Subtotal 1.49 · 107 6.01 · 107 2.92 · 108

Smoothening

Number of departure epochs 1.00 · 104 1.00 · 104 1.00 · 104

Number of function evaluations per run
(
Nfe

)
1.10 · 103 3.65 · 103 2.81 · 104

Number of runs per departure epoch 0.69 1.13 0.81

Subtotal 7.60 · 106 4.20 · 107 2.41 · 108

Total (NT ) 2.25 · 107 1.03 · 108 1.09 · 109

NT /N95 449 · 103 1.20 · 102 2.86 · 100
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Figure 8.5: Relative contributions to the total number of function evaluations.

Table 8.3: Specification of the total number of function evaluations of the a posteriori limited departure

epoch range method. The last row shows the NT values divided by N95 on the trajectory function. The

subtotals do not precisely eqaul the products of the terms above them, since the numbers of function

evaluations are distributed.

Cassini0 Cassini1 Cassini2

MGA MGA MGADSM

Entry point (global minimum)

Number of function evaluations 5.01 · 103 8.64 · 105 3.81 · 108

(N95 on the trajectory function)

Propagation

Number of departure epochs 4.20 · 102 4.20 · 102 4.20 · 102

Number of function evaluations per run
(
Nfe

)
6.90 · 102 2.57 · 103 2.52 · 104

Number of runs per departure epoch 1.03 1.00 1.00

Subtotal 3.02 · 105 1.08 · 106 1.06 · 107

Total (NT ) 3.07 · 105 1.94 · 106 3.92 · 108

NT /N95 61.3 2.25 1.03

Cassini2. An explanation for this greater reduction of Nfe on Cassini2 is proposed further

below.

Both effects are illustrated in Figure 8.4, which shows that the relative contribution of propagation

and smoothening becomes smaller from Cassini0 to Cassini2.

The number of function evaluations of the limited range method

The number of function evaluations of the limited range method is shown in Table 8.3, the relative

contributions of the different routines are specified in Figure 8.5. The limited ranges are shaded

gray in the zoomed-in plots of Figures 8.2 and 8.3.

Table 8.3 shows that relatively few function evaluations are required for this approach, compared

to the full range method. The NT /N95 ratio decreases from 61.3 to 2.25 to 1.03 from Cassini0

to Cassini2. It is remarkable that the limited range approach apparently requires only marginally
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(3%) more function evaluations than trajectory function optimization on the Cassini2 problem.

Table 8.3 also shows that the number of runs per departure epoch is different than on the full

range. This is a result of the characteristics of the solution spaces around the global minima of

the problems, it does not signify a performance difference. Furthermore, the average numbers of

function evaluations are different from the full range method, but this difference stems from char-

acteristics of the solution spaces near the minima as well, not from differences of the algorithms.

The limited range method has difficulty switching basins. This is due to its single entry point

and it makes it unreliable when the minimum robust trajectory pair has trajectories in two differ-

ent basins. In Figure 8.2 this is the case for the minimum robust pairs with ∆T0 ≥ 21 days and

in Figure 8.3 for those with ∆T0 ≥ 49 days.

Relation between initial guess accuracy and dimensionality

The large decrease of Nfe when propagating the Cassini2 MGADSM trajectory (minus 83% com-

pared to Nfe for the entry points) is remarkable. It is hypothesized that initial guesses become

increasingly accurate when the dimensionality increases. The following explanation is proposed.

In this analysis, accuracy is defined as the volume of the part of the (normalized) solution space

that is at least as close to the global minimum, as the initial guess. This volume is defined by

a hypersphere around the global minimum with the initial guess at its surface. Furthermore, it

is supposed that the initial guess has distance d to the global minimum, in each dimension. The

analysis below calculates for which d it holds that the ratio between volumes VD and VD−2 of two

hyperspheres that have a dimensionality difference of two, is always smaller than one.

For a fixed distance d in every dimension, radius r of a hypersphere increases with dimension-

ality D, as shown below.

r =
√
D · d (8.1)

Furthermore, the following recursive formula holds for volume VD, as function of volume V ∗D−2 (de

Costa Campos 2014). This last hypersphere has dimensionality D − 2, and the same radius rD as

the D-dimensional hypersphere.

VD = V ∗D−2 ·
2πr2

D
(8.2)

However, we are interested in the relation with VD−2, which has radius rD−2 instead of rD. This

leads to a simple equation of two hypersphere volumes of the same dimensionality (D − 2), but

two different radii.

V ∗D−2 = VD−2 ·
(

rD
rD−2

)D−2

(8.3)

Substituting Equation 8.3 in 8.2 yields Equation 8.4.

VD = VD−2 ·
2πr2

D

D
·
(

rD
rD−2

)D−2

(8.4)

Equation 8.1 is then substituted in Equation 8.4.

VD = VD−2 ·
2πDd2

D
·

( √
D · d√

D − 2 · d

)D−2

(8.5)
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This can be simplified to the following expression. Note that D must be larger than 2.

VD = VD−2 · 2πd2 ·
(

D

D − 2

)D
2 −1

(8.6)

We are interested in the situation in which VD < VD−2. This is true when the following inequality

holds.

2πd2 ·
(

D

D − 2

)D
2 −1

< 1 (8.7)

To find the d for which this inequality is guaranteed to hold, the following part of Equation 8.7 is

investigated.

(
D

D − 2

)D
2 −1

(8.8)

The derivative of this expression with respect to D is continuously positive for D > 2. Therefore,

its limit for D to infinity yields its maximum value. Analysis reveals that this limit is e.

lim
D→∞

(
D

D − 2

)D
2 −1

= e (8.9)

Now substituting Equation 8.9 in 8.7 leads to the value of d.

2π · d2 · e < 1 (8.10a)

d <

√
1

2πe
(8.10b)

√
1

2πe
≈ 0.2420 (8.10c)

Therefore, it has been proved that when d <
√

1/(2πe), the volume of hypersphere that contains

all points that are at least as close to the global minimum as the initial guess, decreases when

the dimensionality increases (for D > 2). It can be expected that x <
√

1/(2πe) holds nearly

always; it represents a situation in which the initial guess approaches the global minimum with an

accuracy of 24% of the range of a variable.

8.1.4 Algorithm review

The algorithm review of both a posteriori variants is focused on complexity, the influence of design

parameters, and versatility.

Complexity

The architecture of the a posteriori approach is relatively complex. Several subroutines are required

for various tasks. These include discretizing the departure epoch, generating initial guesses and

detecting solutions that should be retried. Furthermore, smoothening the optimal ∆V budget

curve has not been fully automated because identifying potential areas for smoothening can be

difficult to automate. A solution could be to smoothen the range of departure epochs from end to

end, back and forth multiple times. However, this would be computationally inefficient.
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Influence of design parameters

The a posteriori approach includes various design parameters that affect the computational effi-

ciency of the algorithm. They are discussed below.

1. The number of steps Ndps into which the departure epoch is discretized has a large impact

on the number of function evaluations. Indeed, for every departure epoch at least one op-

timization problem needs to be solved. On the other hand, smaller step sizes are likely to

result in more accurate initial guesses, thus faster convergence and fewer runs per departure

epoch. As discussed in Section 7.1.1, an optimal resolution is likely to exist, but it depends

on the local characteristics of the solution space and is difficult to estimate. Therefore, Ndps
is taken conservatively, resulting in a high number of function evaluations. Furthermore, it

should be noted that for a fixed resolution on the full range approach, Ndps is proportional

to the departure epoch range.

2. The limit on the numerical derivative, the limit on the numerical second derivative and

the maximum number of runs per departure epoch affect the average number of function

evaluations per departure epoch. Their impact is large in sensitive areas and is amplified by

the fact that the number of function evaluations per run is higher in these areas.

Furthermore, the number of sections Ns in which entry points are generated determines the ability

of the full range method to identify different basins. Also, the design parameters of differential

evolution apply to the a posteriori (as well as the a priori) method, their impact has been discussed

in Section 6.1.

Versatility

A very clear advantage of the a posteriori approach is the versatility of the result. The optimal

∆V budget curve can be used for any departure epoch interval. Also, a Pareto-optimal front of

the minimum ∆Vrb and ∆T0 can be generated using the results. Figure 8.2 and 8.3 illustrate the

fact that ∆T0 can be chosen freely. Were one interested in a robust pair with a ∆T0 of 35 days on

the Cassini1 and Cassini2 trajectories, it may be valuable to know that this can be expanded to

49 days at the cost of relatively little extra ∆V . Another advantage of the a posteriori approach is

that it also shows the behavior of the optimal ∆V budget curve between the two departure epochs.

Although there are no requirements on this behavior due to the definition formulated in Chapter

3, it may be of interest for specific applications. It can be concluded that the results are versatile

and provide more information that required by the problem formulation.

Lastly, the a posteriori approach may be applicable to isomorphic problems beyond the field of

interplanetary trajectories as well. This is likely to demand new studies on the optimal initial guess

strategy and design parameters (such as the number of sections Ns of which the value depends on

the typical width of basins), since these have been tuned to the characteristics of the MGA and

MGADSM solution spaces.

8.1.5 Conclusion a posteriori results

The a posteriori approach is accurate to approximately 0.0005 km/s of the best attained solution.

The full range method requires approximately 2.25·107, 1.03·108 and 1.09·109 function evaluations

for Cassini0 to Cassini2, the limited range method requires respectively 3.07 · 105, 1.94 · 106 and

3.92 · 108 function evaluations. Furthermore, comparing the different methods and problems, the

following conclusions are drawn.
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1. The a posteriori method seems to scale well with the dimensionality of the trajectory function

due to two reasons.

(a) The number of runs per departure epoch does not increase with dimensionality.

(b) Initial guesses become relatively more accurate for a higher dimensionality.

2. The limited range approach requires far fewer function evaluations than the full range method.

On the difficult Cassini2 problem, this meant that finding a minimum robust trajectory pair

requires only marginally (3%) more function evaluations than optimizing a single trajectory.

However, on Cassini0, the global minimum robust trajectory pair has not been found by the

limited range method.

Disadvantages of the a posteriori approach are its complexity and reliance on design parameters for

efficiency. The main advantage is that the optimal ∆V budget curve can be used for any departure

epoch interval ∆T0, which is inherent to the a posteriori approach.

8.2 Results of the a priori method

In this section, the results of the four a priori methods are presented and discussed. First, the

performance is assessed (accuracy and computational efficiency), followed by an algorithm review.

Table 8.4: Best attained values of each the a priori variants, compared to the overall best attained solution

on each trajectory.

Problem Standard Narrow Symmetric Mirror

∆Vbest ∆Vrb Error ∆Vrb Error ∆Vrb Error ∆Vrb Error

km/s km/s km/s km/s km/s km/s km/s km/s km/s

Cassini0 9.51671 9.51675 0.00004 9.51671 0.00000 9.51676 0.00005 9.51682 0.00012

Cassini1 5.03702 5.03817 0.00115 5.03735 0.00033 5.03702 0.00000 5.03719 0.00017

Cassini2 8.45513 9.86032 1.40520 8.45513 0.00000 8.70154 0.24641 8.63605 0.18093

8.2.1 Accuracy

Table 8.5 shows the lowest ∆Vrb values per method. On the Cassini0 and Cassini1 problems, all

methods reach very similar values near the minimum robust trajectory pair. The best values on

the Cassini2 MGADSM trajectory vary more. Only the narrow relative constraints algorithm is

found capable of reaching a fit value of 8.455 km/s; Figure 8.3 shows that it is the minimum robust

pair. The standard a priori method is not capable of reaching the threshold for success of 8.8 km/s

by a wide margin.

8.2.2 Computational efficiency

The value of performance indicator N95 is provided in Table 8.5 and displayed in Figure 8.6 for

each of the four a priori variants. Several observations on the reported performances are made.

General observations

A conclusion that can be drawn from Figure 8.6 is that the biasing and pruning methods have a

beneficial effect on all problems, with the exception of the narrow relative constraints algorithm

on Cassini0. Furthermore, as has been observed in Chapter 6, the standard approach does not

converge to a solution below the V TR of 8.8 km/s on Cassini2, thus no performance is displayed
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Figure 8.6: The performance indicator N95 of the a priori methods. The error bars correspond to the

N95 values calculated using p± σp. The standard a priori method did not find a solution on the Cassini2

MGADSM trajectory.

in Figure 8.6.

The reader should note that the V TR of 9.6 km/s on Cassini0 allows the robust pair to be located

in two different regions: either at opposing sides of the second local minimum or at opposing sides

of the global minimum (see Figure 8.2). In the former case, both trajectories lie in different basins,

while in the latter case both are in the same basin. Consequently, the biasing mechanisms (variable

mirror and symmetric initialization) find more solutions near the global minimum, since the two

trajectories are more similar there.

Comparison of pruning and biasing methods

Inspection of Figure 8.6 reveals that the magnitudes of the improvements induced by pruning and

biasing vary between the methods as well as between the problems. Below, a series of observations

and suggested explanations is stated.

1. The performance of the narrow relative constraints algorithm compared to the others, im-

proves from Cassini0 to Cassini2. A likely explanation can be found in shrinking relative

solution space; its volume decreases from 0.5 to 2.47 ·10−5 to 5.03 ·10−18, compared to a nor-
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Table 8.5: Overview of the results of the priori methods. The V TR values are respectively 9.6 km/s, 5.1

km/s, and 8.8 km/s.

Cassini0 MGA

Quantity Symbol Standard Narrow Symmetric Mirror

Sample size Ns 10000 10000 10000 10000

Average fun. evals. Nfe 3875 4337 3763 4134

Success rate p 37.6% 40.0% 44.6% 62.3%

Standard deviation σp 0.34% 0.35% 0.35% 0.48%

Performance indicator N95 3.09E+04 3.25E+04 2.53E+04 1.99E+04

Cassini1 MGA

Quantity Symbol Standard Narrow Symmetric Mirror

Sample size Ns 20000 20000 20000 10000

Average fun. evals. Nfe 27894 20252 25223 30323

Success rate p 0.06% 0.14% 0.17% 0.47%

Standard deviation σp 0.02% 0.03% 0.03% 0.07%

Performance indicator N95 1.52E+08 4.33E+07 4.44E+07 1.93E+07

Cassini2 MGADSM

Quantity Symbol Standard Narrow Symmetric Mirror

Sample size Ns 10000 10000 10000 10000

Average fun. evals. Nfe 684515 373698 564667 907268

Success rate p 0.00% 0.92% 0.05% 0.28%

Standard deviation σp 0.00% 0.10% 0.02% 0.05%

Performance indicator N95 - 1.22E+08 3.42E+09 9.75E+08
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malized absolute solution space of the respective problems. The fact that the narrow relative

constraints algorithm performs worse than the standard a priori approach on Cassini0, the

total volume of the total solution space has decreased, suggests that the relative objective

function is a less effective formulation than the absolute objective function. This seems to be

compensated on Cassini1 and Cassini2 by the sharp reduction of the solution space volume.

2. The variable mirror method works specifically well on the Cassini0 and Cassini1 trajectories.

This may be related to the fact that MT has been optimized on the Cassini1 trajectory, the

found optimal value of 1.06 has been verified to be (near) optimal for Cassini0 as well (1.05

is optimal for Cassini0). No MT optimization study has been done on Cassini2 due to the

intractable computation times, thus there may exist a more optimal MT for this trajectory.

If this would be confirmed, it would imply a defect of the variable mirror algorithm; having

to tune the algorithm undermines its usability.

3. Symmetric initialization has a moderately positive effect on all three problems. A advantage

of this method is that it seems best capable of dealing with a situation in which the min-

imum robust trajectory pair is dissimilar. Its initialization method gives it a bias, but the

optimization loop is unperturbed.

It can be concluded that several different mechanisms contribute to the effectiveness of the pruning

and biasing methods.

Differences between the average number of function evaluations

It has been observed that the average numbers of function evaluations are affected by each of

the pruning and biasing methods. The following explanations for differences with respect to the

standard methods are proposed.

1. The variable mirror operator increases the number of function evaluations, which has already

been described in Section 7.2.2. The increase can be attributed to extra function evaluations

that determine the fitness of mirrored members, and to postponed convergence. Despite the

higher number of function evaluations, a better N95 (compared to the standard approach)

is attained because of the higher success rates.

2. It seems that the number of function evaluations of the narrow relative constraints algorithm

is correlated with the reduction of the solution space. Indeed, its Nfe compared to the that of

the standard a priori approach reduces from Cassini0 to Cassini2, while the relative solution

space volume also decreases (see Table 8.5).

3. The symmetric initialization method leads also to a reduction of the number of function

evaluations. This seems to be a result of the fact that a symmetric initial population is likely

to find a (near) symmetric solution earlier.

These remarks conclude the analysis of the performances of the a priori methods.

8.2.3 Algorithm review

Below, the characteristics of the a priori approach are determined by assessing the complexity,

influence of design parameters, and versatility.
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Algorithm complexity

The a priori methods are conceptually simple. Indeed, all methods consist of optimization runs

using regular differential evolution, except for the variable mirror method which includes an addi-

tional operator. However, this operator is of limited complexity and it is modularly implemented

in differential evolution.

Influence of design parameters

The standard and symmetric initialization a priori methods have the advantage that they do not

require any extra design parameters besides the settings of differential evolution (all variants re-

quire these). However, the two methods that show the best performances on the problems, variable

mirroring and the narrow relative constraints algorithm, do require values to be set by the user.

It has been demonstrated that the value of MT has a significant impact on the performance

of the variable mirror algorithm. The value has been determined by optimizing its performance

on Cassini1. However, were this algorithm to be applied on very different objective functions, it

may be found that MT is not the ideal metric. It relates two ∆V values directly to each other,

thus the ideal value of MT depends on the shape of the solution space. Furthermore, it is likely

that the magnitude of MT depends on departure epoch interval ∆T0, which as remained fixed

on 21 days in this study. An interesting further development would be including a feedback loop

that makes MT self-adjusting, for example dependent on mirror ratio MR. This hinges on the

hypothesis that an MR value exists that is (near) optimal in the general case. This hypothesis

remains to be confirmed.

For the narrow relative boundaries algorithm to work well, the values of these boundaries need to

be set.1 On the one hand, too narrow values will prohibit the minimum robust trajectory pair to

be found. On the other hand, to wide boundaries lead to an unnecessarily high number of function

evaluations. Another note is that it may actually be desired to prune minimum robust trajectory

pairs that are dissimilar. A good example is the minimum robust pair of Cassini0; the two trajec-

tories have times of flight that differ by more than five years. It is possible that such solutions are

tried to be avoided; the narrow relative constraints method enables one to prune these directly.

Versatility of the results and methods

Since the a priori method requires ∆T0 to be set beforehand, the results only apply to the ∆T0

value in question; the general behavior of the optimal ∆V budget curve cannot be derived from

the results. This property is a direct result of the definitions that have been formulated in Chapter

3.

The general formulations of the symmetric and narrow relative constraints algorithms makes one

suspect that they can be easily applied to problems outside the field of spacecraft trajectory opti-

mization as well. The variable mirror algorithm’s MT parameter makes it less generally applicable.

8.2.4 Conclusion a priori results

On the Cassini0 and Cassini1 trajectories, all four variants reached an accuracy of 1 m/s or less.

The variable mirror method is most computationally efficient on these problems, with respectively

1 It can be argued that these are strictly not design parameters since they do not affect the optimization mecha-

nism, but they are addressed in this section because they also need to be set by the user and have a major impact

on performance.
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two and ten times fewer function evaluations than the standard a priori approach. On the Cassini2

problem, the narrow relative constraints algorithm is the only variant that reaches high accuracy, it

yields the best solution attained in this research (8.455 km/s). Its number of function evaluations is

an order of magnitude lower than that of the variable mirror algorithm (second best performance).

In general, it seems that the high dimensionality of this problem (43) has a large negative effect

on the performance of the a priori approach, through low success rates.

The standard and symmetric forms do not require design parameters, but the narrow relative

constraints and variable mirror algorithms do require them. This is an unfavorable characteristic

because they need to be tuned. Advantages of the a priori method are its simplicity and poten-

tial general applicability, but inherent to the approach, each ∆T0 requires a new optimization

campaign.
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Conclusion

Based on the results that have been presented in the previous chapter, a final comparison between

the a posteriori and a priori approach is made. This includes a conclusion on the hypothesis that

an a priori approach requires fewer function evaluations than an a posteriori approach Also, a

wider conclusion on the relative performances and the effects of several problem characteristics is

included.

9.1 Comparison between both methods

The comparison of this section is split in a quantitative analysis of the performance and a qualitative

algorithm review.

9.1.1 Performance

The quantitative performance is arguably the most important aspect of any optimization method;

it is often the main criterion in optimizer selection. In the following section, accuracy and compu-

tational efficiency are addressed respectively.

Accuracy

The accuracy of the a priori approach is limited by the stopping criteria of differential evolution

only, the spread in best values obtained by the different variants is 0.1 m/s on Cassini0 and 1 m/s

on Cassini1. On the Cassini2 only the narrow relative constraints algorithm reached the minimum

robust trajectory pair accurately. The a posteriori approach has an additional limitation to its

accuracy; discretization of the departure epoch (the step size is 0.1 day) limits the fitness on all

problems at 0.5 m/s from the best solutions of the a priori approach. Errors due to the linked-conics

approximation are likely to be larger.

Computational efficiency

A comparison between the computational efficiency of the various methods is presented in Figure

9.1. The a priori approach performs significantly better on Cassini0, while on the other problems

the a posteriori limited range method shows the best performance. It must be remarked that

the latter prunes drastically, leading to a suboptimal pair on Cassini0. Also, the rightmost figure

includes two limited range NT values; one for V TR = 8.5 km/s (left) and one for V TR = 8.8 km/s

(right). The latter allows for the best comparison with the a priori method, which also has a V TR
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Figure 9.1: Comparison of the N95 parameter of all methods. The error bars correspond to N95 computed using p± σp. 1) Calculated using a N95 for a V TR of 8.8

km/s, instead of 8.5 km/s.
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of 8.8 km/s. On the full range, relaxing the value-to-reach does not lead to a significantly lower

NT . Between the different variants of the a priori approach, the most notable performances are

attained by variable mirroring (biasing) and the narrow relative constraints algorithm (pruning).

The reader should notice that the performances of the a posteriori and a priori methods are

measured in the total number of function evaluations NT and performance indicator N95 respec-

tively. Because differential evolution does not always converge to the minimum robust trajectory

pair, the computational efficiency of both methods has to be measured slightly differently. Still,

Figure 9.1 provides a good indication of the relative performances of both approaches.

Scaling of computational efficiency with trajectory dimensionality

The trajectory optimization problems that are considered are of dimension D = 3, D = 6 and

D = 22. This wide range makes it possible to relate the performances of the methods to the

dimensionalities of the trajectory problems. The following conclusions have been drawn.

1. The computational efficiency of the a posteriori approach scales relatively well with an in-

creasing dimensionality, because of the following two reasons.

(a) The success rate of propagating and smoothening does not decrease when the dimen-

sionality increases.

(b) The accuracies of the initial guesses of the a posteriori method become relatively better,

when the dimensionality increases.

2. The performance of the a priori approach deteriorates significantly with an increasing dimen-

sionality. The number of optimization variables nearly doubles, compared to the trajectory

function. This leads to lower success rates, and a higher numbers of function evaluations per

run.

It is concluded that the computational efficiency of the a posteriori approach scales better with

trajectory dimensionality D, than the computational efficiency of the a priori approach. This is

supported by the results presented in Figure 9.1.

Scaling of computational efficiency with departure epoch range

A difference between the full range a posteriori method, and the a priori methods is that the number

of function evaluations of the former increases approximately proportionally with the range of T0

(for a fixed step size of T0), while the latter does not (a property of evolutionary algorithms).

Therefore, the relative performance of the a priori approach is likely to improve for larger ranges

of T0, compared to the full range a posteriori method.

The influence of the departure epoch interval

In this is study, departure epoch interval ∆T0 has remained fixed at 21 days. Analyzing the effect

of the value of this parameter, the following can be stated. Regarding the full range a posteriori

approach, NT is independent of ∆T0. On the limited range method, the number of function

evaluations required for propagating and smoothening scales approximately linear with ∆T0. For

the a priori approach, the pruning and biasing mechanisms are likely to become less effective for

larger ∆T0 values, since similarity decreases with a larger ∆T0.
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9.1.2 Algorithm review

Based on reviews of the developed algorithms, conclusions are drawn on the relative complexity,

the influence of design parameters and versatility of both the methods and results.

Complexity

The a posteriori approach requires several mechanisms to work efficiently, making the algorithm

complex. On the other hand, the a priori methods have a much simpler architecture. They

are basically regular differential evolution optimization efforts, with the exception of the variable

mirroring scheme which adds an additional operator. In general, it is concluded that the a posteriori

method involves a more complex algorithm than the a priori method.

Influence of design parameters

The aforementioned mechanisms in the a posteriori approach require several parameter values to

be set by the user. The largest influence is exerted by the number Ndps of departure epochs in

which T0 is discretized. The fact that this parameter needs to be set as a first step, without any

knowledge of the solution space, is a considerable challenge.

In case of the a priori method, only the narrow relative constraints and mirror methods are in-

fluenced by user-set values. For setting the narrow relative constraints, one can rely to a certain

extent on intuition, but one always risks pruning optimal pairs. For setting the non-physical quan-

tity of the mirror threshold MT , one cannot rely on intuition. The performance of the (near)

optimal MT of Cassini0 and Cassin1, is not as good on Cassini2. It suggests that MT could vary

per problem, which would undermine the applicability of the algorithm. Furthermore, it is also

likely that MT depends on the magnitude of the departure epoch interval.

It can be concluded that the a posteriori method and two best performing a priori methods (variable

mirroring and narrow relative constraints) are both sensitive to design parameters.

Versatility of the results and methods

The results produced by the a posteriori method are more versatile than those of the a priori

methods; the optimal ∆V budget curve can be used for any departure epoch interval. Contrary

to this, the a priori method only yields information for a single departure epoch interval per op-

timization effort. These properties are inherent to both approaches, it depends on the demands

of the mission designer what the merit of the versatility of the results of the a posteriori approach is.

Looking at the versatility of the methodology, it can be argued that the a priori algorithms are

more versatile. They may be readily applied to similar problems that have a ’T0-dimension’ with

a very different shape (of course, this would be a different quantity), with the exception of the

variable mirror algorithm. This last variant, as well as the initial guess algorithm, would have to

be tuned to the characteristics of the solution space.

9.1.3 Final word on the comparison

In this study, it has been found that the pruning and biasing techniques are decisive for the relative

performances of both the a posteriori and the a priori approach. The a posteriori approach involves

many consecutive optimization problems, but mitigates the computational effort with a powerful

initial guess generator. The formulation of the a priori approach allows all control variables to be
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optimized at once, thereby avoiding the sub optimization problems. The price for this is an almost

double number of optimization variables. This doubling is an issue that becomes increasingly

hampering for higher dimensional solution spaces, while the initial guesses appear to become

increasingly effective. It is therefore concluded that the dimensionality is a key determinant of the

relative performances of the methods. The hypothesis that the a priori approach requires fewer

function evaluations than the a posteriori approach is confirmed on the simple Cassini0 problem,

but refuted on the more difficult Cassini1 and Cassini2 problems.

9.2 Recommendations for further research

Several fields of improvement have been identified. Below, a list of four suggestions for future

studies is included.

1. The developed algorithms can be incrementally improved. Severals suggestions for such

improvements have been made in the text of this report. Examples are a self-adapting

mirror threshold and a comparison between different initial guess initialization methods.

Furthermore, a study on the optimal stopping criteria of the differential evolution optimizer

is recommended. This is likely to increase the success rates on the Cassini2 MGADSM

problem.

2. A hybrid a posteriori method that evaluates fewer departure epochs than the full range

method, but still scans the entire solution space, is proposed. It generates entry points

analogously to the full range method and then propagates outward from the fittest entry

point, until a robust trajectory pair can be evaluated. This repeats itself for the second

fittest entry point, and so on, until it encounters an entry point that is less fit than the

fittest robust pair. Increasing the departure epoch step size within basins is likely to further

enhance the performance. Because this approach generates entry points similarly to the full

rang method, but propagates only a limited section, it is named hybrid.

3. Applying the a posteriori and a priori methods to the multiple-shooting model (Section

2.2) is likely to increase the computational efficiency. This would also involve replacing

differential evolution with monotonic basin hopping, which is expected to further enhance

the performance on the higher dimensional problems.

4. To avoid costly objective function evaluations, the trajectory models may be supported by a

surrogate model (for example established using an artificial neural network). Evaluating the

surrogate model is likely to be less expensive than the trajectory functions (Ampatzis and

Izzo 2009; Izzo, Sprague, and Tailor 2018).

Over the course of this thesis, some clarity has been produced on the relative performance of the

a posteriori and a posteriori approaches to finding pairs of spacecraft trajectories of which the

highest ∆V budget is minimized. The list above makes clear that, as seems to be inherent to

research in an interesting field, answering the research questions has made various new ones arise.
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Appendix A

Solution space analysis

This appendix contains several figures that provide qualitative insight into the shape of the solution

spaces of the trajectory function and the a priori objective function.

Table A.1: Comparison of the widths of the global minimum basins and the number of local minima in

Figure A.1 and A.2.

Cassini1 Cassini2

Variable Minima Basin widths Minima Basin widths

T0 14 19% 31 3%

T1 7 43% 13 14%

T2 12 12% 10 32%

T3 6 33% 5 16%

T4 2 70% 3 29%

T5 1 100% 1 100%
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Figure A.1: Cassini1 ∆V as function of the departure epoch and times of flight of the legs, while all other

variables are fixed in the global minimum. The control variables have been normalized on the interval [-1,

1] (hence the names of the x-axes). The red transparent rectangle corresponds to the global minimum

basin in the respective cross section. The widths of the global minimum basins are provided in Table A.1

together with the numbers of minima in the cross sections.
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Figure A.2: Cassini2 ∆V as function of the departure epoch and times of flight of the legs, while all other

variables are fixed in the global minimum. The control variables have been normalized on the interval [-1,

1] (hence the names of the x-axes). The red transparent rectangle corresponds to the global minimum

basin in the respective cross sections. The widths of the global minimum basins are provided in Table A.1

together with the numbers of minima in the cross sections. The basins in this figure are narrower than

those in Figure A.1.
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Figure A.3: A surface plot of ∆V of Cassini1 as function of the departure epoch T0 and time of flight of

the second leg T2. It can be seen that the global minimum is very sensitive to increases of T2. Note the

reversed direction of the T2 axis.
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Figure A.4: A surface plot of ∆V of Cassini1 as function of the times of flight T3 and T4. The ∆V budget

is much less sensitive to these variables than to T2 and T0 in the plot above.
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Figure A.5: Sensitivity of several control variables around the global minimum (0,1). Each control variable

is varied between −10% and −10% of the variable ranges, while the others remain fixed at the value of the

global minimum (0,1).
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of variables: (T11, T12) and (T51, T52). It can be observed that the solution surfaces are very similar for

paired variables. Departure epoch interval ∆T0 = 21 days.
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Figure A.7: Illustration of ∆V as function of control variables. The top left surface shows ∆V (T12, T11) for

∆T0 = 0 days, which leads to symmetry over the T11 = T22 plane. The right figure shows ∆V (T12, T11)

for ∆T0 = 21 days. This figure is much less symmetrical, demonstrating the sensitivity of ∆V to ∆T0.

The bottom left surface shows the solution of the relative objective function formulation for ∆T = 21 days

and bounds of 10% of the T1 range on relative dimension T1re. The global minimum lies on the T1re axis.

The right bottom corner is taken by ∆V (γ41, γ42) for ∆T0 = 21 days, γ4 is an example of a variable that

is not sensitive to ∆T0, judging from the diagonal symmetry.
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Appendix B

Monotonic basin hopping

This appendix addresses the implementation of a monotonic basin hopping algorithm that has not

been successful on the considered objective functions.

B.1 Algorithm description

Monotonic basin hopping is a very simple, yet powerful optimization algorithm. It combines a

Monte-Carlo-type search method with local optimization. It starts by initializing a random start-

ing point. Next, a local optimizer is run and the new optimal value is stored. Then, this solution

is randomly perturbed in each dimension and from this perturbed location, the local optimizer

is run again. If the new local optimum is better than the previous, the process will repeat itself

from there. If it is not better, the process is repeated from the previous optimum. This scheme

is looped until a user-specified criterion is satisfied. Figure B.1 illustrates the working principle of

monotonic basin hopping.

Monotonic basin hopping works specifically well if the solution surface descends over long range

towards the global minimum. In that case, an improving fitness function in a certain region is a

good indicator that the global minimum may be found in that direction as well. Note that the

fitness surface does not need to be strictly monotonically decreasing, the hopping plus optimizing

allows for dealing with locally unfit regions by hopping over them (Locatelli and Schoen 2003). A

pseudo code transcription has been included as Algorithm 11.

Algorithm 11 Pseudo code of the monotonic basin hopping algorithm

run NLP solver from a random location and save xbest and ∆Vbest := f(xbest)

while stop criteria are not satisfied do

perturb xbest randomly to generate xper

run NLP solver on xper to generate new xnew

if ∆V (xper) < ∆V (xbest) then

xbest := xnew

end if

end while
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Appendix B. Monotonic basin hopping

Figure B.1: Visual interpretation of the monotonic basin hopping algorithm.

B.1.1 Local optimization approach

The nonlinear programming algorithm that is used in this variant is MATLAB’s built-in fmincon

function. This is the same local optimizer as used by the monotonic basin hopping algorithm

described by Vasile and Ceriotti (2010). It uses the interior-point algorithm, which numerically

estimates the gradient of the objective function (Byrd, Gilbert, and Nocedal 2000; Fletcher et al.

2002; Waltz et al. 2006). The lack of lack of analytical derivatives is expected to lead to longer

computation times; additional function evaluations are required to make numerical estimates of

the derivatives. The effect of discontinuities due to penalty functions and the discrete minimax

approach of the single objective function is expected to undermine the performance of the local

optimizer further.

It must be stated as well that, besides the above mentioned limitations, more optimal nonlin-

ear programming algorithms exist. For example, EMTG uses the (commercial) SNOPT library.

B.1.2 Perturbing operator

The goal of the perturbing operator is to hop to a new basin. Since the exact shape of the objective

function is not known, the perturbation is determined randomly. The probability distribution of

the perturbing operator has a major impact on the performance of the monotonic basin hopping

algorithm. Two key considerations are the following.

1. An improving fitness function value may be an indicator that the optimizer is approaching

a global minimum. This implies that perturbations should be small, in order to explore the

current region extensively.

2. In solution spaces with multiple funnel-shaped regions, the optimizer might get stuck at the

bottom of one funnel, while the global minimum is at the bottom of another funnel. This

demands either a restart or a perturbing operator that allows the search to move to a different

region.

Both considerations mentioned above seem to be conflicting. However, a study by Englander and
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Appendix B. Monotonic basin hopping

Figure B.2: Histogram of the bi-polar Pareto distribution. The area of the histogram is normalized to

equal 1.

.

Englander (2014) was specifically aimed at finding a probability distribution for a perturbing oper-

ator that deals well with both issues on objective functions for interplanetary trajectories. It must

be noted that this study focused on low-thrust trajectories, but the results seem very promising.

The best perturbing operator was found to use a bi-polar Pareto distribution. Its probability

density function is shown in Figure B.2. It generates a random number according to Equation B.1,

in which s is −1 or 1 with a 50% probability, r a random number between 0 and 1 (uniform) and it

was found that ε = 1 · 10−13 and α = 1.01 yield the best results (Englander and Englander 2014).

rand =
s

ε

(α− 1)(
ε
ε+r

)−α (B.1)

The probability density distribution of this function is provided in Figure B.2. Two important

properties of this distribution are the following.

1. The vast majority of the likely perturbations are small, with a fixed minimum hop distance

determined by α and ε, in this case 0.741%. This means that the current region is explored

very well.

2. The distribution has a long tail, which means that further regions are also visited, be it less

frequently than region around the current minimum. This prevents the search from getting

stuck in a single funnel. This tail only is visible on the logarithmic probability scale in the

right graph of Figure B.2 since small perturbations remain much more likely.

An advantage of the long tail of this distribution is that monotonic basin hopping theoretically does

not need to be restarted. Although it remains sensitive to the initial guess, periodic exploration of

other regions would eventually lead to the algorithm finding the global minimum. Still, the decision

between restarting or letting a single for effort run for a longer period depends on the problem.

One argument against running multiple times, is the required introduction of new parameters that

define stopping and restarting criteria. These may once again be required to be tuned per problem,

increasing the need for human interference in each optimization problem.
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Appendix B. Monotonic basin hopping

B.2 Constraints

Boundary constraints are handled at two levels, in the perturbing operator and in the local opti-

mizer. When a perturbation violates a boundary constraint in a certain dimension, the perturbing

operation is reinitialized from the best known position in that dimension.

The interior point algorithm handles inequality constraints through a barrier function of which

the value approaches infinity outside the feasible region of the optimization (Byrd, Gilbert, and

Nocedal 2000; Fletcher et al. 2002; Waltz et al. 2006). This approach is also capable of handling

nonlinear constraints, thus making it possible to avoid the penalty function that is included in the

objective function.
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Appendix C

Verification functions for

differential evolution

C.1 Rosenbrock saddle

The following relation describes the Rosenbrock saddle, also known as the second De Jong func-

tion. Although it has only two dimensions, it is considered a difficult optimization problem. The

minimum is located at (1,1) (Storn and Price 1997).

f (x1, x2) = 100 ·
(
x2 − x2

1

)2
+ (1− x1)

2
(C.1)

C.2 Rastrigin function

The Rastrigin function is a highly modal function due to the cosine term. Its general N dimensional

form is the following (Storn and Price 1997).

f(x) = 10 ·N +

N∑
i=1

(
x2
i − 10 · cos (2 · π · xi)

)
(C.2)
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Mirror threshold research Cassini0
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Figure D.1: The success rate for various mirror threshold values on the Cassini0 trajectory.1.1 2 3 4 5 6 7 8 910 20
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Figure D.2: The number of function evaluations for various mirror threshold values on the Cassini0 tra-

jectory.
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Figure D.3: The performance parameter for various mirror threshold values on the Cassini0 trajectory.
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Contacted experts

Name Institution Subject

Jacob Englander NASA Goddard Space Flight Center General advice on various subjects

Martin Brennan NASA Jet Propulsion Laboratory Advice on TRACT (Brennan 2015)

Dario Izzo ESA Advanced Concepts Team Limited correspondence on PaGMO1

Stjepan Picek Delft University of Technology, faculty of Electrical Engineering,

Mathematics and Computer Science

Teleconference on evolutionary optimization

algorithms

Jeannette Heiligers Delft University of Technology, faculty of Aerospace Engineering Teleconference on the a priori method

Matthijs Joosten Delft University of Technology, faculty of Electrical Engineering,

Mathematics and Computer Science

Statistics and confidence intervals

109


	Preface
	Summary
	List of symbols
	List of definitions
	Introduction
	Purpose
	Scope
	Research questions

	Structure

	Theoretical context
	Historical background
	Physical models
	Orbit propagation
	Conic approximations
	Comprehensive trajectory models

	Optimization techniques
	Evolutionary algorithms
	Social behavior algorithms
	Repeated local searches
	Other optimizers

	Sensitivity analyses
	Pork chop plots
	Sensitivity analyses
	Python EMTG automated trade study application


	Methodology
	Definitions
	Definition of robustness with respect to departure epoch
	Definitions of the a posteriori and a priori approaches

	Use of existing methods
	Use of MGA and MGADSM trajectory models
	Use of differential evolution
	Use of MATLAB and C++ programming languages

	Development of new algorithms
	Algorithm verification
	Assessment of results
	Performance
	Algorithm review

	Application to the Cassini mission

	Trajectory models
	Two-body problem propagators
	Kepler propagation
	Lambert propagation

	Trajectory events
	Departure
	Deep space maneuvers (MGADSM only)
	Gravity-assist maneuvers
	Arrival

	Application to the trajectory of Cassini
	Cassini0 MGA trajectory
	Cassini1 MGA trajectory
	Cassini2 MGADSM trajectory
	Comparison with the actual trajectory


	Objective functions
	A posteriori problem analysis
	Computing the optimal V budget curve
	Determining the minimum robust trajectory pair

	A priori problem analysis
	Absolute decision vector formulation
	Relative decision vector formulation

	Conclusion

	Optimization
	Differential evolution
	Algorithm description
	Constraint handling
	Stopping criteria
	Verification of the differential evolution algorithm

	Performance on the objective functions
	Experimental set-up
	Optimization results and discussion

	Conclusion

	Pruning and biasing
	A posteriori approach
	Generating an initial guess (biasing)
	Limited departure epoch range (pruning)

	A priori approach
	Symmetric initialization (biasing)
	Variable mirror algorithm (biasing)
	Narrow relative boundary constraints (pruning)


	Results
	Results of the a posteriori approach
	Visualization of the optimal V budget curve
	Accuracy
	Computational efficiency
	Algorithm review
	Conclusion a posteriori results

	Results of the a priori method
	Accuracy
	Computational efficiency
	Algorithm review
	Conclusion a priori results


	Conclusion
	Comparison between both methods
	Performance
	Algorithm review
	Final word on the comparison

	Recommendations for further research

	Bibliography
	Appendices
	Solution space analysis
	Monotonic basin hopping
	Algorithm description
	Local optimization approach
	Perturbing operator

	Constraints

	Verification functions for differential evolution
	Rosenbrock saddle
	Rastrigin function

	Mirror threshold research Cassini0
	Contacted experts

