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Abstract

This thesis aims to develop a methodology for predicting the swap spread, which is defined as the differ-
ence between the German government bond interest rate and the Euribor swap rate. Thus far, the prediction
of interest rates is limited to the prediction of a single interest rate. This thesis introduces the simultaneous
prediction of the spread between two correlated interest rate curves.
The methodology developed in this thesis considers the dependence between the bond rate and the swap
rate. The study utilizes a Dynamic Nelson-Siegel (DNS) model, which is extended to incorporate the cor-
relation between these two rates. The simulation studies reveal that the variants simultaneously predicting
both the swap and bond rates using a restricted VAR(1) model for factor dynamics outperform the other
variants in predicting the swap spread. Another important aspect considered is the stationarity of the latent
factors. The simulation studies demonstrate that the stationarity of the empirical DNS factors accurately
represents the stationarity of the true DNS factors. This motivates the reformulation of the DNS model into
a new variant where the first-order differences of both the swap and bond rate latent factors are modeled
by a restricted VAR(1) model.
A case study validates the developed new variant of the DNS model, demonstrating predictions for the swap
and bond curves that have an accuracy comparable to the accuracy of the benchmark model. The key
advantage of the DNS model over this benchmark model is that the DNS model predicts the swap curve and
bond curve over the whole maturity spectrum. The prediction over the whole maturity spectrum is crucial
to compute the spread between the two rates, which emphasizes the relevance of the new model presented
in this thesis.

Keywords: Interest rate prediction, Swap spread prediction, Dynamic Nelson-Siegel model, linear Gaus-
sian state space model, Kalman filter
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1.1

1 Introduction

1.1 Background
Interest rates are of great importance for pension funds investments. Pension funds promise future pension
payments to their participants. The fund estimates the value of these payments using interest rates. To ensure
there is enough money for these future payments, the fund invests its money. A prominent part of this money
is invested in bonds and the return of a bond is determined by its interest rate. Thus, on one hand, the interest
rate is used to estimate the present value of future pension payments and on the other hand, it is used to
compute the return on the bond investments.

Interest rates are applied in these two calculations because they establish a connection between the present
value of money and its future value. They represent the percentage of change in value over a specific period of
time. The rate itself is influenced by the duration between the current moment and the future moment. For
example, it can be that the interest rate for an investment of 1 year is 2% per year, whereas the interest rate
for an investment of 10 years is 2.5% per year. The relation between the interest rate and the time that passes
is represented by the interest rate curve. An example of an interest rate curve is given in Figure 1.

Figure 1: A visualization of an interest rate curve. The x-axis represents the term to maturity, which is the
time between today and a future moment in time. The y-axis represents the corresponding interest rate per
time unit.

In practice, the interest rate curve is not observed as a continuous function of time to maturity. The interest
rate is only known for real market observations. The continuous interest rate curve is thus an approximation
of the interest rate for each term. Moreover, the interest rates observed in the real market exhibit variability
over time, which implies that the estimated interest rate curves also undergo continuous changes.

The interest rate that is used to compute the present value of the future pension payments must be estimated
on a set of assets called ’swaps’. The choice for swaps as assets to compute today’s value of the future pension
is imposed by the Dutch Central Bank.
Although a pension fund invests part of its money in swaps, the majority of the money is invested in another
asset called ‘bonds’. That means, the return on the majority of these investments depends on another interest
rate, namely the interest rate implied by the bonds. In other words, the interest rate that determines the return
on the investments is another rate than the interest rate used to compute the value of future pension payments:
the bond rate determines the return on the investments and the swap rate determines the value of the future
pension payments.

A pension fund’s role is to match the current investments with future pension payments. This could be a
challenging task since the current investments depend on the bond rate, whereas the future pension payments
depend on the swap rate. The difference between the bond and swap rates is thus a measure of the mismatch
in the current investments and the value of the future pension payments. The difference between the bond and
the swap rate with the same time to maturity is defined as the swap spread. The swap spread is visualized in
Figure 2. When the two interest rates experience divergent changes, the swap spread changes and there will be
a mismatch between the future pension payments and the return on investments. This mismatch implies the
risk for the pension fund that there may not be enough funds available to pay future pensions.
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Figure 2: A visualization of the swap spread, which is defined as the difference between the bond rate and the
swap rate with the same time to maturity. The points represent the bond and swap observations. The goal
of this thesis is to develop a methodology to predict the swap spread as a continuous function of the time (or
term) to maturity.

To ensure a match between future pension payments and investment returns, it is necessary to know the
difference between the two rates. In order to address a potential future mismatch, it is necessary to predict
the difference between the two interest rates for the whole spectrum of times to maturity. Therefore the aim of
this thesis is to develop a model and a methodology that allows us to predict the swap spread as a continuous
function of the time to maturity.

1.2 Related work
Modeling and predicting interest rates is a widely researched topic. The first models that have been proposed
were published by Vasicek (1977), Cox, Ingersoll, and Ross (1985), and Hull and White (1990). It has been
established that these models generally perform well in modeling interest rates but they are not suitable for
forecasting purposes. Models that are used for both modeling and forecasting the interest rate stem from the
work of Nelson and Siegel (1987), who proposed to model the interest rate in terms of three latent factors and
their corresponding factor loadings. The extension of these models was presented on Svensson (1994). The
model of Nelson and Siegel has been enriched by a fourth latent factor allowing for more flexibility. These
models are referred to as Nelson-Siegel (NS) model and Nelson-Siegel-Svensson (NSS) model, respectively.

The first time the Nelson-Siegel model has been used for prediction purposes in Diebold and Li (2006). In
this publication, three latent factors are modeled as an autoregressive process. Diebold and Li named their
model ‘Dynamic Nelson-Siegel (DNS) model’. This model is applied in this thesis to predict interest rates and
it will be in detail explained in Section 3.

One of the earliest and most prominent contributions to the literature on DNS models was published by
Diebold, Rudebusch, and Aruoba (2006), who extended the DNS model by introducing macroeconomic variables
to the autoregressive process. Their model was therefore able to capture macroeconomic shifts. Additionally,
Diebold et al. reformulated the DNS model to a state space representation. This representation allows for
simultaneous estimation of the three latent factors and all other parameters, also known as the ‘one-step’
estimation. This is in contrast to the ‘two-step’ estimation for the original DNS model, where the latent factors
are estimated by ordinary least squares. Then the other parameters are estimated for fixed values of latent
factors. A disadvantage of this original two-step estimation is that the performance highly depends on the
choice of factor loadings. Section 3.4.3 contains a detailed explanation of both the two-step and the one-step
estimation procedure.

A third contribution of the publication of Diebold et al. (2006) is the interpretation of the three latent fac-
tors as level, slope, and curvature of the interest rate curve. This interpretation will be explained in Section 3.1.1.

A subclass of DNS models was introduced by Christensen, Diebold, and Rudebusch (2011), who defined
the DNS model under the absence of riskless arbitrage opportunities named ‘Arbitrage Free DNS (AFDNS)
models’. The idea for this model stems from the findings of Björk and Christensen (1999), who showed that the
NS model is not arbitrage-free. Christensen, Diebold, and Rudebusch (2009) combined the NSS and AFDNS
models into a more flexible arbitrage-free model. The no-arbitrage assumption is particularly useful for the
arbitrage-free pricing of assets and is therefore often used for trading purposes.
Besides the arbitrage-free models, there is another class of extensions of the DNS model. These models allow for
time variation in parameters that are not latent factors. Among others is the work of Koopman, Mallee, and Van
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der Wel (2007), who allow their model to have time-varying factor loadings and time-varying volatility. This
extension leads to an improvement in the in-sample fit and the prediction performance of the model. Another
contribution of this type is the model from Van Dijk, Koopman, Van der Wel, and Wright (2014) that has a
time-varying unconditional mean for the autoregressive process. Their model improves prediction performance
but is not available in state space representation. Therefore, the model is limited to the two-step estimation for
the parameters.
The last class of extensions on the DNS models that is worth mentioning is the regime-switching DNS models,
published first by Xiang and Zhu (2013). This model is able to capture the influence of macroeconomic cycles,
which can be interpreted as different regimes. Guidolin and Pedio (2019) show that the regime-switching DNS
model is particularly useful when predicting interest rates in a changing macroeconomic environment such as
the Great Financial Crisis.

All papers cited in this section so far use United States government bonds as data to estimate and predict the
interest rate, with the exception of the paper written by Svensson (1994), which uses Swedish forward contracts.
There are also examples where the DNS model is used to model and predict interest rates for other types of
assets, such as other government bonds for Central Banks (Filipović, 2009, Chapter 3), and the application of
the DNS on credit default swaps by Shaw, Murphy, and O’Brien (2014).

In this thesis, I use the DNS model to estimate and predict the spread between the bond rate and the
swap rate. To the best of my knowledge, the existing literature on utilizing the DNS model for modeling and
predicting interest rates is solely focused on the modeling of a single interest rate curve. In this thesis, the DNS
model is used to model and predict the spread, or difference, between two interest rate curves.

1.3 Problem statement
The goal of this thesis is to develop a framework that uses a Dynamic Nelson-Siegel model to estimate and
predict the spread between bond interest rates and swap interest rates. The prediction horizon is 30 days. The
estimations and predictions must cover the whole range of times to maturity between 0 and 30 years. The base
model for the framework is the DNS model in the form proposed by Diebold and Li (2006). The variants on
this DNS model mentioned in Section 1.2 are not included in the framework.
The starting point for the framework is the interpretation of the three factors of the DNS model. By focusing
on the dynamics of these factors, three new variants on the DNS model will be proposed. These three variants
are, in addition to the framework, the scientific contribution of this thesis. The framework to estimate and
predict the spread will take into account these three new variants additional to the DNS model as proposed by
Diebold and Li (2006).

The aforementioned goal of this thesis is realized through the following structure. In Section 2, the real
data for the problem is described. The relevant theory related to the DNS model of Diebold and Li (2006)
and the theory related to the three new variants is explained in Section 3. The development of the framework
consists of several simulation studies. The method for these simulation studies is described in Section 4. The
final framework is constructed from the results of these simulation studies, which is described in Section 5. This
framework is then applied to the real data in the case study described in Section 6. Finally, based on both the
simulation studies and the case study, a conclusion is drawn in Section 7. Furthermore, a discussion is provided
in Section 8 and potential future work will be discussed as well.
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2 Data
In this chapter, I will present the data that is used to estimate and predict the spread curve. The spread is
defined as the difference between the swap interest rate and the bond interest rate. The most important economic
definitions are included in this chapter. For a complete overview of the economic terms and methodology, see
Appendix A.
This chapter is structured as follows. In Section 2.1 and Section 2.2 is a description of the data for the bond and
swap contracts respectively. Each subsection begins by describing the data collection process. Subsequently,
the data is thoroughly examined and prepared for further analysis. The subsection concludes with an overview
of the data characteristics.
In Section 2.3 is a description of the spread data. It will be explained that it is not possible to compute the
spread directly from the bond and swap data. Furthermore, this subsection will include an analysis of the
relationship between the bond and swap data.

2.1 Bond data
The specific bond curve that is used in this thesis to compute the spread, is the zero coupon German government
bond curve. The zero coupon bond curve represents the relation between the time to maturity and the yield to
maturity of a zero coupon bond contract, as explained in Section 1.1. A zero coupon bond contract is defined
as follows.

Definition 2.1 (Zero-coupon bond contract). A zero-coupon bond is a contract where an investor lends
money to the issuer in exchange for a future payment.

A zero coupon German government bond is a zero coupon bond of which the issuer is the German government.

2.1.1 Bond data collection

The data for the construction of the set of German government bonds originates from bond contracts that are
available for trading in the market. The specifications of such a bond contract are collected and published
by a prominent financial information and media company called ‘Bloomberg’. Bloomberg utilizes diverse data
sources such as financial institutions, regulatory filings, and news agencies and is widely considered a reliable
data source. They combine the information from all their data sources to publish, among other data, bond
contracts with the following attributes:

• Date t - the date and time at which this bond is available for trading for price P (t, T ).

• Price P (t, T ) in euros - the price at which the bond can be traded at date t.

• Ticker of the bond contract which serves as a unique identifier in Bloomberg.

• Maturity date T , the date at which the issuer of the bond contract pays the face value of the contract to
the holder of the contract.

• Face value of e100, the amount of money paid by the issuer to the holder at the maturity date.

• A coupon value in percentage of the face value. The coupon is annually paid by the issuer to the holder
of the bond contract.

An example of two observations from Bloomberg is included in Table 1. Bloomberg provides bond data with
a real-time and continuous update frequency. For this thesis, I have sampled the data on a daily basis from
Bloomberg, where each observation is sampled at the same time. The utilization of market data indicates a
data limitation whereby no observations are available during periods of market closure, such as weekends. The
missing observations will be discussed later in Section 3.4.2.

The set of bond observations that are used in this thesis consists of 91.541 observations. The number of
observations per day varies and is in the range of 25-30 observations per day, depending on the number of bond
contracts available in the market.
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Date Ticker Maturity date Face value Price Coupon (%)
2020-12-23 EI650542 Corp 2021-04-04 e100 e103.62 0.00
2020-12-23 EI879238 Corp 2022-01-04 e100 e104.77 2.00

Table 1: Example of two out of all 91.541 bond observation with the attributes that are available after gathering
the data from Bloomberg.

2.1.2 Bond data preprocessing

Preprocessing the raw data gathered from Bloomberg consists of data cleaning, data enrichment, and data
modification.

The first step is data cleaning, where two types of bonds are removed from the set of observations: the ‘green
bonds’ and the short-term bonds. A green bond is a financial instrument specifically issued to raise capital for
sustainable projects. The price of a green bond is potentially biased due to different investor demands and
market dynamics.
A short-term bond is a bond with a time to maturity of less than 3 months. Short-term bonds are more suscep-
tible to short-term market fluctuations, which can introduce noise to the interest rate estimates (Fernandes &
Vieira, 2019). The elimination of the green bonds and the short-term bonds results in the exclusion of 45.919
data points from the data set.

The second step is data enrichment, where two attributes are added to each observation: the time to maturity
τ and the yield to maturity y. These two attributes will be used to estimate the interest rate curve and the
spread curve, which will be explained later in Section 3. The time to maturity τ is the time difference between
the date of the observation and the maturity date.1 The yield to maturity y can be computed by

y =

(
FV

P (t, T )

) 1
τ

− 1,

where FV is the face value, P (t, T ) is the price of the observation at time t with maturity date T , and τ is the
corresponding time to maturity.

The third step is data modification. The first modification concerns all observations that have a coupon
attribute that is not equal to zero. To estimate the zero coupon interest rate curve, we need a set of observations
that have zero coupons. The yields of the observations with a nonzero coupon value are therefore modified such
that they represent a zero coupon yield. This process is called ‘bootstrapping’ and is explained in detail in
Section B.1.1.
For the estimation and prediction method that is used in this thesis, we need the same set of times to maturity τ
for each day. But the observed data have different times to maturity for each day. To obtain a set of observations
with a fixed set of times to maturity, we interpolate the observed yields by a cubic spline. This process leads
to a data set of observations with times to maturity τ ∈ {0.4, 0.525, 0.65, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.4, 2.8,
3.2, 3.6, 4, 4.4, 4.8, 5.4, 6.4, 7.4, 8.4, 9.4, 10.4, 11.5, 13.5, 16, 19, 22, 25, 28}, with τ in years. This modification
is explained in detail in Section B.2. The effect of both modification steps is visualized for one day in the data
set in Figure 3.

2.1.3 Bond data description and analysis

The set of bond observations that is used is used to estimate the spread curve consists of 46.860 observations.
The first observations are from October 5, 2016, and the last observations are made on October 26, 2022. The
time span is 2212 days. In Figure 4 is a three-dimensional plot of the zero coupon bond data. In this plot,
you can see that the shape of the interest rate varies over time during our sample time interval. In the period
2016-2019 the curves were increasing and concave, during 2020-2021 the curves were flat and took values around
zero, and in 2022 the curves remain flat but yields increase rapidly up to values around 2.5%.

The various yields will play a prominent role in the sequel. Hence I focus on them now in some detail. In
Table 2, I present some descriptive statistics for the yields. From the mean column, it becomes clear that the
average zero coupon interest rate curve is upward-sloping and from the standard deviation we see that the long
rates are more volatile than the short rates. Also, from the autocorrelation, we know that the interest rates are
persistent for each time to maturity.

1To compute the time difference, a day-count convention of 30/360 is used. More information about the day-count convention
can be found in Section B.1.1.
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(a) Observations without data modifi-
cation

(b) Observations after bootstrapping
the coupon bonds

(c) Observations after approximating
the yields for a fixed set of maturities

Figure 3: Plots of the bond observations before and after the data modification steps. The modification consists
of two steps: bootstrapping the coupon bonds into zero coupon bonds and approximating the yields for a fixed
set of maturities. The spline points (black points in Figure 3c) will be used to estimate the zero coupon interest
rate curve.

Figure 4: Three dimensional plot of the zero coupon German government bond data, 2016.08-2022.26. The
sample consists of daily yield data at a fixed set of maturities for each day.

Time to maturity Mean Std. dev. Minimum Maximum ρ̂(1) ρ̂(14) ρ̂(30)
(years)
0.4 -0.6253 0.2749 -1.062 1.25 0.9805 0.7517 0.5253
1 -0.5564 0.447 -0.9590 2.459 0.8965 0.6526 0.4914
2.4 -0.5310 0.4842 -1.027 2.052 0.9892 0.8408 0.6778
4 -0.4063 0.5131 -1.014 2.151 0.9872 0.8461 0.6987
5.4 -0.2783 0.5348 -1.000 2.230 0.9916 0.8647 0.7301
16 0.4376 0.6154 -0.7263 2.642 0.9945 0.9131 0.8314
22 0.594 0.6137 -0.5803 2.553 0.9952 0.9242 0.8577
28 0.6936 0.6044 -0.4875 2.438 0.9957 0.9324 0.8709
level 0.7479 0.6046 -0.4875 2.438 0.9957 0.9324 0.8709
slope -1.237 0.5652 -2.342 -0.2932 0.9966 0.9602 0.9284
curvature -0.1967 0.8108 -3.454 1.07 0.9812 0.874 0.7799
level diff 0.0009377 0.04175 -0.2078 0.2212 -0.3350 0.0213 0.0441
slope diff 0.0002706 0.04546 -0.263 0.2598 -0.4800 0.0460 -0.0239
curvature diff -0.001829 0.1422 -2.461 2.594 -0.5020 -0.0131 0.000485

Table 2: A table with the descriptive statistics for the daily sampled zero coupon German government bond data
set. The level, slope, and curvature represent the empirical counterparts for the level, slope, and curvature as
defined by Diebold and Li (2006), and their diff values represent the series transformed by the linear difference
operator. The last three columns contain sample autocorrelations at displacements of 1, 14, and 30 days.
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2.1.4 Empirical counterparts of the bond data factors

In Section 1.2 it was explained that the interest rate curve can be described by three factors which can be
interpreted as the level, slope, and curvature. Diebold and Li (2006) defined the empirical counterparts for the
level, slope, and curvature being y(∞), y(∞)− y(0), and 2y(2)− y(0.25)− y(10) respectively. In Section 3.1 the
definition for the empirical counterparts and the interpretation of the factors will be explained in more detail.
Because these three factors also play a prominent role in the sequel, I include the analysis of their empirical
counterparts in this section.
To analyze the empirical counterparts from the data, I use the following methodology:

• The empirical counterpart for the level is extracted from the data by using the yield of the observation
with the highest time to maturity, i.e. y(τmax).

• The empirical counterpart for the slope is extracted from the data by the difference between the yields of
the observations with the highest and lowest times to maturity, i.e. y(τmax)− y(τmin).

• The empirical counterpart for the curvature is extracted from the data by the yields of the observations
that have a time to maturity closest to 2, 0.25, and 10 years. The curvature counterpart is then computed
by 2 · y(τ2)− y(τ0.25)− y(τ10), where τk is the time to maturity that is closest to k.

Table 2 includes the descriptive statistics for the three empirical counterparts of the factors. From the
autocorrelation, we see that all three empirical factors are highly persistent.
In Section 3.2 it will be explained that the DNS model assumes a stationary autoregressive process for the factor
dynamics. In Figure 5 are the time series of the values for the empirical counterparts. These plots suggest that
the time series is not a stationary process. The nonstationarity is confirmed by the ADF test results in Table 3.2

In order to obtain a stationary process for the factor dynamics, I applied the linear difference filter

∇xt = xt − xt−1

on each series separately. The ADF test results on the transformed series are presented in Table 4 and the
descriptive statistics are included in Table 2. According to these statistics, the first-order differences of the
factor dynamics are expected to be stationary and the transformed factors are less persistent than the time
series without the transformation.

(a) level (b) slope (c) curvature

Figure 5: The time series of the empirical counterparts for the factors that describe the interest rate. The
empirical factors are computed from the bond data according to to the methodology described in Section 2.1.4.

Factor ADF test statistic p value
Level 0.4220 > 0.99
Slope -2.132 0.5223
Curvature -0.2060 > 0.99

Table 3: The ADF test results for the empirical
counterparts for the level, slope and curvature of
the zero coupon German government bond data.

Factor ADF test statistic p value
Level -28.71 < 0.01
Slope -29.49 < 0.01
Curvature -18.75 < 0.01

Table 4: The ADF test results for empirical coun-
terparts transformed by the linear difference oper-
ator for the level, slope, and curvature of the zero
coupon German government bond data.

2Not rejecting H0: time series is stationary is based on a critical value of -2.87, corresponding to the 5% critical value of the
ADF test for more than 500 observations. The number of lags used in the ADF test is determined by Akaikes Information Criterion.
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2.2 Swap data
The specific swap curve that is used in this thesis to compute the spread, is the Euribor swap curve. A swap
curve represents the fixed rate of a swap contract.3 A swap contract is defined as follows.4

Definition 2.2 (Swap contract). A swap contract is a contract between two parties that defines a scheme
where a payment stream at a fixed interest rate is exchanged for a payment stream of a floating interest
rate.

The Euribor swap rate is the fixed rate of a swap contract of which the floating rate is the Euribor 6m
interest rate.

2.2.1 Swap data collection

The data that is gathered to construct the swap data set originates from swap contracts that are available for
trading in the market. These swap contracts have a floating rate that is the 6-month Euribor. Just as the bond
observations, the swap observations are published by Bloomberg with the following attributes:

• Date t - the date at which the swap contract is observed.

• Ticker of the swap contract which serves as a unique identifier in Bloomberg.

• Time to maturity τ in years.

• Face value of e100.

• Rate in the percentage of the face value that represents the fixed rate of a swap contract.

Just as for the bond observations, the swaps are on a daily basis. In Table 5 an example of two observations of
the swap data set is presented.

Date Ticker Time to Face value Rate (%)
maturity (years)

2020-12-23 EUSA1 Curncy 1 e100 -0.517
2020-12-23 EUSA2 Curncy 2 e100 -0.517

Table 5: Example of two swap observations with the attributes that are available after gathering the data from
Bloomberg.

2.2.2 Swap data preprocessing

The preprocessing process of the swap data consists only of data modification because there is no cleaning or
enrichment needed. The swap rate is already published by Bloomberg.

The swap observations gathered from Bloomberg have semi-annual payments of the fixed lag and annual
payments of the floating lag. This means that a swap contract with a time to maturity of 2 years implies
four payments of the fixed lag and two payments of the floating lag. Therefore, the rate attribute of a swap
observation represents multiple cash flows at multiple days.
To compare the swap rate with the bond rate, it is necessary that both rates represent the same cash flows.
Therefore, the swap data rates must be modified to get a fixed rate that represents the cash flow at the maturity
date only. This modified rate is the rate that can be compared with the yield of a bond observation that has
the same maturity date.
The method to modify the rate of a swap contract is the ‘bootstrapping method’, which is the same method
that was used to modify coupon bonds into zero-coupon bonds. The procedure to bootstrap the swap rate is
explained in Appendix B.1.2.

3To understand this thesis, it is not necessary to perfectly understand the relation between a swap contract and the swap rate.
For clarity purposes, the explanation has been omitted from the current context.

4This is the definition for a plain Vanilla fixed-for-floating interest rate swap, which is a specific type of swap contract. Because
there are no other swap contracts included in this thesis, I refer to it as a swap contract without any further elaboration.
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2.2.3 Swap data description and analysis

The set of swap data points consists of 46.080 observations. Each observation contains the attributes as specified
in Table 5. The first observations are on October 5, 2016, and the last observations are on October 26, 2022,
which is exactly the same time span as the set of bond observations. Each date has exactly 30 observations,
with a time to maturity τ ∈ {1, 2, 3 . . . , 30}.
In Figure 6 is a three-dimensional plot of the swap data. In this plot you can see that the swap curves take
approximately the same shapes and values for the same time intervals as the bond curves in Figure 4.

Figure 6: Three-dimensional plot of the swap data, 2016.08-2022.26. The sample consists of daily swap data at
a fixed set of maturities for each day.

In Table 6 are the descriptive statistics for the swap rates, the empirical counterparts of the level, slope, and
curvature, and the level, slope, and curvature transformed by the linear difference operator. The descriptive
statistics indicate that the shape of the swap curves is comparable to the shape of the bond curve.

Time to maturity Mean Std. dev. Minimum Maximum ρ̂(1) ρ̂(14) ρ̂(30)
(years)
1 -0.261 0.4404 -0.5445 2.62 0.9872 0.7977 0.6234
2 -0.261 0.4404 -0.5445 2.62 0.9872 0.7977 0.6234
3 -0.1913 0.5419 -0.5704 3.065 0.9892 0.8332 0.6952
5 -0.01 0.5882 -0.5705 3.141 0.9908 0.8642 0.7514
10 0.4862 0.6327 -0.3824 3.149 0.9931 0.9062 0.8189
15 0.8594 0.6525 -0.1948 3.156 0.9945 0.9271 0.8536
20 1 0.6405 -0.12 2.96 0.9954 0.9387 0.8743
30 1.039 0.6304 -0.2355 2.484 0.9965 0.953 0.9011
level 1.040 0.6306 -0.2355 2.484 0.9965 0.953 0.9011
slope -1.112 0.5117 -1.939 0.381 0.9962 0.9364 0.8843
curvature -0.4878 0.6329 -3.149 0.3824 0.9931 0.9062 0.819
level diff 0.001009 0.03652 -0.1745 0.2187 -0.4656 0.02924 -0.01849
slope diff 0.0007201 0.03349 -0.1744 0.1571 -0.4742 0.02814 -0.0005536
curvature diff -0.001808 0.0345 -0.231 0.222 -0.4827 0.0029 0.02365

Table 6: A table with the descriptive statistics for the daily sampled swap data set. The level, slope, and
curvature represent the empirical counterparts for the level, slope, and curvature as defined by Diebold and Li
(2006). The level diff, slope diff, and curvature diff are the factors transformed by the two-times repeated linear
difference operator. The last three columns contain sample autocorrelations at displacements of 1, 14, and 30
days.

2.2.4 Empirical counterparts of the swap data factors

The empirical counterparts are computed from the data according to the methodology that was described in
Section 2.1.4. In Figure 7 are the plots of the empirical counterparts of the DNS factors computed from the
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Factor ADF test statistic p value
Level 0.8871 > 0.99
Slope -1.999 0.5789
Curvature 2.553 > 0.99

Table 7: The ADF test results for the empirical
counterparts for the level, slope, and curvature of
the swap data.

Factor ADF test statistic p-value
Level -16.27 < 0.01
Slope -27.51 < 0.01
Curvature -26.54 < 0.01

Table 8: The ADF test results for empirical coun-
terparts transformed by the linear difference oper-
ator for the level, slope, and curvature of the swap
data.

swap data. In Table 7 and Table 8 are the results of the ADF tests on the series. These plots and numbers
show that the empirical counterparts of the level, slope, and curvature do not follow a stationary autoregressive
process.
Following the same reasoning as for the bond data, I applied the first-order difference transformation to the
series of empirical factors. According to the ADF test results in Table 8, these series are stationary.

(a) level (β1) (b) slope (β2) (c) curvature (β3)

Figure 7: The time series of the empirical counterparts for the factors that describe the interest rate. The
empirical factors are computed from the swap data according to to the methodology described in Section 2.1.4.

2.3 Spread data
The swap spread is defined as the difference between the swap rate and the bond rate with corresponding time
to maturity τ . In this paragraph, it will be explained that it is not possible to compute the swap spread from
our data set of bond and swap observations. Furthermore, the relation between the bond and swap observations
is analyzed.

2.3.1 Empirical swap spread does not exist due to mismatch in times to maturity

The bond data has times to maturity τ ∈ {0.4, 0.525, . . . , 28} and the swap data has times to maturity τ ∈
{1, 2, . . . , 30}. This makes it impossible to compute the spread directly from our data sets. This is visualized in
Figure 8. For a certain swap observation, there is no matching bond observation, hence the swap spread does
not exist empirically for that time to maturity.

Figure 8: A plot that visualizes that the swap spread can not be computed from the data due to a mismatch in
times to maturity.

The data is thus limited to two separate data sets. This motivates the need for a model that estimates and
predicts the whole bond curve and the whole swap curve to be able to compute the prediction for the swap
spread.
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2.3.2 Analysis of the relation between the swap and bond observations

Although we have two separate data sets for both instruments, the analysis in the previous paragraph shows
that there is a strong relationship between both data sets: Figure 4 and Figure 6 show that the shape of the
curves is comparable for each time period, and the dynamics of the empirical counterparts for the level, slope
and curvature in Figure 5 and Figure 7 take approximately the same values.
The relation between the bond data and the swap data is confirmed by the cross-correlation coefficients. The
correlation coefficients of the empirical counterparts of both the swap and the bond data are presented in Ta-
ble 9. The correlation coefficients of the series transformed by the linear difference operator are also presented in
the table. All cross-correlation coefficients are significantly different than zero, which confirms the relationship
between the series.

level slope curvature level diff slope diff curvature diff
Cross-correlation (1) 0.926 0.859 0.906 -0.413 0.374 -0.157
Cross-correlation (-1) 0.930 0.861 0.908 -0.427 -0.294 -0.184

Table 9: Cross-correlation coefficients for lag 1 for the empirical counterparts of the level, slope, and curvature
of the bond data and the swap data. The ‘diff’ columns are the coefficients for the series transformed by the
linear difference operator.

In summary, our data consist of a bond data set and a swap data set. The shape of the bond curve and
the swap curve is analyzed through the empirical counterparts of the level, slope, and curvature, which will be
explained in more detail in Section 3.1. The empirical counterparts are persistent but do not follow a stationary
autoregressive process. The empirical counterparts transformed by the linear difference operator do follow a
stationary autoregressive process but are less persistent than the not transformed series. This holds for both
the bond and swap data and we will use this information later in Section 3.3.2.
It is not possible to compute the spread directly from the bond and swap data sets due to a mismatch in times
to maturity. This motivates to use a model that estimates and predicts the swap curve and the bond curve as
a continuous function for the time to maturity.
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3 Dynamic Nelson-Siegel model
The Dynamic Nelson-Siegel model is a model that is widely used by, among others, central banks to predict the
interest rate curve (Filipović, 2009). A main advantage of the DNS model is that it models the interest rate
curve as a continuous function of the time to maturity τ . In Section 2.3.1 it was explained that to predict the
swap spread, it is necessary to predict the swap curve and the bond curve as a continuous function of the time
to maturity. This is the main motivation to use the DNS model to predict the swap spread.

In Section 1.2 it was explained that the DNS model models the interest rates by three latent factors. These
three latent factors are then modeled by an autoregressive model in order to obtain predictions for the factors.
These predictions are used to obtain predicted interest rate curves. This section contains the theoretical frame-
work of the DNS model step-by-step. Section 3.1 elucidates the NS model with its interpretation, serving as
the foundation for the DNS model, and in Section 3.2 is the original DNS model as proposed by Diebold and
Li (2006), along with its matrix representation.

Diebold et al. (2006) remarked in 2006 that the factors of the DNS model were strongly correlated with
macroeconomic variables. They improved the prediction accuracy of the DNS model by extending the autore-
gressive processes for the latent factors into a vector autoregressive process that included the macroeconomic
variables. The same reasoning can be applied in the prediction of two correlated interest rate curves. If the
latent factors of both curves are correlated, modeling the latent factors in one vector autoregressive process
could improve the predictions of both rates. This leads to the first new variant of the DNS model, which will
be presented in Section 3.3.1.

The original DNS assumes a stationary autoregressive process for the latent factors. In Section 2.1 and in
Section 2.2, the interpretation of the latent factors is used to obtain a series of empirical factors. The series of
empirical factors are not stationary, which could imply that modeling the latent factors by an autoregressive
model is incorrect.
A linear first-order difference transformation of the empirical factors is stationary, as shown in Section 2.1 and
in Section 2.2. This is the main motivation for the second new variant of the DNS model in this thesis. This
variant models the first-order differences of the latent factors of the DNS model by an autoregressive process.
This variant is presented in Section 3.3.2.

There is a third new variant of the DNS model that combines the reasoning of the first two variants. This
model models the first-order differences of the latent factors of both the swap curve and the bond curves in one
vector autoregressive model. This variant will be presented in Section 3.3.3.

To estimate the parameters and to construct predictions, the model is formulated as a state space model. The
utilization of a state space representation offers numerous advantages compared to the original formulation of the
DNS model. These advantages, among others, include the capability to effectively handle missing observations
and to obtain theoretically correct inference. Both proposed models in Section 3.3 can be formulated in state
space form as well, which is shown in Appendix E.
Using the state space representation, the parameters of the model can be estimated by maximum likelihood
estimation. The likelihood of the parameters is evaluated with the Kalman filter. The Kalman filter and the
parameter estimation are shown in Section 3.4.2 and Section 3.4.3 respectively. In Section 3.4.4 it is explained
how to obtain MSE optimal predictions and the prediction intervals of the interest curves and the spread curves.
Finally, the model performance assessment will be presented in Section 3.5.

3.1 The Nelson-Siegel model
Nelson and Siegel (1987) published a simple model that describes the interest rate y as a function of time to
maturity τ , y(τ), with only four parameters: β1, β2, β3 and λ. The model relates τ to the interest rate y by

y(τ) = β1 + β2 ·
(
1− e−τλ

τλ

)
+ β3 ·

(
1− e−τλ

τλ
− e−τλ

)
, (1)

where the interest rate y(τ) is a sum of three factors β1, β2 and β3 weighted by their factor loadings 1,
(

1−e−τλ

τλ

)
and

(
1−e−τλ

τλ − e−τλ
)
. The NS model is in the literature referred to as the three-factor model for interest rates.5

5The factorization in Equation 1 is different than the original factorization in the article of Nelson and Siegel. The factorization
in Equation 1 was published by Diebold and Li Diebold and Li (2006) in 2006. Their factorization matches the original NS model by
reordering the equation but has the advantage over the original model that the factors β1, β2 and β3 can be interpreted intuitively.

12



3.1

3.1.1 The interpretation of the NS model

We follow the interpretation of the model presented by Diebold and Li Diebold and Li (2006) which starts with
the three-factor loadings. These loadings determine the weight on the factors per value of τ and depend on the
value of τ and the parameter λ.

The relation between each factor loading and τ is visualized in Figure 9. The first loading is independent
of τ , which implies that the weight on the first factor β1 is constant over all values of τ . The second loading is
a downward-sloping curve starting at a value of 1 and converging to zero for increasing values of τ . The third
loading is a ‘bumped’ curve that starts at zero and converges to zero for higher values of τ . The shape of the
third loading implies that the third factor has a smaller weight for rates with very short or very long maturities
relative to rates with a middle maturity.
The relation between the factor loadings and τ forms the basis for the interpretation of the parameter λ and
the factors β1, β2, and β3.6

Figure 9: The factor loadings in the NS model in Equation 1 for different values of λ.

The interpretation of λ The parameter λ included in the second and third-factor loadings influences the
exponential decay rate of the factor loadings. Small values of λ lead to slow decay and large values to fast
decay. The value of λ also determines where the third loading achieves its maximum. In Figure 9 the loadings
are plotted for four different values of λ. It can be observed that smaller values for λ imply a faster decay of
the β2-loading. Also, a smaller λ results in the β3-loading attaining its maximum at a smaller value of τ .

Interpretation of the factors Diebold and Li (2006) provided interpretation for the factors β1, β2 and β3

as being respectively the level, slope, and curvature of the interest rate curve. They defined the level of the
interest rate curve as y(∞), the slope as y(∞)− y(0), and the curvature as 2 · y(2)− y(0.25)− y(10).

For infinitely large values of τ , i.e. τ → ∞, the β1-loading is a constant and the β2- and β3-loadings converge
to zero. That implies that the rates for infinitely large values of τ are determined only by the first factor β1.
The factor β1 thus can be interpreted as the level of the interest rate curve and is therefore referred to as the
long-term factor or the level factor.
For small values of τ , i.e. τ → 0, the β1 and β2-loading are equal to 1 and the β3-loading converges to zero.
Hence the rates for small values of τ are determined by the first and second factors β1 and β2. By the definition
of the slope as y(∞)− y(0), the slope of the interest rate curve is equal to the negative value of β2. The factor
β2 is referred to as the short-term factor or the slope factor.
The factor β3 starts at zero and converges to zero. An increase in β3 will have little effect on very short or very
long interest rates. An increase in β3 will increase medium-term rates, which load more heavily on β3. Thereby,
β3 is closely related to the curvature of the interest rate curve and is referred to as the medium-term factor or
the curvature factor.

6The computations of the convergence of the factor loadings are shown in Appendix C.1.
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The NS model in Equation 1 models the interest rate curve by defining the relation between the time to
maturity and the interest rate y(τ) as a sum of three factors weighted by the factor loadings. These factors can
be interpreted as the level, slope and curvature of the interest rate curve.
The NS model is limited to modeling the curve for one date and hence it is not directly useful for forecasting
purposes. Therefore, the model is extended to the Dynamic Nelson-Siegel (DNS) model.

3.2 The Dynamic Nelson-Siegel model
The DNS model is an extension of the NS model by allowing the parameters β1, β2, β3, and λ to take different
values over time. The DNS model was proposed by Diebold and Li (2006) and has the form

yt(τ) = β1t + β2t ·
(
1− e−τλt

τλt

)
+ β3t ·

(
1− e−τλt

τλt
− e−τλt

)
. (2)

Just as the NS model, the DNS model in Equation 2 is non-linear in the parameter λt. Simultaneous estima-
tion of λ and the factors β1, β2, and β3 results in a nonlinear optimization problem with certain computational
issues. Discussion about computational issues of the DNS model, when λ is not constant, can be found in Cottle
and Thapa (2017). To avoid the computational issues, Diebold and Li (2006) propose to choose a fixed value
for λ in advance. A fixed value for λ makes the model less flexible to the data.

3.2.1 The DNS model as a linear model of the factors

If the value of λ is known, the DNS model is linear in the three factors β1, β2, and β3. Consider a data set of n
observations of {(yi,t, τi,t)}ni=1, where yi represents the interest rate, τi represents the time to maturity in years,
and the index t represents the date of the observed value. Assume that all n observations have the same date
index t. Then the DNS model in Equation 2 models the interest rate as

yt(τ1)
yt(τ2)

...
yt(τn)

 =


1 1−e−τ1λ

τ1λ
1−e−τ1λ

τ1λ
− e−τ1λ

1 1−e−τ2λ

τ2λ
1−e−τ2λ

τ2λ
− e−τ2λ

...
...

...
1 1−e−τnλ

τnλ
1−e−τnλ

τnλ
− e−τnλ


β1,t

β2,t

β3,t

+


εt(τ1)
εt(τ2)

...
εt(τn)

 , (3)

where
(
yt(τ1) . . . yt(τn)

)T is the vector of the n interest rates for observations yt(τi) = yi,t. The n×3-matrix
contains the time-independent factor loadings for each observation, βt is the vector of factors at time t, and εt
is the vector of error terms which are considered as being pricing errors. The pricing errors εt(τi) are assumed
to be mutually independent, normally distributed, εt

iid∼ N (0, H), for H a diagonal matrix.

The value of λ in practice is not known, but estimated separately from the estimation of the factors. The
representation of the DNS model in Equation 3 allows for this separate estimation of λ and the factors, which
will be explained later in Section 3.4. For now, it is only important to notice that the interest rate is a linear
combination of the factors β1,t, β2,t and β3,t because the following subsections describe the dynamics of these
factors.

3.2.2 Dynamics of the DNS factors

Diebold and Li (2006) recognize that market observations have a natural temporal ordering, and therefore the
factors βt =

(
β1t β2t β3t

)T in the DNS model are strongly correlated over time. They argue that the dynamic
movements of the factors can be captured with a vector autoregressive (VAR) model.

The proposed VAR model is a VAR model of order 1 on the three dynamic factors. The VAR(1) model
describes the factor dynamics asβ1,t

β2,t

β3,t

 =

c1
c2
c3

+

ϕ11 ∅
ϕ22

∅ ϕ33

β1,t−1

β2,t−1

β3,t−1

+

η1,t
η3,t
η2,t

 , (4)

where βi,t denotes the value of factor i = 1, 2, 3 at time t, c1, c2, c3 denote the time independent trend of the
model, and ϕij is the coefficient that determines the relation between factor βi,t and factor βj,t−1. The vector ηt
contains the error terms for the factors in the model, which are assumed to be mutually independent, normally
distributed, ηt

iid∼ N (0, Q), for Q a diagonal matrix.
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Notice that the off-diagonal elements ϕij in the autoregressive coefficient matrix are zero, and therefore the
VAR model is restricted and is actually a combination of three univariate AR(1) models. This assumption is
also used in several prominent articles about the DNS model (Diebold & Li, 2006), (Shaw et al., 2014). The
argument for a restricted VAR model in these articles is that due to a large number of included parameters,
there is a risk of in-sample overfitting. Additionally, a full VAR matrix would take much more computational
time and lower tractability. There are also articles that use a full matrix Φ for the VAR model in Equation 4
(Diebold et al., 2006), (Koopman et al., 2007). As stated in Section 1.3, the DNS models in this thesis are
derived from the original DNS model. For that reason, and for the computational tractability, I assume an
autoregressive coefficient matrix Φ where all off-diagonal elements are equal to zero.

3.3 Variants of the DNS model
In this section, I propose three variants of the original DNS model. The first variant, referred to as sim-statDNS,
combines the factor dynamics of two different interest rates into one autoregressive model. The second variant,
referred to as nonstatDNS, models the dynamics of the factors β1, β2 and β3 by an autoregressive model on
the first-order difference of the factors, instead of the factors themselves. The third variant, referred to as
sim-nonstatDNS, also combines the factor dynamics of two rates but models the first-order differences as a
stationary autoregressive process.

3.3.1 sim-statDNS: DNS to estimate two interest rates simultaneously

This thesis focuses on the prediction of not one, but two interest rate curves. In 2006, Diebold et al. (2006)
improved the prediction performance of the DNS by including macroeconomic variables in the vector autore-
gressive process for the latent factors. In Section 2, it was shown that the level (β1), slope (β2), and curvature
(β3) estimated on the swap data, were strongly correlated with the level, slope, and curvature of the bond data.
Using the same reasoning as Diebold et al. (2006), the first variant of the DNS model is to combine the factors
of the swap data with the factors of the bond data into one VAR model, where each factor is related to its own
lagged value and the lagged value of the other interest rate curve,

β1,t,swap

β2,t,swap

β3,t,swap

β1,t,bond

β2,t,bond

β3,t,bond

 =


c1
c2
c3
c4
c5
c6

+


ϕ11 ϕ14

ϕ22 ϕ25

ϕ33 ϕ36

ϕ41 ϕ44

ϕ52 ϕ55

ϕ63 ϕ66




β1,t−1,swap

β2,t−1,swap

β3,t−1,swap

β1,t−1,bond

β2,t−1,bond

β3,t−1,bond

+


η1,t
η2,t
η3,t
η4,t
η5,t
η6,t

 , (5)

where the empty entries of the matrix Φ represent value zero, ηt
iid∼ N (0, Q) and Q a 6 × 6-diagonal matrix.

This implies that the error terms of the factors are mutually independent.

Thus, the complete first variant of the DNS model is given by Equation 2 and Equation 5 and will be
referred to as ‘sim-statDNS’. This variant uses more information from the relationship between the bond and
swap rate by combining the factors of two interest rates and is therefore expected to have a better fit and a
better prediction performance.

3.3.2 nonstatDNS: DNS with nonstationary factor dynamics

The estimation of a VAR model requires all the time series to be stationary. The time series of the empiri-
cal counterparts for the level (β1), slope (β2), and curvature (β3) computed from the data were nonstationary
processes, as shown in Section 2. Modeling these factor dynamics by a VAR model would therefore be not correct.

To model the factors by an autoregressive model, the data is transformed by taking the first-order differences.
The transformation that implies a stationary process for the factor dynamics is the first-order differences on
each of the time series, as demonstrated in Section 2.7 The series of first-order differences are modeled by a
VAR(1) process, ∇β1,t

∇β2,t

∇β3,t

 =

c1
c2
c3

+

ϕ11 ∅
ϕ22

∅ ϕ33

∇β1,t−1

∇β2,t−1

∇β3,t−1

+

η1,t
η2,t
η3,t

 , (6)

7The nonstationarity of the factors is concluded from the ADF test on the empirical factors. Later, in Section 5.1, it will be
shown that the nonstationarity of the empirical factors implies nonstationarity of the DNS factors
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where ∇βi,t = βi,t − βi,t−1, ci is the trend, ϕij is the coefficient that determines the relation between ∇βi,t and
∇βi,t−1. The vector ηt contains the error terms for the factors in the model.

Thus, the second variant of the DNS model is given by Equation 2 and Equation 6, and in the sequel this
model will be referred to as ‘nonstatDNS’. This variant should be used when the first-order difference of the
factors follows a stationary autoregressive process.

There are two reasons for choosing the first-order difference transformation for the time series. First, as
stated previously, this transformation ensures stationarity of the factor dynamics in the data that is used in
this thesis. Second, this transformation is linear, which is necessary for the formulation of the model as a
linear state space model, which will be explained subsequently in Section 3.4.1. Furthermore, the model for
the transformed factor dynamics only uses one lag and could thereby ignore relevant information from earlier
observations. Incorporating multiple lags in this model is possible but is out of the scope of this thesis.

3.3.3 sim-nonstatDNS: DNS to estimate two rates simultaneously with nonstationary factor
dynamics

The third variant of the DNS is a model where the first-order differences of the factor dynamics are assumed
to be stationary. This is a combination of the two previous variants in Section 3.3.1 and Section 3.3.2. The
first-order differences of the factor dynamics are modeled by a VAR(1) model where the factors are assumed to
correlate with each other. The autoregressive model is given by

∇β1,t,swap

∇β2,t,swap

∇β3,t,swap

∇β1,t,bond

∇β2,t,bond

∇β3,t,bond

 =


c1
c2
c3
c4
c5
c6

+


ϕ11 ϕ14

ϕ22 ϕ25

ϕ33 ϕ36

ϕ41 ϕ44

ϕ52 ϕ55

ϕ63 ϕ66




∇β1,t−1,swap

∇β2,t−1,swap

∇β3,t−1,swap

∇β1,t−1,bond

∇β2,t−1,bond

∇β3,t−1,bond

+


η1,t
η2,t
η3,t
η4,t
η5,t
η6,t

 , (7)

where the empty entries of matrix Φ are equal to zero, ηt
iid∼ N (0.Q), and Q a 6× 6-diagonal matrix.

The third variant of the DNS model is composed of Equation 2 and Equation 7. In the sequel, this model
will be referred to as the ‘sim-nonstatDNS’ model.

3.4 State space modeling
Diebold and Li (2006), who published the original DNS model, estimated the parameters in two steps: first,
the factors, and then the parameters in the autoregressive model were estimated. In this two-step procedure, λ
is not estimated Equation 2 and it is not possible to produce correct confidence and prediction intervals. Also,
this approach assumes a complete set of observations and can not handle missing observations (which is the
case for the data we will model).
To overcome these limitations, Diebold et al. (2006) reformulated the original DNS model in state space rep-
resentation. In a state space model, the factors, λ, and the parameters can be estimated simultaneously.
Furthermore, this one-step approach is able to handle missing observations in the data set.

This section will describe the process of estimating the parameters and generating predictions using a DNS
model represented in the state space form. In Section 3.4.1, the DNS models will be formulated in state space
representation. Although the original DNS model was already formulated in this form, the formulation of the
three variants in state space representation is introduced in this thesis for the first time.
To estimate the parameters and obtain predictions, the Kalman filter will be used. The Kalman filter is an
algorithm that estimates and predicts latent variables and simultaneously computes the loglikelihood of the
parameters in a model. Details about the Kalman filter are included in Section 3.4.2.
In Section 3.4.3, it will be explained how to estimate all the parameters in the DNS models by maximum
likelihood estimation. A crucial part of this estimation procedure is the choice for the initial parameters. The
initial parameters will be estimated by the 2-step approach of Diebold and Li (2006), which will be explained
in the same section.
Once the parameters are estimated, the model can be used to obtain predictions for the interest rate curves.
Section 3.4.4 contains the details of how to produce MSE optimal predictions and corresponding confidence
intervals.
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3.4.1 DNS model in state space representation

The state space system for a DNS model consists of two equations: a measurement equation and a transition
equation. The measurement equation captures the relation between the observed interest rates and the un-
observed factors, and the transition equation captures the dynamics of the unobserved factors over time. For
the original DNS model, the measurement and transition equation correspond to Equation 3 and Equation 4
respectively. The new DNS models defined in Section 3.3 are formulated as state space models in Appendix E.

The general form for a DNS model in state space representation is

bt = c+Φbt−1 + ηt (8a)
yt = Λtbt + εt, (8b)

where yt are the observations, bt the unobserved unobserved factors, in the DNS model, εt the measurement
errors and ηt the factor disturbances. Equation 8a is the transition equation and Equation 8b is the measure-
ment equation.
The general transition equation uses the notation of bt instead of βt for the unobserved state vectors. That is
because, for the variants of the DNS model, this vector includes the lagged factor values as well. By the usage
of bt the state space formulation is sufficient for all DNS models and there will be no confusion between βt and bt.

In this thesis, I assume that ηt, εt and b0 are multivariate Gaussian random variables. With this assumption,
the system in Equation 8a-8b is extended with the following conditions,

ηt ∼ N (0, Q) (8c)
εt ∼ N (0, Ht) (8d)

b0 ∼ N
(
b0, P0

)
, (8e)

such that the full state space system for the original DNS model is specified by Equation 8a-8e. The parameters
in the state space model are collected in

Θ := {Θt, ; t = 1, . . . , T} := {b0, P0, c,Φ, Q, λ,Ht, ; t = 1, . . . , T}.

The formulation of the DNS models as state space models serve as a framework in which we can estimate
the parameters of the model and make predictions. Both the estimation and prediction make use of the Kalman
filter algorithm. Therefore, we now first introduce the Kalman filter algorithm.

3.4.2 Kalman filter

Consider the state space model given by Equation 8a-8e. Suppose all parameters Θt are known. For a data set
of observations {yi,t, τi,t}Tt=1, the Kalman filter estimates and predicts the unobserved state vectors bt, predicts
the future interest rates yt for t > T and computes the likelihood of the parameters in Θt on the data set of
observations. How the Kalman filter is used to obtain each of these estimates and predictions will be explained
subsequently in Section 3.4.3 and Section 3.4.4.

What will follow now is a short explanation of the Kalman filter and its application in the DNS models.
The full algorithm, provided in Algorithm 3.1, consists of two steps: a prediction step and an update step. The
prediction step predicts the latent factors b̂t and the observations ŷt one step ahead. The update step revises
the prediction for the latent factor once the next observation has been observed. By iterating over these two
steps, the algorithm obtains estimates and predictions for each moment t.

Firstly, the Kalman filter will be applied to obtain the log-likelihood of parameters Θ for a given set of ob-
servations. Hence, the Kalman filter will be used in the maximum likelihood estimation. This will be explained
subsequently in Section 3.4.3.
Secondly, the Kalman filter is applied to obtain predictions for the latent factors and the interest rates. This
will be explained later in Section 3.4.4.
Finally, an in-depth explanation of theory related to the Kalman filter is provided in Appendix F.

The Kalman filter is able to produce estimates and predictions even when one or more observations yi,t are
missing. For missing observations, the algorithm skips the update step and uses the results of the prediction
step as its estimates. This is particularly useful for our data set, as we do not have observations in the weekends.
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Algorithm 3.1 (The Kalman filter). Set the initial state vector equal to its mean b0 = b0 and the initial
covariance matrix of the state vectors P0|0 equal to the covariance matrix of the initial state P0. The
Kalman filter algorithm obtains a series of estimated state vectors b1, . . . , bT by iteratively performing a
prediction step and an update step. For t = 1, . . . , T :

1. Prediction step from time t− 1 to time t.
Assume that we have observed Yt−1 = {y1, . . . , yt−1}, but not yet yt.

(a) Predict the mean bt of factor bt by the point estimate:
bt|t−1 = Φbt−1|t−1

(b) Predict the covariance matrix Pt of the factor bt:
Pt|t−1 = ΦPt−1|t−1Φ

′ +Qt

(c) Predict the observation vector yt by the point estimate:
ŷt|t−1 = Λtbt|t−1

(d) Predict the covariance matrix Ft of the observation estimate:
Ft = ΛtPt|t−1Λ

′
t +Ht

2. Update step from at time t.
Assume that we now have observed yt as well.

(a) Compute the Kalman gain Kt:
Kt = Pt|t−1Λ

′
t (Ft)

−1

(b) Compute the prediction error of the observation prediction ŷt−1
t from step 1(c):

vt = yt − ŷt|t−1

(c) Update the estimate for the mean bt of factor bt:
bt|t = bt|t−1 +Ktvt

(d) Update the estimate for covariance matrix on the states:
Pt|t = Pt|t−1 −KtΛtPt|t−1

3.4.3 Parameter estimation

The first application of the Kalman filter is to estimate the parameters Θ = {b0, P0, c,Φ, Q, λ,Ht; t = 1, . . . , T}
by maximum likelihood estimation. For a set of observations YT = {yi,t, τi,t}Tt=1, the log-likelihood of Θ is given
by8

ln ℓ (Θ) = −nT

2
ln (2π)− 1

2

T∑
t=1

ln|Ft (Θ)| − 1

2
(vt (Θ))

′
Ft (Θ)

−1
(vt (Θ)) , (9)

where n is the number of observations per time step, T is the number of time steps, and vt(·) and Ft (·) are the
one step ahead forecast error and its covariance matrix given Yt−1. Notice the dependence of vt and Ft on the
parameters in Θ.
The values for vt (Θi) and Ft (Θ) directly follow from the Kalman filter algorithm. The value for vt is obtained
in step 2(b) and the value for Ft is obtained in step 1(d). Thus the log-likelihood for parameter Θ can be
computed by running the Kalman filter algorithm once for Θ on the set of observations.

The computation of the log-likelihood by the procedure described in this section assumes that each day
has an equal amount of observations. In Section 2.1 it was explained that the number of observed bonds was
different for each day. In this thesis, it was chosen to preprocess the bond observations with splines, such that
each day has the same amount of observations with the same times to maturity.
Another option could be to use all observations in the data in one large matrix, where the entries for bonds
that were not observed at that specific date are empty. This, however, leads to a very large, sparse observation
matrix Yt, resulting in computational complexities.
There is a method that avoids the assumption that each date must have the same number of observations. This
method is called the ‘univariate treatment of a multivariate series’ and is explained in Durbin and Koopman
(2012a). The idea of this method is to introduce each single observation separately. This procedure is used in
the context of a DNS model by Koopman et al. (2007), but is left out of the scope of this thesis.

8The derivation of this log-likelihood function is provided in Section F.2
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Optimization algorithm To find Θ̂MLE , we start with an initial Θ0, for which we can evaluate the log-
likelihood with the Kalman filter. Then the ‘BFGS’-optimization algorithm is used to produce a new estimate
Θ1, for which we again evaluate the log-likelihood with the Kalman filter. This iterative process proceeds until
it is converged for a relative convergence criterion of 1× e−8.
The ‘BFGS’ algorithm is a quasi-Newton method that was also used by Koopman et al. Koopman et al.
(2007). Through iterative adjustment of each of the parameters, the BFGS algorithm seeks the optimal solution
by maximizing the objective function, which is the log-likelihood function. The algorithm approximates the
inverse Hessian matrix of the objective function based on gradient information.
The gradient of the log-likelihood function is known for some of the parameters in Θ, but not for all of them
(Durbin & Koopman, 2012a). The only implementation of state space models that uses these gradient functions,
is the implementation in the programming language Ox Koopman et al. (2007). Because the implementation
for this thesis will be in the programming language R and because there is no implementation of the gradients
of the log-likelihood available for R, I choose to approximate the gradient of the log-likelihood in each of the
parameters by a finite-difference approximation.

Initial parameters To start the MLE optimization, we need the initial parameter Θ0. This parameter is
obtained by the so-called ‘two-step’ approach (Nelson & Siegel, 1987). For this method, we choose a certain
value for λ. With this λ, the state vectors bt are estimated by ordinary least squares, which is the ‘first step’.
Then in the ‘second step’, a VAR model is estimated by OLS on the time series of estimated factors. From
these two estimated models, we can derive all initial parameters for the MLE estimation. See Appendix F.5 for
a detailed explanation. Thus, for one initial choice of λ, the two-step approach provides all parameters in Θ.

Initial choice for λ The only initial parameter that must be chosen in advance, is the value of λ. In litera-
ture, there are various methods on how to choose the value of λ. Nelson and Siegel (1987) choose their value
of λ as the value that provided the lowest in-sample error on the data among a grid of λ values. In contrast,
Diebold and Li (2006) argued that λ must be chosen such that the β3,t factor loading attains its maximum for
τ being the average time to maturity over all data points, see Figure 9.
Both these methods did not include the estimation of λ in the MLE procedure but rather kept the λ fixed to
its initial value. Diebold et al. (2006) were the first that estimated λ by MLE, using the initial value from the
method of Diebold and Li (2006). Later research on the DNS model adopts the MLE value of λ from Diebold
et al. (2006) as the initial value, leading to fast convergence. This is possible because all articles apply the DNS
model to the same type of data: US government bonds.

In this thesis, I do not use US government bonds for my data. Therefore, I choose the initial value of λ
using the method of Diebold and Li (2006). Using this λ, the initial parameters are estimated by the two-step
approach, and Θ̂MLE is estimated by maximum likelihood estimation.

3.4.4 Predictions

The predictions for the interest rate consist of point estimates, which are the predicted interest rates, and their
uncertainty, which are the confidence intervals.

Predicting the interest rate The Kalman filter produces MSE optimal predictions for both the state vectors
bt and the observation vectors yt. The MSE optimal prediction for bt is the conditional expectation E [bt|Yt−1]
and the MSE optimal prediction for yt is the conditional expectation E [yt|Yt−1]. By the assumption in Equa-
tion 8c-8e, we know that both bt and yt are normally distributed, conditional on the observations Yt−1. That
implies that the MSE optimal predictions for bt and yt are the conditional means predicted in step 1(a) and
step 1(c) of the Kalman filter respectively.

For multiple steps ahead predictions, we skip the update step and use each predicted value at time t to predict
the values at time t+ 1. The specific Kalman filter algorithm for making multiple steps ahead predictions are
given in Section F.4.

Prediction intervals With the Kalman filter, we obtain not only the point estimates for bt and yt but also
predictions for their covariance matrices Pt and Ft. Since bt and yt are normally distributed conditional on Yt,
by knowing the mean and covariance matrix, we know the full distribution of bt and yt. This property is used
to construct the prediction intervals.

The prediction intervals are constructed using the standard formula for a prediction interval of a normal
random variable,

[µ− z · σ, µ+ z · σ],
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where µ and σ are the mean and standard deviation of the normal random variable, and z is the standard score.
For the 9% prediction intervals, a standard score of 1.96 will be used.
For the prediction intervals of bt, µ is set to b̂t and the standard deviation σ is set to the square root of the
diagonal elements of Pt. For the prediction intervals of ŷt, the mean µ is set to ŷt and the standard deviation
σ is set to the square root of the diagonal elements of Ft.

3.5 Assessment of the model performance
The model performance will be assessed by its accuracy and uncertainty. The accuracy is measured by the root
mean squared error (rMSE) and the uncertainty is determined by the confidence and prediction intervals of the
modeled interest rate curves.

In Section 2.3.1 it was explained that due to a mismatch in times to maturity for the real data, it is not
possible to compute the true swap spread. This implies that in the case study, the estimated or predicted swap
spread curve can not be compared to the true swap spread curve. For that reason, the performance of the
estimated and predicted swap spread curves will be assessed by analyzing the performance of the swap and
bond curves separately. The swap and bond curve accuracy is measured by their rMSE on the data.

In the simulation studies, however, it is possible to simulate data such that the swap and bond observations
have matching times to maturity. This makes it possible to determine the rMSE of the estimated and predicted
swap spread curve in the simulation studies. The accuracy assessment of the estimated and predicted curves in
the simulation studies consists thus of the rMSE of the swap, bond, and swap spread curves.

3.5.1 The random walk model as benchmark model

In statistics, it is common to compare the model performance to a benchmark model. The benchmark model
in this thesis is the random walk model.
The random walk model is a simple mathematical concept used to describe the unpredictable movement of a
variable over time. In this model, the variable’s future position is determined solely by its current position
and random changes or "steps" at each time step. The random walk model assumes that the interest rate at
moment t = ti is equal to the interest rate at moment t = ti+1. Therefore, the predicted interest rates are equal
to the last observed interest rate observations.

A major disadvantage of the random walk model in the prediction of the swap spread is that the random
walk model does not model the interest rates as a continuous function of the time to maturity. The mismatch
in times to maturity of the real data implies that it is not possible to compute the swap spread from this
benchmark model. That means that the random walk model only serves as a benchmark model to compare
the prediction accuracy of each rate separately and can not be used to compare the prediction accuracy of the
spread in the case study.

In the simulation studies, the data will be simulated in a way that the swap and bond data have matching
times to maturity. That makes it possible to compute the swap spread for the benchmark model as well. In
the simulation studies, the accuracy of the swap spread curve will thus be compared to the benchmark model
as well.
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4 Procedure for the simulation studies
The goal of this thesis is to develop a methodology to predict the swap spread using a DNS model. All theory
related to the original DNS model of Diebold and Li (2006) is described in the previous section. Additionally,
three new variants based on this DNS model are introduced. To define a methodology based on this theory,
13 different simulation studies are performed. This methodology is empirically tested on real data. In this
section, it will be explained what simulation studies will be performed, how they will be performed, and how a
methodology is derived from the simulation studies.

This section is structured as follows. Section 4.1 contains a short summary of all four DNS models that can
be used in the methodology. Section 4.2 contains a description of the goal of each of the 13 different simulation
studies that will be performed in this thesis. In Section 4.3, the general simulation procedure is described by
four steps: data simulation, data analysis, model estimation and prediction, and the assessment of the model
behavior and performance. This is followed by the description of the implementation in Section 4.4, where the
names and usage of all software packages that will be used for the simulation study are included.

4.1 Four competitive DNS models
A main part of the simulation studies is to investigate which DNS model best fits the data. In the selection
process, there are four potential DNS models to consider:

• The original DNS model as proposed by Diebold and Li (2006). This model is defined in Equation 3 and
Equation 4. This model models a single interest rate of which the factor dynamics are assumed to follow
a stationary autoregressive process of order one. Henceforth I will refer to this model as ‘statDNS’.

• The DNS model of which the first-order differences of the factor dynamics are assumed to follow a sta-
tionary autoregressive process of order one. This model is described by Equation 3 in combination with
Equation 6. I will refer to this model as ‘nonstatDNS’.

• The DNS model that models two interest rates simultaneously. All factor dynamics are assumed to follow
a stationary autoregressive process of order one. This model is described by Equation 3 in combination
with Equation 5. I will refer to this model as ‘sim-statDNS’.

• The DNS model that models two interest rates simultaneously of which the dynamics of the first-order dif-
ferences of the factors are assumed to be stationary. This model is described by Equation 3 in combination
with Equation 7. I will refer to this model as ‘sim-nonstatDNS’.

These four models will be used throughout all simulation studies.

4.2 Goal of the simulation studies
A total of 13 distinct studies will be conducted to derive the methodology to estimate the DNS models. Each
study has its objective and contribution to this methodology, which I will specify in this chapter. The simulation
studies that will be performed, can be divided into five groups.

1. The empirical counterparts for the level, slope, and curvature factors.
The simulations within this group focus on the relation between the empirical factors that can be computed
from the data and the true underlying factors that can not be observed. The hypothesis is that the
dynamics and systematic relation of the empirical factors are a good representation of the dynamics of
the DNS model factors. In that case, the structure of the true DNS factors can be decided based on the
empirical factors.

2. The model behavior.
The simulations within this group focus on the estimation process for the parameters and the factors
in the model, as well as their mutual relationships. By doing these simulations, we learn how certain
parameters in the model behave relative to other parameters. In real-world scenarios, models can be
difficult to understand due to the presence of numerous interconnected variables. These simulations allow
us to explore the behavior under known conditions, which is useful in understanding the model behavior
in more complex or real-world situations.

3. The model choices.
The simulations within this group focus on the effect of the initial values and data preprocessing process
on the model behavior and performance. This simulation study helps to investigate the impact of specific
modeling choices on the output and therefore directly contributes to the methodology.
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4.2

4. The validation of the new DNS variants.
The simulations within this group aim to validate that in theory the new DNS variants are valid models
to predict the interest rate curves. The validation process includes the ability to estimate the factors, the
shape and accuracy of the estimated and predicted interest rate curves, and the validation of the model
assumptions. The validation of the DNS models will be used to determine whether or not the DNS model
should be used to predict the swap spread.

5. The model performance. These simulations aim to compare the competing DNS variants by their predic-
tion accuracy and uncertainty to obtain an expectation of which model would give the best predictions.

The simulation studies within each of these five groups are summarized in Table 10.
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4.3

4.3 Procedure for the simulation studies
In this section, I will describe the procedure that is used for all simulations in this thesis. A simulation study
involves several steps: data simulation, analysis of data structure, model fitting, and assessment of the model
performance. These steps will be explained subsequently.
For each simulation study, the whole simulation process will be repeated multiple times to check the consis-
tency and correctness of the outcomes. The number of simulations varies from 12 to 36, and depends on the
computational time to estimate the model. In Section 4.2, the exact number of simulations for each study is
reported.

4.3.1 Data simulation

The data is simulated from one of the four DNS models stated in the introduction of this chapter. To simulate
data, I assume a set of true parameters Θtrue for the DNS model. All true parameters are included in the
appendix of this thesis, see Section G.1. These parameters are chosen such that the simulated data represents
reasonable interest rate curves.
The simulated data consist of a set of simulated state vectors {bt}Tt=1 and a set of simulated interest rate obser-
vations {Yt}Tt=1. Initially, I simulate a series of state vectors bt = {β1,t, β2,t, β3,t}, for t = 1, 2, . . . , T , using the
process for the factor dynamics of the chosen DNS model. The series of state vectors incorporate randomness
in the error terms εt. Subsequently, I simulate a set of observations Yt = {y1,t, y2,t . . . , yn,t}, for t = 1, 2, . . . , T ,
using the relation between the factors and the interest rates, see Equation 2. The observations incorporate
randomness in the error terms ηt.

Both simulated data sets {bt}Tt=1 and {Yt}Tt=1 and are split into train and test data. The scope of this thesis
is to predict the interest rate with a time horizon of 30 days. Therefore, the factors bt and the observations Yt

for t = 1, 2, . . . , T − 30 are used as train data. The last 30 factors and observations will be used as test data to
assess the prediction performance. To assess the estimation performance of the DNS models, I will simulate a
new set of observations Yt for t = 1, 2, . . . , T − 30 using the initial set of simulated factors bt.

The steps for the simulation procedure are summarized in Table 11.

4.3.2 Analysis of the data structure

Once the data is simulated, I will analyze the structure of this data. This step is important to establish a
methodology for selecting one of the DNS models because the model choice will mainly depend on the data
structure. The four DNS models stated in the introduction of this chapter differ in their assumptions on the
factor dynamics. In order to select the model that best fits the data, we will examine these factor dynamics.

Because the true factors are not known for real data, the empirical counterparts are the best representation
for the factors of the DNS models and I will use these counterparts to examine the factor dynamics. Thus
the initial step in analyzing the factors involves calculating the empirical counterparts for each factor. The
computation for the empirical counterparts is based on the interpretation of the factors (Diebold & Li, 2006)
and the exact computations are given in Section 2.1.4.

The primary examination of the factors involves assessing their stationarity. By looking at a plot of the
factors, I get an initial guess on whether or not the process is stationary. Also, I will test the stationarity of the
factors using the ADF test, where the number of lags in the autoregressive model is based on the AIC.
The subsequent step in the analysis of the factors is to identify the presence of any systematic relationship
between the current observations and past observations at different time lags. To find such a relation, I will
look at the autocorrelation plot and partial autocorrelation plot of the factor series.
The final step is to identify the presence of any systematic relationship between the factors of two different
interest rates. To find such a relation, I will look at the cross correlation of two series of factors. This analysis
only applies to the last simulation study on two interest rates.

The results of this analysis will be combined with the results of the fitted DNS model in order to obtain a
methodology on which model suits the data with a certain structure.
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4.3.3 Model fitting and predicting

One of the four DNS models stated in the introduction of this chapter will be used to obtain estimates and
predictions for the interest rates. The process of estimating the parameters and predicting the interest rates is
as described in Section 3.4.3. For convenience, the procedure is summarized in this paragraph.

The parameters of the model are estimated with maximum likelihood estimation. The likelihood of the pa-
rameters in Θi is evaluated with the Kalman filter. The likelihood is optimized with respect to the parameters
in Θ with the BFGS-optimization algorithm with a convergence criterion of 1 × e−8. Due to the absence of a
theoretical gradient function, a finite-difference approximation will be used in the BFGS algorithm.

To start the maximum likelihood optimization, I need to choose the initial parameters for the DNS model.
For the initial value of λ, I will follow the approach of Diebold and Li (2006) by choosing λ such that the
curvature loading attains its maximum on the middle maturity, as explained in Section 3.4.3. This applies to
all simulations, except for the third simulation, where I choose various initial values for λ to perform a sensi-
tivity analysis. Subsequently, all other initial parameters in Θinitial are estimated using the 2-step approach as
explained in Section 3.4.3.
Following the completion of estimating the initial parameters Θinitial and estimating the maximum likelihood
parameters Θ̂MLE , the model with the maximum likelihood parameters are employed to estimate and predict
the interest rates. The MSE optimal estimates and predictions for the factors and the interest rates are con-
structed by applying the Kalman filter on the train data for the DNS model with parameters Θ̂MLE .

The steps for the model fitting and interest rate estimation and prediction are summarized in Table 11.
Notice that I only use the train data for this part of the process.

Simulation Estimation and prediction

1. Choose the true parameters for the model

2. Simulate a time series of state vectors bt, for t =
1, . . . , T

3. Simulate a set of observations yt, for t = 1, . . . , T
for a fixed set of maturities

4. Split the simulated data in train data and test data.

1. Choose the initial value for λ

2. Estimate the initial parameters by the 2-step ap-
proach

3. Estimate the MLE parameters by the 1-step ap-
proach

4. Predict the factors and the observations with the
Kalman filter

Table 11: The steps taken for simulating the data, estimating the parameters and predicting the observations
for the simulation studies.

4.3.4 Assessment of the model behavior and performance

The models will be compared by their robustness of the parameter estimation, by their ability to estimate de
factors and by their accuracy and uncertainty of the estimated and predicted interest rate curves.

The assessment of the model’s behavior involves examining the estimated parameters Θ̂MLE . A special focus
will be on the estimated values of λ̂MLE and Φ̂MLE . The estimated λ̂MLE determines the shape of the factor
loadings, see Figure 9, and directly influence the values of the estimated factors βt. The estimated Φ̂MLE de-
termines the autoregressive process of the factor dynamics and thus directly influences the relationship between
the factors and their lagged values.

An additional aspect of evaluating the model’s behavior involves the estimated and predicted series of factors
βt. The factor values in combination with the factor loadings directly determine the estimated and predicted
interest rates. Furthermore, the stationarity of the factor dynamics gives insight into the model behavior as well.

The goodness of fit and the prediction accuracy of the model is examined by the root mean squared error
(RMSE) between the estimated and predicted interest rate and the simulated test observations. The RMSE
serves as a measure of accuracy and makes it possible to compare different models. The performance of the
model will consistently be evaluated in comparison to the benchmark model. I will use the random walk model
as a benchmark model. The random walk model models the interest rate at moment t + 1 by setting it equal
to the interest rate at moment t.
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Finally, I will investigate the distribution of the error terms by looking at the Q-Q plot in combination with
the Shapiro-Wilk test, which tests whether or not the residuals are normally distributed. By looking at the
error distribution, I can determine if the model assumption of normally distributed errors holds. The error term
distribution also shows potential outliers.
Potential heteroskedasticity, i.e. consistency of error variability across different levels of the independent vari-
ables, is tested with the Breusch-Pagan test.
The definitions of all these tests and their interpretation are attached in Appendix D of this thesis.

4.4 Implementation
All simulations are implemented in R version 4.1.0. For the estimation of the initial factors βt,OLS in the 2-step
procedure, I use the function lm from the stats-package. To estimate the initial parameters Θinitial, I use the
function VAR from the vars-package, with p = 1.

To evaluate the likelihood with the Kalman filter, I use the function kalman_filter from the kalmanfilter-
package. After coding my own implementation for the Kalman filter, I found that the kalman_filter function
returns the loglikelihood in Equation 9 without the constant first term. Because the likelihood of the parameters
will only be used to mutually compare the models, this first term will not influence the conclusion. Therefore,
the log-likelihood value computed by the kalman_filter function is sufficient.
The construction of the prediction intervals from the covariance matrix Ft is done manually following the steps
in Algorithm 3.1 and using Pt|t predicted by the function kalman_filter. The kalman_filter-function can
not produce the prediction for the covariance matrix Ft directly.

The optimization of the log-likelihood function is implemented using the optim function from the stats-
package, where the method is set to ‘BFGS’ and the fnscale is set to -1, corresponding to a maximization of the
log-likelihood with the BFGS optimization algorithm. The gradient function is not specifically specified, which
implies that the optim function uses a finite-difference approximation.

For the implementation see the code on GitHub via the following link or the next url:
https://github.com/jswanenburg/DNS_model_for_swap_spread_prediction/tree/3e880e3847061f01f9b607db6e2270abfdba9345
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5.1

5 Simulation studies
The framework to predict the swap spread will be derived from the simulation studies in this section. An
overview of all simulation studies and their objectives was presented in the previous section in Table 10. In this
section, the results for these simulation studies will be presented.
Section 5.1 contains the first group of simulations that focuses on the empirical factors. This is followed by
Section 5.2, in which the model behavior is investigated. Then, in Section 5.3, the simulations for the model
choices are discussed. In Section 5.4, the three new DNS models are validated. Finally, in Section 5.5, the DNS
models are compared by their prediction performance.
Each of these sections contains an intermediate conclusion for the simulation studies within that specific group.
These conclusions are combined into a final framework in item 5.6. This framework is the framework that will
be used to predict the swap spread.

5.1 Analysis of the empirical factors
The first group of simulation studies aims to find a relation between the empirical counterparts of the factors
and the estimated DNS factors. If there is such a relation, the empirical factors can be used to choose a time
series model for the factors (AR(p), VAR(p)) that fits the data best. There are two simulation studies within
this group. The first simulation focuses on the value, stationarity, ACF and PACF of a single interest rate. The
second simulation focuses on the CCF of two simulated interest rates.

5.1.1 Value and dynamics of the empirical factors

The objective of this study is to investigate the relation between the value and dynamics of the empirical
counterparts and the true DNS factors for a single interest rate curve. Using this relationship, the empirical
factors can be used to choose the correct DNS model, which is for example the statDNS or the nonstatDNS
model. This simulation study is the main motivation to develop the nonstatDNS model.
This study only consists of data simulation and analysis of the data structure. The model fitting and prediction
are not included. For the simulations, I simulated 36 data sets from the statDNS model and 36 data sets from
the nonstatDNS model. The empirical counterparts for the factors are computed for each simulated set of
observations. Following the procedure in Section 4.3.2, the empirical factors are analyzed by the ADF test, and
the ACF and PACF plots. Finally, these results are compared to the true underlying factors.
The results for this simulation study are split in two parts. The first set of results is based on the 36 simulated
data sets from the statDNS model. These are the results obtained under the assumption that the factors follow
a stationary autoregressive process of order one.
The second set of results is based on the 36 simulated data sets from the nonstatDNS model. These are
the results obtained under the assumption that the first-order differences of the factors follow a stationary
autoregressive process of order one.

Stationary factor dynamics (statDNS) The initial step for the analysis of the factors is to look at the
plots of the empirical and true level, slope, and curvature. In Figure 10 are three time series plots for the
empirical (blue line) and true (black line) level, slope, and curvature for one simulation. In these plots, it can
be seen that the values of the empirical factors are not equal to the true factor values. In this plot, it is also
visualized that the processes of the empirical factors have the dynamics of mean-reverting processes. The latter
suggests that the stationarity of the true factors is captured by the empirical factors.

The stationarity of the empirical factors is further investigated by performing the ADF test on each series
of factors. In Table 12 are the results presented as the percentage of series that is stationary or nonstationary
according to the ADF test. The results imply that all series of empirical counterparts follow a stationary process.
This confirms the suggestion that the stationarity of the true factors is captured by the empirical factors.

Level (%) Slope (%) Curvature (%)
Stationary 100 100 100
Nonstationary 0 0 0

Table 12: The percentage of series of empirical factors that follow a stationary or nonstationary process given
that the true factors follow a stationary autoregressive process of order one. Stationarity is determined by the
ADF test with a critical value of -3.44 and a p-value lower than 0.05. All data is simulated from the statDNS
model, 100% corresponds to all 36 simulations.
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Figure 10: Plot of the series of empirical and simulated factors for one of the 36 simulations of the statDNS
model.

The next step in analyzing the empirical factors is the presence of any systematic relationship in the series
of factors. In this simulation, it is assumed that the factors follow an AR(1) process. The ACF and PACF plots
of an AR(1) process are presented in Figure 11. The ACF of an AR(1) process tails off. The PACF of this
process cuts off after one lag. The ACF and PACF of the empirical factors will be analyzed in comparison to
the ACF and PACF of an AR(1) process.

Figure 11: The theoretical ACF and PACF plot of an AR(1) process, The ACF and PACF of the empirical
factors will be compared to this figure.

In Figure 12 are the ACF and PACF plots of the series of empirical level factors for one of the simulations.
The ACF plot in this figure tails off and the PACF plot cuts off after one lag. These plots correspond to the
ACF and PACF of an AR(1) model. Since the true factors are simulated from an AR(1) model, this result
implies that the systematic relationship of the empirical factors corresponds to the systematic relationship of
the true factors.

Nonstationary factor dynamics (nonstatDNS) Following the structure of the previous results, the plot
of the time series is included in Figure 13, the results for the ADF tests are presented in Table 13, and the ACF
and PACF plots of the level factor after a linear first order difference transformation are contained in Figure 14.

In Figure 13 it can be seen that in the case of nonstationary factor dynamics, the values of the empirical
factors are not equal to the values of the true factors. However, the dynamics of the empirical level and slope
show some similarity, but from these plots it can not be concluded whether the empirical factors follow a
stationary autoregressive process.
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Figure 12: The ACF and PACF plot of the series of empirical counterparts for the level factor. Results for data
simulated from the statDNS model with the assumption that the factors follow a stationary AR(1) model.

Figure 13: Plot of the series of empirical and simulated factors for one of the 36 simulations of the nonstatDNS
model. Data is simulated under the assumption that the first-order differences of the true factors are stationary.

The stationarity of the empirical factors is further investigated by the results of the ADF tests. In Table 13 it
is shown that most of the empirical factor series are not stationary. In the three rightmost columns of the table
are the ADF test results for the factor series after a linear first-order difference transformation. These results
imply that all transformed series follow a stationary autoregressive process. This implies that the stationarity
of the empirical factors is a good proxy of the stationarity of the true factors.

Level (%) Slope (%) Curvature (%) Level (%) Slope (%) Curvature (%)
Differenced Differenced Differenced

Stationary 0 33.3 5.56 100 100 100
Nonstationary 100 66.7 94.44 0 0 0

Table 13: The percentage of series of empirical factors that follow a stationary or nonstationary process given
that the first order differences of the true factors follow a stationary autoregressive process of order one. Sta-
tionarity is determined by the ADF test with a critical value of -3.44 and a p-value lower than 0.05. The three
rightmost columns contain the results for the series after a linear first-order difference transformation. All data
is simulated from the nonstatDNS model, 100% corresponds to all 36 simulations.

The next step is to analyze the systematic relationship of the empirical factors through the ACF and PACF.
It is assumed that the first-order differences of the true factors follow an AR(1) process. The ACF and PACF
of the first-order differences of the empirical factors are compared to the ACF and PACF of an AR(1) process.
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For this comparison, recall that the ACF of an AR(1) process tails off and the PACF of this process cuts off
after one lag, as in Figure 12.

In Figure 14 are the ACF and PACF plots of the transformed empirical level series. Both the ACF and
PACF tail off. That means that the ACF corresponds to an ACF of an AR(1) process. The PACF tails off and
thus differs from the PACF of an AR(1) process, which cuts off after one lag. This means that the ACF and
PACF of the empirical factors are not consistent with the true underlying structure of the true level factor from
the nonstatDNS model, because the true factors are assumed to follow an AR(1) model. The ACF and PACF
of the empirical factors correspond to an ARMA model.

Figure 14: The ACF and PACF plot of the series of empirical counterparts for the level factor after a linear
first-order difference transformation. Results for data simulated from the nonstatDNS model in which it is
assumed that the first-order differences of the true factors follow an AR(1) process.

In order to keep the presentation of the results focused and clear, only one example of the time series, ACF,
and PACF plots are presented in this section. The ACF and PACF plots of all simulations are checked for
consistent results. All 36 ACF and PACF plots of the empirical factors for the statDNS model correspond to
an AR(1) model. All 36 ACF and PACF plots of the transformed empirical level factor for the nonstatDNS
model correspond to an ARMA model, where the number of lags differs between 2 and 4. This implies that the
examples presented in this section are a good representation of the results of all simulations.

5.1.2 Correlation between two interest rates

The objective of this study is to investigate the relation between the mutual correlation of the empirical coun-
terparts and the estimated DNS factors for two correlated interest rate curves, clarifying that the correlation
being measured is between the factors themselves rather than between the two methods.
This study only consists of data simulation and analysis of the data structure. The model fitting and prediction
are not included. For the simulations, I simulated 36 data sets from the sim-statDNS model and 36 data sets
from the sim-nonstatDNS model. The empirical counterparts for the factors are computed for each simulated
set of observations. The results are split into two cases, based on the stationarity of the true DNS factors that
are used to simulate the data.

Stationary factor dynamics The cross-correlation of the empirical factors is presented in Figure 15. In
these plots, it can be seen that there is significant cross-correlation between the series of empirical factors.
However, these CCF plots do not correspond to the underlying dynamics of the true factors. The true factors
are modeled from a model with cross-correlation up until the first lag. That is, the zeroth and first lag of both
series (lag -1, lag 0, and lag 1) should have a significant correlation and all other lags should not. Although the
empirical factors in Figure 15 show some cross-correlation, the correlation does not represent the structure of
the true underlying factors.

Nonstationary factor dynamics In this setting, the first-order differences of the true DNS models follow a
stationary process. According to the results of the previous simulation study, the DNS model for the factors in
this setting will be transformed into a model on the first-order difference transformation. For that reason, the
CCF of the transformed time series is evaluated. The cross-correlation of the transformed empirical factors is
presented in Figure 16.
The results in this plot show that there is some significant cross-correlation between the transformed factors.
But again, the cross-correlation in the CCF plots does not correspond to the structure of the true factors.
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Figure 15: The cross correlation plots for the empirical factors. Results for data of which the true factors are
stationary and mutually correlated.

Figure 16: The cross correlation plots for the transformed empirical factors. Results for data of which the first
order differences of the true factors are stationary and mutually correlated.

5.1.3 Intermediate conclusion for the empricial counterparts

Based on the simulation studies in this section, the relation between the empirical factors and the true factors
is specified by the following.

• The actual values of the empirical factors are not equal to the true factor values (Figure 10, Figure 13).

• The stationarity of the empirical factors is a very good representation of the stationarity of the true
factors. This conclusion holds for factors that are stationary and for factors that are nonstationary
(Table 12, Table 13).

• If the true factors are a stationary autoregressive process, the autocorrelation of the empirical factors is a
good representation of the autocorrelation of the true factors. The same holds for the partial autocorre-
lation (Figure 12).

• If the first-order differences of the true factors are a stationary autoregressive process, the autocorrelation
of the empirical factors is not a good representation of the autocorrelation of the true factors. The same
holds for the partial autocorrelation (Figure 14).

• The cross-correlation of the empirical factors is not a good representation of the cross-correlation of the
true factors (Figure 15, Figure 16).
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5.2 Model behavior
The second group consists of two simulation studies. The first study focuses on the estimation of λ̂MLE . The
second study aims to learn the model behavior related to the parameter estimates for both λ and the factors
βt,i.

5.2.1 The estimation of λ̂MLE

The focus of this simulation study is on the estimation process for λ. The parameter λ in the DNS models
defines the weight distribution on the factors. For that reason, λ is of major importance for the reconstruction
of the predicted curves from the predicted factors. With this simulation study, I want to see how a value for λ
is estimated by the DNS model.

For this simulation study, I simulate 36 different data sets from the statDNS model. For each of these data
sets, I estimate a statDNS model. The estimation of λ is analyzed by looking at the final estimates for λ̂MLE

as well as looking at the intermediate estimates produced by the iterative BFGS optimization.

The estimated values The evaluation of the model behavior starts with the estimated values λ̂MLE . In
Table 14 are the descriptive statistics for the set of 36 estimates in this simulation study. At least 50% of the
estimated values is in the range 0.26-0.30, which is an overestimation of the true value of 0.1195. There are also
values for λ̂MLE that are extremely large or extremely small, for example the minimum and maximum values
in Table 14.
The presence of multiple local optima in the likelihood surface is indicated by the inconsistency of the maximum
likelihood estimate for λ across different data sets with the same true λ.

Q1 Median Q2 Min Max
λ̂MLE 0.267 0.278 0.296 1.41 ×10−4 4.46 ×102

Table 14: The descriptive statistics for the estimated values for λ. The true value for λ is 0.1195.

The estimation procedure Another result in this simulation is the path of λ throughout the BFGS algo-
rithm iterations. In Figure 17 are three examples of the values for λ estimated by the BFGS iterations.
The leftmost plot is the path of λ in a simulation where λ̂MLE is very small. In this plot, you can see that
after a very few iterations, λ is already very small, and the value remains small for the rest of the iterations.
Furthermore, the number of iterations is high relative to the other two plots. This result is consistent for all
models that estimate λ small.
The rightmost plot is the path of λ in a simulation where λ̂MLE is very large. In this plot, you can see that the
value of λ increases fast in the first few iterations, and remains large for the rest of the iterations. This result
is also consistent for all models that estimate λ large.
In the middle plot, you see that all values for λ stay in a range between 0.1-0.5. This path for λ represents all
models where λ is estimated close to the true value.

Based on these results, it can be said that the order of the estimated value for λ is determined already by
the first few iterations of the BFGS algorithm. By looking at the path for λ, it can be predicted if the value for
λ will be very large, very small, or close to the value of λtrue.

(a) (b) (c)

Figure 17: The path of λ throughout the BFGS algorithm iterations for three different simulations.

In the results of this simulation study, there is no relation found between the simulated data sets and the
estimated λ’s for the three models. For one data set, it can happen that two models estimate λ close to the
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true value, but the third model estimates λ very small or very large.

5.2.2 Interaction between λ, the factors and the factor loadings

In the previous simulation study it has been showed that there can be the estimated λ’s can take many different
values. In this simulation, the effect of these estimates on the loadings, factors and interest rate curves will be
investigated. That is, this simulation focuses on the interaction between the estimated λ̂, the corresponding
factor loadings, and the estimated factors b̂t. The objective is to relate the combination of λ and bt to the model
behavior and performance. By learning this relation, the model choices can be adjusted to the expected model
behavior.

For this simulation study, I simulate 36 different data sets from the statDNS model. For each of these data
sets, I estimate a statDNS model. The model behavior is analyzed by the procedure in Section 4.3.4. This
includes a plot of the estimated factor loadings in combination with the estimated λ, a plot of the estimated
factors b̂t, a plot of the interest rate curves implied by these factors and factor loadings, and all plots and tests
for the error distribution.

The shape of the factor loadings λ̂MLE has effect on the estimated and predicted interest rates through
the factor loadings, see Equation 2. The value of λ determines the weight, or loading, on the factors for each
time to maturity. In Figure 18 are plots of the shapes of these loadings for different values of λ.

(a) Three different values for λ̂MLE (b) The minimum estimated λ̂MLE (c) The maximum estimated λ̂MLE

Figure 18: The factor loadings for different values of the estimated λ̂MLE .

In Figure 18a is a plot of three different values for λ̂MLE . The shape of all loadings in this figure is equal to
the shapes of the loadings in other literature (Diebold & Li, 2006), (Koopman et al., 2007).

In Figure 18b is the plot of the factor loadings for the minimum λ̂MLE in this simulation study. As explained
in Section 3.1.1, a very small λ implies a very slow decaying slope loading and a right skewed curvature loading.
The slop factor is a flat line close to one, which means that the loading decays so slow that the slope loading is
approximately one for all times to maturity between 0 and 30 years. The curvature loading is a flat line close to
zero, which means that the skew of the loading is so far to the right that the curvature loading is approximately
zero for all times to maturity in the range of 0 to 30 years.
The interest rate curves modeled with these loadings will not depend on the curvature loading and will depend
on the level and slope factor with approximately equal weight for all times to maturity. This implies linear
dependence in the level and slope factor, which leads to unreliable and unstable factor estimates and reduced
model interpretability.

As explained in Section 3.1.1, a large λ implies a fast decay in the slope loading and a curvature loading
that is right-skewed. In Figure 18c is the plot of the factor loadings for the maximum λ̂MLE in this simulation
study. The plot only shows the loadings for very small times to maturity of 0 to 0.05 years. In this plot it can
be seen that the slope and curvature loadings are approximately zero for times to maturity larger than 0.04
years.
Zero weight on the slope and curvature factor implies that the interest rate only depends on the level factor.
Because the weight on the level factor is constant across all times to maturity, the resulting interest rate curve
will be flat and equal to the value of the level factor except for the very short end9, which depends on the other
two factors as well.

9The ‘short end’ of an interest rate curve is the part of the curve that has low values for the time to maturity. In this thesis,
‘short’ implies that the time to maturity is less than 3 years, and ‘very short’ implies that the time to maturity is less than 3
months.
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The interaction with the estimated factors The shape of the interest rate curve in the DNS model is on
one hand determined by λ and the factor loadings and on the other hand by the factors themselves. The next step
in the evaluation of the model behavior is to look at the estimated factor values β1,t, β2,t and β3,t. In Table 15
are the descriptive statistics for the estimated factor values. To see if there is any interaction between the esti-
mated λ̂MLE and the factors, the estimated factors are distinguished by the estimated λ̂MLE of the same model.

Factor Quantile for Q1 Median Q2 Min Max
λ̂MLE (βi,t) (βi,t) (βi,t) (βi,t) (βi,t)

level Q1 1.05 1.11 1.18 0.872 83.1
level Q2 1.11 1.14 1.18 0.878 1.36
level Q3 1.10 1.13 1.17 0.932 1.37
level Q4 1.02 1.07 1.13 0.78 1.36
slope Q1 -1.44 -1.38 -1.28 -83.1 -0.487
slope Q2 -1.42 -1.4 -1.37 -1.60 -1.18
slope Q3 -1.42 -1.39 -1.34 -1.65 -0.501
slope Q4 -671 -32.2 -1.36 -2370 25.5
curvature Q1 -0.429 -0.369 0.922 -4.51 384
curvature Q2 -0.561 -0.528 -0.498 -0.823 -0.266
curvature Q3 -0.626 -0.585 -0.549 -0.878 -0.279
curvature Q4 -19 -3.18 -0.7 -274 -0.329

Table 15: The descriptive statistics for the estimated factors distinguished by the corresponding λ̂MLE : Q1
(λ < 0.267), Q2 (0.267 ≤ λ < 0.278), Q3 (0.278 ≤ λ < 0.296), Q4 (λ ≥ 0.296).

To start with the level factor, the results in Table 15 imply that almost all estimated level factors are in the
range of 1.02-1.18. The results do not demonstrate a clear relationship between estimates for the level factor
and the estimated λ̂MLE . The absence of this relationship can be explained by the factor loading for the level
factor, which is equal to 1 and thus independent of λ.
The maximum estimate for the level factor of 83.1 in the case that λ̂MLE ∈ Q1 is remarkable, because it is
much larger than all other estimates for the level factor. The model that estimated this factor value has a
λ̂MLE equal to 0.659×10−4. This λ value implies factor loadings with a shape as in Figure 18b and thus leads
to linear dependence in the level and slope factor and potentially unstable factor estimates. This explains the
outlier for the level factor.

Next are the slope factors in the middle rows of Table 15. These results show that there is interaction
between the estimated factors and the λ. If λ̂MLE ∈ Q4, i.e. if λ is large, the estimated slope factors become
extremely negative. This again can be explained by the factor loadings. For large λ’s, the factor loadings look
like the plot in Figure 18c, which leads to very small weight on the slope factor. The slope factor reacts on this
small weight by taking more extreme values.
Again, there is a remarkable value of -83.1 for the minimum slope factor in the case that λ̂MLE ∈ Q1. The
model that estimated this factor is the same model that estimated the remarkable level factor of 83.1. This is
another example where a very small λ results in unstable factor estimates.

The results for the curvature factors are in the bottom rows of Table 15. These results show that there is
interaction between the estimated factors and the λ. For smaller λ’s, i.e. λ̂MLE ∈ Q1, the curvature factors
generally have larger estimates. The maximum value of 384 will be used to explain this interaction. If λ is very
small, the curvature loading will be approximately zero, see Figure 18b. This leads to unstable estimates for
the curvature factors.
For larger λ’s, i.e. λ̂MLE ∈ Q4, the curvature factors generally have more negative estimates. This again can
be explained by the factor loadings. For large λ’s, the factor loadings look like the plot in Figure 18c, which
leads to very small weight on the curvature factor. The curvature factor reacts on this small weight by taking
more extreme values.

The shape of the interest rate curves The final step in the model behavior is the evaluation of the shape
of the interest rate curves. In Figure 19 are three plots of examples of interest rate curves estimated by the
statDNS model. The curve in Figure 19a is estimated by a model that has λ̂MLE close to the median of all
estimates. The shape of this curve closely follows the structure of the data points.

In Figure 19b is a plot of the curve estimated by the model that has the lowest estimate for λ̂MLE . This
curve has the shape of a linear line and does not follow the structure of the data. This is due to the linear
dependence of the level and slope factor and the zero weight on the curvature factor, all caused by the factor
loadings. Such an estimated interest rate curve does not have normally distributed residuals. That means that
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(a) The interest rate for λ̂MLE close to
the true value of λ

(b) The interest rate when λ̂MLE is ex-
tremely small

(c) The interest rate when λ̂MLE is ex-
tremely large

Figure 19: Three examples of interest rate curves estimated by the statDNS model.

the assumption on the residuals is violated.

The curve in Figure 19c is estimated by the model that has the largest estimate for λ̂MLE . This curve is
close to the data except for the short end. The factor loadings for this model in Figure 18c show that the
slope and curvature loading only imply weight on the very short end. The low weight is compensated by the
estimation of larger slope and curvature factors, which was shown in Table 15. This compensation implies that
the majority of the curve is close to the data. The deviation of the curve from the data on the short end is due
to the increase in the factor loadings on this short end.

5.2.3 Intermediate conclusion for the model behavior

The model behavior and interaction between λ, the factor loadings, and the factors are summarized as follows.

• The estimates for λ̂MLE can take a wide spread of values. This suggests that there are multiple local
optima in the likelihood surface.

• The order of λ̂MLE can be predicted after the first few iterations of the BFGS-algorithm. If the inter-
mediate estimates for λ are very small or very large, the final estimate will also be very small or very
large (Figure 17). That is, if the BFGS algorithm estimates λ at an extreme value once, all subsequent
estimates throughout the algorithm will be extreme.

• For λ̂MLE not extremely small or extremely large, the shape of the factor loadings is equal to the shape
of the loadings in the article of Diebold and Li (2006). Furthermore, the shape of the estimated interest
rate curve is close to the data and also equal to the shape of the curves in the article of Diebold and
Li (2006). That implies that if λ̂MLE is not extremely small or extremely large, it is validated that the
statDNS produce reliable estimates for the interest rate curves.

• An extremely small λ̂MLE implies that

– The level and slope factor are linearly dependent (Figure 18b), which leads to unstable factor esti-
mates (Table 15) and misleading results,

– The loading on the curvature factor is approximately zero, leading to estimated interest rate curves
that are flat,

– The shape of the interest rate curves does not correspond to the data (Figure 19b), leading to not
normally distributed residuals, and

– The shape of the interest rate curve does not correspond to the shape of the interest rate curves that
are mentioned in the articles of Diebold and Li (2006), (Koopman et al., 2007).

For these reasons, models with an extremely small λ will not be used to estimate and predict the interest
rate curves. In this thesis, all λ’s smaller than 0.01 are categorized as extremely small.

• An extremely large λ̂MLE implies that

– There is approximately zero weight on the slope and curvature loading, except for the short end of
the curve (Figure 18c),
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– This is compensated by the estimates for the slope and curvature factors, that take more extreme
values (Table 15),

– The compensation leads to a good fit of the curve to the data, except for the short end (Figure 19c).

– The shape of the interest rate curves deviates from the data at the short end (Figure 19c). This leads
to heavy tailed residuals and thus a violation of the assumption of normal distributed errors.

– The shape of the interest rate curve does not correspond to the shape of the interest rate curves that
are mentioned in the articles of Diebold and Li (2006), (Koopman et al., 2007).

For these reasons, models with an extremely large λ will not be used to estimate and predict the interest
rate curves. In this thesis, all λ’s larger than 10 are categorized as extremely large.
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5.3 Model choices
The third group of simulation studies consists of three different studies that together have the objective to
understand the effect of certain data preprocessing steps and initial value choices. The first study investigates
the effect of the initial value for λ, the second study investigates the effect of missing observations, and the third
study investigates the effect of preprocessing the bond observations with splines.
All three studies are performed using only the statDNS model and it is assumed that the results hold for the
three other variants of the DNS models.10

5.3.1 Initial value for λ

One of the model choices is the initial value for λ. As explained in Section 3.4.3, there are various methods to
choose the initial λ. The objective of this simulation study is to examine the effect of the initial value of λ on
the estimated λ̂MLE in the DNS models.
This study consists of the following steps: data simulation, model fitting and predicting, and assessment of the
model behavior. For this simulation study, I use the same simulated data sets and estimated models as for the
previous simulation study. That is, there are 12 different simulated data sets from the statDNS model with all
three statDNS models estimated per data set. On each simulated data set, I estimate three statDNS models:
one with an initial λ equal to the true λ, one with an initial λ that is two times larger than the true λ, and one
with an initial λ that is half the value of the true λ. The estimated models are compared by their value for λ̂MLE .

The first results are the estimated values for λ̂MLE per initial value λinitial. In Table 16 are the first quantile,
median, third quantile, minimum, and maximum for all estimated λ̂MLE , grouped by the initial value λinitial.
When compared to the true value of λ, it becomes apparent that the majority of the models tend to overestimate
λ. This observation is supported by the median values of the estimated λ̂MLE . Looking at the first quantiles,
a model with a larger initial λ exhibits a greater tendency for overestimation compared to the other models.

Not all estimated λ̂MLE ’s are close to the true value of λ. The minimum and maximum values in Table 16
imply that the DNS models can estimate λ much smaller or larger than λtrue. Also, a small initial λ never leads
to a very large λ̂MLE and a large initial λ never leads to a very small λ̂MLE .

Initial value Scale factor Q1 Median Q2 Min Max
for λ w.r.t. λtrue λ̂MLE λ̂MLE λ̂MLE λ̂MLE λ̂MLE

0.05975 0.5 0.1194 0.1218 0.266 0.0001414 0.2971
0.11950 1 0.1195 0.1223 0.2864 0.108 446.1
0.23900 2 0.1203 0.1945 0.2886 0.1163 137.1

All models - 0.1197 0.123 0.2796 0.0001414 446.1

Table 16: The results for the estimated λ̂MLE ’s estimated on data with λtrue = 0.1195. The results are split
per value for λinitial. The bottom row includes the results aggregated over all initial values for λ.

The second finding is related to the number of iteration of the optimization algorithm for the different initial
λ’s. In Figure 20 are the number of iterations for the BFGS algorithm per initial value of λ. The initial value of
λ is indicated by the scale factor w.r.t. the true value of λ. In the plot, it can be seen that the median number
of iterations is approximately equal for all initial λ’s. But models with an initial λ not equal to the true value
of λ have a larger number of iterations more often, which is indicated by the third quartile boundaries in the
boxplot.
One iteration of the BFGS algorithm on my computer takes approximately 1 second for the models in this
simulation. This implies that 1000 iterations take approximately 17 minutes, whereas 2000 iterations take more
than half an hour. This implies that an initial value of λ close to the true value of λ can save a lot of time in
the estimation of the model.

5.3.2 Missing observations

The real data misses observations when the market is closed, for example on weekend days. This simulation
study aims to investigate the potential effect of the missing observations in the real data set on the model
behavior and performance.
For this simulation study, I use the same simulated data sets and estimated models as for the previous simulation
study. That is 12 different simulated data sets from the statDNS model and three statDNS models estimated per
data set. Additionally, I construct 12 new data sets by removing all ‘weekend observations’ from the simulated

10Some informal simulation studies for the other three models are performed to check if this assumption holds. These results are
not included in this thesis.
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Figure 20: The number of iterations of the BFGS-optimization algorithm until the convergence criterion is met.

data sets. For each of these 12 data sets, I again estimate the statDNS models. The focus of the model behavior
will be on the accuracy and uncertainty of the estimated and predicted factors and interest rates.

Model behavior For the models that are estimated on the full data sets, 7 out of 36 had an estimate of λ
outside the range of 0.1-10. For the models estimated on the data sets excluding the weekend observations,
there were also 7 out of 36 with λ in that range. This implies that missing observations have no significant
effect on the ability of the model to estimate λ.

Model accuracy The second part of the evaluation is the accuracy of the estimated and predicted interest
rates. In Table 17 are the rMSE results for the estimated and predicted interest rates.11 In the table it can be
seen that the rMSE of the rates estimated on the data set including weekends is in general slightly larger than
the rMSE of the rates estimated on the data set excluding weekends.
The maximum rMSE of the models excluding the weekends is much larger relative to the rMSE in the case of
a complete data set. This implies that, although it does not happen very often, the model estimated excluding
the weekends could have a very bad accuracy.

An equal conclusion can be drawn for the predicted interest rates. The rMSE of the predicted rates is in
general larger if there are no weekend observations. The difference between the rMSE of the two cases is larger
for the predicted rates than for the estimated rates.

Rate Data Q1 Med Q3 Min Max
(rMSE ×10−2) (rMSE ×10−2) (rMSE ×10−2) (rMSE ×10−2) (rMSE ×10−2)

Estimated Incl. weekends 4.35 4.77 5.22 2.73 7.10
Estimated Excl. weekends 4.38 4.82 5.30 2.71 305
Predicted Incl. weekends 5.79 7.82 12.7 3.15 183
Predicted Excl. weekends 6.07 9.27 17.6 3.15 302

Table 17: The descriptive statistics for the rMSE of the interest rate curves estimated and predicted by the
statDNS model on the data sets including and excluding the weekend observations.

Model uncertainty The final step in the evaluation is the comparison of the uncertainty implied by the
models. In Table 18 are the standard deviations for the interest rates, which are estimated by the Kalman filter.
In Table 18 it can be seen that the standard deviation estimated by the model excluding the weekends is larger
than the standard deviations estimated by the model including the weekends.
It is remarkable that more than 25% of the standard deviations in the case of missing weekend observations is
estimated at a value of infinity. For the predicted interest rates, 100% of the standard deviations are estimated at
a value of infinity in both the case of data including weekend observations and the case of data excluding weekend
observations. That implies that the DNS model in this setting in general does not produce usable estimates for
the standard deviation of the predictions. Therefore, there will be no prediction intervals constructed from the
DNS models.

11All weekend dates are excluded from the results, because including them leads to an unfair comparison of the estimated rates.
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Data Q1 Med Q3 Min Max
(σ̂2) (σ̂2) (σ̂2) (σ̂2) (σ̂2)

Incl. weekends 5.67×10−3 6.94×10−3 7.60×10−3 8.78×10−3 1.96×104

Excl. weekends 7.69×10−3 1.07×10−2 ∞ 4.75×10−3 ∞

Table 18: The descriptive statistics for the variances for the interest rates estimated by the statDNS model for
the data sets including and excluding the weekend observations.

5.3.3 Distribution of the observations along the time to maturity axis

In Section 2.1.2 it was explained that one of the preprocessing steps for the empirical bond observations was
to estimate the observations with a fixed time to maturity using splines. This choice was motivated by the
computational issues when the observations have different times to maturity at each date. The objective of this
simulation study is to investigate the effect of this choice on the model performance.
For this simulation study, 50 data sets are simulated from the statDNS model. The observations in this data
set have various values for the time to maturity. The simulated observations will be preprocessed using splines,
as described in Section 2.1, which result in a second data set. The statDNS model is estimated on both data
sets. Because of the computational issues, the statDNS model can not be estimated on the set of observations
with various values for the time to maturity. Therefore, a statDNS will be estimated on both data sets using
the two-step procedure. The models will be compared by their fit on the simulated data set with various times
to maturity, i.e. the first data set, to see the effect of splining.

In Figure 21a is a histogram of the residuals of the statDNS models. The blue bars represent the residuals
of the statDNS models on the original data. The yellow bars represent the residuals of the statDNS models
estimated on the splined data. In this plot it can be seen that both sets of residuals are normally distributed.
The estimated mean and standard deviations of the residuals are presented in Table 19. Both distributions
have a mean of approximately zero. The standard deviation for the residuals increases by more than 200% if
the data is preprocessed by the splines.

(a) Histogram of the residuals of the statDNS models es-
timated on the two different data sets

(b) Boxplot of the rMSE of the curves estimated by the
statDNS model on the two different data sets

Figure 21: Results of the statDNS model estimated on the original simulated data set and the data set after
preprocessing.

µ̂ σ̂
Original data 0 0.0489
Splined data 0.004 0.107

Table 19: The mean and standard deviation of the residuals of the statDNS model.

Although the standard deviation of the residuals is larger if the data is splined, the rMSE of the estimated
curves is not larger for the splined data set. In Figure 21b are the boxplots for the rMSE’s of the estimated
interest rate curves. In this plot it can be seen that the rMSE of the splined data is generally lower than the
rMSE for the original data. In other words, although the variance of the errors increases by splining the data,
the overall fit of the DNS model improves.
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5.3.4 Intermediate conclusion

Based on the results in this simulation study, the effect of the initial λ on the estimation of λ̂MLE is summarized
by the following points.

• Different initial values for λ produces different estimates for λ̂MLE for the same data set. This implies
that there are multiple local maxima in the log-likelihood surface and the initial value for λ determines
to which local maxima the BFGS-algorithm converges.

• A smaller initial value never leads to extremely large estimated values, and a larger initial value never
leads to extremely small estimated values.

• A model with an initial λ close to the true λ has fewer iterations of the BFGS algorithm and thus a lower
computational time, relative to a model with an initial λ further away from the true λ

• The intermediate estimates for λ throughout the iterative optimization can be used to predict whether or
not the λ̂MLE will take extremely small or extremely large values.

The missing weekend observations result in a slight increase in the rMSE of the estimated and predicted interest
rates. Despite this increase, the weekend observations will not be imputed.
Furthermore, the uncertainty around the interest rate estimates increases by 25%. Independent of missing the
weekend observations, the DNS models in this simulation study were not able to produce useful estimates for
the variances of the predicted interest rate curves. All variances were estimated to be equal to infinity. That
means that no prediction intervals can be constructed for the interest rate curves.

The preprocessing step where the data is splined in a set of fixed maturities has the following effect on the
model performance. The variance of the residuals is larger for the model that is estimated on the splined data,
relative to the model that is estimated on the original data. Despite the increase in variance, the overall accuracy
of the model estimated on the splined data is actually improved, relative to the model estimated on the original
data. Based on this result, the preprocessing step of splining the data will be included in the framework.
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5.4 Model validation
Three new variants on the DNS model are introduced in this thesis in Section 3.3.2, Section 3.3.1, and Sec-
tion 3.3.3. These models rely on certain assumptions, such as independent, normally distributed residuals. The
objective of this fourth set of simulations is to confirm the validity of these assumptions when using each of
these newly proposed models. There are four different simulation studies in this group.
The plots of the factor dynamics, curves, and residuals in this section are based on one single simulation per
model. The results in these plots are consistent over all simulations within the simulation study for that model.

5.4.1 Validation of the sim-statDNS model

This simulation study aims to validate the sim-statDNS model by investigating the estimated parameters, the
estimated factors, the shape of the interest rate curves, and the distribution, dependency, and variance of the
residuals.
For this simulation study, I simulate 12 data sets of observations from the sim-statDNS model. On each
simulated data set, a sim-statDNS model is estimated. These models have an initial value for λ equal to the
true λ, in order to reduce computational time. The estimated models are assessed by all steps in Section 4.3.4,
except for the prediction accuracy. The accuracy will be investigated in the next set of simulation studies.

The estimated values for λ The first result are the estimated values for λ̂MLE . All estimated values for λ
were in the range 0.01-10. That means that all simulations are used for the validation.

Factor dynamics The first step in the validation procedure is the evaluation of the estimated and predicted
factors. In Figure 22 is a plot of the simulated, estimated, and predicted level factor corresponding to the swap
interest rate curves.
In the plot of the swap level factor, it can be seen that the estimated factors are almost equal to the simulated
level factors. Furthermore, the predicted factors are stationary and the prediction intervals cover all simulated
factor values. This implies that the sim-statDNS model is capable of estimating and predicting the latent factors
for a simulated data set.

Figure 22: Plot of the series of simulated, estimated and predicted level factors for one of the simulations from
the sim-statDNS model.

Interest rate curves The subsequent step in the validation procedure is the evaluation of the estimated and
predicted interest rate curves. In Figure 23, there is one example of bond and swap rates estimated by the
sim-statDNS model, and there are two examples of bond and swap rates predicted by the sim-statDNS model.
The shape of estimated interest rate curves closely follows the structure of the data. The predicted curves
slightly deviate from the data, due to over or under-prediction of the factors. Although this deviation of the
curves from the data, the shape of the curve closely corresponds to the structure of the data. These results
show that the sim-statDNS model is capable of estimating and predicting interest rate curves that capture the
structure of the interest rate observations.

41



5.4

Figure 23: Plot of the estimated and predicted interest rate curves for one of the simulations from the sim-
statDNS model.

Distribution, dependence, and variation of the residuals The final step in the model validation is the
evaluation of the residuals of the interest rate curves. The residuals are assumed to be independent normally
distributed. In Figure 24 are the QQ-plots for the residuals of the interest rate curves in Figure 23. In Table 20
are the results of the Shapiro-Wilk test for each of the estimated and predicted curves in this simulation study.
The residuals in the QQ plots are not exactly equal to the theoretical normal distribution (red line), but they
are close enough to not reject normality. Furthermore, the results of the Shapiro-Wilk test imply that more
than 90% of all estimated and predicted curves have normal distributed error terms. Based on these results,
the assumption of normally distributed errors is validated.

Figure 24: QQ plot of the residuals of the estimated and predicted swap curves in Figure 23.

Instrument Total number # curves that have % of curves that have
of curves Gaussian distributed Gaussian distributed

residuals residuals
Estimated swap 2040 1946 95.4
Predicted swap 360 325 90.3
Estimated bond 2040 1924 94.3
Predicted bond 360 331 91.9

Table 20: The number of interest rate curves estimated and predicted by the sim-statDNS model that have
Gaussian distributed residuals according to the Shapiro-Wilk test with a p-value below 0.05.

The homoskedasticity of the errors is evaluated by the Breusch-Pagan test. The results of this test for each
estimated and predicted curve are presented in Table 21. More than 90% of the estimated curves and more
than 75% of the predicted curves have homoskedastic residuals. Based on this result, it is validated that the
sim-statDNS has no heteroskedastic errors for the simulated data set.
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Instrument Total number # curves with % curves with
of curves homoskedastic residuals homoskedastic residuals

Estimated swap 2040 1966 96.4
Predicted swap 360 314 87.2
Estimated bond 2040 1872 91.8
Predicted bond 360 276 76.7

Table 21: The number of interest rate curves estimated and predicted by the sim-statDNS model that ho-
moskedastic residuals according to the Breusch-Pagan test with a critical value of 5.991.

5.4.2 Misleading results of the statDNS model on nonstationary data

If the latent factors are assumed to follow a nonstationary autoregressive process, the assumptions of the statDNS
are violated. Applying the model to this data is incorrect and may potentially yield misleading outcomes. This
simulation study aims to explore the potential implications of estimating the statDNS model on nonstationary
data.
For this study, 36 data sets are simulated from the nonstatDNS model. On each data set, the statDNS model
is estimated. When estimating a stationary autoregressive process on a series that is not stationary, two things
can happen:

• The estimated autoregressive process is stationary, i.e. the autoregressive coefficient is inside the unit
circle. This indicates a case of spurious regression. In this situation, the stationary AR model may
still provide parameter estimates and fit the data reasonably well, but the results would lack meaningful
interpretation.

• The estimated autoregressive process is not stationary, i.e. the autoregressive coefficient is outside the
unit circle. Such a model is not appropriate for analyzing the data and will lead to inaccurate predictions.

The implications of the statDNS model are assessed by their autoregressive processes for the factors that satisfy
one of these two options.

In Table 22 are the results for the estimated autoregressive coefficients for all AR(1) models in the simulations.
The evaluation of these results is split in two parts. First, the case |ϕ̂ii| ≥ 1 is discussed, followed by the case
|ϕ̂ii| < 1.

Total number # series with % of series with # series with % of series with
of series |ϕ̂ii| < 1 |ϕ̂ii| < 1 |ϕ̂ii| ≥ 1 |ϕ̂ii| ≥ 1

Level 17 13 76.5 4 23.5
Slope 17 8 47.1 9 52.9
Curvature 17 11 64.7 6 35.3
Total 51 32 62.7 19 37.3

Table 22: The number and percentage of autoregressive coefficients ϕ̂ii estimated by the statDNS model that
are inside or outside the unit circle. Results for the time series of factors for the data simulated from the
nonstatDNS model.

Case of a nonstationary AR(1) model, |ϕ̂ii| ≥ 1: In the results in Table 22 it is shown that 37.3% of all
estimated autoregressive coefficients lie outside the unit circle. AR(1) models with |ϕ̂ii| ≥ 1 imply nonstationary
processes for the time series. Such a model produces predictions for the factors that diverge. An example of a
factor modeled by a nonstationary AR(1) process is visualized in Figure 25a. In the plot it can be seen that the
estimated factor values (time index smaller than 170) stay close to the simulated factors, whereas the predicted
factors (time index larger than 170) diverge from the simulated factors. The behavior of the estimated factors
is due to the update step in the Kalman filter, which rectifies the divergence of the predicted value. Since there
is no update step for the predictions, the predicted factors diverge.
The factors estimated and predicted by a nonstationary AR(1) process lead to accurate estimated interest rate
curves, but inaccurate predicted interest rate curves. This model should not be used for modeling factors with
nonstationary dynamics.

Case of a stationary AR(1) model, |ϕ̂ii| < 1: In the results in Table 22 it is shown that 62.7% of the
estimated autoregressive coefficients lie inside the unit circle. The AR(1) models with such coefficients imply
stationary processes. In Figure 25b is an example of a factor that is modeled by a stationary AR(1) model.
In this plot it can be seen that the estimated factors closely follow the dynamics of the simulated factors and
the predicted factors converge to a stationary value. Also, although the AR(1) model is stationary, the series

43



5.4

(a) Time series of a factor that is modeled by a nonsta-
tionary AR(1) model.

(b) Time series of a factor that is modeled by a stationary
AR(1) model.

Figure 25: Plot of the time series of two factors that serve as example of the implications of estimating the
statDNS on data with nonstationary factor dynamics.

of estimated factors is not stationary12. This is due to the update step of the Kalman filter, which rectifies the
predicted factor values.
Factors estimated and predicted by a stationary AR(1) model are close to the simulated factors. Therefore they
can lead to very accurate estimated and predicted interest rate curves. However, these results are misleading,
since the AR(1) model is incorrect and may not be used for modeling factors with nonstationary dynamics.

5.4.3 Validation of the nonstatDNS model

This simulation study aims to validate the nonstatDNS model by investigating the estimated parameters, the
estimated factors, the shape of the interest rate curves and the distribution, dependency and variance of the
residuals.
The procedure is equal to the procedure for the model validation of the statDNS model, where the sim-statDNS
model is replaced by the nonstatDNS model. 36 data sets are simulated from the nonstatDNS model. On each
simulated data set, a nonstatDNS model is estimated. The models have an initial value for λ equal to the true
λ, in order to reduce computational time.

The estimated values for λ In the simulation study for the nonstatDNS model, all estimated values for λ
were in the range 0.01-10. That means that all simulations are used for the validation.

Factor dynamics In Figure 26 is a plot of the simulated, estimated, and predicted level factor. In this plot
it can be seen that the estimated factor is close to the simulated factor, which implies that the nonstatDNS
model can capture the true factor dynamics. The predicted level factor corresponds to the downward trend in
the simulated factors. That means that the model predicts the factor as expected.

Figure 26: Plot of the series of simulated, estimated and predicted level factors for one of the simulations from
the nonstatDNS model.

12The series of estimated factors in Figure 25b has an ADF test statistic of -2.24 with a p-value of 0.47, which implies nonsta-
tionarity
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Interest rate curves In Figure 27 are the plots of the estimated (left) and predicted (middle and right)
interest rate curves. The shape of these curves corresponds to the structure of the simulated observations. That
implies that the nonstatDNS model is capable of estimating and predicting interest rate curves with a shape
corresponding to the shape of the observations.

Figure 27: Plot of the estimated and predicted interest rate curves for one of the simulations from the non-
statDNS model.

Distribution, dependence and variation of the residuals The QQ-plots in Figure 28 of the residuals of
the curves in Figure 27 can be used to validate the normal distribution of the error terms. In the right QQ-plot
it can be seen that the residuals of the estimated curve could imply a light tail in the distribution of the errors,
but the deviation is not heavy enough to reject normality.
Another result that implies a normal distribution for the errors, is the result of the Shapiro-Wilk test in Table 23.
According to these results, more than 95% of the residuals are normally distributed.

Figure 28: QQ plot of the residuals of the estimated and predicted swap curves in Figure 27.

Total number # curves that have % of curves that have
of curves Gaussian distributed Gaussian distributed

residuals residuals
Estimated 6120 5813 95.0
Predicted 1080 1041 96.4

Table 23: The number of interest rate curves estimated and predicted by the nonstatDNS model that have
Gaussian distributed residuals according to the Shapiro-Wilk test with a p-value below 0.05.

The variation of the residuals is examined with the Beusch-Pagan test, of which the results are presented
in Table 24. These results imply that more than 90% of both the estimated and predicted curves have ho-
moskedastic residuals.
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Total number # curves with % curves with
of curves homoskedastic residuals homoskedastic residuals

Estimated 6120 5886 96.2
Predicted 1080 976 90.4

Table 24: The number of interest rate curves estimated and predicted by the nonstatDNS model that ho-
moskedastic residuals according to the Breusch-Pagan test with a critical value of 5.991.

5.4.4 Validation of the sim-nonstatDNS model

This simulation study aims to validate the nonstatDNS model by investigating the same points as both previous
model validation simulation studies. The procedure is equal to the procedure for the model validation of the
statDNS model, where the sim-statDNS model is replaced by the sim-nonstatDNS model. The estimated models
are assessed by all steps in Section 4.3.4, except for the prediction accuracy. The accuracy will be investigated
in the next set of simulation studies.

The estimated values for λ In the simulation study for the sim-nonstatDNS model, all estimated values
for λ were in the range 0.01-10. That means that all simulations are used for the validation in this section.

Factor dynamics In Figure 29 is a plot of the simulated, estimated and predicted level factor corresponding
to the swap data. In this plot, it can be seen that the estimated factor values are close to the true factor
values, which implies that the model is capable of estimating factors with the same structure as the true factors.
Furthermore, the predicted factor values follow the slightly downward-sloping trend of the simulated values,
implying that the predictions for the level factor are as expected.

Figure 29: Plot of the series of simulated, estimated and predicted level factors for one of the simulations from
the sim-nonstatDNS model.

Interest rate curves In Figure 30 are the plots of the estimated (left) and predicted (middle and right)
interest rate curves. The shape of the estimated curves closely follows the structure of the observations. The
shape of the predicted curves deviate from the observations due to prediction errors, but the shape of the curve
still corresponds in the shape of the observations. This implies that the sim-nonstatDNS model can estimate
and predict curves with a shape corresponding to the observations.

Distribution, dependence and variation of the residuals In Figure 31 are the QQ-plots for the residuals
of the curves in Figure 30. These plots indicate that the residuals are normally distributed. This is confirmed
by the results if the Shapiro-Wilk test in Figure 31. More than 95% of the estimated interest rate curves have
normal distributed residuals. Although the percentage of curves with normal residuals is lower for the predicted
interest rates, the majority of the predicted rates have normally distributed residuals.

The variation of the residuals is examined with the Beusch-Pagan test. The results for this test are presented
in Table 26. The results for the estimated curves imply that more than 95% of the estimated curves have
homoskedastic residuals. Only a bit more than 60% of the predicted curves have heteroskedastic residuals.

46



5.4

Figure 30: Plot of the estimated and predicted interest rate curves for one of the simulations from the sim-
nonstatDNS model.

Figure 31: QQ plot of the residuals of the estimated and predicted swap curves in Figure 30.

Instrument Total number # curves that have % of curves that have
of curves Gaussian distributed Gaussian distributed

residuals residuals
Estimated swap 3060 2918 95.4
Predicted swap 540 343 63.5
Estimated bond 3060 2906 95.0
Predicted bond 540 380 70.4

Table 25: The number of interest rate curves estimated and predicted by the sim-nonstatDNS model that have
Gaussian distributed residuals according to the Shapiro-Wilk test with a p-value below 0.05.

Instrument Total number # curves with % curves with
of curves homoskedastic residuals homoskedastic residuals

Estimated swap 3060 2955 96.6
Predicted swap 540 341 63.1
Estimated bond 3060 2951 96.4
Predicted bond 540 350 64.8

Table 26: The number of interest rate curves estimated and predicted by the sim-nonstatDNS model that
homoskedastic residuals according to the Breusch-Pagan test with a critical value of 5.991.

5.4.5 Intermediate conclusion for the model validation

In this group of simulation studies, the new variants on the DNS model were validated, based on their ability
to estimate λ, their estimated factors, the shape, accuracy, and uncertainty of their estimated and predicted
interest rates, and the assumptions on the residuals. For each of the sim-statDNS, the nonstatDNS, and the
sim-nonstatDNS the following can be concluded.

• Each of the DNS variants is able to produce an estimate for λ̂MLE that is not extremely large or ex-
tremely small. That means that the interest rate curves reconstructed from the factors are not violating
assumptions on the error distribution.

• The estimated factors are close to the simulated factors, which implies that the models are capable of
estimating the latent factors.
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• The predicted factors are close to the simulated factors, which implies that the models are capable of
predicting the latent factors.

• The estimated and predicted interest rate curves have the same shape as the observations and are close
to the observations. That means that the DNS model variants can produce accurate interest rate curves.

• The residuals of the majority of the models are homoskedastic and normally distributed.

Based on these points, it can be concluded that the DNS model variants are valid models to estimate and
predict the interest rate curves. All conclusions are drawn under the assumption that the observations have a
structure that can be modeled by the specific model. That means these conclusions are only valid under that
assumption.

Additional to the validation of the new DNS variants, this simulation study also investigated what could
happen if the statDNS model, which assumes stationary factors, was estimated when the true factors are as-
sumed to be nonstationary. In that case, the estimated autoregressive model can either be stationary (|ϕii| < 1)
or nonstationary (|ϕii|). Both the stationary and the nonstationary models are theoretically incorrect due to the
violation of the stationarity assumption. It can be concluded that the estimated time series model is stationary
in 60% of the cases. Although they are incorrect, stationary models can produce very accurate predictions.
Approximately 40% of the time series models were nonstationary. The predictions of these models were very
inaccurate and not useful.
The proportion of models that were stationary (60%) or nonstationary (40%) depends on the amount of non-
stationarity in the factor dynamics and thus also depends on the parameters of the model from which the data
is simulated. In this thesis, the parameters were chosen such that the simulated data was a good representa-
tion of the real data. If other parameters are chosen to simulate the data, the proportion of stationary versus
nonstationary models could change.
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5.5 Model performance
The final set of simulations aims to assess the model performance of the DNS models in comparison with the
benchmark model. This chapter is split into two parts: in the first part in Section 5.5.1 it is assumed that
the data is simulated from a DNS model of which the factors follow a stationary VAR(1) model, and in the
second part in Section 5.5.2 it is assumed that the data is simulated from a DNS model of which the first-order
differences of the factors follow a stationary VAR(1) model.

The model performance is assessed by the ability of the models to estimate λ in the range of 0.01-10,
the accuracy and uncertainty of the estimated swap, bond, and swap spread curves, and the accuracy and
uncertainty of the predicted swap, bond, and swap spread curves.

5.5.1 Model performance in the case of stationary factor dynamics

Given that the data is simulated from a DNS model where the factors follow a stationary VAR(1) process, the
statDNS and sim-statDNS models are estimated to obtain the estimated and predicted swap, bond, and swap
spread curves. The results are presented in this section.

Ability to estimate λ The first result is the estimated values of λ̂MLE . The statDNS model estimated 4
out of 12 times a value for λ inside the range 0.01-10 for the swap data, and 6 out of 12 for the bond data. The
remaining models estimated λ outside this range. For the sim-statDNS model, 12 out of 12 models estimated λ
inside the range of 0.01-10. This implies that the sim-statDNS model is more robust in terms of estimating λ.

Accuracy of the estimated curves The second result is the accuracy of the estimated interest rate curves.
In Table 27 are the descriptive statistics of the rMSE’s of all estimated curves of all 12 simulations. In these
results, it can be seen that the curves estimated by the sim-statDNS model have in general a lower rMSE relative
to the curves estimated by the statDNS model. This holds for the rMSE of the bond, swap, and spread curves.

Instrument Model Q1 Med Q3 Min Max
rMSE rMSE rMSE rMSE rMSE

(×10−2) (×10−2) (×10−2) (×10−2) (×10−2)
Swap statDNS 6.45 7.41 14.2 3.84 82.8
Swap sim-statDNS 6.23 6.90 7.63 3.86 13.8
Bond statDNS 11.2 12.2 14.1 8.69 22.9
Bond sim-statDNS 6.2 6.84 7.58 4.21 14.6
Spread statDNS 54.9 73.2 87.4 10.1 207
Spread sim-statDNS 9.80 10.5 11.3 7.49 21.9

Table 27: The descriptive statistics of the rMSE’s for all estimated interest rate curves and all estimated
spread curves aggregated over all simulations. Data is simulated under the assumption that the factors follow
a stationary VAR(1) process.

Accuracy of the predicted curves The third result focuses on the comparison of the predicted curves of
the two stationary models based on their accuracy. Before measuring the prediction performance by the rMSE,
the predicted curves are compared visually. In Figure 32 are the predictions for the swap and bond curves in
the top two plots, and the predictions for the spread curves in the bottom two plots. The prediction intervals
are left out of the plot to improve visibility. For the prediction intervals, see the plots in the previous paragraphs.

In Figure 32 it can be seen that the swap curve (red) estimated by the statDNS model (top-left plot) is
very close to the data. However, due to the lower accuracy of the bond curve (blue), the resulting swap spread
prediction in the bottom left plot is not very accurate.
In contrast, the swap and bond curves predicted by the sim-statDNS model (top-right) both have good accuracy,
which results in a more accurate swap spread curve for the sim-statDNS model in the bottom-right plot.

The accuracy is again measured by the rMSE. First, the models are mutually compared by their prediction
rMSE. Table 28 contains the number of times that one of the models outperforms the other two models based
on the rMSE. The results are separated for the swap and bond curves and the table contains the results for the
1-day ahead prediction and all 30 days ahead predictions combined. In these results, it can be seen that the
sim-statDNS most often outperforms the statDNS and the random walk model. The sim-statDNS model has
the best accuracy for more than 70% of the predictions.
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Figure 32: Example of the 1 day ahead predicted swap, bond, and spread curves for the statDNS model and
the sim-statDNS model. Data is simulated under the assumption that the factors follow a VAR(1) process.

Furthermore, the statDNS model not often outperforms the sim-statDNS and the random walk model. Al-
though there are some swap curves from the statDNS model that outperform the other models, none of the
spread curves predicted by the statDNS model gave the best accuracy among all three models.

# 1 day ahead % 1 day ahead # all predictions % all predictions
Swap Total 12 100 360 100
Swap statDNS 2 16.7 21 5.8
Swap sim-statDNS 10 83.3 252 70
Swap Random walk 0 0 87 24.2
Bond Total 12 100 360 100
Bond statDNS 0 0 0 0
Bond sim-statDNS 7 58.3 258 71.7
Bond Random walk 5 41.7 102 28.3
Spread Total 12 100 360 100
Spread statDNS 0 0 0 0
Spread sim-statDNS 8 66.7 279 77.5
Spread Random walk 4 33.3 81 22.5

Table 28: Table with the number and percentage of the times that one certain model outperforms both other
models based on the rMSE. Results for data simulated under the assumption that the factors follow a VAR(1)
process.

It is not only important to know how often one model outperforms the other models, but also to quantify
this outperformance. In Table 29 are the descriptive statistics for the rMSE of the one-day ahead predicted
curves for all 12 simulations. In this table, it can be seen that the statDNS model not only has worse accuracy
than the other two models, but the actual values of the rMSE are also much higher than the rMSE of the other
two models. For example, the median rMSE of the statDNS model on the swap data is more than 17 times
larger than the median rMSE of the sim-statDNS model on the same data.
Also, the median of the sim-statDNS model is more than 3 times smaller than the random walk model on the
swap data. That implies that the sim-statDNS model has not just a smaller rMSE, but a much smaller rMSE.
The one-day ahead rMSE for the spread curves implies that the sim-statDNS model reduces the rMSE by almost
50%, relative to the random walk model. This result also holds for the one-day ahead predictions of the bond
and swap curves.
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Instrument Model Q1 Med Q3 Min Max
rMSE rMSE rMSE rMSE rMSE

Swap statDNS 0.143 2.78 7.37 5.99×10−2 1.23×103

Swap sim-statDNS 0.137 0.163 0.282 7.12×10−2 0.691
Swap Random walk 0.303 0.540 0.736 0.179 0.737
Bond statDNS 0.557 0.614 0.942 0.525 1.78
Bond sim-statDNS 0.232 0.253 0.341 0.192 0.437
Bond Random Walk 0.199 0.255 0.341 0.192 0.437
Spread statDNS 1.64 3.85 27.4 0.475 4.53×103

Spread sim-statDNS 0.177 0.271 0.474 9.46×10−2 0.985
Spread Random walk 0.288 0.561 0.767 0.137 1.46

Table 29: The rMSE results for the 1 day ahead predictions of the statDNS, sim-statDNS and random walk
model aggregated over all simulations with the assumption that the factors follow a stationary VAR(1) process.

Uncertainty The final step in the comparison of the models is the uncertainty of their estimations. In
Table 30 are the results for the variances of the estimated interest rates. The statDNS model has a much larger
uncertainty than the sim-statDNS model. For the swap curves, the statDNS model variance is much larger
than the variance estimated by the sim-statDNS model. For the bond data, the lowest 50% of the variances has
comparable size for both models, but the upper 50% of the statDNS model is much larger than the upper 50%
of the sim-statDNS model.

Instrument Model Q1 Med Q3 Min Max
(σ̂2 × 10−2) (σ̂2 × 10−2) (σ̂2 × 10−2) (σ̂2 × 10−2) (σ̂2 × 10−2)

Estimated
swap statDNS 7.93 2.58×104 3.29×105 6.45 1.59×108

swap sim-statDNS 5.66 6.15 6.96 5.01 61.7
bond statDNS 1.83 6.69 7.56×103 1.23 4.81×104

bond sim-statDNS 5.15 6.49 8.74 4.08 30.2
Predicted

swap statDNS 9.33 9.89×1017 5.10×1048 6.45 7.57×10125

swap sim-statDNS 6.91 7.75 8.89 5.01 19.5
bond statDNS 7.32 8.19 36.3 1.23 2.89×1034

bond sim-statDNS 7.67 9.36 11.5 4.09 20.0

Table 30: The results for the estimate of the variance for the estimated and predicted interest rate curves per
instrument and per model.

5.5.2 Model performance in the case of nonstationary factor dynamics

Given that the data is simulated from a DNS model where the first-order differences of the factors follow a
stationary VAR(1) process, the nonstatDNS, and sim-nonstatDNS models are estimated to obtain the estimated
and predicted swap, bond, and swap spread curves. The results will be presented in this section.

Ability to estimate λ For the nonstatDNS model on the bond data, 14 out of 18 models have an estimate
for λ inside the range of 0.01-10. For the nonstatDNS model on the swap data, all 18 out of 18 models have λ
in that range. For the sim-nonstatDNS model, also all 18 out of 18 models have λ in the range 0.01-10 for both
the bond and swap λ’s.

Accuracy of the estimated curves In Table 31 are the rMSE results for the estimated interest rate curves
and the estimated swap spread curves for all simulations. In this table, it can be seen that the rMSE on the
swap data is almost equal for both the nonstatDNS and the sim-nonstatDNS models. For the bond curves, the
sim-nonstatDNS model has a lower rMSE in general.
Our main interest is the rMSE of the swap spread in the bottom two rows of Table 31. The nonstatDNS has a
maximum rMSE for the swap spread of 2.34%, which is significantly larger than the maximum rMSE of 0.145
obtained from the sim-nonstatDNS model. Not only the maximum, but all descriptive statistics for the rMSE
of the spread are lower for the sim-nonstatDNS model relative to the nonstatDNS model. This means that the
sim-nonstatDNS model estimates the spread more accurately than the nonstatDNS model.

Accuracy of the predicted curves The next part of the analysis is the accuracy of the predicted curves.
The first step is to visualize the predicted swap curve, bond curve and swap spread curve. In Figure 33 are
the plots of one example of a 1-day ahead prediction for all three curves and both models. In the top row
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Instrument Model Q1 Med Q3 Min Max
rMSE rMSE rMSE rMSE rMSE

(×10−2) (×10−2) (×10−2) (×10−2) (×10−2)
Swap nonstatDNS 6.11 6.68 7.30 3.87 9.86
Swap sim-nonstatDNS 6.11 6.69 7.31 3.86 9.89
Bond nonstatDNS 8.70 12.2 16.6 3.97 62.8
Bond sim-nonstatDNS 6.04 6.63 7.25 3.83 9.51
Spread nonstatDNS 12.5 17.3 25.6 8.55 234
Spread sim-nonstatDNS 9.69 10.4 11.1 7.04 14.5

Table 31: The descriptive statistics of the rMSE’s for all estimated interest rate curves and all estimated spread
curves aggregated over all simulations. Data is simulated under the assumption that the first-order differences
of the factors follow a stationary VAR(1) process.

plots are the swap curve and bond curve and in the bottom row plots are the swap spread curves for both the
nonstatDNS (left) and sim-nonstatDNS (right) models.
The plot visualizes the relation between the accuracy of the swap and bond curve and the accuracy of the spread
curve. For example, the predicted bond curves (blue) have a very accurate fit for small times to maturity. But
due to the worse fit of the predicted swap curves (red), the predicted spread curve (black) is not as accurate as
the predicted bond curve. This implies that, in order to have an accurate spread prediction, both the swap and
bond curves must be accurately predicted.

Figure 33: Example of the 1 day ahead predicted swap, bond, and spread curves for the nonstatDNS model
and the sim-nonstatDNS model. Data is simulated under the assumption that the first-order differences of the
factors follow a VAR(1) model.

The next step is to compare the predicted curves by their rMSE. In Table 32 are the predictions of the
nonstatDNS, the sim-nonstatDNS, and the random walk models compared by their rMSE. The table contains
the number of times one model outperforms the other two models. In this table, it can be seen that the sim-
statDNS model outperforms the other models most often for the swap, bond, and spread curves. The random
walk model has approximately one-third of the times the most accurate prediction and the nonstatDNS model
has approximately one-third of the times the most accurate prediction.

To quantify the accuracy, in Table 33 are the descriptive statistics for the rMSE of all one-day ahead predicted
interest rate curves. The rMSE of the sim-nonstatDNS model is generally the lowest among all three models.
The rMSE of the nonstatDNS model does not reduce the rMSE relative to the random walk model for the
spread curve predictions.
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# 1 day ahead % 1 day ahead # all predictions % all predictions
Swap Total 18 100 540 100
Swap nonstatDNS 3 16.7 141 26.1
Swap sim-nonstatDNS 11 61.1 207 38.3
Swap Random walk 4 22.2 192 35.6
Bond Total 18 100 540 100
Bond nonstatDNS 2 11.1 131 24.3
Bond sim-nonstatDNS 13 72.2 202 37.4
Bond Random walk 3 16.7 207 38.3
Spread Total 18 100 540 100
Spread nonstatDNS 0 0 53 9.8
Spread sim-nonstatDNS 13 72.2 278 51.5
Spread Random walk 5 27.8 209 38.7

Table 32: Table with the number and percentage of the times that one certain model outperforms both other
models based on the rMSE. Results for data simulated under the assumption that the first-order differences of
the factors follow a VAR(1) process.

Instrument Model Q1 Med Q3 Min Max
rMSE rMSE rMSE rMSE rMSE

(×10−2) (×10−2) (×10−2) (×10−2) (×10−2)
Swap nonstatDNS 10.3 24 37.2 4.93 47.4
Swap sim-nonstatDNS 10.4 13.8 18.4 7.61 41.2
Swap Random walk 18.7 30.6 36.6 10.4 48.3
Bond nonstatDNS 20.6 25 44.1 13.7 63.8
Bond sim-nonstatDNS 10.8 18.6 30.6 8.9 51.6
Bond Random walk 26.8 35.5 46.7 14.9 92.2
Spread nonstatDNS 23.8 27.8 49.3 17.7 240
Spread sim-nonstatDNS 16.2 22.3 34.8 11.4 56.6
Spread Random walk 18.0 23.0 41.9 14.6 77.9

Table 33: The rMSE results for the 1 day ahead predictions aggregated over all simulations with the assumption
that the first-order differences of the factors follow a stationary VAR(1) process.

Uncertainty The last result is the uncertainty of the estimated interest rate curves, measured by the estimate
for the variance of the interest rate estimation. In Table 34 are the results for the estimated variances by the
DNS models. For the swap data, the nonstatDNS has a larger variance and thus a larger uncertainty. For
the bond data, the sim-nonstatDNS has a larger variance. This means, there is no significant difference in the
uncertainty of the estimations of the nonstatDNS and the sim-nonstatDNS models.

Instrument Model Q1 Med Q3 Min Max
(σ̂2 × 10−2) (σ̂2 × 10−2) (σ̂2 × 10−2) (σ̂2 × 10−2) (σ̂2 × 10−2)

Estimated
swap nonstatDNS 6.90 8.07 10.6 5.35 1.80×103

swap sim-nonstatDNS 5.39 6.19 7.66 4.3 3.23×103

bond nonstatDNS 6.91 7.97 9.62 5.75 1.01×103

bond sim-nonstatDNS 7.58 9.94 12.3 5.51 1.30×103

Predicted
swap nonstatDNS 62.3 127 231 5.11 1.29×105

swap sim-nonstatDNS 34.0 58.8 90.2 4.30 375
bond nonstatDNS 50.1 99.0 243 5.07 3.36×1044

bond sim-nonstatDNS 30.5 53.5 90.2 5.11 257

Table 34: The results for the estimate of the variance for the estimated and predicted interest rate curves per
instrument and per model for the nonstationary data.

5.5.3 Intermediate conclusion

If the factors are assumed to follow a stationary process, the sim-statDNS model outperforms both the statDNS
and the random walk model by means of rMSE of the estimated and predicted swap and bond curves in more
than 50% of the cases. The sim-statDNS model outperforms both other models by means of rMSE of the esti-
mated and predicted swap spead curves in more than 60% of the cases. The statDNS has the lowest accuracy
in terms of rMSE of all models and could not compete with the random walk model.
The uncertainty of the predicted interest rates can not be investigated. To compare the uncertainty, I look at
the estimated variances for the estimated interest rate curves. In these results, the sim-statDNS model has a
lower uncertainty than the statDNS model.
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If the first-order differences of the factors are assumed to follow an AR(1) process, the sim-nonstatDNS
model slightly outperforms the random walk model on the accuracy measured by the rMSE for the swap and
bond curves. The sim-nonstatDNS outperforms both other models by means of rMSE of the predicted spread
curve in more than 50% of the cases. The uncertainty of the sim-nonstatDNS model is comparable to the
uncertainty of the nonstatDNS model.
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5.6 Methodology derived from the simulation studies
The simulation studies are combined into the following methodology that specifies how to predict the swap
spread using the DNS model.

1. Preprocess the data set of observations
Follow the preprocessing method for the bond and swap data as described in Section 2.1 and Section 2.2.

2. The analysis of the empirical factors
Compute the time series empirical factors of both rates from the data set of observations following the
method specified in Section 2.1.4. Perform the ADF test to test the stationarity of the factors. If the series
are not stationary, perform the ADF test on the series after a linear first-order difference transformation.

3. Choose the correct DNS model variant
If the series of empirical factors are all stationary processes, choose the statDNS and the sim-statDNS. If
all series are nonstationary and all series after a linear first-order difference transformation are stationary,
choose the nonstatDNS and the sim-nonstatDNS models. This framework does not include the case where
some of the factor series are stationary and some are not.

4. Choose the initial value for λ
Choose an initial value of λ. This can be any value between 0.01 and 10.

5. Estimate the DNS models
Estimate the DNS models with the initial value for λ following the method in Section 3.4.3. Keep tracking
the intermediate estimates for λ. If the estimates for λ̂MLE are too small (< 0.01) or too large (> 10),
the DNS model can not be used to estimate and predict the swap spread.

6. Plot the factor dynamics and the interest rate curves
The structure and dynamics of the factors should correspond to the structure and dynamics of the empirical
factors. If not, the model probably does not produce accurate results. This is assessed by looking at the
plot of the empirical factors and the estimated factors.

7. Expectation of the results
In the case of stationary factor dynamics, it is expected that the sim-statDNS outperforms the random
walk model and the statDNS model on both accuracy and uncertainty. It is also expected that the statDNS
model does not outperform the random walk model.
In the case of nonstationary factor dynamics, it is expected that the sim-nonstatDNS outperforms the
random walk model and the nonstatDNS model on both accuracy and uncertainty. It is also expected
that the nonstatDNS model outperforms the random walk model in accuracy.

8. Result analysis
The estimated rates are analyzed by their accuracy (rMSE), their uncertainty (σ̂2), and the distribution
(Shapiro-Wilk test) and variability (Breusch-Pagan test) of the residuals. The predicted interest rates are
analyzed by the same measures except for the uncertainty because the models can not produce predictions
for this uncertainty.
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6 Case study
In this section, the framework to predict the swap spread will be applied to a real data set. The source, structure,
characteristics, and preprocessing procedure of the data set are already described in Section 2 and will not be
repeated in this section. The structure of this section corresponds with the steps in the framework.

6.1 Analysis of the empirical factors
The empirical factors for the real data are computed according to the method described in Section 2.1.4. In
Figure 34 is a plot of the empirical counterparts of the level factor. The plot for the slope and curvature factors
are attached in Figure 54. The time series in these plots do not look stationary.
Following the framework, all three time series are transformed by a linear first-order difference transformation.
The plots of these transformed time series are in Figure 35 for the level factors and in Figure 55 for the slope
and curvature factors. The series in these plots look stationary.

Figure 34: Time series of the empirical level factors computed from the real data.

(a) The transformed empirical level factor for the swap
data

(b) The transformed empirical level factor for the bond
data

Figure 35: Time series after a first order difference transformation of the empirical level factors computed from
the real data.

The stationarity of the empirical time series is statistically evaluated with the ADF test. The results of
these tests are presented in Table 35. A series is said to be nonstationary if the ADF test statistic is below the
critical value of -3.44 and the p-value is below 0.05. That implies that the series without a transformation are all
nonstationary and the series after a first-order difference transformation are stationary. Based on these results,
the factors of the DNS model are assumed to be stationary after a linear first-order difference transformation.
According to the framework, the interest rate curves will be predicted using the nonstatDNS model and the
sim-nonstatDNS model.
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No transformation Transformed series
Instrument Factor ADF test statistic ADF p-value ADF test statistic ADF p-value
Swap Level -2.55 0.344 -10.6 < 0.01
Swap Slope -2.42 0.399 -10.9 < 0.01
Swap Curvature 2.22 0.486 -10.8 < 0.01
Bond Level -2.95 0.175 -11.0 < 0.01
Bond Slope -2.90 0.198 -11.0 < 0.01
Bond Curvature -2.96 0.173 -13.9 < 0.01

Table 35: Results of the ADF test for the empirical factor series before and after a linear first order difference
transformation.

6.2 Results of the case study
Both the nonstatDNS and the sim-nonstatDNS models are estimated on the train data set. In this section, the
results of these models are presented.

6.2.1 The estimated parameters and factors

The estimates for all parameters are included in Section H.1. In this section, I will only point out the most
remarkable results.
The first result is the estimated value for λ in Table 36. The estimated λ for the nonstatDNS model on the bond
data is smaller than 0.01. According to the framework, this model leads to inaccurate estimated and predicted
bond curves and should not be used. Because it is interesting to see if the results of the simulation studies also
hold for the real data, also the model with a λ smaller than 0.01 will be presented. The other three estimated
λ’s are in the range of 0.01-10 and thus can be used to predict the interest rate curves.

Instrument Model Initial λ λ̂MLE

Swap nonstatDNS 0.1195 0.346
Swap sim-nonstatDNS 0.1195 0.441
Bond nonstatDNS 0.1195 0.00987
Bond sim-nonstatDNS 0.1195 0.347

Table 36: The estimates for λ̂MLE for the real data

The subsequent results are the factors estimated by each of the models. In Figure 36 are the plots of the
estimated level factors. In Appendix H are the plots of the estimated slope and curvature factors. The first
step in the analysis is to look at the values of the factors. The factor values for the swap level factors of both
models take values approximately between 0 and 2.5. The factor values for the bond level factors estimated
by the sim-nonstatDNS model take values between -0.5 and 2. These values are comparable to the simulation
study and are not extreme. The factor values for the bond level factor estimated by the nonstatDNS model
take values between -200 and 300. These values are more extreme, which is due to the quite small estimate for
λ.
Another remark on the results in Figure 36 is that the prediction intervals are much larger than the prediction
intervals seen in the simulation studies.

6.2.2 The estimated bond and swap curves

After the evaluation of the estimated and predicted factor values, the estimated curves are analyzed to see if
the model is able to reproduce the shape of the observations. In Figure 37 are the plots of the interest rate
curves estimated by the different models. The two plots in the top row are the swap curves estimated by the
nonstatDNS model (left) and the sim-nonstatDNS model (right). The two plots in the bottom row are the bond
curves estimated by the nonstatDNS model (left) and the sim-nonstatDNS model (right). The shaded area in
the plot represents the 95%-confidence interval. The range of the plot is smaller than the confidence interval in
order to see the fit of the estimated bond and swap curves. To see the whole confidence interval, see Figure 61
in the appendix.
The bond curve that is estimated by the nonstatDNS model (bottom left) is linear. This is exactly what hap-
pens with the curves that are modeled by a λ that is very small, as shown in the simulation in Section 5.2.2.
All other curves are close to the observations, which is also in line with the results in the simulation studies for
models with a λ in the range of 0.01-10.
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Figure 37: Example of the estimated interest rate curves for the nonstatDNS and the sim-nonstatDNS models.

Subsequently, the predicted curves will be analyzed. In Figure 38a and Figure 38b are the 1 day and 10
days ahead predicted bond and swap curves. Again, the 95%-prediction intervals are larger than the range of
the plot. To see the full prediction intervals, see Figure 61 in the appendix.
The swap curve predicted by the nonstatDNS model is plotted in the top left of both figures. In these plots, it
can be seen that the predicted swap curve is not close to the observations. The shape of the predicted curve is
also not the same as the shape implied by the observations. The shape of the curve can be explained by the
prediction of the slope factors, which are increasing relative to their value one day earlier, see Appendix H. This
effect holds for the 1-day ahead prediction and is even more present for the 10-days ahead prediction. Thus, in
this case, a bad prediction for the slope factor leads to a swap curve that does not fit the structure of the data.
The bond curve predicted by the nonstatDNS model is plotted in the bottom left of both Figure 38a and Fig-
ure 38b. The shape of these curves is again a linear line due to the very small estimate for λ̂MLE .

The swap curve that is predicted by the sim-nonstatDNS model is plotted in the top right of the plots.
Although there is a deviation from the data for high times to maturity, both predicted swap curves are in
general close to the data. Also, the 95% prediction intervals are very large.
The bond curves predicted by the sim-nonstatDNS model are plotted in the bottom right of the plots. These
curves are close to the data at every time to maturity. The prediction interval is smaller than the prediction
interval for the predicted swap curves.
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(a) The one day ahead predicted interest rate curves for the nonstatDNS (left) and the sim-
nonstatDNS (right) models.

(b) The 10-days ahead predicted interest rate curves for the nonstatDNS (left) and the sim-
nonstatDNS (right) models.

Figure 38: Examples of bond and swap curves that are predicted using the DNS models on the real data.
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6.2.3 Performance analysis

So far, the shape and accuracy of the estimated and predicted curves are visually evaluated. The next step is
to compare the models by their rMSE. As explained in Section 3.5, it is not possible to determine the rMSE of
the DNS models for the swap spread curve, hence the performance accuracy is measured by the rMSE of the
swap curve and the bond curve separately.
The results for the rMSE of the estimated bond and swap curves are presented in Table 37. In this table, it can
be seen that the sim-nonstatDNS model produces bond and swap curves that have a lower rMSE, relative to
the curves estimated by the nonstatDNS model. The curves with the lowest and highest rMSE’s were plotted
to detect any pattern in the estimation accuracy. However, no clear pattern could be found in the shape of
these curves. See Figure 62 and Figure 63 in the Appendix for these plots.

Instrument Model Q1 Med Q2 Min Max
Swap nonstatDNS 0.0897 0.0975 0.105 0.0576 0.150
Swap sim-nonstatDNS 0.0327 0.0352 0.0386 0.0254 0.0709
Bond nonstatDNS 0.305 0.376 0.464 0.124 1.34
Bond sim-nonstatDNS 0.0228 0.0273 0.0331 0.0112 0.548

Table 37: Descriptive statistics of the rMSE for all swap and bond curves estimated by the DNS models on the
real data.

The rMSE of the one, ten, and thirty days ahead predicted curves are presented in Table 38. In this table,
it can be seen that for the swap curves, the random walk model has the lowest rMSE for each predicted curve.
For the bond data, the sim-nonstatDNS model outperforms both the nonstatDNS and the random walk model.

Instrument Model rMSE rMSE rMSE
1 day ahead 10 days ahead 30 days ahead

Swap nonstatDNS 0.426 3.58 10.7
Swap sim-nonstatDNS 0.0639 0.0530 0.169
Swap Random walk 0.0587 0.0308 0.0605
Bond nonstatDNS 0.315 2.40 7.51
Bond sim-nonstatDNS 0.0421 0.0413 0.0964
Bond Random walk 0.0472 0.0784 0.103

Table 38: Results for the rMSE of the swap and bond curves predicted by the DNS models and the random
walk model.

6.2.4 Residual analysis

The final part of the result section is the analysis of the residuals for the estimated bond and swap curves.
In both the nonstatDNS and the sim-nonstatDNS models, it is assumed that the errors are i.i.d. normally
distributed. The normality of the residuals is tested by the Breusch-Pagan (BP) test. The results for the BP
tests are presented in Table 39. The results for the nonstatDNS models imply that the normality assumption is
violated for all estimated and for all predicted interest rate curves. The results for the sim-nonstatDNS model
imply that most of the residuals of the estimated and predicted curves are normally distributed.

Instrument Model total # # normally distributed % normally distributed
curves residuals residuals

Residuals of the estimated curves
Swap nonstatDNS 1300 0 0
Swap sim-nonstatDNS 1300 883 67.9
Bond nonstatDNS 1300 0 0
Bond sim-nonstatDNS 1300 809 62.2

Residuals of the predicted curves
Swap nonstatDNS 30 0 0
Swap sim-nonstatDNS 30 25 83.3
Bond nonstatDNS 30 0 0
Bond sim-nonstatDNS 30 18 60

Table 39: The number of estimated and predicted curves with normally distributed residuals according to the
Shapiro-Wilk test with a p-value higher than 0.05.

To visualize the distribution of the residuals, in Figure 39 are the Q-Q plots of the residuals of each model
for one of the estimated curves. To see where the errors presented in the Q-Q plots in Figure 39 are large or
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small, the corresponding estimated swap and bond curves are plotted in Figure 40.

The Q-Q plot in Figure 39a confirms the results of the BP test: the residuals of the swap curve estimated by
the nonstatDNS model are not normally distributed. In Figure 40a it can be seen that there are larger errors
for very small or very large times to maturity.
The same can be said about the Q-Q plot for the bond curve estimated by the nonstatDNS model in Figure 39c.
This Q-Q plot indicates a heavily skewed distribution for the residuals. The distribution of these residuals can
be explained by the shape of the bond curve in Figure 40c, which diverges from the data for large times to
maturities.
The Q-Q plots in Figure 39b and Figure 39d represent the residuals for the swap and bond curves estimated
by the sim-nonstatDNS model. Although there is a deviation of the points from the red line, the results in the
Q-Q plots indicate that the residuals are indeed normally distributed. In Figure 40b and Figure 40d it can be
seen that the curves are close to the data over the whole range of times to maturities.

(a) Residuals of a swap curve estimated by the non-
statDNS model

(b) Residuals of a swap curve estimated by the sim-
nonstatDNS model

(c) Residuals of a bond curve estimated by the non-
statDNS model

(d) Residuals of a bond curve estimated by the sim-
nonstatDNS model

Figure 39: The Q-Q plots of the residuals of one of the estimated bond and swap curves for both the nonstatDNS
and the sim-nonstatDNS models.

The results of the Shapiro-Wilk test in Table 39 are directly related to the results of the Q-Q plots and
the shapes of the curves. The curves estimated by the nonstatDNS model do not follow the structure of the
observations. For the bond data, this is due to very small λ̂MLE . The small λ results in a linear curve, which
can not follow the data structure. In that case, the residuals will be skewed, because the curve deviates from
the data for large times to maturity, as in Figure 40c. This directly causes the non-normality of the residuals.
This problem was discussed in the simulation studies in Section 5.2.3.
The non-normality of the residuals of the swap curves estimated by the nonstatDNS model is caused by the
deviation of the curve from the observations for small or large times to maturity. This can not be explained by
the estimate for λ, because the estimate is not very large or very small. The distribution of the residuals is due
to the disability of the model to follow the data structure.

The homoskedasticity of the residuals is tested with the Breusch-Pagan (BP) test. In Table 40 are the
results of the BP test for the estimated and predicted swap and bond curves. These results show that there is
heteroskedasticity present for the residuals of the sim-nonstatDNS model. That means that there is variability
in the swap and bond rate that is not explained by the three factors.
It is remarkable that the results in Table 40 are in contrast with the results for the sim-nonstatDNS model from
the simulation study, see Table 26. In the simulations, more than 90% of the estimated curves and more than
60% of the predicted curves from the sim-nonstatDNS model have homoskedastic residuals. This is significantly
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(a) Swap curve corresponding to the Q-Q plot in Fig-
ure 39a

(b) Swap curve corresponding to the Q-Q plot in Fig-
ure 39b

(c) Bond curve corresponding to the Q-Q plot in Fig-
ure 39c

(d) Bond curve corresponding to the Q-Q plot in Fig-
ure 39d

Figure 40: The swap and bond curve that correspond to the Q-Q plots in Figure 39

more often than in the case study, in which fewer than 50% of the estimated curves and fewer than 30% of the
predicted curves have homoskedastic residuals. This will be discussed in the discussion section.

Instrument Model Total # # curves with homo- % curves with homo-
curves skedastic residuals skedastic residuals

Residuals of the estimated curves
Swap nonstatDNS 1300 1300 100
Swap sim-nonstatDNS 1300 204 15.7
Bond nonstatDNS 1300 1300 100
Bond sim-nonstatDNS 1300 595 45.8

Residuals of the predicted curves
Swap nonstatDNS 30 30 100
Swap sim-nonstatDNS 30 4 13.3
Bond nonstatDNS 30 1 3.33
Bond sim-nonstatDNS 30 16 53.3

Table 40: Homoskedasticity of the residuals. Results for the Breusch-Pagan test with a critical value of 5.991.

6.2.5 Estimated and predicted swap spread curves

The main objective of this thesis was to predict the swap spread curve, i.e. the difference between the bond
curve and the swap curve. In Figure 41 are the plots of the 1-day and the 10-days ahead predicted swap spread
curves. The top plots in the Figure 41a and Figure 41b contain the bond and swap curves predicted by the
nonstatDNS (left) and the sim-nonstatDNS (right). These are the same predicted curves as shown in Figure 38,
but then for the swap and bond curves combined into one plot per model. The plots in the bottom row of
Figure 41a and Figure 41b contain the predicted swap spread curves for both the nonstatDNS (left) and the
sim-nonstatDNS (right) models.

63



6.2

(a) The one day ahead predicted swap spread curves for the nonstatDNS (left) and the sim-
nonstatDNS (right) models.

(b) The 10-days ahead predicted swap spread curves for the nonstatDNS (left) and the sim-
nonstatDNS (right) models.

Figure 41: Examples of spread curves that are predicted using the DNS models on the real data. The green
and red shade indicate a positive or negative spread respectively.
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The shape of the swap spread curve in Figure 38 is different for both the DNS models. The swap spread
curve for the nonstatDNS model is a downward-sloping curve, whereas the swap spread curve predicted by the
sim-nonstatDNS model has a bumped shape.
From the results in this section, it is known that the nonstatDNS model has not a good performance in the
prediction of the swap and bond curves. That means that the swap spread in Figure 41 predicted by the
nonstatDNS model is not a good prediction for the swap spread.
On the other hand, the results have shown that the sim-nonstatDNS model has a good performance in predicting
the swap spread. This is confirmed by the predicted swap and bond curves in Figure 41. Based on this result,
the swap spread curve predicted by the sim-nonstatDNS model is a good prediction for the swap spread.
The performance of the sim-nonstatDNS model is comparable to the performance of the random walk model.
However, the random walk model only predicts certain bond and swap observations with different times to
maturities. The random walk model can not be used to predict the swap spread. Therefore, among the three
models in this thesis, the predictions from the sim-nonstatDNS model, produce the only good prediction for the
swap spread.
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7 Conclusion
The primary objective of a pension fund is to align current investments with future pension payments. However,
this can be a challenging endeavor as the return on current investments is influenced by the bond rate, while
the value of future pension payments is contingent upon the swap rate. In situations where these two rates
undergo disparate fluctuations, a discrepancy arises between future pension payments and investment returns,
potentially leading to significant issues for pensioners. To mitigate current and future potential mismatches, it
is crucial to estimate and predict the spread between the bond rate and the swap rate. This spread is commonly
known as the swap spread.

The goal of this thesis was to develop a methodology to predict the swap spread. The data consists of swap
and bond observations with a mismatch in time to maturity. This implied the need for a model that models the
swap curve and the bond curve as a continuous function of the time to maturity, which is the main motivation
to use the DNS model in the prediction of the swap spread.

The application of DNS models before this thesis was limited to the estimation and prediction of one single
interest rate. For the swap spread, it is necessary to estimate and predict two interest rates that are highly
correlated: the bond rate and the swap rate. A new variant of the DNS model has been proposed to incorporate
the correlation of these two rates. This variant models the latent factors of both curves in one restricted VAR
model, in contrast to the original DNS model that models the latent factors by several univariate AR models.
In the simulation study, it has been shown that this sim-statDNS variant outperforms both the statDNS and
the benchmark model for at least 70% of the one-day ahead prediction and at least 70% of the multiple-days
ahead predictions.

The original DNS model as well as the sim-statDNS variant assumes the latent factors to follow a stationary
process. Using the interpretation of the latent factors, it has been shown that the stationarity of the empirical
factors computed from the data set is a good representation of the stationarity of the actual latent factors.
Because the empirical factors of the real data were not stationary, modeling their latent factors by a stationary
process would be incorrect.
This motivates the development of the second and third variants of the DNS model in this thesis. The second
variant, nonstatDNS, independently predicts the swap and bond rate by modeling the first-order differences of
the latent factors by univariate AR(1) models. The third variant, sim-nonstatDNS, simultaneously predicts the
swap and bond rate by modeling the first-order differences of the latent factors by a restricted VAR(1) model. .
In the simulation study, it has been shown that the nonstatDNS model has the highest accuracy in only 13%
of the cases for the 1-day ahead prediction and only 25% of the cases for the multiple-days ahead predicted
curves. For the one-day ahead prediction, the sim-nonstatDNS outperforms both the benchmark model and the
nonstatDNS model in 67% of the cases. For the multiple-days ahead prediction, the sim-nonstatDNS model has
the highest accuracy among all three models in 38% of the cases. This implies that the sim-nonstatDNS model
has higher accuracy than the benchmark model.

The nonstatDNS model and the sim-nonstatDNS model were applied to the real data set in the case study.
following the methodology implied by the simulations. On the real data, the nonstatDNS has a much worse
performance than both the sim-nonstatDNS and the benchmark model. This confirms the results in the simu-
lations. The sim-nonstatDNS model outperforms the benchmark model on the prediction accuracy of the bond
curves. However, the benchmark model has a better performance on the predicted swap curves.
The benchmark model only predicts the swap and bond curve for certain times to maturity, and can not be
used to compute a prediction for the swap spread. The DNS model variants predict the swap and bond curve
as a continuous function for the time to maturity and can therefore be used to compute the swap spread pre-
diction. Despite the fact that the sim-nonstatDNS model does not always outperform the benchmark model,
the sim-nonstatDNS model is the best model to predict the swap spread.

In addition to this main conclusion, the simulation study and the case study lead to several other key con-
clusions, which will be formulated in the sequel of this section.

The first conclusion is the comparison of the model behavior in the simulation studies, relative to the model
behavior in the case study. The error terms in the DNS model are assumed to be normally distributed. This
assumption is not violated in the simulation studies, but the residuals of the nonstatDNS model in the case
study violate this assumption. Furthermore, the curves estimated and predicted by the sim-nonstatDNS model
have heteroskedastic residuals, whereas this is not the case in the simulation studies. This will be discussed
more in-depth in the discussion section.
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A part of the selection process is the assumption of the stationarity of the latent factors. If these factors
follow a nonstationary process, it is incorrect to model the latent factors by a stationary autoregressive model.
Therefore it is of great importance to analyze the stationarity of the latent factors. In the simulation studies, it
is investigated to what extent the interpretation of the DNS factors can be used to represent the stationarity of
the latent factors. It is shown that the stationarity of the empirical DNS factors is an accurate representation
of the stationarity of the true DNS factors.
This leads to the key conclusion for selecting a DNS model variant to predict the swap spread. If the empirical
factors are stationary, the swap spread is predicted using a DNS model that assumes a restricted VAR(1) model
on the latent factors. If the first-order differences of the empirical factors are stationary, the swap spread is
predicted using a DNS model that assumes a restricted VAR(1) model on the first-order differences of the latent
factors.

The second conclusion concerns the empirical factors. Although the stationarity of the empirical factors is
a good representation of the stationarity of the latent factors, other systematic relationships of the true latent
factors are not captured in these empirical factors. The ACF, PACF, and CCF of the empirical factors deviate
from the ACF, PACF, and CCF of the true latent factors. The analysis of these systematic relationships will
therefore not be included in the methodology.

The third conclusion concerns the estimate for the parameter λ in the DNS models. If the estimate λ̂MLE

is extremely small, the factors in the DNS model become linearly dependent. This leads to unstable factor
estimates and inaccurate or incorrect predictions for the interest rate curves. If the estimate for λ̂MLE is ex-
tremely large, the weight on the slope and curvature factor is approximately zero except for very small times
to maturity. This results in interest rate curves that can not capture the structure of the actual interest rates.
These conclusions are captured in the methodology by rejecting all DNS models that have an estimate for λ
that is smaller than 0.01 or larger than 10.

Different initial values for λ result in different estimates for λ̂MLE for the same set of observations. This
implies that there are multiple local maxima in the log-likelihood surface and the initial value for λ in combina-
tion with the BFGS optimization algorithm determines in which local maximum the final parameter estimates
are specified. Although there is a relation between the initial value and the final estimate, the specific relation
can not be determined from the simulation studies. For that reason, a specific methodology to choose the initial
value is absent. Any initial value between 0.01 and 10 can be used.

The real data misses observations on days that the market was closed. It can be concluded that these
missing observations cause a decrease in accuracy and an increase in uncertainty of the predicted interest rates.
Since the effect on the accuracy and uncertainty is not significantly large, it is decided that in the preprocessing
of the data, these missing observations will not be imputed and will be treated as missing observations. The
Kalman filter is able to handle missing observations and therefore this choice does not lead to a violation of
model assumptions.

The bond data have observations with various times to maturity, which leads to computational issues in
the parameter estimation of the DNS models. For that reason, the bond data is preprocessed using smoothing
splines to obtain a set of observations with equal times to maturity for each date in the data set. Based on the
results of the simulation studies it can be concluded that this preprocessing step does not decrease the accuracy
of the DNS model.
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8 Discussion
This chapter outlines the points for discussion that have arisen from the study performed in this thesis. Some
of these points can be considered topics for further research.

First of all, the accuracy of the models for the swap spread is measured by the accuracy of the bond rate
and swap rate separately. The choice for this performance measure is motivated by the absence of a true swap
spread due to two data sets with different times to maturity. However, this performance measure for the swap
spread could be a misleading representation of the actual performance. For example, if both the swap curve
and bond curve are overestimated by the same amount, the difference between the rates is very accurate. On
the other hand, if one of the curves is over-estimated and the other curve is under-estimated, the accuracy of
the swap spread prediction is worse than the accuracy measured by the rMSE on both rates separately. For
this reason, it is recommended to develop a benchmark model that can be used to measure the accuracy of the
swap spread predictions.

The second limitation concerns the interpretation and computation of the empirical factors. Although the
stationarity of the empirical factors is an accurate representation of the stationarity of the true factors, other
systematic relationships of the true factors are not captured in the empirical factors. The autocorrelation,
partial autocorrelation, and cross-correlation functions of the empirical factors did not correspond to the true
underlying factor dynamics.
The absence of information about the systematic relationships of the latent factors is a limitation of the infor-
mation that can be used to choose the best-fitting time series model for the latent factors. The choice to model
the dynamics by autoregressive processes with only one lag could be a simplification of the true process of the
latent factors. Although this results in less accurate results, this choice does not lead to a violation of model
assumptions. A way to improve the DNS variants in this thesis is to find other representations for DNS factors
that capture the ACF, PACF, and CCF of the true DNS factors.

The DNS model variants in this thesis are limited to two types of stationarity for the factor dynamics. The
factor dynamics are either assumed to be stationary or the first-order differences are assumed to be stationary.
In practice, however, differencing a nonstationary time series does not always lead to a stationary time series.
It could be the case that other transformations of the time series are needed in order to make the series of
factors stationary. If such a transformation is a linear transformation, the model can be rewritten as a state
space model using the same method as the method used in this thesis.

Subsequently, the parameter λ in the DNS models is assumed to be constant over time. The estimate for λ
determines the weight of the factors and thereby determines the shape of the interest rate curves. It was shown
that the shape of the interest rate curves is not constant over time, which suggests a time-varying parameter λ.
Koopman et al. (2007) have developed a variant of the original DNS model with such a time-varying λ. A first
recommendation for further research is to investigate the possibilities for a time-varying λ for the new variants
of the DNS model presented in this thesis.

Also, it is important to remark that the estimation of λ served as the main bottleneck in the application of
all DNS models. In the simulation studies as well as in the case study, the estimate for λ was unstable and could
take extremely large or extremely small values, leading to a violation of the model assumptions. In this thesis,
the BFGS algorithm with a finite difference approximation for the gradients was used to obtain the maximum
likelihood estimates. The resulting estimates for λ suggest that this is not the best method to use for this
application. For that reason, it is recommended to perform further research on what optimization algorithm to
use to estimate the DNS model parameters.
A more specific recommendation for improving the BFGS algorithm is as follows. In the section related to the
BFGS algorithm, it was mentioned that the BFGS algorithm could be improved by taking into account the
theoretical gradient functions (Durbin & Koopman, 2012a) for several parameters including λ. This will improve
the algorithm by determining the change in the log-likelihood value with respect to λ. Another option is to
determine the boundaries for λ that specify the values for which the model can not be used. These boundaries
can be used to develop a bounded optimization algorithm for λ. Finally, Koopman et al. (2007) used the EM
algorithm to obtain parameter estimates for the original DNS model. The usage of the EM algorithm could
also be investigated as a suitable optimization method for the DNS models in this thesis.

Throughout all simulations, it was assumed that the true data has the structure of a DNS model. It is not
investigated how the DNS variants perform on a data set with a different underlying model. In addition to
the validation in this thesis, it is recommended to perform several simulation studies where the data has an
underlying model that is not a DNS model.
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In this thesis, the main objective was to predict the swap spread curve. The spread is reconstructed from
the bond and swap curves. The application of the Kalman filter makes it possible to construct a prediction
interval for the bond and swap curves. However, it is not investigated how to construct a prediction interval
for the spread curves. Since the uncertainty for the spread is very important, this should be investigated as well.

The formulation of the DNS model as a linear Gaussian state space model assumes that the state vectors
are i.i.d. normally distributed, conditionally on the previous observations. The state space form also assumes
that interest rate observations are i.i.d. normally distributed conditionally on the previous observations. This
is a limitation of the model. If the errors are not i.i.d. normally distributed, the model could be extended to
a model with correlated errors (Shumway & Stoffer, 2016a). The model can also be extended to a model with
non-normal errors (Durbin & Koopman, 2012a).

The residuals of sim-nonstatDNS model predictions for the bond and swap curves in the case study did not
pass the test for homoskedasticity. Less than 50% of the estimated curves and less than 30% of the predicted
curves have homoskedastic residuals. In all other cases, there is significant proof for heteroskedastic residuals.
Heteroskedastic residuals suggest that there is a variance in the interest rate observations that is not explained
by the three factors. The heteroskedasticity is an important result for the application of the DNS models be-
cause heteroskedasticity could lead to biased factor estimates and misleading factor interpretation. This result
is in contrast with the simulation studies, where the majority of the interest rate curves have homoskedastic
errors. That means that, if the data actually has the structure of the DNS model, the three factors capture all
variability in the interest rates.
A possible way to overcome heteroskedasticity is to apply variance-stabilizing transformations on the factor
loadings. A commonly used transformation for this purpose is a log or power transformation. Such a trans-
formation can be included in the state space model by reformulating the factor loadings as a function of the
parameter λ. Since this function is already nonlinear, a nonlinear transformation would not harm the structure
of the state space model.
Another option is to use a more advanced model, such as the NSS-model (Svensson, 1994). Finally, the restric-
tion on λ to be constant over time could be retrieved in order to make the model more advanced (Koopman et
al., 2007).

The final recommendation concerns the preprocessing of the data. The decision to spline the data and not
impute the missing observations result in a decreased accuracy of the DNS model. That suggests that the DNS
model could be improved by other choices in the preprocessing steps.
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A List of economic definitions

Issuer Entity, government or organization that offers or sells financial securities or instruments
to investors in order to raise capital

Zero-coupon bond A zero-coupon bond is a contract where an investor lends money to the issuer in ex-
change for a future payment.

Coupon bond A coupon bond is a contract where an investor lends money to the issuer in exchange
for multiple future interest payments.

Investor Entity or individual that buys financial securities to obtain a return on its investments
Interest rate swap An interest rate swap contract is a contract between two parties that defines a scheme

where a payment stream at a fixed interest rate is exchanged for a payment stream of
a floating interest rate.

Maturity date The time when the bond issuer must repay the face value bond value to the bond holder.
Time to maturity The time until the maturity date
Face value The amount of money repaid to the holder at the maturity date
Coupon payment Multiple interest payments of the bond issuer to the bondholder at a prespecified set of

coupon dates
Coupon The interest rate for the coupon payments
Yield to maturity The return, positive or negative, of a bond contract when held until the maturity date.
Swap rate The fixed interest rate of a swap contract

Table 41: List of economic definitions
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B Data

B.1 Bootstrapping
Bootstrapping is a commonly employed method to derive a zero coupon yield curve from observed market data
(Berk & DeMarzo, 2017). The same method can be used to obtain a zero coupon swap curve. It is important
to have zero coupon observations, because that implies that the only cash flow for the observation is at the
maturity date. In this part of the appendix, I will explain the bootstrap method that will be used to obtain
zero coupon observations for the bond and swap data.

B.1.1 Bootstrap method for coupon bonds

The price of a coupon bond is equal to the sum of discounted cash flows. The price is related to the yield and
the coupon payments through the following formula (Berk & DeMarzo, 2017)

P (t, T ) =

n∑
i=1

c ·
(

1

(1 + yi)τi

)
+ FV ·

(
1

(1 + yn)τn

)
, (10)

where P (t, T ) is the price at date t for a bond with maturity date T , c is the fixed coupon payment, yi is the
yield of a bond with maturity date τi in years, and τi corresponds to the time till the coupon dates. FV is the
face value of the bond, τn is the time to maturity and yn is the corresponding zero coupon yield of the bond.
In Equation 10, the price P (t, T ), the value for the coupon payments c, the time till the coupon dates yi for
i = 1, . . . , n, and the face value FV are observed. Only the zero coupon yields yi for i = 1, . . . , n are unknown.

The bootstrapping method aims to compute the zero coupon yield yn for the maturity date τn for all observed
coupon bonds. If the values for yi, i = 1, . . . , n− 1 are known, the zero coupon yield yn can be computed using
Equation 10. The values for yi, i = 1, . . . , n are obtained from the zero coupon bond observations through linear
interpolation.
The iterative process to compute the zero coupon yields for all observed coupon bonds is as follows. Choose the
coupon bond observation with the smallest time to maturity τn. For this observation, determine the dates of
the annual coupon payments τi. For each coupon date, determine the zero coupon yield from the zero coupon
bond observations. If there is a zero coupon bond observation with a time to maturity equal to τi, the yield
of this observation can be used directly. If there is no zero coupon bond observation in the data set that has
a matching time to maturity, I use the two nearest points along the time to maturity axis and interpolate the
yield by linear interpolation.
When bootstrapping, the clean price is typically used in the calculations to ensure consistency in valuing different
bonds and deriving the implied yields. It provides a more accurate representation of the market’s perception of
the bond’s value at a specific point in time.

B.1.2 Bootstrap method for interest rate swaps

The bootstrapping method for the swap contract is explained in this part of the appendix. The bootstrapping
process starts with a 1-year swap contract that has cash flow dates as in Table 42, where r0.5 is the 6M-Euribor
rate at t = 0 over 1 year, r1 is the 6M-Euribor rate at t = 0.5 over a period of 1 year, and q1 is the swap rate
quoted in the data set. By the definition of a swap rate, the net present value of these cashflows is equal to

Fixed lag Floating lag
t = 0.5 r0.5 · FV
t = 1 q1 · FV + FV r1 · FV + FV

Table 42: Cash flows of a 1-year swap contract

zero, i.e.
0 = d0.5 · r0.5 + d1 (r1 − q1) ,

where d0.5 is the 6M-Euribor at t = 0 over 0.5 years, d1 is the 6M-Euribor rate at t = 0.5 over a period of 1 year,
and FV is left out of the equation. By definition, it holds that d1 = r1 and (d0.5)

2 = r0.5. Furthermore, for the
bootstrapping procedure, it is assumed that the 6M-Euribor at t=0 is equal to the 6M-Euribor at t = 0.5. This
simplifies the cashflow equation to

0 = d21 + d1 − q1

Since the value of q1 is known from the data, this equation can be used to obtain the value for d1. Then, the
zero coupon swap rate is the rate that sets the present values of the cash flows without the coupon payments
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equal to zero. Thus, the zero coupon swap rate q̃1 can be computed from

0 = d1 (r1 − q̃1) ,

where we use d1 = r1.

For a 2-year swap contract, the cash flows are given in Table 43. The net present value equation for the cash

Fixed lag Floating lag
t = 0.5 r0.5 · FV
t = 1 q1 · FV r1 · FV
t = 1.5 r1.5 · FV
t = 2 q2 · FV + FV r2 · FV + FV

Table 43: Cash flows of a 1-year swap contract

flows is
0 = d0.5 · r0.5 + d1 (r1 − q1) + d1.5 · r1.5 + d2 (r2 − q2)

where (d0.5)
2 = r0.5, d1 = r1, (d1.5)

1
1.5 = r1.5, and (d2)

1
2 = r2. The values for d0.5 and d1 are obtained from

the 1-year swap contract. It is assumed that d1.5 can be linearly interpolated between d2 and d1. That is,
d1.5 = d1 + (1.5− 1)d2−d1

2−1 . Since the swap rates q1 and q2 are known from the data, the value of d2 is the only
unknown in this equation. The equation is solved for d2. Then, the zero coupon 2-year swap rate q̃2 can be
computed by

0 = d2(r2 − q̃2),

where we use that (d2)
1
2 = r2. Following the same procedure for swap rates with a time to maturity of 3, 4, 5, . . .

years results in a zero-coupon swap curve.

B.2 Approximation of the bond observation using smoothing splines
The bond observations are preprocessed by estimating the observations for a fixed set of maturities. In this
part of the appendix, the procedure for this preprocessing step will be explained.
For a set of interest rate observations (yi, τi) the cubic smoothing spline estimate f(τ) is defined by the minimizer
of

n∑
i=1

{yi − f̂(τi)}2 + λ

∫
f̂ ′′(τ)2dτ.

The splines that are estimated to obtain the bond observations use the 4 observations with a time to maturity
that is closest to the time to maturity of the objective observation. This procedure is visualized in Figure 42.
The splines in this thesis are estimated with the function smooth.spline of the stats-package.
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Figure 42: A visualization of the observation estimated by a smoothing spline
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C Proofs

C.1 Convergence of the factor loadings
C.1.1 Convergence of the β2 loading

The convergence of the second loading to zero for infinitely large values of τ :

lim
τ→∞

(
1− e−τλ

τλ

)
= 0 (11a)

The convergence of the second loading to one for infinitely small values of τ :

lim
τ→0

(
1− e−τλ

τλ

)
L.H.
= lim

τ→0

(
λ · e−λτ

λ

)
= lim

τ→0
e−λτ = 1, (11b)

where L.H. indicates that L’Hôpitals rule is applied.

C.1.2 Convergence of the β3 loading

The convergence of the third loading to zero for infinitely large values of τ :

lim
τ→∞

(
1− e−τλ

τλ
− e−τλ

)
= lim

τ→∞

(
1− e−τλ

τλ

)
− lim

τ→∞

(
e−τλ

)
= 0− 0 = 0 (12a)

The convergence of the third loading to zero for infinitely small values of τ :

lim
τ→0

(
1− e−τλ

τλ
− e−τλ

)
= lim

τ→0

(
1− e−τλ

τλ

)
− lim

τ→0

(
e−τλ

)
L.H.
= lim

τ→0

(
λ · e−τλ

λ

)
− lim

τ→0

(
e−τλ

)
= 1− 1

= 0,

(12b)

where L.H. indicates that L’Hôpitals rule is applied.

C.2 The interpretation of the factors β1 and β2 as level and slope
C.2.1 The level factor

The interpretation of β1 as the level factor:

lim
τ→∞

y(τ) = lim
τ→∞

(
β1 + β2 ·

(
1− e−τλ

τλ

)
+ β3 ·

(
1− e−τλ

τλ
− e−τλ

))
= β1 + β2 · lim

τ→∞

(
1− e−τλ

τλ

)
+ β3 · lim

τ→∞

(
1− e−τλ

τλ
− e−τλ

)
↓ Equation 11a and Equation 12a
= β1 + β2 · 0 + β3 · (0− 0)

= β1.

(13)

C.2.2 The slope factor

The interest rate for infinitely small values of τ is given by

lim
τ→0

y(τ) = lim
τ→0

(
β1 + β2 ·

(
1− e−τλ

τλ

)
+ β3 ·

(
1− e−τλ

τλ
− e−τλ

))
= β1 + β2 · lim

τ→0

(
1− e−τλ

τλ

)
+ β3 · lim

τ→0

(
1− e−τλ

τλ
− e−τλ

)
↓ Equation 11b and Equation 12b
= β1 + β2 · 1 + β3 · (1− 1)

= β1 + β2.

(14)

Combine the results in Equation 13 and Equation 14 to find the interpretation of β2 as the slope factor:

lim
τ→∞

y(τ)− lim
τ→0

y(τ) = β1 − (β1 + β2) = −β2
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D Statistical definitions, tests and methodology

D.1 Definitions for time series analysis
All definitions in this part of the appendix are defined in Shumway and Stoffer (2016b), except if specified
differently.

D.1.1 Stationarity

Definition D.1 (Weakly stationary or stationary). A time series xt is a finite variance process such that

1. the mean value function, µt is constant and does not depend on time t, and

2. the autocovariance function, γ(s, t), depends on s and on t only through their difference |s− t|.

Theorem D.1 (Stationary AR(1) process). Consider a first-order autoregression

βt = c+ ϕβt−1 + ηt.

When |ϕ| ≥ 1, there does not exist a stationary process for βt with finite variance. When |ϕ| < 1, there is
a stationary process for βt satisfying the AR(1) model. Hamilton (1994)

D.1.2 Autocovariance and autocorrelation

Definition D.2 (Autocovariance). The autocovariance function measures the linear dependece between
xs and xt by

γx(s, t) = cov (xs, xt) = E [(xs − µs) (xt − µt)]

The autocovariance is estimated from the data by the sample autocovariance function

γ̂(h) =
1

n

n−h∑
t=1

(xt+h − x) (xt − x)

Definition D.3 (Autocorrelation (ACF)). The autocorrelation function measures the predictability of the
series at time t using only the value xs by

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)

The autocorrelation function is estimated from the data by the sample autocorrelation function

ρ̂(h) =
γ̂(h)

γ̂(0)

D.1.3 Partial autocorrelation

If the process is an autoregressive process, the ACF alone tells us little about the orders of dependence. There-
fore, partial autocorrelation will be used, which is the correlation between xs and xt with the linear effect of
everything in the middle removed.

Definition D.4 (Partial autocorrelation (PACF) (Shumway & Stoffer, 2016c)). The partial autocorrelation
function (PACF) of a stationary process xt, denoted ϕhh, for h = 1, 2, . . ., is

ϕ11 = corr (xt+1, xt) = ρ(1),

ϕhh = corr (xt+1 − x̂t+1, xt − x̂t) , h ≥ 2

D.1.4 Cross covariance and cross correlation
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Definition D.5 (Cross covariance). The cross-covariance function between two series xt and yt is

γxy(s, t) = Cov [xs, yt] = E [(xs − µxs) (yt − µyt)]

The cross-covariance is estimated from the data by the sample cross-covariance function

γ̂xy =
1

n

n−h∑
t=1

(xt+1 − x) (yt − y)

Definition D.6 (Cross-correlation function (CCF)). The cross-correlation function (CCF) of time series
xt and yt is defined as

ρxy(s, t) =
γxy(s, t)√

γx(s, s)γy(t, t)
,

where we have −1 ≤ ρxy(h) ≤ 1.

The cross-correlation is estimated from the data by the sample cross-correlation function

ρ̂xy(h) =
γ̂xy(h)√
γ̂x(0)γ̂y(0)

D.2 Interpretation of ACF and PACF plots
The following table specifies the behavior of the ACF and PACF for ARMA models (Shumway & Stoffer, 2016c).

AR(p) MA(q) ARMA(p,q)
ACF Tails off Cuts off after lag q Tails off
PACF Cuts off after lag p Tails off Tails off

Table 44: The interpretation of ACF and PACF plots used to choose the best time series models.

D.3 Akaikes Information Criterion
Akaikes Information Criterion (AIC) measures the relative goodness of fit for a particular model on the data.
The AIC balances its measure between the error of the model and a penalized number of parameters. The AIC
measure is defined by

AIC = 2 ·K − 2 · ln (L) ,

where K denotes the number of independent variables in the model and L denotes the log likelihood that can
be achieved by the model on a given data set.

The AIC is a measure that provides the relative goodness of fit of the model on a data set. The rule of
thumb is that one model has an AIC of two units lower than another, the model is a significantly better fit for
the specific data set.

To determine the AIC of the models on the data in this thesis, we used the function VARselect from the
R-package vars. This function takes the time series data as input data and returns the number of lags for the
autoregressive model that has the lowest AIC value.

D.4 Augmented Dicky-Fuller (ADF) test
The Augmented Dicky-Fuller (ADF) test is a statistical test that is used to determine whether or not time series
data is covariance stationary. The ADF-test tests is a unit root test for

∆yt = α+ βt+ γyt−1 + δ1∆yt−1 + . . .+ δp−1∆yt−p+1 + εt,

where yt is an observation from the time series data, α is a constant trend, β the time-dependent trend and p
is the order of the autoregressive model, i.e. the number of lagged values. To use the ADF test, the number of
autoregressive lags need to be determined, for example using AIC.
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If γ < 0, the time series is considered as a stationary time series.
The null hypothesis and the alternative hypothesis are defined as

H0 : γ = 0, i.e. the time series is not stationary
HA : γ < 0, i.e. the time series is stationary

The ADF test statistic is given by

DFτ =
γ̂

SEγ̂

A more negative test statistic DFτ gives a stronger rejection of the null hypothesis. If the calculated test
statistic is more negative than a critical value, the null hypothesis is rejected. Notice that in order to reject H0,
the p-value of the ADF test should be less than a critical value.

The ADF test is implemented in R in the function adf.test in the tseries-package. In this thesis we have
used this implementation to determine whether or not our time series data is a stationary process.

D.5 Q-Q plot
A Q-Q plot is a method to compare two probability distributions. In the application within this thesis, the
probability distribution of the residuals is compared with a theoretical normal distribution. A point in the Q-Q
plot corresponds to one of the quantiles of the theoretical normal distribution on the x-axis plotted against the
same quantile of the residuals distribution on the y-axis.

If the residuals have a normal distribution, the points should lie the straight line x = y. This line is
represented by the red line in the Q-Q plot. See Figure 43 for an example of a Q-Q plot. There is a pre-
implemented Q-Q plot function available in R: qqplot.

Figure 43: Example of a Q-Q plot for the residuals

D.6 Shapiro-Wilk test
The Shapiro-Wilk (SW) test is a test for normality and will be used to assess the distribution of a set of residuals
r1, . . . , rn. The SW test uses a zero hypothesis H0: the sample r1, . . . , rn comes from a normally distributed
population. The test statistic for the SW test is given by

W =

(∑n
i=1 aix(i)

)∑n
i=1 (xi − x)

2

where ai := mTV −1

||V −1m|| , m is the expected value and V is the covariance matrix of the order statistics of i.i.d.
standard normal random variables.
For the SW test the rule of thumb is to reject H0 if the p-value is less than a certain α-level. In this thesis, H0 is
rejected if the p-value is less than 0.05. The SW test is pre-implemented in R by the function shapiro.test.
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D.7 Breusch-Pagan test
In order to assess the presence of heteroskedasticity, or variance of errors, in the Nelson-Siegel model, I conducted
the Breusch-Pagan test. This test examines whether the variability of the residuals in the model was constant
or varied across different levels of the independent variables. The test tests whether the variance of the errors
from a regression is dependent on the values of the independent variables. In that case, heteroskedasticity is
present. The Breusch-Pagan test is an hypothesis test where H0 assumes homoskedasticity and the alternative
hypothesis assumes heteroskedasticity.

The Breusch-Pagan test statistic BP is obtained by following these steps for one estimated interest rate
curve:

1. Obtain the estimated interest rates from the estimated DNS model,
ŷt(τi) = β̂1,t + l̂2,i · β̂2,t + l̂3,i · β̂3,t,
where l̂2,i and l̂3,i are the factor loadings in Equation 2 corresponding to the interest rate with a time to
maturity of τi years, using the estimated λ̂, and βk, t, for k = 1, 2, 3 are the estimated factors.

2. Compute the residuals of the DNS model,
ε̂i,t = yt(τi)− ŷt(τi)

3. Compute the dependent variable gi defined by

gi,t =
ε̂2i,t
σ̂2
t

, where σ̂2
t =

∑n
i=1

ε̂2i,t
n

,

for n the number of observations at date t

4. Estimate the auxiliary regression
gi,t = γ1 + l̂2,i · γ2 + l̂3,i · γ3,
where l̂2,i and l̂3,i are the factor loadings equal to the factor loadings used in step 1.

5. Compute the test statistic BP by
BPt =

1
2 (TSSt − SSRt),

where TSSt is the sum of squared deviations of the gi,t from 1 and SSRt is the sum of squared residuals
from the auxiliary regression.

6. Compare the obtained test statistic BPt to the critical value corresponding to the critical value of a χ2
1

distribution, i.e. the Chi-squared distribution with 2 degrees of freedom. If the test statistic BP is below
the critical value, there is not enough evidence to reject H0, i.e. there is not enough evidence to reject
homoskedasticity.
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E DNS models as state space models
In this part of the appendix, the proposed variations of the DNS model are formulated in the state space
representation given in Equation 8a-8e. For convenience, the state space model is repeated below,

bt = c+Φbt−1 + ηt

yt = Λtbt + εt

ηt ∼ N (0, Q)

εt ∼ N (0, Ht)

b0 ∼ N
(
b0, P0

)
.

E.1 DNS variation with non stationary factor dynamics as state space model
The DNS variation where the factors transformed by two times the linear difference operator are modeled as a
VAR(1) model (Equation 6) in state space representation is

β1,t

β2,t

β3,t

β1,t−1

β2,t−1

β3,t−1

 =


c1
c2
c3
0
0
0

+

(
Φ̃ + I −Φ̃
I ∅

)

β1,t−1

β2,t−1

β3,t−1

β1,t−2

β2,t−2

β3,t−2

+


η1,t
η2,t
η3,t
0
0
0

 (15a)


yt(τ1)
yt(τ2)

...
yt(τn)

 =


1 1−e−τ1λ

τ1λ
1−e−τ1λ

τ1λ
− e−τ1λ 0 0 0

1 1−e−τ2λ

τ2λ
1−e−τ2λ

τ2λ
− e−τ2λ 0 0 0

...
...

...
...

...
...

1 1−e−τnλ

τnλ
1−e−τnλ

τnλ
− e−τnλ 0 0 0




β1,t

β2,t

β3,t

β1,t−1

β2,t−1

β3,t−1

+


ε1,t
ε2,t
...

εn,t

 (15b)

where Φ̃ is a 3× 3 diagonal matrix with diagonal elements ϕ11, ϕ22 and ϕ33, and I is the 3× 3 identity matrix.
We have initial conditions

ηt
iid∼ N (0, Qt) (15c)

εt
iid∼ N (0, Ht) (15d)

β1,t

β2,t

β3,t

β1,t−1

β2,t−1

β3,t−1

 ∼ N
((

b0
b0

)
,

(
P0 0
0 P0

))
, (15e)

with Qt a 3× 3 diagonal matrix, Ht a n× n diagonal matrix, b0 a 3× 1 vector and P0 a 3× 3 diagonal matrix.
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E.2 DNS variation with factor dynamics of two rates in one model as state space
model

The DNS model that models the factors of both the swap and bond curves in one VAR model (Equation 5) is
β1,t,s

β2,t,s

β3,t,s

β1,t,b

β2,t,b

β3,t,b

 =


c1,s
c2,s
c3,s
c1,b
c2,b
c3,b

+


ϕ11 ϕ14

ϕ22 ϕ25

ϕ33 ϕ36

ϕ41 ϕ44

ϕ52 ϕ55

ϕ63 ϕ66




β1,t−1,s

β2,t−1,s

β3,t−1,s

β1,t−1,b

β2,t−1,b

β3,t−1,b

+


η1,t
η2,t
η3,t
η4,t
η5,t
η6,t

 (16a)



yt,s(τ1)
yt,s(τ2)

...
yt,s(τns

)
yt,b(τ1)
yt,b(τ2)

...
yt,b(τnb

)


=



1 1−e−τ1λs

τ1λs

1−e−τ1λs

τ1λs
− e−τ1λs 0 0 0

1 1−e−τ2λs

τ2λs

1−e−τ2λs

τ2λs
− e−τ2λs 0 0 0

...
...

...
...

...
...

1 1−e−τnλs

τnλs

1−e−τnλs

τnλs
− e−τnλs 0 0 0

0 0 0 1 1−e−τ1λb

τ1λb

1−e−τ1λb

τ1λb
− e−τ1λb

0 0 0 1 1−e−τ2λb

τ2λb

1−e−τ2λb

τ2λb
− e−τ2λb

...
...

...
...

...
...

0 0 0 1 1−e−τnλb

τnλb

1−e−τnλb

τnλb
− e−τnλb




β1,t,s

β2,t,s

β3,t,s

β1,t,b

β2,t,b

β3,t,b

+



ε1,t
ε2,t
...

εns,t

εns+1,t

εns+2,t

...
εns+nb,t


,

(16b)

where the subscripts s and b denote the elements related the swap and bond models respectively. This model
has the initial conditions

ηt
iid∼ N (0, Qt) (16c)

εt
iid∼ N (0, Ht) (16d)

β1,t,s

β2,t,s

β3,t,s

β1,t,b

β2,t,b

β3,t,b

 ∼ N
((

b0,s
b0,b

)
,

(
P0,s 0
0 P0,b

))
, (16e)

with Qt a 6× 6 diagonal matrix, Ht a (ns +nb)× (ns +nb) diagonal matrix, b0,s and b0,s two 3× 1 vectors and
P0,s and P0,s two 3× 3 diagonal matrices.
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E.3 DNS variation with the
The DNS model that models the factors of both the swap and bond curves in one VAR model (Equation 5) is

β1,t,s

β2,t,s

β3,t,s

β1,t,b

β2,t,b

β3,t,b

β1,t−1,s

β2,t−1,s

β3,t−1,s

β1,t−1,b

β2,t−1,b

β3,t−1,b



=



c1,s
c2,s
c3,s
c1,b
c2,b
c3,b
0
0
0
0
0
0



+

(
Φ+ I −Φ
I ∅

)



β1,t−1,s

β2,t−1,s

β3,t−1,s

β1,t−1,b

β2,t−1,b

β3,t−1,b

β1,t−2,s

β2,t−2,s

β3,t−2,s

β1,t−2,b

β2,t−2,b

β3,t−2,b



+



η1,t
η2,t
η3,t
η4,t
η5,t
η6,t
0
0
0
0
0
0



(17a)



yt,s(τ1)
yt,s(τ2)

...
yt,s(τns)
yt,b(τ1)
yt,b(τ2)

...
yt,b(τnb

)


=

(
Λs O O O
O O O Λb

)

β1,t,s

β2,t,s

β3,t,s

β1,t,b

β2,t,b

β3,t,b

+



ε1,t
ε2,t
...

εns,t

εns+1,t

εns+2,t

...
εns+nb,t


, (17b)

Φ :=


ϕ11 ϕ14

ϕ22 ϕ25

ϕ33 ϕ36

ϕ41 ϕ44

ϕ52 ϕ55

ϕ63 ϕ66



Λs :=


1 1−e−τ1λs

τ1λs

1−e−τ1λs

τ1λs
− e−τ1λs

1 1−e−τ2λs

τ2λs

1−e−τ2λs

τ2λs
− e−τ2λs

...
...

...
1 1−e−τnλs

τnλs

1−e−τnλs

τnλs
− e−τnλs

 (17c)

Λb :=


1 1−e−τ1λb

τ1λb

1−e−τ1λb

τ1λb
− e−τ1λb

1 1−e−τ2λb

τ2λb

1−e−τ2λb

τ2λb
− e−τ2λb

...
...

...
1 1−e−τnλb

τnλb

1−e−τnλb

τnλb
− e−τnλb

 ,

where O is a 30× 3-zero-matrix.
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F Kalman filter

F.1 Background theory
In this section of the appendix, it is explained how the Kalman filter obtains MSE optimal estimates and pre-
dictions for the state vectors and the observations in a state space model. The theory in this section originates
from Durbin and Koopman (2012a). The full derivation of the Kalman filter can also be found in Durbin and
Koopman (2012a).

Consider the state space system in Equation 8a-8e, repeated below

bt+1 = c+Φbt + ηt, ηt ∼ N (0, Q)

yt = Λtbt + εt, εt ∼ N (0, Ht)

b0 ∼ N
(
b0, P0

)
Furthermore, define Yt = (y′1, . . . , y

′
t)

′, the observations obtained until time t. The Kalman filter aims to find
a series of MSE optimal estimators and MSE optimal predictors for the state vectors bt and the observations
yt in this state space system. The MSE optimal estimators for the state vectors bt and bt+1 are given by the
conditional expectation conditioned on Yt,

b̂t|t = E [bt|Yt]

b̂t+1|t = E [bt+1|Yt] ,

where b̂t|t is the MSE optimal estimate and b̂t+1|t is the MSE optimal predictor for the state vector. Using
this notation, the Kalman filter produces the series of estimates b̂t|t and b̂t+1|t for these state vectors for
t = 1, . . . , T .
In Durbin and Koopman (2012a), it is proved that the distributions of bt and bt+1 conditioned on Yt are
multivariate normal

bt|Yt ∼ N
(
bt|t, Pt|t

)
bt+1|Yt ∼ N

(
bt+1|t, Pt|t

)
and due to these multivariate normality, the MSE optimal estimates b̂t|t and b̂t+1|t are equal to the mean vectors
of the conditional distributions, i.e.

b̂t|t = E [bt|Yt] = bt|t

b̂t+1|t = E [bt+1|Yt] = bt+1|t.

The Kalman filter obtains the estimates bt|t and bt+1|t in step 1(a) and step 2(c) respectively.

For the MSE optimal predictors for the observations yt, the same reasoning is applied (Durbin & Koopman,
2012a). The MSE optimal estimators for the observations are given by

ŷt+1|t = E [yt+1|Yt] .

The state space system implies that the observations are normally distributed conditional on Yt,

yt+1|Yt ∼ N
(
Λtbt|t−1, Ft

)
,

which implies
ŷt+1|t = E [yt+1|Yt] = Λtbt|t−1.

The MSE optimal prediction for yt is obtained in step 1(c) of the Kalman filter.

F.2 Derivation of the log likelihood function
In this section we derive the log likelihood function of the state space model in Equation 8a-8e as a function of
the model parameters Θ := {b0, P0,Φ, c,Qt,Λt, Ht}.

Suppose we have a sequence of observations y1, y2, . . . , yT . The joint density of these observations satisfy

p (y1, y2, . . . , yT ) =

T∏
t=1

p (yt|Yt−1) , (18a)
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where p (yt|Yt−1) is the density of yt conditioned on all previous observations Yt−1 = {y1, y2, . . . , yt−1}. The
here we use p(y1|Y0) = p(y1). The joint density for yt, t = 1, . . . , T depends on parameter Θ. The likelihood for
Θ given the observations y1, y2, . . . , yT is given by

L (Θ) = p (y1, y2, . . . , yT ; Θ) =

T∏
t=1

p (yt|Yt−1; Θ) . (18b)

The log likelihood is

ℓ (Θ) := logL (Θ) =

T∑
t=1

log p (yt|Yt−1; Θ) , (18c)

where in the last two equations we used p(y1|Y0) = p(y1). In ?? we have shown that the yt is multivariate
normal distributed given Yt−1 with mean yt and covariance matrix Ft. The probability density function is given
by

p (yt|Yt−1) =
(
(2π)

nt
2

√
|Ft|

)−1

exp

(
−1

2
(yt − yt)

′
F−1
t (yt − yt)

)
=

(
(2π)

nt
2

√
|Ft|

)−1

exp

(
−1

2
(vt)

′
F−1
t (vt)

) (18d)

where nt is the number of elements in the observation vector yt, and vt := yt − yt is the prediction error.
From the state space system we know that the prediction error vt and its covariance matrix Ft depend on the
parameters in the system Θ. Therefore we write vt (Θ) and Ft (Θ). Filling in Equation 18d into Equation 18c
gives

ℓ (Θ) =

T∑
t=1

log

((
(2π)

nt
2

√
|Ft (Θ)|

)−1

exp

(
−1

2
(vt (Θ))

′
Ft (Θ)

−1
(vt (Θ))

))
↓ Take the natural logarithm on both sides and assume that nt = N for all t

ln ℓ (Θ) = −NT

2
ln(2π)− 1

2

T∑
t=1

(
ln|Ft (Θ)|+ (vt (Θ))

′
Ft (Θ)

−1
(vt (Θ))

) (18e)

F.3 Missing observations
A main advantage of estimating the factors bt in a state space model with the Kalman filter is its allowance
for missing observations. In this subsection we explain how the estimates of the factors and their covariance
matrices are constructed when there are missing observations.

Suppose the Kalman Filter given in Algorithm 3.1 has obtained estimates for b1, . . . , bj−1 using the obser-
vations yt, . . . , yj−1. If the whole observation vector yj is missing, we can obtain the predictions for bj|j−1 and
Pj|j−1 by the general Kalman filter equations. The update to bj|j and Pj|j and the prediction to bj+1|j and
Pj+1|j can not be obtained by the Kalman filter equations without observation yj . Instead, we use the following
recursive equations,

bj|j = E [bj |Yj ] = E [bj |Yj−1] = bj|j−1 (19a)
Pj|j = Var [bj |Yj ] = Var [bj |Yt−j ] = Pj|j−1 (19b)

bj+1|j = E [bj+1|Yj ] = E [Φjbtj + ηj ] = Φjbj|j−1 (19c)
Pj+1|t = Var [bj+1|Yt] = Var [Φjbj + ηt|Yj−1] = ΦtPj|j−1Φ

′
j +Qj . (19d)

These equations hold are used when more than one consecutive observation is missing. The algebraïc proof of
these equation is given in the book of Durbin and Koopman (Durbin & Koopman, 2012b).

F.4 Predicting the observations with the Kalman Filter
For the prediction of the factors, we treat the future observation as missing observations. That is, we ob-
serve yt, . . . , yT and have missing observations yT+1, . . . , yT+k, for k = 1, 2, . . .. The prediction of the factors
bT+1, . . . , bT+k and their Covariance matrices PT+1, . . . , PT+k are obtained by equation Equation 19a-19d.

In this thesis, we are not so much interested in the predicted factors, but mainly in the predictions for the
observations yT+1, . . . , yT+k. In ?? we showed that the distribution of yt given Yt−1 is multivariate normal
with mean yt and covariance matrix Ft. Therefore, the minimum mean square error forecast of yT+k given
YT = {y1, . . . , yT } is the conditional mean yT+k = E [yT+k|YT ].
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The one step ahead prediction for the observation yT+1 and its covariance matrix FT+1 given YT are obtained
by

yT+1 = ΛT+1E [bT+1|YT ] = ΛT+1bT+1|T (20a)

FT+1 = E
[(
yT+1 − yT+1

) (
yT+1 − yT+1

)′ |YT

]
= ΛT+1PT+1ΛT+1 +HT+1 (20b)

The k step ahead prediction is given by

yT+k = ΛT+kE [bT+k|YT ] = ΛT+kbT+k|T+k−1, (20c)

where bT+k|T+k−1 is obtained recursively by Equation 19a and 19c. The corresponding covariance matrix is
obtained by

FT+k = ΛT+kPT+k|T+k−1ΛT+k +HT+k, (20d)

where PT+k|T+k−1 is obtained recursively from Equation 19b and 19d.

Equation 20a-20d give the recursive equations from which we construct the predictions for the observations
and their corresponding covariance matrices.

F.5 The 2-step approach to estimate the parameters and factors in the DNS model
F.5.1 The 2-step approach

In this part of the appendix, it is explained how to estimate the parameters for the two DNS models using the
2-step approach. 2-step stands for estimating the factors in the first step, and then estimating the time series
model parameters in the second step.

Estimating the factors starts with choosing a fixed value for λ. With this λ, the factors β1,t, β2,t, and β3,t in
Equation 2 can be estimated for each day t using ordinary least squared optimization. This results in a series
of estimates for each of the factors. This part of the estimation procedure is the so-called first step.
For the nonstatDNS and the sim-nonstatDNS models, the three series of factors are transformed into a station-
ary time series using a first-order difference transformation.

The second step in the procedure is to estimate the parameters of the time series model. The parameters for
the time series model are the autoregressive coefficients ϕ̂ii and the unconditional mean vector c. The parameters
in the time series model are also estimated by Maximum likelihood estimation. The specific procedure on how
to estimate the parameters of an autoregressive model by MLE is specified in Shumway and Stoffer (2016a).

F.5.2 The usage of the 2-step approach as initial parameters for the 1-step approach

The 2-step approach explained in the previous section of the appendix is used to obtain the initial parameters
for the MLE estimation of the DNS model parameters in the state space representation. In this part of the
appendix, it is specified how to use the estimated parameters as initial parameters.

The value for λ that was used in the 2-step approach serves as the initial λ for the state space model. Also,
the estimated autoregressive coefficients and unconditional mean can be used directly as initial parameters for
the state space model. The initial values for the factors in b0 are set to the initial values that were estimated in
the first step of the 2-step approach. The initial covariance P0 matrix is a diagonal matrix with on the diagonal
the standard deviations of the estimated factors. The residuals of the OLS estimation in the first step and the
residuals of the autoregressive models are used to obtain the initial values for the residual distribution Q and
H.

In the case of missing weekend observations, the missing values are deleted from the data. That means it
is assumed that Monday directly follows on Friday and there are no days without observations. Notice that
this assumption is only used to obtain initial parameters. In the MLE optimization procedure with the Kalman
filter, missing observations are treated as missing observations.
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G Simulation studies

G.1 Parameters for the simulation studies
G.1.1 Parameters for the statDNS model

b0 =
(
1 −2 3.5

)T
P0 = diag

(
sqrt0.02 sqrt0.02 sqrt0.02

)
c =

(
1.5 −2 1

)T
Φ =

−0.4
−0.5

−0.25


λ = 0.1195

Q = diag
(√

0.004
√
0.004

√
0.002

)T
H = diag

(√
0.0025 . . .

√
0.0025

)
G.1.2 Parameters for the sim-statDNS model

b0 =
(
1.2 −2 0.4 1.2 −2 0.4

)T
P0 = diag

(√
0.02 . . .

√
0.02

)
c =

(
0.3 −1.6 1.4 0.9 −1.2 1

)T

Φ =


−0.3 0.5

−0.4 0.2
0.6 0.4

−0.4 0.5
−0.4 0.7

0.2 0.4


λswap = 0.1195

λbond = 0.24

Q = diag
(√

0.04
√
0.04

√
0.04

√
0.04

√
0.04

√
0.04

)T
H = diag

(√
0.05 . . .

√
0.05

)
G.1.3 Parameters for the nonstatDNS model

b0 =
(
1 −2 3.5 1 −2 3.5

)T
P0 = diag

(√
0.02

√
0.02

√
0.02

)
c =

(
0 0 0

)T
Φ̃ =

−0.3
−0.5

−0.15


λ = 0.1195

Q = diag
(√

0.0015
√
0.0015

√
0.0015

)T
H = diag

(√
0.0025 . . .

√
0.0025

)
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G.1.4 Parameters for the sim-nonstatDNS model

b0 =
(
2 −2.5 0.4 1.2 −2 0.4

)T
P0 = diag

(√
0.02 . . .

√
0.02

)
c =

(
0 0 0 0 0 0

)T

Φ =


−0.4 0.5

0.6 0.7
−0.4 −0.7

−0.3 −0.5
−0.6 0.4

0.3 −0.7


λswap = 0.1195

λbond = 0.24

Q = diag
(√

0.025 . . .
√
0.025

)T
H = diag

(√
0.005 . . .

√
0.005

)
G.2 Empirical counterparts of the factors

(a) Slope factor series (b) Curvature factor series

Figure 44: The ACF and PACF plot of the series of empirical counterparts for the slope and curvature factors.
Results for data simulated form the statDNS model

(a) Slope factor series (b) Curvature factor series

Figure 45: The ACF and PACF plot of the series of empirical counterparts for the slope and curvature factor
after transformation by the first order difference. Results for data simulated form the nonstatDNS model
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G.3 Initial value for λ

Factor Range for λ̂MLE Q1 Median Q2 Min Max
(β) (β) (β) (β) (β)

level λ < 0.1189 0.3177 1.256 1.585 -0.2727 1.991
level 0.1189 ≤ λ < 0.1199 1.117 1.361 1.732 0.1458 2.56
level 0.1199 ≤ λ < 0.1216 0.8591 1.307 1.801 -0.1306 2.486
level λ ≥ 0.1216 0.4539 0.8272 1.346 -0.1649 1.998
slope λ < 0.1189 -2.067 -1.755 -1.643 -2.655 -1.456
slope 0.1189 ≤ λ < 0.1199 -1.965 -1.637 -1.449 -2.76 -0.4707
slope 0.1199 ≤ λ < 0.1216 -2.464 -2.244 -2.003 -2.766 -0.4697
slope λ ≥ 0.1216 -2.944 -2.531 -1.674 -3.269 -1.264

curvature λ < 0.1189 3.357 3.592 4.082 2.841 5.569
curvature 0.1189 ≤ λ < 0.1199 3.651 4.05 4.379 3.131 5.527
curvature 0.1199 ≤ λ < 0.1216 3.37 3.79 4.849 2.696 5.524
curvature λ ≥ 0.1216 2.987 3.276 3.637 -1.685 4.121

Table 45: The descriptive statistics for the estimated factors
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G.4 Validation of the nonstatDNS model
G.4.1 First simulation

(a) The level factor estimated and predicted by the nonstatDNS model

(b) The slope factor estimated and predicted by the nonstatDNS model

(c) The curvature factor estimated and predicted by the nonstatDNS model

Figure 46: Results of the estimated and predicted factors for one of the 36 simulations for the nonstatDNS
model.

(a) 1 day ahead prediction (b) 10 days ahead prediction (c) 30 days ahead prediction

Figure 47: The interest rate curves predicted by the nonstatDNS model.
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(a) Errors of the 1 day ahead predic-
tion

(b) Errors of the 10 day ahead pre-
diction

(c) Errors of the 30 day ahead pre-
diction

Figure 48: QQ plots of the error terms corresponding to the predicted rates.
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G.4.2 Second simulation

(a) The level factor estimated and predicted by the nonstatDNS model

(b) The slope factor estimated and predicted by the nonstatDNS model

(c) The curvature factor estimated and predicted by the nonstatDNS model

Figure 49: Results of the estimated and predicted factors for one of the 36 simulations for the nonstatDNS
model.

(a) 1 day ahead prediction (b) 10 days ahead prediction (c) 30 days ahead prediction

Figure 50: The interest rate curves predicted by the nonstatDNS model.
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(a) Errors of the 1 day ahead predic-
tion

(b) Errors of the 10 day ahead pre-
diction

(c) Errors of the 30 day ahead pre-
diction

Figure 51: QQ plots of the error terms corresponding to the predicted rates.
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G.5 Validation of the sim-statDNS model
G.5.1 First simulation

(a) The level factor estimated and predicted by the nonstatDNS model

(b) The slope factor estimated and predicted by the nonstatDNS model

Figure 52: Results of the estimated and predicted factors for one of the 36 simulations for the nonstatDNS
model.

G.5.2 Second simulation
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(a) The level factor estimated and predicted by the nonstatDNS model

(b) The slope factor estimated and predicted by the nonstatDNS model

Figure 53: Results of the estimated and predicted factors for one of the 36 simulations for the nonstatDNS
model.
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H Case study results

(a) Time series of the empirical slope factors computed from the real data

(b) Time series of the empirical curvature factors computed from the real data

Figure 54: Empirical factors for the case study

(a) Time series of the transformed empirical slope factors
computed from the real swap data

(b) Time series of the transformed empirical slope factors
computed from the real bond data

Figure 55: Transformed empirical factors for the case study
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(a) Time series of the transformed empirical curvature fac-
tors computed from the real swap data

(b) Time series of the transformed empirical curvature fac-
tors computed from the real bond data

Figure 56: Transformed empirical factors for the case study

H.1 Estimated parameters
H.1.1 MLE parameters of the nonstatDNS model

MLE parameters for swap data

b̂0 =
(
1.52 −1.83 −1.83 1.52 −1.83 −1.83

)T
P̂0 = diag

(
0.54 0.60 0.23 0.54 0.60 0.23

)
ĉ =

(
0.006 1.02 −0.007 0 0 0

)T
ˆ̃Φ = diag

(
0.074 0.043 0.083

)
λ̂swap = 0.3462123

Q̂ = diag
(
282.85 74.69 1.64 0 0 0

)T

Ĥ = diag


0.0571 1.2 0.00109 1.41× 10−06 0.000198 0.000287 0.313
2.76 1.63 2.07× 10−05 4.2× 10−08 9.87× 10−06 1.68× 10−05 1.02× 10−05

4.12× 10−08 3.15× 10−05 0.000161 0.615 4.56 23.7 31.7
0.0175 0.0197 0.0133 0.215 0.848 1.67 3.43
5.46 5.63


T

MLE parameters for bond data

b̂0 =
(
1.49 −2.17 −2.56 1.49 −2.17 −2.56

)T
P̂0 = diag

(
0.587 0.749 0.233 0.587 0.749 0.233

)
ĉ =

(
0.0248 0.235 0.114 0 0 0

)T
ˆ̃Φ = diag

(
0.1034 0.027 0.638

)
λ̂bond = 0.009870768

Q̂ = diag
(
1289.932 201.6421 15.20545 0 0 0

)

Ĥ = diag


35.3 5.29 0.184 7.7 0.036 53.8 38.6
44.5 20.3 0.0162 0.00127 0.0189 0.000992 0.00156

0.00598 27.5 153 862 203 83.5 53.1
0.0683 0.000515 0.239 0.151 15.7 185
882 42.5 3.55


T
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H.1.2 Parameters of the sim-nonstatDNS model

b̂0 =

(
1.52 −1.83 −1.89 1.49 −2.17 −2.58 1.52 −1.83 −1.89 1.49
−2.17 −2.58

)T

P̂0 = diag

(
0.537 0.602 0.369 0.527 0.586 0.215 0.537 0.602 0.369 0.527
0.586 0.215

)
ĉ =

(
0.004920 −0.000574 0.000771 0.000121 −0.000334 −0.000393 0 0 0 0

0 0

)

Φ̂ =


0.00135 0.044

0.0862 −0.369
0.290 −0.504

−0.00432 −0.100
−0.00089 0.649

0.364 0.320


λ̂swap = 0.4410770

λ̂bond = 0.3474915

Q̂ = diag


4.53× 101 4.82× 10−4 9.93× 10−4

2.08× 10−7 1.60× 10−4 4.53× 10−4

4.53× 101 4.82× 10−4 9.93× 10−4

2.08× 10−7 1.60× 10−4 4.53× 10−4



Ĥ = diag



−0.00524 −0.000592 0.00551 0.00533 −0.0062
0.00144 −0.0011 −0.00336 0.0191 0.00177
0.0027 0.00291 0.004 −0.00252 0.0126

−0.00194 0.00464 0.00246 0.00675 −0.0119
−0.011 0.00151 0.00165 0.0128 −0.000319

−0.000459 0.00634 −0.000538 0.00418 −0.00219
−0.027 0.00417 2.26× 10−5 −0.0092 0.00387
0.0063 0.00462 −0.00161 0.00856 0.0131
0.00562 0.00209 0.0111 0.0213 0.00707

−0.000984 0.00429 0.00626 0.0191 0.00346
0.0193 0.00574 −0.019 0.018 0.0023
0.0169 0.0132 0.00653 0.000139 0.0274



97



H.1

F
ig

ur
e

57
:

T
im

e
se

ri
es

of
th

e
es

ti
m

at
ed

an
d

pr
ed

ic
te

d
sl

op
e

fa
ct

or
s

in
th

e
ca

se
st

ud
y

98



H.1

F
ig

ur
e

58
:

T
im

e
se

ri
es

of
th

e
es

ti
m

at
ed

an
d

pr
ed

ic
te

d
cu

rv
at

ur
e

fa
ct

or
s

in
th

e
ca

se
st

ud
y

99



H.1

Figure 59: Example of the estimated interest rate curves for the nonstatDNS and the sim-nonstatDNS models
with the full 95%-confidence interval.

Figure 60: Example of the predicted interest rate curves for the nonstatDNS and the sim-nonstatDNS models
with the full 95%-prediction interval.
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Figure 61: Example of the predicted interest rate curves for the nonstatDNS and the sim-nonstatDNS models
with the full 95%-prediction interval.
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