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SU M M A RY

Knowledge and information have been a powerful force of success and development
in human societies from the beginning. However, in the digital age, our capabilities of
collecting and transporting information have grown into new dimensions. Modern com-
munication networks like the Internet span the whole earth and start to reach out even
into space. Online social networks are a huge machinery used by billions of people on a
daily basis, to receive news, post memories and organize activities. Although we were
fast to adapt these new technologies, we do not fully understand all the consequences
of this high level of connectivity.

This thesis is a contribution to a deeper understanding of how information propagates
and what this process entails. At its very core is the concept of the network: a collection
of nodes and links, which describes the structure of the systems under investigation.
The network is a mathematical model which allows to focus on a very fundamental
property: the mutual relations (links) between information exchanging agents (nodes).
This simplicity makes networks elegant, as no specifics of any supporting hardware are
needed to reason on this high level of abstraction. The developing field of network science
led to countless applications of the network model to all sorts of complex systems in
nature and technology. Naturally, it became an essential part of many multi-disciplinary
research projects. Therefore, understanding how information propagates in networks
enables us to learn and conceivably control the intricate processes, which we observe
in complex systems. Since complex systems are the driver for this research, the first
three chapters of this thesis are studies based on data collected from vastly different
application domains, after more fundamental research is addressed in the later parts.

Chapter 2 deals with the interaction of players of a popular multiplayer online game.
Due to the competitive design of the game, teams are formed ad-hoc and compete with
each other for victory. Some of the players exhibit anti-social behavior towards their
teammates, which is known as toxicity. We analyze how toxicity in player networks
emerges by developing a toxicity detector, highlighting possible triggers and analyze the
disposition of players towards toxic teammates. Furthermore, we show how toxicity is
linked to game success.

Chapter 3 continues with a study of the human brain as a functional network. Infor-
mation processing in the brain is measurable with technologies like magnetoencephalog-
raphy. From such measurements that were collected from a group of subjects, the phase
transfer entropy is computed as a quantity that reflects information exchange. When
associated with the links between brain regions, unusual high numbers of certain sub-
structures are observed in this network. We find that one of these substructures, the bi-
directional two-hop path, to be highly abundant and robust within different frequencies
bands, which highlights its importance for the propagation of brain activity. A cluster-
ing of the network based on these frequent substructures reveals a spatially coherent
organization of important brain regions.

xi



xii SU M M A RY

A common symbol of propagation is the virus, which is at the center of the third data-
driven analysis of this thesis in Chapter 4. More precisely, we research the digital version
of the virus, the computer worm, and analyze its propagation by epidemic network
models. With epidemic models, the state of the nodes in a network can be described as
susceptible or infected. An infection process and a curing process determine how the
nodes are changing between those states. We extend on the standard epidemic models,
the SIS model, by a time-dependent curing rate function to reflect the changes in the
effectiveness of the active worm removal. Once we set the curing rate function, the
empirical worm data are fitted and analyzed on multiple scales from the global over the
country down to the autonomous system level. The fitted model explains how computer
worms or similar self-replicating pieces of information might change in their effectiveness
over long periods of time.

The SIS model returns as a central piece in Chapter 5 again. Although spreading
processes are frequently modeled in isolation, the dynamics of many real-world applica-
tions are often driven by the interaction of multiple of such processes. These interactions
can range from viruses that compete for susceptible nodes to viruses that mutually re-
inforce their propagation. We study the special case of superinfection, in which one
dominant virus spreads within the infected population of a weaker virus. We highlight
the conditions for which a co-existence of both viruses is stable and show that extinction
cycles become possible if the infection rate of the dominant virus becomes too strong.
Furthermore, we show that some of the possible outcomes of a superinfection are diffi-
cult to approximate with common mean-field techniques. However, the second largest
eigenvalue of the infinitesimal generator of the underlying Markov process is potentially
linked to co-existence and thus stability.

Chapter 6 is a study on the capabilities of symbolic regression for network properties.
We develop an automated system based on Genetic Programming which is able to be
trained by families of networks to learn the relations between several of their properties.
These properties can be features of the networks like the eigenvalues of their adjacency
or Laplacian matrices or network metrics like the network diameter or the isoperimetric
number. We show that the system can generate approximate formulas for those metrics
that often give better results than previously known analytic bounds. The evolved for-
mulas for the network diameter are evaluated on a selection of real-world networks of
different origins. The network diameter bounds hop-based information propagation and
is thus of high importance for designing network algorithms. A careful selection of train-
ing networks and network features is crucial for evolving good approximate formulas
for the network diameter and similar properties.

Finally, the thesis concludes with Chapter 7 which revisits the concepts that were
developed and provides some critical assessment on their potential and limitations.



SA M E N VAT T I N G

Kennis en informatie zijn altijd een drijvende kracht geweest achter de ontwikkeling
en het succes van menselijke samenlevingen. In het digitale tijdperk is ons vermogen
om informatie te vergaren en te versturen tot nieuwe proporties gegroeid. Moderne
communicatienetwerken zoals het internet omvatten de hele wereld en reiken zelfs tot
in de ruimte. Online sociale netwerken zijn enorme machines die dagelijks door mil-
jarden mensen worden gebruikt om nieuws te lezen, herinneringen online te plaatsen,
en activiteiten te organiseren. Hoewel we deze nieuwe technologieën snel omarmd
hebben, begrijpen we alle consequenties van deze hoge connectiviteit nog niet volledig.
Dit proefschrift draagt bij aan een beter begrip van hoe informatie zich verspreidt en wat
dat om het lijf heeft. Aan de basis van dit werk ligt het concept van een netwerk: een
verzameling knopen en lijnen die de structuur beschrijven van het te bestuderen systeem.
Een netwerk is een wiskundig model dat ons in staat stelt om ons te richten op een fun-
damentele eigenschap: de wederkerige relaties (lijnen) tussen de entiteiten (knopen)
die informatie uitwisselen. Deze eenvoudige voorstelling maken netwerken elegant;
men hoeft niets te weten van de onderliggende hardware van een communicatienetwerk
om op een hoger abstractieniveau over deze netwerken na te denken. De ontwikkeling
van netwerk theorie als een onderzoeksgebied heeft tot ontelbare toepassingen van het
netwerk model geleid, op allerlei natuurlijke en technologische complexe systemen. Het
is als vanzelfsprekend een essentieel onderdeel van vele multidisciplinaire wetenschap-
pelijke projecten geworden. Als we begrijpen hoe informatie zich verspreidt kunnen we
de ingewikkelde processen die we zien in complexe systemen doorgronden en misschien
zelfs sturen. Aangezien complexe systemen de drijfveer achter dit onderzoek zijn, be-
vatten de eerste drie hoofdstukken van dit proefschrift onderzoeken gebaseerd op data
uit verschillende domeinen. Daarna zal in de verdere hoofstukken meer fundamenteel
onderzoek behandeld worden.

Hoofdstuk 2 beschrijft de interactie tussen spelers in een populair online spel. Omdat
het spel aanzet tot competitie, vormen zich ad-hoc teams die met elkaar strijden om
de overwinning. Sommige spelers gedragen zich asociaal naar hun medespelers, dit
gedrag staat bekend als toxicity. We analyseren hoe toxicity ontstaat in het netwerk
van spelers door een toxicity-detector te ontwikkelen. We benoemen mogelijke triggers
en analyseren hoe spelers zich opstellen naar toxic medespelers. Ook tonen we aan de
toxicity gerelateerd is aan succes in het spel.

Hoofstuk 3 vervolgd met een onderzoek naar het functionele netwerk van het mense-
lijk brein. Met technieken zoals magnetoencephalography is het mogelijk om de activiteit
in de hersenen te meten. De berekende fase overdracht entropie in de metingen van
een groep patiënten wordt geïnterpreteerd als een grootheid die staat voor de mate
van informatie overdracht. Wanneer die weer wordt geïnterpreteerd als een verbinding
tussen gebieden in de hersenen wordt een ongebruikelijk hoog aantal typische substruc-
turen zichtbaar. We hebben ontdekt dat één van die structuren, een bi-directioneel

xiii
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twee-stap pad, zeer veel voorkomt en in verschillende frequentiebanden. Hieruit blijkt
dat die structuur belangrijk is voor informatie overdracht. Door het netwerk te clusteren
met behulp van deze veel voorkomende structuren wordt een spatieel samenhangende
organisatie van hersen gebieden zichtbaar.

Een virus is een goed voorbeeld van een zich verspreidend fenomeen en is het on-
derwerp van het derde op data gebaseerd onderzoek in dit proefschrift ,gepresenteerd
in hoofdstuk 4. We onderzoeken een digitale versie van een virus, een computerworm,
en analyseren het gedrag daarvan met behulp van epidemische netwerk modellen. In
een epidemisch netwerkmodel zijn de knooppunten of vatbaar voor het virus ol geïn-
fecteerd. Een infectieproces en een helingsproces bepalen hoe de knooppunten van
toestand veranderen. We breiden het standaard epidemisch model, het SIS model, uit
door het helingsproces tijdsafhankelijk te maken. De tijdsafhankelijkheid reflecteert dat
het verwijderen van een computer worm eenvoudiger wordt naar mate er meer van
bekend is. Eerst stellen we een functie vast voor het tijdsafhankelijke helingsproces en
daarna analyseren we de gemeten verspreiding van een computerworm op verschillende
schaalgroottes: van globaal tot landelijk tot netwerk niveau. Het model verklaard hoe
computer wormen en andere zichzelf kopiërende informatieprocessen van effectiviteit
veranderen in de tijd.

Het SIS model komt ook terug als onderwerp in hoofdstuk 5. Hoewel verspreidings-
processen vaak in isolatie beschreven worden, is er in de realiteit vaak interactie tussen
verschillende processen. Deze interactie loopt uiteen van virussen die dezelfde gezonde
knopen proberen te infecteren tot virussen die wederzijds elkaars effectiviteit versterken.
Wij onderzoeken een speciaal geval van superinfectie waarin een dominant virus zich
verspreidt in de geïnfecteerde populatie van een ander, zwakker, virus. We tonen aan
onder welke condities beide virussen stabiel kunnen samenleven, en dat er cycli van
uitsterving mogelijk zijn als het dominante virus te sterk wordt. Verder laten we zien
dat sommige van de mogelijke uitkomsten van superpositie slecht zijn te benaderen
met mean-field technieken. Daarentegen is de op twee na grootste eigenwaarde van de
infinitessimal generator van het onderliggende Markov proces waarschijnlijk gerelateerd
aan het voorkomen van samenlevende virussen en daarmee aan stabiliteit.

Hoofdstuk 6 is een onderzoek naar de toepasbaarheid van symbolische regressie
om netwerk eigenschappen te bepalen. We ontwikkelen een geautomatiseerd systeem
gebaseerd op Genetic Programming dat getraind kan worden op families van netwerken
om de relaties tussen de netwerkeigenschappen te leren. Deze netwerkeigenschappen
kunnen kenmerken zijn zoals de eigenwaardes van de adjacency matrix of de Laplaci-
aan, of kengetallen zoals de diameter of het isoperimetrisch getal. We tonen aan dat
het systeem benaderingsformules voor die kengetallen genereerd die vaak betere re-
sultaten geven dan bekende analytische grenzen. De geëvolueerde formules voor de
netwerkdiameter hebben we geëvalueerd op een selectie van "real-world"netwerken. De
netwerkdiameter begrenst via-via informatie verspreiding en is daarom van groot belang
bij het ontwerpen van netwerk algoritmes. Het is belangrijk om de training netwerken
en de te trainen eigenschappen zorgvuldig te selecteren om goede benaderingsformules
te kunnen evolueren voor de netwerkdiameter en soortgelijke eigenschappen.

Ten slotte sluiten we dit proefschrift af met hoofdstuk 7 waarin we terugkeren naar
de concepten die naar voren gebracht zijn en we kritisch kijken naar het potentieel
daarvan, en de beperkingen.
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IN T R O D U C T I O N

1.1. A NE T W O R K PE R S P E C T I V E
From the dawn of the digital age to our present time, the people of our world have never
been more tightly connected on so many layers. The increased volume and velocity at
which information is reaching us can be overwhelming and managing the streams of
knowledge has become a key skill of many higher professions. From the fundamental
works on the small world problem by Travers and Milgram [1] up to the breakthrough
work of Watts and Strogatz [2] we have learned by now that we are living in a small
world, separated on average only by a few hops. The basic picture of an information
exchange incorporating a message that is sent between a sender to a receiver over some
channel has been scaled up to whole populations of senders and receivers, which use
multitudes of networks of communication channels to broadcast and interact rapidly.
Understanding information propagation on a large scale is thus also a question of un-
derstanding networks.

Easley and Kleinberg write in their book [3] that “in the most basic sense, a network
is any collection of objects in which some pairs of these objects are connected by links”.
The power of this simple definition is its ability to provide context to a large variety of
situations. By translating our world into the abstract structure of nodes and links, we
are able to focus on the relation between objects, rather than being distracted by their
details.

The network perspective does not only help us to find our own place as humans living
in a digitized world, but also proves to be a much more fundamental tool, particularly
for science. Molecular interactions between proteins [4], structural connections and
functional correlations in brains [5], traffic flows of ships [6] and airplanes [7], electrical
power grids [8] and financial transactions [9] are only a small sample of applications,
which can be understood as networks. Even the causal relationships of space-time, the
fabric of our universe, have already been subject to a network model [10].

Part of the appeal of the network perspective might be in the visual qualities of the
network representation that often allows us to obtain a bird’s eye perspective on the

1
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system at hand. After all, many of us already connected some dots with lines as children
to marvel at the complete image. However, the direct visual representation of a network
by drawing links as lines between nodes has its limitations if confronted with the scale
of the complex systems that have grown in nature or were assembled by our hands. If
one was to represent the neurons of the human brain as a network, one would have to
draw around 86 billion nodes [11], each potentially connected to thousands of others.
But already smaller networks can appear cluttered and “messy”, unless sophisticated
visualization techniques are applied. Although our visual understanding of networks
might be limited when it comes to size, the network still exists as a mathematical object
which is amenable for analysis. The goal of such an analysis remains the same: we strive
to understand the big picture which is painted by all the abstract small relations.

Looking through the lens of network science means to look at natural phenomena as
the result of dynamic processes involving many small connected entities, who influence
each other by mutual exchange of information. The goal of this thesis is to apply this
lens to a selection of different application domains and focus on the relation between
network structure and information flow.

1.2. ST R U C T U R E S SU P P O R T I N G PR O PA G AT I O N
When it comes to structure, a network without any connections at all will clearly not
facilitate any information flow. On the other hand, a network in which all nodes are
connected with each other could be said to allow for a maximum propagation. Both
cases are unlikely extremes, which are rarely observed in nature. Typically, man-made
or natural grown networks avoid to connect all nodes with each other, as each new
connection usually requires some form of investment. Still, we find sparse and tightly-
knit connections assembling structures to support the purpose of the corresponding
networks. A frequent observation is the emergence of hubs as they are found in scale-
free networks [12]. There exists only a minor number of hubs in such networks, but
they connect a larger number of other nodes like bridges. As such, we expect hubs to be
of importance for information flow. Although important, hubs are not the only structure
which requires attention. Sparse connected networks deliver a variety of features worth
studying with respect to information propagation.

The structure on the smallest possible level is the link that connects two nodes with
each other. There are only a few possibilities at this scale: a link between two nodes
might either exists or it might not. In directed networks, a link might be oriented from
one node to the other and in weighted networks a real number might be associated
with the link. Either way, the link remains the most fundamental building block of any
network.

We can observe richer structures if we look at more than two nodes at the same time.
Small subsets of nodes (typically three to four), can have different combinations of links
between them. Each such combination is called a motif [13] and their frequency in a
network can be counted. If there is an overabundance of a certain motif in a network (in
comparison to a randomized null-model), it is often argued that this micro-structures
did not arise by chance but must carry an important function for the network or the
underlying process. We give evidence for this hypothesis in Chapter 3, which analyzes
the motif structure of the human brain network.
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Following links from one node to the next will create other sub-structures in networks:
walks and paths. Particularly shortest paths, which connect two nodes by the least
amount of intermediary hops are often argued as likely candidates for an increased
information propagation, as short paths might be faster than detours through the whole
network. Taking all shortest paths in a network, we can determine which one requires
the highest amount of hops. This quantity is called the network diameter and presents
a worst case bound for hop-based propagation.

The network diameter is also an example for a network metric, a characteristic
number of a network which is generally computed by taking the entirety of nodes and
links into account. Consequently, network metrics are often a condensed reflection of
some structural properties. Chapter 6 will show how the diameter and other network
metrics may be learned from spectral network features.

1.3. TH E DY N A M I C S O F PR O PA G AT I O N
While the structures introduced in the last section describe the network features which
are used to transfer information, the dynamics describe the rules for the process that
takes place. This usually includes how information is stored, how it can change and by
which means it is transported.

The most frequent place to store information in a network is in the nodes. For
example, in the Susceptible-Infected-Susceptible (SIS) model, each node has one bit of
information which determines whether it is in the infected or the susceptible state. Links
allow for this information to spread: with a certain probability, a susceptible neighbor of
an infected node will become infected as well. The dynamics of this model are at the core
of Chapters 4 and 5 of this thesis, which will introduce extended variants and elaborate
on further details. The SIS model is known as a compartmental epidemic models, and
has been developed to describe the spread of infectious diseases, typically caused by a
pathogen like a virus. The virus itself is not explicit in the SIS model, but is represented
by the fraction of the node population in the infected state.

The concept of the virus has long surpassed its biological domain and has found its
electronical manifestation in the computer virus. But already the idea of self-replicating
information that infects hosts in order to propagate is been used as a metaphor, mostly
for news or digital content, which are shared amongst individuals and groups. Going
“viral” is a synonym for success, outreach, speed, popularity and resilience. While there
are certain factors which influence the virality of content [14], we seem to be only at the
beginning to understand how those large-scale information cascades come to existence.
However, once they appear, they are like an avalanche that rolls through our networks.
For the worse, similar to an avalanche, some of those cascades can also be harmful and
cause damage.

It is the goal of this thesis to contribute to the knowledge of spreading, but not
for the sake of engineering viral marketing strategies, who seek to maximize profit by
maximizing spread, but to give society the intelligence to prevent harmful information to
grow out of our control. The automated systems and networks which we deployed into
our society and even in our social lives have become bigger than many of us would have
ever imagined and it is important that we use these technologies responsibly. People
need protection from exploitation by our networks and providers of such services need
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to be educated on how to prevent or diminish possible negative effects. Consequently,
undesirable and harmful processes will be frequently at the focus of this thesis, e.g. the
spread of anti-social behavior which is the center piece of Chapter 2. Also the spread of
a harmful computer worm will be analyzed in Chapter 4, for which the SIS model will
yet again be extended to reflect the impact of possible counter-measures over time.

1.4. TH E S I S OU T L I N E
This thesis will begin with three studies of information propagation from different ap-
plication domains. All of them are based on real-world data and highlight different
approaches to analyze the structure and dynamics of the corresponding processes. Chap-
ter 2 is a study of anti-social behavior which is encountered in online gaming commu-
nities. First, we develop a system to detect the anti-social behavior before we analyze
a potential spread. Chapter 3 continues with a study of the human brain, for which we
have a closer look into its functional connectivity network. A clustering based on informa-
tion flow motifs reveals a higher order organization of the brain, highlighting the close
connection between structure and dynamics of information flows. Chapter 4 studies an
extended SIS model which introduces time-dependent components. To show its applica-
bility, data from a highly persistent computer worm is analyzed with the corresponding
model, giving insights into the effects of deployed counter-measures.

After these specific studies, the following two chapters investigate more general
concepts and their implications. Chapter 5 introduces “superinfection” which is an
extension to the SIS model that enables us to consider nested spreading processes, for
which one virus spreads inside the population of another. Conditions for extinction cycles
and stable co-existence of both virus populations are shown by extensive simulations.
Lastly, Chapter 6 is a study on the intricate relations between the representation of a
network and its properties. By training a genetic programming model on spectral network
features, we infer approximate formulas for several important properties, including the
network diameter, which provides a lower bound for any hop-based propagation scheme.

Finally, Chapter 7 concludes this thesis by reflecting on the common concepts that
have shown to be useful throughout several chapters. The main contributions of the
thesis will be discussed, possible limitations are shown and future research is suggested.
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DE T E C T I O N A N D SP R E A D I N G

O F TO X I C I T Y I N

MU LT I P L AY E R ON L I N E GA M E S

Social interactions in multiplayer online games are an essential feature for a growing number
of players world-wide. However, this interaction between the players might lead to the
emergence of undesired and unintended behavior, particularly if the game is designed to
be highly competitive. Communication channels might be abused to harass and verbally
assault other players, which negates the very purpose of entertainment games by creating
a toxic player-community. By using a novel natural language processing framework, we
detect profanity in chat-logs of a popular Multiplayer Online Battle Arena (MOBA) game
and develop a method to classify toxic remarks. We show how toxicity is non-trivially linked
to game success.

This chapter is partially based on a published paper [15].
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2.1. IN T R O D U C T I O N
Multiplayer Online Battle Arena (MOBA) games have been growing increasingly popular
and captivate their player base in virtue of complex game mechanics and competitive
nature. Riot’s League of Legends claims to have over 100M monthly active players [16]
and grosses over 1 billion US dollars of revenue yearly [17]. With 20M US dollars
in 2016, the largest price pools in the history of eSports for a single tournament was
crowdfunded almost entirely by the player base of Valve’s Dota 2 [18].

MOBAs are played in independent n vs n matches, typically with n= 5, in which the
players of each team need to closely cooperate to penetrate the other team’s defences
and obtain victory. Players who refuse to cooperate and act without considering their
own team are easy targets and get killed more frequently, which diminishes the team’s
chances. Together with the intricate and sometimes counter-intuitive strategic nature
of MOBAs, this gives rise to conflict within the teams. Triggered by game events like
kills or just simple mistakes, players begin to turn sour. The communication channels
that were meant to coordinate the team effort can then be used to verbally assault other
players, often by using offensive terms and heavy insults.

Possible consequences are resigned players, whom might no longer be interested in
competing for the win. But even if the match is won eventually, players could still feel
offended, abused and might regret their decision to play the game in general. In this
way, the mood of a communication could qualify as a social Quality of Experience (QoE)
metric [19].

Collecting bad game experiences like this is harmful for the community, as it can
bias a player’s attitude towards engaging in cooperation even when confronted with
fresh opponents and new teammates in later matches. The perceived hostility in a player
community is frequently referred to as toxicity. Toxicity imposes a serious challenge
for game designers, as it may chase active regular players away. Jeffrey Lin, the head
of the internal research team at Riot Games, has reported that players who experience
in-game toxicity are up to 320% more likely to quit playing League of Legends [20]. It
might also prevent new players from joining the game, because a toxic base appears as
unfriendly and hostile to newcomers, which seems enough of a threat to Valve to change
the matchmaking system for Dota 2 newcomers to ensure a “good social experience” [21].
Despite the efforts of some of the biggest game developing companies in the worlds,
toxicity is still prevalent in their game communities and demands more research. This
chapter is a study on how toxicity can be detected, its impact on game success, possible
causes and its contagious potential.

Our main contribution is the introduction of an annotation system for chats of multi-
player online games capable of detecting toxicity (Section 2.3). We apply the system to
a large dataset (Section 2.2) collected from a representative game of the MOBA genre
and propose a method based on machine learning that uses the annotation system to
predict the outcome of ongoing matches (Section 2.4). We furthermore apply a topic
model to the chat data and show how the latent topics in the players language align
with our previous annotations (Section 2.5). Given the offensive nature of toxicity, we
gather evidence for its likelihood to influence the behavior of players confronted with
it and possibly even spread within player networks (Section 2.6). We end by relating
our study to previous work (Section 2.7) and conclude with a summary of the results
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Figure 2.1: Distribution of match duration in the DotAlicious dataset.

and a perspective on how our system might help to improve the gaming experience
(Section 2.8).

2.2. DATA
2.2.1. DATA SO U R C E S
All data used in this work are based on one of the ancestors of all MOBA games: Defense
of the Ancients (DotA). This game started as a custom map for the real-time strategy
game Warcraft III, but soon became so popular that community platforms emerged that
allowed for players to register, get profiled and being matched up against each other
based on their skill. One of these platforms was DotAlicious, from which we crawled
our data.

The website of DotAlicious is no longer available online, as DotA has been substituted
by newer MOBAs like League of Legends, Heroes of the Storm or Dota II. The core game
principles have not been changed much by DotA’s successors, but the accessibility of
replays, chat-logs and player-related information for them is more limited due to several
privacy concerns of the developing companies. Also, alternative means of information
exchange, like protected voice-chats, make it more difficult to obtain a record of com-
prehensive inter-team communication. Hence, we believe that our data from DotA are
suitable for our purpose, while still being representative for the game genre in general.
Additionally, it allows us to study toxicity without harming a live community.

2.2.2. DATA C L E A N S I N G A N D MAT C H OU T C O M E
Our DotAlicious dataset consists of replays from 12923 matches, spanning the time
between the 2nd and the 6th of February 2012.

The duration of matches in the dataset is distributed bi-modally, indicating that a
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small fraction of the matches ended prematurely. We used information from the hosting-
bot of DotAlicious to determine matches that resulted in a draw or were canceled by
the players early on. In total, out of 12923 matches, 1653 were aborted before game
start, 706 were canceled after game start and 241 resulted in a draw by mutual player
agreement (see Figure 2.1).

For the remaining matches, there are two possible outcomes: either one team de-
stroys the other team’s main structure (victory condition) or all players of one team
forfeit, which results in a collective surrender (loss condition). We have identified 10305
matches with a well-defined winning team, of which 6082 matches ended by the victory
condition and 4223 matches by surrender. 18 matches needed to be excluded as their
outcomes were unclear.

2.3. GA M E CO M M U N I C AT I O N MO D E L L I N G
2.3.1. AN N O TAT I O N SY S T E M DE S I G N
For all matches, we extracted all chat-lines used by the players and applied a tokenization
based on simple white-space splitting. Symbols like “!” or “?” remained part of the words,
as long as they were not separated by white spaces. The case of the letters was unchanged
to analyze the use of capitalization as a stylistic figure (shouting).

Overall, the language used is extremely abbreviated, elliptical, full of spelling-errors
and barely following grammatical structures. Consequently, standard techniques from
Natural Language Processing (NLP) like part-of-speech recognition, spelling-correction
and language detection were either not applicable or performed poorly. On the other
hand, we observed little variety in the topic of the chat, resulting in a rather restricted
and repetitive set of vocabulary. We thus devised a novel annotation system to classify
the most frequent words together with their miss-spelled variants.

The most dominant language in the corpus is English, which is used as a pidgin
language for non-native speakers to communicate with each other. To classify the most
frequently used words in this work, we do not consider words from any other language.
Consequently, non-English words will be either “unannotated” or classified as “non-latin”
(for example in the case of Chinese, which is easy to detect).

To classify the semantics of a word, we apply sets of simple rules to them. There are
three different classes of rules that we use:

1. pattern: the word includes or starts with certain symbols,

2. list: the word is member of a pre-defined list (also known as “dictionary”), and

3. letterset: the set of letters of the word equals the set of letters of a word from a
pre-defined list.

The letterset class is useful to capture unintentionally or intentionally misspelled
words, if no meaningful recombination of their letters (like anagrams) exist in the corpus.
For example, the set of letters used to spell the word “noob”1 is {“n”,“o”,“b”}, which is

1“noob” is a common insult in video games. It is derived from the word “newbie”, which comes from “new-
comer”. Thus, it implies that someone has the lowest possible level of skill and knowledge of the game.
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Figure 2.2: Wordcloud of the most frequent case-sensitive variants of the word “noob” from the datasets chat-
corpus (“noob” and “NOOB” excluded). Size is scaled logarithmically by word frequency. Wordcloudgenerator
by Jason Davies (https://www.jasondavies.com/wordcloud).

the same set as used for words like “NOOOOOOOOb”, “boon”, “nooobbbbb” or “noonb”
which were actually used in the chats (see Figure 2.2). In total, the letterset method
allowed to capture 224 (case-sensitive) different ways of writing “noob” that were used
in the dataset. On the other hand, no other meaningful English word that could be built
using this set (for example “bonobo” or “bonbon”) was found in the corpus. Also for other
words than “noob”, the amount of introduced false positives due to the letterset-method
was negligible for our dataset.

Table 2.1 shows the rule classes for each annotation category together with a short
description, some examples, their precedence and their absolute prevalence in the text
corpus. The sources for the word-lists and patterns for each different category are listed
in Appendix A.

The text-corpus consists of 7042112 words in total, of which 286654 are distinct.
Each distinct word is checked against our rules and annotated accordingly. If no rules
apply, the word is “unannotated”. If multiple rules apply, we break the tie by choosing
the category with the highest precedence. Considering the set of all distinct words in
the corpus, our annotation system covers around 16% of them. However, many of the
most-frequent words are annotated, so that on average over 60% of all (non-distinct)
words used per match have an annotation.

2.3.2. D I F F E R E N T CH AT-M O D E S
Our data allows us to investigate two fundamentally different chat-modes for each match:
in the all-chat, a player can broadcast a message to each other player that participates in
the match. In the ally-chat, the message is only sent to players in the same team as the
sender. We observe that on average 90% of all messages are exchanged in the ally-chat
and only 10% are broadcasted to all players. Private player-to-player communication

https://www.jasondavies.com/wordcloud
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Figure 2.3: Average use of annotated words per chat-mode. Chat-mode depicted as solid bars (all-chat) and
as transparent bars (ally-chat). Error-markers show one standard deviation. Category “unannotated” was
omitted.

is also possible, but was not recorded within our data. Figure 2.3 shows the relative
amount of annotated words averaged over all matches for both chat modes. Note that
the words from the “stop”-category are used almost equally in both chat modes, meaning
that our selection of stop-words is context-independent. The usage of words from the
“slang”-category is twice as high in the ally-chat, since slang is mainly used to transfer
sensitive information to coordinate the team in its battle. The heavy relative use of
slang in the ally-chat creates a bias in almost all other annotation categories towards
the all-chat.

2.3.3. TO X I C I T Y DE T E C T I O N

For the purpose of our investigation, we define toxicity as the use of profane language
by one player to insult or humiliate a different player in his own team. As such, the
use of “bad” words is a necessary, but not sufficient condition for toxicity. For example,
bad words can also be used just to curse without the intent to actually insult someone
else. Profanity is also used in ironic or humoristic ways. For example, some players
use self-deprecating remarks to admit in-game mistakes: “sry, I am such a noob - lol”.
Thus, detection of toxicity can not be based on words alone but needs to take the current
context into account.

We are using n-grams to distinguish toxicity from ordinary profane language. An
n-gram is a contiguous sequence of n words that appears in a context. The context in our
case consists of all words in the chat-line that contained the “bad” word plus all words
from all chat-lines that were sent by the same player to the ally-chat not more than 1
second before or after.
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Figure 2.4: Correlogram between annotation categories and winrate.

For all players who participated in at least 10 matches, we search for all “bad” words
they use, construct their contexts and count each n-gram that contains at least one “bad”
word for n= 1, 2, 3, 4. Afterwards, we look at the 100 most frequently used n-grams for
n = 1,2,3,4 and manually determine which of them are toxic and which are not. Our
criterion for toxicity is the following: for unigrams (n= 1) we consider them toxic if they
could be understood as an insult. For example “crap” is no insult, but “moron” is. For
n-grams with n= 2, 3, 4, we consider every context toxic that includes an insult directed
towards a person. Examples include “fucking idiot”, “shut the fuck” and “i hope u die”.
On the contrary, profane language that we do not classify as toxic includes n-grams like
“fuck this”,“cant do shit” and “dont give a fuck”. In total, we deem 45 unigrams, 21
bigrams, 32 trigams and 36 quadgrams as toxic. The list of these n-grams is provided in
Appendix B.

2.4. AN A LY S I S O F GA M E TO X I C I T Y A N D SU C C E S S
2.4.1. TR I G G E R S O F TO X I C I T Y

Table 2.2: Kill-events before toxicity

kill-events from killer from victim

toxicity (∆= 5s) 2219 23 849

random (∆= 5s) 1488 74 478

toxicity (∆= 10s) 5285 124 2559

random (∆= 10s) 3176 200 1042

Our method detects at least one toxic remark in 6528 out of the 10305 matches. In
90% of all toxic matches, there are at most 5 toxic remarks detected. Several outliers
exist in the data, the strongest contains 22 toxic remarks in a single match. The total
number of toxic remarks was 16950. We expect that certain game events trigger players
to act toxic. One possible game event is a kill where one player (killer) temporarily
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eliminates the character of another player in the opposing team (victim). There is a
reaction time ∆ involved between the actual kill-event and the time a player needs to
submit a response to the chat. We look for each toxic remark if there was a kill-event
taking place not earlier than ∆ seconds before. For comparison, we also choose 16950
random chat-lines (distributed over all matches) and look for a kill-event in their recent
past as well. It turns out, that toxic remarks are more frequently preceded by kill-events
than random remarks. Table 2.2 reports the absolute number of kill-events and how
many of them were submitted by the killer or the victim. Especially victims of kill-events
tend to become toxic, potentially blaming their teammates for their own fate.

2.4.2. GA M E SU C C E S S A N D PR O F A N I T Y
We have the hypothesis that with diminishing chances to succeed in the game, the level
of profanity raises. To test our hypothesis, we compute the winrate for each player
as the amount of matches won divided by the amount of matches played in total. We
restrict the analysis to players who participated in at least 10 matches, which leaves 4009
distinct players in our dataset. Next, we count how many words the players used for
our annotation categories “bad”, “praise” and “slang”. Normalized by the total number
of words, we correlate this number with the winrate, and plot the results in Figure 2.4.
Surprisingly, there seems to be no strong linear correlation in either case, which is
confirmed by the correlation-matrix given by Table 2.3.

Table 2.3: Pearson Correlation between winrate and use of words

winrate bad praise slang

winrate 1.0 0.0739 -0.0161 0.0059

bad -0.0739 1.0 0.0454 -0.1540

praise -0.0161 0.0454 1.0 0.1152

slang 0.0059 -0.1540 0.1152 1.0

An analysis based on absolute word-counts with focus on whole teams (rather than
single players) reveals a different picture: for each “bad” word used by a winning team,
we determine the point of time in the match when it was submitted to the chat. As
different matches vary in duration (recall Figure 2.1) we normalize time to the interval
[0,1] on the horizontal axis, with 1 indicating the end of a match. Out of this data we
construct a histogram using 100 equally distributed bins. We overlap this histogram
with a second histogram, constructed the same way but for words used by the losing
teams. As winning and losing teams use a slightly different absolute number of words
per bin, we normalize each bin accordingly to eliminate bias. Figure 2.5 reports on the
vertical axis the fraction of words used in each bin over all words used by the respective
winning or losing team while Figure 2.6 shows a histogram based on toxicity detected
by our toxic n-grams.

As we can see from the top part of Figure 2.5, after a short initial period, in which
it is uncertain to the players whether they might be losing or winning, we observe that
teams that will lose the match in the end tend to use relatively more bad words than
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Figure 2.5: Overlapping histograms, comparing winning and losing teams in their usage of words from
categories “bad” in comparison to “praise”.
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Figure 2.6: Overlapping histogram, comparing winning and losing teams in their usage of toxic n-grams.

teams that will win the match. This difference is even bigger if toxicity is considered.
More interestingly: while the usage of bad words is somewhat consistent throughout the
match, the usage of toxicity varies more. It seems that the winning teams use less toxicity
at the late stages of the match, as it becomes apparent that they will be victorious. The
need to shame and blame teammates seems to be significantly higher for the losing team
than the winning team at this point in time. Another interesting aspect is the usage of
the category “praise” which seems consistent for most of the matches but peaks clearly
for the winning team by the very end. This effect is due to the traditional phrase “gg”
(good game) which is a word from the “praise” category and often used just before the
match finishes. Winning teams use this phrase significantly more, probably as they might
perceive the match as more enjoyable.

2.4.3. PR E D I C T I N G MAT C H OU T C O M E

As we have shown, toxicity appears only in 60% of all matches and is thus too infrequent
to be used for predicting match outcome in general. Therefore, we analyze the predictive
power of all words with respect to their annotations, including the category of “bad”
words. We train a linear support vector machine (SVM), which is a supervised learning
model, to predict the winning team. Our features are constructed as follows: first, we
count all words that were used in the ally-chat. These counts are then used to determine
the TF-IDF (term frequency inverse document frequency) for each word. TF-IDF is a
standard weighting technique frequently used in information retrieval [22] that relates
the occurrence of words in one document (term frequency) with their occurrence over
all documents of the corpus (inverse document frequency). Formally, Given a document
d out of collection of documents D, the term-frequency TF(t, d) is the absolute count
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of occurrences of a term t in d divided by the total number of terms in d. For a set of
documents D, the inverse document frequency IDF(t, D) is defined as:

IDF(t, D) = log
�

|D|
|{d ∈ D : t ∈ d}|

�

. (2.1)

The TF-IDF is the product of both:

TFIDF(t, d, D) = TF(t, d) · IDF(t, D). (2.2)

In our case, the set of documents D is the set of all chats over all considered matches. As
there are two teams per match competing with each other, we have two ally-chats that
give us two different sets of features, which we both use together as one document. The
SVM is trained using a stochastic gradient descent algorithm on the TF-IDF to predict the
winning team. For all computations, we use Scikit-learn [23] with its default parameters
for all algorithms and do not undertake any effort to optimize them. The idea is not to
create the most accurate classifier possible but rather to use the accuracy of the classifier
to measure the importance of words with respect to match outcome.

The outcome should become more certain with the progression of the match, which
should be reflected in the words used by the players. We introduce the parameter t
to control the amount of chat history that is given to the classifier. For example, for
t = 1.0 the classifier is trained (and evaluated) on the complete ally-chats of each match,
whereas for t = 0.5 it only knows what was written until the middle of the matches. The
classifier itself has no notion of time: the TF-IDF features are purely based on frequencies
(bag of words model) and reflect neither the order of words nor the specific time they
were submitted to the chat.

As each word corresponds to one feature, we can partition all features with our
annotation system. We use the classifier 1) for all words regardless of their annotations,
2) for all words but words from the “command” category, 3) for no words except from
the “bad” category and 4) for no words except from the “slang” category. The reason for
excluding words from “command” is to avoid to provide the classifier with information
if a player forfeited, which is announced by typing the command word “!ff” in the chat.

Figure 2.7 shows the average accuracy and the 95% confidence interval of the clas-
sifier for these scenarios under a 10-fold cross-validation. The number of used features
and the accuracy scores for t = 0.5, t = 0.75 and t = 1.0 are presented in Table 2.4.

While words from the “bad” category (which constitute a precondition for toxicity)
have some predictive power, it is significantly lower than using just all words or words
from “slang” alone. We find it also remarkable that “slang” uses the least amount of
features but gives still fairly good predictions. This might be due to the importance of
team coordination which is covered mostly by key words from this category. It seems
reasonable that their usage shows not only the game expertise of players, but also en-
gagement and an increased interest to improve the team-play, which could result in a
better chance to win the match. The occurrence of “bad” words however seems to be
much less indicative for either winning or losing, suggesting only a weak link to game
success. Consequently, also toxicity might not be the best indicator to determine if a
game is going well for a team or not. Profanity will appear either way.
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Figure 2.7: Accuracy of the linear SVM on ally-chats.

Table 2.4: Accuracy and number of features used by the classifier.

#features avg accuracy std accuracy

t
=

0.
5

all words 127612 0.6399 0.0140

all but “command” 126900 0.6346 0.0103

only “bad” 1442 0.5720 0.0137

only “slang” 880 0.5877 0.0189

t
=

0.
75

all words 170063 0.7689 0.0092

all but “command” 169298 0.7421 0.0099

only “bad” 1767 0.6077 0.0096

only “slang” 908 0.6875 0.0114

t
=

1.
0

all words 208598 0.9407 0.0048

all but “command” 207758 0.8708 0.0070

only “bad” 2020 0.6538 0.0108

only “slang” 921 0.8295 0.0093

2.5. TO P I C M I N I N G O F P L A Y E R C H AT S
A frequent approach for data exploration in Natural Language Processing (NLP) is the
application of topic models [24]. Given a set of documents, composed out of words, the
task of a topic model is to infer latent “topics” which are represented in the documents.
Thus, each document is typically understood as a mixture of topics, while certain com-
binations of words classify each topic. Once a topic model is fitted, it allows to classify
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documents with respect to their topics and discover new relations. We hypothesize that
the categories of our annotation-system from Section 2.3 should find some reflection
within the topics that arise from the conversations between players. In particular, we
expect typical game-chat to be a mixture of some of our pre-defined categories (slang,
bad, praise, etc.). We are also interested to analyze how strongly the topics differ be-
tween players for which toxic statements were observed in contrast to players for which
no toxicity was detected by our method.

We limit the analysis to the subset of players that played at least 10 matches and
sent a minimum of 100 words over all their matches to the ally-chat. We collect for each
single player all words submitted in a “bag–of–words” model. Thus, each document
in our analysis corresponds to exactly one player, but is composed from words that
were used throughout multiple matches. The complete corpus consists out of 5732154
(not different) words distributed over 3911 documents. We further eliminate words
belonging to the timemark, stop, symbol and nonlatin category, which reduces the total
number of words by roughly 30%. In a next step, we eliminate words that occur in less
than 1% and more than 90% of all documents. Note, that our words are case-sensitive,
so we make a distinction between “Noob”, “noob” and “NOOB”. As a result, we obtain a
3911×4456 document word matrix, whose cells represents the term-frequencies TF(t, d)
for word t in document d.

Next, we apply Latent Dirichlet Allocation (LDA) [25] to obtain T = 20 topics, with
a per-document topic distribution prior α= 0.01 and a per-topic word distribution prior
β = 0.001. The LDA is an unsupervised learning algorithm, which groups words based
on their co-occurrence into topics, and assigns a sparse distribution over all topics for
each document. Thus, for each topic, a word occurs with a certain probability while
each topic has a certain probability to be part of a document. Table 2.5 shows the 10
most probable words for each topic.

While there is no straightforward interpretation as a semantic topic, we observe some
noticeable patterns:

• Topic 3 has a strong focus on game coordination with important terms from the
“slang” category.

• Topic 5 has a strong focus on “command” words.

• Topics 12 reflects the usage of smileys and acronyms like “lol”.

• Topics 1, 6 and 7 seem to consist out of mostly unannotated words, which might be
stop words from foreign languages (e.g. topic 6 consists of German stop words).

• Topics 9 contains many words written with an apostrophe, which is unusual in
chat communication.

• Topics 10 and 18 have high probabilities to produce upper-cased words.

• Topic 20 has the highest probability to generate a word from the bad category
(≈24%) while Topic 1 has the lowest (≈3%).



2.6. TH E IN F L U E N C E O F TO X I C TE A M M AT E S

2

19

topic 10 most frequent words pr. bad

1 de la le tu il si c lol ma pas 0.027
2 !ping -water miss re -ii -swap -weather na care man 0.031
3 top bot care smoke push farm solo wards rosh tp 0.032
4 plz top bot care ye well ulti then gj farm 0.034
5 -clear -hhn -ii -don -water -CLEAR -weather moonlight random pls 0.037
6 ich du :D ^^ die das der und top ja 0.039
7 :D da ne ti e se si na mi je 0.045
8 top bot lol gj care :) pls k re gank 0.046
9 I don't it's i'm can't top bot gj i'll didn't 0.048
10 xD SS MISS MID lol TOP care top gj such 0.049
11 !silence -swap top c -random off -ms bot re !resume 0.049
12 :D -.- lol xD XD :) xd gj ^^ gg 0.052
13 pls top bot gang care ffs wp farm gj ty 0.054
14 ^^ well your top farm cant game then fucking rofl 0.068
15 !pa -swap care omg lol plz w8 push gj pls 0.069
16 ur game im cant play fucking win didnt fuck shit 0.083
17 lol top fucking wtf kill fuck bot im push gank 0.083
18 U GO B I FUCKING YOU ME gg MID FUCK 0.100
19 game noob fucking farm fuck gang idiot ulti play cant 0.112
20 noob omg ff gg fucking lol noobs team retard idiot 0.241

Table 2.5: The 10 most probable words per topic. Words are ordered by decreasing probability within the
topic from left to right. The topics are ordered by the overall probability of generating a word from the bad
category from top to bottom. Colors indicate the different annotation categories (compare Figure 2.3).

We furthermore observe that some words like “top” (which refers to a part of the
game map) are so common for DotA chats, that they appear across topics with high
probabilities, and can be thought of as stop words of the DotA-language. We also note
that words of acknowledgement like “gj” (good job) and “ty” (thank you) appear more
likely in topics that put less probability on the bad category in general, which makes
sense as they carry quite the opposite sentiment.

How are the topics related to toxicity? As the use of profanity (bad category) is a
pre-requisite for toxicity, it is expected that the language of toxic players consists out
of topics with a high frequency of bad words. We confirm this bias by sorting the 3911
players into two groups: players for whom there was no occurrence of toxicity detected
within our data (1351 players) and players with at least one occurrence of toxicity over
all their matches (2560). For both groups, we average and normalize the probabilities
to be contained within a certain topic. Figure 2.8 confirms that there is a trend for toxic
players to prefer topics with a high density of bad words.

2.6. TH E IN F L U E N C E O F TO X I C TE A M M AT E S
Toxicity is a provocative behavior and tends to trigger reactions from people. We are
interested to see whether a player becomes toxic when confronted with toxic teammates,
i.e. whether toxicity is contagious. For a definite answer to this question, one would need
to thoroughly examine what causes toxicity in the first place. A first attempt to find causes
for toxicity was done in Section 2.4.1, which showed a correlation between kill-events
and toxicity. However, other in-game behavior, i.e. a perceived lack of performance,
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Figure 2.8: Averaged topic probabilities for different groups of players. The topics are ordered by their
probability of generating a word of the bad category. As bad words are a prerequisite for toxicity, the vocabulary
of toxic players in comparison to non-toxic players is more likely to be based on topics with a high topic number.

idling or missing opportunities might be hard to observe, quantize and relate to toxicity.
Instead of studying all potential factors and relations in detail, this section will apply an
information theoretic approach. In particular, we model toxicity of players as a discrete
stochastic process and use the information theoretic notion of transfer entropy to quantify
the amount of influence that toxic teammates exhibit on each other.

2.6.1. TR A N S F E R EN T R O P Y
Transfer Entropy was first derived to quantify the directional information exchange
between two processes evolving over time [26]. It presents an alternative to the use
of mutual information that is able to detect asymmetric influences between complex
systems. Transfer entropy has become popular in brain research to model information
flow and effective connectivity for magnetoencephalographic data [27, 28] but has also
found application in social network analysis [29]. This measure will reappear as phase
transfer entropy in Section 3.2.1 of this thesis. For notation purposes, we will briefly
introduce related information theoretic concepts and define the basic transfer entropy
here.

Let X be a discrete random variable over sample space {x1, . . . , xn}. The (Shannon)
entropy H(X ) is defined as

H(X ) = −
n
∑

i=1

Pr[X = x i] · log2(Pr[X = x i]). (2.3)

The entropy can be interpreted as the amount of uncertainty contained within a random
distribution. If H(X ) = 0, then the outcome of X is perfectly predictable. The base of the
logarithm is a scaling factor for the entropy, which will be neglected in the following.

Let Y be a second discrete random variable over a sample space {y1, . . . , ym}. We can
condition the entropy of X by our knowledge of Y and define the conditional entropy
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H(X | Y ) as

H(X | Y ) = −
n
∑

i=1

m
∑

j=1

Pr[X = x i , Y = y j] log

�

Pr[X = x i , Y = y j]

Pr[Y = y j]

�

. (2.4)

The conditional entropy has the property that H(X | Y ) = 0 if and only if X is completely
determined by Y . Additionally, it can be shown that H(X | Y ) = H(X ) if and only if X
and Y are independent.

Next, we want to look at a discrete stochastic process, which is a sequence of discrete
random variables X (t), where t ∈ {t1 < t2 < . . .} can be interpreted as observations in
time. If we assume a history of h hops, the conditional entropy

H(X t | X t−1, . . . , X t−h) (2.5)

describes the amount of uncertainty in predicting X t given observations in the past of
X t−1, . . . , X t−h. For two stochastic processes Yt and X t and two time windows h1 and h2,
the transfer entropy from Y to X is defined as

TEY→X = H(X t | X t−1, . . . , X t−h1
)−H(X t | X t−1, . . . , X t−h1

, Yt−1, . . . , Yt−h2
). (2.6)

Thus, TEY→X measures the reduction of uncertainty for predicting X t from a his-
tory X t−1, . . . , X t−h1

by additionally taking the history of Yt−1, . . . , Yt−h2
into account. If

TEY→X > 0 some information from process Yt must exhibit an influence on process X t .
Note that the transfer entropy is asymmetric and is thus able to characterize directed
information transfer.

2.6.2. TO X I C I T Y A S TR A N S F E R EN T R O P Y
We define the history of a player p as the sequence of matches p has played. For a match
m(t) we define X t = 1 if we detected a toxic statement in the chat of this player and
X t = 0 otherwise. Thus, toxicity is modeled as a stochastic process by X t . By moving
through the complete history of player p and binning the observations, we can estimate
the probabilities to compute the first term of the transfer entropy.

Since each team consists of 5 players, player p will have 4 (potentially different)
teammates in each of his matches. We model the toxicity of these teams as a sequence
of random variables Yt ∈ {0,1,2,3,4}, which count how many of the teammates say
something toxic in the corresponding matches from the history of player p. This allows
us to compute the second term of the transfer entropy.

By moving through the history of the player, we can estimate the joint and conditional
probabilities needed to compute the transfer entropy. For simplicity, we use the same
time window h = h1 = h2 for both the player and the team mates’ past matches. We
analyze only the set of players that played at least 10 matches. Figures 2.9 shows a
histogram of the computed transfer entropies for time windows of size h= 1 and h= 2.

We observe a large number of players with a transfer entropy of 0, which is mainly due
to the effect that a large number of players (1443 out of 4013) have no toxic statement
in any of their matches detected. Consequently, the transfer entropy of those players
must be 0. Although, a transfer entropy of 0 does not imply that a player never said
something toxic within his history, this case rarely happens within our data (87 players).
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Figure 2.9: Histogram of transfer entropies in 50 equal sized bins and log-scaled number of players on vertical
axis. Red lines are fitted exponential functions for non-zero transfer entropies. The pale blue bin consists of
players with zero transfer entropy.

We find that the distribution of the non-zero transfer entropy can be described by
an exponential function. The corresponding fitted parameters are given in the legend
of Figure 2.9. The exponential distribution suggests that the susceptibility towards a
toxicity transfer from toxic teammates is strongly heterogeneous. While a large majority
of players have a low transfer entropy and are thus less likely to be influenced by their
teammates, there is also a minority who become significantly predictable in their toxic
statements, once information about their teammates is considered.

The quality of fit for the exponential distribution degrades if longer match windows
of h> 2 are considered (not shown), while the computational effort for computing the
transfer entropy sharply increases. Additionally, the number of bins needed to describe
the probabilities increases exponentially with h, which demand much longer match
histories to avoid a sparse population of the bins. Lastly, we find the transfer entropy
only mildly correlated with the toxicity rate (i.e. fraction of matches in the history of a
player in which he said something toxic) with a correlation coefficient of ≈ 0.562. This
moderately high correlation is expected because of the previously described relation
between a zero toxic rate and a zero transfer entropy. It is reasonable to assume that for
a large number of those non-toxic players either not enough matches were recorded to
contain toxic statements or bad statements where too ambiguous for our conservative
detection to be flagged. Thus, given more data and a sharper detection algorithm would
significantly lower the size of this group of players and consequently reduce correlation.
In fact, we suspect that transfer entropy and toxic rate should be almost uncorrelated.
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2.7. RE L AT E D WO R K
Antisocial behavior in virtual environments has been investigated in the field of computer
sociology, most commonly under the term cyberbullying [30]. The impact of profane
language on video games [31] and in a wider sense also on social media [32] is a
vital area of research. Suler [33] shows psychological factors explaining the online
disinhibition effect, giving toxic disinhibition as a negative example. This effect is a
possible explanation why we observe such high levels of bad behavior online in general.

While toxicity in MOBAs can be understood as an act of cyberbullying, it is notoriously
hard to define and blends with other abstract behavorial concepts. Most similar is griefing,
the act of disrupting other player’s game enjoyment by unacceptable behavior. While
both toxicity and griefing might encompass verbal harassment (“flaming”), griefing is
also associated with scamming, power imposition and theft of ingame items. Griefing
was scientifically investigated for virtual worlds like Second Life [34] and MMORPGs
like World of Warcraft [35]. Behavorial patterns reflecting griefing and verbal abuse
have also been reported in the MMO World of Tanks by a work from Esmaeili et al. [36].

Most of the time, toxicity is studied with respect to player retention. Birk et al. [37]
give a study with focus on player experience, social exclusion potentially resulting hostile
cognitions. Tyack et al. [38] study motivations and reasons to start and to stop playing
MOBA games via a survey and interviews, reporting (amongst other) that 12.18% of the
particpants quit the game due to “unsportsmanlike players”. Shores et al. [39] define a
toxicity index based on peer evaluations of players facilitated by some third-party app
for League of Legends, giving evidence that player retention is negatively affected by
toxicity.

An excellent case study for toxicity in MOBAs is given by the works of Blackburn and
Kwak [40, 41]. The authors use crowd-sourced decisions from the tribunal, a player-
based court that was once provided by Riot Games as a mechanism to pass judgments on
reported incidents in matches from League of Legends.2 While our definition of toxicity is
tied to profane language only, the authors additionally consider certain in-game actions
(i.e. “intentional feeding”) as toxic. They develop a classifier to assists or even substitute
the crowd-sourced decisions of the tribunal, which are whether an accused player is
guilty of toxic behavior or not. As only cases submitted to the tribunal are considered,
the authors have access to a ground truth for toxicity which is not present for our data.
However, this might also create a selection bias, as typical matches will not end up on
the tribunal.

Shim et al. [42] describe a different system based on the Pagerank [43] algorithm to
filter out “bad players” in MOBAs. Our approach is orthogonal, as it uses natural language
processing on the player chats instead of relying on player’s complaints submitted via a
report function. Institutions like the tribunal would not work without players reporting
others, while our approach does not need any explicit player feedback to detect and
monitor toxicity.

There has only been little scientific work regarding the spread of toxicity between
players, though some initial ideas are given by the works of Ki et al. [44] and Woo et
al. [45].

2The tribunal together with its data has been disabled by Riot Games since early 2014.
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2.8. CH A P T E R SU M M A RY
We have developed a methodology to annotate frequently used expressions in written
chat communication of Multiplayer Online Games. While our method is tested in this
work only with data from DotA, we believe that it can be adapted to other MOBAs and
possibly even games of different genres. To use the full system, one would need to update
the pre-defined lists and patterns of game-specific terms to match their equivalents from
the new game. Although this requires some degree of game-knowledge, the detection of
profanity itself is largely independent from any game-specifics, as it is based on profanity
used in the English language, enriched by a few terms commonly used in computer games.
It would be insightful to compare the accuracy of our classification with actual player
experiences, i.e. by interviewing players to confirm that they felt offended by certain
statements.

Surprisingly, the win-rate of players seems to be largely unaffected by toxicity, which
highlights that toxicity is a phenomenon that exists independently of the end result
(winning or losing) of a match. A possible reason could be the complex nature of the
game which allows for unexpected comebacks and sudden swings in favor of one team
or another. The training of our classifier showed that bad words are also a bad predictor
of success, while features from the slang category appear much more powerful, possibly
reflecting better team-play and a more effective communication. It is remarkable that
such a classifier can achieve a reasonable accuracy by just taking textual features into
account. Extending the classifier with actual game features (e.g. kills, deaths, experience
and gold earned, etc.) might provide an even better system which could be helpful for
analysts and commentators of live streams, who are supposed to accurately describe the
current odds for each team.

The probabilities obtained by the LDA topic model provide a high-level view on
the language of the players: while the toxicity detection with n-grams only takes a
contextual time-window of 10 seconds into account, the LDA is constructed from the
complete vocabulary of a player, considering everything he ever said (in the ally-chat).
Thus, we see a potential in topic models for monitoring individual players over longer
periods of time, while the toxicity detection is helpful to judge short-termed situations
within matches. Given long-term data, the success of certain counter-measures (like
temporal bans, low-priority queues, etc.) against presumably toxic players could be
evaluated by computing the shift of a players probability distribution between certain
topics. Thus, we envision the toxicity detection and topic models like LDA to be essential
building blocks for such systems.

Instead of only monitoring, the right decisions about possible counter-measures need
to be taken if one wishes to cure a toxic community. Since competitive triggers for toxicity
like kill-events are simply part of the game and cannot be avoided, the most critical aspect
is to prevent escalation and the corruption of players who are in principle not hostile.
One has to keep in mind that there may be plenty of unknown triggers and confounding
factors for toxicity, so it is unreasonable to assume that every active toxic statements is
the result of a previous statement received as an insult from a teammate. However, the
distribution of the players transfer entropies shows that some players are more receptive
to be influenced by offensive language than others. In particular, it would be most
advisable to protect players with a high transfer entropy to be exposed to highly toxic
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teammates.
To summarize, our analysis shows that toxicity is fueled by the inherent competitive-

ness (i.e., killing each other) of MOBA games but is only weakly linked to success. If
players can be successful despite being toxic, they need a different incentive to cease
insulting and behave more pleasantly. On the other hand, the matchmaking systems
that ensemble the teams could be altered to take toxicity into account to avoid creating
a social powder keg. Even if we might not be able to prevent toxicity entirely, a better
control will benefit newcomers, experienced players and game developers alike.





3
IN F O R M AT I O N FL O W

CL U S T E R I N G I N FU N C T I O N A L

BR A I N NE T W O R K S

Recent work has revealed frequency-dependent global patterns of information flow by a
network analysis of magnetoencephalography data of the human brain. However, it is
unknown which properties on a small subgraph-scale of those functional brain networks are
dominant at different frequencies bands. Motifs are the building blocks of networks on this
level and have previously been identified as important features for healthy and abnormal
brain function. In this chapter, we present a network construction that enables us to search
and analyze motifs in different frequency bands. We give evidence that the bi-directional two-
hop path is the most important motif for the information flow in functional brain networks.
A clustering based on this motif exposes a spatially coherent yet frequency-dependent sub-
division between the posterior, occipital and frontal brain regions.

This chapter is based on the published papers [46, 47].

27



3

28 3. IN F O R M AT I O N F L O W I N BR A I N NE T W O R K S

3.1. IN T R O D U C T I O N
The application of network science to neuroscience has provided a new research perspec-
tive on the organization of brain networks from healthy subjects and patients suffering
from neurological disorders [48, 49]. A recent study by Hillebrand et al.[50] observed
frequencydependent global patterns of information flow based on magnetoencephalog-
raphy (MEG) data of healthy subjects. However, little is known about the underlying
mesoscale level in terms of network motifs at which these flows occur.

To analyze information flow, the pairwise measure of transfer entropy (TE) has often
been applied [26]. For a pair of time series X and Y , TE quantifies the improvement in
predicting the future of X when considering both the current value of X and the current
value of Y , compared to only using the current value of X . At the level of brain regions,
the TE value is classified as a measure of effective connectivity between two regions.

Recently, an extension of the TE that is based on phase information [51], the Phase
Transfer Entropy (PTE), has been proposed in order to lower the computational costs
and complexity [52, 53]. After calculating all pairwise PTE values, functional brain
networks with nodes representing brain regions and link weights inheriting their pairwise
effective connectivities, can be constructed so that the topology of these networks can
be characterized.

Based on the pairwise PTE values, Hillebrand et al.[50] observed that for higher fre-
quency bands, alpha1, alpha2 and beta, the global information flow was predominantly
from posterior to anterior brain regions, whereas the pattern was opposite for the low
frequency theta band. The latter, an anterior-to-posterior pattern, was also discovered
in electroencephalography (EEG) data [54]. It was hypothesized that the information
flow in resting-state networks is likely driven by the strong posterior structural hubs and
their high levels of neuronal activity [50, 55, 56]. However, the opposite directions of
information flow are not yet fully understood.

Another biological explanation for the reverse patterns could be the Default Mode
Network (DMN), which is the network of brain regions that are active during resting-
state. The DMN consists of two interacting subsystems: the temporal system, which
is responsible for memory, and the fronto-parietal system, which is essential for self-
relevant mental simulations [57]. These two subsystems seem to exist in parallel, though
at different frequencies, and their interaction represents an integration mechanism for
brain functions [58]. This hypothesis is strengthened by results from invasive animal
recordings of the visual cortex [59, 60], where the opposite directions of information
flow have been connected with the process of memory consolidation [61].

In this chapter we investigate the information flow patterns with regard to a smaller
scale for different frequency bands. On the mesoscale level of brain networks, network
motifs have been identified as a valuable feature by many previous studies [62–64].
Motifs are frequently occurring subgraphs of networks, typically consisting of three
or four nodes [13]. Previous studies were able to link structural and functional brain
networks with regard to their motifs to describe flexibility in switching between different
brain functions [65] and for coupling of brain dynamics [66]. Furthermore, changes
in the motif frequencies of so-called progression networks for patients suffering from
Alzheimer’s disease have been discovered [67], showing that motif analysis may provide
potentially powerful new biomarkers.
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The importance of motifs has not only been studied for brain networks, but also for
various others, like biological transcription networks [68], food webs [69] or transporta-
tion and mobility networks [70]. In order to link motifs to the modular organization
often present in such networks, Benson et al.[71] proposed a new algorithm for motif-
based clustering. Since this algorithm identified clusters of functional importance in the
neuronal network of the C. Elegans, it appears to be a promising approach to analyze
the higher-order organization of human brain networks.

The remainder of this chapter is structured as follows: Section 3.2 gives the necessary
background information on the brain data, the computation of the PTE, the motif search
and the clustering algorithm. Section 3.3 outlines the network construction from a
related variant of the PTE, the directed phase transfer entropy (dPTE), the results of the
motif search and the clustering when applied to the most important motif, providing a
first proof of concept. Section 3.4 conducts a complementary study based directly on the
PTE, which demands a slightly different network construction. Furthermore, the analysis
is extended by comparing observations from two different frequency bands. Section 3.5
concludes the chapter.

3.2. BA C K G R O U N D

3.2.1. ME A S U R I N G T H E IN F O R M AT I O N F L O W I N T H E BR A I N
MEG measures the magnetic field fluctuations induced by neuronal activity [72]. The
data for our analysis is based on MEG recordings in 67 healthy subjects from a preceding
study [56] and was used to show the frequency-dependence of the global information
flow in the brain. In particular, it was shown that the alpha2 band at 10-13 Hz has a
strong back to front information flow, while the theta band at 4-8 Hz has a strong front to
back information flow [50]. For this reason, we base our analysis on the alpha2 and theta
band as well. Figure 3.1 gives a schematic overview of our processing pipeline, from an
example time series of source level MEG data towards obtaining the PTE matrices for
the alpha2 frequency band (theta frequency band data follows a similar processing).

From the MEG measurements, we obtained1 phase time series [51] from 78 different
cortical regions of interest (ROIs) based on the Hilbert transform. We denote a possible
value of the instantaneous phase of the signal of region X at time t by x t and abbreviate
the probability that the phase of X equals x t at an arbitrary time point t to

Pr[X t = x t] = Pr[x t]. (3.1)

The information flow between two ROIs, X and Y , is then quantified by the Phase
Transfer Entropy [52]

PTEX Y (h) =
∑

Pr [x t+h, x t , yt]× log
�

Pr [x t+h | x t , yt]
Pr [x t+h | x t]

�

(3.2)

1The MEG data were recorded using a 306-channel whole-head MEG system (Elekta Neuromag Oy, Helsinki,
Finland) during a no-task, eyes-closed condition for five consecutive minutes. A beamformer approach was
adopted to project MEG data from sensor space to source space [73] and the automated anatomical labelling
(AAL) atlas was applied to obtain time series for 78 cortical regions of interest (ROIs) [74, 75]. For each
subject, we extracted the first 20 artefact-free epochs of 4096 samples (3.2768 s).



3

30 3. IN F O R M AT I O N F L O W I N BR A I N NE T W O R K S

0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

N
or

m
al

is
ed

 fi
el

d 
st

re
ng

th
 [a

.u
.]

0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

N
or

m
al

is
ed

 
so

ur
ce

 s
tre

ng
th

 [a
.u

.]

0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

N
or

m
al

is
ed

 
so

ur
ce

 s
tre

ng
th

 [a
.u

.]

0.5 1 1.5 2 2.5 3
Time [s]

0

2

In
st

an
ta

ne
ou

s 
ph

as
e

Processing pipeline from source level MEG data (78 cortical regions) 
to alpha2 frequency band PTE 
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Figure 3.1: Processing pipeline from source level MEG data (78 cortical regions) to alpha2 frequency band
PTE matrix. The figure shows an example time series of a single ROI for a single epoch. In order to calculate
the PTE matrices, we need the instantaneous phases of all 78 cortical regions. The PTE matrix entry (i, j)
corresponds to the PTE value from region i to j.

for a certain time delay h, where the sum runs over all possible values x t , x t+h and
yt of the instantaneous phases of the signals. The (joint) probabilities are determined
over histograms of their occurrences in an epoch [52]. Following the methodology of
Hillebrand et al. [50], we fix h at

h=
Ns · NROI

N±
, (3.3)

where Ns = 4096 and NROI = 78 are the number of samples in an epoch and the number
of ROIs, respectively, and N± counts the number of sign changes for the phase across time
and ROIs. For clarity, h will be omitted from the notation and we use only PTEX Y instead
of PTEX Y (h) in the remainder. It should be noted, that the PTE of two regions X and Y is
asymmetric, so PTEX Y = PTEY X does not hold in general. In order to remove individual
bias of the measurements, all pairwise PTE values are averaged over all subjects and all
epochs. A histogram of those averaged PTEs is shown in Figure 3.2 for the alpha2 and
theta band.

In the work of Hillebrand et al. [50], a normalized version of the PTE, called the
directed Phase Transfer Entropy (dPTE) is used. The dPTE for two ROIs X and Y , is
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Figure 3.2: PTE between each possible pair of ROIs averaged over all subjects and measurement epochs. In
total, 6006 average PTEs are displayed as a histogram with 100 bins for each of the two frequency bands. The
alpha2 frequency band (shown in blue) has on average lower PTEs than the theta frequency band (shown in
orange). The vertical lines mark the 30th-percentile of each distribution.

36 6 12 14 74 78

98 102 110 238 38 108 46

Figure 3.3: All 13 possible connected directed 3-motifs. The motif ID in binary represents the 3× 3 adjacency
matrix of the motif.

defined as

dPTEX Y =
PTEX Y

PTEX Y + PTEY X
. (3.4)

Since the PTE can only take positive values, this definition of dPTE is well-defined and
its value ranges from 0 and 1. In contrast to the PTE, the dPTE is a measure of the
preferred direction of information flow. If the predominant flow of information is from
X to Y , then 0.5 < dPTEX Y < 1, else 0 < dPTEX Y < 0.5. Since, dPTEX Y + dPTEY X = 1,
the dPTE allows to determine for each pair of ROIs, which is a stronger receiver or a
stronger sender respectively.
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Figure 3.4: Motif ids explained by motif 78 as an example. The decimal representation 78 encodes the binary
adjacency matrix of the motif.

3.2.2. MO T I F SE A R C H
Our motif search is performed with the mfinder software version 1.2 [76]. We focus our
investigation mainly on the 13 different 3-motifs as shown in Figure 3.3. Each motif is
identified by a number whose binary representation translates to the adjacency matrix
for the corresponding motif, consistent with the notation used by mfinder. Figure 3.4
gives an example of this conversion, using motif number 78 (the bi-directional 2-hop
path).

For any given network G (to which we refer as “original network”), the mfinder soft-
ware performs two tasks: first, it counts the frequency JG,M of all motifs M in G and
second, it generates a number of random networks with similar properties as the original
network and determines the motif frequencies in each of them as well. For every origi-
nal network, mfinder generates 1000 random networks using the switching algorithm
described in [77] with 100 switches. We use the default parameters for mfinder, which
preserve the degree sequence of the original network and the number of bi-directional
links.

The random networks serve as a null model to determine which motifs are over-
expressed in the original network. More precisely, we adopt the criteria given in the
supplemental material of Milo et al.[13]. These criteria are:

1. The probability that a motif in a random network occurs more or an equal amount
of times as in the original network is smaller than 0.01.

2. The motif appears in the original network at least 4 times with a distinct set of
nodes.

3. The ratio between the motif frequency of the original network and the average
number of occurrences of the motif in the random networks is at least 1.1.

Given the mean µ(Jrand,M ) and the standard deviation σ(Jrand,M ) of the motif fre-
quency in the random networks, the magnitude of overexpression of motif M in G is
given by its z-score
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Figure 3.5: Example for the construction of a motif adjacency matrix based on the motif 108. In this example
network, motif 108 can be found twice: 1. nodes {A, B, C}, 2. nodes {A, C, E}. Each instance of motif 108
is only counted once per set of nodes (node-disjoint motifs). The outgoing link from node D is still in the
network, but is not part of any motif instance 108. The node-pair {A,C} is part of two different (node-disjoint)
instances of motif 108, which is why there is a value of 2 at the corresponding cells of the motif adjacency
matrix.

zG,M =
JG,M −µ(Jrand,M )

σ(Jrand,M )
. (3.5)

A motif which is not overexpressed may still occur quite frequently in the original
network, though it arises at a similar frequency by a random link rewiring process. Thus,
it can be argued that overexpressed motifs carry some functional importance for the
underlying system since they do not arise merely by chance.

3.2.3. MO T I F -B A S E D C L U S T E R I N G
Benson et al. [71] developed a clustering algorithm that partitions a network G based
on a motif M . The main idea of their algorithm is to construct clusters by “cutting”
through the minimum possible number of motif instances, while maintaining a high
density of motif instances within each of the clusters. In this section, we summarize only
the basic concepts (including the algorithm) necessary to understand how the clustering
of the networks was achieved. Details about the performance, complexity and additional
applications can be found in the supplemental material of Benson et al. [71] together
with a comprehensive analysis of the algorithm.

MO T I F A D J A C E N C Y M AT R I C E S

Let G be a directed network with a set of nodes N = {1, 2, . . . , N}. Two motif instances
are called node-disjoint if their set of nodes are not identical, i.e. they have at least one
node not in common. For each pair of nodes i, j let wi j be the number of node-disjoint
motif instances in which i and j participate together. Then, the N ×N symmetric matrix
WM with elements wi j is called the motif adjacency matrix. The elements di j of the motif
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diagonal degree matrix DM are given by

dii =
N
∑

j=1

wi j (3.6)

and the motif Laplacian by
LM = DM −WM . (3.7)

The clustering algorithm uses the eigenvector belonging to the second smallest eigen-
value of the normalized motif Laplacian, which is defined as

LM = I − D
− 1

2
M WM D

− 1
2

M (3.8)

where I denotes the identity matrix. Figure 3.5 illustrates the construction of a motif
adjacency matrix.

MO T I F C O N D U C TA N C E

Given the motif adjacency matrix WM of a network G, and a partition of the nodes
N = |N | into two disjoint subsetsN1 andN2 =N \N1, we define the motif conductance
φG(N1,N2) of that partition as

φG(N1,N2) =
cutG(N1,N2)

min{volG(N1), volG(N2)}
(3.9)

with

cutG(N1,N2) =
∑

i∈N1, j∈N2

wi j (3.10)

and for a = 1,2

volG(Na) =
∑

i∈Na

N
∑

j

wi j =
∑

i∈Na

dii . (3.11)

Thus, the motif conductance φG(N1,N2) equals the ratio between the number of
motif-instances cut by the partition {N1,N2} and the lowest number of preserved motif-
instances in one of the two partitions.

MO T I F -B A S E D C L U S T E R I N G A L G O R I T H M

A low conductance is often a desirable quality for a network clustering [78]. However,
finding the minimum conductance of a network is a well-known NP-complete problem
[79] which directly translates to the complexity of finding the minimum motif conduc-
tance φ∗G . [71] present a polynomial-time algorithm that finds a nearly optimal partition
{N1,N2} with motif conductance

φG(N1,N2)≤ 4
Æ

φ∗G (3.12)
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for 3-motifs. In practice, the runtime is largely dominated by the computation of
the motif adjacency matrix, which is still efficient for the motifs of size three that we
consider for this work.

The algorithm from [71] is a generalization of the classical spectral clustering algo-
rithm [80, 81], which makes use of the Laplacian matrix of a network. The eigenvector
corresponding to the second smallest eigenvalue of this matrix is known as Fiedler’s vec-
tor [82] and by ordering its elements, a node partition of a low (link-based) conductance
can be devised.

The main steps of the algorithm from Benson et al. [71] consist of computing the motif
adjacency matrix WM from which the normalized motif LaplacianLM is constructed and
the second smallest eigenvalue is computed. Afterwards, the corresponding eigenvector
is used to create a partition {N1,N2} according to the smallest motif conductance. The
motif conductance is only defined for nodes that participate in at least one instance of
the motif M . Thus, if a node does not participate in any motif instance of M , it can
neither be a member of N1 nor N2. We refer to such nodes as non-participating nodes
and show them as a third, separate group in later visualizations, in case they occur.

The complete algorithm is listed as Algorithm 1 in pseudocode. We implemented the
algorithm in Python (using NumPy and NetworkX) and double-checked our results with
the implementation available on the SNAP-platform [83].

Algorithm 1 Motif-based clustering algorithm

1: Input: Directed, unweighted network G and motif M
2: Output: Motif-based clusters N1 and N2 (subsets of nodes)
3: WM ← motif adjacency matrix of G with respect to M
4: DM ← diagonal degree matrix of WM

5: LM ← I − D
− 1

2
M WM D

− 1
2

M normalized motif Laplacian
6: z ← eigenvector corresponding to second smallest eigenvalue of LM

7: σi ← index of vector D
− 1

2
M z with ith smallest value

8: `← arg min
i=1,...,N

φG({σ1, . . . ,σi}, {σi+1, . . . ,σN})

9: {N1,N2} ← {σ1, . . . ,σ`},{σ`+1, . . . ,σN}
10: return {N1,N2}

3.3. IN F O R M AT I O N F L O W AN A LY S I S F O R DPTE
3.3.1. NE T W O R K CO N S T R U C T I O N BA S E D O N DPTE
The pairwise dPTEs over all ROIs can be interpreted as a weight matrix of a fully con-
nected network. Since the data is from 67 subjects each over k = 20 epochs, we have
1340 weighted networks to begin our construction. We apply a procedure to thin out
links and induce a directionality per link instead of a weight. After this transformation,
which we call “sparsificiation”, we obtain a sparse directed (unweighted) network for
each subject, which is amenable for motif search and analysis.

The sparsification consists of two steps: First, we discard all links whose weights
are in close proximity to 0.5. More precisely, every link whose average weight (over all
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Figure 3.6: Schematic overview of the two steps for constructing the directed network (sparsification): (1)
discard links close to 0.5 (2) induce directionality for remaining links.

epochs) is within the closed interval [0.5−ασ, 0.5+ασ] will not be considered, where
σ is the standard sample deviation taken over all epochs over all pairs of nodes and
α is a positive real control parameter. Under the assumption of a normal distribution
with mean 0.5, the 3σ-rule states that this procedure will remove approximately 68%
for α= 1.0 and 95% for α= 2.0 of all links. A schematic overview of the sparsification
procedure is given by Figure 3.6.

In a second step, we determine for each remaining link whether it should be bi- or
uni-directional, and in case of the latter, in which direction the links should be oriented.
Clearly, all remaining link weights are now bounded away from 0.5, though it is possible,
that for different epochs a single link weight might be lower or higher than 0.5, which
makes it ambiguous which member of the node pair is the dominant sender and which
the dominant receiver. Let k+ (k−) be the number of epochs that the dPTEX Y is above
(below) 0.5 where k = k++k− is the total number of epochs for a subject. If k+/k ≥ 0.75,
we assume X to be a dominant sender and thus we induce a uni-directional link from
X to Y . Contrary, we assume X to be a dominant receiver if k+/k ≤ 0.25 and point
the link from Y to X . If neither applies (0.25 < k+/k < 0.75), we assume that X and
Y frequently change roles between dominant sender and dominant receiver. Thus, we
induce a bi-directional link between them.

3.3.2. OV E R E X P R E S S E D MO T I F S

With sparsification, we generate one directed network for each of the 67 subjects for
our motif search. Additionally, we construct an averaged effective connectivity network
(short: averaged network) by considering all epochs of all subjects together. This con-
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(a) Histogram of all significantly overexpressed 3-motifs.

(b) 74 (c) 36 (d) 78 (e) 14 (f) 6

Figure 3.7: (a) Frequency of significantly overexpressed 3-motifs over all regarded subjects after the ±σ and
±2σ sparsification, respectively. (b)-(f) All significant 3-motifs over all subjects together with their motif ID.
The yellow motif with ID 78 is also overexpressed in the averaged network.

struction results in a “virtual” subject with k = 1340 instead of k = 20 epochs. We set α
to 1.0 and 2.0 to compare on different levels of sparsity.

Since the complexity of motif search increases dramatically with the size of the motif,
we restrict our search to subgraphs of 3 and 4 nodes (further called 3-motifs and 4-
motifs). The motif search is performed as outlined in Subsection 3.2.2. We report the
motifs which are overexpressed with a z-score of at least 2.

OV E R E X P R E S S E D 3-M O T I F S

For both variants of the sparsification method (α = 1 and α = 2), we find the same
overexpressed 3-motifs over all subjects meaning that those motifs are more frequent in
our analyzed networks than in the null model (see Figure 3.7). Those five motifs are not
triangular, as they include at least one pair of nodes, which is not connected by any link.
The absolute frequency of those motifs is displayed as a histogram in Figure 3.7a for
the ±σ and the ±2σ sparsification, respectively. The analysis on the averaged effective
connectivity network confirms the over-representation of the motif with ID 78, the bi-
directional, which is the only significantly overexpressed motif that has been found for
different sparsification methods (z-scores: 88.25 for ±σ sparsification and 82.7 for ±2σ
sparsification).
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OV E R E X P R E S S E D 4-M O T I F S

In Figure 3.8a we present a histogram of all significantly overexpressed 4-motifs with
the two different sparsification levels. Twelve 4-motifs were found overexpressed in all
67 subject networks. Considering the averaged network at ±σ sparsification, we we find
3 overexpressed motifs (marked yellow in Figure 3.8, z-scores: 203.74 for ID 13260,
111.89 for ID 4382 and 14.85 for ID 4698). There were no overexpressed motifs in
the averaged network found at the ±2σ sparsification. The two 4-motifs with number
13260 and 4382, the bi-directional ring and the bi-directional star, respectively, have
the highest z-scores in the averaged effective connectivity network and are a subset of
the overexpressed 4-motifs found for every individual subject. The overexpression of
those two motifs cannot be explained by the higher number of bi-directional links in
the effective connectivity network since the null model contains the same number of
bi-directional links.

3.3.3. MO T I F -B A S E D C L U S T E R I N G
We apply Algorithm 1 from Section 3.2.3 to the averaged effective connectivity network.
Since for both sparsification methods, the 3-motif with ID 78 was significantly overex-
pressed in the averaged effective connectivity network and in every subject network, we
cluster according to this motif. Figure 3.9a shows the two clusters we find for the spar-
sified network for ±σ plotted on the template brain. The frontal brain regions seem to
be consistently part of the same cluster (red) and the distribution of the clusters across
the two brain hemispheres shows a strong symmetry. The sparser network resulting
from the ±2σ sparsification method was disconnected. Consequently, we could only
obtain a motif-based clustering of the largest connected component. The result is shown
in Figure 3.9b. For comparison, we also applied an link-based spectral clustering algo-
rithm [81] to see whether the motif-based clustering gives an advantage. Figure 3.9c
shows the result.

3.3.4. D I S C U S S I O N
The fact that the motif-based clustering reveals a strong symmetry between the two
brain hemispheres is remarkable, given that the algorithm does not work on the physical
geometry of the brain but merely on a topological level. This supports the idea of a
higher-order organization of the effective connectivity brain network. In comparison,
the result of a standard spectral clustering algorithm (link-based conductance) as shown
in Figure 3.9c gives a much weaker symmetry and a more disconnected spatial distribu-
tion of the two clusters. Thus, we conclude that a motif-based clustering may provide
meaningful structures.

However, a rather dense network (±σ) seems to be necessary for the emergence of
a higher-order structure since the clustering for the sparser averaged network (±2σ)
appears to be frail (see Figure 3.9b). This demands a further investigation which level of
sparsity results in an optimal clustering. So far, the sparsification is based on the choice
of a parameter α to eliminate nodes which cannot be identified by the dPTE as dominant
sender or dominant receivers. However, the actual directionality of each link, i.e. if it is
a uni-directional or bi-directional link, depends on the number of epochs in which the
dPTE is above or below 0.5.
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(a) Histogram of the 20 most commonly overexpressed 4-motifs.

(b) 30 (c) 4370 (d) 4374 (e) 286 (f) 4682 (g) 4382

(h) 972 (i) 4812 (j) 5086 (k) 4556 (l) 460 (m) 13260

(n) 4698

Figure 3.8: (a) Histogram of the 20 most commonly overexpressed 4-motifs over all subjects after the ±σ
and ±2σ sparsification, respectively. An asterisk marks the motifs that are also overexpressed in the averaged
network. (b)-(m) The twelve 4-motifs that are overexpressed after the ±σ sparsification in every subject with
their motif ID. The yellow motifs (g), (m) and (n) are overexpressed in the averaged network.
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(a) ±σ sparsification (motif-based) (b) ±2σ sparsification (motif-based)

(c) ±σ sparsification (spectral clustering)

Figure 3.9: (a-b) Two Clusters (red and yellow) based on motif 78 on the template brain for different sparsifi-
cations. Blue colored regions in (b) consist of non-participating nodes (nodes that are not part of any motif
78 instance). (c) A spectral clustering on the same network as in (a) breaks the symmetry between brain
hemispheres and seems less coherent.

In the following section, we complement our study with a different approach, which
does not emphasize on the roles of dominant senders and receivers, but on the magnitude
of (potentially bi-directional) information flow. Consequently, we have to revise the
network construction and base it on the PTE directly, for which directionality does not
need to be induced by deviations over different epochs, but emerges naturally. Moreover,
instead of fixing the sparsification parameter to some fixed ασ, we will investigate a
larger interval of possible thresholds, which results in different densities for the network.
In addition to the alpha2 frequency band, we will also expand the study with data
from the theta frequency band to see whether different frequencies give rise to different
clusters in the brain.

3.4. IN F O R M AT I O N F L O W AN A LY S I S F O R PTE
3.4.1. NE T W O R K CO N S T R U C T I O N BA S E D O N PTE
The pairwise PTE values between all 78 ROIs imply a fully connected network GPTE where
each ROI is a node and the PTE is the weight of each link. In order to filter out noise and
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a)

b)

Figure 3.10: Left axis: change in link density (in absolute number of links) with respect to different values of
τ. Our selection of τmin corresponds to a relative link density of 0.7 (4204 links, counting each bi-directional
link as two links). Right axis: number of isolated nodes. Our selection of τmax is the highest possible τ for
which there is still 1 weakly connected component (i.e. the network has no isolated nodes). The grey shaded
areas indicate the resulting interval [τmin,τmax ] for a) alpha2 and b) theta band.

focus on the most important connections possessing the highest PTE values, all links with
a PTE below or equal a certain threshold τ are discarded (set to zero) and all links above
τ remain without a weight (set to one). This procedure eliminates weak connections
which might otherwise obscure the inherent topology induced by significantly stronger
connections. If (for a fixed h) PTEX Y > τ and PTEY X > τ for two ROIs X and Y , a
bi-directional link between X and Y is set. Similarly, for PTEX Y > τ ≥ PTEY X , only a
uni-directional link from X to Y is set. Thus, by selecting an appropriate threshold τ,
the fully connected weighted network GPTE is transformed into a sparser, directed and
unweighted network G(τ), also known as binary directed network.

Finding an appropriate threshold τ is a challenge in itself [84], which we will not
undertake, since one singular value for τ will not be needed in our approach here.
Instead, we consider a class of networks G(τ) created by sampling τ from an interval
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Table 3.1: Network properties of G(τ) for τ at the endpoints of the interval [τmin,τmax ]. For alpha2 we have
[τmin,τmax ] = [1.8050, 1.8636] and for theta [τmin,τmax ] = [2.0095,2.0535].

alpha2 theta
G(τmin) G(τmax) G(τmin) G(τmax)

#uni-directional links 1006 848 648 799

#bi-directional links 1601 81 1776 56

average degree 53.949 12.949 53.846 11.679

assortativity -0.105 -0.129 -0.351 -0.062

link density 0.700 0.168 0.700 0.152
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Figure 3.11: Overexpressed 3-motifs for alpha2 band data in the interval [τmin,τmax ]. The area of the
circles scales with the z-scores. The numerical value of the z-scores is plotted on top of each circle for better
comparison. Note that motif 78 has consistently the highest z-score.

[τmin,τmax]. Setting τ= 0 results in a fully connected network whereas setting τ to the
maximum of all PTE values results in an empty network of 78 isolated nodes. Clearly,
these extreme thresholds provide networks that lack structure and present no insight.
To avoid constructing such degenerate networks, we pick a narrower interval as follows:

We set τmax to be the smallest threshold at which the obtained network is still weakly
connected, i.e. has no isolated nodes. To avoid too many weak connections, τmin is set
to the 30th-percentile of the PTE distributions (see Figure 3.2). This value eliminates a
fair amount of weak connections while the majority of the strongest connections persist.

The networks within [τmin,τmax] are all connected, but sparse enough to resemble
complex structures. At τmax itself, the link density is 0.168 for alpha2 and 0.152 for
theta, whereas the 30%-percentile of τmin corresponds to networks with a link density
of 0.7. This allows to cover a large variety of different networks in [τmin,τmax], each
representing a different perspective on the underlying data. For example, we observe
that the assortativity [85] for theta frequency band data ranges from −0.351 to −0.062
and that the ratio between uni-directional and bi-directional links is changing as well.
Table 3.1 contains the exact values of τmin and τmax together with some properties
of networks at the interval endpoints. Figure 3.10 shows how the number of links is
changing for various sampled values of τ, including the interval.
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Figure 3.12: Overexpressed 3-motifs for theta band data in the interval [τmin,τmax ]. The area of the circles
scales with the z-score. The numerical value of the z-score is plotted on top of each circle for better comparison.
Note that motif 78 has consistently the highest z-score.

3.4.2. OV E R E X P R E S S E D MO T I F S
We sample the interval [τmin, τmax] with a step-size of ∆= 0.005, for both alpha2 and
theta band data. For each sampled threshold τ, we construct G(τ) and regard G(τ) as the
original network for mfinder in order to determine all overexpressed motifs. Figure 3.11
shows the overexpressed motifs for alpha2 and Figure 3.12 for theta band data together
with the corresponding z-scores.

We observe that motif overexpression depends on the chosen threshold τ. For exam-
ple, in the alpha2 band motif 74 and motif 14 were only detected in very sparse networks
close to the connectivity threshold τmax . Moreover, there are gaps at certain ranges of
τ in which a motif does no longer fulfill all overexpression criteria, e.g. motif 102 at
τ= 1.85 and τ= 1.855 for alpha2 or motif 6 at τ= 2.025 and τ= 2.050 for theta.

From all overexpressed motifs, motif 78 stands out for the following reasons: Firstly,
motif 78 is overexpressed in both, alpha2 and theta, for a large part of the interval
[τmin,τmax] without gaps between our sample points. Secondly, the z-scores for this
motif are always higher than the z-scores of any other overexpressed motif for the cor-
responding thresholds. Hence, we select motif 78 as our motif M for the motif-based
clustering in Section 3.4.4.

3.4.3. AP E X-R AT I O A N D OV E R L A P W I T H HU B S
Motif 78 encodes a pattern in which one central node is bi-directionally linked with two
otherwise disconnected nodes. The node at this central position of motif 78 is known as
apex and has been shown to be related to brain dynamics in previous studies [86–89].
In Figure 3.4, the node labeled “C” is at the apex-position. The apex-ratio of a node is
the ratio between the node occupying the apex-position divided by its total participation
in instances of the complete motif 78. For example, an apex-ratio of 1 corresponds to a
node that is always at the apex-position of motif 78, and never at a different position.
Figure 3.13 shows a mapping of the average apex-ratio to the template brain for both
frequency bands. The average was taken over equally distributed sample points, taken
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a) b)

Figure 3.13: Average apex-ratio mapped to the template brain. The average was taken over equally distributed
sample points of a) [τmin,τmax ] = [1.8050,1.8636] for alpha2 and b) [τmin,τmax ] = [2.0095,2.0535] for
theta. The step-size for sampling was ∆= 0.005. The nodes with the highest apex-ratio in the theta band are
found in posterior brain regions, where for alpha2 the apex-ratio is lowest.

from the corresponding [τmin,τmax] with a step-size of ∆= 0.005.
Following the study by Sporns et al.[64] conceptually, we are interested in the relation

between the apex-ratio of a node and its degree. A node is a high-degree node, if its degree
(number of incoming + outgoing links) is at least as large as the average degree of the
network plus one standard deviation. Figure 3.14 shows that most of the nodes with
the highest apex-ratio are also high-degree nodes in both the alpha2 and theta band for
τ fixed to 1

2 (τmin + τmax). While the apex-ratio and the number of high-degree nodes
change with τ, we observe (not shown) a similar relation for different values of τ as well.
More specifically, when considering the sample points between τmin and τmax described
in the previous paragraph, the Pearson correlation coefficient between the apex-ratio
and the degree for all nodes with a positive apex-ratio lies within [0.53, 0.86] for alpha2
and within [0.55, 0.95] for theta.

3.4.4. MO T I F -B A S E D C L U S T E R I N G
The first step to apply the motif-based clustering to the brain is to fix a motif M . In
Section 3.4.2, we identified motif 78 to be of high importance: it is prominent in both,
the alpha2 and theta band and provides continuously the highest z-score of all motifs,
which designates it as the strongest candidate. Moreover, motif 78 is most robust against
changes in τ as it was overexpressed at almost all sample points taken within [τmin,τmax].
However, it is not obvious, which of these sample points would result in the best possible
network representation to create a meaningful clustering. To circumvent the selection of
a fixed single threshold, we define a set of different thresholds T, each of them related
to a different network and thus to different motif adjacency matrices. This is similar to
the analysis done for Figure 3.11, where we sampled [τmin,τmax] with a step-size of
∆= 0.005, resulting in a set

T∗ = {τmin + k ·∆ | k = 1, . . . , 12}. (3.13)

While this set is sufficient to get an idea about the impact of a changing τ on motif counts
and makes for some compelling visualizations, equally distributed sample points result
in a bias, since the change in the networks (i.e. their numbers of links) does not scale
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a)

b)

Figure 3.14: ROIs sorted in decreasing order by their apex-ratio. Red bars mark high-degree nodes, i.e. nodes
with a degree higher than the average degree plus one standard deviation. a) alpha2 band for τ= 1.834, b)
theta band for τ= 2.032.
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linearly with τ as shown in Figure 3.10.
To avoid this bias, we pick the sample points T such that between each two con-

secutive sample points the corresponding networks change by the same amount. The
smallest amount of change between two networks is the existence (or absence) of a
single link. If we begin with the network G(τ= τmin) and slowly increase τ by ε until
G(τ) and G(τ+ ε) differ by exactly one link, we add τ+ ε to our set T of sample points
and continue this procedure until we eliminate the next link and so on. Thus, T consists
of all thresholds τ within [τmin,τmax] at which the corresponding networks change by
one link2, creating an unbiased sample of high resolution.

For a graph G(τ) based on a threshold τ, let the corresponding motif adjacency
matrix be denoted by WM (τ). Then, summing the motif adjacency matrices over all
networks generated by the elements in T results in an aggregated motif adjacency matrix

WMag g
=
∑

τ∈T

WM (τ) (3.14)

for each frequency band. Applying the motif-based clustering algorithm to the aggre-
gated motif adjacency matrix given by Equation (3.14) constructs a partition that takes
the structure of different networks into account. Motifs consisting of strong links (i.e.
with weights close to τmax) will be part of many of these networks, giving them more
importance when searching for a partition of low motif conductance. In contrast, motifs
with weak links (weights close to τmin) receive less consideration accordingly.

Although the aggregation avoids to base the complete analysis on a single fixed
threshold, it introduces another difficult choice: the sample interval [τmin,τmax]. Our
reasoning to set τmin to the 30th-percentile of the PTE-distribution and τmax to the
weak connectivity threshold has been discussed already in Section 3.4.1. To add to
this reasoning, we want to point out that in general, a small change to the endpoints
from [τmin,τmax] will only result in small changes to aggregated clusterings, while a
small change to a clustering based on a single threshold is comparably more sensitive.
Ultimately, setting the interval [τmin,τmax] must, to some extent, remain a matter of
preference, as it reflects which of the measurements (PTE values) are expected to be
meaningful.

The results of the partition of the brain into 2 clusters are shown in Figure 3.15 for
the alpha2 band data and in Figure 3.16 for the theta band data, based on our preference
for [τmin,τmax].

3.4.5. D I S C U S S I O N

OV E R E X P R E S S I O N O F M O T I F 78
Concerning network motifs, we observed that the overexpression of motif 78 we have
shown for the dPTE-based networks of Section 3.3 persists for the PTE-based network
construction as well. Two other motifs, 14 and 74, which can be regarded as degenerated
forms of motif 78 missing one uni-directional link, have also been identified as overex-
pressed in both cases (dPTE and PTE). Due to the overview over a range of thresholds
(Figure 3.11 and Figure 3.12), we can explain the origins of the overexpression of these

2Note that the values in T are exactly the PTE values of the links that get removed by this procedure.



3.4. IN F O R M AT I O N F L O W AN A LY S I S F O R PTE

3

47

Figure 3.15: Partition of brain networks into two clusters of nodes based on motif 78 for the alpha2 band. 15
out of 78 nodes did not participate in any motif 78 instance and are shown as a separate third cluster.

related motifs: Since motifs 14 and 74 are only overexpressed for higher thresholds τ
and, thus, only for sparser networks, their appearance seems to be a direct consequence
of the applied threshold removing the weakest link in motif 78. Thus, motifs 14 and 74
are most likely consequences of the applied threshold not representing new triangular
relations but supporting the overall dominance of motif 78.

The overexpression of motif 78 is also in line with previous research stating the same
result for the structural brain networks of the macaque and the cat [62]. Gollo et al. [90]
applied neural mass models on the macaque connectome and identified motif 78 as an
important motif for the dynamic core of the brain network. Furthermore, a recent study
by Wei et al.[91] singled out motif 78 as an important motif for the information transfer
in functional brain networks. In particular, a node at the apex position of motif 78 acts as
a bridge for the information flow between its neighbors and the overexpression of motif
78 could represent the basic principle of segregation and integration at the macroscopic
level of brain regions [62]. The principle of segregation and integration originates from
neuronal dynamics where signals from spatially segregated neurons are integrated with
each other into one coherent signal [92–94]. Further, Honey et al. [63] showed that the
participation of a node in motif 78 has a high correlation with being a hub of the network.
The overexpression of motif 78 together with its close relation to hubs confirms previous
findings identifying hubs as drivers for the integration of information flow [64, 90, 95].
In addition, the overexpression of motif 78 in both frequency bands, alpha2 and theta,
strengthens the claim even further that motif 78 is a general building block of effective
connectivity networks and therefore an important feature for the information flow in
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Figure 3.16: Partition of brain networks into two clusters of nodes based on motif 78 for the theta band. 2 out
of 78 nodes did not participate in any motif 78 instance and are shown as a separate third cluster.

brain networks.
We showed that the hubs of the effective connectivity network often take on the apex

position of motif 78. This hub-apex relation has previously been shown by Sporns et
al. [64] for structural brain networks. We now extended this finding to the effective
connectivity networks, identifying another shared feature of brain structure and function.
The effective connectivity hubs seem to be located more in the front for the alpha2 band
and in posterior regions for the theta frequency band (Figure 3.13). Considering these
opposite locations together with the opposite directions of information flow that have
been discovered by Hillebrand et al. [50], these effective connectivity hubs seem to be
the targets of the global information flow. Thus, one could argue that their target position
in the global information flow patterns makes these hubs “slaves” of the information
flow, which is line with a previous study by Gollo et al. [90]. These findings support
earlier studies by Moon et al. [55] and Meier et al. [96], which showed that hubs play
an important role for the global network dynamics, and extend them from the structural
to the functional domain.

C L U S T E R S O F T H E F U N C T I O N A L B R A I N N E T W O R K

When analyzing the global intertwined organization of motif 78, we identified spatially
coherent clusters in both frequency bands. Overall, the motif-based clustering algorithm
split the brain in three major parts, the frontal lobe, the occipital lobe and the rest
corresponding to a joint cluster of temporal and parietal lobe. Without including any
spatial information in the construction of the directed networks or any restriction on
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locations for the performed clustering, we were able to recognize this well-known global
spatial organization of the human brain in our obtained clusters.

As a commonality between the alpha2 and theta band, the frontal regions seem to
be nearly consistently together in one cluster. Moreover, in alignment with the recent
study of Hillebrand et al. [50] we also observe differences in the global patterns between
high and low frequency bands. Whereas in the theta band, the posterior regions belong
together with the frontal lobe in one cluster and thus participate in motif 78 together
with the frontal lobe, the posterior regions in the alpha2 band do not participate in
motif 78. For the theta band, the frontal and the occipital lobe apparently share many
interactions in the form of motif 78 because the clustering algorithm does not split them.
This strong higher-order interaction between posterior and frontal brain regions could
relate to the previously described global pattern of information flow between frontal
and posterior regions in the theta band [50, 54].

The non-participating regions in the alpha2 band consist mainly of strong hubs in
posterior brain regions, which in our constructed networks have no in-degree but a
significant out-degree. These nodes cannot participate in any instance of motif 78 as
they would need at least one incoming link. Thus, the previously described pattern of
information flow from the posterior to the frontal regions in the alpha2 band is more
likely based on the strong sending links, and less on this particular motif. However, the
high density of motif 78 in the frontal regions might still play a role for the integration
of the received signals from the posterior regions.

3.5. CH A P T E R SU M M A RY
The motif search for different frequency bands resulted in the dominant overexpression
of motif 78 in networks generated over a wide range of thresholds. This motif, which was
also observed in previous studies and our dPTE-based networks, seems to represent a
general building block for the information flow in functional brain networks resembling
the organizational principle of segregation and integration. The motif-based clustering
revealed the higher-order organization of effective connectivity on a global scale. The
differences between higher and lower frequency bands could be traced back to the
interaction pattern between the posterior regions and the frontal regions. In the theta
band, the frontal regions participated in many instances of motif 78 together with the
posterior regions, pointing towards a strong integration of information flow between
those spatially segregated areas. In the alpha2 band, the posterior regions are no longer
part of any cluster as they miss necessary bi-directional links to participate in motif 78,
although the segregation between the frontal regions and the remainder of the brain is
still observable.





4
EP I D E M I C S W I T H

T I M E -D E P E N D E N T RAT E S

Epidemic models like the SIS or SIR model enable us to describe simple spreading processes
over networks but are often not sufficient to accurately capture more complex network
dynamics as exhibited by sophisticated and malicious computer worms. Many of the common
assumptions behind epidemic models do not necessary hold if the process under investigation
spans big networks or large scales of time. We extend the standard SIS network model by
dropping the assumption of a constant curing rate in favour of a time-dependent curing rate
function, which enables us to reflect changes in the effectiveness of the active worm removal
process over time. The resulting time-dependent mean-field SIS model allows us to study
the evolution of the size of computer worm bot-nets. We exemplify the complete procedure,
including data-processing, needed to obtain a reliable model on data from Conficker, an
extremely resilient computer worm. Using empirical data obtained from the Conficker
sinkhole, we fit long time periods of up to 6 years on multiple scales and different levels of
noise.

This chapter is based on a published paper [97].
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4.1. IN T R O D U C T I O N
Computer worms have become a plague in today’s Internet. While their local mechanisms
of propagation can be reverse engineered and are well understood, their global impact
remains hard to estimate. Armed with the potential to spread indefinitely, not even
the authors of the worms might be able to predict how many machines will end up
compromised as part of a worm’s botnet.

While mathematical models for epidemics can be applied to estimate the size of bot-
nets over time [98], [99], many of them rely on strong assumptions which might not be
fulfilled by the networks or the worms under consideration. This makes it especially hard
to fit empirically obtained data from measurements with those models. First of all, most
worms start spreading undiscovered and apply camouflaging techniques, so that data
from the early infectious periods are often lacking. Since infected machines are subject
to different up and down-times found in various environments, they might appear or
disappear in networks at different points in time. Worms can also hibernate undetected
on media like USB-sticks, possibly allowing them to reinfect even cleaned up machines.
To complicate matters even more, the spread of computer worms is additionally influ-
enced by humans that apply various sorts of counter-measures, like patches, blocking of
certain IP address ranges or re-routing and filtering network traffic, sometimes in very
disruptive manners.

All these complex behaviours were observable for one of the prime examples of a long-
lasting continous battle against a maliciously growing computer worm: Conficker [100].
At its highest peak, Conficker was estimated to had infected over 9 million of Windows
machines worldwide [101], creating one of the largest botnets in the history of the
Internet. The command and control structure of this botnet was disrupted by using
a sinkhole [102], a server that intercepted all calls from infected machine originally
addressed to reach the bot-masters. The log-files of the sinkhole allow us to view Con-
ficker’s spread on very different levels of granularity by filtering the infected IP addresses
by their autonomous systems (AS) and, for example, aggregating them again to the level
of individual countries.

Especially on AS-level, the data can be noisy and sometimes exhibit unexpected
patterns, as the worm was removed with varying effectiveness over time. To properly
address this data, an extension of the traditional epidemic models is needed, which is
able to describe the evolution of a worm over long periods of time. Our main contribution
is to propose a new time-dependent mean-field SIS-model and apply it to the case of
Conficker. In particular, this chapter is structured as follows:

• In Section 4.2, we describe some traditional epidemic models used for computer
worms and propose our new and general time-dependent mean-field SIS-model,
which takes the aspects of reinfection and applied countermeasures into account.

• Section 4.3 explains how the general model needs to be further adjusted to the spe-
cific case of Conficker, how the sinkhole data was processed and critically reviews
the legitimacy of our underlying model assumptions when put into practice.

• Afterwards, we fit our model to the actual Conficker data in Section 4.4. We
show that our model deals better with the inherent noise of the data by providing
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high quality fits comparable to previously introduced models. For special cases in
which the decline of the computer worm does not follow a strictly monotonically
decreasing pattern, our model is still able to give a reasonable explanation of the
data as it allows for changes in the effective worm removal process, which is not
possible for monotonous models.

• Finally, Section 4.5 relates our model to previous work on computer worm research
and Section 4.6 concludes with a discussion on possible applications of the new
model and ideas on future research.

4.2. EP I D E M I C MO D E L S
This section describes classical epidemic models, which we will later use as a reference,
and introduces our main contribution: the time-dependent mean-field SIS-model.

4.2.1. TH E PO P U L AT I O N -B A S E D SIR-M O D E L
The population-based Susceptible-Infected-Removed (SIR) model, originally described
by Kermak and McKendrick [103], describes a spreading process in a fully mixed popu-
lation, for which the corresponding underlying network is the complete graph, in which
each of the N individuals can be in one out of three possible compartments: I for in-
fected, S for susceptible (to infection) or R for removed. The dynamics are described by
the following set of differential equations

dS
d t
=
−βSI

N
,

dI
d t
=
βSI
N
−δI ,

dR
d t
= δI (4.1)

where β is the infection rate and δ is the rate at which infected individuals are removed
from the population. Both β and δ are assumed to be constant in classical SIR theory,
in which case set (4.1) was already solved analytically [103] in 1927.

Individuals in SIR either stay in compartment S or make the transition

S→ I → R.

Consequently, the number of susceptible hosts over time is always monotonically de-
creasing within this model. Similar to the SIS-model, which we introduce next, also the
SIR model can be generalized to contact networks [104]. In this work however, we will
use the simple original SIR model defined over fully mixed populations as a base-line
for comparison with our more sophisticated time-dependent model.

4.2.2. TH E NE T W O R K-B A S E D SIS-M O D E L
The network-based Susceptible-Infected-Susceptible (SIS) model [105–107] is a Marko-
vian model that describes a spreading process with possible reinfection for an underlying
contact network. Each node of the network can be in two possible compartments: I
for infected or S for susceptible (to infection). A network of N nodes can thus be in 2N

different states.
Usually, two independent Poisson processes, each with constant rate, determine the

transitions between these states. The infection process determines for each susceptible
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node its transition to the infected compartment dependent on the number of infected
neighbors. A node can only become infected if it shares a link to an already infected
node. Each infected neighbor contributes with an infection rate of β to the infection.
The curing process determines for each infected node its transition from the infected to
the susceptible compartment with a corresponding curing rate δ.

As the state-space of the SIS Markov model grows exponentially in N , computing the
probabilities of infection per node becomes quickly intractable for large networks. Mean-
field approximations [105, 106, 108] are a common technique to reduce the size of the
governing equations and make them amenable for analytic solutions. The N-Intertwined
mean-field approximation model [109] (NIMFA) is currently the best continuous-time,
first-order mean-field approximation. Given a fixed network represented by an adjacency
matrix A, in which each entry ai j indicates the existence of a link between nodes i and j,
NIMFA approximates the probability vi(t) that a node i is infected at a certain time t by

dvi(t)
d t

= −δvi(t) + β(1− vi(t))
N
∑

j=1

ai j v j(t). (4.2)

These equations can be solved to determine the steady-state infection probability vi∞

of each node i, where dvi(t)
d t = 0 and from which the average steady-state fraction of

infected nodes

y∞ =
1
N

N
∑

i=1

vi∞ (4.3)

can be computed.
If an r-regular graph1 is considered as the underlying contact network, the infection

probability is the same for each node due to symmetry: vi(t) = v(t) = y(t). Thus,
Equation (4.2) simplifies to

d y(t)
d t

= β r y(t)(1− y(t))−δ y(t) (4.4)

The particular Equation (4.4) was studied by Kephard and White [110], who gave the
solution

y(t) =
y0 y∞

y0 + (y∞ − y0)e−(β r−δ)t (4.5)

where the evolution of the fraction y(t) of infected nodes is described by the initial
fraction y0 of infected nodes and the steady-state fraction of infected nodes

y∞ = lim
t→∞

y(t).

While Equation (4.4) only holds for regular networks, it gives an excellent starting point
for the development of a time-dependent model, as we will see in the next subsection.

1A graph G is r-regular if each node in G has degree r.
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4.2.3. TH E T I M E -D E P E N D E N T ME A N -F I E L D SIS-M O D E L
If the source for an infection or for curing is not constant, the fixed rates β and δ have
to be transformed into functions β(t) and δ(t) to describe the rates for the infection
and curing processes at any time t. The time-dependent extension of Equation (4.4) is

d y(t)
d t

= β(t)r y(t)(1− y(t))−δ(t)y(t). (4.6)

While the exact Markovian SIS dynamics seem to be impossible to solve for time-depen-
dent rates, even for highly symmetric cases as the complete graph, Van Mieghem [111]
shows that the differential equation (4.6) can be solved exactly to determine the evolu-
tion of the fraction of infected nodes y(t) over time by

y(t) =
exp

�

∫ t

0 (rβ(u)−δ(u))du
�

1
y0
+ r

∫ t

0 β(s)exp
�∫ s

0(rβ(u)−δ(u))du
�

ds
. (4.7)

A convenient short-hand is to define the net dose as

ρ(t) =

t
∫

0

(rβ(u)−δ(u))du (4.8)

which equals the net average number of infections reduced by all curings in a time
interval [0, t] for a particular node in the r-regular graph. Using the net dose (4.8),
Equation (4.7) becomes

y(t) =
eρ(t)

1
y0
+ r

∫ t

0 β(s)e
ρ(s)ds

. (4.9)

The main quantities in (4.9) are the degree of the regular network r, the initial fraction
of infected nodes y0, the time-dependent infection rate function β(t) and the curing
rate function δ(t). We describe in subsection 4.4.1 how the parameters {r, y0} and the
functions {β(t),δ(t)} can be determined to match the infection curve of the Conficker
worm. For the remainder, we will refer to this model in short as the time-dependent
SIS-model.

4.3. ME T H O D O L O G Y
This section outlines the necessary steps before applying any epidemic model (like the
ones introduced before) to measured data from a sinkhole. We will first describe the
Conficker data, how it was processed and why we think that the time-dependent SIS-
model is a reasonable choice to describe the propagation of the worm.

4.3.1. DATA S E T S
All data of the Conficker worm is based on logfiles from the sinkhole. The sinkhole was
used to disrupt the update mechanism of Conficker, which connected to 250 pseudo-
randomly generated URLs in order to get payload (i.e. instructions, malware or new
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functionality) from its original authors. By registering the domain names before the
botmasters, and redirecting every access to a central server (the sinkhole), the worm
was effectively cut off from its authors.

There were some partially successful attempts of the botmasters to regain control
over the Conficker botnet, made possible due to mistakes during the sinkholing process.
This resulted in new variants of the worm, which employed a more sophisticated up-
date mechanism. However, after April 2009 the botnet remained under control. From
this perspective, Conficker provides an interesting case study of the propagation of an
unaltered computer worm over a reasonably long period of time.

In total, the sinkhole logfiles provide us data from February 2009 to September 2014
and contain over 178 million unique IP addresses. With the help of GeoIP-databases [112]
and IP-to-ASN-lookup [113], these IP addresses were associated with the corresponding
ISO country code and autonomous system (AS). Thus, the data can be viewed at different
levels of granularity:

• global: all unique IPs for the complete sinkhole worldwide

• country: all unique IPs belonging to a specific ISO country code

• autonomous system: all unique IPs belonging to a specific AS

In total, the IPs belong to 241 different ISO country codes and to over 34.000 different
autonomous systems.

4.3.2. PR E P R O C E S S I N G
Botnet size estimation Accurate estimations of the amount of infected machines is a
difficult problem (see Abu Rajab et al. [114]), as long as our only way for identification
of a machine is via its IP address. On the one hand, it is possible to undercount because
multiple infected machines might share a common IP address due to Network address
translation (NAT). On the other hand, a single infected machine might be represented
by multiple IP addresses due to different ISP policies. To avoid this overcounting, the
number of IP-addresses needs to be corrected by a DHCP-churn rate, which varies over
countries and ISP. Determining accurate DCHP-churn rates is a challenge in itself (see
Moura et al. [115]), which we will not undertake here.

Instead, we aggregate the unique IP-addresses over short time slots of one hour. We
consider the DHCP-churn effect on this time scale to be minimal. Using short time slots
introduces another source of undercouting because not every infected machine might be
contacting the sinkhole every hour (for example they might not be powered). The hourly
values are then averaged out over a time slot of a week, eliminating biases introduced by
diurnal patterns. Accordingly, together with the NAT-effects, our estimate of the infected
machines should be considered as a lower bound.

Data cleansing While analyzing the sinkhole data, missing measurements become ap-
parent as there are several periods ranging from a few hours to a few days in which the
number of IPs drops down to zero. We account technical malfunctions of the infrastruc-
ture (i.e. downtime of the sinkhole) for these artifacts. Consequently, we remove these
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outliers before applying any model fitting by the following procedure: for each datapoint
z of week w, we compute the difference between z and the median of all datapoints in
a time window spanning ±10 weeks from w. From all datapoints, we exclude the 10%
with the highest differences. This procedure does not remove all outliers for all cases,
but reduces their impact on the fitting procedure considerably.

Normalization In order to apply the time-dependent epidemic model (4.6), the data
need to be normalized, because y(t) describes the average fraction of infected nodes
and not the number of infected nodes in the networks. An accurate normalization would
use the amount of vulnerable machines, which is not known to us. In fact, the Conficker
worm spreads only in unpatched versions of all major Microsoft Windows versions up to
Windows Vista and Server 2008, for which we have not found reliable estimates. Instead,
we use the peak point of infection to generate a relative scaling. After the aggregation
and data cleansing, we determine the maximum number pmax of infections over the
whole infectious period and compute the scaling factor sy by

sy =
k

pmax
(4.10)

where k is a real number between 0 and 1. For our fitting procedure, a value of k = 0.9
proved to be sufficient and was used if not stated otherwise. The scaling factor sy can
be used to fit the original data as we will discuss in Subsection 4.4.1.

We use a bin size of one week to count the unique IPs, resulting in 280 bins for the
complete infectious period. This period is linearly transformed on the horizontal axis so
that the starting point of the infectious period maps to 0 and the end point maps to 1.

4.3.3. MO D E L AS S U M P T I O N S
The dynamics of the Conficker-spread are heterogeneous, because different infection
vectors are invoked to infect new machines and networks. For example, a person might
obtain the virus by plugging out his USB-stick from an infected computer. Much like
an actual biological disease, this person could traverse large amounts of space and time
before he triggers a new infection with his USB-stick on a different machine. This and
similar effects make the construction of an actual (dynamic) contact network impossible.
Considering the extremely large scale of the Internet and the long period of time (6
years), it seems completely unreasonable to assume that any (simple) model would be
able to reflect this degree of complexity.

However, the time-dependent mean-field SIS-model (4.6) can be refined to capture
the basic observable infection patterns. In order to justify the refined model, we re-
view the basic assumptions and argue to which extent they are adequate in the case of
Conficker.

Constant spreading rate As Conficker was disconnected from its authors by the sink-
hole, its code remained largely constant for the whole infectious period. There exist some
updated versions of Conficker (named Conficker C, D and E) at the very beginning of the
logged infectious period (up to April 2009), but these updates were used to improve the
command and control structure of the virus and to add a scareware payload to it. The
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main infection vectors (NetBIOS vulnerability, USB-sticks and Shared Folders) remained
largely unaffected by these changes. It is thus safe to assume, that the spreading rate of
Conficker remained constant. For this reason, we will set β(t) = β in Equation (4.6).

Time-dependent curing rate function Contrary to the infection rate β(t), we as-
sume that the curing and removal forces were not constant. In general, the clean-up
of Conficker was regarded to be rather involved as the worm possessed several counter-
measures. The curing rate function δ(t) of our model (4.6) reflects the combined effort
that was spent to fight Conficker, i.e. by patching the vulnerability, use of removal tools
and also the replacement of infected machines. As some of the countermeasures did
not provide complete immunity, reinfection with Conficker was possible and is well doc-
umented [100]. This effect is reflected by the basic SIS dynamics. Next to SIS, our
model is able to simulate removal as in the SIR-model [106] by increasing the curing
rate of a node. Once a node’s curing rate is very high, its infectious periods become very
small, which can be regarded as a removal or immunization effect. Although our model
(4.6) never explicitly removes nodes from the network, the time-dependent curing rate
blends both SIS and SIR-dynamics and thus captures effects like permanent removal of
machines or an acquired immunity, for example by system upgrades without excluding
reinfection dynamics like SIR.

Network topology The Equation (4.6) of the time-dependent mean-field SIS-model
demands an underlying and constant contact network of degree r. This is a necessity
from a model point of view, as computation would quickly become intractable otherwise.
While the Internet is clearly not constant in its size, we justify the regularity assumption
by one of the infection vectors of Conficker. The technical reports (see Porras et al. [116])
suggest that Conficker used a scan-and-infect subroutine that occasionally scanned ran-
dom IP-addresses2 for new victims. The worm did not flood the complete IP-space but
concealed itself by connecting only to a limited amount of possible new victims. Thus,
for the fixed allocated time-slots that we investigate, we assume that there is an upper
bound on the possible scan-attempts for an infected machine, which is independent of
the configuration or network properties (e.g. bandwidth). This upper bound translates
into an estimate on the degree of the underlying contact network, which is our parameter
r.

4.4. MO D E L AP P L I C AT I O N

4.4.1. MO D E L I N G T H E SP R E A D O F CO N F I C K E R
The key to a good epidemic model of Conficker is to determine the time-varying parts
of Equation (4.9), namely the spreading rate function β(t) and the curing rate function
δ(t). As argued before, we assume β(t) = β as constant, so that the net dose ρ(t)
in (4.8) simplifies to

ρ(t) = rβ t − D(t) (4.11)

2Due to a bug in the pseudo-random number generator of Conficker, only one fourth of the complete IP-address
space was susceptible for this attack vector.
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where D(t) =
t
∫

0
δ(u)du is the accumulated curing dose. If we assume D(t) to be an

analytic function, there exists a Taylor series that allows us to express D(t) precisely.
The Taylor expansion is truncated after d terms to retrieve a polynomial approximation

D(t) =

t
∫

0

δ(u)du≈
d
∑

i=0

ai t
i (4.12)

with ad 6= 0. We use the last two equations to transform Equation (4.9) as

y(t) ≈
exp

�

rβ t −
d
∑

i=0
ai t

i

�

1
y0
+ r

∫ t

0

β exp

�

rβs−
d
∑

i=0

ais
i

�

ds

(4.13)

=
exp(−a0) · exp

�

rβ t −
d
∑

i=1
ai t

i

�

1
y0
+ exp(−a0) · rβ

∫ t

0

exp

�

rβs−
d
∑

i=1

ais
i

�

ds

(4.14)

=
exp

�

rβ t −
d
∑

i=1
ai t

i

�

exp(a0)
y0
+ rβ

∫ t

0

exp

�

rβs−
d
∑

i=1

ais
i

�

ds

. (4.15)

We define the products ya
0 = y0 ·e−a0 and βr = rβ to simplify the model further. Thus,

the free parameters of our model are ya
0 ,βr and ad , . . . , a1. In order to apply the model to

absolute values rather than fractions, we apply the scaling-factor from Equation (4.10):

y(t) =
eßρ(t)

sy

�

1
ya

0
+ βr

∫ t

0 eÞρ(s)ds
� with ßρ(t) = βr t −

d
∑

i=1

ai t
i . (4.16)

Since we are interested in the dynamics and not in absolute values, we will set sy = 1
for simplicity. Consequently, in all the Figures showing model fittings, the maximum
value will always be found at y = 0.9 (recall Section 4.3.2, Normalization). In summary,
the model is given by

y(t) =
eßρ(t)

1
ya

0
+ βr

∫ t

0 eÞρ(s)ds
with ßρ(t) = βr t −

d
∑

i=1

ai t
i . (4.17)

Given the preprocessed and cleansed data as input, the trust-region non-linear least
squares method provided by MATLAB is used to fit our model. The initial values for
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Figure 4.1: Global-level fitting of Conficker in time-dependent SIS and SIR model. Dotted curves are the 95%
prediction bound
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Table 4.1: Fitting parameters for global model on Conficker, 95% Confidence bounds in parenthesis.

d 2 3 4

βr 23.5 (19.55, 27.45) 12.03 (10.98, 13.08) 7.304 (5.656, 8.952)

va
0 0.333 (0.287, 0.379) 0.3554 (0.3396, 0.3712) 0.3703 (0.3556, 0.385)

a1 -1.17 (-1.64, -0.692) -5.572 (-5.813, -5.331) -7.597 (-8.23, -6.964)

a2 16.06 (14.1, 18.02) 23.29 (22.48, 24.11) 31.05 (28.61, 33.49)

a3 - -10.33 (-10.79, -9.863) -28.07 (-33.43, -22.7)

a4 - - 9.646 (6.713, 12.58)

all parameters were picked randomly between zero and one. Then, the polynomial of
degree 3 was fitted first. The parameters found for this fit were used as initial guesses
to fit the polynomial of degree 4, which significantly improved the convergence speed.
The same procedure was applied to create the fit for degree 5, based on the fit of degree
4.

4.4.2. QU A L I T Y O F F I T S AT G L O B A L SC A L E
The degree of freedom of the proposed model for Conficker is 2 + d, where d is the
order of the polynomial curing rate function (4.12). Thus, we are able to trade the
complexity of the model with its accuracy. In a first experiment, we examine which
value of d is useful for modelling the underlying data. We use the global aggregation
of all virus infections as input, because it has less noise than data from country- or
ASN-level granularity. Figure 4.1 shows how the quality of the fit and of the prediction
bounds improves by using higher degree polynomials. The adjusted R2-value is 0.96 for
d = 2 and 0.99 for d ≥ 3, indicating a good fit overall. However, a visual inspection
reveals that the fit for d = 2 is not good enough to accurately describe the decline of the
virus. On the other hand, d = 4 does not provide much more quality, but requires an
additional fitting parameter. Thus, guided by parsimony as a modelling rule, we believe
that d = 3 is a good choice for this particular case. Table 4.1 gives the actual values of
the fitted parameters.

Fixing d = 3 results in 5 parameters that need to be determined by the fitting pro-
cedure. This is one parameter more than we would use to fit the population-based
SIR-model, which is also shown in Figure 4.1d for comparison. More specifically, the pa-
rameters used for the SIR-model are the size of the population N , the constant infection
rate β , the constant curing rate δ and the initial number of infected individuals v0. As
the adjusted R2-value for SIR is with 0.99 qualitatively very high and on the same level
as for d = 3, SIR is an even more parsimonious model that works very well on global
scale.

4.4.3. QU A L I T Y O F F I T S AT SU B G L O B A L SC A L E S
Moving from global-level to country-level, we have more noise and variation in the
data since not all countries were affected by Conficker in the same way. Out of the 241
different ISO countries, we picked a subset of 40 countries (belonging to the OECD and
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the European Union) to analyse. We used again SIR as a baseline and compared it with
fits of order d = 3,4 and 5. We chose the adjusted R2-value and the sum of squared
errors (SSE) as indicators for the quality of fit. Figure 4.2 shows the distribution of
those indicators for the 40 chosen countries sorted by their corresponding quality in the
SIR-model. The fits of the Conficker-model are of high quality and only in 3 cases worse
than the corresponding SIR-model. We believe that the fitting procedure converged sub-
optimally in those cases, as 7 parameters needed to be determined, while lower order
fits were still better than SIR or equally good. A visual inspection of the fits showed
that the time-dependent SIS-model is able to fit the tail better than SIR. The latter is
forced to monotonically decline in this area while the time-dependent SIS-model can
better adapt to nearly constant viral levels which are observable in the tails of the data
for some of the countries.

Moving down to the ASN-level imposes a bigger challenge, since the number of
infected IPs becomes so low that the influence of noise grows more significant. To
circumvent this problem, we selected the 30 ASNs with the highest number of infected
unique IPs out of 34000 available for our analysis. Still, the data for some of these ASNs
is considerably more distorted than any country-level data. While gaps of missing data
on country-level usually span a couple of weeks, they can spent months or even years
for some of the ASN datasets. We expect that some sort of ISP-wide countermeasures
were used to prevent infected machines during those times to connect to the sinkhole,
though we did not find evidence for this claim.

The data-cleansing procedure is not sufficient to remove all outliers completely, so
they inevitably impact the quality of the models. Figure 4.3 shows the results in the
same way as we did for the country-level. Some of the fits are not visible as they are of
so low quality (R2 < 0.9 or SSE > 2) that they are outside our scale. We ordered all data
after the quality of the SIR-fit nevertheless. The variation in quality is much higher than
it was for the country-level: 4 out of 30 ASNs were so degenerated that every model
produced only poor fits. Similar to the country-level, we observe the time-dependent
SIS-model to be better than SIR, though with a higher relative qualitative difference
than on country-level. This is not unexpected as models with more degrees of freedom
adapt more easily to noise in general. A visual inspection of the fits on the ASN-level
showed that in not degenerated cases (i.e. high jitter or very large gaps) the models still
give a fairly good description of the spreading pattern.

4.4.4. DE T E R M I N I N G T H E EF F E C T I V E N E S S O F WO R M RE M O VA L
While fitting the absolute or relative number of infected IPs gives a comprehensive
overview about the prevalence y(t) of Conficker, the time-dependent SIS-model allows
for an additional perspective. To gain more insight in the worm removal, we look
closer to the curing rate function δ(t) and understand, what it actually means. While
changes in the curing rate can be easily interpreted as changes in the applied counter-
measures against the worm, we have to keep in mind that the most effective counter-
measures were already in place before the sinkhole recorded its data. More precisely, the
NetBIOS vulnerability was patched very fast in November 2009, 4 months before our
data collection starts. However, Conficker was remarkably resilient, raising the question
why the worm could survive despite the patch for years?
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Figure 4.2: Overview of Country-level fitting quality, ordered by SIR. On top: adjusted R2 value, on the bottom
sum of squared errors.

If we assume that the slow decline of the worm is, to a large amount, not caused by
security patches but by long-term effects like failure or substitution of infected machines
with newer ones, it seems reasonable that the population-based SIR-model gives a fairly
good description of the process. By looking at the curing rate function δ(t) and the
accumulated curing dose D(t) obtained by the fits of the time-dependent SIS-model, we
can analyse at which periods in time the removal of the worm changed. We call the time
pattern given by δ(t) the effective worm removal.

Figure 4.4 shows δ(t) and D(t) obtained by the fits on the global aggregation level.
It is interesting to see that δ(t) seems to approach a sigmoidal shape in the interval [0, 1]
once we increase the degree of the polynomial. A sigmoidal effective worm removal
starts very low, describing a time-period in which the worm is persistent and spreads
unhampered. However, this is followed by a sharp increase in curing rate, which leads to
a rapid decline in the virus prevalence. Finally, the sigmoidal shape reaches a saturation
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Figure 4.3: Overview of ASN-level fitting quality, ordered by SIR. On top: adjusted R2 value, on the bottom
sum of squared errors.

of high curing rates, which explain the low levels of persistence in the later phases of
the worm evolution and the long period of final decline.

4.4.5. SE N S I T I V I T Y O F PA R A M E T E R S
For d = 3, the time-dependent SIS-model is determined by 5 parameters: a3, a2, a1,βr
and ya

0 . Since y(0) = ya
0 , the meaning of ya

0 is clear: it defines the initial fraction of
infected IPs and thus the starting point for the spreading process. However, it is not
obvious how the course of the infection is influenced for t > 0 by a3, a2, a1 and βr? To
investigate this further, we collected all values that occurred for those parameters while
fitting each country-level dataset. To avoid outliers, we computed for each parameter the
10% and 90%-percentile. The range between both values was divided linearly so that we
end up with 5 evenly spread out values for each parameter, which are representative for
the fits. We used the median of those 5 values to define a reference curve and adjusted
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Figure 4.4: δ(t) and D(t) for global-level fitting with polynomial degrees 2,3,4 and 5.

each parameter separately to see how sensitive the model is to changes. Results are
shown in Figure 4.5.

The coefficients a3, a2, a1 have dominant influence on different phases, with a3 being
dominant at the later stages, a2 in the middle and a1 at the beginning. The curvature
of the infection itself is strongly influenced by βr , which regulates the height of the
peak and the decline of infection. During the fitting procedure, these 4 parameters are
balanced out against each other. For example: increasing βr makes for a much flatter
decline in virus prevalence, but also moves the peak higher. If the data suggests a flat
decline but a low peak, βr should be high but also with a high a1 to correct the peak.

An intriguing property of the time-dependent SIS-model is the fact that it is not
monotonous unlike the SIR model: by decreasing a3 or increasing a2, it is possible to
have an increase in virus prevalence after the maximum peak. While this behaviour is - for
the case of Conficker - not observable on country-level, there are some rare occurrences
on AS-level that suggest such a behaviour may occur in practice. Figure 4.6 shows
with AS8452 such an example and shows the corresponding fits of the non-monotonous
time-dependent SIS model in comparison to the monotonous SIR model.

4.5. RE L AT E D WO R K
In a previous work by Asghari et al. [117], the same dataset of the Conficker worm was
analyzed to show the effectiveness of anti-bot net campaigns in different countries. The
focus of our current work is different: we develop a very general epidemic model to
describe time-dependent propagation and use the Conficker data as an example to show
the applicability of such an approach. In contrast, the previous work started with the data
of Conficker and developed a non-epidemic descriptive model to extract features of the
worm prevalence on country-level. Those features were then correlated with different
institutional factors (broadband access, operating system market shares, software piracy,
etc.) to explain regional difference between the countries.

Epidemic models have already been investigated for describing spread of computer
worms [99, 118–120], mostly by extending SIS or SIR-models. A frequent approach
is addition of new compartments (see Faryad et al. for a general multi-compartmental
framework [121]) in order to describe different states of the machines under consider-
ation, for example SEIR, SIRS, SEIRD (see Peng et al. [122]). We avoid a comparison
with those model as we lack of reliable empirical data for additional compartments. Of-
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ten, only the infected and the susceptible compartment can be measured or estimated
without imposing further assumptions. Our model is only based on the susceptible and
infected compartment.

We also do not compare with models that emphasize strongly on topology like the
WPM model by Peng et al. [123], which uses 2d-cellular automatons to describe malware
propagation, which is based on a different set of assumptions.

Zou et al. [124] introduce a two-factor worm model, which fits the propagation
pattern of the Code Red computer worm well. Interestingly, a time-dependent infection
process β(t) was introduced for similar reasons as our curing rate function δ(t). It was
argued that the massive spreading of Code Red congested buffers of Internet routers
which resulted in a decline in infection rate. This assumption is unlikely to be valid
for more subtle and hideous viruses like Conficker, that spread over years, while Code
Red was literally exploding within a day. Moreover, the two-factor worm model needs
4 different compartments and 6 free parameters, which make the actual fitting for this
model much more involved than for the time-dependent SIS and the simple SIR model.
As the two-factor worm model is an extension of SIR, it also suffers from the drawback
of being monotonous, despite its change in infection rate.

Zhang et al. [125] extend the basic SIR model to a hybrid epidemic model, which
is evaluated on data from Conficker as well. Their model considers multiple ways of
infection (globally and locally) and thus does not assume - like our and many other
works - that Conficker only spread via its scan-and-infect subroutine. However, the
counter-measures and the curing was not in their focus, as no change in curing rate was
incorporated. In general, we do not compare ourselves with hybrid epidemic models,
though our model could be used as part of one in order to describe one possible way of
infection based on scan-and-infect behaviour of computer worms.

4.6. CH A P T E R SU M M A RY
In this chapter, we showed how epidemic models can be designed to describe the complex
propagation and decline patterns of long-lasting computer worms with Conficker as a
showcase. While the assumptions on the spreading process for the SIR model are very
simplistic and debatable for the case of Conficker, this simple model still provides a
surpringsly good approximation of the worms propagation pattern. We consider SIR a
good choice if the computer worm can be regarded as not changing over long periods of
time, if the data is smooth and a clean monotonous decline is expected. If any of these
conditions are violated, the time-dependent mean-field SIS model should be preferred,
since it allows for more flexibility by adapting the degree of the polynomial curing
rate function to increase the quality of the model fit. It is also possible to exchange
the polynomial with any integrable function that might represent the effective worm
removal over time.

If we assume that future worms will have the ability to adapt (for example by some
evolutionary process), they might also develop an immunity against certain counter-
measures in which case a non-monotonous curing rate function could be used to model
this behavior. Although we assumed that Conficker was not changing its spreading rate
over time, it is possible to apply the time-dependent SIS model also for worms for which
this assumption is not true. In this case, one would need to define a time-dependent
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infection rate function β(t) analogously to δ(t).
From a theoretical perspective, the fact that both the SIR and the time-dependent SIS

model can fit the same data is surprising as well and might suggest SIR being a special
case of SIS with time-dependent curing or infection rate functions. Possible future work
could investigate the relationship between both models. Because of the monotonicity of
SIR it is clear that not every propagation pattern of the time-dependent SIS model can
be reproduced by SIR. However, it might be possible that there exists a mapping from
the parameters of the SIR model to the parameters of the time-dependent SIS model in
a way that the SIR propagation patterns can be (approximately) reproduced.

On a more practical level, our work could provide some building blocks for the de-
velopment of novel worm tracking systems that would monitor the current effective
removal over time. There might also be suitable applications outside the domain of com-
puter worms for which a time-dependent epidemic model like ours could be applicable.
Examples could include diffusion of technologies, spread of memes, or fighting darknet
websites – where various measures and counter-measures over time influence the dif-
fusion pattern. While very different scenarios, it would be interesting to see whether
network epidemic models are still applicable or not.
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We introduce an extension of the SIS epidemic model that describes infection, mutation
and curing for a whole hierarchy of viruses, resembling a nested spreading process. In
our model, high level viruses are only allowed to spread to nodes that have acquired a
lower level of infection before. The simplest case of two viruses, in which one “superinfects”
the other, shows already rich dynamics that are difficult to predict by common mean-field
approximation techniques in certain cases. We derive an exact Markovian description for
superinfection in the complete network and the star network showing that the steady state
of the epidemic process is highly sensitive to the spreading rate of both viruses. Taking the
spreading rates into account, we outline conditions for epidemic outbreaks, coexistence of
both viruses and extinction cycles.

This chapter is based on a published paper [126].
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5.1. IN T R O D U C T I O N
Epidemic spreading in networks is a process that models the propagation of information,
the spread of rumors, the contagion with diseases and similar phenomena. SIS-like
models [105, 106] are amenable to analytical understanding and enable us to describe
and study effects like endemic outbreaks and extinction of viruses. We interpret a virus
as a mere metaphor for the entity or property that is transferred from one node to others
in the network.

Superinfection is a medically inspired term that originally described the process of
infecting an already infected individual with a second, usually more severe virus. This
can be due to a weakness of the immune system caused by the first virus that allows
for the infection of the second virus, which in return will dominate the first one. Hence,
superinfection can be regarded as an interaction of competing viruses, in which the
second virus is dominant, but also strongly dependent on the (pre)-infection of the first
virus.

The interactions between HIV and the Herpex Simplex Virus type 2 (HSV-2) are a well
known medical example of superinfection: Acquisition of HSV-2 significantly increases
the chances of getting superinfected with HIV and to transmit HIV to others [127].

Apart from the medical context, we see superinfection as an embedded epidemic
spreading process. This view is applicable if two conditions hold: first, there needs to be
a pre-condition for the infection with the dominant virus and second, the pre-condition
itself spreads like a virus.

We expect that several applications can be better understood if described as a su-
perinfection. One example is marketing: The knowledge about features (or the mere
existence) of a product is a pre-condition for people to make a buying decision. This
knowledge spreads via advertisement in social networks, increasing brand-awareness,
but not necessarily inducing a buying decision for each infected individual. However,
once several persons buy the actual product, first-hand experiences start spreading via
self-written reviews over social networks as well. A possible consequence is that people
pre-disposed by advertisement will now make a buying decision and start to actively
promote the product as well.

A different use case is observed in cybersecurity, in which a security vulnerability is
the precondition to acquire a piece of malware like a computer worm. Sometimes, even
a computer worm can be a regarded as a precondition to become infected by another
worm. For example, the Blaster computer worm [128] was able to spread in late 2003
to over 100.000 Windows machines, where it caused significant damage. Shortly after
Blaster, another computer worm named Welchia [129] appeared. It spread via the same
system vulnerability as Blaster, but was designed to eliminate Blaster and then to patch
the whole system. While most-likely released with best intentions, Welchia ultimately
might have caused more damage than Blaster, which shows how easy the interactions
of computer worms are misjudged.

While Welchia was not a full success, the general idea of active defense provides a
promising alternative to traditional countermeasures that rely on classical anti-virus
software only. Instead of deploying a resource-hungry scanner on each machine on the
network, a network operator might rather design an antiworm as an epidemic control
unit, which allows the removal of undesired software. This worm would only spread to
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infected machines and would eventually restore these systems back to a healthy state
once protection is no longer needed.

In order to realize these applications, this chapter introduces the fundamental the-
ory of superinfection by the use of epidemic models. After discussing related work in
Section 5.2, we describe the standard SIS-model and our model of superinfection in Sec-
tion 5.3. In Section 5.4, we show that the interaction of 2 viruses is already so complex
that standard analysis techniques like mean-field approximation produce deviations. In
order to understand the interactions between the viruses and their conditions for spread-
ing and survival, we analyze the exact Markov process for small complete networks and
small star networks in Section 5.5 in order to conclude in Section 5.6.

5.2. RE L AT E D WO R K
Nowak and May are among the first authors who focused on modeling superinfection in
their pioneering work [130]. Their research is motivated by parasite evolution for which
they provide a simple model based on an immigration-death process. Similar to our
work, a virus hierarchy is introduced in which stronger viruses dominate less virulent
strains. In particular, only the strongest virus is considered active, which means that it
is the only virus that spreads. In contrast to our work, mixed populations are assumed
and no underlying contact network is taken into account.

The case where multiple viruses are active is known as coinfection and was also
explored and modeled by Nowak and May [131]. Mosquera et al.[132] show that super-
infection can be a limit case for a coinfection process and give conditions for coexistence
of multiple viruses. Also this work does not consider different contact networks and
assumes fully mixed populations instead.

Multiple other works exist that investigate the existence and interaction of multiple
viruses in the setting of competing viruses [133–136], in which infection with one virus
provides immunity to the other (cross-immunity).

Newman and Ferrario [137] study an SIR-like epidemic model, where the infection
with one virus is a prerequisite for the infection with a second virus. While they call
their model a coinfection, it fits our definition of a superinfection very well. The authors
use a general configuration network model and evaluate their spreading process on two
examples: one network with a Poisson degree distribution and one with a power-law
degree distribution. Their model is different from ours as they consider a sequential
process, in which both viruses spread at well separated times rather than in parallel.
Also, our work is a generalization of the SIS-model and not of the SIR-model.

Wu et al. [138] study a different superinfection model by means of linear stability
analysis and extensive computer simulations on networks with power-law degree distri-
butions. Conditions for coexistence in terms of the reproductive numbers of both viruses
are given.

Superinfection has been used as a feature in many models in the field of computa-
tional biology. Prado et al. [139] show - based on computer simulations - how coevolu-
tionary cycles between pathogen virulence and sociality for hosts in contact networks
are influenced by the possibility of superinfection. Leventhal et al. [140] show analyt-
ically and with simulations how the topology of an underlying contact network may
impact the spread of competing viruses in the SIS-model. In their work, the second virus
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appears after the first virus has reached an endemic state, but can only spread to the
subpopulation of still susceptible nodes, as they assume cross-immunity. Our work can
be regarded as complementary, as we instead restrict the virus to spread only in the
subpopulation of nodes already infected by the first virus.

A similar effect to superinfection appears in information diffusion processes be-
tween different pieces of information (contagions) that traverse the network. Myers
and Leskovec [141] show that interaction between contagions can change their relative
spreading properties, having a major impact on the diffusion process. Similar effects
might trigger information cascades [142] and are observable as interacting waves in
networks [143].

5.3. MO D E L I N G SU P E R I N F E C T I O N

This section is divided in two parts: First, we present the standard Markovian SIS-model
of epidemic spreading and point out some of its properties. Second, we show how
this model can be generalized to describe superinfection by introducing mutations and
additional viruses.

5.3.1. TH E SIS-M O D E L

The standard SIS-model is a Markov chain in which each node in a network can be
in two possible compartments: I for infected or S for susceptible (to infection). Two
underlying Poisson processes govern the transition between these compartments: the
curing process is a nodal transition that changes the node’s compartment from I to S
(curing) with a fixed rate of δ. The infection process is a link based transition and changes
the compartment of a node from S to I (infecting) with a fixed rate of β for each link of
a susceptible node to an infected neighbor. Both rates β and δ are assumed to be fixed
and global constants for the whole network. The fraction τ= β/δ is called the effective
infection rate.

Depending on τ, different behaviors of the SIS process are observed. A very low
τ (for a specific topology) results in a relatively short survival time of the virus, as the
average hitting time of the absorbing state of the Markov process is very low as well.
However, there exists an epidemic threshold τc for which the virus becomes endemic
and infects a constant fraction of nodes for a considerably longer period of time [106].

Given N nodes and two compartments, the network can be in 2N different states,
which define the state space of the Markov chain. The exponential growth of the state
space makes an exact computation infeasible for larger networks. To deal with this issue,
graph-automorphisms of the network can be used to "lump" certain states together (see
Simon et al. [144]). This allows for polynomial sized representation for networks with
symmetric infectious states like the complete network (shown in Figure 5.1) or the star
network. However, this approach is not feasible for all networks. In order to analyze the
epidemic process in these networks as well, mean-field approximations are frequently
used, which we describe further in Section 5.4.
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Figure 5.1: Markov graph of the SIS-model for the complete network of N nodes. Each node here represents
one possible state of the Markov chain and is labeled with the total number of infected nodes of the underlying
network. Links represent the transition rates between neighboring states. State 0 is an absorbing state, as
there are no new infections possible once all nodes are cured.

5.3.2. TH E SU P E R I N F E C T I O N SIK S-M O D E L
We propose a natural extension of the standard SIS-model which we call the SIkS-model.
In this model, there exists a total number of k infection compartments I1, . . . , Ik linked to
viruses 1 to k, which constitute an infection hierarchy: S is only susceptible to infections
by virus 1, nodes in compartment I j are only susceptible to infections by the next higher
virus j + 1, for j = 1, . . . , k− 1. The infection rates β1, . . . ,βk describe the rate at which
these infections occur. See Figure 5.2a for an illustration of these link based transitions.

Depending on the current compartment, there are k curing rates δ1, . . . ,δk which
are nodal transitions back to S. We also introduce nodal mutation with rates µ1, . . . ,µk
as a second force of infection, which allows a node to switch to the next higher infection
level without exposure to the next higher virus by a neighbor. Figure 5.2b illustrates
these node based transitions.

The SIkS-model reduces to the SIS-model for k = 1 and µ1 = 0 and to the ε-SIS-
model [107, 145] (which is an SIS-model that allows for self-infection) for µ1 = ε for
some small ε > 0. The size of the state space for the SIkS-model is (k+ 1)N .

In order to study the effect of superinfection, we confine ourselves to k = 2 for the
remainder. In this case, the complete process is governed by 6 parameters, namely:
β1,β2,δ1,δ2,µ1 and µ2. We will occasionally call β2 superinfection rate, in contrast to
β1 which we simply call infection rate.

Finding a succinct representation of the Markov chain for the complete network in
the SIkS-model for k = 2 is more complex than for the SIS-model. As we have two
different viruses in the network, we can no longer identify a state with the total number
of infected nodes. Additionally, there exist new transitions due to the introduction of
mutation. Figure 5.3 shows a succinct representation of these transitions in a Markov
chain of size 1

2 (N + 1)(N + 2), where N is the total number of nodes. The state space
counts all possible combinations for the total number of infected nodes in the network
per virus.

In the star network, the spread of viruses is dominated by the compartment of the
center node. If the center node is in compartment S, mutation is the only way of infecting
new leaf nodes, as the only neighbor of a each leaf node is susceptible. Similarly, the
only way of virus 2 to spread towards leaf nodes is to infect the center node, which is
only possible once it is in compartment I1. The compartment of the center node is like
a switch that determines which virus may currently spread towards leaf nodes, which
are the majority of all nodes in the star network.
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β1 βkβ2

(a) Link Transitions
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(b) Nodal Transitions

Figure 5.2: Transition rate graphs for the SIkS-model.

Hence, the state space of the Markov chain of the star network is partitioned into 3
groups according to the 3 possible compartments of the center node. For each group,
the states are further ordered similarly to the complete network by all possible combi-
nations of the number of infected leaf nodes by each virus. Figure 5.4 shows a succinct
representation of all possible transitions in the star network. The size of the state space
for this Markov chain is 3

2 N(N + 1), where N is the number of leaf nodes (thus the total
number of nodes is N + 1).

5.4. ME A N -F I E L D AP P R O X I M AT I O N

The exponentially growing state space of the Markov process imposes a hard challenge for
the analysis of epidemics, especially for larger networks. In order to reduce the size of the
governing equations, mean-field approximations are frequently applied in literature [105,
108, 146]. The use of mean-field approximations allowed for the discovery of some
interesting results for the standard SIS-model, like a lower bound for the epidemic
threshold by the inverse of the spectral radius of the adjacency matrix [109].

The recently introduced GEMF-model [121] is a generalized mean-field approxima-
tion of epidemic processes with multiple compartments in multilayer networks. We
adopt the following GEMF-notations: each compartment is labelled by a number from 1
to M . The state of a node i at time t is x i(t) = em, if i is in compartment m at time t.
The vector em is a unit-vector, which is 0 at every position besides position m, where it
is 1. As each entry of x i(t) is a Bernoulli random variable, the expected value of x i(t) is
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Figure 5.3: Superinfection in the complete network: the state space of the Markov process consists of tuples
(i, j), where i nodes are infected with virus 1 and j nodes are infected by virus 2, leaving N − (i + j) nodes
in compartment S. Shown are all the possible outgoing state transitions from state (i, j) with the according
rates.

given by the compartment occupancy probability vector:

vi(t) = E[x i(t)] = [Pr[x i(t) = e1], . . . , Pr[x i(t) = eM ]]
T (5.1)

We are particularly interested in the average fraction of nodes that belong to a com-
partment m. This is equivalent to vm(t) for any time t for the complete network.

In our model of superinfection, we have M = 3 compartments labelled with S, I1, I2.
We use two layers1 to describe the spreading process of the viruses. Each layer has an
influencer compartment, which determines the spreading condition for the link based
transitions. The influencer compartment of layer 1 is I1, meaning that a node which has
a neighbor in compartment I1 on layer 1 undergoes a link transition with the specific
rates in the transition matrix of layer 1, which we name Aβ1

. Similarly, the influencer
compartment of layer 2 is I2, so any node with a neighbor in compartment I2 on layer
2 undergoes a state transition with the specific rates in the transition matrix Aβ2

of
layer 2. In addition, there exists a third transition matrix Aδ, which describes all the
nodal transitions and thus needs no influencer compartment. For our model of the
superinfection, these matrices are given by

Aβ2
=





0 0 0
0 0 β2
0 0 0



 , Aβ1
=





0 β1 0
0 0 0
0 0 0





and Aδ =





0 µ1 0
δ1 0 µ2
δ2 0 0



 .

1The GEMF-model allows for different contact networks on different layers, so it is possible to have two viruses
that spread in the same population of nodes but over different links. In our case, both viruses use the same
network.
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Figure 5.4: Superinfection in the star network with N leaf nodes: the state space of the Markov process consists
of triplets (C , i, j), where C describes the compartment of the central node, i the number of leaf nodes that
are infected by virus 1 and j the number of leaf nodes that are infected by virus 2. Shown are all the possible
outgoing state transitions from the states (S, i, j), (I1, i, j) and (I2, i, j) with their corresponding rates.

The GEMF-equations [121] are a set of non-linear differential equations that describe
the behavior of the epidemic over time for i = 1, . . . , N :

dvi

d t
= −QT

δ vi −
L
∑

l=1

 

N
∑

j=1

(al)i j v j,ql

!

QT
βl

vi (5.2)

where L is the number of layers and Al with elements (al)i j is the adjacency matrix of
the contact network of layer l with ql being the corresponding influencer compartment.
The matrices Qδ,Qβ1

and Qβ2
are the Laplacians matrices of the matrices Aδ, Aβ1

and
Aβ2

, where in general the Laplacian matrix Q of a matrix A is defined as:

Q = diag

 

N
∑

i, j=1

(ai j)

!

− A. (5.3)

Solving (5.2) gives a first order approximation for the average fraction of nodes
in each compartment for the steady state of the underlying Markov process. For the
complete network, the GEMF-equation reduces to the following:
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Figure 5.5: Expected fraction of nodes in corresponding compartments in the steady state obtained by GEMF
(left column) and the exact process (right column) in a complete network of N = 100 nodes.
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Figure 5.6: Expected fraction of nodes in corresponding compartments in the steady state obtained by GEMF
(left column) and the exact process (right column) in a star network of N = 100 nodes.
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d
d t





vS
vI1

vI2



= −





µ1 −δ1 −δ2
−µ1 δ1 +µ2 0

0 −µ2 δ2









vS
vI1

vI2





− (N − 1)vI1





β1 0 0
−β1 0 0

0 0 0









vS
vI1

vI2





− (N − 1)vI2





0 0 0
0 β2 0
0 −β2 0









vS
vI1

vI2



 .

(5.4)

The quality of the GEMF-approximation, is assessed by a comparison between the
solution of (5.4) and the exact process for the complete network of N = 100 nodes. The
values of the fractions of the exact process were determined by continuously applying
the transition matrix of the Markov process until the rate of change in the fraction of
nodes in each compartment was less than ε = 10−6 for the last 10 iterations. We assume
that the steady state has been reached if this condition is true. The parameters were set
to δ1 = δ2 = 1 and µ1 = µ2 = 0.001, while values ranging from 0.01 to 0.1 for β1 and
β2 were investigated. The results are shown in Figure 5.5.

There exists a discrepancy in the number of infected nodes by virus 1, which is most of
the time underestimated by GEMF especially for higher superinfection rates. The number
of infected nodes by virus 2, however, seems to be overestimated by GEMF, which is
most apparent for higher superinfection rates. Figure 5.7 shows the convergence of both,
the exact process and the GEMF-approximation for β1 = β2 = 0.1. These parameters
correspond to one of the 4 corners (the northern one) of the different surfaces plotted
in Figure 5.5, where a high discrepancy can be observed.

Apart from giving a rather inaccurate estimation on the fractions for the steady state,
GEMF shows a damped oscillation not observable for the exact process for the first 10
time units. These oscillations might arise in cases where the average fraction of virus 1
nodes approaches 0, indicating a near-extinction event from which the viruses recover.
A similar artifact is known from differential equations for predator prey models, and
is sometimes coined the atto-fox problem [147], where a population of less than one
individual, which would be practically extinct, is able to resurrect. As a side-effect, the
proportion of infected nodes by virus 2 is overestimated, as it would inevitably extinct
soon after virus 1 as well.

These observations lead us to the conclusion that the GEMF-approximation is rea-
sonably accurate except for cases in which the infection rate β1 is above the epidemic
threshold together with a relatively high superinfection rate β2. The next section will
elaborate on the interaction of both viruses in general.

5.5. TH E CO U R S E O F SU P E R I N F E C T I O N
The course of a superinfection is divided in 3 phases: phase 1 begins with all nodes
being susceptible, so only mutations can move a node from compartment S to I1. The
nodal mutations are necessary, but are set intentionally at small rates (µ1 = µ2 = 0.001)
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Figure 5.7: The exact process (right) and the GEMF approximation (left) over 50 time units with β1 = β2 = 0.1.
At the beginning of the process, GEMF shows strong oscillations.

in comparison to the nodal curing δ1 = δ2 = 1. This assures that mutation has only a
minor impact on the overall rate of newly infected nodes compared to their spreading
over links. We want to outline the impact of the spreading rates β1 and β2 on the process,
Therefore, we keep δ1,δ2,µ1 and µ2 at those default values for all our analysis.

Once enough nodes are infected by mutations, the spreading rate β1 determines,
whether virus 1 becomes endemic (which means that it infects a larger part of the network)
or not. If β1 is too low, the process remains at phase 1 and apart from tenuous mutations,
there is only a tiny number of infected nodes by virus 1 observable. Thus, an occurrence
of virus 2 is unlikely2.

If β1 is higher than the epidemic threshold of the corresponding network, virus 1
becomes endemic, eventually acquiring a larger fraction of the network. This marks a
transition into phase 2, which is characterized by the first mutation events that will move
single nodes from I1 to I2. Similar to virus 1 and β1, the rate of β2 determines, whether
virus 2 will become endemic as well: If β2 is too low to infect enough other nodes via
spreading, virus 2 is only observed in tiny numbers and the process remains in Phase
2 with virus 1 persistent in the network. If β2 is above a certain threshold, which we
call σl , virus 2 becomes endemic and spreads inside the population that was previously
infected, effectively reducing the fraction of infected nodes of virus 1.

The outbreak of virus 2 marks the transition to phase 3 in which a coexistence of both
viruses in the network is established. In coexistence, both viruses infect (on average) a
constant fraction of nodes in the network. The duration of the coexistence depends on
another threshold, which we call σu. If β2 is above σu, the spread of virus 2 is so strong
that virus 1 can no longer infect enough new susceptible nodes to survive. If there are
no more nodes in compartment I1 left, the number of nodes in compartment I2 goes
down to zero as well, as the tenuous mutations are a much weaker force than the nodal
curing. We call the extinction of both viruses in the network an extinction event. After

2As the majority of the nodes remains in compartment S, virus 2 would also not be able to spread effectively.
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Figure 5.8: A single simulation of the superinfection process in the complete network with N = 100,β1 =
0.1,δ1 = δ2 = 1.0 and µ1 = µ2 = 0.001. All 3 phases of the superinfection repeat rapidly in the cyclic case
while they occur only once in the time interval of 400 for the acyclic case.

an extinction event, the superinfection restarts at phase 1 and repeats until the next
extinction event. Thus, we call this process cyclic.

If β2 is in between σl and σu, a stable coexistence is maintained. Extinction events
are unlikely and the process remains in phase 3. We call this process acyclic. Figure 5.8
illustrates the course of a cyclic and an acyclic superinfection in comparison, obtained
by simulation.

The probability distribution of the Markov state space reveals the difference between
acyclic and cyclic superinfection: In the former case, the probability mass is concentrated
at network states in which a mixture of both viruses exist (Figure 5.9a). However, if β2
approaches σu, the probability mass shifts to network states, where only one or even
none (extinction) viruses exist (Figure 5.9b).

To further investigate the extinctions, we simulated superinfection in the complete
network and counted the number of simulations that resulted in at least one extinction
event. More precisely, for each combination of β1 and β2 over a certain range, we started
10 simulations for a fixed amount of time T = 400, which we assume to be long enough
to observe possible extinctions in most cases. We count a simulation as extinct if two
conditions are fulfilled: there is a time t1 at which at least 10% of all nodes are infected
with virus 2 and there is a time t2 > t1 at which all nodes are cured.

We observe that in this experiment the extinctions seem to be related to the second
largest eigenvalue ζ2 of the infinitesimal generator Q of the Markov process. Contrary to
the standard SIS-model [148], the eigenvalue ζ2 can be complex in the superinfection
model. Figure 5.10 hints that the number of extinct simulations is higher for pairs of β1
and β2 that have a complex ζ2. Although a real-valued ζ2 does not necessarily imply an
acyclic superinfection, the experiment suggests that a complex ζ2 results most likely in
a cyclic superinfection. Furthermore, discrepancies in Figure 5.5 seem to happen mostly
when ζ2 is complex, suggesting that GEMF has difficulties to capture extinctions.

Although the interactions of the 6 parameters of the superinfection model are com-
plex, a qualitative description on their influence on the average number of nodes for
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(a) acyclic (β2 = 0.03)

(b) cyclic (β2 = 0.08)

Figure 5.9: Distribution of probabilities over the state space of the Markov process of superinfection in a
complete network of 100 nodes. The rates are µ1 = µ2 = 0.001,δ1 = δ2 = 1.0 and β1 = 0.1. In an acyclic
coexistence (left) the probability mass is divided between states of mixed compartments. In a cyclic coexistence
(right), the border states in which only one sort of virus exists have a considerably higher amount of probability
mass than the mixed states.
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Table 5.1: Qualitative influence of the parameters on the average number of the nodes belonging to the three
compartments. A +-sign indicates that a high rate of the corresponding parameters will increase the average
number of nodes in that compartment while a −-sign indicates a decrease. The ∗-sign for the superinfection
rate β2 on compartment I2 is a special case: in general, the value has to be high to infect more nodes, but
a too high value results in an extinction event, negatively influencing the average number of superinfected
nodes.

µ1 µ2 β1 β2 δ1 δ2

S - + - + + +

I1 + - + - - +

I2 + + + * - -

each compartment can be devised as shown in Table 5.1. The superinfection rate β2 is a
noteworthy exception as this parameter is particularly sensitive. Since virus 2 spreads in-
side a network that dynamically changes its size in response to the infection, we assume
that σl and σu might depend on β1 and (to a lesser extent) on µ1.

Another strong influence is the topology of the underlying contact network. Fig-
ure 5.6 shows the exact process of the Markov chain from Figure 5.4 and its GEMF-
approximation in the star network of N = 100 nodes. In comparison to the complete
network shown in Figure 5.7, there seems to be no combination of β1 and β2 that allows
for a larger support of compartment I2. However, β2 has an influence on the number of
nodes infected by virus 1, which diminishes for higher values due to possible extinction
events.

5.6. CH A P T E R SU M M A RY
In summary, we proposed a natural extension of the standard SIS-model to analyze
nested epidemic processes in which a dominant virus spreads within the population
of a another virus. We presented a succinct representation of the Markov chain for
the complete network and the star network that we used to evaluate the quality of the
GEMF-approximation. In particular, we observed that for high superinfection rates β2,
the GEMF model shows damped oscillations and overestimates the fraction of infected
nodes of the stronger virus.

A closer look at the exact process revealed rich and complex dynamics, ranging from
endemic behaviour, stable coexistence to extinction cycles triggered by the occurrence
of extinction events. It has been shown that the superinfection processes in 3 different
phases that are dependent on the parameters. In particular, β2 is the most sensitive
parameter as it determines whether the process repeats itself in cycles or maintains a
state of stable coexistence.

If β2 is higher than a certain threshold σu, an extinction event will eventually eradi-
cate both viruses. We expect σu to be strongly dependent on the infection rate β1 of the
weaker virus and the topology of the underlying network. As we focused our analysis
on β1 and β2, it remains open to which extent the nodal parameters δ1,δ2,µ1 and µ2
influence the process. However, their influence is reflected in the infinitesimal generator
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Figure 5.10: Each pink square corresponds to a fixed value of β1 and β2. Its saturation is proportional to
the number of simulations that resulted in at least one extinction event, with white indicating no extinctions
at all. The blue curve interpolates for each β1 the smallest β2 for which the second largest eigenvalue of
the infinitesimal generator of the Markov process is no longer real. The underlying network is the complete
network of N = 100 nodes.

Q of the Markov process for which we observe that complex eigenvalues may occur. In
particular, a complex second largest eigenvalue ζ2 seems to be a sufficient condition to
observe extinction cycles.

So far, we were unable to find conditions for coexistence or extinctions for the star
network, which seems to be more robust against superinfection. We further conjecture
that the inaccuracies in the GEMF model are correlated to the occurrence of extinc-
tion events. Considering our model, a superinfection that cures from compartment I2
back to I1 instead of S might be worth investigating as well, with respect to real-world
applications.
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NE T W O R K PR O P E R T I E S

Networks are continuously growing in complexity, which creates challenges for determining
their most important characteristics. While analytical bounds are often too conservative,
the computational effort of algorithmic approaches does not scale well with network size.
Cartesian Genetic Programming for symbolic regression is used to evolve mathematical
equations that relate network properties directly to the eigenvalues of network adjacency
and Laplacian matrices. In particular, we show that these eigenvalues are powerful features
to evolve approximate equations for the network diameter and the isoperimetric number,
which are hard to compute algorithmically. Our experiments indicate a good performance
of the evolved equations for several real-world networks and we demonstrate how the gen-
eralization power can be influenced by the selection of training networks and feature sets.

This chapter is based on a published paper [149].
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6.1. IN T R O D U C T I O N

One of the first and most important steps for modelling and analyzing complex real-world
relationships is to understand their structure. Networks are an effective way to organize
our data so that nodes describe certain actors or entities, while relations are expressed
as links connecting two nodes with each other. The resulting topological representation
(adjacency matrix) provides an abstract model that is amenable for further analysis.
For example, algorithms for finding shortest paths, spanning trees or similar structures
usually take the topological representation of the network as input. Community detection
algorithms can cluster groups of nodes that are more connected within their group than
outside. Computing node centrality metrics allows for the identification of important
nodes or critical connections. A well-known example is Google’s Pagerank algorithm [43],
which uses the eigenvector centrality of a node in order to assess the rank of a webpage
with respect to Google’s search queries.

Eigenvector centrality [150] is interesting from a different perspective as well. It
shows that spectral network properties can improve our understanding of such vast ag-
gregations of data like in the world-wide web. Spectral graph theory explicitly seeks to
understand the relations between eigenvalues, eigenvectors and characteristic polyno-
mials of various network matrices. Many links to fundamental questions of mathematics
and complexity theory arise from spectral graph theory, making this area of research
both valuable and intricate. It is possible that many topological network properties are
reflected in the spectrum, only waiting to be discovered.

In this chapter we propose symbolic regression as a method to automatically derive
insights in the spectral domain and their corresponding topological reflections in the
network. Only a minimal number of assumptions are needed, in particular in comparison
to the frequently used procedure of curve fitting, which assumes already a pre-knowledge
of a certain function like a polynomial, exponential, etc. In contrast, symbolic regression
is guided by supervised learning for a regression task that explicitly constructs free-form
equations out of numeric features and elementary arithmetic operations.

The topological representation may be a cumbersome feature space for machine
learning techniques, if only the binary features of the adjacency matrix are considered.
Therefore, we examine the usage of features from the spectral domain of the network.
By training the symbolic regression system on a set of carefully constructed networks,
we are able to estimate target features. Consequently, symbolic regression may assist
researchers to unravel the hidden structures in the spectral domain and to propose
first-order approximations for difficult-to-compute properties.

This chapter is structured as follows: Section 6.2 introduces the concept of symbolic
regression by giving references to previous work where this technique proved useful.
Section 6.3 provides the necessary background in network science by introducing net-
work properties that will be used as features and targets for our experiments. The setup
of our experiments is outlined in Section 6.4 and their results are discussed in Section 6.5.
We conclude with directions for future research in Section 6.6.



6.2. RE L AT E D WO R K

6

87

6.2. RE L AT E D WO R K
6.2.1. SY M B O L I C RE G R E S S I O N
One of the most influential works on symbolic regression is due to Michael Schmidt and
Hod Lipson [151], who demonstrated that physical laws can be derived from experimen-
tal data (observations of a physical system) by algorithms, rather than physicists. The
algorithm is guided by evolutionary principles: a set of (initially random) parameters
and constants are used as inputs, which are subsequently combined with arithmetic op-
erators like {+,−,×,÷} to construct building blocks of formulas. Genetic operations like
crossover and mutation recombine the building blocks to minimize various error metrics.
The algorithm terminates after a certain level of accuracy is reached; the formulas that
describe the observed phenomenon best are delivered as output for further analysis.

In the work of Schmidt and Lipson [151], symbolic regression was able to find hidden
physical conservation laws, which describe invariants over the observed time of physical
systems in motion, like oscillators and pendulums. It is remarkable that symbolic regres-
sion was able to evolve the Hamiltonian of the double pendulum, a highly non-linear
dynamic system [152] that undergoes complex and chaotic motions. Also, accurate
equations of motions were automatically derived for systems of coupled oscillators.

While symbolic regression rarely deduces error-free formulas, the output may deepen
our insight in the problem and may help to eventually find exact solutions. One exam-
ple is the case of solving iterated functions, which asks for a function f (x) that fulfills
f ( f (x)) = g(x) for some given function g(x). Despite the simple description of the prob-
lem, there exist difficult cases for which highly non-trivial algebraic techniques seem to
be needed to find solutions.

One example is the iterated function f ( f (x)) = x2 − 2, for which the best known
analytic approach to find f (x) requires the substitution of special function forms and
recognizing relations between certain Chebyshev polynomials. Again, Schmidt and
Lipson [153] were able to evolve a couple of symbolic expressions that were so close at
describing a solution, that a simple proof by basic calculus could be inferred.

Most recently, symbolic regression has been explored in the context of generative
network models by Menezes and Roth [154]. They present a stochastic model in which
each possible link has a weight computed by an evolved symbolic expression. The
weight-computation-rules are executed and the resulting networks are compared by
a similarity-metric with some target networks (corresponding to the observations of
a physical system), which guides evolution to incrementally improve the underlying
generative model.

One particular benefit of symbolic regression and automatic generation of equations
is reduction of the bias introduced sometimes unknowingly by human preferences and
assumptions. Thus, it is possible for symbolic regression to discover relations that would
be deemed counter-intuitive by humans. This makes symbolic regression especially
attractive for finding non-linear relationships, for which the human mind often lacks
insight and intuition.

With the exception of the deterministic FFX-algorithm by McConaghy [155], most
symbolic regression algorithms are based on Genetic Programming [156], where an
evolutionary process typically uses grammars [157, 158] to evolve expression trees. Our
work can be potentially implemented by many of these Genetic Programming variants,
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but we selected Cartesian Genetic Programming (CGP) for reasons outlined in the fol-
lowing subsection.

6.2.2. CA R T E S I A N GE N E T I C PR O G R A M M I N G (CGP)
CGP was originally developed by Julian Miller [159, 160] to represent electronic circuits
on 2d-grids (hence the name Cartesian), but it soon became a general purpose tool
for genetic programming. It has been used in numerous applications, e.g. to develop
Robot Controllers [161], Neural Networks [162], Image Classifiers [163] and Digital
Filters [164]. A recent result by Vasicek and Sekanina shows how approximate digital
circuits can be efficiently evolved by CGP, giving human-competitive results in the field
of approximate computing [165]. Vasicek also shows how CGP can be scaled to deal
with a large number of parameters in order to optimize combinatorial circuits [166].

The reason why CGP is so popular (especially for circuit design) is due to its internal
representation of the Genetic program. CGP uses a flexible encoding that represents the
wiring of a computational network. Each node in this network is an arithmetic operation
that needs a certain amount of inputs to produce an output. A simple 1+4 evolutionary
strategy changes the interconnections between those nodes in order to improve a fitness
function (minimizing errors). Input parameters and constants are forward-propagated
by applying the computational nodes until output nodes are reached. At these output
nodes, the chain of mathematical operations on the inputs can be reconstructed as an
equation.

A surprising property of CGP is that only a minor fraction of nodes actually contribute
to the final computation. Similar to a human genome, only part of it is actively used,
while inactive parts are dormant, but subject to genetic drift. This redundancy is often
argued to be beneficial for the evolutionary process in CGP (see Miller and Smith [167]).
There is also evidence that CGP does not suffer much from bloat [168], a major issue
in other genetic programming techniques that tend to produce very large program sizes
even for simple tasks.

6.3. NE T W O R K S
In this section, we formally define some network properties and notation that will be
used throughout our experiments.

6.3.1. NE T W O R K RE P R E S E N TAT I O N S
A network is represented as a graph G = (N ,L ), where N is the set of nodes and
L ⊆ N ×N is the set of links. The number of nodes is denoted by N =| N | and the
number of links by L =| L |. The set L is typically represented by an N × N adjacency
matrix A with elements ai j = 1 if node i and j are connected by a link and ai j = 0
otherwise. As we restrict ourselves to simple, undirected networks without self-loops in
this chapter, A is always symmetric. We call A the topological representation of G as each
element of A directly refers to a structural element (a link) of the network. The number
of all neighbors of a node i is called its degree di =

∑N
j=1 ai j .

The adjacency matrix A is not the only possible representation of a network. Of equal
importance is the Laplacian matrix Q =∆− A, where ∆ is a diagonal matrix consisting
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of the degrees di for each node i ∈ N .
A different view on the network can be derived by its eigenstructure. Given the

adjacency matrix A, there exists an eigenvalue decomposition [80]

A= XΛX T (6.1)

such that the columns of X contain the eigenvectors x1, x2, . . . , xN belonging to the real
eigenvalues λ1 ≥ λ2 ≥ . . .≥ λN , respectively, contained in the diagonal matrix Λ.

While obtaining the spectral representation of the network requires computational
effort by itself (usually, the network is given in its topological representation for which
the eigenvalues still need to be determined), it provides a different perspective on the net-
work’s properties. For example, the largest eigenvalue λ1 is linked with the vulnerability
of a network to epidemic spreading processes [109].

A similar decomposition is possible for the Laplacian matrix, whose eigenvalues
are denoted by µ1 ≥ µ2 ≥ . . . ≥ µN and whose real eigenvectors are y1, y2, . . . , yN .
The second smallest eigenvalue µN−1 is known as the algebraic connectivity [82] and
its corresponding eigenvector is known as Fiedler’s vector. Spectral clustering [80] is a
possible application of Fiedler’s vector.

Both eigensystems constitute the spectral representation of G. Our goal is to describe
network properties typically computed by algorithms on the topological representation
of G by simple functions consisting of elements from the spectral representation of G.
An example is the number of triangles ÎG in a network. A way of computing ÎG is
to enumerate all possible triples of nodes in a graph and checking whether they are
connected in A. However, the number of triangles can also be expressed as

ÎG =
1
6
·

N
∑

k=1

λ3
k (6.2)

and is thus directly computable from the spectral representation without the need of
exhaustive enumeration (see Appendix C for a proof of Equation (6.2)).

6.3.2. NE T W O R K PR O P E R T I E S

NE T W O R K D I A M E T E R

Many applications of networks are concerned with finding and using shortest-path struc-
tures in networks. A path between two distinct nodes i and j is a collection of links
that can be traversed to reach i from j and vice versa. A shortest path is a path with
minimal number of links. The diameter ρ of a network is defined as the length of the
longest shortest path in the network, i.e. the maximum over all shortest-path lengths
between all node-pairs. Algorithms that solve the all-pairs shortest path problem (like
the Floyd-Warshall algorithm) are able to compute the diameter in O (N3). While more
efficient algorithms exist for sparse networks, an exact computation of the diameter is
usually too expensive for very large networks.

There exist multiple upper bounds for the diameter [169, 170], but we find the bound
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of Chung et al. [171] most tight in almost all cases:

ρ ≤









cosh−1(N − 1)

cosh−1
�

µ1+µN−1
µ1−µN−1

�







+ 1. (6.3)

This bound was independently derived by Van Dam and Haemers [172].

IS O P E R I M E T R I C NU M B E R

For each subset of nodes X ⊂ N we can define the set ∂ X as the set of links that have
exactly one endpoint in X and the other endpoint in N \X . The isoperimetric number η
of a network is defined as

η= min
X⊆N
|X |≤ 1

2 N

|∂ X |
|X |

. (6.4)

Essentially, the isoperimetric number is a measure related to bottlenecks in networks.
Intuitively, a low isoperimetric number indicates that the network can be separated in two
reasonably big parts by only cutting a minimum amount of links. While the isoperimetric
number is a good descriptor of network robustness, its computation for general networks
is intractable, as the computational effort scales with the amount of possible cuts of the
network. More information on the isoperimetric number can be found in [80, 173].

6.4. EX P E R I M E N T S
This section describes technical details of the symbolic regression process we deployed
to infer equations for the network diameter and the isoperimetric number. As symbolic
regression is a supervised learning technique, we describe the sets of networks that were
used for training and testing, together with the features we extracted for each case.

6.4.1. NE T W O R K D I A M E T E R
In order to find a suitable formula for the network diameter, we trained CGP on 3 different
sets of networks:

• augmented path graphs,

• barbell graphs and

• the union of both.

The augmented path graphs were generated by iteratively adding random links to a
simple path graph of N nodes. With each additional link, there is a chance to lower the
diameter of the network. Following this procedure, it is possible to generate a set of
relatively sparse graphs of constant node-size with uniformly distributed diameters.

A barbell graph B(a, b) is generated by taking two cliques of size a and connecting
them with a path graph of size b. The total number of nodes is N = 2a+ b. The diameter
ρ(B(a, b)) is always b+ 3. Adjusting the length of the path graph allows for generating
graphs of different diameters. Changing the size of the cliques allows for creating graphs
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with the same diameter, but different number of nodes. We sample again such that the
network diameter is uniformly distributed within the set of all barbell graphs. Compared
with augmented path graphs, barbell graphs are (in general) denser networks.

The set of mixed graphs is the union of the set of augmented path graphs and barbell
graphs. See Figure 6.1 for examples of these networks and Table 6.1 for a summary of
all sets of networks for the experiments.

One reason why we have chosen these sets of networks instead of, for example, Erdős-
Rényi (ER) random graphs [174], is to control the distribution of our target feature, the
network diameter. Preliminary experiments have shown that too little variance in our
target feature will push CGP to converge to a constant function, which does not include
any information about the relation between spectral features and the target that we
want to extract. For an ER graph of N nodes and with link probability p, Bollobás [174]
showed that, for fixed p and N large, ρ can only have one of two possible neighboring
values with high probability. Thus, sampling uniform diameters for the random graph
model requires careful adjustment of N and p, where we found the usage of augmented
paths and barbell graphs more convenient.

For the supervised learning of CGP, each set of networks was separated in a 60%
training and a 40% test set. Table 6.2 gives an overview of the various parameters we set
for CGP. In preliminary experiments, we changed each of these parameters independently
from another and found the settings of Table 6.2 to provide the most useful results in
terms of fitness and formula complexity. A more thorough parameter tuning approach
is needed for maximum performance, but is outside the scope of this work. For the
meaning of these parameters, see Miller [159]. Effective tuning of CGP was researched
by Goldman and Punch [175].

Figure 6.1: Example of the barbell graph B(6, 2) with ρ = 5 on top and an augmented path graph with ρ = 4
at the bottom.

In our experiments, we tried a vast selection of different features to evolve formulas.
To keep this section organized, we report only results derived from two of the most
generic, but useful, sets of features:

A) N , L,λ1,λ2,λ3,λN

B) N , L,µ1,µN−1,µN−2,µN−3.
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Table 6.1: Properties of network sets.

aug. path barbell mixed

networks 1672 1675 3347

nodes N = 70 7≤ N ≤ 667 7≤ N ≤ 667

diameter 2≤ ρ ≤ 69 4≤ ρ ≤ 70 2≤ ρ ≤ 70

avg. link density 0.04845 0.36985 0.20910

Table 6.2: Parameterisation of CGP.

parameter value

fitness function sum of absolute errors

evolutionary strategy 1+4

mutation type and rate probabilistic (0.1)

node layout 1 row with 200 columns

levels-back unrestricted

operators +,−,×,÷, ·2, ·3,
p
·, log

number of generations 2 · 105

Additionally, the natural numbers 1, . . . , 9 were provided as network independent
constants for CGP to adjust evolved terms appropriately.

The choice of feature sets A and B provides a reasonable trade-off between formula
complexity and fitness. While selecting the complete spectrum of eigenvalues as fea-
tures is possible, we observed that it leads to a high formula complexity without provid-
ing considerable improvements in fitness. Additionally, the largest adjacency (smallest
Laplacian) eigenvalues are the ones that are suggested to have the strongest influence
on network properties [80]. Lastly, since the number of nodes in our network instances
is not (in every case) constant, giving the complete spectrum would mean that several
features would be missing in networks with low number of nodes. It is unclear, how an
appropriate substitution of the missing features should be realized. Thus, some of the
discovered formulas could be inapplicable for some networks.

Since the evolutionary procedures of CGP to optimize the fitness of the evolved
expressions are stochastic, we deployed multiple runs for each combination of feature
and network set. We aggregated those multiple runs into batches, as the test-environment
was implemented to run on a computational cluster. Each batch consisted of 20 runs of
CGP for a specific set of features. Out of those 20 runs, only the one with the best (lowest)
fitness is reported. The fitness is the sum of absolute errors on the test instances of the
corresponding set of networks. More formally, if ρ̂G is the estimate on the diameter ρG
of network G given by the evolved formula ρ̂ and Gtest is the set of all networks for
testing, the fitness f (ρ̂) is defined as:

f (ρ̂) =
∑

G∈Gtest

|ρG − ρ̂G |. (6.5)
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Table 6.3: Experimental results for the network diameter.

networks feature set avg. fitness min. fitness min. approx. error

aug. path
A 3694.98750 3404.53700 5.08899

B 842.89691 778.98900 1.16441

barbell
A 1.66654 0.00900 0.00001

B 50.53473 < 10−5 < 10−5

mixed
A 5313.91179 4500.68900 3.36123

B 1462.61943 1134.34100 0.84716

Furthermore, we define the approximation error e(ρ̂) as the average deviation from the
diameter over the complete test set:

e(ρ̂) =
∑

G∈Gtest

|ρG − ρ̂G |
|Gtest |

. (6.6)

We present the results over 100 batches for each combination of feature and network
test set in Table 6.3.

6.4.2. IS O P E R I M E T R I C NU M B E R
The training set of networks for the isoperimetric numberη had to be limited to relatively
small networks, since the computation ofη becomes intractable even for general medium-
sized networks. Thus, we decided to exhaustively enumerate all networks of size N = 7,
for which the computation was still practical. This set consists of 1046 non-isomorphic
networks, which we randomly split into a training set of 627 and a test set of 419
networks. We applied the same parameters to CGP as shown in Table 6.2, with one
exception: we created 100 batches for each of the following sets of operators:

1. +,−,×,÷,
p
·, log

2. +,−,×,÷, ·2, log

3. +,−,×,÷,
p
·

4. +,−,×,÷, ·2.

Since we have only networks of size N = 7, we can select the full spectrum as our
features, resulting in the following feature sets:

A’) N , L,λ1,λ2,λ3,λ4,λ5,λ6,λ7

B’) N , L,µ1,µ2,µ3,µ4,µ5,µ6.

Since the smallest Laplacian eigenvalue µN always equals 0, µ7 = 0 and is thus
not included as a feature. Additionally, we provided the natural numbers 1,2 and 3 as
constants. Each batch consisted of 5 independent runs from which only the best one is
reported.
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Figure 6.2: All 419 networks from the test set ordered by their actual isoperimetric number ascending from
left to right. The red crosses show the approximation given by Equation (6.7).

Feature set A’ delivered on average much better results than feature set B’. The best
result was found with feature set A’ and operator-set +,−,×,÷, ·2, log, although not all
of these operators appear:

η̂1 =
L −λ2

2 − 2
λ2
2 + 5

(6.7)

Although Equation (6.7) is short (low complexity), it had still the best fitness (53.215)
of all evolved formulas. The approximation of η on the test set is shown in Figure 6.2.

6.5. D I S C U S S I O N
In the previous section, we evolved approximate equations for hard to compute network
properties. The approximation errors were largely dependent on the used networks for
training and testing. For example, the best equations for the diameter found for barbell
networks have almost no error, while noticeable errors exist for augmented path and
mixed network. This raises two questions:

• how is the quality of the approximate equations influenced by the pre-selected
networks and

• how do the approximate equations generalize to other networks?

To give answers, we compute already established analytical equations from the literature
as reference points for quality and provide appropriate selections of networks which were
not involved in the generation process of the evolved equations.

6.5.1. NE T W O R K D I A M E T E R
As a measure for the quality of our evolved equations, we compare their estimates of
diameter ρ to the upper bound given by Equation (6.3). An upper bound and an approxi-
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mation are different: while the bound is always above the real diameter, approximations
may be above or below without any guarantees. Yet, we believe the bound can mark a
reference point for a qualitative comparison in addition to the exact diameter itself.

As additional networks, we selected 12 real-world data sets available at networkrepos-
itory.com [176], where more information, interactive visualization and analytics can be
found. While these networks should only be viewed as examples, they might give an idea
about the applicability of the presented technique. Figure 6.3 shows a visualization of a
subset of these networks. To eliminate the selection-bias and gather significant results,
one would need to sample the network space in a representative and meaningful way,
which is notoriously difficult. For example, simple network generators like Erdős-Rényi
random graphs or the Barabási-Albert model are not sufficient, as they will only allow
to sample certain degree distributions. Consequently, we restrict ourselves to examples.

We expect that the equations with the lowest fitness give the best results. Because
feature set B consistently outperformed feature set A in terms of fitness, we analyzed
the approximations given by the best equations of feature set B. The explicit equations
are:

N −
1− 1

(L−N)
3
2

6− 6

(L−N)
3
2p

L−N
+ 4
p

L − N

− 2
p

L − N −
1

p
L − N

(6.8)

log (2LµN−3 + 6) + 6

log
�

LµN−3 +
p

5
Ç

1
µN−1

� +
p

5

√

√ 1
µN−1

+ 3
p

82

√

√ 1
729LµN−2µN−3 − 5

(6.9)

√

√

√

p
N +

45µN−3

(µN−1 +µN−3)
2 + log

�

216

(µN−1 +µN−3)
2

�

−
16

9µN−3
+

8 4
p
µN−3

LµN−1µN−2
(6.10)

The numerical values are all listed together with some basic properties of our vali-
dation networks in Table 6.4. First, we observe that Equation (6.8) performs extremely
poorly by giving huge overestimations of ρ, despite its fitness of almost 0 for the net-
works of the original test set. The reason is that Equation (6.8) was evolved on barbell
graphs only, which have a fixed and symmetric structure. In particular, the difference
N − L, which is a frequent subterm of the formula, is higher in the dense barbell graphs
compared to the rather sparse networks of our validation set. Thus, Equation (6.8) seems
to be overfitted to the class of barbell graphs.

Equation (6.9) was evolved only on augmented path graphs and provides a much
better approximation of ρ for our validation networks. This might be the case since the
validation networks are more similar to the sparse augmented path graphs than to the
dense barbell graphs. A visual comparison of the approximation of Equation (6.9) is
given by Figure 6.4.

Adding the barbell graphs to the training set, like in the evaluation of Equation (6.10),
shows that the accuracy of the approximation ofρ increases by roughly 10%, which must
be the effect of the barbell graphs adding a selective force towards accuracy on more



6

96 6. SY M B O L I C RE G R E S S I O N O N NE T W O R K PR O P E R T I E S

(a) ca-netscience (b) inf-power

(c) socfb-nips-ego (d) bio-yeast

Figure 6.3: Visual representation of a subset from the validation networks for the network diameter. Basic
properties of these networks are noted in Table 6.1. Bigger nodes in darker colors correspond to higher degree
nodes. All networks are particularly different from augmented path and barbell graphs and show some form
of modular structure.
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Table 6.4: Diameter on validation networks.

name N L ρ Eq. (6.9) Eq. (6.8) Eq. (6.10) Eq. (6.3)

ca-netscience 379 914 17 21 333 24 160

bio-celegans 453 2025 7 7 374 8 104

rt-twitter-copen 761 1029 14 16 728 18 126

soc-wiki-Vote 889 2914 13 10 799 12 133

ia-email-univ 1133 5451 8 6 1002 8 58

ia-fb-messages 1266 6451 9 7 1122 10 96

web-google 1299 2773 14 29 1222 35 336

bio-yeast 1458 1948 19 19 1414 22 208

tech-routers-rf 2113 6632 12 14 1979 17 237

socfb-nips-ego 2888 2981 9 52 2869 61 2466

web-edu 3031 6474 11 36 2914 40 663

inf-power 4941 6594 46 98 4860 110 749

denser networks. Moreover, it seems that CGP focused on finding a good approximation
for the augmented path graphs in the mix rather than considering to find an equation
for both classes of networks. In the majority of the cases, ρ is still overestimated a little,
but by far not as much as by the upper bound in Equation (6.3).

6.5.2. IS O P E R I M E T R I C NU M B E R
The quality of the equations approximating the isoperimetric number will be related
to the Cheeger inequality (see Mohar [173]) that gives us bounds in relation to the
algebraic connectivity µN−1 and the maximum degree dmax of the network G:

µN−1

2
≤ η≤

Æ

µN−1(2dmax −µN−1) (6.11)

Since our equations were evolved by an exhaustive enumeration of all non-isomorphic
networks of N = 7, we are interested how their quality of fit will differ with N . However,
as pointed out before, the computation of the exact value for η is in general only feasible
for very small networks. Consequently, we cannot use any of the validation-networks
from Table 6.4. Instead we decided to sample random networks of N = 20 nodes and
links from 22 ≤ L ≤ 190. In total, we generated 4984 non-isomorphic connected net-
works with roughly uniformly distributed link densities by a variant of the ER random
graph model. In these networks, the isoperimetric number η ranges from 0.2 to 10.0,
while in our training set η was between 0 and 4.

Surprisingly, Equation (6.7) deduced from all networks with N = 7 nodes is perform-
ing poorly on the set of random networks, as shown by the green dots in Figure 6.5.
The estimates are most of the time not even below the bound of the Cheeger inequality,
shown in grey. By analyzing the sum of absolute errors on this new set of networks,
we found that from all evolved formulas, the following equation for the isoperimetric
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ca-netscience ρ= 17
ρ̂= 21

ub= 160

bio-celegans ρ= 7
ρ̂= 7

ub= 104

rt-twitter-copen ρ= 14
ρ̂= 16

ub= 126

soc-wiki-Vote ρ= 13
ρ̂= 10

ub= 133

ia-email-univ ρ= 8
ρ̂= 6

ub= 58

ia-fb-messages ρ= 9
ρ̂= 7

ub= 96

web-google ρ= 14
ρ̂= 29

ub= 336

bio-yeast ρ= 19
ρ̂= 19

ub= 208

tech-routers-rf ρ= 12
ρ̂= 14

ub= 237

socfb-nips-ego ρ= 9
ρ̂= 52

ub= 2466

web-edu ρ= 11
ρ̂= 36

ub= 663

inf-power ρ= 46
ρ̂= 98

ub= 749

Figure 6.4: Red circles: approximate diameter ρ̂ by Equation (6.9) relative to the network diameter ρ as a
black circle. All network diameters are scaled in each network to have unit-length in the figure. All values
are rounded to the next integer. The upper bound Equation (6.3) values are given as ub in blue (too large to
plot).

number gives the best performance:

η̂2 =
1

N2

�

L
�

µ1

µ2
+µ2

�

− 1
�

. (6.12)

We observe that for over 98% of the random networks, the estimate of Equation (6.12)
was within (1± 0.2) ·η. Since this equation incorporates not only spectral features, but
also N and L, we believe it generalizes better to networks of different size other than
those used in the training set. Additionally, our experiments show that a low fitness
value does not necessarily correspond to good generalization. Out of the 800 batches
used to find a formula for η, only 259 returned expressions that did not create artifacts
(like square roots of negative numbers or divisions by zero, which CGP evaluates to 0 by
definition). While Equation (6.7) ranked first with a fitness of 53.215, Equation (6.12)
was one of the unranked expressions, since on some of the unconnected networks of
the training set, µ2 was 0, while µ2 = 0 did never appear for the connected random
networks.

It is also noteworthy that Equation (6.12) seems to slightly overestimate η as soon
as networks with η > 4 are encountered. This does not seem to be a coincidence, as 4
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Figure 6.5: A set of 4984 random networks with N = 20 ordered by their isoperimetric number (blue). The
grey area corresponds to the Cheeger inequalities given by Equation (6.11). The lower bound coincides with
η and the red approximation formula for the last 100 networks, as they are all fully connected.

was the maximum value for η in the training set.

6.6. CH A P T E R SU M M A RY
Our experiments provide a first demonstration that symbolic regression can be applied to
analyze networks. For the first time, to the best of our knowledge, an automated system
has inferred approximate equations for network properties, which otherwise would have
required a high algorithmic effort to be determined. Although these equations are not
rigorously proven and might be cumbersome for humans to comprehend, they are able to
exploit the hidden relationships between the topological and the spectral representation
of networks, which has been elusive to analytical treatment so far.

We do not expect that symbolic regression at the current level will substitute re-
searchers deriving meaningful equations, but we do believe that symbolic regression can
be a meaningful tool for these researchers. As the proposed techniques are not biased
by human preconceptions, unexpected results might provide inspiration and stimulating
starting points for the development of formal proofs or more accurate formulas. While
this lack of bias can be an advantage, the proposed system nevertheless allows for the in-
corporation of a priori expert knowledge. If certain features and operators are suspected
to be correlated to an unknown target quantity, their usage can be enforced easily.

Understanding which conditions give rise to equations with a high generalization
power for networks will be the main challenge for the future. While a good fitness of
an equation does not necessarily imply a high generalization power, our experiments
indicate that symbolic regression is clearly able to produce equations that are reasonably
accurate for unknown networks. In order to prevent overfitting to the training set and to
increase this generalization power, selecting a good set of networks for training seems
to be the key. This makes symbolic regression especially appealing when dealing with
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networks that can be characterized by their structural and degree-related properties, like
scale-free or small-world networks. As networks with such properties are ubiquitous,
discovering explicit relations between their features will pave the way for a deeper insight
into our increasingly connected environments.



7
CO N C L U S I O N

This thesis described the conditions for the spread of information in networks. The structural
aspect considered properties of networks that facilitated the spread of information while the
dynamical aspect put a focus on the propagation process. Information is understood as a
placeholder for an abstract exchange of data which becomes measurable in some form. Thus,
when confronted with applications and challenges of our interconnected society, a major
task is to infer the structure and the dynamics from our observations and measurements
as best as possible. This final chapter reviews the potential of the developed and deployed
techniques of this thesis, but also presents a critical view on their limitations. Based on our
findings, new directions for future research are suggested.
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7.1. MA I N CO N T R I B U T I O N S
7.1.1. AN A LY Z E D CO N TA G I O N S
Analyzing propagation phenomena in complex systems should begin with the question
what exactly is the entity (contagion) that is expected to spread? Throughout the thesis,
we have introduced and investigated multiple of such phenomena of different nature:

• Chapter 2 presented a study of the spread of anti-social behavior in the context
of multi-player online games. The entity of spread was a negative and offensive
attitude (toxicity), whose measurement demanded to look and interpret contextual
information.

• Chapter 3 was a study about the human brain and its activity during resting-state.
Brain activity was the entity of spread and was measured by magnetoencephalog-
raphy (MEG) and transformed into phase transfer entropy.

• Chapter 4 described the long-term evolution of a computer worm. While the
computer worm was clearly the contagion of this scenario, our measurements were
limited to infected IP-addresses obtained from the logs of the worms sinkhole.

Thus, it has to be noted that the entity of spread is rarely ever directly observed,
which remains true for many related applied studies. Instead, one has to work with
the traces of the spreading process within the data available. Changes in behavior, like
in the case of toxicity, are important to detect, as otherwise we cannot be assured that
we are following the right contagion. The toxicity detection that was introduced in
Chapter 2 is thus an essential part of the study in information propagation. The main
contribution of this chapter was the annotation systems which allowed to search for
n-grams of offensive language in a short contextual window. Standard techniques from
natural language processing were not suitable for the elliptic and erroneous jargon of the
players, so the development of new techniques like the letterset method were necessary.
While the detected toxicity could not be related to the overall win-rate of the involved
players, it could be related to triggers like kill-events. It was also shown that a toxic
language becomes more dominant for losing teams at the end of their matches. The
application of the annotation system to the game data can be compared conceptually to
the preprocessing of sinkhole log files of the computer worm of Section 4.3.2 and the
signal processing of the MEG measurements of the brain from Section 3.2.1.

The main purpose of this step is to carve out the contagion as best as possible from
presumably noisy data. While it is essential to reduce the disturbing factors for the study,
it has to be emphasized that especially over longer periods of time, multiple similar
processes in such systems might occur. Thus, there might be multiple contagions that
appear, spread, interact, compete and disappear again. The superinfection introduced in
Chapter 5 is a possible way of looking into interacting spreading processes. In particular,
the evolution of nested epidemic processes which can be described by the SIS-model can
be explained in terms of superinfection. The main contribution of this chapter was a
study of the interactions between a dominant virus, which spreads inside the population
of a less powerful virus, both being the contagions of interest. The advantage of the
SIS-model is clear: Markov theory is at our disposal and noise in data can be completely
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eliminated if synthetic networks are analyzed. Thus, the state of the infection processes
is perfectly clear and the contagions are directly observable all the time. However, the
simplified nature and the assumptions of the underlying SIS-processes do not correspond
with the complex systems that are encountered in application domains. Nevertheless,
the superinfection has been observed in biological system (e.g. hyperparasites [177,
178]) and insights from the evolution of the nested SIS-processes might provide first
explanations for observable behavior. In particular, we have outlined the circumstances
under which a coexistence of both viruses is possible. The superinfection rate was
identified as the most influential parameter, which determines whether extinction cycles
are observed or coexistence is stable. Thus, if we observe sudden extinction cycles in
complex systems, in which a nested propagation process is assumed, a decrease in the
spreading power of the dominant contagion could stabilize the system.

7.1.2. AN A LY Z E D SY S T E M S
After the effects of the contagion have become clearly traceable within the data, the next
two questions to answer are:

1. Where does the contagion spread to? (structure)

2. How does the contagion spread? (dynamics)

Typically, the nodes of a network are assumed to host the contagion while the paths
of the propagation are given by links. Challenges appear if the network is either implicit
and/or changes rapidly over time.

• The network of players in Chapter 2 is determined by the 5vs5 nature of the
game. Thus, a direct exchange of information happens only on the level of a single
match within the teams (or between the competing teams respectively). Long-term
transfers are possible if players get inserted in different teams and play multiple
matches over time.

• In Chapter 3, the network is not given but has to be constructed from the observed
brain signals. Depending on the thresholding deployed, different motifs arise (see
Section 3.4).

• Concerning Chapter 4, the IP address space is dynamic and does not correspond
1:1 with susceptible host machines. Depending on up- and downtimes, nodes
representing IP-addresses in this network might appear, disappear or reappear
representing different machines.

To overcome these challenges, reasonable assumptions about the networks have to
be made. The transfer entropy (in the form of phase transfer entropy) has been shown
as a meaningful measure for the mutual influence in brain activity between different
regions of interest and allows us to infer a basic (functional) network structure within
the brain. The main contribution of Chapter 3 was the discovery of a stable and highly
over-expressed motif, the bi-directional two-hop path, which subsequently was shown
to be the main building block for facilitating information transfer. A clustering based on
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this motif revealed a higher order organization of the brain, explaining how posterior
and frontal brain regions communicate.

The transfer entropy has been applicable to the toxicity data from Chapter 2 as
well, revealing a different structure. While the phase transfer entropy in the brain
seems approximately normal distributed (see Figure 3.2), the transfer entropy between
players has been found to be exponential (see Figure 2.9). This discovery highlights
that the influence (and henceforth the propagation of the contagion) between players
has a much higher variance than the information flow within the brain. Thus, the time-
dependent SIS model that was deployed in Chapter 4 is most likely not the best choice for
explaining propagation of anti-social behavior, as it assumes a homogeneous population,
in which the susceptibility of a node only depends on the (time-dependent) spreading
and curing rates and the amount of links to infected neighbors. However, the exponential
distribution shows that a large number of players are nearly immune to toxic influence,
while a small number in the tail of the distribution is highly susceptible. Consequently, a
spreading model for toxicity has to consider the temporal structure of the player network
and the heterogeneous susceptibility of the players.

Next to the transfer entropy, clustering has been a helpful concept as well. While
the motif-based clustering of the brain network provided a hard partition of spatial
related brain regions, the topic model applied to the gaming data provided a softer
clustering, which allowed for overlaps and mixtures of identified topics. Thus, on a
higher level, clustering methods and the closely related topic models are able to reveal
hidden structures which are induced and enabled by spreading processes.

7.1.3. AU T O M AT E D IN F E R E N C E O F RE L AT I O N S
As discussed, there are multiple techniques at our disposal to analyze and reveal spread-
ing processes in our physical world, but the assumptions of the corresponding application
domains are crucial. Conclusions about the spread of computer worms that assume a
change in the applied countermeasures do not hold for brain activity in resting state, for
which no change in the environment is expected. Vice versa, there is no strong reason
to believe that the spread of a computer worm would be supported by motifs, which are
nonetheless essential in the neurological domain and regarded as a possible explanation
for the principles of integration and segregation in the brain. Thus, if concepts like clus-
tering, transfer entropy or time-dependent SIS are to be transferred, they need careful
adaptation and a critical assessment.

Chapter 6 presented a different approach for which domain-specific assumptions are
less important. We showed that genetic programming can be a method of high potential
for discovering previously unknown functional relations between network properties.
One of this network properties, the diameter, puts a lower bound on any hop-based
propagation scheme and is thus of utmost importance to know for any network in which
hop-based propagation occurs. Symbolic regression based on genetic programming is
capable to learn approximate formulas for the diameter from simple classes of networks
like barbell graphs and augmented path graphs. While no exact solutions were obtained,
the evolved formulas provided significant improvements over previously analytically
derived bounds and generalized reasonably well to networks of various application do-
mains. Thus, linking structure with dynamics can be automated by deploying such a
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technique. The two strongest limiting factors for the performance of symbolic regres-
sion are the selection of training networks and their corresponding features. While the
procedure is prone to over-fit, generating relatively simple equations which hold up to
some degree of error for a subclass of networks might already be extremely helpful in
some application domains, as hidden relations become apparent and further research
gets sparked.

7.2. FU T U R E RE S E A R C H
Information propagation in complex networks is a wide topic which can be approached
from multiple angles. The goal of this thesis was to showcase phenomena from different
application domains and focus on techniques that will help understand the relationship
between network structure and spreading dynamics. Naturally, future work is suggested
in each application domain, as the introduction of the network-related concepts opens
up new challenges:

• Research into toxicity is still at the beginning and closely related to studies of
antisocial behavior in general, like trolling [179], manipulation of online discu-
sions [180] and vandalism [181]. Although a sensitive topic, there is a clear
mutual benefit in the collaboration between game developers and scientists. The
collection of rich data about player behavior is absolutely fundamental. With ac-
cess to longitudinal data, studies of effectiveness of countermeasures against the
spread of anti-social behavior could be enabled. In order to corroborate the tox-
icity detection described in this thesis, a survey about toxic comments and their
reception is needed. The current detection of toxicity relies on the interpretation
of frequent n-grams and it would be helpful to crowd-source opinions about the
toxicity in statements from a larger number of people. This would not only de-
crease subjective bias, but might open up ways to quantify toxicity by some score,
which would be a further improvement over the binary detection presented.

• There have been studies who relate Alzheimer’s disease and other neurological
disorders to abnormal changes in the topology of brain networks [182, 183]. If
synchronization between brain regions is disturbed by such conditions, the infor-
mation flow within the brain should be impaired. If this hypothesis holds true,
the clustering for patients suffering from such disorders would differ from those
of healthy controls. Thus, clustering of information flow motifs might provide a
way for diagnosis and the assessment of treatment. Also here, large-scale studies
require more data and are sensitive in nature. It is necessary to develop effective
ways to ensure the privacy of study subjects without hampering future studies.

• Threats for our cyber security by computer worms, bot-nets and malware become
increasingly complex and develop at a rapid speed. We foresee the development
of a new sub-discipline, which could be described as cyber-epidemiology in the near
future. Development of sophisticated epidemic models that not only take time-
dependence but also heterogeneity of hosts into account would pave the way for a
deep understanding of rapid global dynamics of modern computer worms. Botnet
takeover [102] is a scenario, in which a process similar to superinfection is at play.
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Further investigation into interactions, co-infection and superinfection dynamics
might provide us with predictive models that can simulate worm outbreaks and
evaluate the corresponding risk profiles.

On a more general level, some promising theoretical research questions arise as well.
Regarding network epidemics, there seems to be a relation between the time-dependent
SIS model and the SIR model, with the former being able to mimic the behavior of the
latter. As the time-dependent SIS model is still, to some extent, analytically tractable, it
could provide a general epidemic theory, encompassing both SIS and SIR as potential
corner-cases.

Generally, further research into temporal networks [184] and their interaction with
spreading processes is needed, as the assumption that a spreading process happens
in a static network that does not undergo changes in nodes or links rarely holds for
information propagation on longer time scales in real-world networks.

Lastly, there is a high potential for additional research into symbolic regression. Newly
developed differential genetic programming frameworks [185] provide convenient ways
to evolve numerical constants, which might significantly improve the quality of the
evolved formulas. However, the impact of different training sets of networks is still
largely unexplored. Additionally, a study in feature selection for this task, possibly
exploiting the spectral representation of networks, could further improve performance.
A breakthrough in this area would allow us to deploy a large collection of algorithms that
have shown their potential in artificial intelligence research for challenges in complex
networks. Potential results would enable us to learn more about information propagation,
but might be equally helpful for analyzing other networks properties like robustness or
community structures.
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WO R D AN N O TAT I O N S

This appendix contains details and word lists for the annotation system introduced in
Section 2.3.

The reader is advised to examine the following lists at his own discretion.

A.1. N O N - L AT I N
Special characters, typically from a non-latin language family. All words which included
a symbol that was not part of the extended ASCII encoding were marked as non-latin.

A.2. P R A I S E
Acts of courtesy, kindness, sport spirit or gratitude. list:

’gl’,’hf’,’glhf’,’gg’,’wp’,’thx’,’gj’,’nice’,’ty’

A.3. B A D
Profanity, swear words, insults and other inappropriate language. We used the list avail-
able at: http://www.cs.cmu.edu/~biglou/resources/bad-words.txt. As it
contains 1384 bad words, we refrain from listing them here completely. Additionally to
this list, we used the letterset method to mark all words bad constructible out of

’noob’,’noobs’,’retard’,’retards’,’tard’,’tards’,’idiot’,’idiots’,’stupid’,’fu’,’nap’,’moron’,
’morons’

A.4. L A U G H T E R
Acronyms expressing laughter and excitement. All words constructible by the letterset

’hahahaha’,’lol’,’rofl’,’lmao’
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A.5. S M I L E Y
Emoticon, symbols resembling faces or emotions. Matching pattern: the word begins
with either ’:’ or ’;’ and is no longer than 6 characters. Additionally, the following list
was applied:

’=)’, ’=))’, ’=(’, ’=D’, ’=/’, ’=,́ ’=)))’, ’=?’, ’=.=’, ’=P’, ’=))))’, ’=]’, ’=O’, ’=)))))’, ’-.-’,
’-_-’, ’-.-”, ’-,-’, ’-.-"’, ’-..-’, ’-_-”, ’-.-*’, ’-__-’, ’>.<’, ’>_>’, ’>.>’, ’>_<’, ’>:D’, ’<.<’, ’^^’,
’^_^’, ’^^^’, ’^.^’, ’^^”, ’^-^’, ’._.’, ’TT’, ’T_T’, ’xd’, ’XD’, ’xD’, ’oO’, ’Oo’, ’O_O’,
’o_o’, ’o_O’, ’O_o’

A.6. S Y M B O L
Symbols or numbers. Matches if the word is either numeric or consists out of symbols
which are neither a letter nor a digit (non-alphanumeric).

A.7. S L A N G
DotA-specific game-technical terms, mostly used to coordinate with the team. All words
from the following 4 lists were selected for this category:

a) Terms based on the Dota 2 glossary (http://dota2.gamepedia.com/Glossary):

’bottle crow’, ’ck’, ’ss’, ’cm’, ’lothars’ ’lothars edge’, ’rat’, ’safe lane’, ’tp’, ’gg’, ’mid’, ’squishy’,
’feeder’, ’fade time’, ’kotl’, ’dot’, ’fortification’, ’ks’, ’micro’, ’bb’, ’long lane’, ’et’, ’suicide
lane’, ’ggwp’, ’pl’, ’jungling’, ’qop’, ’summoner’, ’solo’, ’aoe’, ’ff’, ’mkb’, ’skill shot’, ’ww’,
’support’, ’proc’, ’bd’, ’potm’, ’tb’, ’ro3’, ’pull or pulling’, ’pet’, ’sf’, ’farm or farming’, ’sb’,
’cc’, ’fog of war’, ’wd’, ’deny’, ’dp’, ’cd’, ’ricer’, ’sk’, ’aa’, ’aggro’, ’dd’, ’debuff’, ’observer
ward’ ’wards’, ’hh’, ’buildings’ ’barracks’, ’flash farming’, ’ulti’, ’carry’, ’caster’, ’wr’, ’bs’,
’ac’, ’cw’, ’throne’, ’wipe’, ’miss or mia’, ’nuke’, ’silence’, ’ms’, ’bot or bottom(btm)’, ’es’,
’roamer’, ’sheepstick’, ’wp’, ’tank’, ’fow’, ’buff’, ’pa’, ’cooldown (cd)’, ’hard carry’, ’cancer’,
’jungler’, ’necro’, ’true sight’, ’flash farming skill/ability’, ’stacking’, ’throw’, ’offlane’, ’am’,
’furion’, ’glhf’, ’hard lane’, ’short lane’, ’orb walk’, ’reuse’, ’cs’, ’first blood|fb’, ’recrow’,
’easy lane’, ’rax’, ’kite or kiting’, ’oom’, ’bkb’, ’brb’, ’roshan or rosh’, ’ta’, ’dps’, ’b’, ’disable’,
’top’, ’attackspeed’, ’pp’, ’burst or burst damage’, ’p’, ’sny’, ’chicken or chick’, ’crow’, ’rp’,
’ganking’ ’gank’, ’bot’ ’bots’, ’exp’, ’static farming’

b) Names and nicknames of the heroes in the game:

’admiral’, ’alchemist’, ’rexxar’, ’bm’, ’cent’, ’es’, ’omni’, ’panda’, ’sven’, ’tiny’, ’tc’, ’tp’, ’io’,
’wisp’, ’alch’, ’clock’, ’rattle’, ’dk’, ’huskar’, ’bristle’, ’bb’, ’phoenix’, ’tusk’, ’tuskar’, ’tres’,
’tresdin’, ’rizzrak’, ’es’, ’am’, ’sniper’, ’troll’, ’jugg’, ’juggernaut’, ’luna’, ’morph’, ’mor-
phling’, ’meepo’, ’naga’, ’phantom’, ’pl’, ’potm’, ’riki’, ’rikimaru’, ’gyro’, ’drow’, ’traxex’,
’ta’, ’lanaya’, ’ursa’, ’venge’, ’vengeful’, ’gondar’, ’bh’, ’xin’, ’ember’, ’cm’, ’crystal’, ’ry-
lai’, ’ench’, ’enchantress’, ’puck’, ’chen’, ’kotl’, ’zeus’, ’furi’, ’furion’, ’malfurion’, ’silencer’,
’nortrom’, ’lina’, ’slayer’, ’storm’, ’wind’, ’wr’, ’windrunner’, ’disruptor’, ’thrall’, ’ogre’,
’techies’, ’jakiro’, ’tinker’, ’rasta’, ’rhasta’, ’rubick’, ’rubik’, ’sky’, ’skywrath’, ’oracle’, ’axe’,
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’chaos’, ’doom’, ’naix’, ’abaddon’, ’abba’, ’bane’, ’lycan’, ’night’, ’azgalor’, ’pit’, ’pudge’,
’sk’, ’slardar’, ’dirge’, ’undying’, ’tide’, ’tidehunter’, ’magnus’, ’bara’, ’spiritbreaker’, ’sand’,
’sand king’, ’crixalis’, ’blood’, ’clinkz’, ’brood’, ’nyx’, ’weaver’, ’mort’, ’pa’, ’mortred’, ’sf’,
’shadow’, ’shadow fiend’, ’terror’, ’terrorblade’, ’spectre’, ’mercurial’, ’veno’, ’venomancer’,
’viper’, ’razor’, ’slark’, ’void’, ’faceless’, ’medusa’, ’dusa’, ’zet’, ’arc’, ’arc warden’, ’bane’,
’dark’, ’dp’, ’death’, ’lion’, ’enigma’, ’lich’, ’necro’, ’necrolyte’, ’pugna’, ’oblivion’, ’desi’,
’od’, ’qop’, ’warlock’, ’shadow’, ’sd’, ’bat’, ’batrider’, ’dazzle’, ’kael’, ’invoker’, ’invo’, ’vis-
age’, ’lesh’, ’leshrac’, ’wd’, ’witch doctor’, ’aa’, ’ww’, ’winter’, ’mirana’, ’mira’, ’trax’, ’husk’,
’legion’, ’jugger’, ’akasha’, ’crix’, ’kunka’, ’kunkka’, ’mother’, ’nerub’, ’rasta’, ’maiden’,
’shaker’, ’balanar’, ’dirge’

c) Names and nicknames of the items in the game:

’ac’, ’heart’, ’bkb’, ’aegis’, ’shiva’, ’shivas’, ’bloodstone’, ’linken’, ’linkens’, ’van’, ’vanguard’,
’bm’, ’blademail’, ’blade’, ’hood’, ’manta’, ’scythe’, ’sheep’, ’sheepstick’, ’orchid’, ’eul’,
’euls’, ’force’, ’force staff’, ’dagon’, ’necro’, ’necrobook’, ’agh’, ’aghs’, ’aghanims’, ’refresh’,
’refresher’, ’veil’, ’rod’, ’atos’, ’mek’, ’mekansm’, ’vlad’, ’vlads’, ’boots’, ’arcane’, ’man-
aboots’, ’aquila’, ’buckler’, ’branch’, ’ring’, ’basi’, ’basil’, ’basilius’, ’pipe’, ’urn’, ’head’,
’headress’, ’medallion’, ’drums’, ’janggo’, ’tranquil’, ’tranquils’, ’divine’, ’rapier’, ’mkb’,
’radiance’, ’radi’, ’butterfly’, ’buri’, ’basher’, ’battlefury’, ’abyss’, ’crystalys’, ’crit’, ’armlet’,
’lothar’, ’lothars’, ’etheral’, ’eblade’, ’sange’, ’yasha’, ’satanic’, ’mjollnir’, ’skadi’, ’helm’,
’mael’, ’maelstrom’, ’deso’, ’desolator’, ’mom’, ’diffusal’, ’hh’, ’halberd’, ’bot’, ’bots’, ’phase’,
’treads’, ’soul’, ’midas’, ’perseverance’, ’poorman’, ’bracer’, ’wraithband’, ’null’, ’wand’,
’stick’, ’gloves’, ’mask’, ’kelen’, ’kelens’, ’blink’, ’sobi’, ’boots’, ’gem’, ’cloak’, ’evasion’,
’ghost’, ’shadow’, ’clarity’, ’salve’, ’healing’, ’tango’, ’bottle’, ’ward’, ’obs’, ’sentries’, ’sen-
try’, ’dust’, ’smoke’, ’chicken’, ’bird’, ’donkey’, ’tp’, ’flying’, ’gauntlet’, ’gauntlets’, ’slippers’,
’mantle’, ’ironwood’, ’belt’, ’robe’, ’circ’, ’circlet’, ’orb’, ’claws’, ’claymore’, ’stout’, ’shield’,
’javelin’, ’mithril’, ’chain’, ’helm’, ’plate’, ’quelling’, ’blade’, ’relic’, ’void’, ’venom’, ’wards’,
’dagger’, ’courier’, ’meka’, ’agha’, ’maelstorm’

d) General terms to describe game mechanics:

’crow’, ’cs’, ’deny’, ’dive’, ’farm’, ’gang’, ’gank’, ’push’, ’juke’, ’pull’, ’juked’, ’juking’, ’pushed’,
’woods’, ’wood’, ’jungle’, ’lane’, ’off’, ’safe’, ’quas’, ’wex’, ’exort’, ’care’, ’rosh’, ’ult’, ’ulti’,
’missing’, ’miss’, ’bot’, ’top’, ’mid’, ’help’, ’stun’, ’sup’, ’support’, ’carry’, ’rune’, ’haste’, ’dd’,
’invis’, ’roam’, ’creep’, ’ancient’, ’ancients’, ’camp’, ’block’, ’disable’, ’miss’, ’report’, ’tower’,
’gg’, ’wp’, ’ez’, ’back’, ’bb’, ’bbb’, ’regen’, ’fountain’, ’base’, ’gj’, ’take’, ’mana’, ’oom’, ’omw’,
’back’, ’stay’, ’heal’, ’hex’, ’afk’, ’creeps’, ’farming’, ’roshan’, ’warded’, ’cares’, ’bottom’,
’ulty’, ’go’, ’rax’

A.8. C O M M A N D

In-game commands and control words that trigger certain effects.
pattern: word starts with either ’!’ or ’-’.
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A.9. S T O P
English stop word from the following list:
’a’, ’an’, ’another’, ’any’, ’certain’, ’each’, ’every’, ’her’, ’his’, ’its’, ’its’, ’my’, ’no’, ’our’, ’some’,
’that’, ’the’, ’their’, ’this’, ’and’, ’but’, ’or’, ’yet’, ’for’, ’nor’, ’so’, ’as’, ’aboard’, ’about’, ’above’,
’across’, ’after’, ’against’, ’along’, ’around, ’at’, ’before’, ’behind’, ’below’, ’beneath’, ’beside’,
’between’, ’beyond’, ’but’, ’by’, ’down’, ’during’, ’except’, ’following’, ’for’, ’from’, ’in’,
’inside’, ’into’, ’like’, ’minus’, ’near’, ’next’, ’of’, ’off’, ’on’, ’onto’, ’opposite’, ’out’, ’outside’,
’over’, ’past’, ’plus’, ’round’, ’since’, ’than’, ’through’, ’to’, ’toward’, ’under’, ’underneath’,
’unlike’, ’until’, ’up’, ’upon’, ’with’, ’without’, ’i’, ’u’, ’me’, ’you’, ’we’, ’is’, ’dont’, ’all’, ’y’,
’can’, ’it’, ’get’, ’have’, ’why’, ’need’, ’he’, ’come’, ’just’, ’not’, ’are’, ’they’, ’now’, ’got’, ’ok’,
’what’, ’was’, ’will’, ’do’, ’if’

A.10. T I M E M A R K
Automatically generated time-stamp, attached to the chat in pause-mode.
pattern: matches ’[dd:dd]’ where d is a digit {0123456789}.



B
TO X I C N -G R A M S

This appendix lists the n-grams which were used to define toxic statements in Chapter 2.
The n-grams were selected out of the 100 most frequent n-grams for n= 1, 2, 3, 4 by the
following criteria:

1. if n = 1, the n-gram is toxic if it is a word that could - without context - be
interpreted as an insult.

2. if n> 2, the n-gram is toxic, if it can be interpreted as an insult directed to another
person.

The reader is advised to examine the following lists at his own discretion.

B.1. TO X I C N -G R A M S (N = 1)
’noob’, ’idiot’, ’fu’, ’retard’, ’noobs’, ’tard’, ’idiots’, ’stupid’, ’moron’, ’retards’, ’bitch’, ’tards’,
’nap’, ’fucker’, ’fucktard’, ’nooob’, ’motherfucker’, ’morons’, ’retarded’, ’noob?’, ’blind?’,
’gay’, ’blind’, ’kid’, ’asshole’, ’pussy’, ’sucker’, ’fuckers’, ’dumb’, ’fag’, ’idiot?’, ’retard?’,
’faggot’, ’loser’, ’nob’, ’nooobs’, ’bitches’, ’noooob’, ’dumbass’, ’fuuu’, ’fuu’, ’stupid?’, ’ass’,
’stupids’, ’cunt’

B.2. TO X I C N -G R A M S (N = 2)
(’mother’, ’fker’) (’noob’, ’shittttttttttttttt’) (’fker’, ’noob’) (’kkkkkkkkkkkk??????????????’,
’u’) (’fucking’, ’noob’) (’fuck’, ’u’) (’u’, ’suck’) (’fuck’, ’you’) (’u’, ’fucking’) (’fucking’, ’idiot’)
(’fuck’, ’off’) (’a’, ’noob’) (’fucking’, ’retard’) (’you’, ’fucking’) (’fucking’, ’noobs’) (’noob’,
’team’) (’you’, ’suck’) (’u’, ’noob’) (’suck’, ’my’) (’piece’, ’of’) (’fucking’, ’tard’)

B.3. TO X I C N -G R A M S (N = 3)
(’mother’, ’fker’, ’noob’) (’fker’, ’noob’, ’shittttttttttttttt’) (’u’, ’such’, ’mother’) (’such’,
’mother’, ’fker’) (’piece’, ’of’, ’shit’) (’suck’, ’my’, ’dick’) (’what’, ’a’, ’noob’) (’shut’, ’the’,
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’fuck’) (’u’, ’are’, ’noob’) (’the’, ’fuck’, ’u’) (’u’, ’fucking’, ’noob’) (’son’, ’of’, ’a’) (’fu’, ’fu’,
’fu’) (’are’, ’u’, ’fucking’) (’u’, ’are’, ’fucking’) (’he’, ’is’, ’noob’) (’are’, ’you’, ’fucking’)
(’die’, ’in’, ’hell’) (’a’, ’fucking’, ’noob’) (’u’, ’suck’, ’so’) (’such’, ’a’, ’noob’) (’you’, ’are’,
’noob’) (’you’, ’are’, ’fucking’) (’u’, ’fucking’, ’idiot’) (’fucking’, ’noob’, ’team’) (’go’, ’fuck’,
’yourself’) (’so’, ’fucking’, ’bad’) (’u’, ’fucking’, ’retard’) (’fuck’, ’your’, ’mother’) (’noob’,
’noob’, ’noob’) (’you’, ’suck’, ’so’) (’u’, ’are’, ’idiot’)

B.4. TO X I C N -G R A M S (N = 4)
(’mother’, ’fker’, ’noob’, ’shittttttttttttttt’) (’u’, ’such’, ’mother’, ’fker’) (’such’, ’mother’,
’fker’, ’noob’) (’shut’, ’the’, ’fuck’, ’up’) (’son’, ’of’, ’a’, ’bitch’) (’why’, ’the’, ’fuck’, ’u’) (’fu’,
’fu’, ’fu’, ’fu’) (’the’, ’fuck’, ’are’, ’you’) (’u’, ’suck’, ’so’, ’hard’) (’of’, ’shit’, ’you’, ’are’) (’the’,
’fuck’, ’are’, ’u’) (’piece’, ’of’, ’shit’, ’you’) (’fucking’, ’piece’, ’of’, ’shit’) (’u’, ’piece’, ’of’,
’shit’) (’what’, ’the’, ’fuck’, ’are’) (’noob’, ’noob’, ’noob’, ’noob’) (’you’, ’suck’, ’so’, ’hard’)
(’saying’, ’piece’, ’of’, ’shit’) (’the’, ’fuck’, ’did’, ’u’) (’u’, ’are’, ’fucking’, ’noob’) (’you’, ’are’,
’a’, ’noob’) (’get’, ’the’, ’fuck’, ’out’) (’you’, ’are’, ’fucking’, ’noob’) (’u’, ’are’, ’a’, ’fucking’)
(’you’, ’are’, ’so’, ’fucking’) (’u’, ’suck’, ’so’, ’much’) (’you’, ’piece’, ’of’, ’shit’) (’u’, ’cant’,
’do’, ’shit’) (’u’, ’are’, ’a’, ’noob’) (’u’, ’son’, ’of’, ’a’) (’retarded’, ’piece’, ’of’, ’shit’) (’what’,
’a’, ’fucking’, ’noob’) (’of’, ’bitch’, ’son’, ’of’) (’i’, ’hope’, ’u’, ’die’) (’a’, ’piece’, ’of’, ’shit’)
(’u’, ’suck’, ’like’, ’hell’)
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Theorem. The number of closed triangles in an undirected network of N nodes is

ÎG =
1
6

N
∑

k=1

λ3
k

where λ1, . . . ,λN are the eigenvalues of the adjacency matrix A of the network.

To prove the theorem, we first show how the powers of an adjacency matrix Ak are
related to closed walks and connect this result to the spectral decomposition of Ak.

Lemma 1. Let A be an adjacency matrix of a network and k be an integer. Then the entry
(Ak)i j of Ak describes the number of walks of length k between nodes i and j.

Proof. Induction on k: for k = 1 there can only be 1 or 0 possible walks between
any pair of nodes i and j, depending whether there exists a link between i and j or not.
Thus, (A)i j is the number of 1-walks between any nodes i and j.

Let us assume the theorem holds for all integers up to k. For any node `, (Ak)i` is
the number of k-walks from i to ` by the induction hypothesis. If node ` is adjacent to
j, there are (Ak)i` walks of length k+ 1 from i to j with ` being the second-last node. If
` is not adjacent to j, there are zero walks of length k+ 1 from i to j with ` being the
second-last node. Thus, the total number of k+ 1-walks between i and j is given by the
summation of the k+1 walks over all possible nodes `. This is the same as the definition
of the matrix product:

(Ak+1)i j =
N
∑

`=1

(Ak)i`A` j .

�
From this lemma follows that (Ak)ii describes the number of closed walks of length k

from one node i back to itself. Each triangle in a network is a connected triplet of three
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different nodes a, b, c. There are 6 permutations of the ordering for these nodes, each
corresponding to a different 3-walk. It follows that

ÎG =
1
6

N
∑

i=1

(A3)ii =
1
6

trace(A3).

Note that the trace is the sum of all eigenvalues of a matrix:

trace(A) =
N
∑

i=1

λi .

Let Λ= diag(λi). By an eigenvalue decomposition we can write A= XΛX−1 where X is
a matrix containing the corresponding normalized eigenvectors. It follows that

A2 = (XΛX−1)(XΛX−1) = XΛ(X−1X )ΛX−1 = XΛ2X−1.

With induction, one can show that

Ak = XΛkX−1.

Consequently, it follows that

trace(Ak) =
N
∑

i=1

λk
i .

Thus, for k = 3 we conclude that

ÎG =
1
6

trace(A3) =
1
6

N
∑

i=1

λ3
i .

�
An immediate consequence of this theorem is that any two networks with the same

spectrum must have the same number of triangles.
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