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Abstract

In practical situations, computer vision technique is applied to solve vari-
ous tasks, including image classification, object detection, image segmentation,
and so on. The commonly used supervised learning training paradigm for the
network models used to solve these tasks requires training data as well as the
ground truth labels specifying the data samples’ reference information for the
task. However, getting labels for every task would be expensive or even almost
impossible, such as medical images due to privacy reasons and expert annota-
tions from medical professionals and facial recognition also because of privacy
concerns. Many large-scale general datasets exist, like ILSVRC2012 for both im-
age classification and object detection tasks and COCO also for objection tasks.
, and the corresponding pre-trained models whose knowledge can be transferred
to other fields. While deeper models typically have better performance and
can learn better feature representation from the same tasks, increasing network
models introduces difficulties in practical deployment, especially regarding re-
source limitation and response latency. We hope to explore the learning methods
in knowledge distillation to help the smaller student network learn better fea-
tures from the unlabeled training data and have better transfer performance on
downstream tasks. With the remarkable success of contrastive learning, it has
become one of the most promising methods of learning from unlabeled data.
In this thesis, we proposed an unsupervised knowledge distillation method that
applies a contrastive learning method to construct and extract relational know-
ledge from the feature representations of the intermediate layers as well as the
final layer. The evaluation with the ILSVRC2012 dataset proves the effect-
iveness of the proposed method on feature learning as the method helped the
ResNet-18 model achieve a 2% improvement in linear evaluation accuracy com-
pared to the baseline model. Extensive experiments were conducted on eight
transfer learning tasks, and the model trained by the proposed method outper-
formed its baseline model in all the eight classification tasks and also achieved
better fine-tuning accuracy in the situation where only a small fraction of the
ground truth label was available for fine-tuning.
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Chapter 1

Introduction

1.1 Introduction

The widely applied supervised deep learning algorithms have demonstrated their
outstanding capabilities in different tasks like classification [37], object detec-
tion [59], and so on. However, supervised learning methods often require large
amounts of labeled data to achieve optimal performance [28]. Generally speak-
ing, the performance of deep neural networks heavily relies on the size [58] of
the training dataset. More training samples contain more variations of the fea-
tures and reduce the risk of outfitting the networks on certain patterns to learn
more robust and generalizable features. The research of Sun et al. [58] demon-
strated that performance on vision tasks increases logarithmically along with
the volume increase of training data size. The process of collecting and annot-
ating data is time-consuming and labor-intensive [66]. For example, collecting
annotations for medical imaging applications is very costly as such labels re-
quire complicated domain expertise that is only available from trained doctors.
Therefore, the challenges of obtaining and labeling data have become signific-
ant bottlenecks, limiting the practical applicability of supervised deep learning
methods.

Recent progress in unsupervised learning methods has greatly alleviated such
bottlenecks and demonstrated their potential for efficiently learning from un-
labeled data [11]. Among the various unsupervised learning methods, contrast-
ive learning (CL) has demonstrated the potential of utilizing unsupervised rep-
resentation learning to learn discriminative embedding feature representations
from unlabeled data [3],[66]. CL constructs representations of contrasting pos-
itive and negative pairs of examples in the embedding spaces and maps similar
examples closer together in the feature space while pushing dissimilar examples
farther apart to learn from the unlabeled training data. Recent study [8] in-
dicated that models demonstrated better representation learning capabilities
as the model capacity increases, and larger models can receive more benefit in
performance from self-supervised learning methods.

In applications such as edge computing, due to the consideration of data
privacy and computation efficiency, we would like to have the processing and
computation take place locally instead of remotely [4]. However, due to the
limitations of edge devices, such as computation capability and memory, the
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most sophisticated models with the best performance may not always be feasible
to be deployed in practical situations. These models typically require substantial
computation resources to perform calculations and inference [7]. This issue
has been addressed using different techniques from different points of view to
compress these complex models, such as model quantization [25] and model
pruning [13]. Knowledge distillation, via transferring the knowledge from a
larger model to a smaller model, is able to achieve the goal of model compression
[27].
This thesis project aims to compress a pre-trained large model by transferring

the features learned by the larger model from unlabeled training data to a smal-
ler model that is easier to deploy and achieves comparable transfer performance
on the downstream tasks with the large model. Specifically, we proposed an
unsupervised knowledge distillation method that applies a contrastive learning
method to construct similarity relation knowledge for the input augmented data.
While other unsupervised knowledge distillation methods focus on making use
of the final embedding of the network [24], we hope to also take advantage of
the feature embeddings of the intermediate layers for knowledge distillation in
an unsupervised learning situation as each of these representations also contains
the fruitful feature and semantic information of different levels. This method
is inspired by how Contrastive Deep Supervision [72] utilizes the intermediate
layer feature embedding to assist the normal supervised learning training of the
models. A two-step training and distillation process to realize this method is
also proposed accordingly. In this process, a series of auxiliary networks are
attached to the pre-trained teacher network and trained to extract the inter-
mediate layer feature embedding in the first step and guide the training of the
student model with the intermediate layer and final embedding from the teacher
model in the second step.
We conduct extensive evaluations to demonstrate the effectiveness of the pro-

posed method on ILSVRC 2012 [56] dataset and eight transfer learning datasets
with ResNet-50 and ResNet-18 networks as the teacher and student pair. The
knowledge distillation trained ResNet 18 network achieved a 2% improvement
compared to the baseline ResNet 18 network trained with SimCLR. Further-
more, we evaluate the transfer learning performance of the proposed method on
eight downstream classification tasks. In all eight tasks, the model trained by
the proposed method outperformed the baseline model by up to 3.5%, and the
ResNet 18 network trained by the proposed knowledge distillation method also
had better performance on the few-shot scenario where only a small fraction of
the training set labels are available in the evaluation of the models, performed
on two of the tasks.
The main contributions of this thesis are summarized as follows:

• The thesis proposed an unsupervised knowledge distillation method that
utilizes contrastive learning to construct and extract knowledge from in-
termediate layers and the final layer of the network and train the student
network model to facilitate better learning of the feature representation
from the unlabeled data and achieve a better transfer performance on
downstream classification tasks. A corresponding 2-step training and dis-
tillation process is also proposed to realize this method.

• Extensive experiments among eight downstream classification tasks ex-
ploring the performance of features of the student network learned from
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the proposed knowledge distillation method.

1.2 Thesis Content

The remainder of the thesis is structured as follows:

• Related Works. Chapter 2 provides a comprehensive overview of the
related background topics of this thesis.

• Method. Chapter 3 presents the design of the proposed unsupervised
knowledge distillation method and the step-wise, in-detail introduction of
the training process of the smaller model.

• Evaluation. The implementation of the knowledge distillation and the
evaluation process and results of the distillation are elaborated in Chapter
4.

• Conclusion. The conclusion summarizing this thesis and the discussion
for future research possibilities are presented in Chapter 5
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Chapter 2

Related Work

This chapter describes the theoretical background and related research this pro-
ject builds upon or relates to. Section2.1 introduces the general pipeline and the
principle of self-supervised learning and provides some examples of pretext tasks
in self-supervised learning. Section2.2 introduces contrastive learning as a vari-
ation of self-supervised learning with its architecture and principle. Section2.3
discusses in detail SimCLR, the specific contrastive learning method applied
in this project, with its architecture and algorithm. Section 2.4 introduces the
concept of the general model compression technique and two of the major model
compression techniques: pruning and model quantization. Section2.5 provides
an overview of the knowledge distillation technique and some existing works on
combining knowledge distillation and contrastive learning.

2.1 Self-Supervised Learning

Self-supervised learning is a machine learning paradigm designed to extract
meaningful information from unlabeled training data. To address the chal-
lenges of lack of expensive labeled data required by supervised learning, self-
supervised learning extracts representations from unlabeled data by designing
pre-text tasks that automatically generate labels from existing unlabeled data
[28]. An effective pretext task requires models to capture visual representations
within the unlabeled training data to solve them. The focus of these pretext
tasks is to learn intermediate representations that contain rich semantic and
structural knowledge of the data [46] and consequently benefit the downstream
tasks. Common pretext task examples are described as follows as well as in Fig
2.1.

• Image in-painting [54]The encoder is trained to reconstruct the missing
regions of a picture in a way that is visually coherent with the rest of the
image. The encoder network can learn the visual and structural features
of the unlabeled data.

• Rotation prediction [26]The encoder is trained to predict the degree of
the rotation transformation with respect to the original image. Rotation-
invariant features can be learned from this task.
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(a) Inpainting [54] (b) Rotation Prediction

(c) Jigsaw Puzzle [38] (d) Instance discrimination

Figure 2.1: Examples of pretext tasks. (a) the network learns to re-
build the picture; (b) the network is trained to predict the rotation
angle of the input with respect to the original image; (c) the network
is trained to solve the jigsaw puzzle; (d) the network is trained to
identify similar and different instances.

• Jigsaw puzzles [48]The encoder is trained to recover a jigsaw puzzle
to attain the original image. The encoder network can learn the spatial
relations of the different parts of the original image and their underlying
features.

• Instance discrimination[21]The encoder is trained to distinguish between
instances with different visual features.

As illustrated in Fig.2.2, the general process of self-supervised learning be-
gins with defining a pretext task to generate pseudo labels from the unlabeled
data automatically. The network models are then trained using objective loss
functions based on these pretext tasks to learn the underlying visual feature
representations. These learned task-irrelevant representations can subsequently
be transferred to specific downstream tasks [39].

2.2 Constrasive learning

Contrastive learning is a form of self-supervised learning method that achieves
state-of-the-art performance [8].
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Figure 2.2: A general pipeline of self-supervised learning. The en-
coder network is trained with the unlabeled dataset to learn the
task-irrelevant feature knowledge, and these can be transferred and
applied to specific downstream tasks as pre-trained parameters.

2.2.1 Overview

Research has demonstrated that contrastive learning, leveraging instance dis-
crimination as a self-supervised learning pretext task, is very promising in visual
representation learning [41]. The goal of contrastive learning is to learn the
feature representations from the training data via differentiating similar and
dissimilar data samples. Specifically, contrastive learning aims to pull the rep-
resentations of visually similar image pairs, called positive pairs, together while
pushing the representation of visually distinct image pairs, known as negative
pairs, away.

Fig.2.3 demonstrates a typical architecture for contrastive learning. Each ori-
ginal data sample forms a class itself, and the augmented views of that image
inherit such pseudo-classification labels and are regarded as positive pairs. Ap-
plying transformations to form positive pairs aims to facilitate the model in
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Figure 2.3: A general architecture for contrastive learning. Augmented
views of the same input data sample are regarded as positive pairs
and negative pairs are generated from views of different input data
within the data batch. The network model is trained to minimize
the distance between the output embedding of the positive pairs and
maximize those between negative pairs.

learning transfer-invariant features of the training data. Then, automatically,
each augmented sample forms negative pairs with all the samples from different
originals. The similarities of these samples are measured in the embedding space
with the encoder and projection head network extracting the features from the
data samples. The fundamental training target of contrastive learning can be
expressed as learning an encoder network f such that for any data point x, the
similarity between the anchor point and data points similar to the anchor point
is denoted as Sim(f(x), f(x+)) and similarity between the anchor point and
data points similar to the anchor point is denoted as Sim(f(x), f(x−)). The
score function Sim() is a measurement of the similarity between feature repres-
entations. The network is trained with such a loss function that makes the first
value much larger than the second similarity term.
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There are different variations of contrastive loss as the construction and or-
ganization of the positive and negative samples differ[[49],[23],[51],[57]]. A series
of work like SimCLR [8] and MoCo [31] has demonstrated that contrastive
learning has the capability of achieving state-of-the-art performance in many
applications, even surpassing their supervised counterparts in some scenarios
[73].

2.2.2 Data transform for contrastive learning

Data transformation is pivotal in contrastive learning [70]. It’s indispensable for
enabling the model to grasp the underlying invariances and features in training
data. We effectively generate augmented training elements by processing input
data through transformations, facilitating the model’s learning objectives.
There are various transformations applied to different contrastive pretext

tasks. Listed below are some of the representative transformations:

• Geometry transformations. One common type of transformation in
image processing problems is geometry transformation. Images’ geomet-
ric properties are altered to create variations in the training data while
preserving their semantic content. Resizing, cropping, and flipping are
some of the most frequently applied transformations.

• Appearance transformation. Aside from lines, edges, patterns, and
textures, colors and lighting are also informative features of an object in
the image. Such features can be manipulated with brightness, contrast,
saturation, and hue. Transforming a colored picture to a grey scale pic-
ture also has the effect of augmenting the original data. Another import-
ant form of appearance transformation is Gaussian blur. The Gaussian
blur process involves applying a Gaussian filter to the input image, which
smooths out pixel intensities based on their proximity to the pixels in the
neighborhood. This transformation results in a blurred version of the ori-
ginal image. It can help denoise an image, simulate defocus, and work as
regularization in some cases.

To achieve optimal training outcomes, thoughtful consideration should be
given to the selection of image augmentations. However, determining the most
effective combination of views and transformations remains an ongoing area of
study, with varying opinions among researchers. The experiments in SimCLR
[8] demonstrated that the training benefited from stronger augmentation com-
binations.
ReSSL [74] argues that applying aggressive data augmentation to generate

positive pairs risks compromising the reliability of the target relations among
training data samples [74]. Such transformation can potentially strip away
crucial semantic information from the augmented data, resulting in noisy and
unreliable associations.
Y. Tian et al. [39] demonstrated that the optimal view for contrastive rep-

resentation learning is task-dependent, and effective learning requires the pre-
servation of task-relevant information while minimizing irrelevant nuisances.
Some people also question the act of treating all the augmentations equally

and believe that some augmentations are more significant than others and cer-
tain features learned with strong augmentations may introduce unnecessary
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(a) Original image (b) Resizing, cropping, and
flipping

(c) Color jitter (d) Gaussian blur

Figure 2.4: Examples of image transforms

invariance into the trained backbone model, as strong transformations of the
model fine-grained information critical for the down-stream tasks.

X. Wang et al. [63] also share the idea with ReSSL that stronger augment-
ations may have a negative impact on representation learning as induced dis-
tortions severely hinder image structure and identity of the original picture.
However, they believe that stronger augmentations could still contribute to the
model performance with the help of a dedicated training framework.

2.3 SimCLR

Proposed by Chen et al. [8], SimCLR is one of the most applied state-of-
the-art contrastive learning frameworks for the computer vision field and this
project is developed on this framework. The general workflow of SimCLR is
shown as follows: apply transformations on the input images to derive the
augmented views, minimize the distance between the augmented views from
the same original pictures, and maximize the distance of views from different
original pictures. Fig 2.5 provides an overview of the architecture of the method.
It consists of the following four primary components:

• A stochastic data augmentation module.It defines a random trans-
formation function T that randomly transforms a given input to two cor-
related views of the same example. SimCLR sequentially applies random
crop with resize and random flip, random color distortion, and random
Gaussian blur as the data augmentation. The experiments indicated that
the combination of cropping with resize and color distortion is, in partic-
ular, beneficial to the training performance.

10



Figure 2.5: The framework of SimCLR [8]. Each input data is applied
with two random transforms to generate a positive pair. The aug-
mented data are fed to the encoder network f to generate feature
representations h. They are projected to a latent space with the pro-
jection head g, where the agreement of the embedding of the different
views z within the same positive pairs is maximized.

• The encoder network.The encoder network extracts the features from
the augmented data and derives their representations. SimCLR uses Res-
net architecture as the encoder network architecture due to its simplicity.
In comparison to standard Resnet networks, the encoder only uses the
backbone, the network before the final linear layer, as the final classifier
is task-specific and unnecessary for the representation learning.

• A projection head. A smaller neural network projection head maps the
feature representations extracted by the base encoder network into the
latent space where the features will be compared. The non-linear MLP
structure projection head has been proven to enhance training perform-
ance.

• Loss function. It models the relative relations between the feature rep-
resentations from the input data in the latent space and optimizes the
model by minimizing the loss function. Equation 2.1 demonstrates the
loss term calculation between a positive pair, and the final loss is per-
formed among all positive pairs.

Given a mini-batch containing N data samples{xi}i=:N , and for each element in
this batch, we applied two transforms t, t′ sampled from the same distribution
T to derive the two augmented views x̃i = t(x) and x̃j = t′(x) and 2N data
samples in total. The pair (x̃i, x̃j) are regarded as a positive pair, and the other
2(N-1) augmented examples within a mini-batch are negative examples. Then,
the augmented views are fed into the encoder network to extract the feature
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representations hi = f(x̃i) and hj = f(x̃j). Then, the projection head maps
the representations for comparison, as demonstrated in Fig.2.5 with zi = g(hi)
and zj = g(hj). Cosine similarity is used here as the pairwise measurement of
distances between representations, so the loss function for a positive pair (xi, xj)
can be expressed as:

ℓi,j = −log
exp(sim(zi, zj)/τ)∑2N

k=1 ⊮[k ̸=j]exp(sim(zi, zj)/τ)
(2.1)

where sim(zi, zj)is the cosine similarity calculated by zi
⊤zj/||zi||||zj || and

⊮[k ̸=j] is an indicator function evaluating to 1 iff k ̸= i, and τ is a temperature
that works as a scaling coefficient [64] for the distribution of the similarity
between the projections. A lower τ value will emphasize the dissimilarity of
those contrasting representations. However, there is a risk of introducing noise
into the distribution and impairing learning performance as small distances
between similar representations are also amplified. On the other hand, a τ
value too small also has a negative impact on the training as the distribution
will be ”smoothed” and lead to the loss of important correlations.
The total loss is computed across all the positive pairs and notice that to in-

clude all the positive pairs, the elements should be considered in both sequences.
The final loss function is termed as NT-Xent (Normalized temperature-scaled
cross-entropy) loss [8].

2.4 Model Compression

While receiving the benefit from the network depth, deep neural network models
often require a large number of parameters to achieve optimal performance [32],
leading to high computational and storage demands. In practical situations,
the deployment of these models may face limitations such as limited computing
power and memory on target devices. Additionally, large complex models can
have long inference times, which is not ideal for many real-time tasks. Thus, it
is essential to develop methods that can compress these large models into smal-
ler neural network models that retain similar accuracy while being applicable
with limited resources. Model quantization and model pruning are two primary
classic model compression methods.

2.4.1 Model Quantization

Quantization refers to the process of approximating the continuous values of a
signal to a finite number of discrete values. It can be regarded as a method of
information compression. In current development, most deep neural network
models tend to be over-parameterized, so there are opportunities to reduce the
bit precision without greatly affecting network accuracy, as many parameters are
either redundant or less sensitive to small changes. Such redundancy, combined
with the network’s robustness to small perturbations, makes it possible to reduce
bit precision without a large impact on network accuracy [25]. To be specific,
the quantization for deep neural network models is the process of reducing
the precision and the number of bits of the network model parameters and
calculations so as to reduce the demand for memory and accelerate the forward
inference calculations. Generally, 32-bit floating-point numbers are used in deep
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learning to represent parameters and calculation processes, and studies have
demonstrated that the models can be further compressed by using 16-bit, 8-bit,
and 4-bit values[[14],[60],[29]]. An extreme case of quantization is binary neural
networks, where model weights and activation are represented with only 1-bit
binary numbers [68].

The model quantization methods can be categorized into weights quantization
and activation quantization [12].

Some of the model quantization methods focus on quantizing model weight
parameters to reduce the model size [62, 75, 42, 18][[62],[75],[42],[18]], while other
approaches also try to reduce the time from the time-consuming floating point
operations, using fix-point values in activations calculation and representations.
XNOR-Net [55] extends the binary weight networks and introduces binary into
activation calculations, using binary operations to approximate convolution op-
erations to reduce time and memory. The essential target of quantization is to
determine a mapping for the network parameters and intermediate values to a
finite set of values in a lower precision range. Such range can be symmetric and
asymmetric, and the mapped values can be uniformly or non-uniformly spread
in the range according to the characteristics of the network [25].

There are different schemes for model quantization in real applications ac-
cording to the stage to apply this method. In Quantization-Aware Training
[25], the quantization is implemented after the original model is pre-trained on
the dataset. Consider that quantization will inevitably make the trained para-
meters deviate from the training results and lead to accuracy degradation. The
quantized model is then retrained on the training data to recover model accur-
acy. However, such re-training could take a relatively long period, especially for
low-bit precision quantization. The other scheme is Post-Training Quantization
[25], where quantization takes place after the pre-trained model is calibrated
with a small subset of training data to compute the clipping ranges and the
scaling factors. Then, the model can be directly quantized without further
tuning. Fig 2.6 compares the process of these schemes.

Figure 2.6: Quantization-Aware Training (Left) and Post-Training
Quantization (Right) [25]

2.4.2 Model Pruning

Research on pruning neural network models is also based on the same assump-
tion that there is significant redundancy in the parametrization of deep learning
models [20]. In neural networks, there are many redundant, non-informative
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parameters in the deep learning network model in the convolutional and fully
connected layers [13], and many neuron activation values are close to 0, which
indicates that only a fraction of the parameters participate in the main calcula-
tion, while the rest not contributing much to the network performance during
training. Network pruning removes such parameters from the network that
these simplifications will have the least effect on the accuracy of the network
[14]. Fig 2.7 provides an example of the pruning process.

Figure 2.7: Model pruning. Removing redundant or less important
components, such as neurons or weights, without significantly com-
promising the model’s performance

Given a neural networkf(X,W ), with X as the input data and W as the set of
parameters, model pruning can be formulated as a technique for determining a
minimal subset of network parameters W ′ such that the rest of the parameters
in W are removed or set to zero while guaranteeing that the performance of the
network model remains to be able to satisfy the required threshold [45].
Most of the methods apply a three-step process for the complete model prun-

ing process[[5],[30]:

• Train the original network connectivity via normal network training for
network convergence. However, unlike usual training, this network train-
ing step focuses on determining which connections are important.

• Prune the low-weight connections. All the connections with weights below
a certain threshold are removed to convert a dense network to a sparse
network.

• Retrain the network. Pruning will inevitably have an impact on the
model’s performance. The sparse network is retrained with the remaining
parameters on the target task to recover the accuracy.

The second and the third step can be repeated till the pruned model meets
the requirements.
According to the granularity of pruned structures, model pruning methods can

be categorized as structured and unstructured pruning. Unstructured pruning,
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or fine-grained pruning, does not follow a specific geometry or constraint and
treats all the parameters equally to perform pruning directly on the weight
parameter level [1]. Unstructured pruning has great flexibility and simplicity,
but in many cases, it requires specific hardware or library support for realistic
acceleration because of the unstructured sparsity [43].
In comparison, structure pruning focuses on modifying networks at a higher

granularity, such as entire neurons, kernels [2], filters [33], or channels [34].
In channel-level pruning, for example, all the incoming and outgoing weights
to/from a feature map are pruned [1]. Structure pruning will reduce the demand
for calculations and generate lightweight intermediate representations, further
reducing the demand for memory. However, such methods often require more
delicacy in designing as the network models are contacted by different layers,
and their inputs and outputs are correlated.
The criteria for determining which parameters or elements of the network are

important are also a central question in network pruning. One common scoring
method to evaluate whether a weight parameter is important is its magnitude
[43]. Under the constraint of weight decay, those weights that do not contribute
significantly to the result will shrink in magnitude during training. Applying
an L0 or L1 regularizer to the model loss function during training can force
some of the weight parameters to 0, creating sparsity in network models to
achieve pruning [61]. In structure pruning, L1 and L2 norms can also be used
in structured pruning to measure the importance of pruning units like channels
[61].

2.5 Knowledge Distillation

One technique used to address this challenge is knowledge distillation. Know-
ledge distillation extracts information, also referred to as knowledge, from the
larger models and transfers it to a smaller model in order to guide its training
process. This enables the smaller model to achieve accuracy and generalization
capability comparable to that of the larger model. Knowledge distillation is
classified into two main categories, feature-based and logit-based methods, de-
pending on the type of knowledge used [27]. Logit-based methods employ the
logit output of the complex model, i.e., the output values that have not un-
dergone the softmax process, as knowledge. In contrast, feature-based methods
utilize the information from the intermediate layers of the complex network as
knowledge.
The classic knowledge distillation method was proposed by Jeffery Hinton et

al. [35]. in 2015. This method involves a novel training process for small neural
networks, where the authors used the logit values of a pre-trained large model
as transferred knowledge to guide the training of a smaller model to mimic the
output of the larger model. This approach enables the smaller model to learn
the generalization ability of the pre-trained complex model.
The traditional goal of neural network training is to maximize the output

probability value for the target class, using ground truth as the only source
of information during training and treating the output probability values for
non-target classes equally irrelevant. However, non-target classes’ probability
output values also contain valuable information [35]. For instance, the model’s
output probability value for certain non-target classes might be higher than for
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Figure 2.8: The same hard label result may originate from different
soft labels

others, as demonstrated in Fig 2.8. These differences may correspond to differ-
ent features in the classifying problem. This information is crucial for improving
the model’s generalization ability because it includes more comprehensive in-
formation about the features used for classification. This part is also referred
to as ”dark knowledge.”

A well-trained and accurate network model is designed to maximize the prob-
ability value for the target class, resulting in very small or near-zero probability
output values for non-target classes, which makes it difficult to use this informa-
tion. To solve this issue, the researchers introduced a ”softening” approach that
incorporates the concept of temperature T into the normal softmax operation.
This method alleviates the problem by smoothing the probability distribution,
allowing the teacher model to transfer more information about non-target classes
[35]. p(zi, T ) represents the softened softmax output under temperature T, and
it is calculated with the fraction of exp(zi/T ) and

∑
j exp(zi/T ), where zi is the

original logit value input.

Through the influence of T, the output probability distribution of the softmax
output tends to be smoother, and the entropy of the distribution is larger,
leading to a greater emphasis on non-target classes as negative labels carry
relatively more dark knowledge.

With such soft targets, Hinton et al. [35]. used the teacher-student architec-
ture to train the model, using the well-trained complex network as the teacher
to guide the training of the small network as the student. To ensure that the
model correctly classifies the target class when learning from the teacher model,
ground truth is still used as part of the training target during the training pro-
cess. The total loss for supervised training with knowledge distillation is the
combination of the loss of ground truth labels and soft targets.

As the first knowledge distillation method, the concepts and training con-
figuration introduced by the classic knowledge distillation method become the
basis of the later knowledge distillation methods.

The other major category of knowledge distillation is to make use of the fea-
tures generated by the intermediate layers of the teacher network as guidance
signals. For example, a spatial attention map represents the degree of response
of each layer of the network to different regions of the input, reflecting the de-
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Figure 2.9: Architecture of logit-based knowledge distillation. The
logit-based method uses the logit output of the teacher and student
network to perform knowledge distillation.

Figure 2.10: Architecture of feature-based knowledge distillation.
Feature-based models use features generated by the intermediate lay-
ers to extract knowledge and have the student learn from these guid-
ance signals.

gree of activation of each neural network layer to different features in the input.
The network’s response to the input and the predicted object has a spatial cor-
relation, and the more accurate the network is, the stronger the correlation.
Attention transfer [69] takes these attention maps to conduct layer-wise know-
ledge distillation and extract more helpful information from the teacher network
of different semantic levels.

Relation-based knowledge distillation methods are sometimes regarded as a
variation of feature-based knowledge distillation methods. Instead of focusing
only on the final output or class probabilities of the teacher model, this method
category emphasizes on exploring the relationships between the layers or data
samples [27]. Such relationships include similarities, distances, or other forms
of correlations between data points in the feature space. RKD constructs the
distance-wise and anglewise relations within one training data batch and cal-
culates the distillation loss accordingly to transfer such relational knowledge to

17



the student model [52].

Figure 2.11: Architecture of relation-based knowledge distillation.
Relation-based distillation leverages structural or relational informa-
tion within data samples, layers, and representations.

Some existing research studies have tried to apply contrastive learning strategies
in knowledge distillation. SSKD [65], as demonstrated in Fig 2.12, proposed us-
ing feature representations generated by the teacher model from the augmented
input data as secondary knowledge to guide the training of the student net-
work. SimCLR V2 [9] proposed that after the self-supervised retrained model
is fine-tuned on the downstream task with a small fraction of labeled data, the
teacher network can impute labels for training a student network with the un-
labeled data, as demonstrated in Fig 2.13. Based on the MoCo V2 framework
[10], SEED [22] models the similarity over the queue of the student and teacher
model and has the student mimic the similarity score distribution inferred by
the teacher model. DisCo [24] combines the self-supervised learning of a stu-
dent model and has the student model learn from the pre-trained teacher model
by forcing the last embedding of the student to be consistent with that of the
teacher.
In comparison, model pruning methods and model quantization may require

more training iterations and labeled data for retraining. Knowledge distillation
tends to be more stable and less prone to drastic performance loss as it is train-
ing a complete network model while pruning and quantization may need a more
careful design for hyper-parameters and processes for convergence and to avoid
accuracy loss. Knowledge distillation can be applied to a wide range of model
architectures and is not limited by the structure of the original model. Fur-
thermore, student models trained by knowledge distillation can be more easily
fine-tuned for other tasks or new domains, leveraging the knowledge transferred
from the teacher for transfer learning cases. Therefore, an unsupervised know-
ledge distillation method is more suitable and efficient in this scenario, espe-
cially when pre-trained large teacher models on the large-scale training dataset
are available.
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Figure 2.12: Architecture of SSKD[65]. An SS module is added beside
the normal supervised classifier as an auxiliary task. The classifier
output of the teacher model, as well as the contrasive output of the
SS module with respect to the transformed data, are used as know-
ledge transferred from the teacher model to guide the training of the
student model

Figure 2.13: Semi-supervised learning framework the research[9]. The
Task-agnostic big CNN network is fine-tuned on a small fraction of
the labeled data. Then, the network can be used as a teacher network
to input labels for training a student network on an unlabeled dataset.
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Chapter 3

Method

This chapter provides a detailed introduction to the knowledge distillation
method proposed in this thesis. Chapter 3.1 first provides an overview of the
components and structure of the method. Chapter 3.2 formally formulates the
research problem addressed by this knowledge distillation method. Chapter
3.3 discusses the pre-text task utilized of self-supervised learning used in this
method and the motivation for extracting such knowledge. Chapter 3.5.1, and
Chapter 3.5.2 elaborate in detail the three steps of the training process for this
method, with the introduction of the process of each stage, formulation of the
training loss function and the pseudo codes.

3.1 Overview

This chapter proposes an unsupervised knowledge distillation method using the
networks’ intermediate and final embedding outputs under the augmented in-
puts. The pre-trained teacher network learns to differentiate similar and dis-
similar samples in the augmented inputs. When the teacher and student models
are fed with the same input data, the teacher can guide the student in determ-
ining which samples are essentially similar via similarity relations the teacher
generates in the feature embedding from different levels. The overall training
scheme is illustrated in Fig 3.1.

The most crucial task of a knowledge distillation process is to determine
the appropriate knowledge to be extracted from the teacher model and trans-
ferred to the student model for guiding its training. In the cases of supervised
learning, feasible knowledge choices could be the logit output of the teacher
model [35] or combine it with the features from the intermediate layers[[69]
citeromero2015experimental]. However, the task setting of lacking ground truth
labels from the training dataset would require task-agnostic feature knowledge to
be utilized in training. Also, the specific downstream classification tasks where
the knowledge learned from the unlabeled training dataset would be applied
remain unknown. The teacher model with a contrasive learning method (Sim-
CLR) learns the instance discrimination knowledge among the training samples
in the large unlabeled training set and transfers the relational knowledge to the
student model. Therefore, the final layer embedding and the feature embedding
from the intermediate layers are chosen to be supervision signals for the know-
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ledge distillation process, and the following components are designed to realize
the knowledge distillation process.

Figure 3.1: Overview of the architecture of the proposed distillation
method.

• A pre-trained teacher base encoder network to provide knowledge
for distillation. This network model is trained beforehand on the same un-
labeled training set with contrastive learning methods to learn the under-
lying feature representations of the training data so that it could provide
knowledge to guide the training of the smaller network.

• A stochastic data augmentation module provides two different ran-
dom data transform groups for each given input data sample. This module
is designed to provide two augmented views of the same original input data
sample in order to form positive and negative pairs within each batch of
the training data for contrastive learning.

• Auxiliary branches are small neural networks designed to perform know-
ledge distillation between the intermediate layers of the encoder networks.
These smaller networks take the intermediate layer feature output of the
encoder networks, project the intermediate features to a latent space, and
output the embedding of the input intermediate features.

• A student base encoder network is the training target of the know-
ledge distillation process. The student encoder network is updated with
the loss calculated from the corresponding knowledge distillation signals.
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• Final embedding projection heads are smaller neural networks that
receive the final feature representation output of the encoder networks
and map it to the embedding space to generate the corresponding final
embedding. The projection head from the contrastive learning training of
the pre-trained teacher base encoder network is preserved and utilized in
this method. The projection head of the student is randomly initialized
and has the same structure as the projection head of the teacher network.

• Distillation Loss is the loss function for comparing the teacher and stu-
dent network final projection head and auxiliary branches output. The
student network is updated with the optimization goal of goal of minim-
izing this loss function.

3.2 Formulation of the research problem

The research problem of this thesis can be formulated as follows: Given an un-
labeled dataset D and a complex network model M trained on dataset D with
SimCLR, the research goal is to develop an unlabeled knowledge distillation
method that can train a more light-weight network model S so that the model
S is able to achieve comparable learning performance on the training dataset D
and better transfer performance on the downstream tasks and has less computa-
tional resource demands and shorter response time, using the intermediate layer
feature embeddings of the complex network and the final embedding trained by
SimCLR of the complex model M.

3.3 Pre-text task

In self-supervised learning, the pre-text tasks are pre-defined tasks the network
models are trained to solve to extract and learn useful visual features from the
attributes of the unlabeled training data [71].

The method proposed in this chapter uses instance discrimination as the pre-
text task to perform the knowledge distillation process. Without the truth
labels, instance discrimination trains the network models based on the standard
that embedding features of the different data augmentations originating from
the same instance should be invariant. It encourages the network to maximize
the similarity between augmented views of the same instance while the features
of different instances should be spread out [66].

The teacher encoder network and its final projection head are trained with
contrastive learning with instance discrimination. Before performing knowledge
distillation, the auxiliary branches attached to the teacher network also need to
be trained on top of the trained teacher encoder network with the same instance
discrimination. Therefore, when receiving augmented data inputs, the teacher
network and the attaching auxiliary branches are capable of using the previ-
ously learned features knowledge to generate intermediate and final embedding
outputs that differentiate the similar and dissimilar data samples based on their
intrinsic features.

Trained with transform-invariant features with contrasive learning, these em-
bedding outputs are more robust to variations in the input data. They are able
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to help the student network learn better feature representations from the train-
ing data for generalization and to be transferred to downstream tasks. While it
is generally believed that the final embedding of the projection head output con-
tains the most fruitful knowledge [24], features from intermediate layers could
also be helpful in learning from the training data, and we hope to explore their
performance in unsupervised knowledge distillation. Intermediate layers can
capture a wider range of features, from low-level details to mid-level abstrac-
tions, some of which may not be visible to the final layers [50]. The shallow
layers learn low-level features such as colors and edges and are more general fea-
tures, while the deeper layers tend to learn more high-level task-related semantic
features such as categorical knowledge for specific tasks [76]. Research of A also
indicates that in contrasive learning using instance discrimination, low-level
and mid-level representations make great contributions in transfer learning to
downstream tasks [73].. Using these intermediate layer embeddings can provide
a richer and more detailed representation of the data.

As demonstrated in Fig 3.2, the positive-concentrated and negative-separated
features in the final embedding and intermediate layer embedding of the trained
teacher encoder network obtained from the contrasive learning pre-training can
be modeled by the pairwise-instance similarity relations of the augmented views
within the same data batch. Such relations can be regarded as a form of know-
ledge distilled from the teacher and transferred to guide the training of the
student model. By forcing the student model to mimic the similarity matrices
of the teacher model, the student model acquires the ability to discriminate
different instances with their intrinsic features.

Figure 3.2: x1,A and x1,B are two augmented views of x1 and x2,A and
x2,B are two augmented views of x2. The knowledge is transferred
in the form of forcing the student network to match the similarity
matrices of the teacher model with respect to the same input data
so as to generate embedding containing similarity relations of the
augmented data instances similar to the teacher model
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3.4 Auxiliary branches

In order to extract feature embedding from the intermediate layers of the trained
teacher model, a group of several small sub-networks called auxiliary branches
are attached to the intermediate layers of the encoder networks to acquire their
outputs. Such subnetworks have similar functions as the projection head in con-
trasive learning. Each auxiliary branch is made up of multiple building blocks,
and each building block is formed by two separable depth-wise convolution mod-
ules [36]. The separable depth-wise convolution process divides the convolution
process into two steps, depthwise and pointwise convolution, and reduces the
number of parameters and operations to lower the computing complexity. A
second separable depth-wise convolution is used in the building block to in-
crease the non-linearity of the auxiliary branches. The auxiliary branches are
attached after the end of each convolution stage of the network models. As the
features extracted from different depths come with different semantic features,
deeper feature representations contain more features from the training data of a
higher abstract level, and such disparity also follows as the features are projec-
ted into the latent space. Therefore, the depth of the auxiliary branches reduces
as the depth of the intermediate features increases.

Figure 3.3: Structure of the auxiliary branches

3.5 Training Details

This section describes the detailed process of the proposed knowledge distillation
method training.

3.5.1 Training of the Teacher Auxiliary Branches

In order to carry out the knowledge distillation, one indispensable element is
a well-trained teacher model. The teacher model is trained by the SimCLR
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learning method, following the procedure introduced in the previous chapter
2.3. Different from the normal SimCLR training process, where the projection
head is usually disposed of after the training, this method preserves it for use
in the subsequent stages.
Now, the teacher backbone model is trained with the aim of maximizing the

agreement between positive pair elements in the latent space to learn the fea-
tures of the training set. In this step, intuitively, we would like to preserve
the outcomes of learning from the training and extract the informative repres-
entations from the trained model. Accordingly, the teacher backbone model is
frozen and was not updated during the training at this stage. The training only
includes the auxiliary branches. We optimized the auxiliary branches with the
same target as the previous step. Similarly, we take the mini-batch of N data

Figure 3.4: Training of the teacher auxiliary branches

samples {xi}i=:N , and 2 transforms t, t′ sampled from a random distribution
T to derive the two augmented views x̃i = t(x) and x̃j = t′(x) and 2N input
images. Each pair of augmented vies originating from the same input image
is defined as a positive pair, and each transformed data sample forms negative
pairs with the rest of the 2(N-1) data samples. With such data organization,
we use the instance-discrimination style input to train the auxiliary branches.
Define the M output feature representations from auxiliary branches attached

to the teacher network as {vi}i=:M . The derivation of these outputs can be
expressed as follows:

vk(xi) = ck(fk(xi)) (3.1)

vk(xj) = ck(fk(xj)) (3.2)

where fk(x) is the output feature of the frozen backbone network up to the
kth convolutional stage and ck(x) is the kth auxiliary branch. Although there
are different measurements for the similarity between feature representations,
we stick to the cosine similarity as in equation 2.2 for consistency. For the kth

auxiliary branch, the contrasive loss function with respect to the positive pair
(xi, xj) can be expressed as:

ℓk,i,j = −log
exp(sim(vki, vkj)/τ)∑2N

k=1 ⊮[k ̸=j]exp(sim(vki, vkj))
(3.3)
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where

sim(vkj ,vkj) = vki
⊤vkj/||vki||||vkj || (3.4)

and ⊮[k ̸=j] is an indicator function evaluating to 1 iff k ̸= i. The temperature
coefficient τ has identical effects as that in equation 2.1, either smoothing or
enhancing the contrasts between negative paired samples.

Again, the total contrasive loss for each auxiliary branch is computed across
all the positive pairs.

Lk =
1

2N

∑N
k=1[ℓk(2k − 1, 2k) + ℓk(2k, 2k − 1)] (3.5)

The final loss is the sum of the losses from each individual branch:

L =
∑M

k=1 Lk (3.6)

The detailed algorithm for the knowledge distillation process is elaborated in 1.

Algorithm 1 learning algorithm of auxiliary branches

Input: N: batch size, τ :temperature, f: base encoder, c: auxiliary branches, T:
distribution of augmentations.

Output: trained auxiliary branches c(·)
1: for the input mini-batch {xk}Nk=1 do
2: for k ∈ {1, . . . , N} do
3: sample two augmentation functions t ∼ T and t′ ∼ T
4: x̃2k−1 = t′(xk)
5: x̃2k = t(xk)
6: for m ∈ {1, . . . ,M} do
7: v2k−1,m(x̃2k−1) = cm(fm(x̃2k−1))
8: v2k,m(x̃2k) = cm(fm(x̃2k))
9: end for

10: end for
11: for all i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do
12: si,j = vi

⊤vj/ ∥vj∥ ∥vj∥
13: end for
14: define ℓm(i, j) = −log

exp(si,j(vi,m,vj,m)/τ)
⊮[k ̸=j]exp(si,j(vi,m,vj,m))

15: Lm = 1
2N

∑2N
k=1[ℓm(2k − 1, 2k) + ℓm(2k, 2k − 1)]

16: L =
∑M

m=1 Lm

17: update the auxiliary branches c wrt. the loss
18: end for
19: return trained auxiliary branches c(·)

3.5.2 Training of the Student Model

With the complete teacher model and auxiliary modules for knowledge distil-
lation trained and prepared, we can now proceed to the most significant step
of the method: knowledge distillation, where the teacher transfers what he has
learned from the training data to guide the student model.
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The knowledge we would like to distill from the teacher model is the similarity
responses for the augmented data inputs at different depths of the teacher net-
work, and it’s achieved in the form of a similarity matrix of the samples in the
mini-batch calculated by the feature representations of the intermediate layers
and final projection head in the latent space of the teacher network. The simil-
arity responses indicate how the teacher network recognizes similar augmented
samples and differentiates distinct ones and, correspondingly, the underlying
features in the training data.

Figure 3.5: Knowledge distillation training of the student model

the training goal was to have the student model mimic these guidance signals
to learn the teacher model behaviors and responses under the same input. Thus,
the same configuration of the auxiliary branches was also applied to the student
model accordingly to extract the corresponding feature representations. The
same batch of augmented pictures is fed to the teacher as well as the student
network, after which the feature representation outputs from the teacher and
student model can be collected for comparison. The final optimization goal is to
minimize the difference between the corresponding feature representations from
the student and teacher network.
Once again, the input data samples are augmented by the two random trans-

forms to form positive pairs and negative pairs, as described in chapter 2.5.
The teacher and student model share the same input all the time. Let zi and
zj be the output of a random auxiliary branch or a projection head from either
the teacher model or the student model with respect to a random pair of data
samples (xi, xj) in a data batch. Then, the output similarity matrix of this
auxiliary branch or projection head is defined as follows:

Ai,j = zi
⊤zj/||zi||||zj || (3.7)

Apply softmax on the similarity matrix A with temperature scale τ to the
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similarity matrix along the row dimension, leading to a probability matrix B.
The loss between a similarity matrix of an auxiliary branch or the projection
head of the teacher model BT and the matching similarity matrix of the student
matrix BS is computed with the KL divergence:

ℓ = −τ2
∑
i,j

BT
i,j log(BS

i,j) (3.8)

So, the loss between the M auxiliary branch pairs:

Laux =
∑M

k=1 ℓk (3.9)

where ℓk is the KL divergence between the similarity matrix of the kth auxiliary
branches of the teacher and student model.
The total loss is calculated as the sum of the losses from auxiliary branches

and that from the projection head:

L = Laux + ℓproj (3.10)

where ℓproj is the KL divergence between the similarity matrix of the projec-
tion heads of the teacher and student model. The detailed algorithm for the
knowledge distillation process is elaborated in 2.
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Algorithm 2 learning algorithm of student model

Input: N: batch size, τ :temperature, fT : base encoder of teacher model, cT :
auxiliary branches of teacher model,gT : projection head of the teacher
model, fS : base encoder of student model, cS : auxiliary branches of stu-
dent model,gS : projection head of the student model, T: distribution of
augmentations.

Output: trained student model encoder model fS

1: for the input mini-batch {xk}Nk=1 do
2: for k ∈ {1, . . . , N} do
3: sample two augmentation functions t ∼ T and t′ ∼ T
4: x̃2k−1 = t(xk), x̃2k = t′(xk)
5: for m ∈ {1, . . . ,M} do
6: vT2k−1,m(x̃2k−1) = cTm(fT

m(x̃2k−1)), v
T
2k,m(x̃2k) = cTm(fT

m(x̃2k))

7: vS2k−1,m(x̃2k−1) = cSm(fS
m(x̃2k−1)), v

S
2k,m(x̃2k) = cSm(fS

m(x̃2k))
8: end for
9: zT2k−1 = gT (fT (x̃2k−1)), z

T
2k = gT (fT (x̃2k))

10: zS2k−1 = gS(fS(x̃2k−1)), z
S
2k = gS(fS(x̃2k))

11: end for
12: for all i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do
13: Ai,j = vi

⊤vj/ ∥vj∥ ∥vj∥ for vT from teacher network and vS from
student models.

14: Ai,j = zi
⊤zj/ ∥zj∥ ∥zj∥ for zT from teacher network and zS from stu-

dent models.
15: end for
16: for m ∈ {1, . . . ,M} do
17: BT

m = softmax(AT
m, τ),BS

m = softmax(AS
m, τ)

18: end for
19: BT

proj = softmax(AT
proj , τ),BT

proj = softmax(AS
proj , τ)

20: Laux =
∑M

m=1 KL div(BT
m,BS

m)
21: ℓproj = KL div(BT

proj ,BS
proj)

22: L = ℓproj + Laux

23: update the student encoder network, student auxiliary branch, and stu-
dent projection head wrt. the loss

24: end for
25: return trained student encoder network and discard student auxiliary

branches and student projection head
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Chapter 4

Evalutaion

Chapter 4 demonstrates the implementation details of the evaluations and the
results. Chapter 4.1 demonstrates the datasets used for the evaluation process.
Chapter 4.2 elaborates on the detailed implementations of the experiment mod-
els and specific experiments. Chapter 4.3 introduces the evaluation protocols
used for the experiments. Chapter 4.4 demonstrated all the compared meth-
ods. The evaluation results of linear evaluation on the evaluation datasets are
presented in Chapter 4.5. In Chapter 4.6, the results of transfer learning on the
downstream tasks are presented. The ablation study in Chapter 4.7 explored
the influences of the hyperparameters in the method. The system performance
of the tested models is analyzed on multiple devices in Chapter 4.8.

4.1 Evalution datasets

In this chapter, the datasets used in the evaluation are introduced.

4.1.1 STL-10

The STL-10 [17] dataset is an image recognition dataset dedicated to self-
supervised learning and unsupervised feature learning. In this dataset, items
are split into three parts. There are 5000 pictures in the labeled training set and
8000 labeled pictures in the test set, which are uniformly distributed among ten
classes, including airplane, bird, car, cat, deer, dog, horse, monkey, ship, and
truck. The third split, the unlabeled set, contains 100000 unlabeled pictures
from the ten classes mentioned above, plus other vehicle and animal categories.
All the items in this dataset are with a resolution of 96×96 and colored pic-
tures. This dataset strikes a balance between dataset size and complexity, and
the dedicated unlabeled set makes it ideal to conduct experiments to test the
proposed unsupervised knowledge distillation method.

4.1.2 ILSVRC2012

In this experiment, we use the dataset from ImageNet Large Scale Visual Re-
cognition Challenge 2012 [56] as the task dataset. This is a subset of the largest
picture database, Imagenet [19], with over 1.2 million pictures from 1000 cat-
egories. The ILSVRC2012 dataset is one of the most widely used datasets in
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the field of image recognition. It contains three target tasks: classification, clas-
sification with localization, and fine-grained classification, but this experiment
only focuses on the classification task. The dataset has a training set of 1281167
pictures, a validation set of 50000 pictures, and a test set of 100000 items. The
elements in the dataset come in different sizes, so dedicated pre-processing is
necessary.

4.1.3 Transfer learning datasets

We evaluate our representation on other classification datasets to assess how well
the features learned on the ILSVRC2012 dataset learned with different methods
can be transferred to other downstream classification tasks. The evaluated
transfer learning datasets include: Food-101 [6], Flowers [47], FGVC Aircraft
[44], the Describable Textures Dataset[16], Oxford-IIIT Pets [53],CIFAR 10 [40],
CIFAR 100 [40] and Leaf[15].The leaf dataset has two different classification
tasks: binary classification on whether a leaf is healthy and leaf classification.
For the DTD dataset, the dataset creators defined multiple train/test splits,
and only the first split is used here in this evaluation. The leaf dataset has no
specific train/test split, and in this evaluation, a randomly selected portion of
80% of the original data is used for the training set and the rest for the testing
set.

Dataset Classes Size(train/test)
Food-101 101 75750/25250
CIFAR-10 10 50000/10000
CIFAR-100 100 50000/10000
Oxford-IIIT Pets 37 3680/3369
Oxford 102 Flowers 102 2040/6149
Describable Textures (DTD) 47 3760/1080
Leaf binary health classification 2 3600/903
Leaf classification 12 3600/903

Table 4.1: Datasets examined in transfer learning

4.2 Implementation

The evaluation of the method was implemented in a PyTorch environment. The
standard ResNet architecture is used in this experiment for the base encoder
networks. For the teacher model, ResNet-50 forms the backbone of the teacher
network, and the student network contains the ResNet-18 network. Detailed
information on the model structure is listed in Fig 4.2 and table 4.2.

Network Stage 1 Stage 2 Stage 3 Stage 4
ResNet-18 3 3 3 3
ResNet-50 3 4 6 3

Table 4.2: Number of building blocks of ResNet models at each stage
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Figure 4.1: The general architecture of ResNet-18 and ResNet-50 mod-
els

(a) Building block ResNet-18[32] (b) Building block ResNet-50[32]

Figure 4.2: Building blocks of ResNet models

4.2.1 Implementation of the experiment models

In terms of the training of the baseline models via SimCLR, the 2-layer non-
linear multi-layer perceptron projection heads are applied in the training pro-
cesses in this paper, which project the feature representations from the backbone
networks into a 128-dimension latent space. Other configurations will not be
applied here as the original paper indicates that the dimension of the projection
head output does not have a substantial influence on the training results[8].

4.2.2 Implementation of the auxiliary branches

The auxiliary branches assisting the knowledge distillation process share the
same architecture, while the construction becomes simpler as the intermediate
feature of the branch corresponding to it comes from a deeper stage of the
network. On top of each auxiliary branch for the ResNet-50 teacher model, a
1x1 convolution layer is applied to reduce the input dimension to match the
number of channels of the intermediate feature maps and auxiliary branches.
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Figure 4.3: Auxiliary branches for the teacher model

Figure 4.4: Auxiliary branches for the student model

4.2.3 Experiment settings of the training on STL-10 data-
set

In this experiment, a ResNet-50 teacher model and a ResNet-18 baseline model
were trained on an STL-10 unlabeled set with the SimCLR method. With the
pre-trained teacher backbone model, the student ResNet-18 model was trained
following the process described in Chapter 3, including the training for auxiliary
branches of the teacher model. Then, the learned feature representations are
evaluated with the linear evaluation protocol [8], extensively used in this scenario
for feature learning.

Both SimCLR training for baseline models and knowledge distillation used
the same group of data augmentation configurations to process the input data.

• Random crop, resize, and horizontal flip. The input picture is ran-
domly resized with the default scale setting (0.08,1) and ratio (3/4,4/3).
The final crop will be resized to 96×96 before being fed to the model,
followed by a random horizontal flip of the probability of 0.5.

• Color Jitter. The transform consists of a color jittering of probability
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0.8 and a color dropping of 0.2.

• Gaussian blur. Gaussian blur is applied to the input image 50% of the
time, and the kernel size is set to be 10% of the image height/weight.

4.2.4 Experiment settings of the training on ILSVRC2012
dataset

This experiment also uses the teacher-student model pair of ResNet50 and Res-
Net18 networks. A ResNet50 and a ResNet18 model are first trained by SimCLR
as baseline models on the ILSVRC2012 training set. Similarly, the auxiliary
branches of the teacher model are then trained with the backbone model fixed
before the teacher model can be used to carry out the knowledge distillation
process. The training of auxiliary branches and knowledge distillation process
is also conducted on the ILSVRC2012 training set.

This experiment uses the same data augmentation combination as the previ-
ous experiment described in Chapter 4.2.2, with the only change being that the
output size of the training data is 224×224.

In the SimCLR training for the baseline models, the first step of the experi-
ment, each training batch contains 256 pictures, and the training continues for
100 epochs. With reference to the results of the paper of SimCLR [8], the train-
ing process uses a LARS [67] optimizer with an initial learning rate of 0.6 and
weight decay of 10−6. The scheduling of the learning rate follows a linear warm-
up strategy, where the learning rate linearly increases to the starting learning
rate within the set epochs, 10 in this experiment. After that, it is adjusted by a
CosineAnnealingLR scheduler. The temperature coefficient in the loss function
is set as 0.1. This set of training settings is also applied in the second step of
the experiment, the training for the auxiliary branches.

4.3 Evaluation protocol

In this section, two evaluation protocols are introduced.

4.3.1 Linear evaluation

To evaluate the feature representation learned, we use the linear evaluation
protocol. To evaluate the feature learned, the backbone model is frozen, and
a linear classifier is trained on top of the frozen encoder network. The linear
evaluation accuracy is the classification accuracy of the linear classifier.

4.3.2 Fine-tuning

In the transfer learning experiment, since we are evaluating the features learned
from the unlabeled training dataset to be transferred to the specific downstream
tasks, the evaluation policy applied in such experiments is fine-tuning. Similarly,
a linear classifier for the specific classification task is applied to the backbone
network. In the case of fine-tuning, the whole network is trained and updated
together for the classification task.
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4.4 Compared methods

The target method for evaluation is the multi-layer contrasive knowledge distil-
lation method proposed in this thesis, which will be abbreviated as MLCKD in
the following sections. In this method, the pre-trained ResNet-50 network acts
as the teacher model and transfers the knowledge learned from the unlabeled
training dataset to the ResNet-18 student model, and the learning performance
is evaluated subsequently.
The baseline method for comparison is the contrasive learning method Sim-

CLR. The method is applied to both the ResNet-50 network model to evaluate
the performance that the teacher model can achieve and also the ResNet-18
network model to evaluate the student model performance when the student
model learns from the unlabeled training dataset directly by itself.

4.5 Evaluation results on liner evaluation

In this section the liner evaluation results on the two datasets are demonstrated.

4.5.1 Experiment settings on STL-10 dataset

The linear evaluation training uses a learning rate of 0.0003 and a batch size of
256, and the linear classifier is optimized by an SGD optimizer with momentum
set to 0.9. Each linear evaluation process takes 100 epochs of training. At
training time, the training data will go through a transformation combination
of random crops with resize to 96×96 and random flips. For test time, the test
images were resized to 96×96.

4.5.2 Experiment settings on ILSVRC2012 dataset

A linear evaluation protocol is applied to this experiment to evaluate the ef-
fectiveness of feature learning. The linear evaluation training uses a learning
rate of 0.8 and a batch size of 2048, and the linear classifier is optimized by an
SGD optimizer with momentum set to 0.9. Each linear evaluation process takes
100 epochs of training. At training time, the training data will go through a
transformation combination of random crops with resize to 224×224 and ran-
dom flips. For test time, the test images were resized to 256 pixels along the
shorter side and took a 224×224 center crop. The temperature coefficient for
the training of the teacher auxiliary branches is set to 0.1, and the temperature
coefficient for knowledge distillation is set to 0.5.

4.5.3 Liner evaluation results

Comparing the ResNet18 model trained by the proposed multi-layer contrasive
knowledge distillation method and the baseline method, the model trained by
knowledge distillation achieves a better performance on both the STL-10 dataset
and ILSVRC2012 dataset on the linear evaluation with an improvement in the
accuracy of 3.24% and 2% respectively, which indicates that the knowledge
distillation method is more effective than the model learning the features of the
unlabeled training data by the student model learning the unlabeled data itself
using SimCLR.
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Figure 4.5: The linear evaluation results on STL-10 dataset.

4.6 Evaluation results on transfer learning

In this chapter, the results from different experiments for transfer learning are
presented.

4.6.1 Experiment settings of the fine-tuning on transfer
learning datasets

For the training of the fine-tuning, we train the network with the linear classifier
for 200 epochs at a batch of 256 using SGD with Nesterov momentum with a
momentum parameter of 0.9. The learning rate was selected from a grid search of
logarithmically spaced learning rates between 0.001 to 0.1 and 4 logarithmically
spaced values of weight decay between 10−6 and 10−3.

For data augmentation, the same transformation policy as the transfer learn-
ing experiments of SimCLR [8] was applied. At training time, only random
crops with resize to 224×224 and random flips were used. For test time, the
test images were resized to 256 pixels along the shorter side and took a 224×224
center crop.

4.6.2 Results on transfer learning datasets

The MLCKD-trained ResNet-18 models were able to achieve better fine-tuning
performance than the baseline ResNet-18 model among 6 out of 8 transfer clas-
sification tasks, which indicated that the MLCKD knowledge method indeed
assists the student model in learning better features from the source domain and
has better transfer performance on the target tasks. In some tasks, the student
model attained comparable accuracy performance, such as the leaf classifica-
tion task. The knowledge distillation method also outperforms the supervised
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Figure 4.6: Linear evaluation results on ILSVRC2012 dataset

Figure 4.7: Fine tuning results on Flowers, CIFAR 10, leaf binary task,
and leaf classification task
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Figure 4.8: Fine tuning results on DTD, CIFAR 100, Food-101, and
Pet dataset

training with random initialization. The features transferred from the larger
teacher model facilitate the ResNet-18 model to reach a better accuracy on the
transfer learning tasks within shorter training epochs and improve the training
efficiency. The results are demonstrated in figure 4.7 and figure 4.8.

4.6.3 Results on transfer learning datasets in few-shot scen-
arios

In the case of the CIFAR 100 classification task, the MLCKD-trained ResNet-
18 model was outperformed by the baseline ResNet-18 model, showing that the
feature representations taught by the deeper teacher model have worse transfer
performance in situations with very few labels. For the Food 101 dataset, the
baseline ResNet-18 model surpasses the MLCKD method at 10% label scenario
by a marginal number. All the models’ accuracy improves as the training label
increases, and the features learned from the deeper teacher model gain advant-
ages on transfer performance as the number of ground truth labels increases.
The results are demonstrated in figure 4.9 and 4.10.
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Figure 4.9: Fine tuning results CIFAR 100 dataset with 5%,10% and
20% of the truth label

Figure 4.10: Fine tuning results Food 101 dataset with 5%,10% and
20% of the truth label

4.7 Ablation study

In this section, we demonstrate the results of the ablation study with different
hyper-parameters.
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4.7.1 Influences of temperature hyperparameters

In this experiment, different temperature settings for the two training steps
in the proposed method were tested using linear evaluation protocol on the
STL-10 dataset. The temperature coefficients τ1 and τ2 in the training of
auxiliary branches and knowledge distillation have a major impact on the feature
learning performance of the student network. Auxiliary branches typically need
a smaller temperature coefficient in the contrastive loss function. Enhancing
and focusing on the distributions of the samples with large contrast brings
benefit to the training effect in the end. In comparison, a larger temperature
is more beneficial to the knowledge distillation training of the student model,
which allows the student to better mimic the feature relations of the teacher
model on the input data. With proper temperature coefficient, the ResNet18
model trained by the MLCKD method surpasses the ResNet18 baseline model
in linear evaluation accuracy, therefore demonstrating that the MLCKD method
is capable of helping the student learn better features from the source domain
data. The results are demonstrated in figure 4.11.

Figure 4.11: Linear evaluation results with different training temperat-
ure hyperparameters, τ1 and τ2 represent the temperature coefficient
of the training of the second and third stage

4.8 System performance

In this chapter, the resource consumption of the evaluated models and their
performance on edge devices are discussed.
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4.8.1 Model Information

Listed in the table4.3 is the information of the models used in this experiment.

Model FLOPS/G Parameters/M
ResNet-18 1.82 11.6895
ResNet-50 4.09 25.5570

Table 4.3: FLOPS and number of parameters of the models

Floating point operations per second and number of parameters are major
measurements of the model complexity. Listed in Table 4.3 is the information
of the models used in this thesis. The FLOPS is calculated with standard
(3,224,224) input. The ResNet50 model requires 2.24 times more floating point
operations than the ResNet18 model when processing the same input and 54.2%
more parameters.

4.8.2 Deployment devices

Listed in the table.4.4 below is the basic information for the target devices.

Device
CPU

RAM
GPU

Cores Speed Cores Speed
Jetson Nano 4 1.43GHz 4GB 128 0.912GHz

Jetson Xavier NX 16GB 6 1.9Ghz 16GB 384 1.1GHz
Jetson AGX orin 12 2.2GHz 32GB 2048 1.3GHz

Table 4.4: Information of the deployment devices

4.8.3 Inference Time

This latency measures the time the network needs to carry out one forward
inference with a single input of size (3,224,224). The results are measured with
a batch of 50 samples, and the average latency is calculated. On a Jetson Nano
device, a ResNet-50 model takes 2.67 times the inference latency of that for a
ResNet-18 model. When deployed on a Jetson Xavier NX device, a ResNet-50
will require 52.4% more time to process the same (3,224,224) dimension input
data. On the Jetson AGX Orin device, using a ResNet-18 model to replace a
ResNet-50 model can achieve a speedup of 1.66.
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Figure 4.12: Forward inference time of the models on different devices
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Chapter 5

Conclusion and discussion

5.1 Conclusion

In this work, we explored the effectiveness of utilizing contrastive learning tech-
niques to construct relational knowledge in the teacher network and verify its
validity on a small-scale dataset, STL-10. We proposed a training method that,
with the help of auxiliary subnetworks, extracts the contrastive feature know-
ledge from intermediate layers and the final layer of the teacher network and
transfers it to guide the training of the study network.
The knowledge distillation combining contrastive learning is able to improve
the student network learning outcome. On the source domain, the linear eval-
uation result has demonstrated that a deeper network is capable of learning
better feature knowledge from the unlabeled training data, and training the
knowledge distilled from the teacher via the proposed method indeed improves
the learning result. The learned features are tested among eight smaller or
fine-grained transfer learning classification datasets, and the model trained by
the proposed knowledge distillation method has better fine-tuning accuracy on
all eight tasks and consequently demonstrates the effectiveness of the feature
learned from the proposed knowledge distillation method. In comparison to
the random-initialized model, the knowledge distillation pre-trained model also
takes shorter training epochs to achieve convergence. In the scenario, only a
small fraction of the label is available, and the MLCKD method enables the
model to perform better than the baseline model trained by SimCLR on two of
the transfer learning tasks.

5.2 Future Work

• Adaptation on heterogeneous network. The current method takes
advantage of the ResNet architecture of the teacher and student network
models to match the intermediate feature embedding. Further research on
how to utilize the intermediate feature embedding of the heterogeneous
network can be conducted to extend the generalizability of this knowledge
distillation method.

• Expoloration on other contrasive learning methods. The current
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method is based on SimCLR, and this method benefits from larger training
batches to construct larger sample space for better training performance,
which imposes great demand on calculation resources. Research can be
done to explore if other contrastive learning methods can also be applied
here.
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