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Complex Electron Wave Reconstruction
Using Parameter Estimation

Adriaan van den Bos,Senior Member, IEEE

Abstract—A new method is proposed for the reconstruction
of the complex valued exit wave of a periodic specimen in a
transmission electron microscope. The method uses a series of
images recorded at different defoci. From these, inherently noisy,
images the parameters defining the wave are estimated. The
method keeps the number of parameters as small as possible.
In addition, in simulations, it has been found to always produce
the exit wave estimate fitting best to the images recorded.

Index Terms—Electron microscopy, Fourier techniques, iden-
tification, image reconstruction, maximum likelihood, parameter
estimation.

I. INTRODUCTION

T HE purpose of this paper is to present a new method for
the reconstruction of the real and imaginary part of the

complex exit wave of the specimen in a transmission electron
microscope (TEM). The wave is used for the assessment of
the structure of the material of the specimen. The TEM image
is different from the complex exit wave for two reasons. In
the first place, the magnifying system of the TEM transfers
the exit wave to the camera level. This transfer is modeled
by a linear transfer function which is supposed to be known
for known microscope settings. Then, at the camera level, the
transferred complex wave is transformed into an image, that
is, into intensities. This is supposed to be a modulus square
operation. The image pixels thus produced are the observa-
tions. They are modeled as stochastic variables since they are
finite time electron counts. Other statistical contributions to the
observations, like instrumental noise, are negligible in modern
TEM’s [1].

The existing reconstruction methods reconstruct the exit
wave from a series of at least two images, measured at differ-
ent, known defoci [2]–[5]. The purpose of the defocus series
is to use the known dependence of the transfer function upon
the defocus to ensure that all frequencies within the available
bandwidth are more or less equally taken into account [6].

A common characteristic of the existing methods is that
they reconstruct the exit wave in every point of the measured
images. Therefore, every point of the wave is a parameter
to be estimated. This number of parameters is drastically
reduced in the method presented in this paper. Assuming that
the specimen structure is periodic, as is done with respect to
almost every specimen described in the literature, the method
estimates the complex Fourier coefficients of the exit wave,
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which in that case is periodic as well. The estimated complex
Fourier coefficients define fully the exit wave.

The advantage of the proposed method is that the number
of Fourier coefficients, that is, the number of parameters is
fixed. This number does not increase with the number of
pixels measured. All observations are used to reconstruct the
wave on a single rectangle with sides equal to the periods
in the corresponding coordinate directions. This rectangle is
the projected unit cell of the specimen material. The only
effect of using more pixels is improvement of the precision of
the reconstructed exit wave. Furthermore, as opposed to the
existing methods, the present method benefits from the fact
that in practical electron microscopy the number of Fourier
coefficients characterizing the projected unit cell is known to
be very small.

The organization of this paper is as follows. In Section II,
the intensity observations are modeled and the problem is
stated. In Section III, a maximum likelihood estimator for the
Fourier coefficients of the exit wave is derived. Aspects of
numerical implementation of this estimator are the subject
of Section IV. Results from simulated statistical intensity
observations are described in Section V. A discussion and
conclusions are presented in Section VI.

II. M ODELLING THE OBSERVATIONS

In transmission electron microscopy, the complex electron
wave present at the exit interface of the irradiated specimen
is called the exit wave. In this paper, it will be assumed that
the specimen has a rectangularly periodic crystalline structure.
Then the exit wave is rectangularly periodic as well. Therefore,
it is described by the Fourier series

In this expression, is the complex exit wave, and
are the spatial coordinates,is equal to and and
are the spatial radian frequencies in theand direction,

respectively, defined as and , where
and are the harmonic numbers of the harmonics present,
and are the periods, and the are the complex Fourier

coefficients.
Subsequently, the wave is magnified and transferred to

camera level. This operation is described using a linear transfer
function where and are radian spatial
frequencies in the and direction, respectively. For brevity,
the notation will be used for . Then the
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transferred electron wave is described by

Finally, at camera level, the transferred wave is transformed
into intensities by a modulus square operation

It will be supposed that the intensities are measured at the
known locations , and .
Like the existing reconstruction methods, the proposed method
uses a defocus series of images. This is a series ofimages
made at different, known defoci. The transfer function depends
on the defocus in a known way. The notation will
be used for at the th defocus. Similarly, quantities
like and at the th defocus will be denoted as

and where and are abbreviations of
and .

Next suppose that at the th defocus the intensity obser-
vations , , and have been
made. Then these observations are modeled as a realization of
stochastic variables with expectation

(1)

Therefore, the are equal to the sum of this expecta-
tion and a zero-mean error. The expression also shows that the
observations are quadratic in the unknown Fourier coefficients
of the exit wave. These Fourier coefficients are taken as the
unknown parameters to be estimated from the observations at
the various defoci. Once they have been estimated, an estimate
of the exit wave can be made by Fourier synthesis.

Thus the measurement of the exit wave has been refor-
mulated as estimation of the complex parametersfrom a
series of images , , and
with . A solution of this estimation problem is
proposed in the next section.

III. U SING THE MODEL OF THE

OBSERVATIONS FOREXIT WAVE ESTIMATION

If the probability density function of the observations
is known, the maximum likelihood estimator for

the may be chosen. This estimator is attractive since
it is easy to construct directly from the probability density
function of the observations and is, under general conditions,
asymptotically most precise [7].

The maximum likelihood estimator is defined as the es-
timator maximizing the so-called (log) likelihood function
of the unknown parameters given the observations. As an
illustration, suppose that the intensity observations
are independent and have a Poisson distribution [8]. These
assumptions are often made and are based on the fact that
the intensity observations are largely independent electron
counts. Under these assumptions, it is easily shown that the

likelihood function of the unknown Fourier coefficients given
the observations for all , , and is described by

(2)

with

(3)

To emphasize that the Fourier coefficients have now become
variables instead of exact parameters, all have been
replaced by corresponding . The vector is the vector
of all . The equations show that the likelihood function
is a nonquadratic, nonlinear function of the . Therefore,
maximizing it requires an iterative numerical method. The
equations also show that the nonlinear dependence ofon

is complicated. As a result, it is difficult to analyze. However,
numerical experiments strongly suggest the presence of rela-
tive maxima. For the usual fast, local numerical optimization
methods this means that the absolute maximum, that is the
maximum likelihood estimate, is found only if accurate initial
values for the parameters are available. The generation of such
initial values is described in the next section.

IV. I NITIAL VALUES FOR THE PARAMETERS

For the generation of the initial values for the parameters,
the following procedure is proposed. In a first step, the least-
squares criterion

(4)

with described by (3) is minimized with respect to.
In a second step, the least-squares estimate thus found is used
as initial condition for maximizing the likelihood function (2).

The advantages of this approach are the following. The
intensity model (3) is quadratic in the Fourier coefficients

. Therefore, the least-squares criterion is a real, multi-
dimensional, quartic polynomial in the real and imaginary
parts of the . Then the intersection of the criterion with
any vertical two-dimensional plane has either two minima
and a maximum in between or a single minimum. In view
of the symmetry properties of the quartic multidimensional
polynomial forming the least-squares criterion, this implies
that this criterion might have only one distinct, and therefore
absolute, minimum. Anyway, this is what has been found in
all simulations with two or more defoci. For a particular set of
observations, the least-squares procedure always converged to
the same minimum, irrespective of the initial conditions. This
happened both for simulated exact observations and Poisson
distributed ones.

Although the initial conditions do not affect the solution,
they influence the number of iterations required for conver-
gence and, therefore, the computation time. If noa priori
knowledge about the is available, initial conditions of
more or less the right order of magnitude are generated as
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TABLE I
HARMONIC NUMBERS AND FOURIER COEFFICIENTS INEXPERIMENT #1

follows. First, it is observed that the average valueof the
exact over all , , and is equal to

In this expression, the are known. If all would
have the same absolute value, this value would have to
satisfy

with (5)

Substituting the average of all observations for the
average of all exact observations in (5), produces
an approximation to . Next the initial conditions for
the are generated as where is a random
number uniformly distributed on . Thus it is achieved
that the initial are in the mean square sense of the right
order of magnitude.

In conclusion, a procedure has been devised for the genera-
tion of initial values for the minimization of the least-squares
criterion (4). The results of this minimization may subse-
quently be used as initial values for the minimization of the
likelihood function, for example, that defined by (2) and (3).

V. SIMULATION RESULTS

A. Simulation Experiment #1

This experiment is a first investigation of the properties of
the proposed estimator. The images are one-dimensional to
reduce the computational effort and to simplify the display.
The number of images in a series is chosen equal to two.
The number of pixels in an image is equal to 50. The obser-
vations are Poisson distributed. The harmonics present in the
exit wave and the corresponding complex Fourier coefficients
are given in the first and second row of Table I, respectively.
Changing the phase angles of all Fourier coefficients by the
same amount does not change the corresponding intensities.
Therefore, to make the parameterization unique, the phase
angle of one of the Fourier coefficients has to be fixed. This is
done by assuming that the constant term of the Fourier series
is real. Thus there are four complex parameters and a real
one to be estimated, that is, nine real parameters in all. Notice
that the complex Fourier coefficients for opposite harmonic
numbers are not conjugate since the wave is not real.

The transfer functions are chosen as follows. The modulus
is equal to one in all cases. The phase angles are generated
by a random number generator and are uniformly distributed
on . The number of periods observed is equal to 2.2
and, since the number of pixels is equal to 50, the number of

Fig. 1. Simulation experiment #1. Real and imaginary parts of exact and
reconstructed exit wave, and reconstruction error.

Fig. 2. Simulation experiment #1. Exact (top) and Poisson distributed (bot-
tom) intensities.

pixels per period is equal to 22.7. The reason why noninteger
numbers have been chosen is that this makes the simulation
more realistic. In this experiment, the required numerical
optimization procedures are carried out using the conjugate
gradient method [9].

From the exact Fourier coefficients of Table I, the exact
complex exit wave is computed. The top and bottom figures
in the first column of Fig. 1 show its real and imaginary part,
respectively. The exact Fourier coefficients and the generated
values of the transfer functions are subsequently substituted
in (1) to compute both exact images of the defocus series.
The results are shown in the top row of Fig. 2. The proposed
method and the software were tested by first applying them to
these exact images. For any set of initial values of the Fourier
coefficients chosen, the exact wave was reproduced.

Next, the method was applied to Poisson distributed image
observations with the corresponding exact image values as
expectations. Fig. 2 shows that the average over the period of
these expectations is approximately equal to nine. This implies
that the observations are very noisy since a Poisson variable
with an expectation equal to nine has a standard deviation
equal to three. This is clearly visible in the second row of
Fig. 2 where the used realization of both images is shown.
The real and imaginary parts of the wave reconstructed from
these noisy images are shown in the second column of Fig. 1.
The differences of the exact and these reconstructed real and
imaginary parts are shown in the third column of Fig. 1.

The conclusion from this numerical experiment is that,
in spite of the high noise level, the wave’s most important
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Fig. 3. Simulation experiment #2. Contours of exact (top) and Poisson
distributed (bottom) intensities.

Fig. 4. Simulation experiment #2. Contours of real and imaginary parts of
exact (top) and reconstructed (bottom) exit wave.

features, such as the location of its maxima and minima and
their approximate relative heights, are very well reconstructed.
Repeated experiments show that this is nearly always the
case. In addition, the least-squares estimates of the Fourier
coefficients have subsequently been used as initial values for
maximizing the Poisson likelihood function (2). This results in
slightly modified Fourier coefficient estimates having a smaller
mean square error such as theory predicts.

B. Simulation Experiment #2

In this experiment, the wave and the observations are two-
dimensional. The number of images is again equal to two. The

TABLE II
RELATIVE AMPLITUDES OF FOURIER COEFFICIENTS INEXPERIMENT #2

number of pixels in either image is 44 57. The observations
are Poisson distributed. The values of the transfer function are
generated in the same way as in simulation experiment #1. The
Fourier coefficients are shown in Table II. The first column
and the first row describe and , the harmonic numbers in
the and the direction, respectively. The remaining entries
are the complex Fourier coefficients for the th harmonic
concerned. There are 24 complex Fourier coefficients and one
real one, that is, 49 real parameters. This unrealistically large
number of parameters has been chosen to put the method to the
test. The Fourier coefficients actually used in the simulations
are obtained by multiplying those of Table II by a scale factor
of 0.6. This results in an average of the exact images of
approximately 40, which for Poisson variates corresponds to
a standard deviation of about 6.3. The numbers of periods
observed are 2.3 and 2.6 in theand direction, respectively,
and, since the number of pixels is 44 57, the number
of pixels per period in these directions is 19.3 and 21.8,
respectively.

The minimizing of the least-squares criterion is carried
out using the Levenberg–Marquardt method [9]. In spite of
the relatively large number of parameters, no convergence
problems occurred. The first row of Fig. 3 shows the contours
of the exact images for both defoci. The second row shows
a realization of these contours if the pixels are Poisson
distributed with the corresponding pixels of the exact images
as expectations. The influence of the noise is clearly visible.
The first row of Fig. 4 shows the contours of the exact real
and imaginary parts of the underlying wave, respectively.
The second row of the same figure shows the contours
of the corresponding real and imaginary parts of the wave
reconstructed from the Poisson distributed intensities of Fig. 3.
The differences of the contours of the exact real and imaginary
parts and those of their reconstructed counterparts are hardly
visible showing the quality of the reconstruction. Therefore,
it would be unlikely that, in practice, the interpretation of the
reconstructed wave would differ very much from that of the
exact one.

VI. DISCUSSION AND CONCLUSIONS

A parameter estimation based method for reconstruction
of spatially periodic specimen exit waves in transmission
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electron microscopes has been developed. Since the estimator
employed is a maximum likelihood estimator, it is asymp-
totically most precise. As a result of the special attention
paid to the convergence properties of the numerical nonlinear
optimization required, the estimator has, in all simulations
carried out, been found to converge to the optimal solution.
Currently, an extension with optional estimation of the spatial
periods is studied.

REFERENCES

[1] W. J. de Ruijter,Quantitative High-Resolution Electron Microscopy and
Holography. Delft, The Netherlands: Delft Univ. Press, 1992.

[2] E. J. Kirkland, “Improved high resolution image processing of bright
field electron micrographs,”Ultramicroscopy, vol. 15, pp. 151–172,
1984.

[3] W. Coene, G. Janssen, M. Op de Beeck, and D. van Dyck, “Phase
retrieval through focus variation for ultra-resolution in field-emission
transmission electron microscopy,”Phys. Rev. Lett., vol. 69, pp.
3743–3746, 1992.

[4] D. van Dyck and M. Op de Beeck, “A new approach to object
wavefunction reconstruction in electron microscopy,”Optik, vol. 93,
pp. 103–107, 1993.

[5] M. A. O. Miedema, A. van den Bos, and A. H. Buist, “Experimental de-
sign of exit wave reconstruction from a transmission electron microscope
defocus series,”IEEE Trans. Instrum. Meas., vol. 43, pp. 181–186, 1994.

[6] A. H. Buist, Information Extraction from Multiple TEM Images. Delft,
The Netherlands: Delft Univ. Press, 1995.

[7] A. Stuart and J. K. Ord,Kendall’s Advanced Theory of Statistics.
London, U.K.: E. Arnold, 1991, vol. 2.

[8] A. M. Mood, F. A. Graybill, and D. C. Boes,Introduction to the Theory
of Statistics. Singapore: McGraw-Hill, 1974.

[9] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes, The Art of Scientific Computing. Cambridge, U.K.:
Cambridge Univ. Press, 1986.

Adriaan van den Bos (SM’94) received the M.S.
degree in applied physics and the D.Tech.Sc. degree
from Delft University of Technology, Delft, The
Netherlands, in 1962 and 1974, respectively.

From 1962 to 1964 he worked on instrumentation
problems with the Institute of Perception of the
Royal Defense Research Council, Soesterberg, The
Netherlands. In 1964 he joined the Department of
Applied Physics, Delft University of Technology,
where he is currently a Full Professor. His main
research interest is in applying parameter estimation

to measurement problems in various fields of physics.


