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Abstract

In oil and gas exploration, seismic arrays are deployed by geophycisists to image

the subsurface. For passive seismic applications, the data recorded by the sensor

array may contain velocity and angle information of the propagating seismic wave.

This information can be used to infer the properties of material in different earth layers.

In order to find the velocity and arrival angle, beamforming algorithms are ap-

plied to estimate the wavenumber-frequency spectrum for the seismic signals. The

propagating seismic wave field consists of body waves and surface waves. In some

applications, surface waves are interpreted as noise, thus filtering is required to remove

the surface waves before or during the implemention of beamforming algorithms.

In this thesis, we first introduce a data model. Then several beamforming algo-

rithms based on the data model are discussed, and the performance of the different

algorithms is evaluated. Capon beamforming as adopted in seismics has limitations.

Robust Capon beamforming which can overcome these limitations is explained in the

thesis. For filtering of the surface waves, we propose to first reconstruct the irregularly

sampled spatial signal into a uniform array, then design a velocity filter to remove the

unwanted low-speed noise (surface waves).
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Introduction 1
1.1 Seismic array processing

In oil and gas exploration, geophysicists use seismic arrays to image the subsurface.

Seismic waves, travelling at different velocities inside or at the surface of the Earth,

give information about the Earth’s structure. For instance, the velocity of a seismic

wave changes when it travels through different Earth layers, thus can help geophysicists

to image the Earth and find out whether oil can have accumulated in a certain area or

not.

Seismic waves are recorded at the Earth’s surface by arrays of sensors. In explo-

rations, seismic arrays with several kilometers range are deployed in potential oil fields.

The source signal is generated at the Earth’s surface, and the reflected data from differ-

ent Earth layers are recorded when a source goes off. The sampled data at each array

sensor is stored in computers for further processing. The temporal sampling interval is

within several mili-seconds.

Besides exploration, seismic arrays are also used in the research field of global seis-

mology e.g. for monitoring earthquake activities. In this case, sampling intervals are

much larger and arrays can keep recording data for a long period. Although different

types of arrays are deployed in different applications, the basic methodology for array

processing is the same. An example array in Tibet for earthquake applications is shown

in Figure 1.1(a).

In this thesis, we will focus on passive seismic applications where only ambient

seismic noise is recorded by the array. For this application, a small size array (e.g.,

with 25 sensors) is deployed in a certain field for several days.

1
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Figure 1.1: An example seismic array and its beamforming output: (a) Tibet seismic array

for monitoring earthquakes (b) Beamforming result. (From Yao et al. (2009))

1.1.1 Beamforming

Beamforming is an array processing technique for estimating characteristics of seismic

waves. In essence one estimates the wavenumber-frequency spectrum. The basic prin-

ciple of beamforming is to combine the data collected from all sensors, and then apply

multichannel processing algorithms to estimate the parameters of interest. In seismic

applications, slowness and angle are the parameters of interest. An example beam-

forming result for the Tibet array is plotted in Figure 1.1(b). The radius represents

the apparent velocity, while the angle is plotted along the circumeference of the plot.

In this example, ambient noise recorded during one month was beamformed. As can

be seen from the figure, a strong source is present with an arrival angle within 180

and 210 degree, and velocity around 3200m/s, pointing to a source in the south-India

Ocean [Yao et al. (2009)]. Note in our latter beamforming simulations, we use radius

to represent slowness (inverse of speed) instead of velocity.
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1.1.2 Filtering

Body waves and surface waves are different seismic wave types. Body waves travel from

inside the Earth to the Earth’s surface with relatively high speed, while surface waves

travel along the Earth’s surface with lower speed. In order to improve the beamforming

performance, filtering is required to separate body waves and surface waves. Based on

the fact that body waves are faster than surface waves, a velocity filter (or f-k filter)

can be designed to filter out one type of waves. Most of the passive seismic arrays are

irregular arrays, in other words, the propagating wave is non-uniformly sampled in the

spatial domain. The design of digital velocity filters for non-uniformly sampled signals

is very complex. For this reason, we propose to first reconstruct the non-uniformly

sampled spatial signal in a uniform array, and then design a velocity filter to remove

the unwanted signals.

1.2 Objectives

1.2.1 Thesis goals

The objectives of this thesis are to tackle two problems.

• Estimate the velocities and arrival angles for seismic signals.

• Filter out one type of seismic waves (body wave or surface wave).

1.2.2 Thesis organization

Chapter 2 introduces the data model. Based on Fourier theory, we show that a

time delay causes a phase shift in the frequency domain. We propose a data model

by combining all the source signals and noises, and the data model is represented in

matrix form. Conventional beamforming is also introduced in this chapter.

Chapter 3 discusses two advanced beamforming algorithms: Capon and Robust

Capon beamforming. Capon beamforming is a method which has better resolution and
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interference rejection capabilities, while the robust Capon method further improves the

performance of Capon’s method and extends its applicability.

Chapter 4 discusses reconstruction and filtering. First a new data model for re-

construction purposes will be introduced. Then several reconstruction methods are

discussed. After the non-uniformly sampled spatial wave field has been reconstructed

in a uniform array, a 2D velocity filter will be designed and implemented. Finally

beamforming algorithms will be applied to the filtered data.

Chapter 5 states the conclusion and future work. The advantages and limitations

of the introduced algorithms will be discussed, and some recommendations for future

work will be presented in this chapter.



Data Model 2
2.1 Introduction

Seismic waves consist of body waves and surface waves. A main difference between

them is the travelling velocity: body waves are much faster than surface waves. Based

on this, a velocity filter can be applied to separate them which is explained in detail

in Chapter 4. Another difference is that body waves travel through the inner Earth to

the surface while surface waves only travel at the surface. In order to derive the data

model, some of the parameters for propagating waves in space will be introduced in

this section [Johnson and Dudgeon (1993)].

In this thesis, a 2D array is used for seismic applications. Since a 2D array is

deployed on the Earth’s surface, body waves which have a vertical travelling angle, need

to be decomposed to the array plane (i.e. the Earth’s surface) as shown in Figure 2.1.

The x − y plane is the plane where the seismic array is placed. Suppose the signal is

travelling in space with velocity ~v, and ~u is defined as the slowness of the signal, they

have the same angle. The magnitude of slowness equals the inverse of the magnitude

of velocity:

u = |~u| =
1

|~v| ,

v = |~v|. (2.1)

As can be seen from Figure 2.1, the body wave is travelling with vertical incident

angle (inclination) φ and horizontal angle (azimuth) θ. The slowness ~u has a horizontal

component in the x − y plane which is defined as the apparent velocity ~ua. ~ua can be

decomposed to ~ux and ~uy. In practice, the vertical incident angle φ remains unknown

5
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Figure 2.1: Decomposition of the body wave slowness vector ~u

and only the apparent slowness will be estimated [Rost and Thomas (2002)].

ua = |~ua| = |~u| sin φ =
1

v
sin φ =

1

(v/ sinφ)
,

ux = |~ux| = ua sin θ,

uy = |~uy| = ua cos θ. (2.2)

In the first equation, it can be seen that the apparent velocity value va = v
sinφ

is higher

than the true velocity value v for body waves. Since surface waves are travelling along

the x-y plane i.e. φ = 900, its true velocity is the same as the apparent velocity.

Another important parameter for the propagating wave is its wavenumber. Since

only the apparent velocities and angles are of interest, from now on, we use ~k to

represent the wavenumber in the x− y plane (apparent wavenumber). Moreover, ~k can

be decomposed to ~kx and ~ky. Assuming ω is the angular frequency of the propagating

wave, we have:

kx = |~kx| =
ω

va

sin θ = ωux,

ky = |~ky| =
ω

va
cos θ = ωuy,

k = |~k| =
√

k2
x + k2

y. (2.3)
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Assuming τ is the time delay of the seismic signal from the reference point to the sensor

location ~x = (x, y), then,

τ = ~u · ~x

= uxx + uyy. (2.4)

Thus propagating waves in space can be represented as :

s(~x, t) = s(t − ~u · ~x)

= s(t − τ). (2.5)

2.2 Frequency Domain Data Model

In seismic applications, the observed signal is normally broadband with relatively low

speed, and the distances between the seismic array sensors are very big, which means

the delay can not be approximated as a phase shift in the time domain as is the case in

radio communications for example [Veen and Leus (2005)]. Therefore in this section,

a frequency domain data model will be constructed for array processing applications

[Stoica and Moses (1997)].

2.2.1 Fourier Transform theory

Using Fourier Transform theory, and assuming τ is the time delay of the seismic signal

between two sensors in different locations, any signal with an arbitray wave shape can

be represented as:

s(~x, t) = s(t − ~u · ~x)

=
1

2π

∫ ∞

−∞

S(ω) exp {jω(t − ~u · ~x)}dω

=
1

2π

∫ ∞

−∞

S(ω) exp {jω(t − τ)}dω

=
1

2π

∫ ∞

−∞

S(ω)ejωt
(

e−jωτ
)

dω (2.6)

where S(ω) is given by the Fourier Transform:

S(ω) =

∫ ∞

−∞

s(t)e−jωtdt. (2.7)
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Figure 2.2: An example 2D non-uniform array

Thus we can see that at each angular frequency ω = 2πf , a time delay causes a simple

phase shift e−jωτ . This forms the basis of constructing the data model in frequency

domain. Signals received by different sensors have different time delays, which corre-

sponds to phase shifts in the frequency domain, and these phase shifts can be put into

the array response vector.

For discrete sampled signals, we can first apply a DFT to short time series to obtain

the frequency components, then the frequency of interest can be picked out to form the

data model.

2.2.2 Formation of the Data Model

In order to construct a data model for a certain seismic array (an example array with

25 sensors is shown in Figure 2.2), we assume independent sources. The noise received

by each array sensor is random, and the signals are uncorrelated with noise.

In this thesis, the data model consists of frequency samples at different times. In

general, although the seismic signal received by array sensors are broadband, only the

signal at a single frequency f or a small frequency bin centered at f is used. Multiple

time samples at frequency f will be obtained in order to construct the data model.

When receiving a long time series at a specific sensor, we will first use short time
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windows to chop it into frames. Then to each time frame, the Short Time Fourier

Transform (STFT) is applied to convert the time segments into frequency frames, and

the frequency component at f from all of the frequency frames will be picked out to

form the data vector for that specific sensor. Each component of the data vector is

called a snapshot. The details about obtaining time samples for the data model are

discussed in the Practical Issues section.

Data Model for a single source

Let τm = uxx
(m) + uyy

(m) be the time delay of the source signal at sensor m, where

ux and uy are the horizontal slownesses of the signal, and x(m) and y(m) determines the

sensor location. Suppose I is the number of snapshots for the data model. As explained

in the previous section, the phase shift terms can be put into the array response vector

a(f). X(f) and N(f) are the M×I received data matrix and noise matrix respectively,

s(f) is a row vector consisting of I snapshots. Thus the single source data model for

an arbitray 2D array with M sensors can be represented as:

X(f) = a(f)s(f) + N(f), where a(f) =

















exp (−j2πfτ0)

exp (−j2πfτ1)
...

exp (−j2πfτM−1)

















, (2.8)

which equals:
















x0(f)

x1(f)
...

xM−1(f)

















=

















exp (−j2πfτ0)

exp (−j2πfτ1)
...

exp (−j2πfτM−1)

















s(f) +

















n0(f)

n1(f)
...

nM−1(f)

















, (2.9)

where xm(f) is a 1 × I frequency domain data vector at the m-th sensor, and nm(f)

is a 1 × I noise vector at sensor m.

Data Model for multiple sources

For the more general case, when multiple sources are impinging on the array, the
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array vectors for each source can be put into one large matrix. Assuming d sources are

present, the data model is written as:

X(f) = a1(f)s1(f) + a2(f)s2(f) + · · ·+ ad(f)sd(f) + N(f)

=
[

a1(f) a2(f) . . .ad(f)
]

















s1(f)

s2(f)
...

sd(f)

















+

















n0(f)

n1(f)
...

nM−1(f)

















= A(f)S(f) + N(f) (2.10)

where

A(f) =
[

a1(f) a2(f) . . .ad(f)
]

, S(f) =

















s1(f)

s2(f)
...

sd(f)

















.

For the sake of convenience, we write the data model for a specific form as X = AS+N

in the future.

2.2.3 Practical Issues

Dealing with real signals

In seismic experiments, data obtained from the sensors are all real numbers. By

applying the Fourier Transform to the real data, the spectrum is mirrored at half

of the sampling frequency. In other words, the spectrum contains both positive and

negative frequency components, which means beamforming should be applied to both

frequencies. For instance, we have a single sine wave with a frequency of 10Hz: s(t) =

sin(ωt) = 1
2
ej(ωt−π

2
)+ 1

2
e−j(ωt−π

2
), and signals received by different array elements are just

delayed versions of the reference signal, that is s(t−τ) = 1
2
ej(ωt−π

2
)e−jωτ + 1

2
e−j(ωt−π

2
)ejωτ .

Therefore a delay will cause a phase shift at both +10Hz and -10Hz in the frequency

domain, and beamforming needs to be implemented in both frequencies which increases

the complexity.

In order to solve the above mentioned problem, we introduce the Hilbert Transform
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to transfer real data to complex counterparts. Suppose z(t) is the signal received by

the reference sensor, and its Hilbert Transform is ẑ(t), then the analytical signal can

be formed as za(t) = z(t)+ jẑ(t). Suppose the Fourier Transform of the real signal z(t)

is Z(f), then the function:

Za(f) =



















2Z(f) for f > 0

Z(f) for f = 0

0 for f < 0

is the Fourier transform of the analytical signal. The real signal z(t) can be calculated

by applying the inverse Fourier transfom Za(f) and taking the real part. Thus, we can

first apply the Hilbert transform to the real received signal before the Fourier transform

to obtain the analytical signal. Then we apply beamforming in the frequency domain.

Obtaining Time Samples for the Data Model

From Equations 2.9 and 2.10, the array data X(f) is a M × I matrix where I is

the number of time samples (snapshots) at frequency f . In order to get sufficient time

samples, we chop the time series received at each sensor into I frames, and windows

are applied to each frame, which is shown in Figure 2.3. Then, the Short Time Fourier

Transform is applied to each time frame to obtain the frequency components, and

the frequency samples of interest (at f) will be picked out to form the I temporal

samples for each sensor. Alternatively a narrow frequency bin could be selected and

the averaged component at the center frequency f will go into the data vector xm(f)

at the m-th sensor. In this thesis, a hamming window is selected without overlapping,

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Figure 2.3: Segmentation and windowing of the received time series

and the chosen frequency is 10Hz.
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Short-Time Fourier Transform

Suppose x(t) is the time domain signal, then the Short-Time Fourier Transform is

defined as:

X(t, ω) =

∫ t+T

t

g(τ − t)x(τ)e−jωτdτ,

where g(t) is a short time window function.

2.3 Conventional Beamforming

2.3.1 Beamforming theory

After the data model has been constructed, conventional beamforming can be applied

to estimate the wave-number spectrum for the seismic signal. Recall the frequency

domain data model:

X = AS + N

=
[

a1 a2 . . . ad

]

















s1

s2

...

sd

















+

















n0

n1

...

nM−1

















= a1s1 + a2s2 + · · ·+ adsd + N . (2.11)

Note that al only consists of frequency phase shift terms, where l ∈ [1, d] indicates

the l-th source. In order to recover the source signal sl, conventional beamforming

multiplies a weight vector w∗ = 1
M

a∗
l to the data matrix X, where M is the number

of sensors. Thus,

w∗X =
1

M
(a∗

l a1s1 + · · ·+ a∗
l alsl + · · ·+ a∗

l adsd + a∗
l N )

= sl +
1

M
Q, (2.12)

where ∗ represents complex conjugate transpose, and Q is the interference plus noise

term,

Q = a∗
l a1s1 + · · · + a∗

l al−1sl−1 + · · ·+ a∗
l al+1sl+1 + · · ·+ a∗

l adsd + a∗
l N . (2.13)
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In order to estimate the velocity and incident angle for the seismic signals, i.e., to

estimate the f-k spectrum (the same as the wavenumber-frequency spectrum), the array

response needs to be calculated and plotted. Since the array vector al is determined

both by the incident angle and velocity of the signal, a 2D polar graph will be used to

plot the array response. The plotted values of the polar graph are the averaged power

output from the array, which is computed by the following equation:

power output =
1

I
(w∗X)(w∗X)∗ = w∗R̂xxw, (2.14)

I is the number of snapshots in each sensor, and R̂xx = 1
I
XX∗ is the estimated

covariance matrix of the received signal.

2.3.2 Implementation

The basic procedure for implementing conventional beamforming is listed below:

1. Determine the frequency bin of interest and the length of the time frame. Chop

the time series into frames at each sensor, and apply a window to each frame.

2. Apply DFT to the windowed frames to obtain the frequency components of inter-

est, construct the data matrix X.

3. Apply the beamforming algorithm to calculate the average output power from

Equation 2.14.

4. Plot the array response with respect to output power in a polar graph.

In oil and gas exploration experiments, the received array signal needs to be filtered

for further processing, as explained in Chapter 4. Reconstructing the irregular array

signal into a regular array is the first step of the filtering procedure. When the array is

uniform, conventional beamforming can be implemented by the IFFT. Assuming B and

D are the length (number of sensors) of the uniform array along the x-axis and y-axis,

and the sensors are equi-spaced with interval ∆x and ∆y respectively. Suppose p(b, d)

is the spatial sample at the sensor location (b∆x, d∆y), while p is a D × B matrix.

p̃(nx, ny) is the (nx, ny)-th spectral sample at the f-k domain. Since the spatial Fourier
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Transform is defined by:

p̃(kx, ky) =

B−1
∑

b=0

D−1
∑

d=0

p(b, d)ej(kxxb+kyyd)

=
B−1
∑

b=0

D−1
∑

d=0

p(b, d)ej(kxb∆x+kyd∆y).

By sampling the wave-number spectrum, kx = 2πnx

B∆x
, ky = 2πny

D∆y
, we have:

p̃(nx, ny) =
B−1
∑

b=0

D−1
∑

d=0

p(b, d)ej( 2πnx
B∆x

b∆x+
2πny

D∆y
d∆y)

=

B−1
∑

b=0

D−1
∑

d=0

p(b, d)ej( 2πnxb

B
+

2πnyd

D
). (2.15)

The spectral sample intervals are ∆kx = 2π
B∆x

along the x-axis and ∆ky = 2π
D∆y

along

the y-axis. Thus 2D IFFT can be adopted to calculate the f-k spectrum p̃. In order to

suppress the sidelobes in the f-k domain, a 2D window can be pre-multiplied with the

spatial signal p before IFFT. Zero padding may be used to increase the resolution of

the image. After the spectral samples p̃(nx, ny) are computed, the power spectrum for

the received signals can be obtained.

2.3.3 Simulations

When the number of sensors in seismic experiments increases, or the distance between

the sensors becomes larger, the resolution of conventional beamforming will be in-

creased. However, increasing the number of sensors will increase the cost at the same

time. Also, the distance between the sensors cannot be too large. To avoid spatial

aliasing, the shortest distance between the sensors should be smaller than half of the

signal wavelength. To meet both objectives, sometimes, irregular arrays are designed.

Note from now on, the angles in the thesis are representing the incident azimuth angle

of the signal, and velocity (or slowness) represents the apparent velocity (or slowness)

for the sake of convenience.

We assume two random signals are received by an irregular array with 25 sensors,

and the noise received by each sensor is random. The incident angle and velocity for

the first random source are 30 and 2.5km/s, while the second source has an incident
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angle of 120 degree and 5km/s velocity. In order to plot the array response, the con-

ventional beamforming method is used. All the pixels in Figure 2.4 represent the array

response vectors for the possible sources. For each pixel location in the polar graph,

the pertaining angle and slowness value determine the corresponding array response

vector, then conventional beamforming is applied to compute the output power for the

possible source. Afterwards the obtained beamformer vector is applied to the received

signal matrix to compute the output power (see Equation 2.14). If there is no source

signal present at the pixel location, the output power will be very small. When the ar-

ray response vector for a certain pixel matches one of the source signal’s array vectors,

we will see large output power. All the possible sources are scanned and the output

powers are plotted.

The simulation results are shown in Figure 2.4. Plot (a) and (b) show the first

and second source respectively, (c) is the irregular array, and in Figure 2.4(d), a po-

lar graph is used, where the incident angle is plotted along the circumference and the

radius represents slownesses. The color corresponds to the output power in dB. From

Figure 2.4(d), we can see large output power at the source signal locations. The side-

lobes in the polar graph are due to the convolution between the wavenumber-frequency

spectrum of the spatial signal and the aperture smoothing function [(Johnson and

Dudgeon, 1993, pp. 38-39)]. We conclude that the interference cancellation and noise

suppression capabilities of the conventional beamforming method are insufficient.

2.4 Conclusion

In this chapter, a frequency data model was constructed, and the conventional beam-

forming method was explained. A simulation result was plotted to illustrate its use in

estimating signal characteristics. However, the resolution and interference cancellation

capabilities of the conventional beamforming method can be improved. Therefore in

the next chapter, Capon and Robust Capon Beamforming will be introduced in order

to improve the beamforming performance.
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Robust Capon Beamforming 3
3.1 Introduction

As discussed in Chapter 2, the interference cancellation and noise suppression capabil-

ities of the conventional beamforming method can be improved. Therefore, in order to

achieve better estimation performance, Capon and Robust Capon beamforming will be

introduced in this section. Some numerical results will also be presented.

Capon beamforming [Capon (1969)] is also called the Linear Constraint with Mini-

mum Variance (LCMV) method. By applying a linear constraint, the signal of interest

will not be distorted. At the same time, Capon’s method will minimize the output

power (or variance), thus the interference and noise terms are suppressed.

Although Capon’s method has much better performance than the conventional

beamforming method, it has certain limitations. For the cases where the array re-

sponse vector is inaccurate, or the covariance matrix is singular, the Robust Capon

Beamforming method can be adopted to solve the problems [Li et al. (2003)] [Li and

Stoica (2005)].

3.2 Standard Capon Beamforming

3.2.1 Problem Statement

Recall the data model in Chapter 2,

X = AS + N

= a1s1 + · · · + adsd + N .

17



18 CHAPTER 3. ROBUST CAPON BEAMFORMING

There are d sources presented at the array. Suppose the l-th source sl is the source of

interest, and the Capon beamformer w is trying to recover it from the signal matrix

X which is obtained from the received array signal. The other l − 1 sources in X

are interferences and N is the noise term. The average output power from the array

is w∗Rxxw, and the Capon beamformer can be interpretted as the solution of the

following problem:

min
w

w∗Rxxw, with constraint w∗al = 1. (3.1)

where al is the array response vector for the signal of interest (l-th source).

Beamforming can be interpretted as a multiplication of the weight vector w∗ and

the data matrix X , i.e. w∗X is the beamforming output. In the SCB (Standard

Capon Beamforming) method, suppose the l-th source signal is the signal of interest.

By applying a linear constraint to the array response vector al: w∗al = 1, we keep

the signal of interest sl undistorted, since w∗alsl = sl. The minimization term in

Equation 3.1 is to suppress the interference and noise terms. The limitation of Capon’s

method is that, when the array response vector al for the signal of interest is not

accurately known, we may have applied a linear constraint to an interference, and the

true signal of interest is interpretted as an interference which will be suppressed. Thus

in this case Capon’s method will fail to provide a better estimation result. Also, when

the covariance matrix Rxx is poorly conditioned or singular, Capon’s method cannot

be applied to the data.

3.2.2 Solution

The problem in Equation 3.1 can be solved by the Lagrange multiplier method. The

cost function J [Van Trees (2002)] which needs to be minimized is defined as:

J = w∗Rxxw + λ(w∗al − 1) + λ∗(a∗
l w − 1)

= w∗Rxxw + λw∗al + λ∗a∗
l w − λ∗ − λ,

Taking derivative with respect to w is equivalent to taking the derivative to w̄ (complex

conjugate of w) for stationary points, but the latter is more simple. Therefore we take
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Figure 3.1: Capon beamforming for an irregular array with 25 sensors (a) An irregular array

(b) Array response computed by capon beamforming

the derivative of J with respect to w̄ which yields:

∇w̄J = ∇w̄w∗Rxxw + ∇w̄λw∗al + ∇w̄λ∗a∗
l w

= Rxxw + λal.

Setting ∇w̄J = 0 yields w = −λR−1
xx al. By using the linear constraint, it can be found

that λ = −(a∗
l R

−1
xx al)

−1, Substituting λ, we arrive at the solution:

w =
R−1

xx al

a∗
l R

−1
xx al

. (3.2)

After computing the Capon beamformer w, the output power from the array can be

expressed as:

output power = w∗Rxxw,

=
1

a∗
l R

−1
xx al

. (3.3)

3.2.3 Numerical Results

In this section, the same array as shown in Figure 2.4(c) is used for simulating the Capon

beamforming performance. The array response is plotted in Figure 3.1(b). Assuming

two random sources are present at the array, coming in azimuthes of 30 and 120 degree,

slowness 4× 10−4s/m and 2× 10−4s/m respectively. The noise received by each sensor
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is random as well. As can be seen from the plot, Capon beamforming provides better

estimation performance than the conventional beamforming method (in Figure 2.4).

As in Figure 2.4(b), all the possible array response vectors will be scanned, and the

output powers in Equation 3.3 are plotted to find the angle and slowness location for the

true source signals. From Figure 3.1, we can see that the resolution of Capon’s method

is much better than the conventional one, and interferences are also well suppressed.

3.3 Robust Capon Beamforming

3.3.1 Problems of Capon Beamforming

Standard Capon Beamforming (SCB) provides a better performance compared to the

conventional beamforming algorithm, with better resolution and interference rejection

capabilities. However, the Standard Capon Beamforming algorithm requires a rather

accurate array response vector: a small variation of the array response vector will

degrade the performance of Capon beamforming to become even worse to that of the

conventional beamforming method. Also, Capon’s method requires the computation of

the inverse of the covariance matrix Rxx. If the covariance matrix is poorly conditioned

or singular, Capon’s method will fail.

In practical cases, the array response vector may have small variations, e.g., the

assumed arrival angle of the source signal may be not accurate, or the covariance matrix

may be poorly conditioned. Therefore the Robust Capon beamforming algorithm which

can tackle these problems is introduced in this section [Li et al. (2003)].

3.3.2 Derivation of the Robust Capon Beamforming(RCB) algorithm

In this section, we summarize the work of Jian Li [Li et al. (2003)].
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3.3.2.1 Reformulation of the SCB method

Suppose al is the array response vector corresponding to the signal of interest sl, and

σ̃2
l is the estimated Capon beamformer output power:

σ̃2
l =

1

a∗
l R

−1
xx al

. (3.4)

It will be shown that σ̃2
l is the solution of the following covariance fitting problem [Li

and Stoica (2005)]:

max
σ2

σ2 subject to Rxx − σ2ala
∗
l ≥ 0. (3.5)

where the notation G ≥ 0 means G is a positive semidefinite matrix. The problem

indicated in Equation 3.5 leads to the same solution as Standard Capon Beamforming

as will be shown below. Rxx is a Hermitian matrix i.e., R∗
xx = Rxx, where ∗ represents

complex conjugate transpose. For the sake of convenience, we use R to represent Rxx

from now on, thus we have:

R − σ2ala
∗
l ≥ 0

⇔ I − σ2R− 1
2 ala

∗
l R

− 1
2 ≥ 0

⇒ (R−1/2al)
∗(R−1/2al) − σ2(R−1/2al)

∗R−1/2ala
∗
l R

−1/2(R−1/2al) ≥ 0

⇔ a∗
l R

−1al − σ2(a∗
l R

−1al)
2 ≥ 0

⇔ 1 − σ2a∗
l R

−1al ≥ 0

⇔ σ2 ≤ 1

a∗
l R

−1al

= σ̃2
l (3.6)

Hence σ2 = σ̃2
l is the largest value of σ2 for which the constraint in Equation 3.5 is

satisfied.

3.3.2.2 RCB with Nondegenerate Spherical Uncertainty Set

The array response vector al for the signal of interest is not accurately known, and the

assumed array response vector for al is ā. In order to find the correct array response

vector al, we append a spherical uncertainty set to ā. Suppose a is an array response

vector belonging to the uncertainty set, then we seek the maximum output power σ2
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for different array response vectors a, the correspondent array vector is the one which

approximates the actual array response vector al best. Assuming ε is a positive real

number which defines the size of the uncertainty set, then we can represent the RCB

problem as: 1

max
σ2 ,a

σ2 subject to R − σ2aa∗ ≥ 0,

for any a satisfying (a − ā)∗(a − ā) ≤ ε. (3.7)

For any given array response vector a inside the uncertainty set, the estimated output

power σ̃2 is equal to:

σ̃2 =
1

a∗R−1a
. (3.8)

Therefore the RCB problem can be reformulated as:

min
a

a∗R−1a subject to ‖a − ā‖2 ≤ ε. (3.9)

Let S̄ represent the spherical uncertainty set. In order to exclude the solution a = 0,

the assumed array response vector should meet the requirement:

‖ā‖2 > ε. (3.10)

Since we know the solution of Equation 3.9 lies at the boundary of the uncertainty set,

the problem can be reformuated as:

min
a

a∗R−1a subject to ‖a − ā‖2 = ε. (3.11)

The above indicated problem can be solved by the Lagrange multiplier method [Quar-

teroni et al. (2007)]. Define the cost function as:

f(a, λ) = a∗R−1a + λ(‖a − ā‖2 − ε), (3.12)

where λ is the non-negative real-valued lagrange multiplier. To find the optimal esti-

mation of the SOI (Signal Of Interest) array vector âl, we have to differentiate f(a, λ)

with respect to a. Moreover, for any stationary point, differentiation to a is equivalent

1More in general, a nondegenerate ellipsoidal uncertainty set can be used, that is: (a− ā)∗C−1(a− ā) ≤ 1,

where C is the constraint matrix.
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to differentiation to the complex conjugate of a. The gradient of f(a, λ) to the complex

conjugate of a, which gives the optimal estimation âl, is:

R−1âl + λ(âl − ā) = 0. (3.13)

Then:

âl =

(

R−1

λ
+ I

)−1

ā (3.14)

= ā − (I + λR)−1ā (3.15)

where the second equality is obtained by the matrix inversion lemma. By substituting

the array response vector âl into the constraint equation 3.11 to find λ, we get:

g(λ) = ‖(I + λR)−1ā‖2 = ε. (3.16)

Applying an eigenvalue decomposition to R, that is, R = UΓU ∗, we get:

g(λ) = ‖(I + λR)−1ā‖2,

= ‖(UU ∗ + U(λΓ)U ∗)−1ā‖2,

= ‖(U(I + λΓ)U ∗)−1ā‖2,

= ‖(U(I + λΓ)−1U ∗)ā‖2,

=
[

U(I + λΓ)−1U ∗ā
]∗ [

U(I + λΓ)−1U ∗ā
]

,

= (U ∗ā)∗(I + λΓ)−2(U ∗ā) now let z = U ∗ā, then,

= z∗(I + λΓ)−2z,

=
M

∑

m=1

|zm|2
(1 + λγm)2

= ε, (3.17)

where zm is the element in vector z, and γ1 ≥ γ2 ≥ · · · ≥ γM are the eigenvalues of the

covariance matrix R.

As can be seen from Equation 3.17, g(λ) is a monotonically decreasing function when

λ ≥ 0. From Equations 3.10 and 3.16, g(0) > ε, therefore λ 6= 0. From Equation 3.17,

limλ→∞g(λ) = 0 < ε. Hence we can find a unique λ from Equation 3.17. The interval

for λ is given by:

‖ā‖ − √
ε

γ1

√
ε

≤ λ ≤ min

{(

1

ε

M
∑

m=1

|zm|2
γ2

m

)1/2

,
‖ā‖ − √

ε

γM

√
ε

}

. (3.18)
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Note that the upper boundary of λ is not available when R is rank deficient, since then

γM = 0. Newton’s method can be used to find the Lagrange multiplier.

Equation 3.17 can be solved either by the Newton’s method, or by setting the interval

of λ and trying to find the point for which h(λ) = g(λ) − ε crosses zero. When the

Lagrange multiplier λ is found, âl can be calculated as:

âl = ā − U(I + λΓ)−1U ∗ā. (3.19)

When the estimated array vector âl for the signal of interest (SOI) has been calculated,

the Robust Capon beamformer ŵl has the same form as the SCB vector (Equation 3.2),

and can be derived as follows:

ŵl =
R−1âl

â∗
l R

−1âl

=
R−1

(

R
−1

λ
+ I

)−1

ā
[

(

R
−1

λ
+ I

)−1

ā

]∗

R−1
(

R
−1

λ
+ I

)−1

ā

=

(

R + 1
λ
I
)−1

ā

ā∗
(

R
−1

λ
+ I

)−1

R−1
(

R
−1

λ
+ I

)−1

ā

=

(

R + 1
λ
I
)−1

ā

ā∗
(

R
−1

λ
+ I

)−1

R−1R
(

R + 1
λ
I
)−1

ā

=

(

R + 1
λ
I
)−1

ā

ā∗
(

R + 1
λ
I
)−1

R
(

R + 1
λ
I
)−1

ā
. (3.20)

In practice, the covariance matrix R is unknown and needs to be estimated as well.

Suppose we have I snapshots for the data matrix X, the estimated covariance matrix

R̂ = 1
I
XX∗ is substituted to calculate ŵl.

At the same time, the power for the signal of interest can also be calculated. As-
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suming σ̂2
l is the estimated SOI power, we have:

σ̂2
l = ŵ∗

l Rŵl

=
1

â∗
l R

−1âl

=
1

[

(

R
−1

λ
+ I

)−1

ā

]∗

R−1

[

(

R
−1

λ
+ I

)−1

ā

]

=
1

ā∗
(

R
−1

λ
+ I

)−1

R−1
(

R
−1

λ
+ I

)−1

ā

=
1

ā∗
(

R + 1
λ
I
)−1

R
(

R + 1
λ
I
)−1

ā

=
1

ā∗
(

UΓU ∗ + 1
λ
I
)−1

UΓU ∗
(

UΓU ∗ + 1
λ
I
)−1

ā

=
1

ā∗U
(

Γ + 1
λ
I
)−1

U ∗UΓU ∗U
(

Γ + 1
λ
I
)−1

U ∗ā

=
1

ā∗UΓ
(

Γ + 1
λ
I
)−1 (

Γ + 1
λ
I
)−1

U ∗ā

=
1

ā∗UΓ
(

λ−2I + 2λ−1Γ + Γ2
)−1

U ∗ā
. (3.21)

As before, the estimated covariance matrix R̂ = Û Γ̂Û
∗

is substituted for R. For the

power estimation, there is a scaling ambiguity in the covariance term R − σ2aa∗, in

the sense that (σ2, a) and (σ2/α, α1/2a) give the same term σ2aa∗. To eliminate this

ambiguity, we estimate the SOI power σ̂2
l as:

ˆ̂σ2
l = σ̂2

l ‖âl‖2/M. (3.22)

where M is the number of sensors.

This concludes the summary of Jian Li’s work.

Newton’s Method

In order to solve Equation 3.17, Newton’s method [Quarteroni et al. (2007)] can be

used to find the root of the function h(λ) = g(λ)− ε =
∑M

m=1
|zm|2

(1+λγm)2
− ε. At the same

time, Newton’s method is capable of finding the root of a function with only a small

amount of iterations when the starting search point is near to the true value of the root.
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Based on Newton’s method, we begin with the lower bound of λ in Equation 3.18. At

each iteration, the value of λ is updated,

λn+1 = λn − h(λn)

h′(λn)
(3.23)

where h′(λ) is the derivative of function h(λ):

h′(λn) =
d

dλ

[

M
∑

m=1

|zm|2
(1 + λγm)2

− ε

]

∣

∣

∣

∣

λ=λn

=

M
∑

m=1

|zm|2(−2)(1 + λnγm)−3γm

=
M

∑

m=1

−2|zm|2γm

(1 + λnγm)3
(3.24)

3.3.3 Simulation Results

In this section, some of the simulation results for Robust Capon beamforming are

shown. Both the beampattern and estimated power computed by the RCB and SCB

method are plotted. By comparing the beampattern and power estimation performance

of the SCB and RCB method, we will see that RCB outperforms SCB.

Beampattern

When the Robust Capon beamformer ŵl for the signal of interest (l-th source) has

been calculated, the array beampattern can be plotted. Suppose a is the array vector

for a source signal with a certain angle and slowness, the beampattern is calculated by

|ŵ∗
l a|2, while varying a through all the angles or slownesses.

Power Estimation

Power estimation performance of the RCB method is also simulated. The estimated

power is calculated by Equation 3.22, thus the true power of the source signal has been

computed.

The simulation section is divided into three subsections, where three different sce-

narios will be presented. Case 1 is the scenario when the incoming sources have the

same slowness but different angles, Case 2 is for the sources with same arrival angle
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Figure 3.2: Beampattern for a 10by10 square array using the RCB and SCB method in Case 1:

(a) Beampattern without mismatch, ε = 1 (b) Beampattern with 2 degree of mismatch, ε = 10

(c) Beampattern without mismatch, selection error for ε, ε = 10 > ε0 = 0 (d) Beampattern

with 2 degree of mismatch, selection error for ε, ε = 1 < ε0 = 10

but different slownesses, while Case 3 represents the different angles and different slow-

nesses scenario. In Case 1 and Case 2, both the beampattern and estimated power

will be plotted, in Case 3, only the power estimation performance is simulated.

3.3.3.1 Case 1: Sources with different arrival angles but same slowness

In this case, we assume two sources with different arrival angles but same slowness

imping on a 10by10 square array, with distance 150 meters between neighboring sensors.

The arrival angles of the sources are 30 and 60 degree respectively, while both travel
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Figure 3.3: Power estimation for a 10by10 square array using the RCB and SCB mehtod in

Case 1: (a) Power estimation ε = 1 (b) Power estimation ε = 10

at the speed of 3400m/s. We choose the first source with the arrival angle of 30 degree

as the signal of interest. The beampattern simulation results are plotted in Figure 3.2.

The left plots in Figure 3.2 (a) and (c) are the beampatterns for no mismatch of

the assumed array vector ā case, while the right plots in Figure 3.2 (b) and (d) have

a 2 degree of angle mismatch for the assumed array vector. The vertical solid red line

indicates the location of the signal of interest, while the dotted red line is the interference

(arrival angle of 60 degree). We consider beampatterns computed from both the SCB

method and RCB method. As can be seen from the plots, Robust Capon Beamforming

outperforms Standard Capon Beamforming.

In order to simulate power estimation of the RCB method, we add a small complex

random number to each element of the assumed array vector ā. The real power for the

source signals are also plotted (red circles) in our simulation results. The same 10by10

square array is used, and the two sources are also the same as before. As can be seen

from Figure 3.3, the RCB method has a better power estimation accuracy than the

SCB method.

Selecting values for ε

For the no mismatch plots (a) and (c) in Figure 3.2, the true value for ε is ε0 = 0.
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For (b) and (d) in Figure 3.2, ε0 = ‖al − ā‖2 = 9.7429 ≈ 10, where a relatively big

array is deployed with 100 sensors, thus the array response vector is a 100 × 1 vector.

As can be seen from the plots, in the no mismatch case, the selection value for ε has

no effects on the beampattern. However, when a mismatch is present in the assumed

array vector, then if ε is chosen too small, the RCB method cannot find the correct

array vector, which means RCB has almost the same performance as SCB.

3.3.3.2 Case 2: Sources with different slownesses but same arrival angle

In this section, the source signals have different slownesses but same arrival angle. Both

of them are from the direction of 30 degree, and the travelling velocities are 3400m/s

and 5000m/s respectively, thus slownesses 2.94 × 10−4s/m and 2 × 10−4s/m for the

sources. A same 10by10 square array as in Case 1 is adopted. The simulation results

are plotted in Figure 3.4.

The beampattern for the first source (travelling velocity 3400m/s) is plotted in

Figure 3.4(a) and (b). (a) is for the nomismatch case, while (b) is the beampattern

with 10m/s velocity error (or slowness error) for the assumed array vector.

Figure 3.4 (c)-(f) shows the simulation results for power estimation. (c) is the power

estimation result when the assumed array vector ā has no mismatch, while (d) is the

mismatch case where each element in the assumed array vector is added with a small

complex random number. Figure 3.4 (e) and (f) are the simulation results when ε is

chosen too large or too small respectively.

In power estimation, the selected value for ε is important. The true uncertainty

set size ε0 ≈ 1. As can be seen from plots Figure 3.4 (e) to (f), when ε is chosen too

large, the resolution of the RCB method is worse than that of the SCB method. If ε is

selected much smaller than the its true value, then the uncertainty set doesnot include

the correct array vector al, which results in almost the same performance between RCB

and SCB.
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3.3.3.3 Case 3: Sources with different slownesses and arrival angles

In this section, only the estimated power for the sources with different slownesses and

angles are plotted. Assuming the same 10by10 square array as before, the simulation

results are plotted in Figure 3.5. The first source has an angle of 30 degree, and velocity

3400m/s. The angle and velocity for the second source are 60 degree and 5000m/s.

Figure 3.5 (a) and (b) represent the simulation results of the no array response vector

(ARV or array vector) mismatch case, for SCB and RCB respectively. Figure 3.5 (c)

and (d) are SCB and RCB power estimation with ARV mismatch. Figure 3.5(e) is the

case with mismatch when ε is too large and (f) is the ε too small case. The mismatch

term consists of complex random numbers as before.

3.4 Conclusion

In this chapter, the standard Capon beamforming method is analyzed and simulated.

In order to improve the performance of the SCB method, robust Capon beamform-

ing is introduced and analyzed. From the simulation results, we conclude that RCB

outperforms SCB in beamforming applications.
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Figure 3.4: Beampattern and Power estimation for a 10by10 array using RCB and SCB in

Case 2: (a) Beampattern without mismatch, ε = 0.5 (b) Beampattern with 10m/s of velocity

mismatch, ε = 0.5 (c) Power estimation without mismatch, ε = 1 (d) Power estimation with

mismatch, good selection of ε, ε = 1 (e) Power estimation with mismatch, ε is chosen bigger

than the true value, ε = 10 (f) Power estimation with mismatch and ε is chosen smaller than

the true value, ε = 0.1
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(e) (f)

(c) (d)

(b)(a)

Figure 3.5: Power estimation for a 10by10 square array using RCB and SCB in Case 3: (a)

Power estimation of the SCB method without ARV mismatch (b) Power estimation of the

RCB method without ARV mismatch, ε = 1 (c) Power estimation of the SCB method with

ARV mismatch (d) Power estimation of the RCB method with ARV mismatch, ε = 1 (e) RCB

power estimation with ARV mismatch, and ε is chosen bigger than the true value, ε = 10

(f) RCB power estimation with ARV mismatch and ε is chosen smaller than the true value,

ε = 0.1



Reconstruction and filtering 4
4.1 Problem Statement

In geophysical applications, sensor arrays for monitoring seismic events are normally

non-uniformly positioned, in order to obtain as many spatial samples as possible at

different locations. By focusing on only one wave type in seismic processing, the spectral

estimation performance can be improved. However, filtering is required to filter out

surface waves or body waves. Since the design of a non-uniformly sampled digital filter

is very complex, we propose to first reconstruct the irregularly sampled spatial signal

in a uniform grid, and then apply a velocity filter to remove unwanted signals. This

reduces the complexity since a uniformly sampled velocity filter can be constructed in

a straight forward way.

In the previous chapter, we used Capon and Robust Capon beamforming to esti-

mate the wavenumber-frequency spectrum of the seismic data. Both methods apply a

linear constraint to the array response vector. In principle, we could also implement

linear constraints to cancel the interference signals. The problem, however, is that the

number of interferences we have in seismic data is unknown (maybe big). Also, if the

interferences are close to one another, they are correlated. This means cancelling one

interference influences the cancellation of another. In order to cancel multiple interfer-

ence signals, the linear constraint matrix for beamforming has to be constructed. Since

the constraint vectors are correlated to each other, the constraint matrix is rank defi-

cient [Van Trees (2002)], which will deteriorate the estimation performance. Therefore,

we will concentrate on spatial signal reconstruction [Zwartjes (2005)] and filtering in

this section. First the basic methodology will be introduced, then each section will be

analyzed in detail, the simulation results of the reconstruction and filtering algorithm

33
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1. Split the time series data at each sensor into frequency bins, p(i) is the M × 1 vector of

frequency components of interest at time i collected from each sensor, i ∈ [1, I]

2. Estimate the wavenumber-frequency spectrum p̃(i) for the i-th snapshot p(i), which is

obtained in step 1.

3. Reconstruct the signal in a uniform grid using the Fourier Reconstruction with Sparse

Inversion(FRSI) method, thus a new data vector p̂(i) for the reconstructed array is obtained.

4. Design and apply the 2D velocity filter h to filter out surface or body waves in the data

vector p̂(i), the filtered data is p̂
(i)
f = (h ~ p̂(i)).

5. Repeat step 2-4 for each snapshot, and all of the filtered data vectors
[

p̂
(1)
f · · · p̂(I)

f

]

form

a data matrix with I snapshots.

6. Use beamforming algorithms to estimate the high-resolution wavenumber-frequency spec-

trum based on the data matrix in step 5.

Figure 4.1: The general steps for filtering of seismic signals

are plotted as well.

4.2 Solution

The indicated problem can be solved by several consecutive steps, as explained in the

above box. The basic scheme for reconstruction is to re-sample and interpolate the

seismic data spatially in a uniform array by using the Fourier Reconstruction method,

as shown in Figure 4.2, where the non-uniform array with 36 sensors is reconstructed

on a 10 × 10 rectangular array. The signal is still considered random in time.

4.2.1 Data Model

For reconstruction of seismic data in a uniform grid, the first step is to estimate the

uniformly sampled wavenumber-frequency spectrum. Reconstruction and filtering are

applied to each snapshot independently. The estimation of the f-k spectrum p̃(i) for the

i-th snapshot will be taken as an example.

Suppose p(i) is the i-th snapshot for the array which is obtained from the received
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signal at each sensor. In this thesis, we assume the received signals are random. F

is the inverse spatial Fourier transform matrix which is determined by the sampling

structure in the spatial and wavenumber-frequency domains. p̃(i) is the wavenumber-

frequency spectrum which needs to be estimated based on p(i). When sampling the

wavenumber-frequency spectrum, we can choose the appropriate bandwidth (with re-

spect to wavenumber-frequency spectrum) and sampling interval. In general, the chosen

bandwidth is smaller than the full bandwidth of the spatial signal, thus n(i) is used to

represent the unknown noise outside the chosen bandwidth.

The data model for this application is defined as:

p(i) = F p̃(i) + n(i), (4.1)

where F is a M × N matrix, where M is the number of sensors, and N represents

the number of wavenumber-frequency spectral samples. In general, N >> M , thus

F is a wide matrix. ∆kx and ∆ky are the wavenumber-frequency spectral sampling

intervals along the kx and ky axis respectively. kx,n = n∆kx and ky,n = n∆ky are

the n-th (n ∈ [1, N ]) f-k spectral sample indexes. (xm,ym) is the location of the m-th

(m ∈ [1, M ]) sensor.

Fmn is the component in matrix F with row index m and column index n. p
(i)
m is the

m-th spatial sample in p(i), and p̃
(i)
n is the n-th wavenumber-frequency spectral sample

in p̃(i), they can be written as:

Fmn =
∆kx∆ky

4π2
e−j(kx,nxm+ky,nym) (4.2)

p(i)
m = p(i) [xm, ym]

p̃(i)
n = p̃(i) [kx,n, ky,n]

p(i) and p̃(i) stack all the spatial samples and spectrum samples into vector form, and

can be written as:

p(i) =











p
(i)
1

...

p
(i)
M











, p̃(i) =











p̃
(i)
1

...

p̃
(i)
N











. (4.3)
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Figure 4.2: The basic scheme of reconstruction

4.2.2 Estimate the wavenumber-frequency spectrum

In order to filter the interferences, we will first reconstruct the non-uniformly sam-

pled seismic data in a uniform grid. Three methods for estimating the wavenumber-

frequency spectrum p̃(i) for the i-th snapshot will be explained in the following sec-

tions. The FRSI method explained in the third section proves to be the best one for

reconstructing purposes. Afterwards, inverse Fourier Transform can be used to obtain

uniformly sampled spatial signals for further processing (filtering).

1. Objective function without regularization

As can be seen from the Data Model, p̃(i) is the unknown parameter which needs

to be estimated. The main strategy is to recast the spectrum estimation as an inverse

problem. By constructing an objective function J , the inverse problem can be solved

efficiently. In least square sense, the objective function is constructed as follows:

J = ‖(C(i)
n )−

1
2 (p(i) − F p̃(i))‖2

2

=
1

c2
‖W 1

2 (p(i) − F p̃(i))‖2
2, (4.4)

where C(i)
n is the noise covariance matrix for the i-th snapshot n(i) and is given by:

C(i)
n = c2W−1, where c is a constant and W is a data weighting matrix. The weights

in W are defined as Wnn +4xn, and are normalized such that
∑4xn = 2π/4k. This

equation is minimized by the least square estimator, the estimated spectrum ˆ̃p(i) is
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written as:

ˆ̃p(i) = (F HWF )−1F HWp(i). (4.5)

However, F is wide matrix i.e. N >> M , which causes F HWF to be rank dificient.

Because of this, the inverse in Equation 4.5 requires large computation time. Also, a

small error in p(i) will cause a big error in ˆ̃p(i), resulting in poor estimation performance.

Therefore reguralization is required.

2. Objective function with quadratic reguralization term

In this section, we add a quadratic reguralization term to the objective function.

This method is called Fourier Reconstruction with Minimum Norm (FRMN)[Zwartjes

(2005)] [Schonewille (2000)]. The objective function is thus defined as:

J =
1

c2
‖W 1

2 (p(i) − F p̃(i))‖2
2 +

1

(σ
(i)
p̃ )2

‖p̃(i) − p̃
(i)
0 ‖2

2, (4.6)

where (σ
(i)
p̃ )2 is the a-priori model variance for the i-th snapshot and p̃

(i)
0 is an a-priori

model estimate, which is 0 in our case. The solution to the above equation is given by:

ˆ̃p(i) = (F HWF + λiI)−1(F HWp(i) − λip̃
(i)
0 )

=
[

(F HWF + λiI)−1F HW
]

p(i), (4.7)

where λi = c2

(σ
(i)
p̃

)2
is the damping term for the i-th snapshot, and p̃

(i)
0 = 0 is used.

Problems of Fourier Reconstruction with Minimum Norm:

• Poor reconstruction in large spatial gaps, the reason is the damping term λi

[(Zwartjes, 2005, pp. 18-25)].

• Limited bandwidth for reconstruction, in other words, the number of Fourier

coefficients that can be estimated is limited [(Zwartjes, 2005, pp. 18-25)].

3. Fourier Reconstruction with Sparse Inversion

In this section, a non-quadratic reguralization term is used instead of a quadratic one

[Zwartjes (2005)] in order to yield a sparse solution. The objective function is then:

J =
1

c2
‖W 1

2 (p(i) − F p̃(i))‖2
2 + ρ(p̃(i)), (4.8)
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where ρ(p̃(i)) is the model penalty term (Regularization term), possible model penalty

terms are Cauchy or German functions etc [(Zwartjes, 2005, pp. 32-35)]. For these

model penalty terms, the general solution of minimizing J with respect to p̃(i) is:

ˆ̃p(i) = (F HWF + c2(C
(i)
p̃ )−1)−1F HWp(i), (4.9)

where C
(i)
p̃ is the spectral covariance matrix for the i-th snapshot which depends on

the chosen model penalty term ρ(p̃(i)). We assume different spectral coefficients are

uncorrelated, thus C
(i)
p̃ is diagonal. The diagonal elements can be written as:

(C
(i)
p̃,jj)

−1 = (p̃
(i)
j p̃

(i)∗
j + (σ

(i)
p̃ )2)−a, (4.10)

where a = 1 for Cauchy and a = 2 for German model penalty terms respectively. In

this thesis, the l1 function is selected as the model penalty term where a = 1
2
.

Strength of the FRSI method:

• Better reconstruction in gaps, the algorithm can cope with large spatial gaps very

well [(Zwartjes, 2005, pp. 38-39)].

• Full bandwidth reconstruction, providing a wider estimate of the wavenumber-

frequency spectrum [(Zwartjes, 2005, pp. 38-39)].

MAP estimator

A Maximum A Posteriori (MAP) estimator [van der Tol and van der Veen (2007)] can

also be used to estimate the wavenumber-frequency spectrum. By assuming the data

is Gaussian random, the objective function can be recast as:

J = ‖(C(i)
n )−

1
2 (p(i) − F p̃(i))‖2

2 + ‖(C(i)
p̃ )−

1
2 p̃(i)‖2

2 (4.11)

and the solution is given by:

ˆ̃p(i) = (F H(C(i)
n )−1F + (C

(i)
p̃ )−1)−1F H(C(i)

n )−1p(i)

= (F HWF + c2(C
(i)
p̃ )−1)−1F HWp(i). (4.12)

When C
(i)
p̃ = (σ

(i)
p̃ )2I, the MAP estimator reduces to the FRMN estimator, and if

C
(i)
p̃,jj = (p̃

(i)
j p̃

(i)∗
j + (σ

(i)
p̃ )2)

1
2 , the MAP estimator is equivalent to the FRSI estimator

with l1 model penalty term. Therefore both FRMN and FRSI are MAP estimators,

and the objective function J in FRSI can be recast as a quadratic model penalty term,

however, with the specified spectral covariance matrix C
(i)
p̃ .
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4.2.3 Reconstruct the spatial signal in a uniform grid

When the uniform sampled spectrum p̃(i) for the i-th snapshot is estimated, we can

reconstruct the spatial seismic data in a uniform array by using inverse spatial Fourier

Transform. Suppose F u is the inverse Fourier Transform matrix for the reconstructed

array where the 2D spatial domain is uniformly sampled. The i-th reconstructed data

p̂(i) in a uniform array is given by:

p̂(i) = F u
ˆ̃p(i). (4.13)

Therefore the original spatial signal has been reconstructed on a uniform array. Af-

ter the reconstruction algorithm is applied to all of the snapshots, the data matrix
[

p̂(1) · · · p̂(I)
]

is constructed, and each column in the matrix will be convolved with the

velocity filter to remove the interferences.

4.2.4 Filter the seismic signal

After reconstructing the non-uniformly sampled seismic data in a uniform grid, a ve-

locity filter can be applied to the reconstructed data set p̂(i), which will filter the data

so that the wave of interest will remain. For instance, we can design a low-pass f-k filter

to remove surface waves, and the remaining signal can be used for further beamforming

applications to find the angle and velocity of the source signal (body waves in this case).

To design the 2D velocity filter, we first select the lowest velocity vmin we want to

keep, and seismic signals which have higher velocities will remain and others will be

filtered out. With respect to wavenumber k, the maximum value kmax is used when

designing the filter.

k =
√

k2
x + k2

y

=

√

(

2πf

v
sin θ

)2

+

(

2πf

v
cos θ

)2

=
2πf

v
≤ kmax =

2πf

vmin
(4.14)

From the above equations,
√

k2
x + k2

y ≤ kmax occupies a circle field in the (kx, ky) plane

as shown in Figure 4.3. The wavenumber k corresponds to the frequency when we
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Figure 4.3: An example 2D velocity filter

design a temporal filter, the amplitude for the wavenumber-frequency samples inside

the circle is 1 and outside is 0, thus this velocity filter is interpreted as a low-pass

f-k filter. The filter phase is chosen as 0 in this thesis. The filter frequency response

H(kx, ky) can be written as:

H(kx, ky) =







1,
√

k2
x + k2

y ≤ kmax

0, otherwise

Then the filter impulse response can be obtained by inverse Fourier Transform to

H(kx, ky). In order to suppress the ripples in the wavenumber-frequency domain, a

2D Hamming window is multiplied with the filter impulse response. The general steps

for the design of a 2D velocity filter is listed below.

1. Select the lowest velocity vmin for the filter, which further defines the maximum

wavenumber kmax = 2πf
vmin

.

2. Design the filter in the frequency domain, set the amplitude inside the circle field
√

k2
x + k2

y ≤ kmax to be 1, outside as 0, and select the filter phase as 0.

3. Use Inverse Fourier Transform to obtain the impulse response h(x, y) for the filter,

and multiply it with a 2D window in order to suppress ripples in the wavenumber-

frequency domain.
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Then the designed filter will be convolved with the reconstructed spatial signals, thus

the data matrix obtained after filtering is represented as:

Y =
[

p̂
(1)
f · · · p̂(I)

f

]

, (4.15)

where p̂
(i)
f is the filtered signal, consisting of spatial samples after applying reconstruc-

tion and filtering steps to the snapshot p(i).

4.2.5 Practical issue: Implementation of the FRSI method

At time i, the cost function which needs to be minimized in the sparse reconstruction

algorithm is:

J =
1

c2
‖W 1

2 (p(i) − F p̃(i))‖2
2 + ‖(C(i)

p̃ )−
1
2 p̃(i)‖2

2, (4.16)

where

C
(i)
p̃,jj = (p̃

(i)
j p̃

(i)∗
j + (σ

(i)
p̃ )2)

1
2 . (4.17)

Suppose z = (C
(i)
p̃ )−

1
2 p̃(i), and F̃ = F (C

(i)
p̃ )

1
2 , then the cost function J becomes:

J =
1

c2
‖W 1

2 (p(i) − F̃ z)‖2
2 + ‖z‖2

2. (4.18)

Minimizing the above cost function with respect to z yields the solution:

z = (F̃
∗
WF̃ + c2I)−1F̃

∗
Wp(i). (4.19)

After estimating z, the wavenumber-frequency spectrum of the seismic signal is:

p̃(i) = (C
(i)
p̃ )

1
2 z. (4.20)

In order to calculate z, the inversion of a big matrix needs to be computed which will

consume much time. To solve this issue, the Conjugate Gradient (CG) method is used

to find the solution of z. Assuming B = (F̃
∗
WF̃ + c2I) and g = F̃

∗
Wp(i), we have:

Bz = g, (4.21)

thus CG can be adopted to solve the above equation efficiently without matrix inversion.

In our simulations, we choose W is an identity matrix, thus B is a positive definitive
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matrix. For any non-zero N by 1 vector y, we have:

y∗By = y∗F̃
∗
F̃ y + c2y∗y

= (F̃ y)∗(F̃ y) + c2y∗y > 0.

Beyond CG, the Iterative Reweighted Least Squares (IRLS) algorithm is also adopted

to update the wavenumber-frequency spectrum covariance matrix C
(i)
p̃ . After CG, the

estimated wavenumber-frequency spectrum p̃(i) is used to compute C
(i)
p̃ for the next

IRLS loop. The whole process for estimating p̃(i) including CG and IRLS is explained

below.

Implementation of the FRSI algorithm

Initialization: p̃(i) = 0, z = 0.

Calculate C
(i)
p̃ from Equation 4.17.

IRLS: loop size (2-5 iterations).

k = 0.

B = (C
(i)
p̃ )

1
2 F ∗WF (C

(i)
p̃ )

1
2 + c2I.

rk = (C
(i)
p̃ )

1
2 F ∗Wp(i) − Bz.

dk = rk.

zk = z.

CG: while ‖rk‖2 >threshold

αk = ‖rk‖
2

d
∗

kBdk
.

zk+1 = zk + αkdk.

rk+1 = rk − αkBdk.

βk = ‖rk+1‖
2

‖rk‖2 .

dk+1 = rk+1 + βkdk.

k = k + 1.

p̃(i) = (C
(i)
p̃ )

1
2 zk.

Update C
(i)
p̃ using the new derived p̃(i), and z = zk, go to IRLS.
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4.2.6 Simulations

To solve the FRSI problem, the Iterative Reweighted Least Squares (IRLS) method plus

the Conjugate Gradient for Normal Equations algorithm (CGNE) will be used. As can

be seen from Equation 4.10, the diagonal elements of the covariance matrix need to

be updated at each iteration of the IRLS method. CGNE is used for computing the

matrix inverse term in Equation 4.9. For FRMN, direct inversion can be applied to

find the optimal estimation.

4.2.6.1 Reconstruction

The original array is an irregular array with 25 sensors. Suppose two random source

signals are impinging on the array, with arrival angle 30 and 60 degree, and velocity

2000m/s and 5000m/s respectively. The noise received by the array is also random.

The non-uniformly sampled spatial signal is reconstructed on a 20×20 uniform array by

the FRSI method, the wavenumber-frequency spectrum for both the original received

signal and the reconstructed signal are estimated by the conventional beamforming

method. The simulation results are shown in Figure 4.5.

As can be seen from Figure 4.5(c) and (d), the wavenumber-frequency spectrum

for the reconstructed signal has less sidelobes than that of the original received signal,

and the estimation resolution is also increased. This is because of the reason that the

FRSI method will yield a sparse solution of the estimation problem where the noise

(sidelobes) will be suppressed, i.e. FRSI estimated a very sparse wavenumber-frequency

spectrum for the data.

The first step of reconstruction is to estimate the wavenumber-frequency spectrum

for the original received signal. The wavenumber-frequency spectrum estimated by

the FRSI method is plotted in Figure 4.4. The FRSI method will use this spectrum

to reconstruct the spatial seismic data in a uniform 2D array. As can be seen from

the plot, FRSI yields a sparse estimation of the seismic data’s f-k spectrum, since the

sampling interval dkx and dky in the wavenumber-frequency domain are being set to

very small values.
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Figure 4.4: The estimated wavenumber-frequency spectrum using FRSI

4.2.6.2 Filtering

The velocities of the two sources are 2000m/s and 5000m/s respectively. By designing

a 2D velocity filter with minimum velocity vmin = 3500m/s, the low speed source is

filtered. In order to obtain better resolution, here the Robust Capon Beamforming

method is used to estimate the wavenumber-frequency spectrum of the signals. The

simulation results are plotted in Figure 4.6, where (a) and (b) are the wavenumber-

frequency spectrum for the original received signal and the reconstructed signal. (c)

is the 2D velocity filter with length 21 at each of the axis, the wavenumber frequency

kx and ky are being normalized into the range [−1, 1]. As shown in Figure 4.6(d), the

estimated wavenumber-frequency spectrum for the filtered signal excludes the surface

wave which has a lower propagation speed.

4.2.6.3 Apply the reconstruction algorithm to real data

In this section, we will apply the reconstruction algorithm to the real data recorded

from the potential oil field. The original array is again a 25 sensor array, and Fourier

Reconstruction with Sparse Inversion is selected as the reconstruction method, to re-

construct the data into a 20by20 square array. Filtering was not applied to the data
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since body waves are very weak in this case. The reconstructed data can be used for

later interpolation purpose. The simulation results are shown in Figure 4.7.

4.2.6.4 Suggestions on selecting different array structures

When we use the array plotted in Figure 4.5(b) to receive the same signal present at

the original irregular array with 25 sensors (shown in Figure 4.5(a)), the output power

computed by the conventional beamforming method and RCB method are shown in

Figure 4.8 and Figure 4.9 respectively. Compare Figure 4.5(d) and Figure 4.6(b),

to Figure 4.8 and Figure 4.9, we can see that the wavenumber-frequency spectrum

estimated by the reconstructed array and a 20by20 array has no big differences. The

reconstruction is based on an irregular array with only 25 sensors, which is much cheaper

than adopting a 20by20 square array. In the future, we can first use small size array to

sample the wave fields, and then reconstruct the sampled spatial data in a bigger size

array.

4.3 Conclusion

In this section, several spatial signal reconstruction algorithms are presented and com-

pared, and a 2D cylinder velocity filter is designed to remove surface waves in seismic

application. Fourier Reconstruction with Sparse Inversion (FRSI) was adopted for

reconstruction purposes.

In order to achieve better resolution and interference cancellation for beamforming

after the reconstruction and filtering steps, more advanced beamforming (e.g. RCB)

algorithms can be used for this purpose. In the future, the possibility for merging the

reconstruction and filtering steps into one single step, will be considered, since this will

reduce the complexity of our algorithm.
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Figure 4.5: Reconstruction of an irregular array to a uniform array: (a) A non-uniform

array with 25 sensors (b) The uniform 20by20 array after reconstruction (c) conventional

beamforming to the received signal (d) Conventional beamforming to the reconstructed signal.
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Figure 4.6: Reconstruction and filtering of seismic signal: (a) Apply RCB to estimate the

received signal’s f-k spectrum (b) Apply RCB to estimate the reconstructed signal’s f-k spec-

trum (c) The 2D velocity filter for removing surface waves (d) Estimated f-k spectrum for the

filtered signal via RCB
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Figure 4.7: Reconstruction algorithm (FRSI) applied to real data: (a) A non-uniform array

with 25 sensors (b) The uniform 20by20 array after reconstruction (c) conventional beam-

forming to the received signal (d) Conventional beamforming to the reconstructed signal.
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Figure 4.8: Conventional beamforming to a 20by20 square array
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Figure 4.9: Robust Capon Beamforming to a 20by20 square array
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Conclusion and Future Work 5
In this thesis, first a narrow-band data model was introduced for beamforming appli-

cations in characterizing seismic noise. Beamforming algorithms for estimating veloc-

ities and angles are discussed. Data were simulated based on the model. Coventional

beamforming is one of the methods, however, its estimation resolution and interference

cancellation are not sufficient, therefore the performance of the conventional method

needs to be improved. We introduced the standard Capon beamforming method, which

has a much better estimation resolution and interference rejection capability than con-

ventional beamforming. Beside its advantages, the limitations of the standard Capon

method are: it requires a rather accurate array response vector, and the covariance

matrix must be non-singular. If one of the conditions is not met, the performance of

the Capon’s method is degraded and usually worse than the conventional beamforming

method.

In real applications, either an accurate array response vector is very difficult to

achieve, or a full rank covariance matrix is not always the case. To overcome these

problems, Robust Capon Beamforming is introduced to tackle these problems. For

solving the singular covariance matrix problem, an appropriate diagonal element is

added to the covariance matrix. By searching within a spherical uncertainty set, the

accurate array response vector is found.

For separating body waves and surface waves, a new idea was proposed in this

thesis. That is, first the non-uniformly sampled spatial signal is reconstructed on a

uniform array, and then a digital velocity filter is adopted for separating different types

of waves. Several reconstruction algorithms were presented and compared, and the

FRSI method was selected for reconstruction purposes. A 2D Hamming window was

applied in order to suppress spectral ripples in the frequency domain when designing

51
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the filter. After the data have been reconstructed and filtered, beamforming algorithms

were applied to find the angle and velocity information for remaining seismic signal.

The reconstructed and filtered data can also be used for interpolation purpose which

is an important application in seismic processing.

5.1 Recommendations for Future Work

• This thesis mainly focused on developing theory for seismic array processing ap-

plications, only a small piece of real data has been simulated. In the future, the

introduced algorithms will be applied to more real data.

• In the reconstruction section, FRSI was proven to be the best algorithm. To

implement it, IRLS and CGNE algorithm have been applied. Further work for

optimizing and analyzing these algorithms should be carried out.

• After reconstructing and filtering the data in several frequencies of interest, the

processed data can be used for interpolation in time domain, which is also an

important application in seismic processing.

• To reduce and simplify the computations, the possiblity to merge the reconstruc-

tion and filtering steps should be considered in the future.
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