]
TUDelft

Analysing the Impact of Inline Comments for the Task of Code Captioning

Vidas Bacevicius
Supervisor(s): Annibale Panichella, Leonhard Applis
EEMCS, Delft University of Technology, The Netherlands
24-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

Abstract

Al-assisted development tools use Machine Learn-
ing models to help developers achieve tasks such
as Method Name Generation, Code Captioning,
Smart Bug Finding and others. A common prac-
tice among data scientists training these models is
to omit inline code comments from training data.
We hypothesize that including inline comments
in the training code will provide more informa-
tion to the model and improve the model’s perfor-
mance for natural-language related tasks, specif-
ically Code Captioning. We adjust one of these
models, code2seq, to include inline comments in
its data processing, then train and compare it to a
commentless version. We find that including inline
comments tends to increase the performance of the
model by making it faster and producing more ver-
bose results, and then reflect on the results of this
work to formulate suggestions on how to improve
upon this body of research.

1 Introduction

Al-assisted development has seen a rise in popularity in re-
cent years, with tools such as GitHub Copilot, IntelliJ Intel-
liSense, OpenAl Codex and many more becoming gradually
more accessible to the public. These tools help developers in
many different tasks, among them being Code Completion,
Documentation Generation and smart Bug Finding. Some of
the underlying Machine Learning models behind these tools
completely omit code comments from the training data, pro-
cessing only pure code. This has the benefit of eliminating
potentially useless and even harmful data that can decrease
the performance of the model (possibly obsolete or incor-
rect commented out code, natural language comments that
can potentially be parsed as code tokens). Removing com-
ments, however, can also get rid of useful information, espe-
cially with regards to natural language generation tasks such
as Code Captioning and Documentation Generation. In this
research paper we will include code comments in an other-
wise commentless ML model to see whether the model’s per-
formance increases for a specific task.

A particular model that removes comments during the pro-
cessing of its training data is code2seq[1]. This ML model is
used to generate natural language sequences given a piece of
code. There are 3 possible tasks that the model can perform:
Code Summarization, Captioning, and Documentation. The
task of Code Captioning will be the focus of this paper; it in-
volves generating a natural language sentence that describes
a given code snippet.

In this research paper we analyse whether including com-
ments in the training data of a model does positively change
the outcome of the model’s prediction. In particular, the re-
search question to answer is: What is the impact of com-
ments in the training code on the performance of code2seq
for the task of Code Captioning?, with the main hypothesis
being: Including comments in the training data will improve
the performance of the model for the task of Code Captioning.

We present the research in the following way: Section 2
introduces the work being done in the field of Al-assisted de-
velopment, the background of code2seq and how it relates to
our hypothesis. Section 3 describes the methodology used
to change the model and prepare a dataset for experiments.
The experimental setup, metrics used to evaluate the models
and the results of the experiment are presented in Section 4.
Section 5 explains responsible research and possible ethical
issues related to the experiments. Section 6 outlines the exist-
ing related work in the field of Al-assisted development and
automated comment generation, and how it could help with
this research topic. Section 7 offers possible further work and
ways to improve upon this research, and Section 8 concludes
the work.

2 Background

This section outlines background information about Code
Captioning and Documentation Generation, explains the
main idea behind code2seq and defines the main problem of
comment removal in code2seq.

2.1 Code Captioning vs. Documentation
Generation

Although similar, Code Captioning and Documentation Gen-
eration are two different tasks. While Documentation Gener-
ation is a task that aims to generate a full Javadoc comment
for a given method, Code Captioning instead takes smaller
pieces of code and aims to describe it with smaller natural
language sentences, usually only a few words long.

2.2 Code2seq

Solving natural language-based Al-assisted development
tasks such as Code Captioning, Documentation Generation,
Method Name Prediction can be seen as a problem of creat-
ing a relationship between source code and natural language
(2].

There exist many different approaches to this problem.
One of them is to consider the input code as a sequence of
tokens, producing a sequence of natural language tokens as a
result. This approach is aptly named seq-to-seq [3] and has
been widely used to solve the aforementioned and similar nat-
ural language tasks [4] [5] [6].

Code2seq takes a different approach by representing the
input code snippet as ”a set of compositional paths over its
abstract syntax tree (AST), where each path is compressed to
a fixed-length vector using LSTMs”[1] and then using atten-
tion to select the relevant paths while decoding.

2.3 Comment Removal

While generating paths over ASTs, code2seq automatically
ignores and removes any comment tokens, generating a path
that only contains code tokens (Figures 1, 2). This work
looks for a way to change the input preprocessing mecha-
nism to meaningfully incorporate comment tokens into the
AST paths, which are then passed to the model.

void methodName() {
// This is a comment!
int a = 1;

Figure 1: Code snippet with a comment

statement (ExpressionStmt)

expression (VariableDeclarationExpr)

variable (VariableDeclarator)

Figure 2: Resulting AST without a comment, during path generation

3 Methodology

This section describes our contribution to this research topic:
how we include the inline comments into the AST paths and
how the dataset for this task is chosen and processed.

3.1 Including Inline Comments in AST paths

The module responsible for preprocessing the input Java data
is called JavaExtractor. Normally, this module creates ASTs
from the input code using an external library, and then uses
visitor classes to scan over the AST and create paths through
it. The model then uses these paths to learn and make predic-
tions.

The task of including comments into AST paths is achieved
by altering this module. Normally, if an AST leaf represents a
comment, it is simply ignored and not added to the path. We
change it to check whether a particular node has a comment
attached to it, whether that comment is an inline comment
and whether it does not include code. If all these conditions
are satisfied, this comment is added into the path as a leaf of
the closest AST node (Figure 3). The comparison between
the original code2seq workflow and the modified one can be
seen in Figure 5.

There is a certain drawback that comes with this approach.
The external library used to parse the AST nodes only con-
siders the singular closest comment per node. Meaning that
any additional comments that precede the node are considered
orphans and are not added to the AST (Figure 4). This seem-
ingly easy problem proved to be difficult to solve due to the
nature of how JavaExtractor processes the AST nodes - the
orphan comments are not in scope and are assigned to a semi-
random node each time. Due to these reasons we decided that,

statement (ExpressionStmt)
expression (VariableDeclarationExpr) comment (LineComment)
content=""This is a comment!

variable (VariableDeclarator)
initializer (IntegerLiteralExpr) name (SimpleName) type (PrimitiveType)

Figure 3: Resulting AST with a comment, during path generation

for the time being, having one comment per node was suffi-
cient. Given more time, it would be possible to rewrite the
JavaExtractor to correctly include orphan comments.

3.2 Dataset Choice

For any Machine Learning-related task, it is very important
to pick a good dataset that represents the proposed problem
well. The dataset that code2seq was trained on originally is
tailored specifically for the task of Method Generation, focus-
ing on methods and containing barely any inline or Javadoc
comments. Therefore it is not suitable for the chosen task.
There exist a few different datasets suitable for the task
of Code Captioning. The original code2seq research paper
demonstrates the task of Code Captioning by learning on
the CodeNN [4] dataset. However, the authors of code2seq
raise awareness that this dataset "was very difficult to train
the model on” and they recommend not using this dataset™'.
Other potential datasets include CONCODE [7], Structured
Neural Summarization [8] and CodeSearchNet [9]. The most
promising candidate for the dataset is FunCom [10] dataset.
This dataset is split into Java methods and their Javadoc com-
ments, is easily preprocessable due to the multiple formats
that it provides (filtered and tokenized), and is big enough for
our task, as it contains around 2 million Java methods.
Another reason to use this dataset is that the tokenized ver-
sion of the dataset includes only the first line of corresponding
Javadoc comments as labels. This first line is usually a con-
cise description of what that method does, which is exactly
what the task of Code Captioning tries to achieve. Of course,

"https://github.com/tech-srl/code2seq/issues/17issuecomment-
522636556

void methodName() {
// This is an orphan comment.
// This is a comment!
int a = 1;

Figure 4: Code snippet with an orphan comment

JavaParser
(external library)

)

N AST with
d comments

—

Input

Java method

L

JavaExtractor

Paths over AST

without comments

Modified
JavaExtractor

Paths over AST

with comments Model

Figure 5: Original and modified code2sec workflows

as not all Javadoc comments start with a concise method ex-
planation, naturally not all labels will provide us with a useful
description of the method. Having these factors in mind, we
still choose this dataset as the most useful and adaptable to
code2seq.

3.3 Processing the Dataset

The FunCom dataset comes in 3 different formats: raw, fil-
tered and tokenized.> The filtered dataset contains unpro-
cessed Java method and comment pairs; the tokenized dataset
has tokenized methods paired with the tokenized version
of the first line of the respective Javadoc comment. Since
code2seq’s JavaExtractor requires unprocessed Java source
code as input and the tokenized version of the comments
work really well as labels, we combine the two formats of
the dataset. The resulting dataset consists of the unprocessed
version of Java methods plus the tokenized version of first
line of the respective Javadoc comments.

The dataset is then processed so that each datapoint resem-
bles a Java method - each tokenized comment line was rein-
serted into the code as a Javadoc comment.

JavaExtractor is modified to take in this new format of in-
put data. Instead of recursively walking through Java project
directories, it is changed to parse a singular json!/ text file, in
which each line contains one Javadoc + method pair. Lastly,
JavaExtractor is updated to parse the newly included Javadoc
comments as labels, instead of method names, as it was pre-
viously configured.

4 Experimental Setup and Results

Testing the raised hypothesis includes setting up the exper-
iment on a supercomputer, choosing the evaluation metrics,
running the experiment and evaluating the results.

*http://leclair.tech/data/funcom/

4.1 Setup

We train the code2seq model twice: the No Comments model
is trained with no modifications to the preprocessing of the
data, while the Comments model includes inline comments
in its AST paths. Both models are trained on the DelftBlue
supercomputer using a NVIDIA Tesla V100S 32 GB graph-
ics card. Since the task of Code Captioning requires a short
code descriptions, the prediction size of the model is set to a
maximum of 15 words.

4.2 Evaluation Metrics

To evaluate and compare the performance of the two models,
two different metrics are used: F1 score and BLEU score.
Wilcoxon Rank Sum Test is then used to evaluate whether
the test results are statistically significant.

F1 Score

The F1 score is defined as the harmonic mean of a test’s pre-
cision and recall, measured between 0 and 1. Precision in this
case is the ratio of identical words between the generated and
original comment over the amount of words in the generated
comment. Recall is the ratio of identical words between the
two comments over the amount of words in the original com-
ment. The formula used for F1 score calculation can be seen
below:

Fl—9x precision X recall

precision + recall M

This score is chosen as one of the measures because it is hy-

pothesized that including inline comments will improve the

precision and recall of the model. Moreover, the code2seq

model itself uses the F1 score as the measurement of perfor-
mance between different training epochs.

BLEU Score

BLEU (Bilingual Evaluation Understudy) is a score for eval-
uating the quality of machine translation between two natural

Table 1: Results of model evaluation: code2seq with inline comments and without

BLEU F1 Precision Recall Training Epochs
Time
No Comments 15.35 0.442 0.469 0.418 72h 40
Comments 14.98 0.461 0.508 0.422 24h 12

languages [11]. Despite its original purpose, it is also very
commonly used to evaluate natural language generation tasks.
BLEU works by calculating matching n-grams between ma-
chine generated and original (human-created) sequences.
BLEU score is calculated using the following formula®:

N
BLEU = BP X exp <Z wy, log pn> 2)

n=1

wy, is calculated as 1/n and stands for n-gram weight. p,,
is defined as the modified precision for n-gram. BP stands for
Brevity Penalty and is used to penalize short machine trans-
lations. Is is calculated as:

ife>r

1
BP =
{el_’"/c ife<r 3)

where ¢ and r stand for the lengths of candidate and reference
translations.

We use BLEU score for the evaluation because the original
code2seq paper uses this score to evaluate the Code Caption-
ing task, therefore the results of this research and the origi-
nal can be compared. We do recognize the drawbacks of the
BLEU score, namely it being too simplistic for complex nat-
ural language generation tasks [12]. For that reason we use
two metrics to evaluate the models and suggest more in the
Further Work section.

Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is a nonparametric statistical test
that compares two paired groups, in this case BLEU scores of
each prediction of No Comments and Comments models. We
use this test to evaluate the difference between the two sets of
predictions and see whether the difference in BLEU scores is
statistically significant.

4.3 Results

The results of the experiment are presented in Table 1. The
No Comments model reaches a higher BLEU score, but the
Comments model performs slightly better in regards to F1
score. Neither of the models, however, reach the original re-
ported BLEU score of 23.04 for Code Captioning. One pos-
sible explanation is that the hyperparameters of the model are
not optimally tuned for the presented task and dataset. The
hyperparameters used are based on the configuration used in
the code2seq paper originally for the Code Captioning task.
Due to time constraints, there was no option of performing
hyperparameter tuning, hence the hyperparameters used are
not optimal. Another reason for this issue may be the fact

*https://leimao.github.io/blog/BLEU-Score/

that the dataset originally used for the task of Code Caption-
ing was a C language dataset, as opposed to Java.

Running the Wilcoxon rank sum test over the two sets of
BLEU scores results in a p-value of 0.12. For a difference be-
tween two distributions to be considered statistically signifi-
cant, this value should be less than 0.05. We therefore con-
clude that the comparison of BLEU scores between these two
predictions is not statistically significant enough and mea-
sures other than BLEU should be used to compare these two
models.

It is important to note the training time and epochs reached
of each model. The training itself stops after 10 epochs of
F1 score not improving. While the No Comments model
keeps training even after 40 epochs, with F1 score steadily
increasing, the Comments model does not. In fact, the best
F1 score that the Comments model achieves is reached af-
ter only 3 epochs, then the F1 score starts decreasing each
epoch. We reason that as the model gets trained with more
data, the included inline comments start hindering the Code
Captioning prediction. This phenomenon can be seen as a
positive, though, as the Comments model reaches a higher F1
score and a comparably high BLEU score in just 24 hours of
training, as opposed to 72hrs, which the No Comments model
takes.

Prediction Analysis

Analysis of predictions of both models reveals that the Com-
ments model generally produces longer and more verbose
predictions, with a tendency to be more human-readable than
the No Comments prediction (Table 2, Ex. 1, 2), and occa-
sionally even the reference comment (Table 2, Ex. 3, 4). This
also explains the lower BLEU score in contrast to a faster
training time and a better F1 score - if the original com-
ment is lacking in descriptiveness (e.g. “unset a variable”),
the BLEU score rewards predictions that are closer to it ("’re-
moves a variable from the map”), and punishes better, more
descriptive predictions ("removes the specified variable from
the map”). To fix this, a dataset with more descriptive refer-
ence captions should be used to train the model.

Both models tend to occasionally loop and predict a repeat-
ing comment, usually connected with articles, adpositions
and conjunctions (Table 2, Ex. 5, 6), although it is apparent
that the Comments model suffers from this more. One poten-
tial way of tackling this issue is stopword filtering, discussed
in Section 6.

Table 2: Examples of generated code captions by both models, compared to the original code comment

Example No. Original Comment No Comments Prediction Comments Prediction

1 returns the ith bspoint return the ith point returns the point at the specified
index point

2 unset a variable removes a variable from the map removes the specified variable
from the map

3 initialize shared state initializes the super class initializes the internal state of the
thread

4 the class of this item returns the type of the object returns the type of this object

5 returns a copy of the objects size returns the size of the queue returns the size of the size of the
size of the size

6 converts music band object to converts the given code artist converts the given band to the

artist for search results object

band code to the appropriate code

given band

code

5 Related Work

This section provides an overview of existing research in the
area of source code comment analysis that can provide more
insight into the proposed research question.

A paper by Chen et al. [13] uses random forests to auto-
matically detect the scope of Java source code comments. It
reaches a high accuracy of 81%, as well as claims to have pro-
vided a solution to comment-code mapping. This approach
could be used in conjunction with code2seq to improve its
inclusion of comments in the AST paths, since the current
comment inclusion in code2seq is quite primitive - as ex-
plained previously, the closest code line to the comment gets
assigned that comment, with addition of orphan comments
being dropped. The approach from Chen et al. could instead
assign comments to AST paths based on their automatically
predicted code scope.

There has also been work done into classifying code com-
ments according to their different intentions. One such paper
by Zhang et al. [14] uses supervised learning to create a tax-
onomy that classifies Python code comments into different
categories, such as Summary, Development Notes, Todo, and
so on. This could be helpful in regards to our research by
classifying and filtering out certain types of inline comments
to fine-tune the data we want to train the model with.

Lastly, a paper analysing source code comments by Geist
et al. [15] found that code comments do contain important
information about the underlying software system, and by
leveraging Machine Learning it should be possible to classify
comments and transfer valuable information from the source
code into documentation. However, a survey performed by
Song et al. [16] found that, in practice, automatic comment
generation tools are not that accurate yet, and provides mul-
tiple possibilities of how to improve it, such as exploring the
synergy between deep neural network and other models.

6 Further Work

This section presents different ways this research can be ex-
panded and improved upon.

As mentioned in Section 3.1, code2seq’s JavaExtractor ig-
nores orphan comments. This poses a problem of multi-line
comments being ignored and only the last comment being
taken into consideration. Including orphan comments would
provide the model with more realistic data of how code is
commented. There are two ways to do that - it is possi-
ble to rewrite the logic of JavaExtractor to consider orphan
comments and their appropriate scope, either adding them as
separate comments or concatenating them into a single long
comment node. Another way of doing this without modify-
ing JavaExtractor would be to preprocess the dataset so that
multiple consecutive inline comments are merged into one
comment.

The training hyperparameters for this task were not opti-
mal. For further improvements, either manual or automatic
hyperparameter tuning should be done to make the model
more appropriate for the dataset and task.

During prediction, the model occasionally loops and pre-
dicts a repeating comment. This phenomenon appears to be
more prominent in the comments model. A potential way to
combat this would be to create a list of common English stop-
words and filter them out from the inline comments during
AST path creation.

Analysing the model predictions reveals that the dataset
labels (the first extracted line from a corresponding Javadoc
comment) are not ideal for this type of task. These reference
comments are usually incomplete, cut off and lack general
context. For a better training approach, a dataset with more
complete code captions should be selected. Section 3.2 al-
ready discusses other possible Code Captioning datasets. To
run the updated model on a different dataset, steps described
in Section 3.3 should be done to preprocess it.

BLEU and F1 scores are not enough to properly test and

evaluate a complex natural language generation model [12],
especially when the reference labels are subpar. F1 and
BLEU scores measure the lexical overlap between original
and generated sentences. Another set of lexical overlap met-
rics that could be used is ROUGE [17]. In contrast of BLEU
score measuring the precision of the model, ROUGE is used
to measure recall. In addition to measuring lexical overlap,
one could also measure distributional similarity of model’s
predictions. One of such metrics is BERT-Score [18], which
evaluates the model based on the cosine distances between
sequence tokens. A combination of these metrics should be
used to broadly evaluate the model’s strengths and weak-
nesses.

7 Responsible Research

This section outlines the ethical considerations and repro-
ducibility of this body of research.

7.1 Ethical Issues

The FunCom dataset that we conducted the research on is
based on the UCI Sourcerer project [19]. This project col-
lected the data from open source GitHub projects. Neverthe-
less, these open-source files can still contain sensitive infor-
mation. This data can possibly include names, dates, or just
code that the authors would prefer not to be used for Al train-
ing purposes. A way to minimise the risk of this problem is
to use leaked credential finding tools such as truffleHog* to
find and replace sensitive information.

Another ethical issue can arise if the dataset’s code com-
ments contain profanity or socially sensitive topics such as
gender or race. Since the updated model learns from inline
comments, the model can inadvertently learn to generate so-
cially insensitive comments. There are tools such as Profan-
ity Filter 3 that censors or removes profanities, and Debiaswe
[20] that significantly reduces gender bias in word embed-
dings. In the event of this body of research being repro-
duced or applied commercially, these tools should be used
to minimize social harm that an irresponsibly trained model
can bring.

7.2 Reproducibility

Sections 3 and 4 describe in detail the steps taken to prepro-
cess the data, modify the model and perform the experiment.
The FunCom dataset is licensed under GNU General Pub-
lic License v3.0, therefore changes to the forked code2seq
repository and the FunCom dataset processing scripts are
open-sourced and uploaded to GitHub® and Zenodo’. It is
worthy to note that in order to replicate this experiment, the
user should be familiar with computer science and Machine
Learning related terminology.

The reproducibility of this research highly depends on the
dependencies of the modules used as well as the hyperpa-
rameters of the preprocessing and training scripts. In order

*https://github.com/trufflesecurity/trufflehog
Shttps://github.com/rominf/profanity-filter
Shttps://github.com/bacevicius/code2seq_codecaptioning
"https://zenodo.org/record/6659835

to reproduce the experiment as accurately as possible, all de-
pendencies and model configurations have been specified in
the repository.

As the experiment was performed on the DelftBlue super-
computer, the exact running time and parallelizability of the
experiment differ depending on where the experiment is per-
formed. Should the experiment be replicated on the DelftBlue
supercomputer again, the Slurm training scripts are also pro-
vided in the repository.

It is important to note that even with setting up the ex-
periment as similarly as possible, identical or closely sim-
ilar results can be difficult to reach due to the stochastic na-
ture of Machine Learning models. Small model configuration
or dataset changes can cause differing results. Nevertheless,
both supporting and opposing results are welcome in expand-
ing the general knowledge about this research topic.

8 Conclusion

The goal of this paper was to test whether changing an Al-
assisted development model to include inline comments in
the training data improves its performance for the task of
Code Captioning. To that end, we chose and preprocessed
a Code Captioning dataset and modified the code2seq model
to include inline comments in its AST path generation. We
then set up an experiment by training and comparing two
models with and without inline comments. The No Com-
ments model resulted in a higher BLEU score, however the
Comments model reached a higher F1 score in just 1/3rd of
the time. A manual prediction inspection revealed that the
Comments model produces longer, more verbose and more
human-readable captions, which was not captured by either
of the used metrics. We therefore conclude that including
inline comments improves the performance of the model.
Our results open up new ways to address comments in train-
ing data, and we therefore invite other researchers to improve
and expand upon this body of work using different datasets
and models.

References

[1] U. Alon, S. Brody, O. Levy, and E. Yahav, “Code2seq:
Generating sequences from structured representations
of code,” in International Conference on Learning
Representations, 2019. [Online]. Available: https://
openreview.net/forum?id=H1gKYo09tX.

[2] A. Hindle, E. Barr, Z. Su, M. Gabel, and P. De-
vanbu, “On the naturalness of software,” Proceedings
- International Conference on Software Engineering,
pp- 837-847, Jun. 2012. po1: 10.1109/ICSE.2012.
6227135.

[3] L Sutskever, O. Vinyals, and Q. V. Le, Sequence to se-
quence learning with neural networks, 2014. DOI: 10.
48550/ARXIV.1409.3215. [Online]. Available: https:
/larxiv.org/abs/1409.3215.

https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.48550/ARXIV.1409.3215
https://doi.org/10.48550/ARXIV.1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer,
“Summarizing source code using a neural attention
model,” in Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Berlin, Germany: Association
for Computational Linguistics, Aug. 2016, pp. 2073—
2083. DOI: 10.18653/v1/P16-1195. [Online]. Avail-
able: https://aclanthology.org/P16-1195.

M. Allamanis, H. Peng, and C. Sutton, A convolutional
attention network for extreme summarization of source
code, 2016. DOI: 10.48550/ARXIV.1602.03001. [On-
line]. Available: https://arxiv.org/abs/1602.03001.

P. Loyola, E. Marrese-Taylor, and Y. Matsuo, A neu-
ral architecture for generating natural language de-
scriptions from source code changes, 2017. DOI: 10.
48550/ARXIV.1704.04856. [Online]. Available: https:
/larxiv.org/abs/1704.04856.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer,
Mapping language to code in programmatic context,
2018. po1: 10.48550/ARXIV.1808.09588. [Online].
Available: https://arxiv.org/abs/1808.09588.

P. Fernandes, M. Allamanis, and M. Brockschmidt,
Structured neural summarization, 2018. DOI: 10 .
48550/ARXIV.1811.01824. [Online]. Available: https:
/larxiv.org/abs/1811.01824.

H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and
M. Brockschmidt, Codesearchnet challenge: Evaluat-
ing the state of semantic code search, 2019. DOI: 10.
48550/ARXIV.1909.09436. [Online]. Available: https:
/larxiv.org/abs/1909.09436.

A. LeClair and C. McMillan, Recommendations for
datasets for source code summarization, 2019.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:
A method for automatic evaluation of machine transla-
tion,” in Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, Philadel-
phia, Pennsylvania, USA: Association for Computa-
tional Linguistics, Jul. 2002, pp. 311-318. por: 10.
3115/1073083.1073135. [Online]. Available: https:
/faclanthology.org/P02-1040.

S. Gehrmann, E. Clark, and T. Sellam, Repairing the
cracked foundation: A survey of obstacles in evalua-
tion practices for generated text, 2022. DOI: 10.48550/
ARXIV.2202.06935. [Online]. Available: https://arxiv.
org/abs/2202.06935.

H. Chen, Y. Huang, Z. Liu, X. Chen, F. Zhou, and
X. Luo, “Automatically detecting the scopes of source
code comments,” Journal of Systems and Software,
vol. 153, pp. 45-63, 2019, 1SSN: 0164-1212. DOI:
10.1016/j.jss.2019.03.010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/
S016412121930055X.

J. Zhang, L. Xu, and Y. Li, “Classifying python code
comments based on supervised learning,” in Web In-

formation Systems and Applications, X. Meng, R. Li,
K. Wang, B. Niu, X. Wang, and G. Zhao, Eds., Cham:

[15]

[16]

[17]

(18]

(19]

(20]

Springer International Publishing, 2018, pp. 39-47,
ISBN: 978-3-030-02934-0.

V. Geist, M. Moser, J. Pichler, R. Santos, and V.
Wieser, “Leveraging machine learning for software
redocumentation—a comprehensive comparison of
methods in practice,” Software: Practice and Experi-
ence, vol. 51, no. 4, pp. 798-823, 2021. por: 10.1002/
spe.2933. [Online]. Available: https://onlinelibrary -
wiley-com.tudelft.idm.oclc.org/doi/abs/10.1002/spe.
2933.

X. Song, H. Sun, X. Wang, and J. Yan, “A survey
of automatic generation of source code comments:
Algorithms and techniques,” IEEE Access, vol. 7,
pp- 111411-111428, 2019, ISSN: 2169-3536. DOTI: 10.
1109/ACCESS.2019.2931579.

C.-Y. Lin, “ROUGE: A package for automatic evalu-
ation of summaries,” in Text Summarization Branches
Out, Barcelona, Spain: Association for Computational
Linguistics, Jul. 2004, pp. 74-81. [Online]. Available:
https://aclanthology.org/W04-1013.

T. Zhang*, V. Kishore*, F. Wu*, K. Q. Weinberger,
and Y. Artzi, “Bertscore: Evaluating text generation
with bert,” in International Conference on Learning
Representations, 2020. [Online]. Available: https://
openreview.net/forum?id=SkeHuCVFDr.

S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer:
An infrastructure for large-scale collection and anal-
ysis of open-source code,” Science of Computer Pro-
gramming, vol. 79, pp. 241-259, 2014, Experimental
Software and Toolkits (EST 4): A special issue of the
Workshop on Academic Software Development Tools
and Techniques (WASDeTT-3 2010), 1SSN: 0167-
6423. DOI: https://doi.org/10.1016/j.scico.2012.04.
008. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S016764231200072X.

T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and
A. Kalai, Man is to computer programmer as woman
is to homemaker? debiasing word embeddings, 2016.
DOI: 10.48550/ARXIV.1607.06520. [Online]. Avail-
able: https://arxiv.org/abs/1607.06520.

https://doi.org/10.18653/v1/P16-1195
https://aclanthology.org/P16-1195
https://doi.org/10.48550/ARXIV.1602.03001
https://arxiv.org/abs/1602.03001
https://doi.org/10.48550/ARXIV.1704.04856
https://doi.org/10.48550/ARXIV.1704.04856
https://arxiv.org/abs/1704.04856
https://arxiv.org/abs/1704.04856
https://doi.org/10.48550/ARXIV.1808.09588
https://arxiv.org/abs/1808.09588
https://doi.org/10.48550/ARXIV.1811.01824
https://doi.org/10.48550/ARXIV.1811.01824
https://arxiv.org/abs/1811.01824
https://arxiv.org/abs/1811.01824
https://doi.org/10.48550/ARXIV.1909.09436
https://doi.org/10.48550/ARXIV.1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://doi.org/10.48550/ARXIV.2202.06935
https://doi.org/10.48550/ARXIV.2202.06935
https://arxiv.org/abs/2202.06935
https://arxiv.org/abs/2202.06935
https://doi.org/10.1016/j.jss.2019.03.010
https://www.sciencedirect.com/science/article/pii/S016412121930055X
https://www.sciencedirect.com/science/article/pii/S016412121930055X
https://doi.org/10.1002/spe.2933
https://doi.org/10.1002/spe.2933
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1002/spe.2933
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1002/spe.2933
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/abs/10.1002/spe.2933
https://doi.org/10.1109/ACCESS.2019.2931579
https://doi.org/10.1109/ACCESS.2019.2931579
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/https://doi.org/10.1016/j.scico.2012.04.008
https://www.sciencedirect.com/science/article/pii/S016764231200072X
https://www.sciencedirect.com/science/article/pii/S016764231200072X
https://doi.org/10.48550/ARXIV.1607.06520
https://arxiv.org/abs/1607.06520

	Introduction
	Background
	Code Captioning vs. Documentation Generation
	Code2seq
	Comment Removal

	Methodology
	Including Inline Comments in AST paths
	Dataset Choice
	Processing the Dataset

	Experimental Setup and Results
	Setup
	Evaluation Metrics
	F1 Score
	BLEU Score
	Wilcoxon Rank Sum Test

	Results
	Prediction Analysis

	Related Work
	Further Work
	Responsible Research
	Ethical Issues
	Reproducibility

	Conclusion

