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Abstract

The inception of onion routing in the mid-1990s, evolving into Tor (The Onion Routing) and other

anonymous networks, marked a pivotal moment in the quest for internet privacy. However, the emergence

of the dark web, facilitated by these networks, has also increased cybercrime activities, necessitating

a critical examination of its implications and challenges. Besides, the intricate security architecture of

this hidden realm creates a persistent challenge in identifying and mitigating cyber threats, fostering a

landscape that demands innovative methodologies for robust cybersecurity.

This thesis addresses the research gap in the existing literature, predominantly focused on TOR v2,

by investigating protocols and services operating within TOR v3 onion services. Moreover, it fills the void

in the literature by proposing an optimized port-scanning methodology for comprehensive analysis. Unlike

previous studies, which have only considered a small dataset of onions and a limited number of ports in

their TOR v2 onion services analysis, this work proposes an optimized strategy for scanning all ports, thus

providing a more thorough understanding of the network’s dynamics.

Our research uncovers several critical insights into the landscape of onion services. We identified

many onion services operating on non-standard ports, escaping typical web crawlers and the Tor browser,

which only display HTTPS/HTTP pages. Through a comprehensive port scan of 300,000 onion services, we

discovered 196 unique ports, highlighting a broad spectrum of service configurations. We categorized these

services into six main types: web, Bitcoin, remote access, chat, email, file transfer, and miscellaneous,

with web services being the most prevalent. Additionally, we observed that a significant number of onion

services discovered in 2019 remain active, suggesting durability within the dark web. Interestingly, some

services exhibited extensive port usage, with up to 35 open ports reflecting diverse functionalities or

potential security vulnerabilities. These findings provide a deeper understanding of the dark web’s structure

and the persistence of its services.

The key findings of this research sheds light on the intricacies of the dark web’s inner workings. By

addressing key research questions and providing clear definitions and mechanisms, this study empowers

stakeholders, such as security researchers, law enforcement, and cybersecurity professionals, to navigate

the digital landscape with vigilance and develop robust defence mechanisms against emerging threats.
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1
Introduction

The surge in digitalization has presented a dual challenge to web security stemming from the exponen-

tial increase in internet users. This proliferation not only broadens the attack surface but also jeopardizes

user privacy. These growing concerns about internet security and surveillance led researchers at the

United States Naval Research Lab (NRL) to explore the concept of onion routing in the mid-1990s [1]. The

concept aimed to create internet connections, ensuring user privacy by routing traffic through multiple

servers and encrypting it at each stage. This initiative transformed into Tor (The Onion Routing) during

the early 2000s, signifying the rise of a privacy-centric internet solution. Alternative anonymous networks

like Freenet, ZeroNet, and I2P also surfaced, collectively comprising the dark web. The evolution of

the dark web brought with it a surge in cybercrime, encompassing activities ranging from child abuse

and drug trafficking to the illegal sales of weapons and hacking services [2]. This has garnered the

attention of cybersecurity researchers and law enforcement agencies, prompting a critical examination of

the implications and challenges of the dark web.

The statistics derived from Tor Metrics provided by the Tor Project [3] indicate a comprehensive and

reliable source for understanding the dynamics of the Tor network. Notably, the number of Tor users

has increased from 2.5 million in 2021 to 6.25 million in 2024, as shown in Figure 1.1. The number of

onion services has exhibited a consistent upward trend over the past three years, experiencing a notable

surge of 50% from 0.5 million in 2021 to a total of 0.8 million in 2024, as shown in Figure 1.2. This growth

is paralleled by a nearly threefold increase in onion service-related traffic. Specifically, the estimated

total data throughput rose from 6 Gbit/s on October 1, 2021, to 17 Gbit/s on February 1, 2024. However,

interpreting the current state of the Tor network based on these historical results is challenging. The

dynamic and anonymous nature of the network, coupled with the substantial increment in traffic, makes it

difficult to accurately assess the network’s status. It is rather speculating than determining what kind of

applications are hosted, how popular or what content they provide.

1.1. Motivation
The rapid growth of the dark web, stemming from the pursuit of user privacy and anonymity, holds

positive and negative consequences for society. While it serves as a haven for those seeking privacy,

it also becomes a breeding ground for cybercrime activities, including data breaches and the sale of

stolen information. This duality underscores the profound impact on individuals and businesses unwittingly

entangled in the complexities of the dark web. Civilians, falling prey to cybercrime activities on the dark

web, contend with financial losses and emotional distress. The implications are far-reaching, particularly

when data breaches expose personal information, leading to identity theft and financial fraud. The dark

web’s trajectory is associated with a spectrum of cybercrime activities, including data breaches, drug

trafficking, and illicit markets [4]. This association accentuates the urgency to delve into the fundamental

protocols governing the dark web. Understanding the diverse array of protocols and services operating

within the dark web becomes paramount in this dynamic landscape. This knowledge is instrumental in

navigating the dark web effectively, offering insights into its functionalities and potential vulnerabilities.

By unravelling the intricacies of the protocols, we gain a nuanced understanding of the dark web’s inner

workings and empower cybersecurity professionals to formulate robust defence mechanisms.

While certain literature has examined Tor onion service protocols, most studies primarily focus on the

Tor v2 version. Moreover, prior research has limited its scope to a small subset of ports due to the inherent

1



1.1. Motivation 2

Figure 1.1: Statistics of Tor Users [3]

Figure 1.2: Statistics of Unique Tor v3 Onion Addresses [3]
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challenges of port scanning, especially within the Tor network. This study goes beyond exploration by

identifying protocols prevalent within Tor v3 onion services. Additionally, this analysis aims to broaden the

range of examined protocols by providing an optimized port-scanning methodology. This methodology

enables the comprehensive scanning of all possible ports, including those not previously explored in the

dark web.

1.2. Stakeholders
Stakeholders in this research include:

1. Cybersecurity Professionals: By gaining insights into the intricacies of these protocols, cybersecurity

professionals can refine their strategies to safeguard against potential vulnerabilities and emerging

threats within the dark web.

2. Network Analysts: Network analysts play a pivotal role as stakeholders because they are tasked

with optimizing network performance and identifying anomalies. An in-depth exploration of the

protocols running within onion services equips network analysts with a comprehensive understanding

of network behaviours, facilitating the identification of anomalies and potential security breaches.

3. Developers of Privacy-Centric Solutions: These are the developers engaged in creating software,

applications, or systems that prioritize user privacy, anonymity, and security. This research empowers

them to enhance the efficacy of their solutions, ensuring compatibility and adaptability to the evolving

landscape of the dark web.

4. Law Enforcement Agencies: Law enforcement agencies are critical stakeholders in navigating the

dark web’s complex terrain. A profound understanding of the protocols utilized by Onion Services

enhances its ability to monitor, track, and combat illicit activities. This knowledge aids in developing

targeted strategies to counter cybercrime, ensuring a proactive approach to maintaining digital

security.

5. Policymakers and Researchers: Policymakers and researchers are stakeholders seeking a nuanced

comprehension of the dark web’s inner workings. The insights gained from the research can guide

them in formulating informed policies and strategies to address the challenges posed by the dark web.

This knowledge is instrumental in crafting regulations that balance security concerns with individual

privacy rights.

6. General Internet User Community: The dark web’s activities indirectly impact the broader internet

user community. Understanding the protocols used by Onion Services offers users awareness,

enabling them to adopt informed practices for online security. This knowledge empowers individuals

to navigate the digital landscape with vigilance, minimizing the risk of unintentional exposure to cyber

threats.

This chapter lays the foundation for a focused exploration into the protocols and services operated by

Onion Services, offering a road map for deciphering the complexities of the dark web’s hidden network.

1.3. Research Questions
This research aims to investigate and provide insights regarding prevalent protocols on the Dark

Web, optimize port scanning strategies, and establish correlations between Dark Web infrastructures. To

achieve this objective, this thesis addresses the following research question (RQ) and their respective

sub-questions (SQ):

What prevalent protocols are utilized for communication on the Dark Web, and what types of

activities occur beyond traditional web protocols such as HTTP or HTTPS?

Research Question

SQ1 How can we develop a specialized port scanning tool tailored specifically for Dark Web

environments? Port scanning in the Dark Web poses distinct challenges, primarily due to its decen-

tralized architecture, multiple layers of encryption and the implementation of anonymity-preserving
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technologies. These features obscure the true origins and destinations of network traffic, compli-

cating traditional scanning methods. Additionally, the encryption layers within Tor further hinder

port scanning efforts, resulting in slow and inefficient scans. However, developing an advanced tool

to identify open ports could significantly streamline the process for law enforcement agencies and

researchers. While existing tools like Nmap, Netcat, and Ncat are commonly used for Dark Web port

scanning, their slow performance renders them impractical for comprehensive scans [5]. Investing in

specialized port scanning tools tailored for Dark Web environments can enhance our understanding

of Dark Web infrastructures and enable law enforcement agencies and researchers to allocate their

resources more effectively toward investigative efforts. Hence, this sub-question aims to design

and implement a tool capable of effectively scanning Dark Web networks, considering their unique

architecture, communication protocols, and stealth requirements.

SQ2 What are the key characteristics and dynamics of the onion services landscape within the Dark

Web? One significant challenge arises from the transient nature of services within the Dark Web,

where they appear and disappear rapidly, making it difficult to maintain an accurate and up-to-date list

of targets for scanning [6]. This sub-question aims to understand the onion services dynamics within

the Dark Web. Investigating the dynamics of the onion services landscape involves a comprehensive

analysis of the various factors and processes contributing to its ever-evolving nature. We aim to

investigate onions’ availability and categorise onions based on their availability - offline / online. This

encompasses the continuous shifts and transformations observed in the activity and availability of

onion services. Fluctuations in the number and variety of onion services, the emergence of new ones

and the disappearance of existing ones indicate the dynamic nature of the Dark Web ecosystem.

This sub-question mainly deals with finding the status of onions and their corresponding response

times and monitoring these onions to see if any interesting trends emerge.

SQ3 How do port scanning activities contribute to uncovering the prevalent protocols within the

Dark Web ecosystem In this sub-question, we shift our focus from finding the status of onions

to port scanning. Here, the aim is to scan open ports on the onions that are available or online.

This includes identifying key characteristics such as the types of services offered, the prevalence

of different protocols, and the distribution of services across various domains and communities.

Researchers can detect emerging trends and developments within the Dark Web ecosystem by

monitoring changes in the onion services landscape. This may include the emergence of new types

of services, shifts in the popularity of certain protocols, the evolution of onion services, or changes in

the behaviour of Dark Web users and communities.

SQ4 How can we optimize traditional port-scanning methods to suit the challenges of Dark Web

networks better suit the challenges of Dark Web networks better? The dynamic and ever-

evolving landscape of the Dark Web necessitates continual monitoring and adaptation of scanning

strategies to keep pace with environmental changes. Resource constraints such as bandwidth and

access restrictions further exacerbate the challenges, impeding the efficacy and scalability of port

scanning endeavours. Additionally, conventional port-scanning techniques often lack comprehensive

coverage of the Dark Web due to slow tool performance and limited port range coverage. Moreover,

conducting a full scan is impractical and time-consuming, hindering researchers and law enforcement

agencies from understanding the onion services landscape. To bridge this gap, this research

capitalizes on a comprehensive dataset of onion services collected over four years by Dark Web

Monitor, aiming to optimize traditional port-scanning methods.

1.4. Contributions
This thesis makes notable contributions to the Tor Network Protocols Landscape, outlined as follows:

C1 Diverging from the predominant focus on Tor v2 in existing literature, this research centres on the

latest v3 version of Tor onion services, providing insights into the advancements and changes in the

protocol.

C2 An extensive Protocol Analysis of Tor v3 onion services is conducted, encompassing the examination

of the full range of ports (65,536). This comprehensive approach ensures a thorough understanding

of the network’s intricacies and potential vulnerabilities.

C3 Clear definitions and mechanisms are elucidated for detecting the operational status of an onion
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service—whether it is offline or online. This clarity contributes to a more precise understanding of

the network’s dynamics. Here, we transition from the traditional web-based view of the dark web to

any application-based view.

C4 The port scanning tool developed for this thesis significantly enhances the monitoring and analysis

of onion services on the Dark Web. It incorporates functionalities for categorizing online, offline, or

temporarily unavailable (T.U) onion services, with a continuous monitoring queue system. Utilizing

goroutines in Golang (Go) enables concurrent execution of port scans, optimizing performance and

efficiency.

C5 An optimal port-scanning methodology is presented, offering a refined and efficient approach for

exploring and assessing the security landscape of Tor onion services. This methodology aims to

enhance the effectiveness of port-scanning procedures within the Tor network.

1.5. Outline
The report is structured as follows. Chapter 2 summarizes the theoretical groundwork, covering

aspects of port scanning, onion routing, and the Tor onion service mechanism. An overview of the current

literature on port scanning and protocol analysis in the Dark Web is presented in Chapter 3. Chapter 4

provides a detailed overview of the comprehensive dataset utilized in this research, sourced from CFLW

Cyber Strategies’ Dark Web Monitor (DWM). Chapter 5 details the methodology used to conduct this

research, including the architecture of the port scanning tool, validation of the tool, and the algorithm

used to optimize port scanning. Research Findings in Chapter 7 are followed by the reflections on the

data analysis and limitations in Chapter 8. Lastly, Chapter 9 provides a synthesis of the onion services

landscape based on the insights discovered and proposes future research directions.



2
Background

This chapter provides the foundational knowledge required to follow the research. First, we explain

the infrastructure of the World Wide Web - Surface, Deep, and Dark Web. Subsequently, we delve into the

intricacies of the Tor network and the Tor Onion Service (OS) mechanism. Its purpose is to enhance our

understanding of the advantages and challenges posed by the Tor network in its pursuit of anonymity and

security. This exploration draws a clear contrast with the more straightforward dynamics of the surface

web. Finally, port scanning concepts are explained in detail.

2.1. World Wide Web Infrastructure
The Internet is a decentralized network that allows computers worldwide to communicate with each

other through standardized protocols. It functions as the infrastructure that enables diverse services,

including email, file sharing, online gaming, and, most prominently, the World Wide Web (WWW).

The Internet provides connectivity and networking capabilities, while the WWW is a model built upon

the Internet’s infrastructure, allowing users to browse, access, and share information using web browsers.

Search engines are pivotal in navigating and retrieving information within the WWW. They serve as the

primary gateway for users to access information on the Internet. The WWW relies on the Internet, and

search engines contribute to the accessibility and usability of the information hosted on the WWW.

In the vast expanse of the Internet, distinct layers of web accessibility unfold, each with unique

characteristics. The triad - Surface, Deep, and Dark Web is illustrated in Figure 2.1. Beyond the familiar

websites of the Surface Web lies the concealed Deep Web and, within it, the mysterious Dark Web.

1. Surface Web is the part of the web that is indexed by traditional search engines. It comprises static

web pages easily accessible to the general public through standard web browsers such as Google

Chrome, Internet Explorer, and Mozilla Firefox[8].

2. Deep Web contrasts the easily accessible Surface Web. The Deep Web lies beneath the surface,

analogous to the submerged portion of an iceberg. This hidden realm comprises a significant portion of

the World Wide Web that traditional search engines cannot index, making it hidden from conventional

search queries. The Deep Web contains a vast array of information, including private databases,

dynamic web pages, non-HTML, non-contextual or non-scripted content, private sites (password-

protected websites), and limited-access networks (darknets or sites hosted on infrastructures that

require the use of specific software like Tor to access). Its significance lies in providing a secure

space for data that requires controlled access, protecting it from indiscriminate online searches [8].

For example, consider subscription-based streaming services like Netflix. When users visit the Netflix

homepage (www.netflix.com), they are on the Surface Web. Here, they can see the catalogue,

featured shows, and general information that search engines can index. If someone searched for

“Stranger Things” on Google and clicked on the Netflix link in the search results, that interaction

would be part of the Surface Web. Once a user subscribes to Netflix and logs in, they enter the Deep

Web of Netflix’s content. Users’ interactions within the platform, such as browsing categories, adding

titles to their watchlist, or downloading movies, generate non-indexed Deep Web content.

3. Dark Web is part of the deep web that is intentionally hidden and inaccessible through standard

web browsers despite its public availability. Thus, the Dark Web can be defined as a segment of the

6
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Figure 2.1: World Wide Web Infrastructure, an analogy with an iceberg. Retrieved from [7]

Internet, specifically a subset of the Deep Web, requiring specialized software for access. Darknets,

the interconnected networks forming the Dark Web, differ from the broader World Wide Web due to

their unique routing, encryption, handshaking, and data exchange protocols, ensuring anonymity

and secure communication. Darknets constitute the infrastructure of the dark web, creating private

networks where connections are established only among trusted peers [8]. This thesis is specifically

centred on probing the Tor network.

Notably, the SurfaceWeb accounts for a mere 4% of the internet, while the vast majority—96%—resides

in the concealed Deep Web. Within this hidden layer, the enigmatic Dark Web constitutes 6% [9]. This

prevalence of content on Deep Weeb reflects the proliferation of web applications tailored to individual

users and their associated accounts. Conversely, the Dark Web lies at the depths of the ocean, accessible

solely through dedicated software. Unlike conventional Internet protocols, the Dark Web operates on

a customized framework, necessitating specialized programs to navigate its unique architecture. While

various software types coexist within the Dark Web ecosystem, this document will focus primarily on the

most commonly used platforms. Before delving into specific applications, however, a comprehensive

exploration of the Dark Web’s foundational aspects is essential.

2.2. Dark Web
Dark Web aimed to establish a platform where users could navigate content privately, anonymously,

and securely shielded from surveillance by government or entities capable of monitoring online activities.

This feature made the Dark Web particularly appealing to individuals who sought to exchange ideas and

opinions without fear of public exposure. However, with many innovations, users recognized the profit

potential and exploited the platform for unethical purposes.

The phenomenon of criminal activity on the Dark Web presents an intriguing area of study within

cybercrime. Understanding the motivations driving individuals to engage in illicit behaviour, whether driven
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Figure 2.2: L2TP/IPsec VPN Protocol [11]

by financial gain or personal gratification, remains a subject of limited research. Exploring parallels between

criminal groups operating on the Dark Web and traditional offline criminal organizations could provide

valuable insights. Theoretical frameworks from criminology, such as social disorganization theory, suggest

that factors like heterogeneity, instability, and decentralization within the Dark Web ecosystem foster an

environment conducive to illicit activities [10].

Alternative solutions for achieving anonymity and secure communication include using Virtual Private

Networks (VPNs). VPNs facilitate communication across different protocols and enable users to conceal

their IP addresses or operate within specific network environments, such as enterprise networks. VPNs

use a tunnelling protocol to establish a secure connection between the user’s device and the VPN

server. Common tunnelling protocols include OpenVPN, IPSec, L2TP/IPSec, and PPTP. These protocols

encapsulate the user’s data packets within encrypted packets, ensuring that data transmitted over the

internet remains secure and private.

Let’s say Alice wants to browse the internet securely and privately. Without a VPN, her IP address

(e.g., 203.0.113.1) would be visible to websites she visits, her ISP, and potentially other parties monitoring

her internet traffic. With a VPN, Alice first connects to a VPN server in a different geographical location, let’s

say in the United States, before accessing the internet. The VPN server acts as an intermediary between

Alice and the internet, encrypting her traffic and routing it through the VPN server. After connecting to the

VPN server, Alice’s IP address appears to change to the IP address of the VPN server (e.g., 198.51.100.1).

When Alice visits a website, the website’s server sees the IP address of the VPN server (198.51.100.1)

instead of Alice’s original IP address. Alice’s ISP only sees encrypted traffic between her device and

the VPN server, but it cannot see the specific websites she visits or the data exchanged. This is clearly

demonstrated in Figure 2.2

However, VPNs have inherent limitations. While they offer protection to users by obfuscating their

origin, they do not extend the same level of anonymity to the servers themselves. Users must place

trust in the VPN server owners, who have visibility into the connections passing through their servers.

This reliance introduces potential vulnerabilities, as server owners could compromise user privacy by

monitoring connections or exposing historical logs. Instances of such breaches have occurred in the past,

with perpetrators often selling the compromised data on the Dark Web, underscoring the complex interplay

between security, privacy, and trust in the digital landscape.

Among the various networks operating within the Dark Web, three prominent ones stand out: Freenet,

I2P, and the Tor Project. However, this research will focus solely on the Tor Project, which emerged as the

pioneering darknet network at the turn of the 21st century and remains the most widely used and influential

darknet today. The Tor Project revolutionized the concept of the Dark Web, fundamentally altering its

definition and reshaping the landscape of anonymous online communication.



2.3. The Onion Router 9

2.3. The Onion Router
The Tor (The Onion Router) network represents a critical component within the landscape of secure

and anonymous communication on the internet. Tor’s resilience lies in its decentralized nature, as the

network relies on a multitude of volunteer-operated relay nodes scattered across the globe. This enhances

the network’s resistance to censorship and mitigates the risk of single points of failure.

In mainstream web browsers like Internet Explorer or Google Chrome, we connect to web servers

via TCP connections on port 80. Through these TCP connections, data packets are exchanged and the

client’s IP address are exchanged (encrypted packets if SSL/TLS protocols are in use). Consequently,

internet service providers (ISPs) can easily discern the identities of users and their communication partners.

However, it becomes possible to obfuscate client identification information, including the IP address, when

utilising the Tor browser. Moreover, Tor enables servers to maintain anonymity through what are referred

to as hidden services. Before delving into the concepts of the Tor Project, it is essential to understand its

foundational technology, known as onion routing.

2.3.1. Onion Routing
Onion routing is a technique used to achieve anonymous communication over a public network such

as the Internet. It encrypts data multiple times, each time adding a layer of encryption (like the layers of an

onion), hence the name “onion routing.” This process helps to obfuscate the origin and destination of the

data, enhancing privacy and anonymity. The concept of onion routing facilitates anonymity by ensuring

that no single entity along the communication path can determine the data’s sender and receiver. This is

achieved through a series of intermediary nodes, known as onion routers or onion relays, which forward

data packets in a layered manner.

A comprehensive way to illustrate onion routing is by envisioning a scenario where a client seeks

to communicate with a web server, perhaps to retrieve a web page as shown in Figure 2.3. Initially, the

client must create a route consisting of onion routers (by default 3), which will serve as intermediaries

for transmitting the data between the server and the client. Before we explain the example, we need to

understand a few concepts:

Figure 2.3: Scenario when a client seeks to communicate with a web server through Tor

2.3.1.1. Cell Structures

Cell structures serve as the fundamental units of data exchange, encapsulating various types of

information essential for circuit establishment, data transmission, and network management. They play

a pivotal role in facilitating secure communication between the client and the intermediary routers within

the Tor network. Data packets are structured into fixed-size cells, typically 512 bytes in size. Each cell

consists of a header and a payload. The header of a cell typically contains a circuit Identifier (circID): This

field uniquely identifies the circuit associated with the cell, allowing routers to route and process incoming

cells accurately. Circuit identifiers are crucial for distinguishing between multiple circuits traversing the

same routers concurrently. Command Code: The command code specifies the purpose or action to be

performed by the recipient router upon receiving the cell. Common command codes include CREATE,

EXTEND, RELAY, DESTROY, and PADDING, each serving distinct functions within the Tor protocol. The

payload contains the actual data to be transmitted. Based on the command code, the cells can act as a

control or relay cell whose structure is shown in Figure 2.4.

Control cells are used for managing and controlling the behavior of nodes within the Tor network.



2.3. The Onion Router 10

Figure 2.4: Control cell and Relay cell structures. Retrieved from [12]

Control cells are exchanged between Tor nodes and the Tor control port, allowing external entities (e.g.,

client applications or network administrators) to interact with the Tor network. Key fields in a control cell:

• Command: Specifies the type of control operation to be performed, such as circuit creation, circuit

teardown, or network status query.

• Circuit ID: Identifies the circuit to which the control operation applies, allowing for targeted circuit

management.

• Payload: Contains additional data required for the specified control operation, such as parameters

for circuit creation or status information for network queries.

Relay cells are crucial components within the Tor network responsible for carrying end-to-end stream

data between nodes. These cells feature an additional header, the relay header, positioned at the forefront

of the payload. Relay cells are used for both data relays between nodes (e.g., from client to entry node,

from relay to relay) and for returning data back along the circuit. Key fields in a relay cell:

• Command: Relay commands embedded within the header dictate various operations within the

network, such as relaying data downstream, initiating stream connections (relay begin), gracefully

closing streams (relay end), handling broken connections (relay teardown), and notifying the originator

of successful stream openings (relay connected). Additionally, commands like relay extend and relay

extended facilitate circuit extension by a hop and acknowledge such extensions. In contrast, relay

truncate and relay truncated are used for partial circuit teardown and acknowledgement.

• Stream ID: Identifies the data stream associated with the relay cell, allowing multiplexing streams

over the same circuit.

• Digest: An end-to-end checksum that provides integrity protection by including a cryptographic hash

of the payload to detect tampering or corruption.

• Length: Specifies the length of the relay payload.

• Payload: Contains the actual data being relayed, encrypted multiple times with the encryption keys

of each successive relay in the circuit.

2.3.1.2. Circuit Establishment

The client initiates the circuit establishment process by selecting a series of intermediary nodes, known

as onion routers, to form the circuit. It negotiates encrypted connections with each selected router to

establish secure communication channels. During the negotiation phase, the client and each router perform

key exchange using asymmetric encryption techniques such as Diffie-Hellman key exchange. Through

this key exchange process, the client and routers agree on symmetric encryption keys that will be used to

encrypt and decrypt data within the circuit.

Once the negotiation is complete, the client sends CREATE cells to the first selected router, known as

the entry node, to request the establishment of the circuit. The entry node processes the CREATE cell

and selects the next router in the circuit, known as the middle node, to extend the circuit. The entry node

then sends an EXTEND cell to the middle node, containing information about the next router in the circuit.

This process repeats until the circuit is fully established, with each router extending the circuit to the next

node in the sequence.
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As part of the circuit establishment process, each router assigns a unique Circuit ID to the circuit,

allowing it to identify and process incoming data packets. The client and each router share symmetric

encryption keys associated with the Circuit ID, enabling them to encrypt and decrypt data exchanged within

the circuit. These encryption keys are used to secure the communication channels between the client and

each router, ensuring the confidentiality and integrity of the transmitted data. This is illustrated with an

example scenario as represented in Figure 2.5:

a. Negotiation and Key Exchange:

The client negotiates encrypted connections with each selected node, exchanging public keys (PK)

and generating shared keys (KA, KB, KC) using asymmetric encryption techniques. The client and each

node agree on symmetric encryption keys (KA, KB, KC) for secure communication within the circuit through

the key exchange. The client initiates the circuit establishment process by selecting Guard Node A as the

entry point.

b. CREATE and EXTEND Cells:

The client sends CREATE cells to Guard Node A, requesting the establishment of the circuit. Guard

Node A processes the CREATE cell, selects Middle Node B as the next node, and sends an EXTEND

cell to Middle Node B. Middle Node B receives the EXTEND cell, extends the circuit to Exit Node C, and

forwards an EXTEND cell to Exit Node C.

c. Circuit ID and Encryption Keys:

Each node assigns a unique Circuit ID to the circuit and shares symmetric encryption keys (KA, KB,

KC) with the client. These encryption keys are used to secure the communication channels between the

client and each node, ensuring data transmission confidentiality and integrity.

Figure 2.5: Circuit Establishment scenario with a client and three intermediary nodes.

2.3.1.3. Communication with Web Server

Once the circuit is established, depicted in the diagram provided, the client gains the capability to

transmit requests through the onion network. To do so, the client crafts a relay cell with the “begin”

command, containing details of the desired server (IP address) and port for connection. This message is

encrypted with three layers of encryption using the shared keys KC, KB, and KA. As the relay cell traverses

the circuit CCA, Router A, recognizing its origin from the specific client, applies its shared key KA to decrypt

the first layer of encryption. Subsequently, the client forwards the encrypted cell along the established

circuit.

Router A, unable to decipher the decrypted result, relays the cell to the next hop in the circuit connected

via CAB. Prior to forwarding to Router B, Router A modifies the circID field to CAB. Upon receipt, Router

B follows the same decryption process as Router A. Upon reaching the exit node (Router C), the node

decrypts the cell using KC, identifying the relay command “begin” and initiates a TCP connection with the

specified server mentioned in the payload.

Upon receiving a response from the server, the exit node generates a relay cell with the relay command

“data” and encrypts it with KC. The cell is then passed to Router B, encrypted with KB, and subsequently to
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Router A. Upon arrival at the client, all layers of encryption are decrypted, verifying the establishment of the

connection. The client can now send additional relay “data” commands through the circuit to communicate

with the web server while ensuring anonymity.

The multiple layers of encryption (in this example, three) in this technique liken it to an onion, with each

layer adding a level of protection. This analogy is illustrated in the accompanying diagram, showcasing a

message originating from a client ready to be “peeled” off by the circuit it is traversing.

Figure 2.6: Multiple Layers of Encryption of a message by the client [13]

2.3.2. Onion Network
Now that we’ve explored the fundamentals of onion routing let’s delve into its application in the Tor

Project. When Tor is installed on our systems, it sets up a local host server called Onion Proxy (OP).

This OP is an intermediary, managing the data flow between our applications and the Tor network. Upon

initialization, OP fetches information about Tor’s relays from directory servers and establishes a circuit with

three nodes, as described in the onion routing concept.

Subsequently, we employ standard browsing mechanisms to interact with web servers: entering the

desired address, DNS resolution, TCP handshake with the resolved IP, and initiating communication via

HTTP or HTTPS. HTTPS ensures secure communication through SSL/TLS, which involves an additional

exchange of information to establish an encrypted connection. However, these steps apply when accessing

publicly visible web servers anonymously.

Traditional DNS mechanisms cannot be applied to access the Dark Web, where servers are hidden

with onion services. Tor’s onion routing can facilitate anonymous browsing across the Surface, Deep, or

Dark Web. But, for the web servers to remain “hidden,” they must operate within Tor’s onion services.

These services extend the onion routing concept, employing a three-hop circuit to conceal the client and

server. The rendezvous point is the meeting point between the client and server within this circuit. The Tor

Onion Service mechanism is clearly explained in 2.3.2.4

It’s crucial to note that while Tor clients always benefit from a three-hop circuit for protection, web

servers are safeguarded only when hosted within the onion services layer of the Dark Web.

2.3.2.1. Tor Nodes

Tor nodes are individual servers that volunteer to participate in the Tor network by running Tor software.

These nodes receive, forward, and deliver encrypted user traffic across the network. Each Tor node
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operates independently and contributes to the overall functionality and resilience of the Tor network. Relays

and bridges are the two nodes serving different purposes in the Tor network. According to the metrics of

Tor, there are over 8000 relays and 2000 bridges in the Tor Network.

1. Tor Relays

Relays are the primary nodes that make up the backbone of the Tor network. Relays receive

encrypted traffic from one node and forward it to another node in the Tor circuit. There are three

main types of relay nodes, each serving a distinct purpose in the routing process:

a. Entry Nodes (Guard Nodes): Entry nodes act as the initial point of contact for user traffic entering

the Tor network. When a user initiates a connection to the Tor network, the entry node receives

the encrypted traffic and forwards it to the next node in the circuit. Entry nodes cannot access the

traffic’s final destination due to the layered encryption used in Tor (onion routing).

b. Middle Nodes: Middle nodes relay encrypted traffic between the entry and exit nodes. Middle

nodes do not know the origin or final destination of the data packets they relay, ensuring the traffic

remains anonymous throughout its journey within the Tor network.

c. Exit Nodes: Exit nodes are the final point in the Tor network where the final layer of encrypted traffic

is decrypted and sent to its intended destination on the clearnet. As exit nodes handle unencrypted

traffic, they pose a potential privacy risk if the traffic is not encrypted end-to-end.

2. Tor Bridges

Bridges are special-purpose relays designed to help users bypass internet censorship and access

the Tor network in regions where Tor is blocked or restricted. Bridges are not publicly listed in the

main Tor directory to prevent them from being easily blocked by censors. Users can obtain bridge

addresses from trusted sources or directly from the Tor Project’s website to discreetly connect to the

Tor network.

2.3.2.2. Onion Services

Onion services, a fundamental feature of the Tor network, were introduced in 2002. These services

enable web servers to operate and interact with clients while maintaining anonymity. Unlike traditional web

servers, which reveal their IP addresses when connecting with clients, onion services allow servers to accept

connections and exchange data without disclosing their identities. This anonymity feature is particularly

valuable for servers that store and provide sensitive content, where owners prioritize confidentiality and

wish to remain unknown.

To grasp the concept of onion services, consider an analogy. Imagine both the client and server as

participants in a secret rendezvous. In this scenario, Figure 2.9b, not only does the client’s identity remain

hidden through the Tor network, but the server also gains the ability to operate incognito. To achieve this

anonymity, the server, like the client, operates behind an onion proxy, creating a circuit that enables them

to rendezvous at a specified node known as a rendezvous point. This rendezvous point acts as a neutral

meeting ground where the client and server can exchange data without directly communicating, thereby

preserving their anonymity.

Understanding the addressing system used by Onion Services is crucial. Traditional web servers rely

on DNS to map domain names to IP addresses, but onion services operate differently. Given the need for

anonymity, these servers do not share their IP addresses openly. Instead, they utilize a unique addressing

system within the Tor network, ensuring that the server’s location remains concealed while allowing clients

to find and connect to the desired hidden service. This specialized addressing mechanism ensures that

Onion Services can provide content discreetly and securely, catering to the privacy needs of both server

owners and clients.

2.3.2.3. Onion Address

Onion addresses, commonly known as .onion addresses, are special domain names used within

the Tor network to identify hidden services. Unlike traditional domain names that rely on the Domain

Name System (DNS) to map human-readable names to IP addresses, onion addresses function within

the Tor network’s decentralized and anonymous environment. These addresses allow users to access

websites and services hosted on the Tor network anonymously and securely. A V3 onion address is a
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Figure 2.7: 6-hop circuit when a client communicates an onion service

56-character alphanumeric string ending with the .onion suffix. The structure of a V3 onion address is as

follows: ioiogw54kw4vqidvd274f53avjdj4jbw46ubwxvo3cjv7culwjnuiaqd.onion

a. Key Generation: A V3 onion service generates a long-term Ed25519 key pair consisting of a private

key (32 bytes) and a public key (32 bytes).

b. Address Generation: From the public key, a hash is derived using the SHA3-256 function. The

resulting hash is truncated to produce the 56-character Base32 encoded string, forming the onion address.

c. Checksum Calculation: The last two characters of the address serve as a checksum. They are

derived from the first few bytes of the SHA3-256 hash of the address.

The use of cryptographic operations to generate onion addresses has several advantages: It allows

for easy verification of the authenticity and ownership of onion addresses. By matching the hash result

of a server’s public key with its onion address, users can be confident that they are connecting to the

legitimate and intended server, reducing the risk of man-in-the-middle attacks or spoofing. It also enables a

decentralized approach to address generation, eliminating the need for central authorities or DNS services.

2.3.2.4. Tor Onion Service Mechanism

In the context of the surface web, the interaction between a client and a server is more straightforward

and transparent, as shown in Figure 2.8:

1. If the client is using a domain name, a Domain Name System (DNS) query is triggered. This process

aims to map the domain name to the corresponding IP address.

2. The DNS server sends the IP address back to the client, completing the resolution process.

3. The client establishes a direct connection with the server using the server’s IP address.

4. The server processes the client’s request and returns the requested information or resource to the

client.

This simplicity stands in stark contrast to the layered anonymity provided by the Tor onion service

mechanism [14] shown in Figure 2.9a:

1. As the first step, OS contacts Tor Relays and requests them to act as Introduction Points (IPOs).

The OS employs the Tor network, strategically connecting to three IPOs (by default) via a long-term

three-hop Tor circuit. By doing so, the OS effectively conceals and safeguards its identity behind the

layers of the Tor network, allowing access exclusively through these IPOs.

2. With the introduction points established, the next step is to create a mechanism for clients to discover

them. The OS constructs an Onion Service descriptor(OSD) to achieve this. OSD is a cryptographic

document that includes information about the service’s IPOs, public key, and other relevant details.

Once the descriptor is signed, the OS uploads it to a distributed hash table (DHT) integrated into the

Tor network. This descriptor is then signed using the Onion Service’s identity private key, the private

component of the public key encoded in the Onion Service address. A Distributed Hash Table is a

decentralized, distributed system that provides a lookup service similar to a hash table, allowing for

the efficient storage and retrieval of key-value pairs across a network of nodes. In Tor, the DHT is

used for specific purposes, primarily related to hidden services.

3. A Tor-enabled client attempting to connect to the OS retrieves the signed OSD from the DHT. Within

this OSD are the details, such as IPOs, that enable clients to initiate communication with the OS.
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Figure 2.8: Accessing a service from Surface Web

4. Before the introduction, The Tor client randomly selects an intermediary relay node called Rendezvous

Point (RPO). As part of the rendezvous procedure, the RPO provides the client with a unique “one-

time secret.” This secret is a cryptographic token that will be utilized in the rendezvous process to

ensure the integrity and security of the communication between the client and the OS. Now, the

client is ready to facilitate the secure introduction between the user and OS. The RPO plays a crucial

role in managing the secure communication between the client and the OS without compromising

the anonymity of either party.

5. Subsequently, the client decrypts the OSD to obtain IPO details and sends a request—comprising

RPO information and a secret string to one of the IPOs. IPOs pass this information on to the OS.

6. The OS first verifies the authenticity of the details received from the IPO. Cryptographic techniques,

such as signature verification, may be employed to ensure that the details provided by the client

have not been tampered with during transmission. and connects to the RPO. If the client passes all

verification checks, the OS connects to the RPO and sends a one-time secret. The RPO conducts a

final verification process by matching the secret strings from the client and the service.

7. With the successful verification, the RPO transitions to a relaying role. It facilitates end-to-end

encrypted communication between the client and the OS through a 6-hop circuit as shown in Figure

2.9b. Messages relayed by the RPO are encrypted, ensuring that the content remains confidential

and secure during transmission.

Onion proxies produce a new server descriptor and an updated extra-info document under the following

circumstances: 1. When a predefined period (default is 18 hours) has elapsed since the last descriptor

generation, 2. If any descriptor field, excluding bandwidth or uptime, undergoes a change, 3. If the server’s

uptime is less than 24 hours and the bandwidth has doubled since the last descriptor generation, provided

that a specific time interval (default is 3 hours) has passed since the bandwidth change, 4. When the

server’s uptime is reset due to a restart, 5. Upon receiving a network status consensus where it is not

listed, 6. Upon receiving a network status consensus, it is listed with the StaleDesc flag.

2.4. Port Scanning
This section outlines the distinctions between open, closed, and filtered ports and delves into the

significance of port scanning, elucidating their roles in network security. Additionally, the section explores

various port scanning methods and tools commonly employed in cybersecurity practices.
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(a) Accessing a Tor Onion Service

(b) 6 hop circuit between the client and onion

Figure 2.9: Tor Onion Service Mechanism

2.4.1. Significance of Port Scanning
Port scanning involves systematically probing a target network or system to discover open ports and

the associated services running on them. It sends network packets to specific port numbers and then

analyses the responses to see if the ports are open, closed, or filtered. An open port refers to a network

communication endpoint on a computer system that actively accepts incoming connections from other

devices or services. When a port is open, it indicates that a service or application is running on the system

that is actively listening for and responding to incoming network requests on that specific port. Open

ports are accessible for communication, allowing data to be transmitted and received between the system

and other devices or services over the network. In contrast, a closed port denotes a network port on a

computer system that is not actively accepting incoming connections. When a port is closed, it means that

no service or application is running on the system that is listening for incoming network requests on that

particular port. Closed ports are typically protected by firewall configurations or network security measures

to prevent unauthorized access or communication attempts. While closed ports do not respond to incoming

connection attempts, they contribute to securing the system by limiting potential entry points for attackers.

A filtered port refers to a network port on a system whose status is ambiguous, as it neither confirms nor

denies incoming connection attempts. When a port is filtered, it suggests that the system is not actively
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Figure 2.10: Methodology of Penetration Testing. Retrieved from [16]

responding to connection requests on that specific port. This lack of response can occur due to various

reasons, including firewall rules, network congestion, or deliberate blocking by network devices. Filtered

ports do not provide definitive information about the state of the port, but they indicate that communication

attempts are being restricted or obstructed in some manner, requiring further investigation or configuration

adjustments. The key difference between closed and filtered ports lies in the response behavior: closed

ports actively respond to connection attempts with a closure notification, while filtered ports do not respond,

leaving the status ambiguous.

Attackers can gain valuable information about potential entry points and vulnerabilities in the target

system by identifying open ports. According to EC-Council Certified Ethical Hacker (CEH), penetration

testing can be divided into five phases as shown in Figure 2.10. We can see that scanning is the second

step in penetration testing. In this phase, the tester uses various port scanning and vulnerability scanning

tools to identify open ports and other backdoors. Since open ports serve as potential ingress points for

adversaries, detecting and cataloguing them is paramount for subsequent phases. While scanning can

reveal potential threats, it falls short of determining the extent to which hackers may exploit vulnerabilities,

necessitating human intervention to reach its full potential [15].

2.4.2. Port Scanning Methods and Tools
Some of the common port scanning methods are TCP SYN Scan, TCP CONNECT Scan, TCP ACK

Scan, Stealth Scan (TCP NULL, FIN, and XMAS Scans), and UDP Scan [17].

TCP SYN scan is one of the most commonly used methods for port scanning. A TCP SYN packet is

sent to determine the port status in this case. The port is open and listening if the response is a SYN/ACK.

An RST packet means the port is closed. In addition, the port is considered filtered if there weren’t any

responses after multiple requests.

TCP Connect Scan, or vanilla scan, establishes a full TCP connection through a three-way handshake.

This method, while comprehensive, is slower and requires more packets than a SYN scan. Furthermore, a

huge number of TCP connection requests in a short period of time is suspicious, and it is more likely to be

logged in the target system, thus increasing the likelihood of being detected by IDS/IPS systems.

TCP ACK scan differs from other scanning methods. In this case, the TCP probe packet contains only

the ACK flag. A response of RST indicates an unfiltered port, but whether it’s open or closed remains

unknown. The main purpose of the ACK scan is not to determine the port state but to identify firewall rules.
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With UDP Scan, the scanner sends a UDP packet to the target. This method can only detect closed

ports due to the nature of the UDP protocol, which does not require a formal connection establishment.

When a UDP scan is initiated, the scanning tool sends UDP packets to target ports and waits for responses.

An ICMP port unreachable error signifies a closed port, while other ICMP unreachable errors indicate a

filtered port. If the port is open, the target system typically does not respond with any acknowledgement,

as UDP does not require it. Therefore, the scanner cannot reliably determine if the port is open based on a

lack of response. Hence, UDP scanning less effective than TCP scanning in certain scenarios.

Stealth scanning, often executed through FIN, Xmas, and NULL scans, is a method used to probe

target systems while attempting to evade detection by intrusion detection systems (IDS) and firewall filters.

• FIN Scan: In a FIN scan, the scanner sends a packet with only the FIN flag set. Normally, a TCP

connection is terminated with a FIN packet. If the targeted port is open, it should ignore the FIN

packet, and no response will be received. However, the system should respond with a RST (reset)

packet if the port is closed. The absence of a response indicates that the port is open or filtered,

making this method particularly stealthy.

• Xmas Scan: The Xmas scan is named for the sequence of flags it sets in the TCP packet: FIN,

URG, and PSH. Like the FIN scan, the Xmas scan relies on the behaviour of the targeted system’s

response. The system should respond with a RST packet if the port is closed. An absence of

response indicates that the port is open or filtered.

• NULL Scan: In a NULL scan, the scanner sends a packet with no TCP flags set, meaning the packet

header is empty. According to TCP standards, this is an illegal combination of flags. The targeted

port should respond with a RST packet if it is closed. The lack of response suggests that the port is

open or filtered.

Some of the tools used for port scanning include Nmap, Zmap, Netcat, Masscan, and Unicornscan [18].

Table 2.1 gives an overview of the different port scanning tools and the different types of port scanning

methods that the tools support.

Tool SYN CONNECT ACK UDP FIN XMAS NULL

Nmap 3 3 3 3 3 3 3

Zmap 3 7 7 3 7 7 7

Masscan 3 7 7 7 7 7 7

Netcat 3 7 7 3 7 7 7

Unicornscan 3 3 7 3 3 3 3

Table 2.1: Overview of port scanning tools and respective scanning methods
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Related Work

This chapter reviews significant and contemporary studies within protocol analysis and diverse port-

scanning methodologies in the dark and clear web. Additionally, we pinpoint the primary challenges

and constraints associated with existing approaches, elucidating how our work tackles these issues.

Concurrently, we underscore the distinctive aspects that set our work apart.

3.1. Port Scanning in Clear Web
This section delves into the related works on port scanning within the clear web, beginning with protocol

analysis and examining various scanning tools and methodologies.

3.1.1. Protocol Analysis
Nmap offers a prioritized port list found in the nmap-services file. This file contains data indicating the

likelihood of each port being active. It is based on an extensive Internet-wide port scan conducted in 2008,

supplemented by data from various organizations about their internal networks. This list has undergone

updates and adjustments since its start but has not seen major revisions [5].

By default, Nmap leverages this data to scan only the top 1,000 ports, a feature introduced in 2008.

Before this enhancement, Nmap scanned all lower-numbered ports and specific higher-numbered ones.

The shift to scanning the top 1,000 ports significantly improved Nmap’s performance by increasing the

number of open ports detected while reducing scan time. Additionally, Nmap allows users to specify any

number of ports to scan and to limit scans to ports that meet a certain frequency threshold.

Based on the statistics of Nmap [19], the top 20 most common ports are 21 (FTP), 22 (SSH), 23

(Telnet), 25 (SMTP), 53 (DNS), 80 (HTTP), 110 (POP3), 111 (RPCBind), 135 (MSRPC), 139 (Netbios-SSN),

143 (IMAP), 443 (HTTPS), 445 (Microsoft-ds), 993 (IMAPS), 995 (POP3S), 1723 (PPTP), 3306 (MySql),

3389 (Ms-Wbt-Server), 5900 (VNC), 8080 (Http-Proxy).

3.1.2. Port Scanning Tools and Methodologies
A comparative study of port scanning techniques was proposed in [20] to evaluate their impact on the

scanned hosts performance. Three scanning techniques were compared: TCP SYN, TCP Connect and

UDP scan and several experiments were conducted using NMAP, Unicornscan, Netcat. Of the three port

scanning techniques, TCP SYN scan has the least impact on the targeted scanned host.

The authors of [21] compared eight port scanning tools based on 15 evaluation criteria. The tools

compared were Nmap 5.51, SuperScan 4.0, Advanced Port Scanner, Advanced Administrative Tools,

Angry IP Scanner, Atelier Web Security Port Scanner, Unicornscan and GFILANguard. Some important

criteria were based on the latest update released, scan range possible in single entry, ability to perform

TCP SYN and UDP Scanning, banner grabbing feature, database integration in the tool and whether the

tool is open source or not). Their evaluation declared that Nmap is the best scanning tool having the most

robust features. Amongst all the scanning tools, The Advanced Scanner and AngryIP Scanner satisfied

the fewest criteria.

Existing literature in the field of port scanning tools often focuses on comparing the performance and

capabilities of different tools and categorizing various scan types and techniques. However, there is a

19
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notable gap in the literature regarding the efficacy of these tools, particularly in terms of false positives,

true negatives, and resource utilization (CPU and RAM). In a study by [12], the authors compare the

efficacy and performance of three prominent port scanning tools: Nmap, Zmap, and Masscan. The study

reveals that while the overall performance of these tools in terms of accuracy is comparable (achieving 100

percent accuracy), there are significant differences in resource utilization. Masscan emerges as the top

performer in terms of both runtime, completing scans in just 2 seconds, and efficiently utilising CPU and

RAM resources. On the other hand, Nmap, while exhibiting relatively low runtime (27 seconds), consumes

the highest amount of RAM among the three tools. Meanwhile, Zmap, despite its longer runtime of 644

seconds, demonstrates lower resource utilization than Nmap but higher than Masscan.

3.2. Port Scanning in Dark Web
Port scanning within the dark web, specifically through the Tor network, presents unique challenges

and insights compared to the clear web. This section examines the protocols and tools used for port

scanning in the dark web, starting with a detailed analysis of Tor (The Onion Router) domains.

3.2.1. Protocol Analysis of Tor Domains
Some references in the literature have already explored the protocols of onion services. In 2014, [22]

presented their findings on a content and popularity analysis of the 39,824 onion services. Among them,

24,511 remained accessible during the conducted port scans. The analysis revealed 22,007 open ports,

with a significant majority of onion services identified as part of the Skynet botnet, notably open on port

55080. This particular port was found open on over 50% of all onion addresses, providing insights into the

potential scale of computers infected by “Skynet.” Furthermore, HTTP and HTTPS services constituted

22%, while SSH services were operated by 5% of the onion services. According to [22], HTTP, HTTPS and

SSH-based services were the most frequently detected protocols in the network. However, the absence of

SMTP and Bitcoin protocols suggested a change in service usage between 2014 and 2019. This finding is

further confirmed in a more recent study [23] and [24], which shows that anonymous email servers and

Bitcoin clients have become significantly more popular in recent years.

The statistics in 2018 [23] show that out of 14,972 onion services, 54.6% were HTTP, 26.1% Zeronet

(15441), 12.1% SSH, followed by 2% HTTPS, 1% of Mail, IRC and Ricochet and 0.3% Bitcoin. A study [24]

carried out in 2019 found that out of 60,036 onion services, 1370 unique ports were detcted and belonged

to 219 unique protocols. HTTP was the most commonly used protocol with 82%, followed by 7.7% SSH

and 4.2%SMTP. Most HTTP services were found on port 80, while SSH services were most commonly on

port 22 and SMTP services on port 25. Only a few onion services, 1.8%, use HTTPS and 1.3% related to

bitcoin.

All the mentioned research, however, is confined to Tor v2 onion services. The state-of-the-art paper

by [25] explores the availability and protocols of Tor v3 domains, performing a port scan on 41,583 onion

services for 15 ports. The findings revealed HTTP as the most used protocol with 93%, followed by SSH

and HTTPS with 1.1% and 0.62%, respectively. Cryptocurrencies such as Monero and Bitcoin were found

to mainly use ports 18081 and 8333, constituting 0.08%. Less commonly used protocols included instant

messaging services (Jabber/XMPP and IRC) at 0.05%, IMAP at 0.03%, and FTP at only 0.004%.

In summary, the analysis of the protocols used by onion services within the Tor network has revealed

that HTTP is the most commonly used protocol, followed by SSH. This study aims to revisit the distribution

of active protocols, particularly for a sample of version 3. The analysis will also expand the list of protocols

that have not been considered before to explore the potential use of other protocols in the dark web.

3.2.2. Port Scanning Tools and Methodologies
Moving to port scanning tools and methodologies, while most literature focuses on protocol analysis,

only [24] provides insights into their port scanning methodology. They conducted test runs with common

port scanners such as Nmap, Ncat, and Netcat. Their findings indicated that Ncat performed the fastest for

single-service scans, while Nmap outperformed all other scanners for scans involving a set of addresses.

An incremental scan approach was adopted, where only an increasing subset of ports was scanned until

at least one open port was detected. The scanning started with commonly used ports like HTTP 80 and

HTTPS 443. Subsequently, a variety of common Tor applications, such as TorChat, Jabber, common IRC

and RPC ports, Torrent tracker and ports known to be used by the Skynet and Trickbot botnets, were
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Year Author Tor Version Protocols Number of Onions

2014
Alex Biryukov

et al. [22]
Tor v2

HTTP/HTTPS: 22%,

SSH: 5%,

Skynet: 50%

39,824 onions,

24,511 accessible

22,007 open ports

2018
Gareth Owenson

et al. [23]
Tor v2

HTTP: 54.6%,

Zeronet: 26.1%,

SSH: 12.1%,

HTTPS: 2%,

Mail/IRC/Ricochet: 1%,

Bitcoin: 0.3%

14,972 onions

2019
Martin Steinebach

et al. [24]
Tor v2

HTTP: 82%,

SSH: 7.7%,

SMTP: 4.2%,

HTTPS: 1.8%,

Bitcoin: 1.3%

60,036 onions,

1370 unique ports

219 unique protocols

2019
Alejandro Buitrago

López et al. [26]
Tor v3‘

HTTP: 93%,

SSH: 1.1%,

HTTPS: 0.62%,

Monero/Bitcoin: 0.08%,

Jabber/XMPP/IRC: 0.05%,

IMAP: 0.03%,

FTP: 0.004%

41,583 onions,

15 ports

Table 3.1: Summary of Related Works on Protocol Analysis of Tor Domains

examined. This is followed by an additional scan of the 100 most commonly used ports (as determined by

Nmap’s list of well known ports [12]). Finally, if no open port is found, the scan continues with the 1,000

most common ports.

However, [24] did not provide time statistics for their scans. In contrast, [23] reported a scanning

duration of 24 hours for 10,000 ports when investigating a single onion service. They employed a strategy

focusing on the most probable open ports to optimise efficiency. Their approach involved focusing on

the most probable open ports, informed by prior knowledge, gathering data from ongoing scans in the

darknet, and conducting comprehensive scans on a selected subset of onion services. Ultimately, this

comprehensive process resulted in a refined list of 40 ports.
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Dataset

This thesis uses two primary datasets: the proprietary dataset obtained from CFLW Cyber Strategies

and the Internet Assigned Numbers Authority (IANA) port mapping dataset. The following chapter highlights

the characteristics and origin of the datasets, elucidating their significance in the context of this research.

4.1. Dark Web Monitor (DWM)
The Tor crawler, initially conceived as a research endeavour back in 2013, aimed to expand the scope

of indexable content within the Dark Web beyond the limited set of seed Tor domains accessible on the

clearnet. Over time, the wealth of data amassed by this crawler has evolved into a commercial offering by

CFLW Cyber Strategies, known as the Dark Web Monitor (DWM). This proprietary tool, operating as an

open-source intelligence (OSINT) solution, stands as the cornerstone of CFLW’s intelligence services,

meticulously crafted to furnish invaluable insights into the realm of criminality and fraudulence proliferating

across the Dark Web. Utilizing state-of-the-art analytics, the Dark Web Monitor aids law enforcement

agencies, cybersecurity firms, and financial institutions, empowering them to pinpoint suspicious activities

and precisely investigate illicit infrastructures.

4.1.1. DWM Data Collection Method
DWM offers access to an extensive dataset compiled from the Dark Web, meticulously indexed and

made searchable. This dataset encompasses a wide array of domains, many of which host multiple pages

that the crawler has systematically downloaded. During each download attempt, the crawler verifies the

server’s provision of HTML content, generating a snapshot by storing the HTML file. Subsequently, DWM

conducts a comparative analysis of current and previous downloads to identify any alterations. In the event

of detected changes, a new version is generated. This functionality facilitates users in monitoring domain

modifications and utilizes DWM akin to a wayback machine for investigating domain histories.

The Tor crawler undergoes continuous refinement to enhance its capabilities and efficacy. The crawler

maintains a dynamic list of Tor onion domains, continually adding new entries as they are discovered during

the crawling process. Each onion domain is systematically crawled regularly, ensuring comprehensive

coverage and indexing of active and transient domains. Utilizing a “snowballing” approach, the crawler

traverses the interconnected pages within each domain, recursively uncovering new entries and expanding

its dataset.

When a Tor domain experiences downtime or becomes inactive, the crawler implements a strategic

re-visit schedule with a recurring interval of one hour. If the domain remains offline after three consecutive

attempts, the crawler adjusts its crawling schedule using an exponential back-off approach. This entails

revisiting the Tor domain at intervals of 18, 36, and 72 hours, respectively, with the maximum revisit

frequency capped at 10 days. Employing exponential back-off mechanisms, the crawler adapts its crawling

frequency based on the availability and responsiveness of each domain, ensuring optimal resource

utilization and data integrity.

DWM employs advanced content analysis techniques, leveraging regular expressions to extract critical

information such as cryptocurrency addresses, PGP keys, and email addresses from crawled pages.

This extracted data is meticulously archived in cloud storage repositories, facilitating further analysis and

investigation. Furthermore, each discovered domain undergoes classification and receives corresponding

22
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tags. These tags encompass various abuse types (such as financial crime, sexual abuse, violence, etc.)

and service categories (like shops, file sharing, service providers, etc.), providing users with comprehensive

insights into the nature and purpose of each domain.

4.1.2. DWM Dataset
The dataset utilized in this research project is a proprietary collection obtained from CFLW Cyber

Strategies, with access granted through their Dark Web Monitor. This monitoring tool actively crawls onion

services, maintaining a comprehensive record of their status, historical changes, and related information.

The dataset encompasses a substantial volume of 0.5 million onion services, making it a notable resource

for comprehensive analysis. The status of these onions detected by the DWM is solely web-based, i.e., it

checks the status on ports 80/443, but there might be ports other than 80/443 open. This dataset helps

me bootstrap the process of port scanning.

One critical aspect of the dataset is that the status of these onion services detected by the DWM is

solely web-based, i.e., it checks the status on ports 80/443. However, there might be other ports open on

these onion services that are not captured by this initial monitoring. By providing a substantial base of onion

services with known statuses on standard web ports, the dataset significantly helped bootstrap the port

scanning process and allowed targeted port scanning on a larger scale. This initial information streamlined

the port scanning process, enabling the identification of additional open ports that may not have been

immediately apparent through web-based monitoring alone. Crucially, this dataset facilitated a transition

from a web-based to an application-based view. While the initial monitoring focused on identifying web

services through ports 80/443, the port scanning process expanded the analysis to include any application

running on these onion services.

Data collection spans September 2018 to January 2024, providing a longitudinal view of the evolving

landscape of onion services on the Dark Web. The dataset is structured in JSON format, ensuring

flexibility and ease of integration. The Dark Web Monitor offers an API that enables automated interactions

with its data repository, providing users with a seamless way to access and analyze dark web-related

information. The API is structured according to the JSON:API specification, making it compatible with

various programming languages and platforms. This standardized format ensures interoperability and

ease of integration with existing systems. These APIs enable users to: 1. Retrieve a comprehensive list of

darknet domains, 2. Access detailed information pertaining to individual darknet domains, 3. Obtain a list

of pages associated with a specific domain, and 4. Retrieve a comprehensive list of crypto-assets, PGP

keys, and email addresses linked to the current domain.

The API focused on providing a list of darknet domains is a pivotal component of this research endeavor.

It encompasses the following key fields essential for our investigation as represented in Table 4.1

The darknet domains API offers users a wide range of filtering options to obtain a list of darknet

domains relevant to their needs. Additionally, all columns in the Darknet Domains list view support sorting

in ascending and descending order, allowing users to organize domains based on their preferred criteria.

For example, users can prioritize displaying domains with the highest number of tags or those with the

most pages within the filtered domains. Some of the available filter options are represented in Table 4.2

This dataset is particularly relevant to the research on port scanning of onion services. It provides

essential information about onion service status, historical changes, and associated details, forming the

basis for an in-depth exploration of port configurations and services running on the Dark Web.

4.2. IANA Port Mapping with Services
The IANA Port Mapping Dataset is a fundamental resource in this study, offering a comprehensive

mapping of port numbers to their corresponding services as defined by the IANA [28]. Originating from

the authoritative registry responsible for managing port assignments for various protocols, this dataset

provides essential information for understanding the functionalities associated with different network ports.

By leveraging the mapping between port numbers and services provided by the dataset, open ports

identified in dark web datasets were grouped and categorized based on their associated services. This

integration enabled a more granular understanding of the services accessed or targeted within the dark

web environment, shedding light on potential security threats and vulnerabilities.
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Column Description

DomainID A unique identifier is assigned to each Darknet domain.

Title

The title of the home page associated with each onion service. This field provides

insights into the content or purpose of the service, aiding in the contextual

understanding of the service’s potential offerings.

DiscoveredAt

Timestamp indicating when the onion service was initially discovered by DWM.

This temporal data is pivotal for conducting longitudinal analyses and tracking

changes in the Dark Web landscape over time.

Status
Indicates whether an onion service is currently online or offline when last checked

by the DWM’s crawler (approximately every 18 hours).

Uptime

Represents the duration observed by the DWM for which the onion service has

been continuously available. Uptime is a critical metric for assessing the reliability

and stability of services, offering insights into their operational characteristics.

Pages
The count of pages within the subdirectories originating from the root directory of

a domain that has been successfully traversed and indexed by the DWM’s crawler.

Tags
A tally of the tags attributed to the domains. Hovering over the count will reveal

the comprehensive list of tags linked with the respective domain.

Dupl The count of mirror sites or domains with the same title

DN In The count of Darknet domains in which the specified domain is referenced or found

DN Out The count of Darknet Domains linked to or mentioned on the domain’s pages

Table 4.1: Key Fields of Darknet Domain API [27]

Filter Description

Domain search Filter domains based on a specific string of characters in their URL.

Title search Filter domains based on a specific string of characters in their title.

Title unique Filters out domains with duplicate titles, displaying only one domain per title.

Status - Online / Offline Filters domains based on their online and/or offline status.

Type Filters domains based on a specific darknet, such as Tor v3, I2P, or others

Start Date Filters domains discovered after a specific date and time.

End Date Filters domains discovered before a specific date and time.

Table 4.2: Filter Options of Darknet Domain API



5
Methodology

This chapter outlines our approach to investigating the Tor onion services landscape. Firstly, we

emphasize the importance of developing a robust port scanning tool. Secondly, we detail the core design

principles guiding the tool’s development. Next, we provide an overview of the system architecture,

highlighting its key components and interactions. Following this, we explain our method for assessing

the availability of onion services. Finally, we validate the efficacy and reliability of our port scanning tool,

underlining its robustness.

5.1. Need for building Port Scanning Tool
The dark web presents unique challenges for port scanning due to its encrypted environment and

the need for stealthy and efficient scanning techniques. While existing tools like Nmap, Ncat, and Netcat

have been used for dark web port scanning, their slow performance and limited features make them

impractical for comprehensive scans. We have seen in the literature that the time taken to perform a scan

on 10000 ports for a single onion service took 24 hours. Previous studies, such as [21], have highlighted

the limitations of existing port scanning tools in the dark web context. These studies have underscored the

importance of optimizing scanning strategies and enhancing tool capabilities to achieve more efficient and

comprehensive results. While some methodologies have been proposed, such as the incremental scan

approach, time statistics for scans have often been lacking, leaving room for improvement in efficiency

and accuracy.

5.2. Design Principles
In developing a specialized port scanning tool for the dark web, it is crucial to incorporate robust design

principles that address this environment’s unique challenges and demands. The Tor network’s encrypted

layers, the need for rapid and accurate scans, and the limitations of existing tools necessitate a thoughtful

approach to tool design. By focusing on efficiency, accuracy, flexibility and scalability, we aim to create a

port scanning tool that not only overcomes these challenges but also sets a new standard for dark web

investigations. These design principles are the foundation for building a tool that can reliably identify open

ports and adapt to evolving needs. The design principles guiding the development of the port scanning

tool for the dark web include:

• Efficiency: The tool must be optimized using concurrent scanning techniques. Concurrency is

a powerful design principle that can significantly increase the speed of port scanning by allowing

multiple tasks to be executed simultaneously. In the context of the Onionscan port scanning tool,

incorporating concurrency can optimize the scanning process, making it faster and more efficient.

This efficiency is crucial for dark web investigations, where timely data collection is essential.

• Accuracy: Emphasis is placed on ensuring accurate and reliable scan results with comprehensive

scanning capabilities. In sensitive environments like the dark web, accuracy is also a legal and ethical

responsibility. Incorrectly identifying services could lead to legal ramifications or ethical concerns,

especially when dealing with privacy-sensitive data.

• Flexibility: Users must be able to customize scanning parameters to suit specific requirements.

This includes defining port ranges, specifying target onion services, and adjusting scanning intervals.

25
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Such customization options ensure the tool can be tailored to different scanning scenarios, whether

for broad sweeps of dark web services or focused investigations on particular targets.

• Scalability: The tool’s support for concurrent execution ensures that it can scale efficiently as the size

and complexity of the scanning tasks increase. This scalability is essential for handling large datasets

or extensive dark web investigations, allowing the tool to perform effectively under high-demand

conditions.

• Data Storage and Analysis: Integrating MySQL for systematically storing scan results is another

aspect of the design principle. This database-driven approach organizes and preserves scanning

data and lays the groundwork for advanced data analysis and visualization. Using tools like Python

notebooks for data analysis, users can extend the tool’s capabilities to perform in-depth investigations

and derive actionable insights from the collected data.

5.3. System Architecture
This section presents a comprehensive overview of the system design employed for port-scanning

onion services. The architectural framework is delineated into four key steps, each having a pivotal role in

systematically exploring and analysing these services. Beginning with the Data Source, where information

is gathered from the proprietary Dark Web Monitor, the subsequent step delves into the Port Scanning

Module, elucidating the techniques and procedures employed in actively exploring onion services. Data

Storage details the systematic organization and storage of the scanned data, laying the foundation for

subsequent analysis. Finally, the Post Data Analysis step examines the obtained results, aiming to uncover

patterns, anomalies, and trends within the port-scanning data. The synergy of these four steps forms

a robust and structured approach to comprehensively understand and analyze the landscape of onion

services on the Dark Web. The architectural flow is visually represented in Figure 5.1, providing a holistic

view of the sequential processes involved in this research endeavour.

Figure 5.1: Framework Architecture

Data Source - The system begins by interfacing with the Dark Web Monitor API to fetch a curated list

of onion services. This API is the primary source for obtaining up-to-date information on onion services.

Port Scanning Module - The core of the architecture involves a sophisticated port scanning engine
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tailored for onion services. The retrieved data is pre-processed to extract relevant information, such as

onion service address and temporal metrics. This step ensures that the input to the port scanner is well-

structured and conducive to effective analysis. The Port Scanning engine takes the following parameters

as input: Tor Proxy Address, Port Range (with a default scan of the first 1000 ports in the absence of

specification), and a file containing a list of onion services to be scanned (each line of the file has onion

ID and onion address separated by a comma). The port scanning module leverages parallel processing

techniques implemented through the Go programming language to enhance speed and efficiency. This

optimizes the scanning process by simultaneously handling multiple onion services and ports, enabling the

system to scale effectively. This scalability is crucial for accommodating the substantial volume of onion

services within the dataset, ensuring a robust and responsive port scanning capability. In Section 5.4, an

in-depth elucidation of the adopted port scanning approach is provided.

Data Storage - The outcomes of the port scanning analysis, including details on open ports detected

and other metadata, are stored in a MySQL database. This relational database structure facilitates

the secure and organized storage of results. The database consists of two tables, ’Scan Results’ and

’Scan History.’ The ’Scan Results’ table employs ’OnionID’ as the primary key, uniquely identifying each

record. This table captures essential attributes such as the onion service’s URL, discovery timestamp

(’DiscoveredAt’), scan timestamp (’ScannedAt’), a list of open ports, scan status, last scan timestamp

(’LastScannedAt’), and the specified port range. Concurrently, the ’Scan History’ table features an ’ID’ as

its primary key, establishing a relationship with ’OnionID’ as a foreign key, linking to the ’Scan Results’

table. This table maintains a historical record of scans. The dual-table structure enables a comprehensive

analysis of real-time and historical data, facilitating a detailed exploration of onion service port configurations

over distinct timeframes.

Post Data Analysis - The post-analysis phase of this research encompasses a multifaceted approach

to extract meaningful insights from the port-scanning data obtained from Tor v3 onion services. Utilizing

statistical methods, the study aims to identify the most prevalent services within these domains, shedding

light on the frequently encountered protocols. Correlation analysis will investigate the relationships between

different ports, revealing potential dependencies and vulnerabilities associated with specific configurations.

Adding a temporal dimension, the analysis will unfold patterns in the distribution of ports over time, providing

a dynamic understanding of port usage trends. Additionally, examining status changes (Offline, Online,

T.U) over time for each onion service will offer insights into the availability dynamics. Through visual aids

like correlation matrices, temporal distribution charts, and status change charts, the post-analysis seeks to

present these findings comprehensively. The outcomes of this phase are expected to contribute nuanced

insights into commonly used services, an in-depth understanding of onion availability, and heuristics for

optimizing future port-scanning strategies, thereby enhancing the overall understanding of Tor v3 onion

services.

5.4. Approach
This section provides an overview of the tool’s current port scanning methodology. It acknowledges

the preliminary and basic nature of the approach, setting the stage for a deeper exploration and refinement

as the thesis progresses and more data is collected. As we delve further into our analysis, we aim to

develop heuristics that will enhance and optimize future iterations of the port scanning strategy.

Before initiating the port scanning process for onion services, our primary objective is to ascertain

the availability of the onions. The availability status of onion services is categorized into three distinct

classifications: online, offline, or T.U. These classifications are elaborated upon in the ’Availability of Onion

Services’ section. Upon determining the availability status, our focus shifts to identifying the open ports if

the onion is online. This sequential approach ensures a structured and systematic examination of onion

services, laying the groundwork for comprehensively evaluating their security posture.

5.4.1. Availability of Onion Services
Understanding the various status codes of onion services is crucial for comprehending their availability

within the Tor network. They serve as indicators of the onion service’s responsiveness and accessibility.

This subsection delves into the methodology and significance of classifying onion services using the

three distinct status codes: Online, Offline, and T.U. Traditionally, the Dark Web Monitor (DWM) sends

HTTP/HTTPS requests specifically to ports 80/443 and awaits responses from onion services. If a response
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is received, the service is categorized as ’Online’; if no response is received, it is labelled as ’Offline’.

However, this approach may lead to inaccuracies. There are instances where ports other than 80/443 may

be open, indicating that the onion service is online. Yet, it is incorrectly classified as ’Offline’ by the DWM

due to its limited port focus. To address this limitation and refine our classification criteria, we transition

from the conventional definitions of ’Offline’ and ’Online’, based solely on connectivity to ports 80/443, to

more advanced definitions that are independent of the specific port accessed in the HTTP request. These

refined status codes stem from a meticulous analysis comprising diverse experiments tailored to capture

unique responses from onion services. This enhanced methodology offers a more nuanced understanding

of onion service status, thereby boosting the accuracy and reliability of our assessments.

5.4.1.1. Offline

(a) Scenario 1 - Descriptors Not found

(b) Scenario 2 - Introduction Failed

Figure 5.2: Offline Scenarios

There are two scenarios in which an onion service can be considered offline. When a client initiates a

connection request with an onion service, the initial step involves retrieving the onion service descriptors

from the distributed hash table. In the first scenario, if an onion service remains inactive for an extended

period or voluntarily de-registers itself from the Tor network, its corresponding onion service descriptors are

purged from the distributed hash table. Consequently, when a client attempts to retrieve these descriptors,

the Tor proxy generates an error indicating the unavailability of HSDirs and the absence of descriptors

as shown in Figure 5.2a. Subsequently, the client receives a “Host unreachable” error response when
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attempting to establish a connection using the SOCKS5 proxy.

In Scenario 2, the process of fetching onion service descriptors and selecting a rendezvous point

proceeds without any issues. However, the client encounters a failure during the introduction procedure.

This failure can occur for two reasons: either all the introduction points are unavailable, or the introduction

points are operational, but the onion service itself is offline. In some cases, despite an onion service not

properly registering with the Tor network, its descriptors may still persist in the Distributed Hash Table

(DHT). During this transitional phase, the initial step of fetching descriptors succeeds, but the subsequent

introduction fails. Consequently, an onion service may be considered offline even when the introduction

procedure encounters an issue. The Tor proxy reports that the introduction has failed, while the client

receives a “host unreachable” response, indicating the inability to establish a connection with the onion

service.

“An onion service is considered offline when it is not reachable within the Tor network either due to the

descriptor unavailability or due to the failure of introduction phase” In other words, an onion service is said

to be offline when any of the following occurs:

• Descriptor Unavailability: The service is considered offline when the Tor client fails to retrieve

descriptors, preventing the establishment of connection information.

• Introduction Phase Failure: Unsuccessful attempts by the Tor client to connect to introduction points

specified in the descriptors or when these introduction points cannot reach the onion service.

5.4.1.2. T.U

In this particular scenario, when a client initiates a connection to an onion service, the initial steps

of fetching descriptors, finding a rendezvous point, and initiating the introduction procedure proceed

successfully. However, as indicated by the red arrow in Figure 5.3, the fourth step encounters a failure.

This failure can stem from various sources, such as issues within the Tor network, failure to establish

a rendezvous point or temporary downtime of the domain’s server, potentially caused by an inability

to handle the incoming traffic load. When a circuit is disrupted or the client receives no response due

to the aforementioned reasons, the client’s Tor proxy enters a waiting state for a predefined duration.

Subsequently, it encounters a connection timeout error or a Time To Live (TTL) expired error. To address

these challenges, the status of an onion can be assessed by retrying the connection request a specified

number of times (e.g., 3 times). This approach helps mitigate issues related to the Tor network or circuit

connectivity problems.

“An onion service is considered to be T.U when a connection timeout response is elicited during the

client’s attempt to establish a connection with the service after the Introduction phase.” In other words, an

onion service is said to be T.U when any of the following occurs:

• Connection Timeout Response: A connection timeout response is encountered when the client’s

attempt to establish a connection with the onion service exceeds the predetermined time limit for a

successful connection.

• Possible Causes for Connection Timeout:

– Rendezvous Point Unavailability: If the chosen rendezvous point becomes unavailable or

experiences issues, the communication between the client and the onion service may be

compromised, leading to TTL expiration.

– Server-Side Congestion or Unavailability: The onion service’s server may experience congestion,

high load, or temporary unavailability, causing the TTL to expire as the connection cannot be

sustained within the expected time frame.

– Resource Exhaustion on Tor: If the Tor network experiences resource exhaustion, such as

running out of available circuits or processing capacity, it can contribute to TTL expiration.

5.4.1.3. Online

After successfully completing the initial steps of fetching descriptors, selecting a rendezvous point, and

executing the introduction and rendezvous procedures, a 6-hop circuit is established between the client

and the onion service. This circuit comprises three hops chosen by the client and three hops chosen by the

onion service, with the rendezvous point situated as the third hop from the client’s side. Subsequently, the
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Figure 5.3: T.U Scenario

client forwards the connection request along the established circuit to the onion service. Upon receiving

the request, the onion service may respond in one of two ways as shown in Figure 5.4:

1. Successful Connection Establishment: In this scenario, the client receives a response indicating

successful connection establishment. No error is encountered, and the connection is seamlessly forwarded

to the client. This outcome signifies that the port is open, allowing for uninterrupted connection establishment

without any errors.

2. Error Response Received: Conversely, the client receives a ”connection refused” error response

from the onion service. A “connection refused” error from an onion service typically indicates that the

targeted service is actively rejecting incoming connection attempts on the specified port. This refusal can

stem from various underlying reasons. Firstly, the onion service might not be running or available on the

designated port due to temporary downtime, misconfiguration, or intentional blocking. Secondly, firewall

restrictions or network configurations could be in place, rejecting incoming connections to protect the

service or enforcing specific access policies. Despite the server on the onion service’s side being active,

the error response suggests that the server is not expecting a response or is being obstructed by a firewall.

Ports that result in a “connection refused” error when attempting to establish a connection to an onion

service can be referred to as “Filtered Ports.”

“An onion service is considered online when a client requests a connection with the service, and it is

reachable and responsive within the Tor network.” In other words, an onion service is said to be online

when the following sequence of steps is successful:

• Descriptor Availability: A fundamental criterion for an onion service to be online involves successful

retrieval of descriptors by the Tor client, encompassing essential information like introduction points

and public keys.

• Introduction Phase: The Tor client establishes a connection to at least one introduction point specified

in the descriptors.

• Circuit Establishment: The onion service connects to the rendezvous point by verifying the one-time

secret string received during the introduction phase.
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Figure 5.4: Online Scenario

• Responsive Functionality: The service effectively handles and responds to client requests, demon-

strating its ability to fulfil defined functionalities.

5.4.2. Status Check of Onions
In the context of our research methodology, the initial verification of onion service status is the

foundational step preceding any port scanning activities. This procedural choice is driven by several key

justifications deeply rooted in the optimization of our approach. Firstly, confirming the operational status

of onion services prior to scans serves as a pragmatic resource management strategy. By discerning

the availability of services upfront, we strategically allocate computational resources only to active and

accessible targets, thereby maximizing the efficiency of our scanning endeavours.

This approach is particularly pertinent in large-scale scanning operations, where judicious resource

utilization is imperative for feasibility and scalability. Moreover, beyond resource optimization, our com-

mitment to ethical research practices underscores the importance of verifying service availability. By

abstaining from scanning inactive or inaccessible services, we uphold principles of network integrity and

responsible engagement within the Tor ecosystem. Algorithm 1 represents the pseudo-code on how

onions are classified into different statuses based on the response received. It commences by initializing

the status variable as an empty string and subsequently endeavours to establish a connection using the

GetNetworkConnection function, which is represented by Algorithm 2. Upon encountering an error during

the connection attempt, the algorithm examines the error message to determine the cause. If the error

message indicates “host unreachable”, it categorizes the onion service as “offline”. Alternatively, if the

error message contains terms like “TTL” or “timed”, it labels the service as “temporarily_unavailable”. It

dissects the error message for other unforeseen errors, extracting the last two words and concatenating

them with an underscore to formulate a distinct status. In the absence of any errors, it concludes that

the onion service is “online”. Finally, the algorithm returns the determined status to indicate the service’s

operational state clearly.

Now, we would like to know the distribution of response time of different statuses. It helps in evaluating

the performance of onion services. Understanding the response times under different status codes makes

it possible to identify areas where optimization may be needed. For example, slow response times for

certain status codes could indicate bottlenecks or inefficiencies that must be addressed.

A systematic approach was adopted to mitigate the bias introduced by fluctuating network conditions.

A random sample comprising 5 sets, each containing 20,600 onions, was scanned at five distinct time

points. This methodology, totalling 103,000 checked onions, ensures a comprehensive and unbiased

assessment of response times across various network conditions. The response time distributions from

all five experiments were aggregated to analyse the collected data effectively. Visualization techniques,

including box plots and kernel density estimate plots, were employed to clearly and concisely represent

the response time distribution. These visualizations offer valuable insights into the variability, central

tendency, and outliers within the response time data, facilitating informed decision-making and performance

optimization efforts for onion services within the Tor ecosystem.

5.4.3. T.U Onions
In our exploration of onion service statuses, the behaviour of ’T.U’ onions emerges as particularly

intriguing due to its inherent uncertainty. Such onions may exhibit this status for various reasons, including
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Algorithm 1: Get Status of Onion Services

Input:

onionService: string (the onion service to connect to)

port: int (the port number)

proxyAddress: string (the address of the Tor SOCKS proxy)

timeout: time.Duration (timeout duration for the connection)

Output: status

begin

status← “”;

connection, err← GetNetworkConnection(onion, port, proxyAddress, timeout);

if err 6= nil then

if err contains “host unreachable” then

status← “offline”;

else if err contains “TTL” or err contains “timed” then

status← “temporarily_unavailable”;

else if err contains “connection refused” then

status← “online_but_filtered_port”;

else

s← Split err by spaces;

status← Join last two words of s with “_”;

else

status← “online”;

return status;

Tor network issues, rendezvous unavailability, or server-side congestion. To gain deeper insights into

the behaviour of these onions and discern the conditions under which they transition from this state, we

employed a systematic monitoring approach.

The experiment was conducted as follows: We initiated the process by randomly selecting a dataset

of 10,000 onions, which were then processed using the OnionScan tool precisely at 10:00:00 hours. The

tool systematically checked the status of each onion, flagging those identified as ’T.U’ and placing them in

a dedicated queue for further monitoring. This queue system was designed with meticulous attention to

detail, monitoring the status of the flagged onions at regular intervals of 5 minutes over a duration of two

days. We repeated this experiment five times, with each iteration commencing at 10:00:00 and spanning

over two weeks. For each repetition, a new batch of 10,000 onions was randomly selected.

The rationale behind conducting multiple iterations stems from the inherent unpredictability of the Tor

network. Factors such as downtime in Tor relays or increased server loads on the OnionScan tool due

to concurrent usage by multiple users can influence the results. By conducting multiple experiments, we

aimed to account for these potential disruptions and ensure the robustness and reliability of our findings.

5.5. Validation
In the validation section, we comprehensively assess the port scanning tool to ensure its accuracy and

reliability in detecting the status and open ports of onion services within the Tor network. This validation

process encompasses evaluating the tool’s port scanning capabilities and the initial step of checking the

status of onions before subjecting them to the port scanning module. This integrated approach allows us

to validate the tool’s ability to effectively handle various states of onion services: online, offline, and T.U.

We try to emulate different scenarios of the availability of onions.

5.5.1. Onion Services Setup
The process of setting up an onion service involves several steps. Firstly, the Tor package is down-

loaded from the official website or using package managers available for the operating system. Tor is

configured to function as a hidden service upon installation by editing the torrc configuration file. Within this
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file, specific ports are designated for the service to listen on and any access controls desired. For instance:

HiddenServiceDir /var/lib/tor/BitcoinDoubler/
HiddenServicePort 80 127.0.0.1:80

Subsequently, the Tor service is restarted using the command “sudo systemctl restart tor”, ini-
tiating the generation of a public/private key pair for the onion service. This key pair forms the basis

of the cryptographic link between the server and Tor clients. The resulting onion address is stored at

“/var/lib/tor/BitcoinDoubler/hostname”, serving as the unique identifier for the onion service.

After generating the keys, the web server is configured to serve content over the Tor network. This

involves specifying the onion hostname and port within the server configuration, ensuring accessibility

via Tor. Additionally, it may be prudent to implement SSL/TLS encryption to safeguard communications

between clients and the server. By meticulously following these steps, the onion service is effectively set

up, providing a secure and anonymous platform for content delivery within the Tor network. The availability

of the onion can be verified by accessing it through the Tor Browser. This procedure was repeated 20

times to set up a total of 20 onions.

5.5.2. Status Check of Onions
An interesting pattern was discovered while checking the status of onions: onions often shift to a T.U

state in two scenarios. The first scenario may arise when the onion’s server experiences a temporary

outage or connectivity issues within the Tor circuit. Alternatively, the second scenario occurs when the

onion service descriptors persist in the distributed hash table even after the onion service has been offline.

This can happen because it was not properly deregistered from the Tor network. In such instances, initial

steps to access the onion service may succeed; however, the final step of establishing a 6 hop-circuit

fails because the onion service is offline and cannot connect to the rendezvous point, giving a connection

timeout error. To verify this, two experiments were conducted to check the status of the onion services:

proper deregistration by notifying the Tor network and deregistration without notifying..

5.5.2.1. Onion Service taken offline by notifying the Tor network

Deregistering an onion service from the Tor network involves a systematic process. First, administrators

must access the torrc configuration file in the /etc/tor/ directory. Within this file, the configuration specific to

the onion service must be identified and removed, including its hostname and port bindings. Additionally,

any access controls or authentication mechanisms associated with the onion service should be disabled

or revoked. Once these configurations are modified, the Tor service must be restarted for the changes

to take effect, usually accomplished through the sudo systemctl restart tor command on Linux systems.

Following the restart, the onion service is effectively deregistered from the Tor network, ensuring that it no

longer participates in the network or provides access to its services.

The above procedure is followed for all twenty onions, and when the tool checked the status, it was

shown offline. The reason is that, when the onion was deregistered following the above procedure, the

onion service descriptors will be removed from the Distributed Hash Table, resulting in a scenario shown

in Figure 5.2a.

5.5.2.2. Onion Service taken offline without informing tor network

Taking an onion service offline without properly deregistering it from the Tor network can lead to

connection timeout errors for users attempting to access the service. To investigate this impact, an

experiment was designed to simulate scenarios where onion services are taken offline without notifying the

Tor network. The experiment aimed to elucidate the Tor network’s and client connections’ behaviour when

attempting to access offline onion services under such circumstances. The experimental setup involved

creating a controlled environment where a set of 20 onion services were intentionally taken offline by

shutting down the servers hosting them without proper deregistration from the Tor network. Subsequently,

when attempts were made by the tool to check the status of these onion services, it was shown as T.U.

This action effectively removes the service from availability, rendering it inaccessible to users. However,

clients trying to establish connections face timeouts as the onion service descriptors persist in the distributed

hash table. The Tor network persists in routing incoming requests to the now-offline onion service, leading

to failed connection attempts and eventual timeout errors for users. Consequently, despite the service

being offline, it remains referenced within the Tor network, causing connection attempts to result in timeouts

instead of immediate rejection.
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5.5.3. Port Scanning
An experimental setup was designed utilizing a dataset of custom onion services configured to have

varying port configurations. The setup involved opening different ports on some onion services while

closing different ports on others. Specifically, 20 custom onion services were created, each with a unique

combination of open and closed ports. The ports ranged from commonly used ports such as HTTP (80),

HTTPS (443), SSH (22) and FTP (21) to less common ports IRC (6667) to ensure comprehensive testing

of the port scanning tool’s capabilities.

The experimental procedure began by running the port scanning tool on the dataset of custom onion

services. The tool was configured to scan for open ports within the specified range and record the

results for each onion service. Subsequently, the obtained results were compared against the known port

configurations of the custom onion services to evaluate the accuracy of the port scanning tool.

Upon completion of the experimental procedure, it was observed that the port scanning tool achieved a

remarkable accuracy rate of 100%. The tool successfully identified and reported the status of all open ports

within the custom onion services, accurately distinguishing between open and closed ports. Additionally,

no false positives or false negatives were encountered during the scanning process.

The experimental results validate the port scanning tool’s capabilities and effectiveness in accurately

detecting open ports within onion services. The achieved accuracy rate of 100% underscores the tool’s

reliability and robustness, indicating its potential utility for cybersecurity professionals, researchers, and

other stakeholders operating within the Tor network. Furthermore, the experiment highlights the importance

of thorough testing and validation to ensure the efficacy and reliability of cybersecurity tools in real-world

scenarios.
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Implementation

This chapter delves into the technical details of implementing our port scanning tool designed for

the dark web, developed based on the robust design principles outlined previously. Building on the

methodology, we explore the detailed processes and algorithms that enable our tool to interact effectively

with the Tor network. This includes an in-depth examination of how requests are sent through Tor’s SOCKS

protocol, the specific algorithm for identifying open ports, and the experiment setup to assess scalability

and optimization. Additionally, we highlight the new features introduced in the extended version of the

Onionscan tool, which enhances its functionality and performance in dark web investigations. We ensure

our tool is efficient, accurate, and extensible by grounding our implementation in the established design

principles. Through this comprehensive implementation discussion, we aim to clearly understand the

technical foundations underpinning our tool’s capabilities and reliability.

6.1. Port Scanning
Upon confirming the status of the onion services, we proceed to the port scanning phase, aiming

to identify the open ports of the online onion services. This subsection elucidates the methodology for

establishing a connection and communication with the Tor network using the SOCKS Protocol. Additionally,

we detail the algorithmic approach utilized for detecting open ports within the Dark Web environment. To

further assess the feasibility and efficacy of our port scanning methodology, a series of targeted experiments

were meticulously designed and executed, providing valuable insights into the practical application and

performance of conducting a comprehensive port scan.

6.2. Tor’s SOCKS Protocol Integration
Communication with the Tor network is essential to facilitate user interaction with Onion services.

Users typically employ a local software component known as an Onion Proxy (OP) to manage tasks such

as fetching directories, establishing circuits across the Tor network, and managing connections from user

applications. These onion proxies are designed to accept TCP streams and efficiently multiplex them

across established circuits. On the opposite end of these circuits, onion routers connect to the requested

destinations and relay data accordingly. Users utilise the Tor onion proxy to initiate connections with the

Tor network. However, direct communication between client applications and the Tor proxy isn’t supported.

The Tor network supports the SOCKS protocol to bridge this gap, enabling seamless communication

with the Tor proxy. The SOCKS proxy serves as a mediator in this integration, facilitating communication

between client applications and the Tor network. The SOCKS protocol presents a standardized interface

for TCP proxies. Client software initiates a TCP connection to a SOCKS server and requests a TCP

connection to a specified address and port. The SOCKS server then establishes the connection and

communicates the outcome—success or failure—back to the client. Once the connection is established,

the client application customarily utilizes the TCP stream. Subsequently, the Tor Onion proxy forwards the

client’s request to the Tor network, enabling secure and anonymous communication with Onion services.

A detailed explanation of each step involved in this integration: The client application initiates a

connection to the local SOCKS proxy server, specifying the destination address and the desired protocol

(TCP). The SOCKS proxy listens for incoming requests and is an intermediary between the client and

the Tor onion proxy. Upon receiving the client’s request, the SOCKS proxy encapsulates the Tor onion

35
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proxy dialer functionality. This encapsulation allows the SOCKS proxy to route the client’s traffic through

the Tor network, leveraging the anonymity and security features provided by Tor. The encapsulated Tor

onion proxy dialer within the SOCKS proxy forwards the client’s request to the Tor network. This step

involves establishing a connection to a Tor node and routing the client’s traffic through the Tor network’s

decentralized infrastructure. The Tor network receives the forwarded request from the SOCKS proxy

and routes the client’s traffic through multiple Tor nodes. Each node in the Tor network decrypts and

re-encrypts the data, obscuring its origin and ensuring secure transmission through a randomized pathway.

After processing the client’s request, the Tor network fetches the desired data from the destination server.

The response is then transmitted back through the secure and anonymous Tor network route, passing

through the same set of Tor nodes. The Tor onion proxy dialer within the SOCKS proxy receives the

response from the Tor network. The SOCKS proxy then relays this response to the client application,

completing the communication loop.

Thus, integrating the SOCKS protocol within the Tor ecosystem is vital due to its widespread adoption

among applications [29]. Unlike the Tor protocol, which is specific to the Tor network, applications are

more familiar with communicating via SOCKS. Leveraging the SOCKS interface simplifies the integration

process for applications, as they can utilize the existing proxy interface without needing custom integration.

Additionally, SOCKS is preferred due to its simplicity and versatility. Protocols like SOCKS4a and SOCKS5

further enhance compatibility by supporting direct connections to hostnames, mitigating the risk of DNS

leaks.

Algorithm 2: Network Connection using SOCKS Protocol

Input:

onionService: string (the onion service to connect to)

port: int (the port number)

proxyAddress: string (the address of the SOCKS proxy)

timeout: time.Duration (timeout duration for the connection)

Output:

net.Conn (network connection)

error (if any error occurs during connection)

Step 1: Convert the port number to a string representation.;

Step 2: Create a SOCKS5 dialer using the provided proxy address.;

Step 3: Check for any errors during the creation of the SOCKS5 dialer.;

if an error occurs then

Return nil for the connection and the error;

else
Step 4: Dial a TCP connection to the specified onion service and port using the

SOCKS5 dialer.;

Step 5: Check for any errors during the connection establishment.;

if an error occurs then

Return nil for the connection and the error;

else
Step 6: Set the deadline for the connection using the provided timeout

duration.;

Step 7: Return the established connection and nil for the error.;

end

end

Now, let’s delve into the methodology used to communicate with the Tor network via the SOCKS

protocol as shown in Algorithm 2:

• Initialization: The process begins by initializing a SOCKS proxy client within the client application.

This involves creating a SOCKS proxy client object or utilizing a library that supports SOCKS proxy.

• Configuration: The SOCKS proxy client is configured with the necessary parameters, including the

address and port of the SOCKS proxy provided by the Tor client.
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• Connection Establishment: With the SOCKS proxy client configured, connections to the Tor network

can be established. The client specifies the address and port of an onion service when initiating the

connection.

• Communication: Once the connection is established, the client application can communicate with

the desired destination within the Tor network. The SOCKS proxy client encapsulates and forwards

the application’s network traffic through the Tor network, ensuring anonymity and privacy.

• Data Transfer: Data is transferred between the client application and the destination within the Tor

network over the established connection. The SOCKS proxy client transparently handles the data

transfer process, encrypting the data multiple times (onion routing) as it traverses the Tor network.

6.3. Scanning Onion Services for Open Ports
The OnionScan tool is designed with a primary focus on detecting open ports of onion services rather

than determining the status of closed ports, as detailed in Section 5.4.1.3. All active onion services undergo

the port scanning procedure outlined in Algorithm 3. The port scanning function takes the following input

parameters: Text file with the list of onions to be scanned, Tor proxy address, Port range to be scanned

(optional parameter: by default, it scans first 1000 ports). The variables in the algorithm are:

• openPorts: A string to store the list of detected open ports.

• status: A string to store the status of the Onion service.

• checkPort: The port on which the status needs to be checked initially before feeding the onion to

the port scanning loop is represented as X1 in the algorithm.

• maxConcurrent: The maximum number of concurrent port scans, defined by osc.PortConcurrency.

(In the thesis we use X2=200 as the limit considering the maximum load the server running the tool

can handle)

• semaphore: created to limit the number of concurrent goroutines to maxConcurrent.

• wg (sync.WaitGroup): Initialized to keep track of all goroutines.

In the ScanProtocol function, semaphore, mutex and waitgroup are used to efficiently and safely

scan a range of ports on onion services. Semaphores are used to limit the number of concurrent port

scans. By setting maxConcurrent to 200, the function ensures that no more than 200 port scans are

performed simultaneously. This prevents system overload and optimizes resource usage, allowing the

scanning process to run smoothly without overwhelming the system. The sync.WaitGroup is crucial for

synchronizing the completion of all goroutines. By adding a counter before spawning each goroutine and

decrementing it upon completion, the main function can wait for all scans to finish. This guarantees that

all ports are scanned before proceeding to the next steps, ensuring the accuracy and completeness of

the scan results. The sync.Mutex ensures thread-safe operations when updating shared variables like

openPorts. Concurrent writes to openPorts without synchronization could lead to race conditions and

inconsistent data. The mutex locks access to openPorts during updates, maintaining data integrity and

preventing conflicts between goroutines. These concurrency primitives together provide a robust and

efficient framework for parallel port scanning, ensuring data integrity and system stability while maximizing

the efficiency of the scan process.

The algorithm employs a for loop to iterate over the specified port range, utilizing Go routines to

execute port scans concurrently, thereby enhancing the efficiency of the scan process. Currently, 200

ports run concurrently at a time. Within each iteration of the loop, a TCP connection request is dispatched

to the onion address and the corresponding port number, as demonstrated in Algorithm 2. If the connection

request results in no errors and the connection variable isn’t nil, it indicates that the port is open and can

accept incoming connections. Finally, the identified open ports are recorded in the database for subsequent

analysis and evaluation of the scan results.

Having established the methodology for port detection, our subsequent objective shifts towards

identifying the most frequently used protocols. To achieve this, we conducted a series of scans across

various port ranges, including 1-1000, 1-10000, and a comprehensive scan of up to 65536 ports.
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Algorithm 3: Port Scanning Onion Services

Input: onion, onionId, osc

Output: None

begin

openPorts← “”;

status← “”;

checkPort← X1;

maxConcurrent← X2;

Initialize sync.WaitGroup wg;
Create semaphore with maxConcurrent;

status m,sd/k’leijo32i90← getStatus(hiddenService, checkPort, osc.TorProxyAddress,

osc.Timeout);

if status == “online” or status == “online_but_filtered_port” then

foreach port in defaultPorts do

wg.Add(1);

semaphore← acquire lock;

Spawn thread to check port status;

if connection is successful then

Add port to openPorts;

wg.Wait();

close(semaphore);

LogInfo(onion, openPorts);

db← InitDB();

if Error initializing database then

Print error message;

return;

if Error inserting/updating to database then

Print error message;

Close db;

6.4. Scalability and Optimization Assessment of Port Scanning
Understanding the time required for a full scan of an onion service is crucial, as a complete scan for

every service isn’t always feasible due to time constraints and computational resources. Thus, optimizing

the port scanning methodology becomes essential. To refine our approach, we conducted scans on a

randomized sample of 100 onion services, assessing the time taken for port scanning across different

port ranges, including 100, 1000, 2000, 5000, 10000, 15000, 20000, 30000, 40000, 50000, and 65536

ports. Subsequently, the time distributions for these scans were visualized to analyze the practicality

and efficiency of conducting port scans across various port ranges. This analysis aids in determining the

optimal port range for efficient scanning while balancing thoroughness and resource utilization.

6.5. Extended Onionscan for Port Scanning
In implementing the port-scanning methodology, a tailored selection of tools and technologies has been

orchestrated to ensure efficiency, extensibility, and depth of analysis. The initial step involves leveraging

a Go script, specifically designed to interact with the Dark Web Monitor API, facilitating the retrieval of

the onion services dataset. The port-scanning module is constructed upon the foundational framework of

Onionscan [30]. The tool is extended to address specific limitations inherent in the standard Onionscan

tool, enhancing its functionality to suit the research requirements. Notably, the extension enables scanning

a broader range of ports, either default or specified range, surpassing the default capability limited to the

top 10 common ports. This enhancement offers a more comprehensive exploration of the diverse services

within the Dark Web environment, facilitating a deeper understanding of its inner workings.

In addition to port scanning, the modified tool incorporates functionalities for monitoring the status of
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onions, categorizing them as online, offline, or T.U. A queue system enables the continuous monitoring of

onions in the latter two categories, ensuring timely detection of changes in their status. Furthermore, the

tool allows the input of a list of onions to be scanned, offering flexibility in targeting specific onion services

for analysis.

To optimize performance and efficiency, the tool supports the utilization of goroutines. Goroutines

in Go (Golang) provide a lightweight way to achieve concurrency. Each goroutine is a function that runs

concurrently with other goroutines in the same address space. Launching a separate goroutine for each port

or onion service being scanned allows the tool to perform multiple scans in parallel, significantly reducing

the total scan time. This concurrent execution capability enhances the scalability and effectiveness of the

scanning process, allowing for swift and thorough exploration of the Dark Web landscape.

Moreover, integrating MySQL database functionality seamlessly complements the scanning tool,

facilitating the systematic storage of scan results. This refinement contributes to a well-organized and

structured database, laying the groundwork for subsequent analyses and providing a comprehensive

repository of Dark Web intelligence. For data analysis and visualization purposes, a Python notebook is

chosen.



7
Results

In this chapter, we present the results of our investigation to provide valuable insights into the char-

acteristics and behaviours of onion services on the dark web, utilizing the specialized port scanning tool

developed in this research. We begin by analyzing the average response times of onion services with

different status codes. Of these onions, we are particularly interested about T.U onion services. So, these

onion services are monitored further to find out the dynamics of such onion services. Following this, we

conduct a thorough post-data analysis, examining the distribution of open ports, the prevalence of onions

with and without port 80 open, and grouping onions based on the number of detected open ports. We also

explore the time distribution of port scanning and perform a detailed analysis of the services identified,

including a temporal analysis to observe service trends over time. Additionally, we conduct a correlation

analysis to understand the relationships between individual ports and service-based groupings. Finally, we

discuss the optimized port scanning methodology, highlighting when to revisit the onion services and the

implementation of continuous integration to enhance the robustness and efficiency of our approach. This

comprehensive results section aims to provide valuable insights into the characteristics and behaviours of

onion services on the dark web.

7.1. Dynamics of Onion Services
This section encompasses a diverse range of analyses, each contributing unique insights into the

operational dynamics and performance metrics of Onion Services.

7.1.1. Average Response Times of Different Status Codes

Status Code count mean std min 25% 50% 75% max

online 92,076 6.03 5.71 0.14 1.31 4.40 8.70 28.00

offline 10,000 16.24 8.20 2.73 12.70 16.54 21.19 63.97

T.U 924 120.02 0.48 119.00 120.00 120.00 120.11 121.00

Table 7.1: Response Time Statistics of Onions in Different Status Categories

The time taken to get a response when a connection request is made to an onion service was measured

for a random sample of 103,000 onions in total. Figure 7.1 shows a boxplot of these response times.

Further, 7.1 provides comprehensive statistics of the response times observed across different categories

of onion statuses.

For onions categorized as “offline,” the data reveals that 10,000 were identified in this state. The

average response time for these onions is approximately 16.24 seconds, with a standard deviation of 8.20

seconds, indicating some variability in the response times. The minimum response time recorded is 2.73

seconds, while the maximum is 54.70 seconds. Notably, the median response time, representing the

data’s midpoint, stands at 15 seconds, with 25% of onions responding in less than 10.29 seconds and

75% responding within 20.39 seconds.

On the other hand, onions categorized as “online” constitute a larger portion, totalling 92,076 onions.

40
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Figure 7.1: Boxplot representing response times of onions under different status categories

These onions exhibit comparatively shorter response times, with an average of approximately 6.03 seconds

and a standard deviation of 5.71 seconds. The distribution of response times for scanned onions shows

a similar pattern, with 25%, 50%, and 75% of onions responding within 1.31, 4.40, and 8.70 seconds,

respectively. The response times range from 0.14 to 28.00 seconds, capturing the variability in accessibility

among these onions.

In contrast, the “T.U” category comprises 924 onions experiencing transient unavailability. The statistics

for this category reveal notably higher response times, with an average of approximately 120.02 seconds

and a standard deviation of 0.48 seconds. Despite some onions showing relatively shorter response times,

the median and the maximum response time remain consistent at 120 seconds. A timeout of 180 seconds

was set while making an HTTP connection, but here, we observe that the distribution lies almost exactly at

120 seconds.

The timeout observed in the Tor network, typically around 120 seconds, results from a comprehensive

process orchestrated by the Tor client to establish optimal circuit build timeouts for connecting with

onion services. The process involves recording and analyzing circuit build times, estimating distribution

parameters, and calculating timeouts based on the Pareto distribution fitting of the data. Firstly, the Tor client

collects and stores circuit build times in a circular array, updating distribution parameters and recomputing

the timeout after each circuit completion. The parameters for a Pareto distribution are calculated using the

maximum likelihood estimator, with the distribution mode serving as the Xm parameter.

The circuit build timeout is then determined using the Pareto Quantile function, which yields the

cumulative distribution function (CDF) value such that 80% of the distribution mass is below the timeout

value. During the calculation of circuit build timeouts, Tor clients cap the timeout value, denoted as

timeout_ms, at the maximum build time observed thus far, but at least 60 seconds. This means that if a

circuit takes an unusually long to build, possibly due to relay issues, the client will not wait indefinitely but

instead sets a maximum limit based on historical build times. Additionally, the close timeout, represented

as close_ms, is capped at twice the maximum observed build time, ensuring that circuits are not kept open

indefinitely. Since the default value of cap close_ms is twice 60 seconds, it results in a cap of 120 seconds.

Therefore, the observed result of 120 seconds is consistent with the timeout mechanism described.
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(a) Distribution of Online Onions

(b) Distribution of Offline Onions

(c) Distribution of T.U Onions

Figure 7.2: Kernel Density Estimate plot of response times of different onion status categories
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The kernel density estimate plots shown in Figure 7.2a, 7.2b, and 7.2c depicts the distribution of

response times across different onion statuses. An interesting observation arises from the response time

perspective upon analysing the plots. Onions categorized as T.U exhibit significantly longer response

times than offline and online onions, aligning with our expectations. Furthermore, offline onions display

slightly higher response times than online ones. Onions taking longer than 60 seconds to respond indicate

potential temporary unavailability. This finding underscores the significance of response time thresholds

in identifying the status of onions. As such, T.U onions present a particularly intriguing subset for further

investigation.

7.1.2. Monitoring T.U onions
In this section, we outline the heuristics employed for revisiting onion services, which involves periodi-

cally checking the status of these services. Effective monitoring is crucial for maintaining an up-to-date

understanding of onion service availability and behaviour. To ensure comprehensive coverage, we catego-

rize the revisits into three main subsections: monitoring online, offline, and T.U onions. Each subsection

addresses specific considerations and strategies tailored to the distinct characteristics and potential chal-

lenges associated with onions in these different states. By systematically revisiting onion services based

on these heuristics, we aim to enhance the reliability and timeliness of our assessments while gaining

deeper insights into onion service dynamics.

Figure 7.3: Database Records of monitored T.U onions

Figure 7.4: Graph representing the number of onions at T.U state at time t

Of the 50,000 onions examined, a relatively small proportion of 339 were found to be T.U and were

meticulously monitored over a 2-day period at 5-minute intervals. Two distinct plots offer insights into
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(a) After 4 hours

(b) After 12 hours

Figure 7.5: Graph representing how long it takes T.U onions to change their state
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the statistical trends concerning the transitions of these T.U onions to online or offline states. Figure 7.3

illustrates the database records of the monitored T.U onions, spanning 290 intervals of 5-minute increments

labelled as t1, t2, ..., t290. This plot meticulously tracked T.U onions that remained static in their status

without transitioning to online or offline states. The primary objective was to discern the duration required

for all T.U onions to undergo at least one status change.

In contrast, the second plot aimed to quantify the count of onions in various statuses at each time

interval. Its purpose was to identify instances where the count of T.U onions dropped to zero, indicating a

complete transition out of the T.U state.

Our analysis was further contextualized through the examination of temporal behaviours depicted

in Figures 7.4, 7.5a and 7.5b. The x-axis represents discrete 5-minute time intervals in the provided

visualisation, offering a comprehensive temporal representation. On the y-axis, we quantify the number of

onions detected within each interval, providing a granular understanding of onion activity over time. This

visualization is a dynamic tool for tracking the fluctuating presence of onions within the dataset, allowing

for precise analysis of temporal trends and patterns and highlighting the timeframes within which onions

transitioned statuses or remained static. Specifically, Figure 7.5a demonstrated that nearly all T.U onions

experienced at least one status change within 4 hours, with only one exception. Conversely, as depicted

in Figure 7.5b, all onions transitioned within 12 hours. Furthermore, Figure 7.4 showcased that after 50

minutes, only 20 T.U onions remained in the T.U state out of the initial 339, i.e., almost 95% of the onions

changed their T.U state.

Considering these empirical findings, we propose heuristic guidelines for revisiting these onions. These

guidelines suggest conducting follow-up checks at specific intervals, such as 50 minutes, 4 hours, and 12

hours, until each T.U onion has experienced at least one status change. Such an approach ensures a

comprehensive monitoring strategy tailored to the temporal behaviours observed in the dataset.

7.2. Post Data Analysis
The dataset under analysis spans the timeframe from September 2018 to January 2024, encompassing

a diverse range of onion addresses. A total of 521,565 onion addresses have been systematically scanned,

as depicted in Figure 7.6. Among these, 311,613 were found to be online, while 194,306 were online, and

15,646 addresses were T.U during the scanning process.

Figure 7.6: Distribution of Dataset
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7.2.1. Distribution of Open Ports
Among the 311,613 online onion services, 126874 onions were scanned in the port range 1-1024,

127209 onions in the port range 1-10000, and 57530 onions scanned in the port range 1-65536.

The frequency distribution of open ports detected in these onions is depicted in Figure 7.7. The

frequency distribution is represented in two plots because all the ports cannot be fit in a single graph.

To refine our analysis and focus on intriguing insights, we filtered out onions with ports exclusively open

on port 80, resulting in 6758 onions for further investigation. A total of 196 unique ports were identified.

These unique ports are listed in Appendix A. Notably, the Lightning Network protocol (ports 9735 and

9736) exhibited the highest frequency, encompassing a mean of 2,516 onions (47%), followed by Bitcoin

(ports 8333, 8332, 28333 and 28332) with 1,869 onions (29%), SSH (port 22) with 1,238 onions (21%),

and HTTPS (port 443) with 887 onions (16%). Additionally, some of the noteworthy ports include Monero

(ports 18081 and 18083) with 239 onions (4%), SMTP (port 25) with 87 onions (1.5%), POP3 (port 110)

with 41 onions (1%), XMPP (ports 5222 and 5269) with 62 onions (0.9%) and IRC (ports 6666 and 6697)

with 60 onions (0.9%).

Further investigation into the onions with open ports revealed an interesting insight. Many onions were

observed without port 80 open. The following two subsections describe the two categories in detail.

7.2.2. Onions With Port 80 open
Of 298,804 online onions, 296,620 onions had only port 80 open, and 2184 onions had ports open

other than port 80. To observe the most prevalent ports in this category of onions, all the onions that only

had port 80 open were removed as shown in Figure 7.8. In this category, 147 unique ports were detected.

The SSH service (port 22) exhibits the highest frequency with 1233 onions, followed by HTTPS (port 443)

with 822 onions, alternative HTTP ports (ports 82, 84, 81) with 277 onions, SMTP (port 25) with 83 onions

and POP3 (port 110) with 38 onions.

7.2.3. Onions without Port 80 open
Moreover, web crawlers predominantly target ports 80 and 443 when indexing websites, further

exacerbating the invisibility of these onion services. By strategically avoiding these standard ports, these

services effectively slip under the radar of conventional web crawlers, evading detection and indexing.

Figure 7.9 demonstrates the common ports observed under this category. 2468 onions had 9735 ports

open, a lightning protocol, and 1722 onions had 8333 ports open related to Bitcoin.

7.2.4. Grouping onions with number of open ports detected
The graph shown in Figure 7.10 illustrates the frequency of onions based on the number of open ports

detected during port scanning. It reveals that most onions have a relatively low number of open ports, with

4396 onions having only 1 open port and 1757 onions having 2 open ports. The analysis revealed that

the maximum number of open ports detected on an onion service was 35. Upon further investigation of

onion services with 35 and 33 open ports, it was observed that they exhibited identical user interfaces

when accessed through the Tor browser. The uniformity in user interface across onion services with many

open ports suggests a potential pattern or standardization in the configuration or deployment of these

services. It could imply that these onion services are part of a common infrastructure or network with

similar functionalities or purposes. Additionally, it may indicate intentional design choices or restrictions

imposed by the operators of these services to maintain consistency or enhance user experience.

As the number of open ports increased, the frequency of onions decreased significantly, indicating

that onions with more open ports were less common. The steep decline in the frequency of onions

beyond a certain threshold suggests that detecting onions with many open ports is rare. This distribution

provides insights into the diversity of security configurations among onions on the network, highlighting the

prevalence of onions with minimal exposed services and the rarity of onions with extensive port exposures.

7.2.5. Time Distribution of Port Scanning
A boxplot illustrating the time distribution for scanning 100 onions is depicted in Figure 7.11a. On

average, a full scan takes approximately 8 minutes, ranging from 6 to 20 minutes. Notably, 75% of onion

services require less than 13 minutes for a complete scan. Figure 7.12 represents the distribution of time

taken (in seconds) to conduct port scans across different port ranges (e.g., 1-100, 1-1000, 1-10000, etc.),
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(a) Prevalent Open Ports with frequency greater than 8

(b) Frequency of open ports with less than 9 onions

Figure 7.7: Frequency Distribution of Open Ports Detected (Excluding port 80)



7.2. Post Data Analysis 48

(a) Prevalent Open Ports with frequency greater than 2

(b) Frequency of open ports with less than 3 onions

Figure 7.8: Frequency Distribution of Open Ports Detected of onions that have open ports other than 80
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(a) Prevalent Open Ports with frequency greater than 2

(b) Frequency of open ports with less than 3 onions

Figure 7.9: Frequency Distribution of Open Ports Detected of onions that do not have port 80 open
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Figure 7.10: Onion Services grouped by Number of Open Ports detected

and detailed statistics are presented in the table 7.2.

In the 1-100 port range, scans exhibit relatively swift completion times, with an average duration of

18.00 seconds and a narrow standard deviation of 8.14 seconds, indicating consistent performance across

scans. The distribution of scan times within this range is relatively compact, ranging from a minimum

of 7.67 seconds to a maximum of 63.97 seconds. Notably, 25% of scans were completed within 12.70

seconds or less, with a median scan time of 16.54 seconds. As the port range expands to 1-1000, scan

times exhibit a moderate increase in average duration (28.28 seconds) and variability (22.05 seconds

standard deviation). While minimum scan times remain relatively low at 11.32 seconds, maximum times

extend to 214.15 seconds, indicative of occasional outliers. Percentile analysis reveals that 75% of scans

were completed within 33.29 seconds, with a median scan time of 23.86 seconds. Expanding further to the

1-10000 and 1-20000 port ranges, scan times escalate significantly, reflecting the heightened complexity

and computational demands of scanning larger ranges. In the 1-10000 range, the average scan time

increases to 114.16 seconds, with a wider standard deviation of 38.11 seconds. Notably, 25% of scans

were completed within 82.58 seconds, while the median scan time is 109.67 seconds. Similarly, in the

1-20000 range, the average scan time rises to 167.40 seconds, with a standard deviation of 86.11 seconds.

Despite the increased variability, percentile analysis reveals that 75% of scans were completed within

181.72 seconds, indicating a consistent proportion of scans completed within a reasonable timeframe.

As the port range extends beyond 20000 to 30000 and 40000, scan times continue to escalate

exponentially, underscoring the diminishing efficiency and scalability of the scanning process. In the

1-30000 range, the average scan time spikes to 287.56 seconds, with a standard deviation of 125.59

seconds, indicative of heightened variability and sporadic outliers. Conversely, in the 1-40000 range, while

the average scan time remains high at 331.03 seconds, the standard deviation increases further to 196.88

seconds, highlighting substantial variability in scan completion times. In both cases, median scan times

align closely with the 75th percentile, suggesting a relatively symmetrical distribution of scan times. Finally,

scan times peak dramatically in the expansive 1-50000 range, with an average duration of 589.64 seconds

and a standard deviation of 221.79 seconds, underscoring the significant computational resources and

time required to complete scans within this range. Despite the considerable variability, percentile analysis

reveals that 75% of scans were completed within 750.87 seconds, suggesting a consistent proportion of

scans completed within a defined timeframe.

Furthermore, Figure 7.12 gives an overview of the average time taken to perform scans in different port

ranges. Beginning with smaller ranges, such as the 100 ports, scans were completed swiftly, averaging a

mere 0.2 minutes. As the port ranges expanded, the average scan times proportionally increased: 0.55

minutes for the 1000-port range, 1.83 minutes for 10000 ports, and 3.03 minutes for 20000 ports. Further

escalation was observed in larger ranges, with scans of 30000, 40000, and 50000 ports averaging 4.42,
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(a) Time Distribution to execute a Full Scan

(b) Time distribution of different port ranges

Figure 7.11: Boxplot representing the time distribution of port scanning 100, 1000, 10k, 20k, 30k, 40k,

50k, 65k ports
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Figure 7.12: Time taken to scan different port ranges

5.92, and 7.12 minutes, respectively. Notably, encompassing the entire port range of 65536 ports required

an average time of 9.00 minutes.

These findings collectively illuminate the nuanced dynamics of port scanning, underscoring the trade-

offs between scan efficiency, scalability, and computational resources across varying port ranges. However,

scaling this approach to a dataset of 100,000 onions would demand roughly 900,000 minutes, equivalent

to approximately 1.5 years—a timeframe impractical for most scenarios. These statistics underscore

the escalating time demands associated with scanning larger port ranges, emphasizing the need for

strategic search-based reduction and optimization planning to balance comprehensive coverage with

practical constraints in network security assessments and penetration testing endeavours. By extending

the concurrency model to include simultaneous scanning of multiple onions—employing 30 goroutines

for onion concurrency—the projected scan duration reduces dramatically, from 1.5 years to just around

20 days. Remarkably, this optimization is achieved using a single tor client instance. Moreover, for

even greater acceleration, employing multiple tor client instances can further reduce scan times, enabling

expedited analysis and actionable insights.

Port Range count mean std min 25% 50% 75% max

1-100 100 18.00 8.14 7.67 12.70 16.54 21.19 63.97

1-1000 100 28.28 22.05 11.32 17.66 23.86 33.29 214.15

1-10000 100 114.16 38.11 36.05 82.58 109.67 137.68 235.90

1-20000 100 167.40 86.11 64.16 118.73 146.68 181.72 709.41

1-30000 100 287.56 125.59 19.05 195.96 265.02 355.45 671.96

1-40000 100 331.03 196.88 47.05 195.61 271.52 427.05 940.13

1-50000 100 589.64 221.79 11.27 431.42 601.10 750.87 971.97

Table 7.2: Statistics of Scan Time per Port Range (time in seconds)

7.2.6. Services
Based on the detection of unique ports, it was observed that multiple ports may correspond to a

particular service offered. This observation prompted the grouping of unique ports according to their

service type. Table 7.3 presents a comprehensive categorization of protocols based on the type of service
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they offer, along with the corresponding onion count for each category.

The six services are web, Bitcoin, Remote, Chat, Email, and File Transfer. The web service category

encompasses protocols, including HTTPS with 887 onions, alternative HTTP/HTTPS ports with 333 onions,

and HTTP with a substantial count of 307,039 onions. In cryptocurrencies, Bitcoin and Monero protocols

are represented with 1868 and 305 onions, respectively, while the Lightning Protocol boasts the highest

count of 2,470 onions. For remote access, protocols such as Telnet and Gopher, each have 7 and 17

onions, while SSH leads with 1,244 onions. Chat services include the Extensible Messaging and Presence

Protocol (XMPP) with 94 onions, Message Send Protocol (MSP) with 182 onions and Internet Relay Chat

(IRC) with 74 onions. Email-related protocols encompass a variety of services, with SMTP leading with 87

onions and POP3 following closely with 51 onions. File transfer protocols, including FTP, rsync, and SFTP,

collectively account for 45 onions. Other miscellaneous protocols, such as DNS and DHCP, represent 76

onions, highlighting the diverse landscape of services accessible through the Tor network.

Service Protocol Onion Count

Web HTTP 307039

Alternative HTTP,HTTPS ports 333

HTTPS 887

Crypto-Asset Lightning Protocol 2470

Bitcoin 1868

Monero 308

Remote SSH 1244

UNIX remote management 66

Telnet 7

Gopher 17

Chat Internet Relay Chat (IRC) 74

Extensible Messaging and Presence Protocol (XMPP) 94

Email Simple Mail Transfer Protocol (SMTP) 87

Post Office Protocol (POP3) 51

Secure Simple Mail Transfer Protocol (SMTPS) 13

Internet Message Access Protocol (IMAP) 28

Internet Message Access Protocol Secure (IMAPS) 18

Post Office Protocol (POP3S) 12

Network News Transfer Protocol (NNTP) 11

Ident Protocol 4

File Transfer rsync 16

Secure File Transfer Protocol (SFTP) 8

File Transfer Protocol (FTP) 4

Other Misc 142

Gopher Protocol 17

Xerox Network System (XNS) 10

Domain Name System (DNS) 9

Table 7.3: Protocols Categorized by Service Type

7.2.7. Temporal Analysis of Services
To further understand the trends in services from 2018 to 2024, services are grouped based on the

year they were discovered. This is clearly shown in Figure 7.13. This temporal analysis of onion service

adoption reveals significant insights into the dynamic landscape of anonymous communication and online

services.
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Figure 7.13: Classification of Protocols by Discovery Year

The consistent increase in “Chat” services, from 2 instances in 2018 to 65 in 2023, reflects rising

demand for secure messaging platforms driven by concerns over privacy and surveillance. Fluctuations

in “Remote” services, from 367 to 495 instances in 2020 and 2021, suggest varying needs for remote

access solutions within the Onion ecosystem, possibly influenced by events like the COVID-19 pandemic.

The stable yet moderate growth in “Mail” services, ranging from 4 to 31 instances, indicates a steady

interest in secure email communication. Similarly, “File” services exhibit fluctuations, signalling varying

demand for secure file storage and sharing solutions. Exponential growth in “Web” services, from 49 to

191,294 instances, reflects a significant shift toward onion-based websites, emphasizing anonymity in

online browsing. Likewise, the exponential rise in “Bitcoin” services, peaking at 3184 instances, mirrors

the surge in cryptocurrency-related activities within the onion network.

Such trends underscore users’ evolving needs and preferences within the Onion ecosystem. More-

over, the consistent upward trajectory observed across the majority of services further emphasizes the

critical importance of this thesis in comprehensively understanding the dynamic landscape of anonymous

communication and online services.

7.2.8. Correlation Analysis: Individual Ports vs. Service-Based Groupings
A correlation matrix, shown in Figure 7.14, was generated to explore the relationships between pairs of

ports and pairs of services. This matrix visually illustrates the strength and direction of these correlations.

To compute this correlation matrix, onion services exclusively offering web service (limited to ports 80, 443,

or both) were discarded. Instead, we concentrated on the remaining data comprising alternative ports,

totalling 6200 onion services. This focused analysis aims to uncover specialized use cases within the Tor

network.

Examining the correlation matrix of the top 25 frequent ports shown in Figure 7.14a, we observe that

Port 80 strongly correlates with port 22 (SSH), as many web servers enable SSH for remote management.

Port 80 also shows some correlation between ports 443, 81, 84, and 82 (alternative http/https ports)

and with ports 25 and 110 (mail related). Furthermore, a weak correlation is seen between ports 18081
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(a) Correlation matrix of top 25 frequent ports

(b) Correlation matrix of service-based groupings

Figure 7.14: Correlation Analysis
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and 18083 (Monero). In the correlation matrix of service-based groupings, as shown in Figure ??, we

observe that certain pairs of services show statistically significant correlations. “Web” and “Remote”

services indicate the highest positive correlation of 0.16. This suggests that as the frequency of “Web”

services increases over time, there is a slight inclination for the frequency of “Remote” services also to

increase. However, the relationship is not particularly strong. Similarly, weak positive correlations are

evident between “Web” and “Mail” services, as well as between “Web” and “Bitcoin” services.

While some correlations are statistically significant, most correlations in the provided matrix are close

to zero, indicating weak or negligible relationships between the frequencies of different onion services. This

implies that the adoption and frequency of one type of onion service are generally not strongly influenced

by the adoption and frequency of other types of services.

7.3. Optimized Port Scanning Methodology
The optimized port scanning methodology has three phases, as shown in Figure 7.15. Firstly, we

scan for open ports for all the onion services in the dataset and then start a thread that revisits the onion

services that are online, offline, and in T.U. based on the heuristics defined. There are two key subparts to

the final phase, where we perform a monthly comprehensive analysis of onion services. Firstly, we monitor

the onion services under different statuses to update the heuristics and when to revisit them. Secondly,

we perform a full scan on random samples of onion services to update the list of unique ports observed

so far among the onion services. These steps are detailed in the following subsections, and Algorithm 4

presents the pseudocode for the port scanning methodology.

Figure 7.15: Port Scanning Methodology

7.3.1. Port Scanning
Considering the time to conduct a full scan, we make a search-based reduction to check the open

ports on onion services. Algorithm 4 presents the optimised port scanning methodology. It begins with

an input text file containing onion services, along with optional parameters such as port range, Tor proxy

address, and configuration settings. The desired output is the storage of scan results in a database.

The algorithm initializes by loading configuration parameters from the config file, including unique ports,
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maximum concurrent scans, and rescan intervals. These settings play a crucial role in optimizing the

scanning process.

‘unique_ports‘ variable stores a list of unique ports observed during the scanning process. It is initialized

with the unique ports loaded from the configuration file and is updated iteratively as new open ports are

detected during scanning. Currently through the research, 196 unique ports are detected through port

scanning. Maintaining a list of unique ports helps optimize the scanning process by focusing on previously

unobserved ports and avoiding redundant scans. ‘rescan_intervals‘ variable stores the intervals at which

onion services are scheduled for rescanning based on their status. It is a configuration parameter that

defines the frequency of rescans for services that are T.U, offline, or online. By scheduling periodic rescans,

the algorithm can maintain an up-to-date view of the status of onion services and adapt dynamically to

changes in their availability.

Three main tasks are performed during the scan: 1. Checking onion Service Status: It checks the

status of the onion, categorizing it as Online, Offline, or T.U To check the status, an HTTP request is sent

on any one port number out of 1-65536, and depending on the response observable, i.e., error messages,

we can determine the status as explained in 5.4.1, 2. Scanning Online Services: If the service is online,

the function scans the specified port range or the list of unique ports, depending on the configuration. A full

scan is triggered if no open ports are detected or more than two ports are open within the given port range.

The results are stored in the database following the format outlined in the architecture’s data storage

section, 3. Update Unique Ports List: The list of unique ports uses the update_unique_ports function. The

update_unique_ports function iterates over the open ports detected during the port scan. It checks each

open port detected on that particular onion service against the list of unique ports previously detected and

adds any new ports observed to this list. The updated list is then saved to the configuration file for future

reference.

7.3.2. Continuous Integration
The continuous integration function is a pivotal component of the port scanning methodology, designed

to ensure the accuracy and timeliness of the database containing information about onion services. It

operates within an infinite loop, perpetually monitoring the status of onion services and conducting rescans

to keep the database up-to-date. At the start of each iteration, the function retrieves the current time,

enabling precise scheduling and tracking of rescans.

For each onion service stored in the database, the function retrieves its current status using the

get_current_status function. The status can be one of three: T.U, offline, or online. Depending on the

status of the onion service, the continuous integration function takes appropriate action. Onion services

flagged as ’T.U’ (T.U) undergo thorough monitoring at designated intervals. Specifically, these services

are checked at three checkpoints from when they are marked as T.U: firstly, after 50 minutes, followed by

scans at 4-hour and 12-hour intervals, as detailed in Section 7.1.2. Offline services are subject to rescans

every 24 hours (because of the onion service descriptor update mechanism), while online services are

re-evaluated every 18 hours (because it takes 15 hours to scan all the online services currently present in

the DWM).

For online services, the function initiates a port scan using the scan_ports function to check for any

changes in the open ports since the last scan. If changes are detected, indicating potential new ports or

closures, a full scan is performed to find all open ports of the onion service. After each scan, the function

logs the scan results, including the status and any changes in the open ports in the database. This logging

mechanism records the service’s availability and port configuration, facilitating trend analysis and anomaly

detection.

Finally, the continuous integration function schedules the next rescan for each onion service based on

its current status, ensuring that online services are regularly re-evaluated and any necessary rescans are

conducted according to the specified intervals. By implementing the continuous integration function as

a separate thread, the port scanning methodology achieves concurrent execution with other processes,

maintaining system efficiency and responsiveness while ensuring the integrity of the database.

These periodic scans contribute to the dynamic nature of the onion services in the dark web and

ensure that any changes in the service’s availability are promptly detected and monitored over time.
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Algorithm 4: Onion Service Port Scanning: Search-based optimization

Input: Text file with onion services, Port Range (optional), Tor Proxy Address,

Config parameters

Output: Scan results stored in the database

Data: config = load_config()

unique_ports = config[’unique_ports’] ;

max_concurrent = config[’max_concurrent’] ;

rescan_intervals = config[’rescan_intervals’] ;

Function update_unique_ports(open_ports):
foreach port in open_ports do

if port not in unique_ports then

Add port to unique_ports;

end

end

Save unique_ports to config file;

Function scan_ports(onion_service, scan_range, tor_proxy, max_concurrent):
foreach Onion Service do

Check service status (Online, Offline, T.U);

if status == Online then

if Port Range is specified then

Scan ports within specified range;

else

Scan the unique ports;

if no open port or more than two open ports are detected then

Perform full scan;

end

end

Update the database with scan results;

update_unique_ports(open_ports);

end

end

Function continuous_integration():
while True do

current_time = get_current_time();

foreach onion_service in database do

status = get_current_status(onion_service);

if status == ’temporarily_unavailable’ then

schedule_rescan(onion_service, rescan_intervals[’temporarily_unavailable’]);

end

else if status == ’offline’ then

schedule_rescan(onion_service, rescan_intervals[’offline’]);

end

else if status == ’online’ then

open_ports = scan_ports(onion_service, unique_ports, tor_proxy, max_concurrent);

if changes_detected(open_ports) then

scan_ports(onion_service, range(1, 65536), tor_proxy, max_concurrent);

end

log_scan_results_in_database(onion_service, open_ports);

schedule_rescan(onion_service, rescan_intervals[’online’]);

end

end

end

start_thread(continuous_integration);
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7.3.3. Comprehensive Analysis to update the heuristics
In addition to the continuous integration in the port scanning methodology, a comprehensive monthly

scanning method is implemented to ensure thorough coverage of onion services. There are two key

subparts to the final phase. Firstly, we monitor the onion services under different statuses to update the

heuristics and determine when to revisit them. This involves taking a sample of 10,000 onion services

and monitoring them at varying frequencies: every 5 minutes for T.U onions, every 30 minutes for offline

onions, and every hour for online onions. This experiment is repeated with 5 different random samples.

For each category, such as T.U onions, we find a point in time when all the onions have changed their

state at least once. These points become the heuristics for revisiting the onion services, and this process

is done for all three categories. Secondly, we perform full scans on random samples of onion services to

update the list of unique ports observed among the onion services. This combined approach ensures that

our monitoring process is dynamic and adaptive, allowing us to maintain a thorough understanding of the

dark web landscape and the open ports of onion services. This enables us to define efficient heuristics

for monitoring onion services, optimize the schedule times employed by the DWM, and update the list of

unique open ports observed through comprehensive scanning of onion services.
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Discussion

In this chapter, we reflect on the results obtained from our investigation into the port scanning of

onion services on the dark web. We provide a comprehensive analysis of the findings, interpreting their

significance and placing them within the context of existing research. Additionally, we discuss the limitations

of this research, identifying areas where improvements could have been made. Through this reflection, we

aim to highlight the practical implications of our work for cybersecurity and dark web monitoring.

8.1. Reflections
This section presents a detailed interpretation of the current state of onion services, emphasizing

the transition from traditional web-based protocols like HTTP/HTTPS to other application layer protocols

such as SSH, SMTP, FTP, POP3, IRC, etc. We also discuss the implementation and effectiveness of our

optimized port scanning approach, highlighting significant improvements in efficiency and coverage. Lastly,

we consider the practical implications of our findings, providing insights into how these advancements can

enhance the monitoring and understanding of the dark web.

8.1.1. Interpretation of Onion Service Landscape
We have transitioned from using traditional HTTP/HTTPS-based methods, which determine the status

of an onion service based on the port being checked during a request, to any application-based methods,

i.e., independent of the port. We now classify the availability of onion services into three status codes:

online, offline, and T.U.

Our analysis of response times for these status codes revealed distinct patterns. Services marked as

’online’ displayed faster response times, indicating stable and reliable connections. Conversely, services

classified as ’T.U’ or ’offline’ exhibited slower or inconsistent response times, with T.U services showing

the longest response times. This indicates that monitoring response times can effectively assess the

availability and reliability of onion services.

We propose defining the availability of onion services based on observed response times. For instance,

services taking longer than 60 seconds to respond can be classified as T.U. Understanding response

times helps prioritize resources for monitoring more stable services, thus enhancing the efficiency of dark

web oversight.

Our study found that the majority of onion services had open ports clustered around commonly used

service ports, such as HTTP (80), SSH (22) HTTPS (443). This finding aligns with previous research,

but our extended scan also uncovered a notable presence of other service ports that had not been as

thoroughly documented in earlier studies. Ports that were not as frequently documented in previous studies

are lightning protocol (9735, 9736), bitcoin (8332, 28333, 28332), SMTP (25), XMPP (5222, 5269), POP3

(110), etc, indicating a wider range of services than initially anticipated. These results suggest a more

diverse service ecosystem within the dark web than previously understood

8.1.2. Optimized Port Scanning Methodology
Implementing our optimized port scanning methodology, which includes regular scans of unique

ports observed (196 ports discovered through this research) and monthly full scans, proved effective

60
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in maintaining an updated and accurate mapping of onion services. The regular scanning method’s

efficiency was validated by its ability to quickly detect changes in the commonly observed ports, while the

comprehensive monthly full scans provided a deeper understanding of service dynamics by identifying

variations in port usage over time. This dual-method approach highlights the importance of combining

regular and extensive monitoring to maintain an accurate and up-to-date mapping of onion services. Our

findings underscore the necessity for continuous adaptation and improvement in port scanning tools to

keep pace with the evolving dark web landscape.

The time distribution analysis of port scanning played a crucial role in optimizing the efficiency of this

process. Our findings indicate that a full scan of a single onion service takes an average of 9 minutes.

In stark contrast, previous research by [20] reported a scanning duration of 24 hours for 10,000 ports

when investigating a single onion service. This demonstrates a substantial improvement in port scanning

efficiency.

This optimization reduces the time and resources required for each scan and allows for more frequent

and comprehensive monitoring of onion services. Reducing scanning time enables quicker detection of

service availability changes, enhancing the responsiveness of monitoring systems. Furthermore, it allows

the monitoring efforts to scale, potentially covering a broader range of onion services within the same

timeframe.

8.2. Fingerprinting Onion Services
The process of port scanning onion services has unveiled a range of unexplored opportunities for the

fingerprinting of these hidden services. Traditionally, the analysis of onion services has focused primarily on

web-based interactions, typically limited to standard HTTP (port 80) and HTTPS (port 443) ports. However,

our comprehensive port scanning has revealed that many onion services also have non-HTTP-based ports

open, significantly broadening the scope for fingerprinting.

One notable observation is the correlation between ports 80 and 22 (SSH) on these onion services. This

correlation suggests a potential pattern in the configuration and deployment of onion services, where web

services and secure shell access often coexist. This discovery opens avenues for advanced fingerprinting

techniques, enabling the identification and grouping of onion services based on their port configurations

and usage patterns.

Furthermore, the fact that many onion services share the same user interface (UI) presents another

opportunity for fingerprinting. By analyzing the content and cataloguing these UIs, we can develop unique

fingerprints for each service. This approach allows us to combine similar onion services, potentially

uncovering relationships and connections between seemingly disparate services. This method of UI-based

fingerprinting can be particularly effective in identifying cloned or related services that may be part of a

larger network or operation.

Banner grabbing, a technique used to gather information about a service by capturing the banner it

returns, can also be leveraged in this context. We can collect detailed information about the software

and versions running on these onion services by performing banner grabbing on various ports, including

non-HTTP ports. This information is invaluable for constructing accurate fingerprints and enhancing our

understanding of the underlying infrastructure of the dark web.

Altogether, the insights gained from port scanning and subsequent fingerprinting efforts highlight the

potential for a more nuanced and comprehensive analysis of onion services. We can develop richer, more

detailed fingerprints by moving beyond a web-based view to consider a wider array of application-level

interactions. These fingerprints help in categorizing and grouping onion services and provide a deeper

understanding of their operational characteristics and potential interconnections.

8.2.1. Practical Implications
Our research on port scanning in the dark web has several practical implications that can enhance the

effectiveness and security of monitoring and understanding onion services. These implications are critical

for various stakeholders, including cybersecurity professionals, researchers, law enforcement agencies,

and policymakers.

We move from the traditional web-based methods to any application-based method, independent of

the port being checked to determine the availability of onion services. This strategy ensures that onion
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services with non-HTTP-based open ports are not mistakenly categorized as offline, providing a more

accurate representation of their availability. The optimized port scanning methodologies developed in

this research allow for more frequent and comprehensive monitoring of onion services. By identifying

and classifying onion services based on response times and port usage, security professionals can better

understand the structure and behaviour of dark web services. This understanding helps anticipate potential

threats and vulnerabilities, allowing for more proactive and targeted security measures. The classification

of services into ’online’, ’offline’, and ’T.U’ based on response times aids in prioritizing monitoring efforts.

Resources can be directed towards more stable services, ensuring efficient use of computational and

human resources in maintaining the security and reliability of the network.

Moreover, existing literature indicates that traditional port scanning methods can take up to 24 hours

to scan 10,000 ports on a single onion service, and there are no effective tools currently available that

can perform this task efficiently. This makes determining the open ports on an onion service a particularly

challenging endeavour. Our research addresses this issue by providing a more efficient and accurate

method for identifying open ports on onion services. This advancement not only facilitates a better

understanding of these services but also equips legal authorities with the necessary information to take

further action, such as exploiting vulnerabilities identified through these scans. It is important to note that

such activities should be conducted strictly within the bounds of the law, as offensive hacking is illegal for

individuals without proper authorization. Our research thus empowers authorized entities to enhance their

investigative capabilities while maintaining ethical and legal standards.

This research significantly contributes to the academic body of knowledge on the dark web by compre-

hensively analysing Tor v3 onion services. Previous studies primarily focused on v2 onion services, leaving

a gap in understanding the newer v3 services. By filling this gap, our research offers a more complete and

current picture of the Tor network, laying the groundwork for future studies and enabling researchers to

build upon a more thorough understanding of its complexities and challenges.

Research on port scanning on the dark web advances the technical field. It has a far-reaching impact

on various aspects of society, contributing to a safer and more secure digital environment.

8.3. Limitations
This section outlines the primary limitations encountered during our research on port scanning within

the Tor network. Despite our efforts to employ robust methodologies and optimize our scanning processes,

several challenges impacted the consistency and efficiency of our results. These limitations include the

inherent instability of the Tor network and the constraints posed by our computing resources, such as

RAM, which affected our ability to achieve faster scan times through higher concurrency values.

8.3.1. Instability of the Tor Network
Conducting research on port scanning within the Tor network presents several challenges, primarily

due to the network’s inherent instability. The Tor network’s performance can vary dramatically over short

periods. Factors such as network congestion, relay node availability, and the performance of individual

onion services can lead to significant fluctuations in response times and availability. As a result, the same

onion service might appear online at one moment and offline the next, complicating the assessment of

onion service stability. The Tor network relies on a global network of volunteer-operated relay nodes,

whose availability and performance frequently change. Variations in relay node reliability can affect the

routing paths taken by requests, introducing additional unpredictability into port scanning results. Different

paths may have different latencies and stabilities, influencing the results of our scans at different times.

To mitigate these challenges, we employed multiple scans at different times and used a combination

of regular and full scans to enhance data reliability. Despite these efforts, the unstable behaviour of the Tor

network remains a significant limitation, highlighting the need for ongoing methodological improvements.

This instability must be considered when interpreting the results of our research and underscores the

importance of continuous monitoring and adaptive strategies in studying the Tor network.

8.3.2. Computing Resources
Our research was conducted using the research server provided by the company CFLW Cyber

Strategies. While Ganymede offered substantial computational capabilities, we encountered limitations

related to available RAM. Higher RAM would have enabled us to use higher concurrency values during port
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scans, significantly improving scan speed and efficiency. The restricted RAM resources constrained our

ability to perform rapid and extensive scans, potentially affecting the comprehensiveness and timeliness

of our results. Addressing these limitations in future research by leveraging more advanced computing

resources or optimizing memory usage could lead to more efficient and accurate port scanning processes.



9
Conclusion

This concluding chapter summarizes our research’s key findings and contributions to port scanning

within the dark web. This research provides a detailed analysis of the current state of onion services and

introduces optimized scanning methodologies that significantly improve scan efficiency. Additionally, we

discuss potential directions for future work, which aim to further refine and expand upon our findings to

better address the evolving challenges of the dark web landscape.

9.1. Summary
Our primary objective was to uncover the prevalent protocols used for communication on the Dark

Web and to explore the activities beyond traditional web protocols such as HTTP or HTTPS. The main

research question is:

RQ: What prevalent protocols are utilized for communication on the Dark Web, and what types of

activities occur beyond traditional web protocols such as HTTP or HTTPS?

In this thesis, we conducted an in-depth investigation into the Tor Network Protocols Landscape,

focusing on the latest v3 version of Tor onion services. To address the RQ, four SQs were formulated.

The first SQ is related to building a tool.

SQ1: How can we develop a specialized port scanning tool tailored specifically for Dark Web environ-

ments?

Building upon the framework of the OnionScan tool, we have developed a more efficient and faster

port scanning tool, enabling us to scan onion services for open ports. The extended tool can now scan any

port range surpassing the default capability limited to the top 10 common ports. In addition to port scanning,

the modified tool incorporates functionalities for identifying the availability status of onions, categorizing

them as online, offline, or temporarily down. To optimize performance and efficiency, the tool supports the

utilization of goroutines. Moreover, integrating MySQL database functionality seamlessly complements the

scanning tool, facilitating the systematic storage of scan results. Now that the tool is ready, the second SQ

was to investigate the onion services landscape:

SQ2: What are the key characteristics and dynamics of the onion services landscape within the Dark

Web?

Our study of the Tor onion service mechanism has yielded several key insights into the availability

status and characteristics of onions within the Dark Web ecosystem. By categorizing onion services into

three distinct groups—online, offline, and T.U, we have advanced beyond the conventional web-based

method of status determination, which was limited to checking ports 80 and 443. Instead, we employ an

application-based approach that is independent of specific ports. Of the three categories of onion services,

T.U ones were a relatively small proportion. The T.U onion services were monitored over a 2-day period at

5-minute intervals. This experiment aimed to define heuristics for revisiting T.U onion services. Based on

the analysis, we propose heuristics for revisiting these onions at specific intervals, such as 50 minutes, 4

hours, and 12 hours, until each T.U. onion has experienced at least one status change.

SQ3: How do port scanning activities contribute to uncovering the prevalent protocols within the Dark

Web ecosystem

64
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Our research has revealed the existence of onions that are active but not open on web-based ports

80 and 443, challenging the conventional definition of online status. To address this, we have defined

availability status independent of the port being checked, focusing on the type of response received when

an HTTP connection is made. Our analysis has shown that the majority of online onions have port 80

open, with only a small percentage having ports that are not open on 80. We have detected 196 unique

ports across the scanned onions, with the most prevalent ports being associated with lightning, bitcoin,

SSH, SMTP, and POP3 services.

Furthermore, we have grouped the open ports based on the default services associated with them,

resulting in six distinct service groups: Web, Bitcoin, Remote, Chat, Email, and File Transfer. Our

investigation has revealed the prevalence of remote, chat, and email services within the Tor network,

alongside web and bitcoin services. Additionally, our temporal analysis has shown that onions discovered

by the Dark Web Monitor between 2018 and 2022 remain active, highlighting the persistence of onion

services.

SQ4: How can we optimize traditional port-scanning methods to suit the challenges of Dark Web

networks better suit the challenges of Dark Web networks better?

Notably, our research has demonstrated the efficiency of our proposed optimized port scanning

methodology. Recognizing the impracticality of conducting a full scan on all onion services, we have

developed a methodology that prioritizes scanning based on predefined criteria, thereby reducing scan

times while maintaining comprehensive coverage. With a full scan of one onion service taking approximately

8 minutes—the fastest reported in the literature to date—our methodology offers a practical solution to the

challenges of port scanning within the Tor network.

Our port-scanning methodology has three phases. The first phase included port scanning. The second

phase is continuous integration, where onion services are revisited, perpetually monitoring the status of

onion services and conducting rescans to keep the database up-to-date. In the third phase we perform a

monthly comprehensive analysis of onion services. The objective is to monitor the onion services under

different statuses to update the heuristics on when to revisit them and perform a full scan on random

samples of onion services to update the list of unique ports observed so far among the onion services.

9.2. Future Work
Building upon the contributions outlined in this thesis, several avenues for future research and de-

velopment emerge, further enhancing our understanding of the Tor Network Protocols Landscape and

improving the efficiency of port-scanning methodologies within the Tor network.

1. Fingerprinting of ServicesWhile the current research focuses on detecting open ports within Tor

onion services, future work should delve into service fingerprinting. Confirming the services running

on the detected open ports is crucial for several reasons. Firstly, it allows researchers to validate the

findings and ensure the accuracy of the port scanning results. The ports open can run any service;

for example, an onion service with port 22 open could be configured to run a mail service instead

of the default SSH service. Hence, by definitively identifying the services associated with the open

ports, researchers can eliminate false positives and better interpret the significance of the detected

ports.

2. Testing on Higher Configuration Processors The tool used for port scanning in this research

operates on a research server with 64 GB RAM, shared among multiple users for research purposes.

Future work should involve testing the tool on higher configuration processors to enhance the

scanning efficiency and accommodate larger-scale scanning operations. Researchers can optimize

scanning speed and scalability by utilising more powerful hardware resources, facilitating a more

extensive and in-depth analysis of the Tor network.

3. Scanning larger sample of onion services Besides enhancing scanning efficiency, future research

efforts should focus on expanding the scope of scanning operations. Specifically, researchers should

aim to scan a larger number of onion services available from the Dark Web Monitor. By increasing

the sample size and diversity of scanned onion services, researchers can gain further insights into

the prevalence and distribution of various protocols within the Tor network. This expanded dataset

will enable a more comprehensive analysis of Tor network dynamics and facilitate the identification

of emerging trends and patterns.
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4. Public Web connection Investigating the linkage between onion services and public web services is

a promising direction for future research. This includes analyzing mirror sites, crossover domains, and

the extent of data and service replication between the dark web and the public internet. Understanding

these linkages can help identify the reach and influence of dark web services on the broader web

ecosystem, providing valuable insights into the interaction and interdependence between these two

distinct parts of the internet.
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A
Appendix

A.1. Open Ports in Onion Services
This appendix categorizes Onion services based on the presence or absence of port 80. The open

ports identified during our research are listed under each category. A total of 196 unique ports were

observed, with 147 ports in services where port 80 is open and 92 ports in services where port 80 is not

open. Notably, 43 ports are common to both groups.

A.1.1. Onion Services with Port 80 Open
The following ports were observed in Onion services, which have port 80 open. This category highlights

the variety of services accessible through the standard HTTP port alongside other ports.

The open ports are 11, 18, 21, 22, 23, 25, 52, 53, 67, 70, 79, 80, 81, 82, 83, 84, 110, 113, 119, 143,

195, 222, 235, 300, 433, 443, 444, 465, 513, 587, 701, 873, 993, 995, 1123, 1222, 1234, 1337, 1716,

1813, 1935, 1965, 1990, 2083, 2202, 2221, 2222, 2345, 2525, 2628, 2880, 2999, 3000, 3012, 3333, 4000,

4190, 4242, 4422, 4569, 5000, 5060, 5061, 5201, 5202, 5222, 5223, 5269, 5270, 5280, 5281, 5400, 5443,

5555, 6667, 6668, 6697, 6698, 6699, 7007, 7777, 7778, 7779, 7890, 7922, 8000, 8001, 8002, 8003, 8004,

8005, 8006, 8080, 8081, 8083, 8085, 8088, 8090, 8333, 8443, 8444, 8446, 8448, 8888, 8889, 9000, 9418,

9443, 9735, 9877, 9911, 9980, 10022, 11181, 11371, 13122, 16000, 17750, 18080, 18081, 18082, 18083,

18089, 19332, 19734, 19950, 22548, 37888, 38081, 40322, 40392, 42001, 44203, 47889, 47922, 48782,

50001, 50002, 50003, 50004, 54221, 54231, 56886, 60001, 60002, 60004, 64738

A.1.2. Onion Services without Port 80 Open
The following ports were observed in Onion services that do not have port 80 open. This category

demonstrates the variety of services that operate independently of the standard HTTP port.

The open ports are 22, 23, 25, 53, 70, 110, 119, 143, 194, 443, 465, 587, 853, 993, 994, 995, 1337,

1990, 5222, 5223, 5269, 5280, 5443, 5555, 6660, 6661, 6662, 6663, 6664, 6665, 6666, 6667, 6668, 6669,

6679, 6690, 6691, 6692, 6693, 6694, 6695, 6696, 6697, 6698, 6699, 7000, 7070, 7777, 8067, 8080, 8081,

8332, 8333, 8334, 8443, 8667, 9000, 9236, 9418, 9735, 9736, 9737, 9788, 9889, 9911, 9999, 10009,

10010, 11236, 16667, 18080, 18081, 18083, 18084, 18085, 18089, 18090, 18180, 28080, 28081, 28083,

28089, 28332, 28333, 30029, 34568, 38081, 38089, 45871, 50001, 50002, 64738

A.1.3. Common Ports Between Both Groups
The following ports are common to both Onion services with port 80 open and those without port 80

open. These ports indicate services broadly used across different configurations of Onion services.

The ports common between both groups are 22, 23, 25, 53, 70, 110, 119, 143, 443, 465, 587, 993,

995, 1337, 1990, 5222, 5223, 5269, 5280, 5443, 5555, 6667, 6668, 6697, 6698, 6699, 7777, 8080, 8081,

8333, 8443, 9000, 9418, 9735, 9911, 18080, 18081, 18083, 18089, 38081, 50001, 50002, 64738

A.2. Grouping ports into services based on IANA port mapping
The following table represents all the 196 unique ports detected in the dark web grouped according to

the services following the IANA mapping of ports with their respective services.
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Port Service

11 systat (port the status of a computer’s system)

18 Message send protocol (messaging)

21 FTP

22 SSH

23 Telnet

25 SMTP

52 XNS Time protocol

53 DNS

67 Bootstrap Protocol Server

70 Gopher

79 Finger

80 HTTP

81 Alternative HTTP

82 Xfer

83 MIT ML Device

84 Common Trace Facility

110 Post office protocol

113 Authentication Service

119 Network News Transfer Protocol

143 Internet Message Access Protocol

194 IRC

195 DNSIX Network Level Module Audit

222 Berkley rshd with SPX auth

235 Reserved

300 Unassigned

433 Network News Transfer Protocol for transit servers

443 HTTPS

444 Simple Network Paging Protocol

465 Message Submission over TLS Protocol

513 Remote login telnet

587 Message Submission

701 Link Management Protocol

853 DNS over TLS

873 rsync

993 IMAP over TLS

994 Reserved

995 POP3 over TLS

1123 Murray

1222 SNI R&D network

1234 Infoseek Search Agent

1337 menandmice DNS

1716 xmsg

1813 Radius Accounting

1935 Macromedia Flash Communications Server MX
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1965 Tivoli NPM

1990 cisco STUN Priority 1

2083 Secure Radius Service

2202 Int. Multimedia Teleconferencing Consortium

2221 EtherNet/IP over TLS

2222 EtherNet/IP I/O

2345 DBM

2525 MS-V-Worlds

2628 DICT

2880 Synapse Transport

2999 RemoteWare

3000 RemoteWare Client

3012 Trusted Web Client

3333 DEC Notes

4000 Terabase

4190 ManageSieve Protocol

4242 VRML Multi User Systems

4422 TSEP Installation Service Protocol

4569 Inter-Asterik Exchange

5000 complex-main

5060 SIP

5061 SIP-TLS

5201 TARGUS GetData 1

5202 TARGUS GetData 2

5222 XMPP client-connection

5223 HP VM Group Management

5269 XMPP Server Connection

5270 Cartographer XMP

5280 Bidirectional Streams Over Synchronous HTTP

5281 Undo License Manager

5400 Excerpt search

5443 Pearson HTTS

5555 Personal Agent

6660-6664 Unassigned

6665-6669 IRCU

6679 OSORNO Automation

6690 CLEVERDetect Message Service

6691-6695 Unassigned

6696 Babel Routing Protocol

6697 IRC via TLS

6698 Reserved

6699 Babel Routing Protocol over DTLS

7000 File Server itself

7007 basic overseer process

7070 ARCP
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7777 cbt

7778 Interwise

7779 VSTAT

7890 Unassigned

7922 Unassigned

8000 IRDMI

8001 VCOM Tunnel

8002 Teradata ORDBMS

8003 Mulberry Connect Reporting Service

8004 Opensource Evolv Enterprise Platform P2P Network

Node Connection Protocol

8005 MXI Generation II for z/OS

8006 World Programming analytics

8067 Infinidat async replication

8080 HTTP Alternate

8081 Sun Proxy Admin Service

8083 Utilistor(Server)

8085 Unassigned

8088 Radan HTTP

8090 Vehicle to station messaging

8332-8334 Bitcoin

8443 PCsync HTTPS

8444 PCsync HTTP

8446 Unassigned

8448 Matrix Federation Protocol

8667 Unassigned

8888 NewsEDGE server UDP (UDP 1)

8889 Desktop Data TCP 1

9000 CSlistener

9236 Unassigned

9418 git pack transfer service

9443 WSO2 Tungsten HTTPS

9735-9737 Lightning Network

9788 Unassigned

9877 The X.510 wrapper protocol

9889 Port for Cable network related data proxy or repeater

9911 SYPECom Transport Protocol

9980 Unassigned

9999 distinct

10009 Systemwalker Desktop Patrol

10010 ooRexx rxapi services

10022 Unassigned

11181 Unassigned

11236 Unassigned

11371 OpenPGP HTTP Keyserver
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13122 Unassigned

16000 Administration Server Access

16667 Unassigned

17750 Unassigned

18080-18090 Monero

18180 Unassigned

19332 Unassigned

19734 Unassigned

19950 Unassigned

22548 Unassigned

28080 thor/server - ML engine

28081 Unassigned

28083 Unassigned

28089 Unassigned

28332-28333 Unassigned

30029 Unassigned

34568 Unassigned

37888 Unassigned

38081 Unassigned

38089 Unassigned

40322 Unassigned

40392 Unassigned

42001 Unassigned

44203 Unassigned

45871 Unassigned

47889 Unassigned

47922 Unassigned

48782 Unassigned

50001-50004 Unassigned

54221 Unassigned

54231 Unassigned

56886 Unassigned

60001-60002 Unassigned

60004 Unassigned

64738 Murmur Server

Table A.1: IANA Service Name and Transport Protocol Port Number Registry
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