

Delft University of Technology

Reinforcement learning with symbolic input-output models

Derner, Erik; Kubalík, Jiří; Babuska, Robert

DOI
10.1109/IROS.2018.8593881
Publication date
2018
Document Version
Final published version
Published in
Towards a Robotic Society

Citation (APA)
Derner, E., Kubalík, J., & Babuska, R. (2018). Reinforcement learning with symbolic input-output models. In
Towards a Robotic Society: Proceedings 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (pp. 3004-3009). IEEE. https://doi.org/10.1109/IROS.2018.8593881

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IROS.2018.8593881
https://doi.org/10.1109/IROS.2018.8593881

Reinforcement Learning with Symbolic Input–Output Models

Erik Derner1, Jiřı́ Kubalı́k2, and Robert Babuška3

Abstract— It is well known that reinforcement learning (RL)
can benefit from the use of a dynamic prediction model which
is learned on data samples collected online from the process to
be controlled. Most RL algorithms are formulated in the state-
space domain and use state-space models. However, learning
state-space models is difficult, mainly because in the vast
majority of problems the full state cannot be measured on the
system or reconstructed from the measurements. To circumvent
this limitation, we propose to use input–output models of the
NARX (nonlinear autoregressive with exogenous input) type.
Symbolic regression is employed to construct parsimonious
models and the corresponding value functions. Thanks to
this approach, we can learn accurate models and compute
optimal policies even from small amounts of training data.
We demonstrate the approach on two simulated examples, a
hopping robot and a 1-DOF robot arm, and on a real inverted
pendulum system. Results show that our proposed method can
reliably determine a good control policy based on a symbolic
input–output process model and value function.

Index Terms— Model learning, symbolic regression, rein-
forcement learning, optimal control.

I. INTRODUCTION

In the standard reinforcement learning (RL) formulation,
the system to be controlled is described by a state transition
function xk+1 = g(xk,uk), with xk,xk+1 ∈ X ⊂ Rn and uk ∈
U ⊂Rm. The goal of RL is to find the optimal control policy
π : X → U, which is nothing else than a nonlinear state-
feedback control law. In problems with continuous-valued
state and input spaces, the state transition function g and the
policy π are represented by using a function approximator,
such as a basis function expansion [1], [2], a regression tree
[3], local linear regression [4], [5], a deep neural network [6],
[7], [8], [9], [10], or Gaussian process model [11], among
other possibilities.

This approach has one main inherent drawback: the full
state vector cannot be directly measured for the vast majority
of processes. In such a case, the state has to be reconstructed
from the available measurements, by using a state estimator.
In the absence of an accurate process model (which is usually
the main reason for using RL), such a reconstruction is
inaccurate and jeopardizes the overall performance of the

1Erik Derner is with the Czech Institute of Informatics, Robotics
and Cybernetics, Czech Technical University in Prague, Czech Republic
and with the Department of Control Engineering, Faculty of Electri-
cal Engineering, Czech Technical University in Prague, Czech Republic
erik.derner@cvut.cz

2Jiřı́ Kubalı́k is with the Czech Institute of Informatics, Robotics
and Cybernetics, Czech Technical University in Prague, Czech Republic
jiri.kubalik@cvut.cz

3Robert Babuška is with Cognitive Robotics, Faculty of 3mE, Delft
University of Technology, The Netherlands and with the Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in
Prague, Czech Republic r.babuska@tudelft.nl

RL algorithm on the real system. Note that this problem has
not been explicitly addressed in the literature, as most results
are demonstrated on simulation examples, in which the state
information is available.

In this paper, we investigate the use of dynamic input–
output models of the NARX (nonlinear autoregressive
with exogenous input) type, instead of state-space mod-
els. The NARX model establishes a relation between the
past input–output data and the predicted output: yk+1 =
f
(
yk, . . . ,yk−ny+1,uk, . . . ,uk−nu+1

)
, where ny and nu are inte-

gers related to the system’s order, and f is a static function,
different from the function g used in the state-space model.
Instead of the state vector, the NARX model uses a regression
vector which is a collection of past inputs and outputs. This
means that the model function f and also the policy π has
to be found from data samples living in a space that is
very different from the state space. The lagged outputs yk,
yk−1, . . . are highly correlated and therefore span a skewed
space, which is a problem for many types of approximators.
For instance, basis function defined by the Cartesian product
of functions defined for the individual lagged variables will
evenly cover the whole product space yk× yk−1×·· · , while
data samples only span a small, diagonally oriented part of
the space, as illustrated in Fig. 1.

-4 -2 0 2 4
-20

-10

0

10

20

-4 -2 0 2 4
-4

-2

0

2

4

Fig. 1. An example of a trajectory of the real inverted pendulum (see
Section III-C) in the original state space (a), and in the space formed by
the current and previous output (b).

To deal with this problem, we employ symbolic regression
[12], [13] to build an analytic representation of the model
and of the value function (also denoted as V-function in the
sequel), which serves as a basis for deriving the control
policy π. Symbolic regression is a suitable tool for this
task, as it does not require any basis functions defined a
priori and, contrary to (deep) neural networks, it constructs
parsimonious models, even from small data sets [13].

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

978-1-5386-8094-0/18/$31.00 ©2018 IEEE 3004

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2020 at 07:42:22 UTC from IEEE Xplore. Restrictions apply.

II. METHOD

The NARX model of the system for which an optimal
control strategy is to be learned is described in discrete time
as follows:

ŷk+1 = f
(
yk,yk−1, . . . ,yk−ny+1,uk,uk−1, . . . ,uk−nu+1

)
(1)

where ny and nu are user-defined integer parameters based
on the expected system’s order, and f is a static function
sought by a symbolic regression (SR) algorithm. Note that
the sensor readings can be corrupted by noise, but here we
aim at constructing a deterministic model.

For the ease of notation, we group the lagged outputs and
inputs into one vector:

ξk = [yk,yk−1 . . . ,yk−ny+1,uk−1, . . . ,uk−nu+1]

and write model (1) as:

ŷk+1 = f (ξk,uk) . (2)

The control goal is specified through a reward function which
assigns a scalar reward rk+1 ∈ R to each new sample:

rk+1 = ρ(ξk,uk,yk+1) . (3)

Function ρ is defined by the user and typically calculates the
reward based on the distance of the current output to a given
desired output.

Based on model (2), we compute the optimal control
policy π which in each state selects a control action so that
the cumulative discounted reward over time, called the return,
is maximized:

Rπ = E
{ ∞

∑
k=0

γ
k
ρ
(
ξk,π(ξk),yk+1

)}
. (4)

Here γ ∈ (0,1) is a discount factor and the initial value ξ0 is
drawn uniformly from the input–output domain. The return
is captured by the value function defined as:

V π(ξ) = E
{ ∞

∑
k=0

γ
k
ρ
(
ξk,π(ξk),yk+1

)∣∣∣ξ0 = ξ

}
. (5)

An approximation of the optimal V-function, denoted by
V̂ ∗(ξ), can be computed by solving the Bellman optimality
equation:

V̂ ∗(ξ) = max
u∈U

[
ρ
(
ξ,π(ξ), f (ξ,u)

)
+ γV̂ ∗

(
f (ξ,u)

)]
. (6)

In the sequel, we drop the hat and the star superscript: V (ξ)
will stand for the approximated optimal V-function. Based
on V (ξ), the corresponding optimal control action is found
as the argument that maximizes the right-hand side of (6):

u = argmax
u′∈U

[
ρ(ξ,u′, f (ξ,u′))+ γV (f (ξ,u′))

]
(7)

where U is a set of discretized actions, so that the near-
optimal action can be found by enumeration.

The process model (2) is sought by means of symbolic
regression as follows. The class of symbolic models is
defined as:

f (ξ,u) =
n f

∑
i

βi fi(ξ,u) (8)

where fi(ξ,u) are nonlinear functions (called features), con-
structed by genetic programming. Coefficients βi are esti-
mated by least squares and n f is the user-defined maximum
number of features.

The features fi are constructed from a set of user-defined
elementary functions F . These functions can be nested and
are evolved by means of standard evolutionary algorithm
operations such as mutation. To control the complexity of
the regression model, we limit the maximal depth d of
the evolved symbolic expressions. The elementary functions
can be chosen based on prior knowledge about the system
modeled, or, in the absence of prior knowledge, one can use
general functions such as tanh.

The algorithm we use in this work is based on Single
Node Genetic Programming (SNGP) [14], [15]. It is a graph-
based technique that evolves the symbolic model to minimize
the mean-squared error calculated over the training data set.
In particular, we use a modified version of SNGP with
partitioned population and linearly transformed variables
[12].

Once the symbolic process model is available, it is used
in value iteration. We employ symbolic regression to find an
approximate value function V (ξ) iteratively, just like in stan-
dard value iteration [16]. In each iteration, the value function
from the previous iteration is used to compute the target for
improving the value function in the current iteration. The
improved symbolic value function is constructed by using
symbolic regression with the mean-squared Bellman error as
the fitness function.

III. EXPERIMENTAL EVALUATION

We have selected the following non-linear control prob-
lems as a benchmark for our method: a hopping robot, a
1-DOF robot arm operating under the influence of gravity
and a real inverted pendulum system.

A. Hopping Robot
1) System description: The hopping robot (see Fig. 2)

consists of two masses, the body m1 and the foot m2,
connected by a spring.

-0.5 0 0.5

0

0.5

1

1.5

Fig. 2. Hopping robot schematic. The body m1 and the foot m2 are
connected by a spring, shown as a dotted line.

The body has the following continuous-time dynamics:

ẍ1 =
κ∆x
m1l

(L0− l) ,

ÿ1 =−g+
κ∆y
m1l

(L0− l) ,
(9)

3005

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2020 at 07:42:22 UTC from IEEE Xplore. Restrictions apply.

where κ is a variable spring constant, g = 9.81 m · s−2 is the
gravitational acceleration, m1 = 10 kg and m2 = 2 kg are the
masses of the body and the foot, respectively, and L0 = 1 m
is the equilibrium spring length. The actual spring length l
is given by the formula

l =
√

∆x2 +∆y2 . (10)

The foot has the following dynamics:

ẍ2 =
κ∆x
m2l

(L0− l)− 1
m2

bẋ2 ,

ÿ2 =−g+
κ∆y
m2l

(L0− l)− 1
m2

bẏ2 ,

(11)

where b = 10 kg · s−1 is the damping coefficient. The ground
contact phenomenon is simulated by setting y2 = ẏ2 = 0
whenever the result of numerically integrating (11) would
yield y2 < 0.

We simplify the problem by fixing the x-coordinate to 0,
which allows the robot to jump only in the vertical direction.
The state is described by x = [y1,v1,y2,v2]

>, where y1 is the
vertical position of the robot body and y2 of its foot and
analogously, v1 is the velocity of the robot body and v2 of
its foot. The control input u is variable stiffness, added to
the spring constant. We therefore define the spring constant
as κ = κ′+u, where κ′ = 1000 kg · s−2 is the nominal spring
constant.

We set the initial position of the robot’s body to y1,0 =
1.2 m and its foot to y2,0 = 0.2 m. When the robot falls
from this position with a constant input u = 0, it reaches the
ground, jumps once and never lifts the foot above the ground
afterwards, see Fig. 3. The control goal is to keep the robot
jumping as high as possible by adjusting the spring constant
κ through the input u. The reward function is defined as

ρ(ξk,uk,yk+1) =−(y2,r− y2,k)
2 , (12)

where y2,r = 2 m is the reference for the robot’s foot position
y2.

2) Process model: At the first stage, the symbolic process
model has to be found. We use the fourth-order Runge-Kutta
integration method to simulate the system described by the
above physical model. The sampling period was Ts = 0.002 s.
The discrete1 control input u ∈U can take one of the fol-
lowing five values: U = {−200,−100,0,100,200} kg · s−2.

Based on the prior knowledge of the system dy-
namics, we selected the regression vector to be ξk =
[y1,k,y1,k−1,y2,k,y2,k−1]

>. An alternative choice would be to
include uk−1 as well, but our experience is that for larger
regression vectors, symbolic models can be harder to find.

The samples ξk were collected by a short (30 s) interaction
with the system, which consisted of three parts. In two of
them, a random input was applied to the system. In the
first case, the random input was changed in every time
step, whereas in the second case, it was changed only every

1Symbolic regression does not require discrete inputs, however, symbolic
value iteration currently does. In principle, one could collect a training set
with continuous inputs for constructing the process model.

100 time steps. The third part was constructed by applying
the heuristics

uk = h(ξk) =

 −200 if y1,k− y1,k−1 < 0 ,
200 if y1,k− y1,k−1 > 0 ,

0 otherwise ,
(13)

which keeps the robot jumping. Each of the three parts
had 5000 samples. A random subset of 3000 samples was
selected from the 15 000 samples to speed up the symbolic
regression. Finally, the data set was divided into the training
and validation subset in the ratio 2:1.

The parameters of the SNGP algorithm are summarized
in Table I. A detailed explanation of the parameters can be
found in [12].

TABLE I
COMMON PARAMETERS OF THE SNGP ALGORITHM FOR

CONSTRUCTING THE PROCESS MODEL.

Parameter Symbol Value
Population size np 500
Number of generations ng 30 000
Depth limit d 7
Number of features n f 10
Number of runs nr 30

We chose the elementary function set to be F =
{∗,+,−, square, cube, bent identity2}. Since SNGP only al-
lows modeling one output at a time, we ran the algorithm
twice, for ŷ1,k+1 and ŷ2,k+1.

All 30 models were evaluated on the validation set and
the model with the lowest RMSE was selected as the final
symbolic process model. The best model for ŷ1,k+1 had a
RMSE of 2.30× 10−6 and the RMSE median over all 30
models was 2.40× 10−6. In case of ŷ2,k+1, the best model
reached a RMSE of 5.55×10−6 and the RMSE median over
all 30 models was 1.11×10−4. The final symbolic process
model performs well in the simulation, see Fig. 3.

One SNGP run took approximately 10 minutes on a single
core of a standard desktop PC.

0 2 4 6 8

0.8

1

1.2

Physical model

Symbolic model

0 2 4 6 8

0

0.1

0.2

Fig. 3. Trajectory of the body (y1) and the foot (y2) of the hopping robot
falling from the position y1 = 1.2 m, y2 = 0.2 m under control u = 0. The
plot shows a simulation using the physical (blue) and symbolic (red) model.

2https://en.wikipedia.org/wiki/Bent_function

3006

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2020 at 07:42:22 UTC from IEEE Xplore. Restrictions apply.

3) V-function: Once the final symbolic process model is
available, the symbolic V-function can be estimated. The data
set that was used to train the symbolic process model served
as a basis for the data set for learning the V-function. For
each sample, a set of next states for all possible discrete in-
puts u∈U was generated using the symbolic process model.

The settings of the symbolic value iteration algorithm are
summarized in Table II. The number of iterations ni was 100.
The discount factor γ was set to 0.999 because of the very
short time step Ts.

TABLE II
COMMON PARAMETER VALUES OF SYMBOLIC VALUE ITERATION.

Parameter Symbol Value
Population size np 500
Generations per iteration nl 500
Function set F {∗,+,−, square,

cube, bent identity}
Depth limit d 7
Number of features n f 10
Number of runs nr 30

A symbolic V-function was generated in each iteration,
which yielded a total of 3030 functions (including the
initial ones). All symbolic V-functions were simulated on the
symbolic process model and the V-function with the highest
cumulative reward, calculated using (12) in every time step
k, was selected as the final V-function. The best V-function
achieved a cumulative reward of −3.79×103 and the median
cumulative reward of all V-functions was −3.95×103.

The policy given by the symbolic V-function keeps the
robot hopping in a simulation on the physical model, as
shown in Fig. 4. Note that if we change the initial state to one
with a ground contact, for instance, y1,0 = 1 m, y2,0 = 0 m,
the robot starts and keeps hopping as well.

0 2 4 6 8

0.8

1

1.2

0 2 4 6 8

0

0.1

0.2

0.3

0 2 4 6 8

-200

0

200

Fig. 4. Trajectory of the body (y1) and the foot (y2) of the hopping robot
starting at the position y1,0 = 1.2 m, y2,0 = 0.2 m under the policy given by
the best found symbolic V-function. The plot shows a simulation using the
physical model. The control input u is shown in the bottom panel.

B. 1-DOF Robot Arm

1) System description: The 1-DOF robot arm system
consists of a weight of mass m attached to an actuated link
which rotates in the vertical plane, see Fig. 5. The state vector
is x = [α, α̇]> with α the angle and α̇ the angular velocity of
the link. The control input is the voltage u. The continuous-
time model of the 1-DOF robot arm dynamics is:

α̈ =
1
J
·
(

K
R

u−mgl sin(α)−b α̇− K2

R
α̇− csign(α̇)

)
(14)

with J = 1.7937× 10−4 kg ·m2, R = 9.5 Ω, g = 9.81 m · s−2,
m = 0.055 kg, l = 0.042 m, b = 1.94× 10−5 N ·m · s · rad−1,
K = 0.0536 N ·m ·A−1 and c = 8.5× 10−4 kg ·m2 · s−2. The
angle is α = 0 or α = 2π for the robot arm pointing down
and α = π for the robot arm pointing up.

Fig. 5. 1-DOF robot arm schematic.

The control goal is to reach and stay in the reference (goal)
state αr = π/4 rad from a given initial state. The reward
function for the robot arm is defined as follows:

ρ(ξk,uk,xk+1) =−(αr−αk)
2. (15)

2) Process model: First, we need to find the symbolic
process model. We chose the regression vector to be ξk =
[αk,αk−1,uk−1]

>. Again, the fourth-order Runge-Kutta inte-
gration method was applied to simulate the system using the
physical model. The sampling time was set to Ts = 0.05 s.
The discrete control input u can take any integer value
between −5 and 5 V, including the boundaries.

As in the case of the hopping robot, the data set of samples
ξk was composed of three parts. The first two data sets were
recorded under a random input. The input was changed in
every time step in the first case and it remained constant for
20 time steps in the latter case. The third part consisted of
14 runs, each 2.5 s long, under control u = 0 V and starting
at the following initial angles:

αinit ∈
{

iπ
8

, i ∈ [1..15]\{8}
}
. (16)

The initial angular velocity α̇ was zero in all cases. Note that
only the values of αk and the control inputs uk are recorded
in the data sets in each time step k, i.e., the values of α̇k
are not used. The random parts of the data set consisted
of 600 samples each and the last part had 700 samples.
The complete data set of 1900 samples was divided into
the training and validation subset in the ratio 2:1.

3007

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2020 at 07:42:22 UTC from IEEE Xplore. Restrictions apply.

The SNGP algorithm was run on the training set with
parameters summarized in Table I. We chose the elementary
function set to be F = {∗,+,−, sin, cos, sign}.

As with the hopping robot, all 30 models were evaluated
on the validation set and the model with the lowest RMSE
was chosen as the final symbolic process model. The best
model achieved a RMSE of 4.43×10−3 and the RMSE me-
dian over all 30 models was 1.02×10−2. The final symbolic
process model performs reasonably well in a simulation, see
Fig. 6.

0 0.5 1 1.5 2 2.5 3

-1

0

1
Physical model

Symbolic model

Fig. 6. Trajectory of the 1-DOF robot arm falling from the position
α0 = π/2 rad under control u = 0. The plot shows the first 3 seconds of
a simulation using the physical (blue) and symbolic (red) model.

3) V-function: The symbolic V-function was sought on a
data set prepared in the same way as for the hopping robot.
For each sample in the data set used for learning the process
model, a set of next states was generated using the symbolic
process model for all possible discrete inputs u ∈U .

The configuration of the symbolic value iteration algo-
rithm is presented in Table II. The number of iterations ni
was 200 and the discount factor γ was set to 0.99.

Symbolic value iteration yielded 6030 symbolic V-
functions in total, including the initial ones. The symbolic
process model was used to simulate all the V-functions. The
simulations for each V-function started in 16 initial angles,
i.e., in 14 states described by (16), in 0 and in π rad. The
function with the highest cumulative reward averaged over
all initial states was selected as the final V-function. The
best V-function reached a cumulative reward of −2.50×101

and the median cumulative reward of all V-functions was
−7.29×102.

The policy given by the best symbolic V-function reaches
the reference state αr within 5 seconds for all 16 initial states
in a simulation both with the symbolic process model and
with the physical model. An example of a simulation on the
physical model starting at α0 = π rad is shown in Fig. 7.

C. Real Inverted Pendulum

1) System description: The real inverted pendulum system
used in the experiment is described in [5] and it can be
modeled by the differential equation (14). However, note that
this model is not used here and all data are collected on the
real system.

As in Section III-B, the control goal is to achieve the refer-
ence state αr = π/4 rad and the reward is defined by (15).

2) Process model: The symbolic process model was
trained on a data set ξk = [αk,αk−1,uk−1]

> measured on
the real system. The interaction with the system took 30
seconds, which yielded 600 samples with the sampling time

0 0.5 1 1.5 2

-2

0

2

0 0.5 1 1.5 2

-5

0

5

Fig. 7. Trajectory of the 1-DOF robot arm starting at the position α0 = π rad
under the policy given by the best found symbolic V-function. The plot
shows the first 2 seconds of a simulation using the physical model. The
dashed line denotes the goal state αr = π/4 rad. The control input u is
shown in the bottom panel.

Ts = 0.05 s. The control input u was randomly chosen in
each time step among 11 discrete inputs evenly spacing the
range between −5 and 5 V. The data set was divided into the
training set of 400 samples and the validation set, containing
200 samples.

The SNGP algorithm was run on the training set with the
same settings as described in Section III-B.2. The resulting
30 models were evaluated on the validation set and the model
with the lowest RMSE was chosen as the final symbolic
process model. The best model had a RMSE of 3.96×10−3

and the RMSE median over all 30 models was 5.14×10−3.
3) V-function: Same as in the previous experiments, the

samples in the data set used for learning the process model
served as a base to generate next states for all possible
discrete inputs u∈U using the symbolic process model. The
resulting data set was used in the symbolic value iteration
algorithm. The configuration of the algorithm was the same
as in Section III-B.3.

Symbolic value iteration yielded 6030 symbolic V-
functions. The symbolic process model found on the data
from the random interaction with the real pendulum system
was used to simulate all the V-functions. Similarly as in the
experiment with the 1-DOF robot arm, the simulations for
each V-function started in 16 initial angles, spanning evenly
around a circle. The function with the highest cumulative
reward averaged over all initial states was selected as the
final V-function. The best V-function achieved a cumulative
reward of −2.83× 101 and the median cumulative reward
of all V-functions was −8.69× 102. The policy given by
the best symbolic V-function reaches within 5 seconds the
reference state αr for all 16 initial states in a simulation with
the symbolic process model.

The best symbolic V-function performs well on the real
system, see Fig. 8 and the attachment video. The steady state
error of 0.1 rad and the chattering of the control input can
be explained by the discrete set of actions, which does not
contain the optimal control input [17].

3008

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2020 at 07:42:22 UTC from IEEE Xplore. Restrictions apply.

0 0.5 1 1.5 2

-2

0

2

0 0.5 1 1.5 2

-5

0

5

(a)

0 0.5 1 1.5 2

-2

0

2

0 0.5 1 1.5 2

-5

0

5

(b)

Fig. 8. Performance of the final symbolic V-function on the real pendulum system for two initial states α0 = 0 rad (a) and α0 =−π rad (b). The dashed
line denotes the reference (goal) state αr = π/4 rad.

IV. CONCLUSIONS

Symbolic input–output models are suitable for application
in the RL scheme as the process models and value functions.
The strength of symbolic regression is that only a small
amount of data is needed to find precise models. In addition,
symbolic models are parsimonious and well interpretable by
humans.

Experimental validation shows that our method reliably
finds symbolic process models and value functions which
are used to form a policy that achieves the desired control
goal, both in simulations and in a real experiment. The most
important limitation of this approach is its computational
complexity.

In our future work, we propose to evaluate the method on
higher-dimensional problems, compare symbolic regression
with alternative modeling approaches and extend the method
to batchwise learning in parallel with real-time control.

V. ACKNOWLEDGEMENTS

This work was supported by the European Regional De-
velopment Fund under the project Robotics for Industry 4.0
(reg. no. CZ.02.1.01/0.0/0.0/15 003/0000470), by the Grant
Agency of the Czech Republic (GAČR) with the grant no.
15-22731S titled “Symbolic Regression for Reinforcement
Learning in Continuous Spaces”, and by the Grant Agency
of the Czech Technical University in Prague, grant no.
SGS16/232/OHK3/3T/13. Access to computing and storage
facilities owned by parties and projects contributing to the
National Grid Infrastructure MetaCentrum provided under
the program “Projects of Large Research, Development,
and Innovations Infrastructures” (CESNET LM2015042), is
greatly appreciated.

REFERENCES

[1] R. Munos and A. Moore, “Variable resolution discretization in optimal
control,” Machine learning, vol. 49, no. 2, pp. 291–323, 2002.

[2] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Cross-entropy
optimization of control policies with adaptive basis functions,” IEEE
Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,
vol. 41, no. 1, pp. 196–209, 2011.

[3] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6,
pp. 503–556, 2005.

[4] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” Artificial Intelligence Review, vol. 11, no. 1-5, pp. 11–73,
1997.

[5] I. Grondman, M. Vaandrager, L. Buşoniu, R. Babuška, and
E. Schuitema, “Efficient model learning methods for actor–critic
control,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 42, no. 3, pp. 591–602, 2012.

[6] S. Lange, M. Riedmiller, and A. Voigtlander, “Autonomous reinforce-
ment learning on raw visual input data in a real world application,” in
Proceedings 2012 International Joint Conference on Neural Networks
(IJCNN), Brisbane, Australia, June 2012, pp. 1–8.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” vol. arxiv.org/abs/1312.5602, 2013.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2015, arXiv:1509.02971 [cs.LG].

[10] T. de Bruin, J. Kober, K. Tuyls, and R. Babuška, “Integrating state rep-
resentation learning into deep reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1394–1401, 2018.

[11] M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in In Proceedings of the
International Conference on Machine Learning, 2011.

[12] J. Kubalı́k, E. Derner, and R. Babuška, “Enhanced symbolic regression
through local variable transformations,” in Proceedings of the 9th
International Joint Conference on Computational Intelligence, 2017,
pp. 91–100.

[13] E. Derner, J. Kubalı́k, and R. Babuška, “Data-driven construction of
symbolic process models for reinforcement learning,” in Proceedings
IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, May 2018.

[14] D. Jackson, A New, Node-Focused Model for Genetic Programming.
Berlin, Heidelberg: Springer, 2012, pp. 49–60.

[15] ——, Single Node Genetic Programming on Problems with Side
Effects. Berlin, Heidelberg: Springer, 2012, pp. 327–336.

[16] R. Sutton and A. Barto, Reinforcement learning: An introduction.
Cambridge Univ Press, 1998, vol. 1, no. 1.

[17] J. Kubalı́k, E. Alibekov, and R. Babuška, “Optimal control via rein-
forcement learning with symbolic policy approximation,” in Preprints
20th IFAC World Congress (IFAC-17), Toulouse, France, July 2017.

3009

Authorized licensed use limited to: TU Delft Library. Downloaded on August 27,2020 at 07:42:22 UTC from IEEE Xplore. Restrictions apply.

