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ABSTRACT 

Existing sophisticated numerical micro- and macro models have already proven to be capable 

of simulating typical masonry behaviour. However, assessing the global response of masonry 

buildings using brick-to-brick micro modelling or even simplified macro modelling, in which 

masonry is regarded as a continuum material, takes such an amount of time that these 

methods cannot be considered as cost-effective. For the last two decades it has been 

recognized that, for the global structural behaviour of masonry buildings, simplifications have 

to be made. The idealization of a masonry wall as an assemblage of numerically integrated (or 

fibre) beam elements could considerably reduce the computational burden and therefore this 

study addresses the following research question: 

To what extent are numerically integrated beam elements applicable for assessing the global 

response of masonry structures? 

Whereas existing equivalent frame methods are usually based on lumped plasticity models, 

the approach discussed here considers the entire member (e.g pier or spandrel) as an inelastic 

element in which the sectional response is evaluated via a fibre discretization in which each 

fibre (or integration point over the depth) may follow a material uniaxial nonlinear stress-

strain relation. Initially the shear response is kept linear, automatically idealizing the 

structural response as purely flexural. The proposed model will be hereinafter named FFM 

(Fibre Flexure Model). Additionally, an extension of the FFM has been proposed, describing 

the shearing behaviour by means of a structural nodal interface element. Adopting the nodal 

interface element, placed between two nodes of adjacent beam elements, the axial and 

bending behaviour is described with the fibre-section discretization and the shear behaviour is 

modelled via an equivalent Coulomb-type criterion describing the shear force limit. The 

proposed model will be hereinafter named FF-LSM (Fibre Flexure – Lumped Shear model) 

because it lumps shearing nonlinearities in one single interface element located in the centre 

of the structural component, whereas flexural and crushing behaviour is evaluated via 

smeared crack beam elements.  

To validate the numerical models, two different types of benchmarks have been investigated, 

respectively representing the behaviour of either a single structural component (masonry pier) 

or a composite façade. All numerical models have been subjected to static nonlinear 

(pushover) analyses and results have been compared with experimental and numerical data 

through the use of a reference continuum model.  
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First, it has been demonstrated that the FFM, idealizing the structural response as purely 

flexural, is capable of simulating the rocking failure mode of unreinforced masonry walls, 

whereas it fails to simulate typical masonry shearing modes such as diagonal cracking and 

sliding. The use of the model for squat members that are characterized by shear failure leads 

to significant overpredictions, making the model not applicable for the analysis of masonry 

structures containing relatively squat structural components, having shear span to depth ratios 

less than approximately 1.  

Second, the shortcoming of the FFM regarding the shearing failure mode has been overcome 

by combining the numerically integrated beam elements with a structural nodal interface 

element describing the shear behaviour. The FF-LSM including the nodal interface is able to 

correctly predict the shear capacity of both slender and squat walls, although the observed 

level of accuracy depends largely on the adopted shear failure criterion. Various shear force 

criteria (Coulomb friction based) have been considered: the Mann and Muller (1982) 

criterion, the correction proposed by Magenes and Calvi (1997) and the modification 

according to Abrams (1992). Generally it was observed that the criteria developed by Abrams 

(1992) was the most accurate and that especially for a decreasing shear ratio the criterion 

developed by Magenes and Calvi (1997) appeared to be less precise.   

Third, analysing a composite façade, with respect to the reference continuum model the FFM 

and FF-LSM significantly reduce the number of elements, nodes and integration points, 

consequently minimizing the computational effort and maximizing the computational 

robustness. In comparison with the corresponding continuum model the computational time 

decreases by a factor of approximately 10.  Despite the limitations of the FFM regarding the 

shearing failure mode, the model shows an acceptable accuracy in terms of initial stiffness, 

stiffness reduction and peak strength. Adopting the FF-LSM the numerical model predictions 

were significantly enhanced and both flexural and shearing failure modes (in piers and 

spandrels) were detected correctly.   Therefore, the result of the investigation has proved to be 

very promising as with the FF-LSM an acceptable balance between computational cost and 

accuracy is found, applicable to the global analysis of two dimensional masonry structures 

constituting slender as well as squat walls. As many problems in engineering practice require 

solutions in three-dimensional space, a fully three-dimensional extension of the FF-LSM is 

highly recommended.   
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1 INTRODUCTION  

For the last two decades the earthquakes caused by the gas extraction in the province of  

Groningen have been increasing both in frequency and intensity. The buildings are not 

designed to survive the significant horizontal earthquake forces caused by the horizontal 

accelerations and consequently, if these buildings are examined according to the conservative 

linear-elastic approach adopted in the past, most buildings would fail. Currently, Finite 

Element (FEM) calculations are being done in order to verify whether these buildings can 

withstand the horizontal earthquake forces. In most cases, this involves nonlinear calculations 

related to crack propagation in order to make use of the full capacity  of the material or the 

structure. In the past very accurate non-linear computational strategies have been developed, 

e.g. simplified micro-models (interface model) and macro models (smeared crack model), 

which show the ability to simulate the pre- and post-peak behaviour of brick masonry walls. 

One disadvantage of these two approaches is that they are time consuming and require big 

data storage systems. For this reason, this study focuses on modelling techniques which can 

reduce the computational complexity significantly and consequently make the assessment of 

the global response easier than before. 

1.1 The research problem 

Currently, numerical simulations are one of the most powerful tools to provide insight into the 

structural behaviour of masonry buildings. Therefore, examining the structural reliability of 

existing buildings under new loading conditions requires both reliable and cost-effective 

numerical models for their structural assessment. Existing sophisticated numerical micro- and 

macro-models have already proven to be capable of simulating typical masonry properties 

including the anisotropy, softening behaviour after cracking and dilatancy. However, when 

the global response masonry buildings is assessed, even the use of numerical macro models 

(in which the interaction between unit and mortar is neglected) takes such an amount of time 

that these methods cannot be considered as cost-effective. Besides, also convergence stability 

is often an issue for these models. For this reason it is important to develop or extend existing 

theories in which the computational effort is reduced. One suggestion is to reduce the number 

of nodes and integration points by using series of  fibre (or numerically integrated) beam 

elements representing the structural components of a masonry wall (e.g. piers and spandrels). 

Observing that the stress situation in beams is a special case of a plane stress situation, the 

same smeared crack concept used for plane-stress/plane strain and shell elements in current 
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investigations may be applied. However, the question is whether these numerically integrated 

beam elements are capable of simulating the complex failure mechanisms that masonry walls 

exhibit.  

1.2 The objectives of the study 

In this paper the attention is focused on the application of numerically integrated beam 

elements in unreinforced masonry walls.  It aims at developing a reliable way of numerical 

modelling that can determine the global response of a masonry structure but at the same time 

may limit the computational burden. To provide essential information about stiffness, 

displacement capacity and ultimate strength, a set of benchmarks will be investigated via a 

static-nonlinear analysis method (pushover). Besides, to validate the behaviour of the beam 

elements, a comparison will be made using plane stress elements which already have proven 

to be in good agreement with experiments. In both approaches the same constitutive model 

will be adopted, in order to represent the nonlinear material behaviour of masonry. The beam- 

and continuum model will be compared in terms of performance at detecting the principal 

failure modes, accuracy and computational effort.  

In order to define the capability of fibre beam elements to properly represent the structural 

behaviour of a masonry structure, a number of steps are required. 

Initially, the discussion starts at a structural component level, focusing on the in-plane 

behaviour of masonry walls. Consequently, the structural components (e.g. piers and 

spandrels) will be replaced by series of numerically integrated beam elements. A dimensional 

variation analysis will be performed in order to determine the capability of the beam elements 

of simulating the principal failure modes of masonry piers and spandrels. Then, the structural 

behaviour of complete masonry façades will be simulated. The  application of beam elements 

to model complex masonry façades involves some limitations and problems regarding an 

accurate representation of the single structural components which compose the façade.  

Therefore, in the second stage of this investigation, a masonry wall with regular distributed 

openings will be analysed and numerical and experimental results will be compared. Finally, 

to provide greater insight into the behaviour of such models,  different types of sensitivity 

analyses will be performed and model uncertainties will be discussed.  
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1.3 Research  question 

For the last two decades it has been recognized that, for the global structural behaviour of 

masonry, simplifications have to be made. Often, these efforts have been directed to the 

development of simple constitutive models. Until now, this approach has mainly been used to 

model masonry structures with plane-stress, plane-strain, shell and solid elements. However, 

the use of these types of elements requires a considerable amount of nodes and integration 

points which causes a significantly high computational effort. The idealization of a masonry 

wall as an assemblage of beam elements could considerably reduce the computational burden 

and therefore this study address the following research question: 

To what extent are numerically integrated beam elements applicable for assessing the global 

response of masonry structures?  
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2 REVIEW OF THE LITERATURE 

This chapter presents a wide-ranging literature review of research results that are necessary 

for a basic understanding of the complex masonry behaviour. First a description of the 

mechanical properties on micro- and macro-level will be presented. Second, the masonry 

behaviour on a structural component level will be discussed, e.g. the in-plane behaviour of 

masonry panels under axial compressive and lateral shearing forces. Third, an extension will 

be made to existing computational strategies, in which the focus will be on the two most 

common constitutive models used in nonlinear finite element analyses of masonry structures. 

Finally, the most important features of the equivalent frame method will be discussed.     

2.1 Mechanical Properties of Masonry 

As mentioned in the introduction, the material description of masonry depends on the type of 

modelling, i.e. micro-modelling of the individual components or macro-modelling of masonry 

as a composite. For this reason the first part of section 2.1 deals with the mechanical 

properties related to the single components of masonry and the second part describes masonry 

as being a composite material. Especially the latter takes into account the anisotropic 

behaviour of masonry caused by the geometry of the joints.  

2.1.1 Mechanical properties of unit and mortar 

The mechanical properties of masonry are strongly related to the mechanical properties of the 

individual components. In the past, several authors used uniaxial compressive tests to 

examine the strength, stiffness and deformation capacity of masonry. McNary and Abrams 

(1985) carried out an experimental investigation and examined the response of a stack of 

bricks bonded with mortar loaded by a compressive axial force (Figure 2-1a). Based on the 

work of Hilsdorf (1969) they explained that in such a compressive strength test the mortar 

expands laterally more than the brick. Since brick and mortar are connected mechanically and 

chemically, shear stresses at the unit-mortar interface produce triaxial compression in the 

mortar and bilateral tension in the brick (Figure 2-1b). Based on this information McNary and 

Abrams (1985) performed triaxial compression tests of mortar under a range of lateral 

confining stresses, biaxial tests of bricks to determine the splitting strength and uniaxial 

compression tests of stack-bond prisms. The latter is discussed in section 2.1.3, since it is 

related to the composite behaviour of masonry. 
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Figure 2-1Prism subjected to vertical compressive force (a); Stress states for brick and mortar elements (b) 

(McNary & Abrams, 1985). 

By performing these tests it was shown that the mortar behaviour displayed a nonlinear stress-

strain behaviour and was influenced by the confining pressure (Figure 2-2a).  

 
Figure 2-2Measured properties of mortar under a range of different confining stresses (a) and biaxial 

interaction diagram for brick specimens (b) with C0 and  T0  being equal to fb and fbt , respectively. (McNary & 

Abrams, 1985). 

Furthermore, testing brick units subjected to lateral tension and compressive axial pressure it 

was proven that the failure criterion for bricks under triaxial stresses proposed by Hilsdorf 

(1969) is rather accurate since an almost linear relation between the compressive strength and 

the biaxial tension stress was shown (Figure 2-2b). The straight line corresponding to the 

failure criterion of brick can be expressed as:  
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represents the data found by  McNary and Abrams (1985) can be expressed using the 

equation: 
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2.1.2 Mechanical properties of the unit-mortar interface 

Tests performed on masonry specimens have shown that the interface between unit and 

mortar can act as a plane of weakness and consequently can dominate the behaviour of 

masonry assemblages. Due to the low unit-mortar bond of bed and head joints, the behaviour 

of masonry can be characterised by a nonlinear response also at low level of load. Observing 

the failure modes of the unit-mortar interface two different modes can be distinguished: one 

related to failure due to tension normal to the interface plane (mode I: opening) and another 

associated with failure in shear along the mortar joint (mode II: in-plane shear) (Lourenco, 

1996).    

2.1.2.1 Mode I failure 

Two types of bond between mortar and brick units can be identified: a chemical and a 

friction/mechanical bond, which play a major role in influencing the two different failure 

modes mentioned above. The tensile strength at the interface is mainly determined by the 

chemical bond. Van der Pluijm (1992) has provided results on the tensile bond strength and 

the fracture energy needed to create a unitary area of a crack. Results obtained from these 

tests showed an exponential relationship between the tensile bond strength and the crack 

width. Furthermore, very low fraction energies were detected, ranging from 0.005 to 0.2 

[Nmm/mm
2
] for tensile bond strengths varying from 0.3 to 0.9 [N/mm

2
] (Lourenco, 1996). 

Additionally, by analysing the cracked specimens, it was discovered that the net bond surface 

of the specimens was approximately equal to 35% of the initial cross sectional area of the 

specimen.      

2.1.2.2 Mode II failure 

The Mode II failure is associated with the shear behaviour of the unit-mortar interface. In 

contrast with the tensile bond strength, the shear strength at the interface is caused by both the 
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chemical bond and friction between the surfaces of brick and mortar respectively. Again, 

experimental results showed an exponential softening stress-strain relationship, but after the 

peak strength a residual dry friction level is obtained (Van der Pluijm, 1993). Another factor 

influencing the peak strength and residual dry friction level is the confining (compressive) 

stress. The relation between this confining pressure, the peak and residual dry friction strength 

can be described with a Mohr-Coulomb friction model, in which the material parameters are 

described as the initial internal friction angel 0, the initial cohesion c and the residual internal 

friction angle r. It should be noted that the residual dry friction strength is only influenced by 

the residual internal friction angle r , since after reaching the peak strength the cohesion has 

disappeared (Figure 2-3). 

0

r



s  
Figure 2-3 The Coulomb friction model for both the peak and residual friction strength. 

2.1.3 Mechanical properties of the composite material 

In the last section the mechanical properties of the individual components of masonry were 

analysed. Since masonry can be seen as a composite material, several laboratory tests were 

performed to examine the uniaxial and biaxial behaviour of masonry as a composite. This 

section will explain first the uniaxial tensile behaviour and second the biaxial behaviour of 

masonry.  

2.1.3.1 Uniaxial behaviour 

To determine the uniaxial behaviour of masonry, many investigators of masonry started with 

the simplest case, namely that of a compressive test of stack-bond masonry prisms (Atkinson 

et al., 1985; Hilsdorf, 1969; McNary & Abrams, 1985). As mentioned above, Hilsdorf (1969) 

demonstrated that failure of masonry prisms can be explained by the differences in the elastic 

properties of unit and mortar. However, his assumption that the mortar is at its failure state 

(point D in Figure 2-4) at the moment of collapse was incorrect (Atkinson et al., 1985). 
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Proven by experimental results it is mainly the nonlinear behaviour of the mortar that 

influences the strength level at masonry failure (Atkinson et al., 1985). Considering nonlinear 

mortar properties, failure of the stack-bond prism occurs when the stress curve of the brick 

intersects the brick failure envelope at point E (Figure 2-4).  Therefore, the prism strength is 

determined by the splitting strength of the brick and the deformation capacity of the mortar, 

rather than its crushing strength. The latter explains the nonlinearity of the stress-strain 

relations till failure is reached. Atkinson et al. (1985) developed a theory to account for the 

nonlinear behaviour of the mortar, using a compatibility argument that the strains existing in 

the brick and mortar must be the same. The following equation was proposed: 
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 (2.3) 

in which 
bxΔσ represents the increment of lateral stress in the brick as a result of an increase 

in compressive stress yΔσ ; b  and bE  are the Poisson’s ratio and the Young’s modulus of the 

brick;  1 3( , )m s s  and 1 3( , )mE s s  are the Poisson’s ratio and the Young’s modulus of the 

mortar as functions of the principal stresses; bt  and mt  are the thicknesses of the brick and the 

mortar respectively.  
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Mortar Failure

Nonlinear Mortar (Set B)

Linear Mortar (Set A)

E D

Lateral Brick Stress (Tension) Lateral Mortal Stress (Compression)  

Figure 2-4 Stress paths for brick and mortar taking into account linear and nonlinear mortar properties  

(McNary & Abrams, 1985). 

2.1.3.2 Biaxial behaviour 

As previously stated, masonry is an anisotropic material; therefore, its mechanical properties 

vary with respect to the direction from which they are measured. Almost every structural 
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component subjected to in-plane loads experiences a biaxial state of stress and therefore many 

authors have tried to characterize the biaxial behaviour of masonry by means of laboratory 

tests. As mentioned above, the failure envelope of masonry cannot be defined by the principal 

stresses only, but the orientation of the bed joints with respect to the principal directions must 

also be taken into account. Page (1982) performed many tests on masonry panels with varying 

principal stresses (compression-compression, tension-tension, compression-tension) and bed 

joint orientations ranging from  = 0° to  = 90°.  A complete overview of the experimental 

results is reported by Page (1981, 1982).  The failure surface for brickwork under biaxial 

compressive stress, created by plotting the line of best fit for each bed joint orientation, is 

given in Figure 2-6a. The figure shows clearly that most strength values are dominated by the 

magnitude of both principal directions and that the inclination of the bed joints is of little 

influence. This can be explained by the fact that a splitting failure occurred, parallel to the 

free surface and independently of the bed joint orientation (Figure 2-5b).  However, the 

orientation of the bed joints has a significant influence if one of the principal stresses 

decreases to zero (Figure 2-6a). This phenomena can be explained observing the modes of 

failure and has mainly to do with the fact that for inclinations bigger than  = 0° failure occurs 

by sliding of the bed joints (Figure 2-5a). Another observation that can be made from the 

experimental data obtained by Page (1982), is that in contrast with the biaxial compression 

tests, the biaxial tension-compression and tension-tension tests exhibit a strong dependency 

on the inclination of the bed joints for all principal stress values Figure 2-6b. In this case 

failure always originates from the cross-sections normal to the free surface, which clarifies the 

significant influence of the bed joint orientation.  

   0°, s2  0    30°, s2  0    90°, s2  0 

Split

(a) (b)

 
Figure 2-5Failure modes for uniaxial compression (a) and biaxial compression (b) (Page, 1982). 
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Figure 2-6Failure surface for masonry under biaxial compressive stress (a) and biaxial tensile-compressive 

stress (b) (Page, 1982). 

  

        (a)                                                                                     (b) 
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2.2 In Plane Response of Brick Masonry Walls 

When Unreinforced Masonry (URM) buildings are well designed and the out-of-plane failure 

of masonry walls is prevented in an appropriate manner, the in-plane walls provide the lateral 

resistance of a building. Observing the seismic response of in-plane masonry walls with 

openings, in general two main structural components may be distinguished, namely piers and 

spandrels. Piers are the vertical resistant components left by the openings and the horizontal 

elements coupling the response of adjacent piers under horizontal action are called spandrels. 

In this chapter the in-plane behaviour of masonry walls subjected to axial and lateral forces 

will be analysed, representing the gravity and the horizontal earthquake forces respectively. 

2.2.1 Strength of masonry piers 

The failure mechanisms of masonry piers subjected to gravity and seismic action can be 

traced back to three principal failure mechanisms and can be summarized as follows: 

1. Rocking failure: due to an increase in horizontal action the bed joints crack in tension 

and consequently the lateral force must be carried by the masonry in the compression 

zone. Failure can take place in any of the two following ways or simultaneously: 

overturning of the wall and crushing of the compressed  toes (Figure 2-7a).  

2. Sliding: due to the flexural response of the panel, horizontal tensile cracks form at bed 

joints-units interface. In case of low friction coefficients and low vertical loads a 

sliding plane along these cracked bed joints can develop (Figure 2-7b).  

3. Shear cracking: depending on the properties of the unit-mortar interface, mortar and 

units, shear loads can form an inclined diagonal crack following the path of bed- and 

head joints (zigzag pattern) or throughout bricks (Figure 2-7c). 

          (a) (b)              (c)
 

Figure 2-7 Mechanisms of lateral force resistance: rocking (a), shear sliding (b) and diagonal cracking (c)  

(Messali, 2015). 
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Since sliding and shear cracking are both associated with shear behaviour, this section will 

deal first with the rocking strength and second with the models and parameters for the shear 

strength prediction.  

2.2.1.1 Rocking strength 

For the last two or three decades, several authors have tried to describe the resistance of the 

failure modes mentioned above. Most of them are based on a simplified strength assessment 

and ignore for example the tensile strength of the bed joints. Magenes and Calvi (1997) have 

discussed possible approaches to assess the rocking strength of masonry walls. By using 

numerical simulations, which allow changes in boundary conditions easily, they observed that 

the dominating factor on the shear strength is the shear ratio /v M VD  . Based on 

equilibrium, neglecting the tensile strength of the bed joints and assuming a simplified stress 

distribution at the toe (Figure 2-8), they derived a simple expression to determine the strength 

associated to rocking failure:  

 
2

0 0

1
2

r

u

M D t p p
V

H H f

 
   

 
 (2.4) 

where M is the moment resistance, 0H  is the effective pier height (distance from zero 

moment), D and t  are the width and the pier thickness respectively, p is the mean vertical 

stress due to the axial load P, uf  is the masonry compressive strength and   reflects the 

simplified vertical stress distribution at the toe. The elegance of the expression lies in the fact 

that 0H  is determined by the boundary conditions and can be related to the shear ratio: 

 0 0
v

VH HM

VD VD D
     (2.5) 
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D/2 D/2
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M=Pe=VH0

 
Figure 2-8 Assumptions for rocking strength evaluation of a wall failing with crushing at the base corner 

(Magenes & Calvi, 1997). 
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2.2.1.2 Shear strength 

There are many simplified approaches available to estimate the shear resistance of masonry 

walls. Roughly the models can be divided into two categories: those who consider masonry as 

being an equivalent isotropic material (Turnšek & Cacovic, 1971; Turnšek & Shepherd, 

1980),  and those who describe masonry as a composite material (Mann & Müller , 1982). 

The two approaches mainly differ in the choice of reference stress (e.g. shear, normal or 

principal stress) and of a reference section where failure is initiated.   

2.2.1.2.1 Mohr-Coulomb Criterion 

To estimate the resistance of a shear wall associated with diagonal cracking, several authors 

related the shear failure to the ultimate shear stress based on the Mohr-Coulomb formulation: 

 u vc s   (2.6) 

The formula can be physically justified, since often diagonal cracking is initiated by sliding of 

bed- joints. If u  is considered as the average ultimate shear stress in a horizontal section of 

the wall and sv  is assumed to be the mean vertical stress in the pier, the expression becomes: 

 ( ) ( )d u

P
V Dt Dt c p Dt c

Dt
        (2.7) 

2.2.1.2.2 Mann and Müller’s Theory 

Based on equilibrium considerations, Mann and Müller (1982) developed a complete failure 

envelope in which the strength parameters of the Mohr-Coulomb criterion are corrected. 

Focusing on the diagonal cracking failure mode, this theory describes the crack propagation 

along the constituting components (i.e. joints and units) of a masonry wall. Observing a small 

specimen (Figure 2-9) and making use of the superposition principle the following 

assumptions were made: 

 The axial compressive stress vs  and the shear stress   acting on the masonry panel 

are uniformly distributed over the cross section. 

 Considering that in most cases the head joints are not completely filled with mortar 

and assuming that stresses perpendicular to the head joints are negligible, it can be 

concluded that no shear stresses can develop in the head joints. 
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Figure 2-9 Stress state on a block due to shear and compression forces (Calderini et al., 2010). 

From Figure 2-9a it can be seen that developed shear stresses along the bed joints produce a 

couple of vertical axial compressive stresses to provide in equilibrium. Superimposing the 

global axial compressive stresses, this results in a modified stress distribution for the brick 

which can be represented by the following formula: 

 y v us  s  j   (2.8) 

in which y x2 /j     describes the interlocking of the masonry pattern. Assuming that cracks 

are exerted in the parts where the axial compressive stresses are the smallest, equation (2.8) 

can be inserted in equation (2.6): 

  u v u
c  s j     (2.9) 

Rewriting expression (2.9) the following expression can be obtained representing a failure 

criterion:  

  u vc s   (2.10) 

where c and   are the corrected cohesion and friction coefficient respectively: 
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


j

  (2.11) 

Since the contribution of the shear stresses along the head joints are completely neglected, 

equation (2.10) provides a lower bound to the real strenght of masonry. The derivation easily 

explains why usually a zigzag pattern is observed during diagonal cracking failure, since the 

brick parts where the axial compressive stress is the smallest are located diagonally opposite 

one another (Crisafulli, 1997). Using equation (2.8), Mann and Müller (1982) also derived an 

expression that accounts for failure in compression. Observing the stresses on the specimen in 

Figure 2-9, it can be concluded that for very high values of the axial normal force vs , the 
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greater normal stress  v
s  j in equation (2.8) can exceed the compressive strength uf  of 

masonry. From equation (2.8) and assuming that y uσ = f  the failure criteria for compressive 

failure becomes: 

   x
c

y2
u vτ = f - σ




 (2.12) 

From experiments, Mann and Müller (1982) observed that diagonal cracking not only occurs 

due to a diagonally stepped failure of bed and head joints, but may also occur by shear-tensile 

cracking of the bricks. This is a result of induced tensile stresses in the brick, caused by  the 

shear-compressive state. It may occur when medium to high values of the axial compressive 

stress cause an increase in the shear strength of the mortar joints. To complete the set of 

equations that completely describes the failure envelope of masonry, they derived a 

formulation for the shear-tensile cracking of bricks. Assuming that failure occurs when the 

principal stress in the brick exceeds the tensile strength btf  of the brick, the failure criteria 

can be formulated using the expression for the principal stress obtained from elementary 

theory of elasticity: 

 
2

2

1 2(k k )
2 2

 
    

 

v v
p btf

s s
s    (2.13) 

in which vσ  is the axial normal force, 1k  is the ratio between the shear stress at the centre of 

the pier and the mean shear stress and 2k  is a coefficient taking into account the ratio between 

the shear stress applied on a block and the shear stress at its centre. It was experimentally 

proven that 1 2k k  is equal to 2.3. Rewriting equation (2.13) the failure criteria for shear-tensile 

cracking of the bricks is expressed as: 

 1
2.3

 bt v
b

bt

f

f

s
   (2.14) 

Combining equations (2.10), (2.12) and (2.14), representing respectively the failure criteria 

for shear-friction failure uτ , compressive failure cτ , shear-tensile cracking of bricks bτ  and 

assuming that the axial compressive stress vσ  is equal to the mean vertical stress p , the 

failure envelope curve of Mann and Müller (1982) is described by the following three 

expressions: 

 uτ = c + μp  (2.15) 

   x
c u

y

Δ
τ = f - p

2Δ
 (2.16) 
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 bt
b

bt

f p
τ = 1+

2.3 f
 (2.17) 

Figure 2-10 includes a diagram that represents this formulae graphically and compares the 

created failure envelope curve of Mann and Müller (1982) with the Mohr-Coulomb friction 

criterion (2.6).  

uf
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

 
Figure 2-10 A comparison between the envelope curve for Mann and Müller’s failure theory and the Coulomb 

criterion  (Crisafulli, 1997). 

Other authors (Magenes & Calvi, 1997; Abrams, 1992) take into account a reduced section 

length, caused by wall cracking due to flexure. Based on equilibrium, a linear compression 

stress distribution at the toe (Figure 2-11) and  neglecting the tensile strength of the bed joints, 

the effective uncracked section length d is equal to: 
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Figure 2-11Assumptions for diagonal shear strength of a wall failing with crushing at the base corner (Magenes 

& Calvi, 1997). 

Combining expression (2.6) and (2.18) the ultimate shear force can now be calculated as: 
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 (2.19) 
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Furthermore, by numerical simulation Magenes and Calvi (1997) discovered that the 

reciprocal of the shear strength increased linearly with the shear ratio. To account for this 

effect a correction factor depending linearly on the shear ratio was introduced: 

 with min( , )d u u cs csV Dt      (2.20) 
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 (2.21) 

In both expressions presented in equation (2.21), the cohesion and friction coefficient are 

global strength parameters. Using local bed joint strength parameters may lead to an 

overestimation of the strength parameters because of the presence of weak head joints. 

Therefore, Magenes and Calvi (1997) have pointed out that the proposed correction of Mann 

and Müller (1982) for the cohesion and friction coefficients given in equation (2.11) are 

recommended when the expressions for the shearing strength presented in equation (2.21) are 

used. 

2.2.1.2.3 Turnšek and Cacovic’s Theory 

Another approach to evaluate diagonal cracking, proposed by Turnšek and Cacovic (1971) 

and Turnšek and Shepherd (1980), idealises masonry as an elastic, homogeneous and 

isotropic continuum  all the way up to failure and states that a diagonal crack is initiated when 

the principal stress at the centre of the wall reaches the reference tensile strength of masonry 

(point A in Figure 2-12). 

 
Figure 2-12 Mohr’s circle for stresses at A (Turnšek and Cacovic, 1971).  

The principal stress at point A is then given by the following expression: 
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in which vσ  is the normal stress at A,   the shear stress at A and 1k  the shear stress 

distribution factor depending on the geometry. The principal tensile stress at the attained 

maximum resistance of the wall is often referred to as the ‘’tensile’’ or ‘’reference tensile 

strength’’ of masonry, tuf . Rewriting expression (2.22) the ultimate shear force is now being 

calculated as: 
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 (2.23) 

By neglecting the anisotropic behaviour of masonry this approach has the advantage that the 

prediction of the shear strength is based on only one parameter, namely the reference tensile 

strength which should be obtained from experiments. As pointed out by Calderini et al. 

(2010),  Turnšek and Cacovic’s theory is generally more in line with those masonries that 

behave in an isotropic manner and  Mann and Müller’s theory with those masonries that 

behave anistropicallly.  

2.2.2 Strength of masonry spandrels 

Since masonry spandrels couple the response of adjacent piers, they are usually seen as 

secondary elements. According to Cattari and Lagomarsino (2008) the latter assumption 

cannot be justified, since a substantial energy dissipation is related to their failure. Besides, 

because of the fact that they act as coupling elements, their failure significantly affects the 

boundary conditions of piers which, in turn, influences the global response of masonry 

structures.  

2.2.2.1 Flexural strength 

To overcome the differences between expressions proposed in literature and failure 

mechanisms observed in laboratory experiments, Cattari and Lagomarsino (2008) derived a 

new formulation based on the compressive effect due to deformation of the masonry adjacent 

to the spandrel. In contrast to formulations in codes, which presuppose a response as an 

equivalent strut if the spandrel is connected with another tensile resistant element, Cattari and 

Lagomarsino (2008) assumed that this response may also develop as a result of the 

interlocking, occurring at the interface between the toe and the adjacent masonry material.  

Observing a reference volume at the location mentioned, two principal failure modes can be 

considered, namely failure of a brick in tension Figure 2-13a and failure of the bed joints in 

shear Figure 2-13b. 
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Figure 2-13Failure at the interface between the end section and the contiguous masonry material due to tensile 

failure of the block (a) and failure of the bed joints in shear (b) ( Cattari, 2007).  

Considering horizontal equilibrium (Figure 2-13a) and neglecting the thickness of the mortar 

joints, the following relation can be derived for brick failure in tension: 

 2 y x y btfs    (2.24) 

in which btf  is given as the tensile strength of the brick. In case of the second failure 

mechanism equilibrium can only be obtained from the shear stresses developed on the 

horizontal bed joints since shearing stresses on the head joints should be neglected. Assuming 

a Mohr-Coulomb failure criterion and neglecting the contribution of the cohesion the second 

failure mechanism can be described as: 

 2 2
2

x
y xs 

 
   

 
 (2.25) 

in which x and y are the block width and block height respectively,   the shearing stress 

which can be presented as ys , where ys  is the vertical compressive stress in the spandrel.  

ys  develops from a stress bulb resulting from the vertical stresses in the piers  and can be 

expressed as a proportion of the mean vertical stress in the piers  ;y piers : 

 ;y y piers  s    (2.26) 

ys  is usually referred to as the mean clamping stress at the extreme sections of the spandrel 

and proposed values for   are ranging from 0.5 (FEMA 306) to 0.65 (Cattari and 

Lagomarsino, 2008). Rewriting expressions (2.24) and (2.25) leads to an expression for the 

equivalent tensile strength, representing the properties of the spandrel element and not the 

masonry material: 

 min ,
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Using the tensile strength given in equation (2.27), the failure domain describing the flexural 

behaviour of the spandrel is now defined by considering a system of translational and 

rotational equilibrium equations. For a complete description is referred to Cattari (2007).     

2.2.2.2 Shear strength 

Until recently, analytical strength evaluations of the spandrel strength were hardly available, 

as experimental data on spandrels, required for validation, was lacking. Magenes and Della 

Fontana (1998) were the first to propose a model estimating the shear strength of masonry 

spandrels based on a Mohr-Coulomb friction criterion: 

 s sp spV h t c   (2.28) 

Following the same line of reasoning and assuming that the shear stress distribution is 

parabolic over the height of the spandrel (i.e. elastic and homogeneous properties), Beyer 

(2012) introduced a similar expression for shear crack initiation of the spandrel: 

 
,

2

3
cr s sp sp uV h t    (2.29) 

in which u  is given as the maximum shear stress at the spandrel axis (i.e. centre of the 

section). Typically shear cracking is initiated at midspan of the spandrel, since the vertical 

stresses at this section are generally smaller resulting in a lower shear resistance. Assuming 

that the cracking onset takes place in the bed joints u is defined as: 

 0 ;u y pierc   s      (2.30) 

where 0  referrers to the section were the vertical compressive stress in the spandrel (2.26) is 

the smallest. It is commonly assumed that the vertical stresses on the bed joints at midspan are 

approximately zero  0 0   and therefore, equation (2.29) can be presented as: 

 
,

2

3
cr s sp spV ch t   (2.31) 

However, Beyer (2012) has pointed out that for the peak strength it should be considered that 

cracks through head- and bed joints result into a formation of cracks over the total height of 

the spandrel. Therefore, the peak strength is also associated with the axial force in the 

spandrel and is evaluated as a function of the head joint properties: 

  d, 1

2

3
s sp sp spV c p h t    (2.32) 

In addition, if shear failure causes tensile cracking of the bricks, the ultimate shear resistance 

of the spandrel may be evaluated similar to the strength criteria adopted for piers (2.14): 
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 v2.3 1

spbt
d,s2 sp sp

bt

pf
V = h t 1+

+ f
  (2.33) 

in which btf  is the direct tensile strength of bricks and v sp sp=l 2h  the shear ratio of the 

spandrel. It should be noted that the axial stress present in the spandrel spp  is significantly 

affected by the stiffness of the lintel (or masonry arch) and is therefore rather difficult to 

predict. Besides, compared to the experimental results of spandrels, Beyer and Mangalathu 

(2013) showed that although  the residual strength seems to be dependent on the axial force in 

the spandrel, equation (2.31) gives remarkable good predictions of the residual strength of 

spandrels. These contradictory findings are the reason why the behaviour of spandrels is still 

not completely understood and is part of on-going research.   

2.3 Computational Strategies  

As presented in Figure 2-14a masonry is a composite material consisting of units (brick, 

block, etc.) and mortar. Depending on the field of application, the numerical representation 

relates to the representation of joints by continuum elements (Figure 2-14b), joints are 

modelled with discontinuum elements (Figure 2-14c) or the joints, the mortar and the unit-

mortar interface are smeared out in the continuum (Figure 2-14d). In this section the last two 

approaches, which are the most common ones in engineering practice, will be discussed with 

respect to the constitutive models used, accuracy and computational effort. Finally, a macro-

element model will be briefly introduced and the most important features of  the macro-

elements adopted in that study will be explained.  

(a) (b)

(c) (d)

Bed 

joint

Unit (brick, block, etc) Perpend or head joint Unit Mortar

Interface

Unit/mortar

Composite‘’Joint’’‘’Unit’’

 

Figure 2-14Modeling strategies for masonry structures: a masonry sample (a), detailed micro modelling (b), 

simplified micro modelling (c), macro modelling (d) ( Lourenco, 1996). 
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2.3.1 Micro-Modelling: a composite interface model 

In general, using the concept of predefined locations of potential cracking, micro-modelling 

strategies pursue the aim of representing all local failure modes  that can initiate a macro-level 

failure system. Therefore, a micro-model for masonry should be able to simulate the 

following local failure modes: tensile bond failure, shear bond failure,  cracking of the units in 

uniaxial tension, diagonal tension cracking of the units due to developed friction in the joints 

and crushing of the masonry (Lourenco, 1996). To consider all failure modes in the model, 

usually the approach is to concentrate all the damage in the joints and in a potential fracture 

line oriented vertically in the middle of each unit (Figure 2-15). The vertical fracture lines 

represent the local failure mode that is associated with uniaxial tensile cracking of the unit and 

are able reproduce cracks that propagate from head joint to head joint right through the brick. 

In this way, the failure criterion of the joints has to include all other failure modes that are 

mentioned above.  

Potential crack in 

the unit

Interface elements 

(joints)

Continuum elements 

(units)

Zero thickness

hu+hm

 

Figure 2-15Micro-modelling strategy: the potential crack in the unit and the mortar joints are modelled with 

zero-thickness interface elements and the units are modelled with continuum elements (Lourenco, 1996).  

In finite element analysis, the mentioned approach can be achieved by using nonlinear 

discontinuum elements (interface elements) located at the joints and linear elastic continuum 

elements for the bricks (Figure 2-15). The interface element relates the normal traction ns  and 

the shear traction ts  to the relative normal displacement nu  and the relative shear 

displacement tu  across the interface:  

 
0

0

     
     

     

n n n

t t t

s D u

s D u
  (2.34) 

The initial stiffness of the elements is equal to the elastic normal and shear moduli of the 

joints: /n j jD E t / (2(1 ))t j j jD E t  . Once the condition of crack initiation is violated, i.e. 
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when the normal traction exceeds the tensile bond strength, the element stiffness changes 

according to a constitutive model for the crack.  In general, for masonry, softening models are 

adopted to represent the effect that both the tensile and shear stresses do not drop suddenly to 

zero (elastic-brittle), but decrease gradually as the crack opening displacement increases. As 

presented in section 2.1.2, the failure criteria related to tensile bond failure (Mode I) can be 

incorporated using a tension cut-off criterion in which the softening is controlled by the 

tensile strength tf , the shape of the diagram and the fracture energy fG  (Figure 2-16a). The 

failure mode that is associated with shear bond failure can be modelled with a Coulomb 

friction model (section 2.1.2) in which the softening is influenced by the cohesion c , the 

shape of the diagram and the fracture energy 
II

fG  (Figure 2-16b).  According to Lourenco 

(1996), the diagonal tensile cracking of the units and the crushing of the masonry can be 

included by adopting a compressive cap that limits the combination of compressive and shear 

stresses. The parameters associated with crushing in pure compression are the compressive 

strength cf , the shape of the diagram and the fracture energy cG  (Figure 2-16c). 

c). 

s

nu

tf



tu

c
I

fG
II

fG

s

nu

cf

cG

(a) (b) (c)
 

Figure 2-16 Softening relations: mode I tensile softening (a), mode II shear modulus (b),uniaxial compression 

softening (c). 

Combining the three failure modes, a composite failure envelope can be derived that 

represents the effect that during the nonlinear stage, the stresses are bounded by the failure 

criteria that the interface represents, i.e. tensile/shear bond failure, diagonal tension cracking 

of the joint and crushing of the masonry (Figure 2-17). The softening behaviour of masonry is 

depicted as a shrinkage of the yield surface.  
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Figure 2-17A composite yield criterion for the interfaces, proposed by Lourenco (1996).  

It should be noted that in this interface model accuracy is lost, since the Poisson’s ratio effect 

for the mortar is not included. This can be explained by the fact that the behaviour of the 

mortar joints and the unit-mortar interface is lumped in zero-thickness discontinuous 

elements.  

2.3.2 Macro-Modelling: an anisotropic continuum model 

In the finite element analysis of concrete structures, it has been recognized that the discrete 

crack approach is not a sound numerical procedure to handle crack propagation in practical 

applications (Borst & Nauta, 1985). For this reason, researchers developed the smeared crack 

concept, in which the cracked concrete is modelled as a continuum. For the analysis of the 

global response of masonry structures it is also not feasible to make a distinction between the 

unit-mortar interface and the units. For this reason researchers (Rots, 1991) recognized the 

need for an anisotropic continuum model and extended the smeared crack concept to 

masonry. In this models, before cracking and depending on the type of masonry, the material 

is considered as homogeneous and either isotropic elastic-plastic (Lofti & Shing, 1991) or 

orthotropic linear-elastic (Rots, 1991). A crack, oriented normal to the principal stress 

direction, is initiated when one of the principal stresses reaches a certain threshold value (e.g. 

the tensile strength). Once a crack is formed, the cracked solid is considered as an orthotropic 

material by incorporating a traction-crack strain law using a local n,s,t-coordinate system, 

oriented in line with the crack (Figure 2-18).  
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Figure 2-18 Local coordinate system and tractions across the crack (Rots, 1988) 

In order to distinguish between the constitutive behaviour of the crack and the solid material 

in between, the total strain   is decomposed into a masonry strain increment 
ma and into 

a crack strain increment 
cr : 

 
cr ma        (2.35) 

Originally, the decomposition has been designed to enhance earlier versions of the smeared 

crack concept for concrete. It essentially aims to maintain the similarity between the smeared 

crack concept and the discrete crack approach, which distinguishes between the crack and the 

solid material by using separate finite elements (Rots, 1988). The main advantage is that the 

distinction between the constitutive behaviour of the cracks and the solid material between the 

cracks (Figure 2-19), facilitates the implementation of sophisticated crack laws that have been 

developed over the years.   

ma

nn

nn

 

ma

nn

nns
nns nns

cr

nn

cr

nn

 
Figure 2-19 The decomposition of the total strain nnε  of a fracture zone into a masonry strain 

ma

nnε and a crack 

strain 
cr

nnε (Rots et al., 1985). 

The crack strain vector  cr  in (2.35) describes the six strain components related to the three 

dimensional configuration and is given as: 

 [ , , , , , ]cr cr cr cr cr cr cr T

xx yy zz xy yz zx               (2.36) 

in which the x,y and z indices refer to global coordinate axes. The local strain vector  cre  that 

refers to the local n,s,t-coordinate system can be presented as the following: 

 [ , , ]cr cr cr cr T

nn ns nte e        (2.37) 



27 

 

where  cr

nne  relates to the Mode I normal strain and  cr

ns ,  cr

nt  describe the Mode II and 

Mode III crack shear strains respectively. The global and the local strain vector are related via 

a transformation vector N  that reflects the orientation of the crack, i.e. the inclination angle 

between the normal of the crack and the global x-axis: 

 
cr crN e    (2.38) 

The same reasoning holds for the relation between the local stress increment  crs and the 

global stress increment s : 

 
cr Ts N s    (2.39) 

To complete the set of equations that describes the global stress-strain relation, an incremental 

constitutive relation for the masonry and the cracked material is assumed: 

 
ma maDs     (2.40) 

 
cr cr crs D e    (2.41) 

Substituting (2.35), (2.38) and (2.40) in (2.39): 

 [ ]cr T ma crs N D N e      (2.42) 

Using equation (2.41) this yields: 

 
1

cr cr T ma T mae D N D N N D 


       (2.43) 

Substituting equation (2.35) and (2.38) in (2.40) the following relation is obtained: 

 
ma crD N es         (2.44) 

Combining equation (2.43) and (2.44) provides a constitutive relation for the cracked 

masonry: 

  
1

ma ma cr T ma T maD D N D N D N N Ds 
     

  
 (2.45) 

In general, maD  may reflect material characteristics such as elasticity, plasticity, creep etc. 

(Rots et al., 1985), but for masonry it is generally assumed to be an orthotropic linear-elastic 

matrix that reflects the significant influence of the bed and head joints.  The matrix 
crD , 

related to the incremental constitutive relation between the interface stresses and local crack 

strains, describes the cracking characteristics of masonry such as tension-softening and shear 

cracking. In contrast with concrete, for which the crack matrix does not depend on the 

orientation of the crack, the crack matrix for masonry is a function of the inclination angle 

between the normal of the crack and the joints. For this reason, the parameters that primarily 

influence the softening terms in the crack matrix, become a function of the inclination angle 

between the crack and the joints, i.e. ct ctf = f (α)  and f fG = G (α) . Optionally, the principal 
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compression stress parallel to the crack can follow a nonlinear compression-softening model 

too as shown in Figure 2-20.  
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Figure 2-20 Tensile and compression stress versus the crack strain diagrams. 

2.3.3 Macro-element model 

The idealization of a masonry wall as an assemblage of macro-elements starts from the notion 

that the observed seismic damage on masonry buildings is primarily concentrated in piers and 

spandrels.  The use of a macro-element discretization has been pursued before and ongoing 

research resulted into the equivalent frame approach, in which single macro elements are 

used, representing the structural members of a masonry wall (Figure 2-21a). The extension of 

the equivalent frame approach to the nonlinear field has mainly been made by Italian 

researchers (Magenes & Della Fontana, 1998) and was conceived for the global analysis of 

new and existing masonry buildings. Today’s most popular program available, adopting the 

equivalent frame approach for the nonlinear seismic analysis of masonry buildings is the 

TREMURI program, developed by S. Lagomarsino, A. Penna, A. Galasco and S. Cattari. The 

main features of the non-linear beam element implemented in TREMURI for modelling piers 

and spandrels are hereinafter summarized.  

In this method, the deformable elements (i.e. piers and spandrels) are modelled as ideally 

elastic-plastic beam-column elements, in which the chord rotation u  (sum of flexural 

deformation j  and of shear deformation  )  is limited (Figure 2-21b).  
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Figure 2-21 Equivalent frame idealization of a masonry wall (a) and idealized nonlinear behaviour of a pier 

element failing in shear (b) (Magenes, 2000). 

The parts which are usually not subjected to damage are modelled by means of infinitely stiff 

joint elements (Figure 2-21a). As can be seen from (Figure 2-21b), the deformable elements 

display an ideal plastic behaviour with a maximum deformation (beyond that the element is 

not able anymore to withstand any lateral load and is, in fact, a truss), whenever the nodal 

generalized forces of the element (Figure 2-22a) attains one of the limit values uM  or uV , 

estimated according to the strength criteria presented in section 2.2.1. The initial stiffness is 

given by the elastic properties (i.e. geometrical and mechanical) of the panel and assembling 

the terms associated with axial, shear and flexural deformation the linear elastic stiffness 

matrix of the two dimensional frame element can be obtained (2.46): 

 

3 2 3 2

2 2

3 2 3 2

12 6 12 6
0 0

(1 ) (1 ) (1 ) (1 )

0 0 0 0

6 (4 ) 6 (2 )
0 0

(1 ) (1 ) (1 ) (1 )

12 6 12 6
0 0

(1 ) (1 ) (1 ) (1 )

0 0 0 0

i

i

i

j

j

j

EI EI EI EI

L L L L

EA EA

L L

EI EI EI EI

L L L L

EI EI EI EI

L L L L

EA EA

L L

T

N

M

T

N

M

   

 

   

   

  
   



 
 

   



   





 
 
 
  
 
 
 
 
  

2 2

6 (2 ) 6 (4 )
0 0

(1 ) (1 ) (1 ) (1 )

i

i

i

j

j

j

EI EI EI EI

L L L L

u

w

u

w

 

   





 

   

 
 
 
 

  
  
  
    

   
   
   
   

    
 
 
 
  

  (2.46) 

where   is given as  2 21.2 ED GL ; E  and G  are the Young and shear moduli, 

respectively; A  and I  are the cross-section and the moment of inertia of the panel, 

respectively and L  and D  are the height and width of the panel. In the nonlinear phase a 
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stiffness degradation is described by a stiffness reduction coefficient (Figure 2-22b) 

describing the cracked conditions of the panel. Usually, a simplified procedure is adopted, i.e. 

the elastic stiffness properties are reduced by for example 50%.   

                 

Figure 2-22 Non-linear beam degrading behaviour (S.T.A. DATA, n.d., p. 27) 

Compared to the computational strategies mentioned before, the method drastically reduces 

the number of degrees of freedom and is therefore, especially attractive if a low computational 

burden is required.  
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3 THEORETICAL BACKGROUND 

In the last section of chapter two various numerical models have been discussed to analyse 

brick masonry structures. Recently, the main focus of research in numerical modelling 

strategies for masonry have been devoted to macro-modelling as researchers recognized that 

the micro-models are not suited to analyse the response of masonry on a global level because 

of the computational burden. Therefore, in this chapter the theoretical background of three 

macro-modelling techniques will be considered, namely an isotropic continuum model and an 

two alternative equivalent frame models. All approaches are based on the material models and 

finite elements present in the multipurpose finite element software package DIANA. 

3.1 An isotropic continuum model  

As mentioned above, originally the smeared crack concept has been designed to analyse 

concrete structures for which the stiffness matrix does not depend on the orientation of the 

crack. Furthermore, it was argued that for masonry, being anisotropic in nature, the stiffness 

matrix is dependent on the orientation of the crack, significantly complicating the constitutive 

relation for the cracked material. However, as recognized by many researchers, its 

implementation into both analytical and numerical procedures is rather difficult. Besides, 

Turnšek and Cacovic have proven on the basis of correlation between an analytical isotropic 

model and experimental data that masonry is anisotropic at material point level but that the 

response at larger scale can be interpreted as isotropic in case of diagonal cracking failure. 

Furthermore, compared with the behaviour of concrete subjected to tension, brick masonry is also 

characterized by a very low tensile strength and a brittle behaviour in tension.  

For these reasons, a simple continuum model based on a smeared rotating crack total strain 

concept and an isotropic material formulation has become more and more popular throughout the 

years, and has proven to be able to provide reasonably accurate results (especially for monotonic 

loading) despite its limitations.  

3.1.1 Modelling considerations 

In this work, the abovementioned rotating total strain crack model is used to model the 

masonry. The tensile behaviour of the masonry is described via a linear softening curve and 

the compressive behaviour is based on a parabolic curve (Figure 3-1). Both softening curves 

are described by the tensile stress, the compressive stress, the Mode-I fracture energy 
I

fG  and 
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fracture energy in compression 
I

f cG  . For quadratic plane stress elements DIANA computes 

the crack bandwidth equal to the square root of the total area of the finite element ( h A ). 

 

Figure 3-1 Predefined tension and compression behaviour for the total strain crack model. 

Two modelling approaches are proposed in this report. In the first model all piers and 

spandrels are represented by finite elements having the same material properties (Figure 3-2a 

and Figure 3-2c). In this report it will be referred to as “Continuum Model (CM)”. For all 

finite elements the same joint tensile strength will be assumed, since usually the joints 

(interface between brick and mortar) are the weakest links in masonry. In the second model 

horizontal layers are included at both the extremes of the masonry panels (Figure 3-2b/Figure 

3-2d). The elements of these layers have lower strength and lower fracture energy than the 

parent material, to capture the rocking failure mode of piers or spandrels. Hence, the 

horizontal layers (Figure 3-2b – yellow zone) at the top and bottom represent the flexural 

behaviour and the parent material (Figure 3-2 – green zone) is adopted in the region in which 

diagonal cracking may occur. In essence, this approach is an attempt to model the anisotropic 

and nonhomogeneous nature of masonry and better describes the different failure modes of 

masonry panels. From this point of the document on, it will be referred as “Three Zoned - 

Continuum Model (TZ-CM) ”.  

As mentioned above, the horizontal layers at the top and bottom base are generally those 

regions were cracking along the bed joints takes place. Therefore, for piers the flexural 

behaviour  is simply characterized by the bed joint tensile strength, the corresponding fracture 
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energy and the compression strength of masonry. However, for spandrels the flexural 

behaviour (Figure 3-2d – yellow zone) is more complex than for piers, since in this case the 

tensile strength is also dependent on the interlocking phenomena between the toe and the 

adjacent masonry (section 2.2.2.1). Based on the interlocking effect and considering two 

potential flexural failure modes, Cattari and Lagomarsino (2008) derived an equivalent tensile 

strength representing the flexural property of a spandrel element: 

 min ,c
2 2

bt x
st x y

y

f
f s s

 
     

  (3.1) 

Therefore, in this study equation (3.1) will be adopted to determine the flexural resistance of 

the spandrels.   

Failure mode 

Piers Spandrels 

CM TZ-CM CM TZ-CM 

  

  

Flexural jtf
 jtf

 jtf
 stf  

Diagonal cracking jtf
 tuf  jtf

 tuf  

 (a) (b) (c) (d) 

Figure 3-2 Properties  for the continuum model (a &c ) and three zoned - continuum model (b & d).  

The reference tensile strength that governs the diagonal cracking mode (Figure 3-2/Figure 

3-2d – green region) cannot be obtained from the separate material components and should be 

estimated. The estimation may be based on experiments and the expression developed by 

Turnšek and Cacovic (1971) to evaluate shear failure of piers associated with diagonal cracking: 

 
1

1
k

tu v
d

tu

f
V Dt

f

s
    (3.2) 



34 

 

where 1k  is the shear stress distribution factor depending on the pier aspect ratio H D  and 

tuf  represents the reference tensile strength of masonry. A possible criterion for 1( )k  is 

presented by Benedetti and Tomazevic (1984) : 
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  (3.3) 

Inverting equation (3.2) an expression for the reference tensile stress tuf  can be obtained: 
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Consequently, the only parameter that is unknown is the reference tensile fracture energy. In  

this report the reference fracture energy is estimated to be equal to 0.05 N/mm. It should be 

noticed that this estimation is on the higher side, to ease the numerical procedure and avoiding 

convergence problems. 

3.1.2 Type of elements (plane stress - quadrilateral) 

All continuum models adopt eight-node quadrilateral (CQ16M) isoparametric plane stress 

elements. These elements are based on quadratic interpolation and the integration scheme is 

2x2 Gaussian integration. All features are presented in Table 3-1. 

Table 3-1 Features of the element CQ16M. 

Figure: 

                           
Type: CQ16M - quadrilateral isoparametric plane stress element 

Degrees of freedom: xu , yu  

Nodes: 8 

Interpolation polynomials: 

  2 2 2 2

0 1 4 63 5 72,iu a a a a a a a a                  

xx varies linearly x-direction and quadratically in y-direction 

yy varies linearly y-direction and quadratically in x-direction 

xy varies quadratically in both directions 

Integration scheme 2 x 2 Gauss integration 
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3.2 An alternative equivalent frame model: a Fibre 

Flexure Model (FFM).  

By definition, the equivalent frame method ignores the activation of local failure modes. The 

method mainly considers the global response of masonry structural components (piers or 

spandrels) and does not focus on a correct representation of the masonry material. This also 

entails a crude representation of the cracked condition of the masonry panel (as cited in 

Marques and Lourenco, 2011, p. 6). Therefore, a modification of the method might be to  use 

displacement-based numerical integrated (fibre) beam finite elements, combined with an 

appropriate constitutive model that represents the anisotropic behaviour of masonry. A similar 

approach has recently pursued by Sepe et al. (2014), although in this method the masonry wall 

behaviour is modelled through fibre section force-based elements within the framework of the 

Timoshenko beam theory. To analyse the structural behaviour of masonry structures with the 

numerically integrated beam elements, the finite element package DIANA will be used. 

Therefore, this section deals with the most important features of the Class III Mindlin beam 

elements, which include both the flexural and shear deformation.  

3.2.1 Modelling considerations 

Whereas existing equivalent frame methods are usually based on lumped plasticity models 

(i.e. non-linear behaviour is limited to the end- and midsection of the element), the approach 

discussed here considers the entire member (e.g pier or spandrel) as an inelastic element, i.e. 

distributed inelasticity model. To determine the global nonlinear response of a frame, the 

members are represented by series of beam elements (Figure 3-3) with two numerically 

integrated controlling sections along the bar axis (gauss points). The sectional response is 

evaluated via a fibre discretization in which each fibre (or integration point over the height) 

may follow a material uniaxial nonlinear stress-strain relation (Figure 3-3).  

 
Figure 3-3 Fibre section discretization and controlling sections (gauss points) along the bar axis. 
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Such an approach could be considered as closer to reality since the inelasticity does not 

necessarily occur at the end sections, but could also take place at intermediate control 

sections. Furthermore, as this approach with the fibre discretization still acts on material point 

level and is in essence dependent on the specified material parameters, it is not required to 

implement empirical strength domains to determine the ultimate bending strength. A 

disadvantage is that the shear response is still linear elastic, consequently meaning that the 

diagonal cracking mode is ignored, as discussed in section 3.3. The proposed model will be 

hereinafter named Fibre Flexure Model (FFM). 

As mentioned before, the flexural response is mainly determined by the uniaxial behaviour of 

the beam-column element. Therefore, a fibre stress-strain relation needs to be specified so that 

it correctly describes the uniaxial behaviour of masonry panel subjected to an overturning 

moment. As the flexural behaviour of masonry is governed by the material properties of the 

bed joints, the proposed FFM describes the fibre stress-strain of the bed joints via a linear 

softening curve in tension and a parabolic curve for the behaviour in compression.  

 

Figure 3-4 Fibre stress strain relation describing the bed joint behaviour in tension and compression.  

3.2.2 Type of elements (beam - fibre) 

In contrast with the classical beam elements according to the Euler-Bernoulli theory , the 

Class III elements are based on the Mindlin-Reissner theory,  which takes shear deformation 

into account. They are based on an isoparametric formulation in order to simplify the 

numerical integration and to allow the higher-order beam elements to be curved. The primary 

variables are the translations u and the rotations   in the nodes. According to the Mindlin 

theory, the translation and rotations of the beam axis are independent variables and are 

respectively interpolated from the nodal quantities.  The displacements (3.5) are oriented in 

the local xyz and in the global XYZ directions for the two-dimensional (Figure 3-5a) and 

three dimensional beams (Figure 3-5b) respectively.  
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Figure 3-5Displacements for class-III beams (Manie & Kikstra, 2009). 

3.2.2.1 Deformation, strains and stresses 

The primary strains in an infinitesimal part of the beam are derived from the translations and 

rotations in the nodes (Figure 3-6). The transverse shear strains xy  and zx are forced to be 

constant and by default DIANA assumes a correction factor of 1.2 to account for actual 

quadratic transverse shear stress distribution.  For the three-dimensional Class III beam 

elements the primary strains are the Green Lagrange strains: 
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Figure 3-6Deformations for the three dimensional beams (Manie & Kikstra, 2009). 

DIANA can calculate the Cauchy stresses resulting from the moments and forces. The 

primary stresses are: 
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 (3.8) 

The complete stress situation and sign convention for a three-dimensional beam element is 

shown in  Figure 3-7. 
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Figure 3-7Cauchy stresses for three-dimensional beams(Manie & Kikstra, 2009). 

3.2.2.2 Integration schemes 

The three dimensional Class III elements are numerically integrated both along the 

isoparametric   direction that coincides with the bar axis and over the cross sectional area. 

For the integration in the area of the cross section DIANA divides the cross sectional area into 

quadrilateral integration zones, adopting an isoparametric ,  coordinate system. Figure 3-8 

presents the possible integration schemes depending on the integration rule.  
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Figure 3-8 Integration schemes in quadrilateral zones in the area of the cross section(Manie & Kikstra, 2009). 

3.2.2.3 Interpolation polynomials 

DIANA offers several higher order class-III elements. The interpolation polynomials for the 

displacements of a three-node, three-dimensional class-III element can be expressed as: 

 
2

0 1 2

2

0 1 2

( )
, ,

( )

i i i i

i i i i

u a a a
i x y z

b b b

  

   

   


   

 (3.9) 

From these expressions it can be seen that the strains vary linearly along the centre line of the 

beam. DIANA offers also a four-node and a five-node three-dimensional class-III elements, 

resulting in strain fields that vary quadratically and third-order, respectively.  

3.3 An alternative equivalent frame model: a Fibre 

Flexure – Lumped Shear Model (FF-LSM).  

As have been pointed out before, the shearing behaviour of the numerically integrated beam 

elements in DIANA is described linear elastically and therefore, the elements do require a 

modification to include shearing failure modes. In this work a structural nodal interface has 

been adopted describing the interface behaviour by means of a relation between normal and 

shear tractions and normal and shear relative displacements within the interface element 

(Figure 3-9).  

 

Figure 3-9 Pier discretization over the height and interface element placed between two nodes of adjacent beam 

elements, located in the centre of the structural component (black dot).  
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Conceptually such an approach can be visualized by considering the flexural and shear 

response of the structural component (Figure 3-10). Adopting the nodal interface element, 

placed between two nodes, the axial and bending behaviour is described with the fibre-section 

discretization and the shear behaviour is modelled via a bilinear shear traction relative 

displacement  t tt u   law. The proposed model will be hereinafter named FF-LSM (Fibre 

Flexure – Lumped Shear model) because it lumps shearing nonlinearities in one single 

interface element located in the centre of the structural component, whereas flexural and 

crushing behaviour is evaluated via smeared crack elements. The coulomb friction model that 

is used to describe the relation between the ultimate traction and the relative displacement and 

the features of the nodal interface (N4IF) are presented in the next two sections, respectively.  

 

Figure 3-10The flexural response and the shear response modelled by the fibre section discretization and the 

shear traction relative displacement law, respectively.  

3.3.1 Modelling Considerations 

In the past, many researchers stressed the relation between the ultimate shear strength of a 

masonry structural component and a Coulomb friction (Figure 3-11) formulation as shear 

failure is often initiated by sliding of the bed joints. In such a model the basic assumption is 

that the ultimate shear strength tt  is influenced by the confining pressure nt , the cohesion c

and the friction angle   (Figure 3-11).  

 
Figure 3-11 The Coulomb friction criterion.  
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As mentioned above, the interface nonlinearity of the nodal interface element is described 

with a Coulomb friction model. The perfectly plastic envelope (Figure 3-11), describing the 

shear-slipping in a 2D configuration, can be mathematically expressed as: 

 t nf t t c     (3.10) 

For 0f   both tractions behave linear elastically, while for 0f  a perfect plastic behaviour 

for the shear traction is initiated according to equation (3.10). Optionally for both the 

cohesion and the friction coefficient a softening diagram can be specified, to consider for 

example an ultimate drift limitation u . The strength degradation model for piers adopted 

here yields a linear softening diagram for both parameters, initiated when the top 

displacement of the pier violates the drift capacity belonging to the shearing failure mode (i.e. 

0.4% - recommended by Eurocode 8), while for the spandrels no drift limitations are 

considered. Entering the softening branch, the pier resistance gradually decreases to zero over 

a distance of approximately 3mm; however, further research would be needed to identify a 

precise softening diagram for both the parameters.  

 
Figure 3-12Assumed softening branches for the cohesion and friction parameter upon violation of the plastic 

envelope.  

Since the shear behaviour of the structural components is lumped into one single nodal 

interface, the cohesion and the friction angle should be global strength parameters. As pointed 

out before (section 2.2.1.2.2), adopting the local material parameters (i.e. properties of the bed 

joints) leads to an overestimation of the strength parameters because of the presence of weak 

head joints, a nonlinear shear stress distribution and a reduced section length because of 

tension cracks. Throughout the years researchers have proposed several corrections to account 

for the presence of weak head joints (Mann and Muller (1982) , to include the shear stress 

distribution effect (Magenes and Calvi, 1997) and to consider only the effective uncracked 

section length (Abrams, 1992). Among other possible shear failure criteria (discussed in 

section 2.2) for both piers and spandrels, all three approaches are summarized  in Table 3-2. 
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Table 3-2Possible strength criteria available for the shear resistance of piers as discussed in section 2.2.1.2.2. 

Element 

type 

Failure 

mode 

Strength criterion 
Mann and Müller 

min{ , }
d u b

V Dt    

Turnšek and Cacovic

min{ , }
d u b

V Dt    

Magenes and Calvi

min{ , }
d u b

V Dt    

Piers 

Crack through 

head and bed 

joints 

 u c p   

1

1
k

tu
u

tu

f p

f
    

1





u

v

c p



 

Crack through 

head joints and 

bricks 2.3

bt
b

bt

f p
τ = 1+

f
 

 v2.3 1 

bt
b

bt

f p
τ = 1+

+ f
 

 Abrams (1992)  

Bed joint 

sliding 

             d sV Dt            with     
1.5

1 3

 
 
 
  
 

s

v

c p

c

p






 

Spandrels 

 Beyer (2012) 

Crack through 

head and bed 

joints 

                  
d,s1 sp sp u

2
V = h t τ

3
   with      u spc p   

Crack through 

head joints and 

bricks 
d,s2 sp sp bV = h t τ       with     

 v2.3 1 

spbt
b

bt

pf
τ = 1+

+ f
 

Where D = length; t = thickness; p = vertical pressure; 1 c c j  and 1 c j  are corrected 

cohesion and friction coefficients dependent on the interlocking parameter 2  y xj  in which y and

x are respectively the length and the height of the brick unit; v = shear ratio; tuf = reference tensile strength; 

btf = brick tensile strength; 1k = shear stress distribution factor as function of the slenderness and spp = axial 

stress in the spandrel 

However, to adopt these shear strength criteria in a Coulomb friction model in which only the 

cohesion and friction coefficient can be specified , the analytical formulations (including the 

correction factors) should be rewritten into a more suitable format (Table 3-3). Furthermore, 

as shear-tensile cracking of the bricks only occurs in presence of extremely high normal force 

and therefore is considered as a relatively seldom failure mode, this failure criterion will be 

neglected. The contribution of the axial force in the spandrel to the shear strength is ignored 

also, because experimental results have shown that the spandrel shear equation based on the 

cohesive strength alone yields remarkably good approximations of  the residual spandrel 

strength (section 2.2.2.2). Table 3-3 presents all the adopted strength criteria for the piers as 

well as for the spandrels.  

Providing that before crack initiation the derived relative displacements within the interface 

element are negligible and avoiding ill-conditioned matrixes, the elastic normal and shear 
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moduli of the interface element are taken equal to the elastic normal and shear moduli of the 

masonry panel multiplied by a factor of 1000, i.e. 1000nk E l  and 1000tk G D .  

Table 3-3Strength criteria adopted for nodal interface 

Element 

type 

Failure 

mode 

Coulomb Friction (CF): 

d uV Dt   in the form of   u c p   

Mann and Müller 

(MM) 

Magenes and Calvi 

(MC) 

Abrams 

(A) 

Piers 

Diagonal 

cracking and/or 

sliding 

 u c p   

with 

1

1







c
c

j




j

 

 u mc mcc p   

with 

1

1







mc

v

mc

v

c
c








 

 

 

 

u a ac p    
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1.5

1 3

1 3

a

v

a

v

c
c

c

p

c

p








 
 
 
  
 

 
 
 
  
 

 

 Beyer (2012) 

Spandrels 

Crack through 

head and bed 

joints 
sp

2
c c

3
   

Where D = length; t = thickness; p = vertical pressure; v = shear ratio of piers; 2  y xj  the interlocking 

parameter in which y and x are respectively the length and the height of the brick unit; 

3.3.2 Type of elements (structural interface – nodal)   

The nodal interface element (Table 3-4) is an element placed between two adjacent beam 

elements. The interface surface and directions are specified by the user. The x  and z  axis 

should be oriented such that they are perpendicular to the interface, ensuring the horizontal  

y -axis being tangential to the interface. In the two dimensional configuration the variables 

are defined in the local xy  axes system, i.e. the nodal displacements eu  being the basic 

variables and the relative displacements u and the tractions t  representing the derived 

values. All features of the nodal interface element are summarized in Table 3-4. 

 



44 

 

Table 3-4 Features of the element N4IF. 
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4 VALIDATION OF THE MODELS 

As chapter 3 was devoted to the description of both an existing continuum and an alternative 

equivalent frame model, chapter 4 addresses the validation of both models.  To this end 

various types of international well-known benchmarks have been compiled and have been 

numerically simulated. The validation process starts at structural component level (section 

4.1), investigating the in-plane behaviour of masonry piers under quasi static loading 

conditions, varying the panel geometries and boundary conditions. The model validation ends 

with simulating the response of an in plane shear test that was performed on a two-storey 

height full-scale masonry façade (section 4.2) and a comparison with the TREMURI results 

presented in Lagomarsino et al. (2013).  

4.1 Masonry Panels - ISPRA and TU Delft 

As mentioned in section 2.2, masonry walls are composed of several smaller piers which 

actually provide both the horizontal and vertical load bearing system. To investigate the 

seismic behaviour of the mentioned structural components both experimentally and 

numerically, Anthoine et al. 1995) performed four tests at the Joint Research Centre of the 

European community in Pavia for ISPRA (Istituto superiore per la protezione e la ricerca 

ambientale) on piers under both vertical and horizontal loads, reflecting the complex loading 

condition during an earthquake.  To this purpose, while the horizontal displacement at the top 

was increased, servo-controlled actuators kept the vertical load constant and the top parallel to 

the bottom base. To investigate the strength degradation the walls have been quasi-statically 

exposed to alternated lateral displacements of increasing amplitude.  

  
Figure 4-1Schematic view of the testing set-up (Anthoine, Magenes & Magonette, 1995). 

In order to characterise Dutch masonry, a similar laboratory-based experimental program, 

comprising in-plane tests on replicated masonry walls was performed at the TU Delft in 2015. 

In the following three sections both experimental results will be used to examine the 

behaviour of the numerically integrated Mindlin-Reissner class III beam elements. The first 



46 

 

section gives a complete description of the geometries, adopted material properties and mesh 

input data, whereas the other two sections are devoted to the examination of the numerical 

results of both benchmarks,  first on the results of the ISPRA tests, then the TU Delft tests. 

Both results sections are subdivided into three parts, subsequently addressing a number of 

aspects of the behaviour of the TZ-CM and the FFM, some sensitivity analyses and the 

obtained results adopting the FF-LSM.   

4.1.1 Input 

The dimensions and features of the ISPRA and TU Delft test samples including the ultimate 

load and the failure mode are presented in Table 4-1. Furthermore, the boundary conditions 

and the vertical load applied by the actuators are given. For a more detailed description of the 

tests set-up and test specimens is referred to Anthoine et al. (1995) and Ravenshorst and 

Messali (2016) for the ISPRA tests and TU Delft tests, respectively.  

Table 4-1Input data 

Specimen BC 
D  H  t  p  +

V   
Prevailing failure mode 

m m m MPa kN 

Case 1: ISPRA tests 

I - high wall DC 1.0 2.0 0.250 0.6 72 Rocking 

I - low wall DC 1.0 1.35 0.250 0.6 84 Diagonal cracking 

Case 2: TU Delft tests 

TUD-0a DC 1.1 2.7 0.102 0.7 27.7 

Combined: 

 Rocking (flexure and crushing) 

 Sliding 

TUD-2 C 1.1 2.7 0.102 0.5 9.40 

Combined: 

 Rocking (flexure without crushing) 

 Sliding 

TUD-3 DC 1.1 2.7 0.102 0.4 15.0 

Combined: 

 Rocking (flexure and crushing) 

 Sliding 

TUD-4 DC 4.0 2.7 0.102 0.5 119 Shear diagonal cracks along joints 

TUD-5 DC 4.0 2.7 0.102 0.3 102 Sliding along the bottom joints 

TUD-6 C 4.0 2.7 0.102 0.5 110 
Shear diagonal cracks along joints and 

crushing of corners 

Where BC = boundary conditions; D = length; H = height; t = thickness; p = vertical pressure; V
+
 = shear 

strength for positive displacements; DC = double clamped; C = cantilever wall. 

The mechanical parameters adopted in the numerical analyses are presented in Table 4-2. The 

reference tensile strength of masonry tuf , is calculated on the basis of the experimental 

ultimate shear strength of TUD-4 for the TU Delft tests and I-low wall for the ISPRA tests. 

The tensile mode-I fracture energies have been deduced from Van der Pluijm (1992), who has 



47 

 

performed deformation controlled tension test on small masonry specimens of solid clay and 

calcium-silicate units. With the exception of the estimated tensile mode-I fracture energies      

(
I

f jtG   and 
I

f tuG  ) all other values in Table 4-2 are provided in Magenes (1997) for the 

ISPRA tests and in Esposito et al. (2016) for the TU Delft tests.  

Table 4-2 Material properties ISPRA and TU Delft tests. 

Property Symbol Unit 
Case 1: 

TU Delft tests 

Case 2: 

ISPRA tests 

Joint tensile strength jtf  MPa 0.18 0.04 

Reference tensile strength of masonry (1) tuf  MPa 0.13 0.24 

Compressive strength of masonry in the 

direction perpendicular to bed joints cf  MPa 5.93 6.2 

Young’s modulus 2E  MPa 5091 1410 

Poisson ratio   - 0.14 0.15 

Reference fracture energy tensile mode-I (2) 
I

f tuG   N/mm 0.05 0.05 

Bed joint fracture energy tensile mode-I (3) 
I

f jtG   N/mm 0.005 0.005 

Fracture energy in compression for loading 

perpendicular to bed joints 
f cG   N/mm 31.5 31.5 

Note:  

(1) estimated on the basis of test results of TUD-4 for the TU Delft tests and I-low wall for the ISPRA tests  

(2) estimation 

(3) tensile bond behaviour of masonry: estimation based on Van der Pluijm (1992) 

Since mesh regions undergoing cracking are not know in advance, regular distributed 

quadrilateral meshes are generated for the CM (Figure 4-2a) and TZ-CM (Figure 4-2b). 

Generally, in case of the FFM (Figure 4-2c), the piers are discretized by two small beam 

elements located at the extreme sections of the masonry panel combined with four or five 

equally sized beam elements representing the middle part (Table 4-3). Maintaining the 

similarity with the CM and the TZ-CM, initially all beam elements in FFM have the same bed 

joint properties as adopted in the CM (this model is hereinafter named FFM-a). Second, a 

variation study on the FFM-a has been performed by reducing the bed joint fracture energy 

I

f jtG   of both small beam elements (located at top and bottom) from 0.05 to 0.005 N/mm 

(Figure 4-2d). It will be referred to as FFM-b.  

For both cantilever and double clamped walls the rotations and the translations at the bottom 

are fixed.  A rigid link is adopted to prevent rotation of the top base in case of a double 

clamped boundary conditions and to keep the top nodes parallel to the nodes at the bottom 

base. For the beam elements this type of constrained is obtained by constraining the rotation 
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around the z-axis of the top node. Table 4-3 summarizes for both the continuum and fibre 

beam models the mesh input data.  

    
(a) (b) (c) (d) 

Figure 4-2 Representative meshes  for the CM (a), TZ-CM (b) FFM-a (c) and FFM-b (d). 

All masonry panels are subjected to pushover analyses in which the lateral displacements are 

gradually increased until the masonry panels fails and/or reaches the ultimate prescribed 

displacement ,r fd .  The nonlinear set of equations is solved by means of the regular (or full) 

Newton-Raphson method, which means that the tangent stiffness matrix is derived at every 

iteration. During a specific load step not more than 100 iterations are allowed.  In order to 

ensure DIANA to provide the correct solution, the force norm
1
 as well as the displacement 

norm
2
 are simultaneously checked.  

Table 4-3 Mesh input data 

Specimen BC 

Mesh size 

Beam Plane stress 

Size 
QTY 

Size 
QTY 

Size 

[mm] [mm] [mm] 

Case 1: 

ISPRA tests 

I - high wall DC 100  2   450  4 100 

I - low wall DC 67.5 2 303.75 4 67.5 

Case 2: 

TU Delft tests 

TUD-0a DC 100  2   500 5 100 

TUD-2 C 100  1  520 6 100 

TUD-3 DC 100  2   500 5 100 

TUD-4 DC 150 2 480 5 150 

TUD-5 DC 150 2 480 5 150 

TUD-6 C 150 1 480 5 150 

Where BC = boundary conditions; DC = double clamped; C = cantilever wall; QTY = quantity 

                                                 
1
 The ratio of the out-of-balanced force vector of the current iteration and the force unbalance at the beginning of 

that  step. 
2
 The ratio of the current displacement increment and the first displacement prediction of that step.  
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4.1.2 Results – masonry panels ISPRA 

In this section the numerical results of the ISPRA tests will be compared with the 

experimental data. Besides, a control parameter has been added by using the analytical 

expression for the rocking failure mode. This can be interpreted as being a lower bound for 

the rocking failure mode, since it is based on a zero tensile strength assumption. Furthermore, 

the influence of the beam finite element mesh, the integration scheme in the area of the cross 

section, the impact of the reference fracture energy on the TZ-CM and the results of the FF-

LSM are discussed. 

4.1.2.1 Continuum and Fibre flexure models 

The basic problem of adopting a total strain model and assuming masonry to be isotropic and 

homogeneous remains the selection of an appropriate tensile strength. It might be assumed 

that this should be equal to the joint tensile strength, since tests for the characterization of the 

constituting components of masonry have shown that the interface between the mortar and 

brick is very brittle and weak.  However, Figure 4-3 (CM) shows very clearly that this 

approach results in the wrong failure mode of the high wall  and consequently in a wrong 

force-displacement curve (blue line). Apparently, since such a diagonal crack was not found 

in the experiment, the tensile resistance for the regions undergoing diagonal cracking is higher 

than the assumed bed joint tensile strength. The problem can be solved by considering a TZ-

CM, as this model is designed to account for such an effect. Indeed, with this modelling 

approach the correct failure mode Figure 4-3 (TZ-CM) is found and an almost perfect fit with 

the experiment data is obtained (red line). A similar phenomenon is found for the low wall, 

since in this case the CM shows the correct failure mode but along with the diagonal crack 

almost all other integration points cracked (Figure 4-4 – CM). Again, the TZ-CM results in 

the correct failure mode and fits better with the experimental data, although the corresponding 

drift at peak strength does not coincide with the one obtained from experiments. The FFM-a 

as well as the FFM-b performed extremely well for the high wall (Figure 4-3). The similarity 

between these two beam models can be explained by the fact that the tensile stress is as such, 

that the difference with the zero tensile stress assumption is almost negligible and the lower 

bed joint fracture energy adopted in FFM-b is of no influence. Figure 4-4 illustrates the 

overestimation of the member strength and the incapability of the beam elements of modelling 

the strength degradation that coincides with the diagonal crack. The reason therefore lay in the 

fact that the Class III beam elements only simulate failure in bending and only restrict the 

bending (axial) stresses.   
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ISPRA – high wall Scale 1:35 
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CM and FFM-a 100 0.04 0.05 - - 

TZ-CM and FFM-b 100 0.04 0.005 0.24 0.05 

Figure 4-3 Force-displacement curve of the high wall and prevailing failure modes at the ultimate capacity for 

the CM and TZ-CM.  

ISPRA – low wall Scale 1:35 
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Figure 4-4 Force-displacement curve of the low wall and crack patterns at the ultimate capacity for the CM and 

TZ-CM. 



51 

 

In Figure 4-5 the crack propagation for increasing values of lateral displacement is shown by 

plotting the total principal tensile strains for the TZ-CM. The results are in good agreement 

with the failure modes observed in experiments, which implies that the high wall fails in 

rocking and the low wall by diagonal cracking.  

High wall Scale 1:60 

       

2mm 4mm 6mm 8mm 10mm 12mm 12mm 

                                                       Low wall 

     

1.5mm 3mm 5.6mm 5.65mm 5.65mm 
Figure 4-5 Crack propagation for increasing values of lateral displacement and final deformed shapes of the 

walls. 

For the FFM, the crack propagation during the nonlinear analysis can be visualized by 

monitoring the axial stresses at the integration points located at the extreme sections of the 

panel. In section 4.1.3.1 this has been done for a short wall failing in flexure (TUD_COMP-

0a) and a long wall (TUD_COMP-4) failing in shear. To demonstrate the incapability of the 

beam elements to capture the shearing failure mode the obtained stress distributions at the 

extreme section have been compared with those obtained with the TZ-CM (section 4.1.3.1).  

4.1.2.2 Sensitivity analyses 

Two types of sensitivity analyses are performed, first the influence of the mesh size and the 

integration scheme in the area of the cross section on the FFM is analysed and second, the 

effect of the estimated reference masonry fracture energy on the TZ-CM will be discussed.  

4.1.2.2.1 Influence of mesh size and integration scheme on fibre flexure model 

For the beam elements a variation study is made between one beam element, two beam 

elements and three beam elements, distributed over the height of the masonry panel and 

representing the high wall tested in Pavia for ISPRA. Only FFM-a has been considered, as 

this model allows easily a mesh sensitivity analysis (i.e. all finite elements have the same 

material properties). To investigate the effect of the integration scheme in the area of the cross 
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section, the adopted Simpson integration rule in the area of the two control sections ranges 

from 3 to 11 integration points over the cross sectional height.  The effect on the peak strength 

and ultimate displacements will be illustrated by displaying both the force-displacement 

curves and stress distributions at extreme sections.  

Figure 4-6 present the force-displacement curves for the ISPRA high wall adopting one beam 

element, two beam elements and three beam elements. The picture clearly shows that the 3 

point Simpson integration scheme is not suitable for a nonlinear analysis, as it dramatically 

overestimates the peak strength of the masonry panel. Furthermore, one beam elements 

overestimates the member strength (Figure 4-6a), since the Gaussian integration scheme does 

not include the end sections in which the highest forces are present.  

FFM-a – ISPRA high wall 

 

 

 

 

 

 

(a) (b) (c) 

Material 

properties 

Model jtf  I

f jtG   

FFM-a 0.04 0.05 

Figure 4-6 Influence of the mesh size and the adopted Simpson numerical integration scheme on the FFM 

accuracy: 1 beam element (a), 2 beam elements (b) and 3 unequally distributed beam elements (c).  

By selecting two beam elements over the height of the masonry panel the result is improved 

(Figure 4-6b). This is explained by the fact that the control sections of the beam elements are 

closer to the top and bottom base. Another mesh refinement in which two smaller beam 

elements at the top and bottom are combined with one greater beam element in the middle 

result in an almost perfect fit with the experimental results. Figure 4-6  it can be concluded 
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that an increase in the number of integration points over the height of the beam elements and 

the localized mesh refinement technique provides better results.  

In order to visualize the effect of the number of integration points over the height of the beam 

element, the section stress distribution for both the 3 points and 11 points Simpson integration 

rule has been examined. To this end, at each load step the stresses along the beam axis in each 

fibre (integration point) have been extracted from DIANA and were plotted in MATLAB 

(Figure 4-7).  

            

Figure 4-7 Section stress distribution at the base of the masonry wall for respectively 3 and 11 integration points 

over the height of the beam element – ISPRA high wall using 3 beam elements.  
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The figure graphically demonstrates how the stresses are distributed over the cross section and 

why a 3 points Simpson integration rule in the area of the cross section is not suitable in a 

nonlinear analysis.  

4.1.2.2.2 Influence reference fracture energy on three zoned - continuum model  

In the preceding section (4.1.2.1) it has been shown that on the one hand the TZ-CM shows 

good agreement with experiments but on the other hand resulted in an incorrect combination 

of lateral displacement and peak strength for the low wall. It appears to be that this 

combination is closely related to the estimated reference fracture energy, which physically 

means that it is related to the amount of energy that can be dissipated in the diagonal crack. 

Figure 4-8 graphically illustrates the effect of a decreasing reference fracture energy. It clearly 

displays that for a decreasing fracture energy the lateral drift at peak strength decreases and 

comes closer to the experimental data.  

TZ-CM – ISPRA low wall 1:35 
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Figure 4-8 Influence of the unknown parameter of the TZ-CM, namely the reference masonry fracture energy.  

4.1.2.3 Fibre flexure – lumped shear model 

As discussed in section 3.3 the beam elements do require a modification to account for the 

shear failure mode. It was proposed to adopt a structural nodal interface in combination with a 

Coulomb friction model in which the material parameters (i.e. the shear strength c  and 

friction  ) were modified and linked to the global strength parameters of the masonry panel. 
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Table 4-4 present the mentioned parameters, modified by the criteria presented in Table 3-3, 

referring to the Mann and Muller (1982) criterion  ,c  , the correction  ,mc mcc   proposed 

by Magenes and Calvi (1997) and the modification  according to Abrams (1992)  ,a ac  .  

Table 4-4Input data for piers dominated by failure in shear. Parameters are calculated according to the 

equations presented in Table 3-3. 

Name 

0H

H  v  p  x
*  y  j  c    c    mcc  mc  ac  a  

- - MPa mm mm - MPa MPa 
M

Pa 
MPa MPa MPa MPa MPa 

I-low 

wall 
0.5 1.0 0.6 185

* 
55 0.59 0.23 0.58 

0.

17 
0.43 0.10 0.26 0.16 0.27 

* x is taken as the mean between the stretcher (250 mm) and the header (120), since the Ispra walls were 

built in English bond (alternate stretcher and header courses) 

H = height; H0 = distance to zero moment; v =  shear ratio; p = vertical pressure;  x = unit length;  y = 

unit height; j = the interlocking parameter  y x
2 /  ;  

As mentioned before, the structural nodal interface is placed between two adjacent beam 

elements and is located in the middle of the panel (Figure 4-9). When the Coulomb friction 

failure envelope is violated (section 3.3.1), a perfect plastic behaviour for the shear traction 

and consequently for the shear force is initiated (Figure 4-9). 

FF-LSM – ISPRA low wall 1:35 
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Figure 4-9 Force-displacement curves and lateral displacements for the FF-LSM – ISPRA low wall.  
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Figure 4-9 shows that the implementation of the above mentioned analytical shear strength 

criteria (section 3.3.1) yields reasonable predictions of the shear strength (numerical percent 

error within 20%), although in this case the shearing strength according to the Mann and 

Muller criterion was greater than the rocking strength, as shearing failure was not initiated 

adopting this criterion (Figure 4-9 – yellow line).    

Optionally a panel collapse can be considered by a limitation of the ultimate drift. Specifying 

a linear softening diagram for both the shear strength and friction parameters, the element 

resistance gradually decreases to zero when a maximum deformation is violated (Figure 

4-10). The maximum allowable deformation is generally referred to as the drift capacity ( u ) 

and is dependent on the failure mode (e.g. piers failing in shear or flexure) and the shear 

aspect ratio of the pier. The limit value u  adopted here is 0.4 % (recommended by Eurocode 

8 for piers failing in shear).  

FF-LSM – ISPRA low wall 1:35 
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Figure 4-10 Force-displacement curves and lateral displacements for the FF-LSM combined with a drift 

limitation.  

4.1.3 Results – masonry panels TU Delft 

This section presents the numerical results of the TU Delft tests. The numerical prevailing 

failure modes and force-displacement curves will be compared with experimental data.  

Again, the analytical expression for the rocking failure mode has been added to the numerical 

load-displacement curves. Additionally, the stress distributions at the base of the masonry 
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panels for both the plane stress elements and beam elements are analysed. In order to find a 

range of application for the FFM, the numerical error as a function of the shear ratio will be 

investigated.  

4.1.3.1 Continuum and Fibre flexure models 

Figure 4-11 presents the numerical as well as the experimental backbone force-displacement 

curves for the short and long walls respectively. The experimental backbone curves are 

derived from the original cyclic curves and are created by combining the positive shear forces 

at the positive final displacement of each load cycle.  

The analytical expression for the rocking failure mode (Figure 4-11 – green line) provides for 

most panels a lower bound, although for the cantilever walls (TUD_COMP 2 and 

TUD_COMP 6) some deviations are observed. Since the shear capacity according to the 

analytical formulation is based, among other things, on the assumption of an equivalent 

rectangular stress block with 0.85  , it may be concluded that this value may vary for 

different shear ratios, and should be slightly adjusted for walls with high slenderness (such as 

the tested cantilever walls).  

As will be discussed later, the CM and TZ-CM resulted in the same prevailing failure modes. 

Consequently, no important deviations between these models in terms of final forces and final 

displacements were detected. However, especially for the FFM-a (Figure 4-11 – yellow line) 

differences between the cracking moment and the ultimate moment capacity can be observed. 

Because of a lower bed joint fracture energy for the top and bottom beam elements adopted in 

the FFM-b, these differences usually disappeared. In line with what has been observed for the 

ISPRA tests, for a decreasing shear ratio the numerical error of the FFM is becoming larger. 

Physically it can be explained by the fact that for a decreasing shear ratio, generally the 

masonry panels becomes more squat and shear failure will be governing. Since the beam 

elements are only capable of simulating failure in bending, the use of this type of elements has 

led to a dramatic overestimation for the long walls. In section 4.1.3.1.1 the influence of the 

shear ratio on the numerical error of the FFM will be examined in greater depth.  
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1
 x-axis is cut off to enhance the visualisation of the results. 

2 
The red circle locates some values of forces obtained in the experiment which cannot be considered 

reliable (Ravenshorst & Messali, 2016).  
3 
x-axis is cut off to enhance the visualisation of the results. 

Model 
Mesh size jtf  

I

f jtG   tuf  
I

f tuG   

mm MPa N/mm MPa N/mm 

CM and FFM-a 150 0.18 0.05 - - 

TZ-CM and FFM-b 150 0.18 0.005 0.13 0.05 

Figure 4-11 Force-displacement curves and schematic failure patterns for both the short and long walls.  
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Figure 4-12 provides the principal total tensile strains E1 at the last load step for the TZ-CM. 

With the exception of TUD_COMP-5 and TUD_COMP-6, all other failure modes shared 

similarities with those observed in the experiments. TUD_COMP-5 showed diagonal cracks 

instead of a sliding failure along the bottom joints in the test and TUD_COMP-6 

demonstrated a rocking failure, while in the experimental test a diagonal crack along the joints 

was observed. For the TU Delft tests, the CM produced for all case exactly the same 

prevailing failure mode as found with the TZ-CM. Apparently, in this case the tensile 

resistance of the regions undergoing diagonal cracking is almost equal to the tensile resistance 

of the bed joints. This conclusion is also supported by the fact that the ratio between the 

reference masonry tensile stress and the bed joint tensile stress is equal to  0.13/0.18 = 0.72, 

whereas for the ISPRA tests this ratio is much higher, namely 0.24/0.04 = 6.  

1:80 

   
TUD_COMP-0a TUD_COMP-2 TUD_COMP-3 

   
TUD_COMP-4 TUD_COMP-5 TUD_COMP-6 

Figure 4-12 Experimental failure modes and principal total strains E1 at the last load step – undeformed shapes.  

One significant property that easily visualizes the differences between plane stress elements 

and fibre beam elements is the vertical stress distribution ( yys ) at the base of a masonry panel 

(Figure 4-13). Besides, as previously stated, it can be used as a tool to depicture the crack 

propagation during the nonlinear analyses and clearly demonstrates that the axial stresses in 

the FFM are not affected by the stresses in the lateral direction. The pictures are created by 

extracting the vertical stresses at the location of the integration points for the beam elements, 

whereas for the plane stress elements they are extracted at the location of the nodes. The black 

line and the red line represent the stress distribution of the TZ-CM and FFM, respectively. 
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Short wall: TUD_COMP-0a Long wall: TUD_COMP-4 

  

Figure 4-13 Section stress distribution at the base of the masonry wall TUD_COMP-0a and TUD_COMP-4 for 

the FFM (red line) and TZ-CM (blue).  

From this figure it can be seen that the beam elements describe the stress distribution at the 

base properly and are in good agreement with the plane stress results in case of flexural 

failure (Figure 4-13 - TUD_COMP-0a). However, in case of the long wall, once the panel 

fails in shear and the diagonal crack shows up, some distortions of the stress distribution 

(Figure 4-13 - TUD_COMP-4) can be observed for the plane stress elements. As a result of a 

critical combination of shear and tensile stresses the integrations points at the lower right 

corner are cracked and consequently, the vertical stress ( yys ) has dropped to zero. Figure 

4-13 clearly shows that this phenome cannot be simulated by the beam elements, as they show 

a stress distribution that belongs to a rocking failure mode (red line).   
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4.1.3.1.1 Influence of the shear ratio 

As experimental tests on unreinforced masonry panels are expensive, and usually comprise no 

other type of boundary conditions than cantilever or fixed-fixed, Gambarotta and 

Lagomarsino (1996) developed a constitutive model for solid brick masonry that showed 

good agreements with measurements and therefore allows a parametric investigation.  

Adopting this model and  performing many finite element calculations in which the 

mechanical parameters, the boundary conditons (fixed-fixed or cantilever), the dimensions 

and the magnitude of the axial stress were varied, Magenes and Calvi (1997) discovered that 

it is especially the shear ratio 0/ ( ) /v M VD H D    that influences the shear capacity of a 

masonry panel subjected to a shear-compression state of stress. Varying the shear ratio and 

keeping all the other parameters constant it was proven that, somehow, the shear capacity is 

not affected by the type of failure mode.  In this way it was shown that the relation between 

the shear ratio and the reciprocal of the shear strength / ( )u uV Dt   is almost perfectly linear. 

However, the test samples within the TU Delft physical testing program were epxosed to 

different levels of vertical pressure.  Nevertheless, by dividing the shear strength with the 

vertical pressure an attempt is made to find a better correlation between the shear ratio and the 

shear strength of the masonry panels. Therefore, whereas Magenes and Calvi (1997) 

presented the mean shear strength (Table 4-5) as the characterization of the shear capacity of a 

masonry panel, in this section also the normalized mean shear strength (Table 4-5) will be 

proposed. Together with all the other parameters the definition of the normalized mean shear 

strength is presented in Table 4-5. In this section only the TZ-CM and the FFM-b were used, 

since it were these model that best predicts the true behaviour of masonry.  

Table 4-5 Definitions 

Property Symbol Definition Unit 

Shear ratio v  0H D  - 

Mean shear strength u  uV Dt  MPa 

Reciprocal mean shear strength 
1

u  1 u  2mm N  

Normalized mean shear strength - u p  MPa 

Reciprocal normalized mean shear 

strength 
- up   MPa 

Numerical percent error    ; 100% u u beam u    % 

In Figure 4-14 both the reciprocal of the experimental mean shear strength and the reciprocal 

of the normalized experimental mean shear strength are plotted against the shear ratio. The 

figure clearly demonstrates that this relation is not independent of the applied vertical 
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pressure, which is in fact in line with existing analytical theories. However, the picture also 

illustrates how an almost perfect correlation is found for the reciprocal of the normalized 

experimental mean shear strength. There are two conclusions to be drawn from this: first, the 

shear strength is almost linear related to the vertical pressure and second, the influence of the 

shear ratio on the shear strength is not affected by the type of damage propagation.  

     
Figure 4-14 Relation between the shear ratio v and the reciprocal of the (normalized) experimental mean 

shear stress u . 

Figure 4-15 illustrate that this relation also exist for the relatively simple TZ-CM and FFM, 

something that will be used to depicture the numerical error of both models.   

    
Figure 4-15 Relation between the shear ratio v and the reciprocal of the normalized numerical mean shear 

stress u . 
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The combination of the regression lines of the experimental, the numerical TZ-CM and the 

numerical FFM-b results provides a good insight into the behaviour of the latter two models 

(Figure 4-16). Especially from the quadratic regression lines (Figure 4-16b), which were 

obtained by  taking the reciprocal of the linear regression functions (Figure 4-16a), it can be 

seen that  for a decreasing shear ratio the numerical error of the FFM amplifies explosively.  

 
(a) (b) 

Figure 4-16 Relation between the shear ratio v , the experimental mean shear stress and the normalized 

numerical (beam and continuum) mean shear stress. 

The calculation of the numerical percent error, making use of the quadratic regression 

functions of the black and blue line (Figure 4-16), representing the numerical and the beam 

element data respectively, provides insight into the size of the numerical percent error (Figure 

4-17a). Since the FFM-b model tends to underestimate the shear strength for high shear ratios, 

the linear regression lines have a point of intersection (Figure 4-16a). For this reason it seems 

that at some point the numerical error is equal to zero (Figure 4-17a), which of course is not 

the case in reality. The problem could be solved by calculating the numerical percent error for 

every masonry panel separately. Fitting a quadratic regression model to the data points 

(Figure 4-17b), representing the numerical percent error, a similar picture can be obtained. 

Both pictures clearly show that there is a critical shear ratio below which the FFM should not 

be used to avoid a dramatic overestimation of the shear strength.  
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(a) (b) 

Figure 4-17 The numerical percent error of the beam element model as a function of the shear ratio based on the 

trend lines (Figure 4-16) and on regression.  

4.1.3.2 Fibre flexure – lumped shear model 

Again, the structural nodal interface in combination with a Coulomb friction model has been 

adopted to obtain a better correlation between the FFM and experimental results. Table 4-6 

presents the material parameters, modified by the criteria presented in Table 3-3, referring to 

the Mann and Muller (1982) criterion  ,c  , the correction  ,mc mcc   proposed by Magenes 

and Calvi (1997) and the modification  according to Abrams (1992)  ,a ac  . 

Table 4-6 Input data for TU Delft panels dominated by failure in shear. Parameters are calculated according to 

the equations presented in Table 3-3. 

Name 

0H

H  v  p x  y  j  c   c    mcc  mc  ac  a  

- - MPa mm mm - MPa MPa 
MP

a 

MP

a 
MPa MPa MPa MPa 

TUD-4 0.5 0.3 0.5 212 70 0.66 0.14 0.43 
0.1

1 

0.3

3 
0.08 0.25 0.13 0.27 

TUD-5 
0.5 0.3 0.3 212 70 0.66 0.14 0.43 

0.1

1 

0.3

3 
0.08 0.25 0.12 0.24 

TUD-6 
1.0 0.7 0.5 212 70 0.66 0.14 0.43 

0.1

1 

0.3

3 
0.07 0.20 0.11 0.23 

Figure 4-18 depictures the force displacement curves adopting the FF-LSM to account for 

possible shear failure modes. Only those masonry panels have been considered for which 

shear failure was governing and drift limitations have been omitted for the sake of simplicity. 

While the FFM without the nodal interface simply determines the ultimate rocking strength of 

the masonry panel (Figure 4-18 – blue and red line) and consequently overestimates the 
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ultimate shear strength, the FF-LSM including the nodal interface is able to correctly predict 

the shear capacity of the masonry panel, although the observed level of accuracy is highly 

dependent on the adopted shear failure criterion.      

      
Figure 4-18 Force-displacement curves and schematic failure patterns for the FF-LSM – TU Delft long walls. 

4.1.3.2.1 Influence of the shear ratio 

As outlined above, the accuracy of the FF-LSM is mainly determined by the adopted shear 

failure criterion. Therefore, to assess the accuracy of the adopted models, again the influence 

of the shear ratio upon the numerical percent error has been investigated. Considering the 

normalized mean shear strength (Figure 4-19) and the numerical percent error (Figure 4-20) 

as functions of the shear ratio it can be observed that both the Mann and Muller and the 

Abrams criteria are rather accurate (percent error within 20%), although the Mann and Muller 

criterion is somewhat unconservative (Figure 4-19). Especially for a decreasing shear ratio the 

criterion developed by Magenes and Calvi appeared to be less precise (Figure 4-20), although 

the criterion can be safely adopted in engineering practice as it is relatively conservative 

(Figure 4-19).  
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Mann and Muller criterion Magenes and Calvi criterion Abrams criterion 

Figure 4-19 Relation between the shear ratio v , the experimental mean shear stress and the normalized 

numerical (FF-LS and TZ-CM) mean shear stress 

   

Mann and Muller criterion Magenes and Calvi criterion Abrams criterion 

Figure 4-20 The numerical percent error of the FF-LSM  model as a function of the shear ratio. 
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4.2 Two-storey masonry façade Pavia 

In order to assess the numerical model capabilities in analyses of full-scale brick masonry 

walls with openings, a two storey building experimented by Magenes and Calvi (1994) at the 

University of Pavia will be considered. The URM building, having a rectangular shaped floor 

plan of 6 x 4.4 m and a height of 6.4 m, consists of two longitudinal walls (‘‘wall D’’ – or 

‘‘door wall’’ – and ‘‘wall B’’ or ‘‘window wall’’) and to transverse walls (‘‘wall A’’ and 

‘‘wall C’’). While the window wall (wall B) is connected to the adjacent transverse walls by 

means of an interlocking brick pattern around the corner, the door wall (wall D) is 

disconnected from both transverse walls and can therefore be interpreted as being an 

independent in-plane test.  

The longitudinal walls are subjected to four concentrated cyclic horizontal forces located at 

the floor level by means of four displacement-controlled screw jacks, representing the seismic 

forces activated during seismic action. The horizontal displacements that had to be applied at 

each jack were deduced from an earlier shake table test on a scaled version of the building. 

Given that the two floors carry approximately 60% of the total mass of the building, the total 

response of the scale model  was governed by the behaviour of the two floor diaphragms.  As 

both floors were subjected to the same vertical load, the horizontal peak accelerations  at these 

positions tended to be equal. Consequently, the forces generated at level of the mass of the 

building (at the two floor levels) had the same magnitude. For this reason, while the top 

displacement was controlled, the four horizontal point loads representing the seismic action 

(Figure 4-21) were kept equal during the full-scale experiment.  

               

Figure 4-21 The full scale test structure including loading conditions (a) and the floor plan (b). 
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Besides, in order to produce a vertical stress ranging from 0.4-0.5 MPa at the reduced section 

between the openings level at the ground floor, concrete blocks were applied, producing a 

vertical load of 10 kN/m
2
 on both the first and second floor.  

Since the work was initially restricted two the in-plane behaviour of masonry and involved 

exclusively the analysis of two-dimensional  structures, only the door wall (wall D) will be 

considered as a benchmark to evaluate the behaviour of the continuum as well as the 

equivalent frame models.   

4.2.1 Input 

In line with Chapter 3 three models will be adopted for the analysis of the Pavia door wall, the 

CM, the TZ-CM and the FFM in which the structural members (e.g. piers and spandrels) are 

represented by series of beam elements having the same tensile strength and corresponding 

fracture energy. The application of the FF-LSM, including interface elements to describe 

shear failure, will be discussed later in this section. Whereas for the continuum models the 

finite element mesh reproduces the original in-plane geometry of wall D, for the equivalent 

frame models the in-plane geometry of wall D is idealized as a frame consisting of piers, 

spandrels and rigid nodes (section 2.3.3). By the damage survey after earthquakes and 

experimental campaigns certain criteria can be assumed to identify the main structural 

components: i.e. piers and spandrels. Regardless of the method the equivalent frame 

idealization is based on three steps, from the identification of spandrels (step 1) to the 

identification of piers (step 2) to that of nodes (step 3) (Figure 4-22).  

Step 1-Identification of spandrels Step 2-Identification of piers Step 2-Identification of nodes Equivalent frame 

    
Figure 4-22 Equivalent frame idealization of the door wall. (Lagomarsino, 2013). 

In this work a commonly adopted criterion for the pier height is assumed (Dolce, 1989): a 

maximum 30 degrees inclination of the cracks starting from the opening corners and 

consistently providing an increased height for the external piers. If the adjacent openings are 

at the same level, as in the case of the internal pier and the spandrels, the height is assumed to 

be equal to that of the opening. The original geometry, applied loads, the equivalent frame 
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idealization and cross sectional properties are presented in Figure 4-23. Furthermore, the pier 

heights calculated according to the theory of Dolce (1989), the assumed shear span  0H H  

and the resulting shear ratios necessary for the shear failure implementation are given. 

Initially it is assumed that the piers are situated in a double clamped condition  0 0.5H H  , 

although it is expected that especially if spandrel failure is initiated this assumption is not 

totally correct and should be slightly adjusted. Therefore, to study the effect of the shear ratio, 

several analyses will be performed in which the shear span will be determined in a posteriori 

process which in turn can be used as input for an updated analysis.  

Geometry and applied loads Equivalent frame idealization 

  

Pier Label 
D t h   0H

H   v  

[mm] [mm] [mm] - - - 

P1 1150 250 2477 2.15 0.50 1.08 

P2 1820 250 2145 1.18 0.50 0.59 

P3 1150 250 2477 2.15 0.50 1.08 

P4 1150 250 1899 1.65 0.50 0.83 

P5 1820 250 1235 0.68 0.50 0.34 

P6 1150 250 1899 1.65 0.50 0.83 
Figure 4-23 Geometry and applied loads (a) and equivalent frame idealization of the door wall (b); pier height 

determination according to Dolce (1989) for the Pavia door wall (Demirel, 2010). 

The finite element meshes of the TZ-CM and the FFM, reproducing the in-plane geometry of 

the façade and the equivalent frame idealization respectively, are presented in Figure 4-24. 

The TZ-CM consists of 973 quadrilateral (Figure 4-24-green) and 168 trilateral plane stress 

elements (Figure 4-24-yellow), respectively representing the areas in which diagonal and 

flexure cracking may occur. The average finite element mesh size is approximately equal to 

200 mm. For simplicity it is assumed that the impact of the wooden lintels located above the 

openings on the total wall resistance can be neglected and therefore they are not modelled. 
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The FFM is composed by 82 numerically integrated beam elements, consequently idealizing 

the structural response as purely flexural. The structural components (e.g. piers and spandrels) 

are represented by series of nonlinear beam elements; i.e. one smaller beam element at top 

and bottom and equally sized elements in between (Figure 4-24). The rigid nodes are 

modelled by means of relatively stiff beam elements, ensuring that these areas behave as rigid 

bodies. For the continuum models the displacements of the nodes along the base line are 

horizontally and vertically restrained, while the horizontal displacements of the nodes located 

at each floor are coupled, describing the clamped boundary conditions at the bottom and the 

force transmission, respectively. For the equivalent frame models this type of boundary 

condition is simply obtained  by restraining the three nodes at the bottom edge horizontally, 

vertically and rotationally (Figure 4-24).  

Imposed loads on the structure initially include the masonry dead load and the uniformly 

distributed loads at first and second floor resulting from the gravity loads on the first and 

second floor (p1=20.7 kN/m and p2 = 19.8 kN/m). A steel beam, horizontally tied at each floor 

and subjected to an imposed lateral monotonically increasing displacement at midspan is 

adopted, maintaining the resulting forces at the two floor levels equal during the displacement 

controlled analysis (Figure 4-24). 

Three zoned - continuum model (TZ-CM) Fibre flexure model (FFM) 

  

Piers 
flexure yellow jtf  I

f jtG   
Piers flexure blue jtf  I

f jtG   
shear green tuf  

I

f tuG   

Spandrels 
flexure yellow tsf  

I

f tuG   
Spandrels flexure blue tsf  

I

f tuG   
shear green tuf  

I

f tuG   

Figure 4-24 Finite element meshes for the TZ-CM as well as for the FFM and adopted parameters.  
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The material parameters considered for the numerical analyses are presented in Table 4-7 and 

have been partially obtained from Magenes et al. (1995) and partially from Magenes and 

Calvi (1997). The equivalent tensile strength of the spandrels tsf  located at first and second 

floor, representing the flexural property of the spandrel element, are calculated being the 

cohesion and friction coefficient equal to 0.23 and 0.58 MPa, respectively; the interlocking 

parameter for the spandrels is equal to 0.86 and obtained from Cattari and Beyer (2015); the 

mean vertical stress is equal to 0.2 MPa at first floor and 0.1 MPa at second floor; the 

clamping stress is estimated to be 65 % of the mean vertical stress present at first and second 

floor  0.65  . Since no experimental information for the reference masonry tensile 

strength tuf  was available, different values of tuf  have been assumed to perform a thorough 

examination of the parameter sensitivity.   

Table 4-7 Material properties Pavia building. 

Property Symbol Unit 

Case 3: 

University of Pavia tests 

Mean 

Joint tensile strength jtf  MPa 0.04 

Bed joint initial shear strength (cohesion) c MPa 0.23 

Bed joint shear friction coefficient    - 0.58 

Reference masonry tensile strength (1) tuf  MPa - 

Compressive strength of mortar mf  MPa 3.0 

Spandrel tensile strength (2) tsf  MPa 0.32/0.26 

Young’s modulus E2 MPa 1410 

Poisson ratio   - 0.2 

Reference masonry fracture energy tensile 

mode-I (3) 

I

f tuG   N/mm 0.02 

Fracture energy tensile mode-I (4) 
I

f jtG   N/mm 0.005 

Fracture energy in compression for loading 

perpendicular to bed joints (5) f mG   N/mm 10 

Note:  

(1) unknown for Pavia full scale test  

(2) calculated being the cohesion and friction coefficient equal to 0.23 and 0.58 MPa, respectively; 

the interlocking parameter for the spandrels is equal to 0.86 and obtained from Cattari and Beyer 

(2015); the mean vertical stress is equal to 0.2 MPa at first floor and 0.1 MPa at second floor; the 

clamping stress is estimated to be 65 % of the mean vertical stress ( 0.65   ) 

(3) estimation 

(4) tensile bond behaviour of masonry: estimation based on Van der Pluijm (1992) 

(5) evaluated 500 times larger than the tensile fracture energy 
I

f tG   
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4.2.2 Results 

In this section a comparison is made between numerical and experimental failure patterns and 

load-displacement curves. All four models proposed in Chapter 3, the CM, the TZ-CM, the 

FFM and the FF-LSM are considered and examined thoroughly. Besides, a mesh sensitivity 

analysis on the FFM is performed. 

As this work is limited to examining the masonry structure response by means of nonlinear 

static monotonic (pushover) analyses and the experimental results are cyclically obtained, a 

backbone curve for the Pavia door wall is derived. The backbone curve is created by 

assembling and connecting the base shear load H  at the extreme displacement 2d  of each 

cycle (Figure 4-25 – black line).   

                        
Figure 4-25 Cyclic and corresponding experimental backbone curve for the Pavia door wall.  

4.2.2.1 Continuum models and Fibre flexure model 

Figure 4-26 shows the force-displacement envelopes for the TZ-CM as well as for the FFM, 

describing the relation between the base shear force H and the lateral displacement at second 

floor 2d . Experimental and numerical crack patterns, bending moment (Mz), shear force (Qy) 

and normal force (Nx) diagrams have been extracted (if possible) at six loading stages (Figure 

4-26), namely 2d being equal to 5.76 mm (line A), 11.4 mm (line B), 15.3 mm (line C), 17.2 

mm (line D), 22.9 mm (line E) and 32.1 mm (line F). While for the continuum models the 

crack propagation pattern is shown by means of the principal total tensile strains, the main 

tensile cracks of the FFM are presented by extracting and plotting the axial  yys  stress 
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distribution at the location of the bottom controlling section of pier P2 and P3. All of the 

above mentioned data is presented in Table 4-8.  

 

Material 

properties 

Model 
Mesh size jtf  I

f tG   tuf  
I

f tuG   

mm MPa N/mm MPa N/mm 

CM 200 0.04 0.02 0.04 0.02 

TZ-CM 200 0.04 0.005 0.14/0.24 0.05 

FFM 200 0.04 0.005 - - 

Figure 4-26 Force-displacement curves for the CM, the TZ-CM and FFM.  

Again, the parameter sensitivity study on the TZ-CM clearly illustrates that an isotropic 

model in combination with homogeneous bed joint material properties for all continuum 

elements (CM) cannot describe the correct masonry behaviour (Figure 4-26 – blue line). 

However, adopting the TZ-CM approach as presented in Chapter 3 a more correct relation 

between the base shear load H  and the lateral displacement at second floor 2d  is found 

(Figure 4-26 – red/yellow line), although the determination of the reference masonry tensile 

strength tuf  remains questionable if no experimental information is available.  Another 

observation that can be made is that the influence of the parameter tuf is characterized by an 

effect on the deformation capacity of the masonry façade, which is explained by considering 

the fact that this parameter is closely related to the relatively brittle shearing failure mode. 

Depicting the principal total tensile strains E1 of the TZ-CM for tuf = 0.14 N/mm
2 

it is 

observed that, entering the inelastic branch,  the stiffness reduction is mainly caused by 

flexural cracks in the piers as well as in the spandrels at ground floor (Figure 4-26  and Table 
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4-8 – point A). The peak resistance reached its maximum at the lateral displacement of about 

2d  = 11.4 mm (Figure 4-26 – point B), underestimating the lateral displacement at peak 

strength in the experimental simulation (Figure 4-26 – point D). As observed in the 

experiments, for the TZ-CM a sudden overall failure is associated with diagonal cracking of 

both the external and internal piers (Figure 4-26  and Table 4-8 – point B and C).  

As highlighted in the previous paragraph, due to the limitations of the FFM regarding the 

shearing failure mode, the overall structural response is essentially flexural. Investigating the 

axial stress distributions at the extreme sections of the piers, it was observed that the stiffness 

reduction was mainly caused by flexural cracks formed at top and bottom sections of the 

internal and right-external pier at ground floor (Table 4-8 - 
yys  integration points). As hardly 

any flexural damage was observed in the spandrels, the above mentioned piers responded as 

double-clamped columns (symmetric bending), consequently giving identical crack patterns at 

top and bottom sections (Table 4-8 – Mz nodes).  Considering the flexural cracks present in 

spandrels of the TZ-CM, consequently giving non-symmetric bending  and non-identical 

flexural crack patterns in the main load bearing piers P2 and P3 (Table 4-8 – point A), this 

also explains the difference between the FFM and the TZ-CM in terms of the force-

displacement diagram; i.e. a lower rate of stiffness reduction and a higher peak strength. 

Then, for an increasing lateral displacement the axial normal force in pier P3 gradually 

increases (Table 4-8 – Nx nodes), initiating pier failure in compression (Table 4-8 – 
yys  

integration points) and activating a gradual decrease in strength (Figure 4-26 – point D). The 

progressive compression crushing in pier P3 (Table 4-8 – 
yys  integration points – point 

D/E/F) eventually leads to a sudden decline in base shear load H  and finally the ultimate 

lateral displacement is reached (Figure 4-26 – point F). 

As can be observed from  Figure 4-26, the TZ-CM as well as the FFM underestimates the 

global stiffness reduction due to flexural cracking. There are two main reasons why. First, the 

static monotonic (pushover) analyses adopted in this work are less damaging than the cyclic 

approach carried out in experiments.  Second, modelling the seismic masonry behaviour on 

the basis of isotropic material assumptions, the determination of the strength parameters is 

still open to question.  
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Table 4-8 Experimental and numerical crack propagation patterns, shear force, bending moment and normal 

force diagrams for the Pavia door wall.  

Point 2d  
Crack pattern 

(experimental) 

Principal Total Strain E1 

(TZ-CM (ftu = 0.14)) 

Qy nodes [N] 

(FFM) 

A 5.76 

 
  

B 11.4 

 
  

C 15.3 - 

 

- 

D 17.2 

 

- 

 

E 22.9 

 

- 

 

F 32.1 - - 
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Mz nodes [Nmm] 

(FFM) 

Nx nodes [N] 

(FFM) 
syy  integration points  

(FFM) 

   

   

- - - 
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Although the FFM has shown its limitations regarding the shearing failure mode and 

consequently in the post-peak behaviour, an acceptable accuracy in terms of initial stiffness, 

stiffness reduction and peak strength is attained. However, the main goal was to minimize the 

computational effort significantly, simultaneously maximizing the robustness of the 

computational process. Table 4-9 clearly shows that the number of elements, nodes, 

integrations points and calculation time of the FFM is significantly reduced compared with 

that of the TZ-CM. Besides, for the FFM hardly any convergence problems were observed, 

meaning that a higher robustness is achieved.  

Table 4-9 Mesh data and computational effort for both the TZ-CM and FFM. 

Model 
Total 

elements 

Total 

nodes 

Total 

integration 

points 

Load 

steps 

Maximum 

number of 

iterations 

Calculation 

time 

TZ-CM 

( tuf  =0.14)  
1141 3379 4564 0.01(181) 500 20:48 

FFM 82 160 1804 0.01(137) 500 2:33 

4.2.2.2 Sensitivity Analyses 

In this section the influence of the mesh size on the accuracy and calculation time of the FFM 

is discussed. Four different mesh sizes are investigated in which the piers and spandrels are 

represented by: one beam element (Finite element mesh 1), three equally sized beam elements 

(Finite element mesh 2), a localized mesh refinement located at the extreme sections 

combined with one greater beam element in the middle (Finite element mesh 3) and a 

variation in which the middle part is represent by four equally sized beam elements (Finite 

element mesh 4). All previously mentioned finite element meshes are presented in Figure 

4-27 and the total number of elements, nodes, load steps, maximum number of iterations and 

calculation times are given in Table 4-10.  

The resulting numerical force-displacement curves for all four finite element meshes and 

main strength parameters are shown in Figure 4-28. The figure clearly shows that the finite 

element approximation eventually converges to a convergence limit, although the effect of the 

last refinement is limited. Therefore, it should be concluded that the localized mesh 

refinement adopted in the Finite element mesh 3 is a powerful technique finding the right 

balance between necessary accuracy and precision and the efficiency (computational time).   
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Finite element mesh 1 Finite element mesh 2 

  
Finite element mesh 3 Finite element mesh 4 

  
Figure 4-27 Finite element meshes with adopted in the mesh sensitivity analysis.  

FFM – mesh sensitivity – Pavia door wall 1:35 

 

 

Equivalent frame idealization 

Material 

properties 

Model 
jtf  I

f jtG   

MPa N/mm 

FFM 0.04 0.005 

Figure 4-28 Force-displacement curves for all four finite element meshes (FFM).   
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Table 4-10 Mesh data and computational effort for all four finite element meshes (FFM).  

Finite 

element mesh 

Total 

elements 

Total 

nodes 

Load 

steps 

Maximum number of 

iterations 

Calculation 

time 

1 26 48 0.01(100) 50 0:12 

2 46 88 0.01(100) 50 0:23 

3 46 88 0.01(100) 50 0:36 

4 82 160 0.01(100) 50 1:20 

4.2.2.3 Fibre flexure – lumped shear model 

The FFM considered in the preceding section idealized the structural response as purely 

flexural. As shear failure (i.e. diagonal cracking and sliding) is a typical failure mode in 

masonry and should be accounted for especially in case of squat wall panels (e.g. spandrels), 

in the finite element model considered here, both the flexural and shear failure mode have 

been evaluated by means of the FF-LSM presented in section 3.3.  The finite element mesh 

shown in Figure 4-29 consist of 66 numerically integrated beam elements (Figure 4-29 – blue) 

and 10 nodal interface elements (Figure 4-29 – red), respectively describing the flexural  and 

shear behaviour of each structural component. The most relevant adopted input parameters for 

the flexural as well as the shearing failure mode are presented in the table below.  

FF-LSM  

 

Piers 
flexure blue jtf  I

f jtG   

shear red c    

Spandrels 
flexure blue tsf  

I

f tuG   

shear red c  (  ) 

Figure 4-29 The finite element mesh and adopted parameters for FF-LSM.  
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As mentioned in section 4.2.1, initially it will be assumed that all piers have double fixed 

boundary conditions  resulting into a shear span 0 0.5H H   (referred to as ‘’priori’’). 

Second, as the shear spans are highly affected by spandrel failure initiation, the resulting shear 

spans of the main load bearing piers (P2, P3 and P5), present at the last load step of the 

analysis, are evaluated and implemented in an updated analysis (referred to as ‘’posteriori’’). 

As a result seven configurations have been examined being a function of the adopted shear 

strength criterion for piers, the shear strength criterion adopted for spandrels, the 

priori/posteriori input of the shear span parameter and the assumed softening behaviour for 

both the cohesion and friction parameter (Table 4-11). A more elaborated description of the 

analyses configurations including the input values for each pier separately can be found in 

Appendix A.  

Table 4-11Analysed configurations for the Pavia door wall with the FF-LSM. 

Analysis 

Shear strength criterion Softening 

Pier 
Shear 

span 
Spandrel Pier Spandrel 

1 - - - - - 

2a Mann and Müller P Mann and Müller - - 

2b Mann and Müller P Beyer - - 

3a 
Magenes and 

Calvi 
P Beyer - - 

3b 
Magenes and 

Calvi 
PS Beyer - - 

3c 
Magenes and 

Calvi 
PS Beyer LS+DL - 

4a Abrams P Beyer - - 

4b Abrams PS Beyer  - - 

LS+DL = Linear Softening + Drift Limitation; P = priori; PS = posteriori; 

Figure 4-30 compares the force-displacement curve obtained with the FFM (purely flexural 

response) and that obtained with the FF-LSM describing flexural as well as shearing failure. 

Additionally, both the deformed shapes and bending moment diagrams at a lateral 

displacement 2d  of approximately 30mm are shown in Table 4-12.  

Comparing the results of analysis 3a/3b and 4a/4b with analysis 2b and observing that close 

similarity exist in terms of force displacement diagrams, it is concluded that it is especially 

the spandrel-pier interaction that dominates the load bearing capacity of the entire masonry 

wall. This is also supported by the fact that, despite the pier shear failure initiation in analysis 

3b and 4b (Table 4-12), the pier strength reductions hardly affect the force-displacement 
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curves (Figure 4-30 – Analysis 3a and 4a vs. Analysis 3b and 4b). There are two reasons for 

this. The first is that for all analyses configurations spandrel failure usually initiated at an 

early stage, inducing a boundary effect on the main load bearing piers P2 and P3, increasing 

the shear spans (e.g. Table 4-12 – Analysis 1 vs. Analysis 2b) and consequently decreasing 

the flexural resistance of the piers mentioned. As a result, comparing the peak resistance with 

that obtained with the FFM (Figure 4-30 – Analysis 1 vs. Analysis 2b), a significant strength 

reduction is observed, thereby enhancing the numerical model predictions. Second, the 

posteriori determined shear ratios of the main load bearing piers are as such that the shear 

resistance is close to but somewhat smaller than the flexural resistance, causing a slight 

reduction in peak strength (Figure 4-30 – Analysis 3b and 4b).  

Mann and Müller criterion Magenes and Calvi criterion Abrams criterion 

   
Figure 4-30 Experimental and numerical force displacement curves of the FFM (Analysis 1) and the FF-LSM 

(Analysis 2-4) for the Pavia door wall. 

Comparing the lateral displacements (Table 4-12) with the experimental observations and 

considering the adopted failure criteria, the observations and conclusions are in line with what 

have been observed in section 4.1.2.3 and 4.1.3.2. Again, the Mann and Müller ((Table 4-12 – 

Analysis 2b) criterion appeared to be somewhat unconservative as no pier shear failure was 

initiated, whereas the Magenes and Calvi criterion (Table 4-12 – Analysis 3b) correctly 

described the experimentally observed failure modes; i.e. shearing failure of pier P2, pier P3 

and both spandrels at first floor. The adopted criterion in Abrams (Table 4-12 – Analysis 4b) 

correctly described shearing failure of pier P2 and both spandrels at second floor, but 

predicted a shear failure of pier P5 that has not been observed in the experiment and failed to 

capture the correct response of pier P3.  
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Table 4-12 Deformed shape and bending moment diagram  for the Pavia door wall with the FFM and FF-LSM. 

Analysis Lateral displacements [mm] Mz nodes [Nmm] 

1 

    

2a 

    

2b 

    

3a 

    

3b 
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4a 

    

4b 

    

Table 4-13 examines the trade-offs between the computational costs and accuracy for the TZ-

CM, the FFM and the FF-LSM. The table clearly shows that the implementation of the 

shearing failure mode enhanced substantially the model accuracy, although the improvement 

comes at a price, as with the implementation convergence problems were much more often 

observed. The problem at hand is solved by specifying automatic adaptive displacement 

increments, maximizing the robustness of the computational process and maintaining an 

acceptable balance between computational cost and accuracy (Table 4-13).    

Table 4-13 Mesh data and computational effort for the TZ-CM, the FFM and FF-LSM. 

Model 

Total 

elements 

Total 

nodes 

Total 

integration 

points 

Load 

steps 

Maximum 

number of 

iterations 

Running 

time 
Error 

[-] [-] [-] [-] [-] [min] [%] 

TZ-CM  

( tuf  =0.14)  
1141 3379 4564 0.01(181) 500 20:48 14 

FFM 

(analysis 1) 
82 160 1804 0.01(137) 500 2:33 17 

FF-LSM 

(analysis 3b) 
76 118 1672 

Automatic 

step sizes 
500 2:00 5 

Again, optionally a panel collapse can be considered by a limitation of the ultimate drift. 

Hence, the violation of the maximum allowable structural component deformation 

incorporates a strength degradation of one or more structural components. The strength 

degradation model adopted here yields a linear softening diagram for the shear strength as 

well as the friction parameter, initiated when top displacement of pier P2 or P3 violates the 

drift capacity belonging to the shearing failure mode (i.e. 0.4%).  
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Figure 4-31 discusses the force-displacement curve of the elaborated and extended FFM that 

considers both the shearing failure mode and a panel collapse via a drift limitation (FF-LSM). 

Analysing the lateral top displacements of both pier P2 and P3, it was observed that it was 

pier P2 for which the strength degradation was initiated,  reducing the overall strength of the 

masonry wall (Figure 4-31 - red circle).  

Considering again the balance between computational costs and accuracy, there are two 

conclusions to draw here. On the one hand, with the implemented linear softening behaviour a 

more realistic relation between ultimate forces and displacements is obtained, but on the other 

hand, great convergence problems arise when a structural component enters the softening 

branch. Therefore, the mention technique can be a powerful technique to consider panel drift 

limitations, but if the influence of panel softening behaviour needs to be studied, deeper 

investigation into the convergence problem is necessary.   

FF-LSM – Pavia door wall 1:160 

 

 
Equivalent frame idealization 

 
Deformed shape [mm] 

(analysis 3c) 

Material 

properties 

Model 
jtf  I

f jtG   u  

MPa N/mm % 

FF-LSM 0.04 0.005 0.4 

Figure 4-31 Experimental and numerical force displacement curves of the FFM (Analysis 1) and the FF-LSM 

including an ultimate drift limitation (Analysis 3c) for the Pavia door wall.  
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4.2.3 Comparison with TREMURI 

Existing equivalent frame methods (e.g. the commercial version of TREMURI) are usually 

based on lumped plasticity models (i.e. non-linear behaviour is limited to the end- and 

midsection of the element). In such models the cracked condition of the panel is evaluated via 

analytical failure criteria and an ideal plastic behaviour is assumed whenever the nodal 

generalized forces of the macro element attains one of the analytical predicted limit values. In 

the previous sections it has been shown that the distributed inelasticity approach discussed in 

this work  is able to provide a better representation of the cracked condition of the masonry 

panel, as the flexural response is evaluated by summing up all the individual responses 

(tensile or compressive stresses) at material point level. As a consequence, the structural 

component is no longer defined as either ‘’cracked’’ or ‘’not cracked’’ (this leading to a 

simplified bilinear behaviour), but a progressive stiffness reduction (due to flexural cracks) of 

the masonry panel is simulated until the maximum resistance of the component is reached.  

The software TREMURI has been used to model the two-storey masonry façade analysed in 

section 4.2, as reported by Lagomarsino et al. (2013). 

The comparison between the results obtained with TREMURI   and those with the FFM/FF-

LSM (Figure 4-32) highlights the differences in the pre-peak stiffness reduction: while the 

TREMURI result is characterized by sharp bends (caused by the activation of ideal plastic 

behaviour), the force-displacement curve found with DIANA results in a more smoothed-line 

graph bringing the data closer to experimental results. Furthermore, analysing the section 

stress distributions of the FF-LSM at a number of heights for the internal pier at first floor 

(Appendix B), it is observed that inelasticity is not strictly limited to the end-sections. Again, 

this should be interpreted as closer to reality, as masonry panels failing in bending are 

typically characterised by several flexure cracks distributed over the height.   

Finally, it should be noted that just as in existing equivalent frame methods the FF-LSM uses 

a lumped approach for possible shearing modes, making use of analytical strength predictions. 

In preceding sections it has been shown that peak load estimations were rather accurate, but 

that the approach entails a crude representation of the cracked condition of a masonry panel in 

case of shearing failure modes. Therefore, despite the improvements made by adopting fibre 

beam elements, there are still opportunities for further enhancements.  
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TREMURI – Pavia door wall DIANA – Pavia door wall 

  

Figure 4-32 Numerically simulated force-displacement diagrams simulated through TREMURI (on the left , 

Lagomarsino et al. (2013)) and DIANA (on the right).  
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Academic interest in researching equivalent frame methods have been growing in recent 

years, as researchers recognized the need for simpler and computationally more attractive 

concepts to analyse masonry structures. In line with this trend, this work focused on a 

comparison between the results obtained by the application of a continuous model and an 

equivalent frame model (named fibre flexure model) for the assessment of the global response 

of masonry structures, adopting numerically integrated plane stress and fibre beam elements, 

respectively. Furthermore, the paper addressed an extension of the fibre flexure model that 

includes the use of nodal interface elements to describe shear failure (in this work referred to 

as fibre flexure – lumped shear model). To validate the numerical models two different types 

of benchmarks have been investigated, respectively representing the behaviour of either a 

single structural component (masonry pier) or a composite façade. The following conclusions 

can be drawn from the study: 

1. Under the assumptions of isotropic and homogenous bed joint material properties for 

all plane stress elements the Continuum Model (CM) is not able to estimate correctly 

the structural failure of the structural component when shear failure modes are 

expected. Adopting the Three Zoned - Continuum Model (TZ-CM) in which each 

structural component is subdivided into three different zones where both the flexural 

and shear behaviour are separately described, the correlation between numerical and 

experimental results is significantly improved. An important parameter that indicates 

the need for the zoned approach is the ratio between the reference masonry tensile 

strength and the bed joint tensile strength, since for values significantly different from 

one, the tensile resistance of the shearing zone differs considerably from the tensile 

resistance of the flexural zone. However, the estimation of the properties that belong 

to the shearing zone (reference masonry tensile strength and fracture energy) remains 

a difficult process and experimental information is hardly available, while it highly 

affects the ultimate drift capacity.   

2. The Fibre Flexure Model (FFM), idealizing the structural response as purely flexural, 

is capable of simulating the rocking failure mode of a structural component, whereas it 

fails to simulate shearing modes such as diagonal cracking and sliding. Although the 
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FFM shows limitations regarding the shearing failure mode and the prediction of the 

post-peak behaviour, an acceptable accuracy in terms of initial stiffness (pre-peak), 

stiffness reduction and peak strength is attained for masonry structures containing 

relatively slender structural components (e.g. the composite façade tested in Pavia). 

Besides, compared with the continuum models, the FFM significantly reduces the 

number of elements, nodes and integration points, consequently minimizing the 

computational effort and maximizing the computational robustness. In comparison 

with the corresponding continuum models the computation time decreases by a factor 

of approximately 10. The best strategy for generating the beam finite element mesh 

(component discretization) is the localized mesh refinement technique  (two smaller 

beam elements at the top and bottom and one greater beam element in the middle), 

combined with an integration scheme that consist of two Gaussian integration points 

along the bar axis and eleven integration points (or fibres) in the area of the cross 

section. 

3. The experimental results of the in-plane tests on replicated masonry walls performed 

at the TU Delft show that the reciprocal of the experimental mean shear strength 

divided by the applied vertical pressure increased linearly with the shear ratio; i.e. the 

influence of the shear ratio is not affected by the type of damage propagation. For the 

TZ-CM as well as the FFM significant deviations between the experimental and 

numerical dependency on the shear ratio were observed and for decreasing shear ratios 

the numerical error of especially the FFM amplifies dramatically. Therefore, both 

models are not suitable for the analysis of masonry structures containing relatively 

squat structural components, although the limitation is much stronger for the FFM and 

calibration of the parameters of the TZ-CM may lead to enhanced results.  

4. The shortcoming of the FFM regarding the shearing failure mode can be overcome by 

adopting the Fibre Flexure – Lumped Shear Model (FF-LSM) that considers both the 

nonlinear flexural and nonlinear shear response of the structural component. While the 

FFM without the nodal interface simply determines the ultimate rocking strength of 

the masonry panel and, consequently, overestimates the ultimate shear strength in case 

of squat members, the FF-LSM is able to properly predict the shear capacity of both 

slender and squat walls (although the observed level of accuracy depends largely on 

the adopted shear failure criterion). The FF-LSM is capable of correctly predicting the 

pre-peak behaviour (i.e. initial stiffness, stiffness reduction and peak strength) of a 

composite façade and detects correctly both flexural and shearing failure modes in 
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piers and spandrels. Analyzing a composite façade, compared with the FFM, the FF-

LSM slightly reduces the computational robustness, but computationally it is still very 

attractive as the computational time is significantly reduced (in a similar degree 

mentioned for the FFM). Optionally, the structural failure of the components (panel 

collapse) can be considered by specifying softening diagrams for the shear strength 

parameters, which activates when the structural component violates an ultimate drift 

capacity. This solution improves the post-peak behaviour of the model, but it is 

computationally not very attractive as great convergence problems arise when a 

structural component enters a softening branch.  

5.2 Recommendations 

The FF-LSM shows promising potential for the analysis of masonry structures, minimizing 

computational effort and maximizing the computational robustness on one hand, maintaining 

an acceptable degree of accuracy on the other. However, a number of steps are required 

before the method can be safely adopted in engineering practice: 

 While the fibre section discretization, describing the flexural response, acts on 

material point level and is in essence dependent on local material properties, the nodal 

interface simplifies the description of the nonlinear shear behaviour into one single 

relation between analytically described global strength parameters. In chapter 3 it was 

shown that these global strength parameters were dependent on local material 

properties, but had to be modified preventing the model from over-predictions. 

Pursuing an equivalent frame model that is consistent with regards to the material 

input for both failure modes, it is recommended to design a ‘’structural masonry nodal 

interface’’ that exclusively requires local material properties and allows the user to 

easily select different type of failure criterions. Then, the interface element should 

calculate the global shear resistance dependent on the selected failure criterion (Table 

-2), on the base of the local material parameters, the confining pressure and the shear 

ratio (i.e. boundary conditions). As the boundary conditions and the confining 

pressures are constantly changing during the analysis, the global shear resistance 

should be updated after each load step. Once the shear resistance is violated a perfect 

plastic behaviour can be assumed combined with a softening behaviour for the shear 

strength, activated when a panel drift limitation is reached. 
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 The drift capacity of rocking unreinforced masonry walls is currently investigated 

throughout empirical and mechanical models. Also the application of the proposed 

numerical model may provide suitable estimations of the ultimate displacement 

capacity of a rocking pier. 

 The behaviour of spandrels is still not completely understood and is part of on-going 

research in several laboratories all over the world: so far, contradictory findings have 

been observed, and also the stiffness effect provided by different types of lintels is still 

not completely understood. To broaden the applicability of the FF-LSM available 

analytical spandrel failure criteria for different type of masonry spandrels should be 

listed, validated experimentally and numerically (i.e. with existing continuum and 

equivalent frame methods) and implemented into the DIANA code.  

 For the structural analysis of complex 3D structures, a fully three-dimensional 

extension of the FF-LSM is necessary. For dealing with 3D structures the capabilities 

of the numerically integrated beam elements with regards the out of plane behaviour 

of masonry, the effect of different floor systems (modelling of diaphragms) and the 3D 

assembling of masonry walls should be discussed and examined thoroughly.  

 Extensions of the model should offer the possibility to consider the response of 

masonry under cyclic static or dynamic loading conditions.  Cyclic nonlinear tensile 

and shear stress-strain relations should be derived and implemented into the FEM 

code, accurately describing the strength and stiffness degradation of the input 

parameters.  

 In recent years a considerable amount of effort has been devoted to the development 

of shear-flexural fibre beams for the design and assessment of reinforced concrete 

beams (Ferreira et al., 2013). Discretizing the cross section into two types of fibres, 

non-shear resistance fibres subjected to 1D axial stresses only and shear resistant 

fibres submitted to a multiaxial stress-strain state, the elements have shown promising 

results in achieving a right balance between computational effort and accuracy.  The 

approach of using both non-shear and shear resistance fibers is still in its infancy, but 

it is recommended to consider these types of elements also in seeking the optimal 

solution for modelling flexural as well as shearing failure modes within the fibre beam 

element formulations.  
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APPENDIX A 
In the table below the adopted shear failure criteria for piers as well as for spandrels are 

shown. As mentioned before, among other things, the Magenes and Calvi and Abrams 

criterion for piers are dependent on the resulting shear span and both the resulting normal 

force and shear span, respectively. Both parameters are highly affected by the spandrel 

behaviour and tend to stabilize when spandrels fail in shear (usually at an early stage of the 

pushover analysis). Making use of the above mentioned phenomena and detecting the normal 

force and shear span present in the concerning piers present just after spandrel failure 

occurrence a better estimation of the pier shear strength has been pursued. The input variables 

including those posteriori implemented (given in grey) are presented in the table below.  

Analysis Shear strength criterion 

Post peak 

behaviour of 

piers and 

spandrels 

1 - - 

2a 

Pier 

Mann and 

Müller Spandrel c    Pier Spandrel 
c    

P1-P6 0.18 0.45 S1-S2 
0.1

5 

0.3

9 
EPP EPP 

2b 

Pier 

Mann and 

Müller Spandrel spc  
sp  Pier Spandrel 

c    

P1-P6 0.18 0.45 S1-S2 
0.1

5 
0 EPP EPP 

3a 

Pier 
Magenes 

and Calvi 
Spandrel spc  

sp  Pier Spandrel 

 0H

H   v  mcc  mc  

S1-S2 
0.1

5 
0 EPP EPP 

P1 0.50 1.1 0.09 0.22 

P2 0.50 0.6 0.11 0.28 

P3 0.50 1.1 0.09 0.22 

P4 0.50 0.8 0.10 0.25 

P5 0.50 0.3 0.13 0.34 

P6 0.50 0.8 0.10 0.25 

3b 

Pier 
Magenes 

and Calvi 
Spandrel spc  

sp  Pier Spandrel 

 0H

H  v  mcc  mc  

S1-S2 
0.1

5 
0 EPP EPP 

P1 0.50 1.1 0.09 0.22 

P2 0.65 0.8 0.10 0.25 

P3 0.60 1.3 0.08 0.20 

P4 0.50 0.8 0.10 0.25 
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P5 0.95 0.6 0.11 0.27 

P6 0.50 0.8 0.10 0.25 

3c 

Pier 
Magenes 

and Calvi 
Spandrel spc  

sp  Pier Spandrel 

 0H

H  v  mcc  mc  

S1-S2 
0.1

5 
0 

LS+

DL 
EPP 

P1 0.50 1.1 0.09 0.22 

P2 0.65 0.8 0.10 0.25 

P3 0.60 1.3 0.08 0.20 

P4 0.50 0.8 0.10 0.25 

P5 0.95 0.6 0.11 0.27 

P6 0.50 0.8 0.10 0.25 

4a 

Pier Abrams Spandrel spc  
sp  Pier Spandrel 

 0H

H
 v  p ec  e  

S1-S2 
0.1

5 
0 EPP EPP 

P1 0.50 1.1 0.3 0.10 0.16 

P2 0.50 0.6 0.4 0.15 0.25 

P3 0.50 1.1 0.3 0.10 0.16 

P4 0.50 0.8 0.1 0.06 0.11 

P5 0.50 0.3 0.2 0.13 0.23 

P6 0.50 0.8 0.1 0.06 0.11 

4b 

Pier Abrams Spandrel spc  
sp  Pier Spandrel 

 0H

H  v  p ec  e  

S1-S2 
0.1

5 
0 EPP EPP 

P1 0.50 1.1 0.3 0.10 0.16 

P2 0.65 0.8 0.3 0.12 0.20 

P3 0.60 1.3 0.6 0.13 0.22 

P4 0.50 0.8 0.1 0.06 0.11 

P5 0.95 0.6 0.2 0.08 0.14 

P6 0.50 0.8 0.1 0.06 0.11 

EPP = elastic perfectly plastic; LS+DL = Linear Softening + Drift Limitation 

Parameters given in grey are posteriori implemented, making use of an updated analysis. 
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APPENDIX B 
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 on the x-axis the integration points in the area of 

the cross section are shown 
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