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Spectral Analysis Methods for
Poisson Sampled Measurements

Reinder Banning

Abstract— The velocity measurements for turbulent flow isotropic turbulent flow [2]
regimes obtained with laser doppler anemometry are not only
affected by random noise but are also unevenly spaced in time. du(t) _ b d(b):
The usual spectral estimators rely on evenly spaced data points. de —au(t) + ()
It would appear then that the measurement data requires
adjustment before it can be passed on to these estimators. In for time-invariant coefficienta andb. Furthermore, parameter
this paper, both an analysis method with a novel adjustment a of the drift term —awv(¢) is assumed to be positive while
scheme as well as an analysis method which does not rely onparameterb is allowed to take on any real value. The term
the use of adjustment schemes, are presented. b d(t) depends upordiffusion process{d(t)} which is, by
Index Terms—Discrete Fourier transforms, Kalman filtering, assumption, a stationary (i.e., with time invariant mean and
Poiss_on processes, sampled data systems, spectral analysis, st@tandard deviation as well as an autocovariaRgét + 7, t)
chastic systems. depending uporr only) Gaussian white (i.e., independent in
time and with constant mean and standard deviation) noise
|. INTRODUCTION process with meap and standard deviatios,,. Because the

HE velocity of a fluid particle travelling along a streamYeloCity of a typical fluid particle at initial timg = 0 is
= vo by a Gaussian stochastic

line in a homogeneous isotropic turbulent flow may bENKNOWN, we represent(0) aus ocha
g P y riable with meanvy and standard deviation,, which is

v(0) = vo

measured using the digital laser Doppler anemometry (LDX
measurement tgechniquge. Unfortuna?et)ly, LDA measuyre(me giepe_n_dent from{d(t)_}. . . . .
are affected by stochastic disturbances arising from |aser_Trad|t|9naIIy, _the d_|ffu5|on process driving this model is
beam imperfections and the use of electronic equipment, whigh>aussian white noise process with a flat power spectrum.
will find their way into the spectral estimation results. Irf-onsequently, the magnitude Bode plot of the particle ve-

addition, these velocity measurements are sampled accor ﬁ‘ﬂé}’slpqwer spgctrlal gensk|t¥ function qrower speg_trur,n ith
to a Poisson sampling scheme culminating in an unever |sp;]ay|ng a smgef reﬁ -frrequency, co;respoE ng .W'tl
spaced time series. ohe change in rate of roll-off. However, from theoretica

The best known and numerically most efficient spectr pnsiderations confirmed by experimental results, [3], more

estimation tools rely upon the fast Fourier transform (FET)@n oné change in rate of roll-off is known to occur. This
algorithm, which demands an evenly sampled time seridB€ans that the power spectrumiaf(t)} containsat leastone

Consequently, unevenly spaced measurement data can no r@gk-frequenhcy. l; view of these conSIderathns We propose
processed by any of these tools. Traditionally, data adjustm&’ﬂr epresent the diffusion process not by a stationary Gaussian

schemes are used for getting around this problem by creati{git€ Noise process but by a stationary Gaussiafored
evenly spaced data points noise process. Such a process is created by passing stationary

In this paper, a spectral analysis method is presented Wh%ﬁussian white noise through a linear time—ipvariant dynamic
exploits a novel adjustment scheme relying upon the KalmS¥Stém as represented by the transfer function
Filter [1] used for disturbance attenuation. Furthermore, a h,, s 14...+h;s+ho
second analysis method is suggested which circumvents the  H(s) = st g 24 .. tg s+g
need for data adjustment altogether, and which interfaces n2 ! 0

directly with the existing spectral estimation tools. with m < n, andn asymptotically stable poles. An overall
state-space model for the isotropic homogeneous turbulent
Il. L AGRANGIAN MODELING velocity field known as the extended stationary Langevin

model (ESLM) may then be obtained 48] B’, C’) denotes
Consider a dynamic model in the form of a linear stochastgz state(space) real)i/zation BE(s)] 481 )

differential equation for velocity{v(¢)} of a generic fluid
particle travelling along a stream-line in a homogeneous ( 4 —a bC’ 0
(10 - () + (5 ) o
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for initial statex(¢,) = xo a Gaussian stochastic variable an&SLM, we find
driving process{i(t)} a Gaussian white noise process such

that et
z(tpa1) = e a(ty) —|—/ At =B (y) du.
ty
E{h(t)} =
Ru(t+1,t) = 02 6(1) Thg integral in this relation yields a discrgte—time Gaussian
E{zo} = _A"'By; white noise process, denoted B§ti+1, i), with a mean and

a variance determined as
E{[h(t) — p)[zo + A™'Bp]'} =0

0 =ATR.0,0)+R,0,0AT + s?BB”.

Aty
E{g(tx+1, te)} = {/ AvB du} JI5
The continuous-time power spectral density functiytw) 0 At
of stationary procesgv(¢)} may be expressed in terms of Rty th) = o / * AvBBT AT g
matrix triplet (A, B, C) as '

Sww = |ClwI — A]"1B|%02. be(_:ause_the driving procesfs of th_e ESLM _is a (Gaussian)
white noise process. After introducing notatidi{At,) for

the exponential matrix oA A¢;, we proceed by combining

. . . _ above dynamic relation with the ESLM's observation equation
The LDA measurement technique is a discrete-time mea

surement technique with which the velocity of a fluid particlﬁOr the purpose of obtaining a dynamic model in the discrete-

: L . e domain for the Poisson sampled measurements of fluid
travelling along a stream-line in a homogeneous |:sotrop|<'5n P

turbulent flow can be registered. Unfortunately, these velociWrt'f:Ie vequty{v(t)}. The resulting model is of the form
measurements are affected by disturbances, which for reasifdiivalent discrete-time system (EDS)]
of modeling convenience, are represented by an additive

I1l. M ODELING MEASUREMENTS

Gaussian white noise process. The digilaservatiorequation o(try1) = P(A) 2(tr) + g(tr+1s tr)
for the ESLM is v (1) = Cx(tr) + n(ty)
v (t) = u(ta) +n(t) with initial statexo as specified{g(tx+1, tx)}, {n(tx)}, and

zo are mutually independent.
with {n(fx)} a zero mean Gaussian white noise process with As an alternative to the above approach resulting in the EDS
standard deviatiom,,. There is no reason to suspect an effegfs the model for the LDA velocity measurements, we will next
from the LDA measurement technique on the velocity fieldyynsiger an approach based on the following factorization of
implying that{n ()}, {h(¢)}, andzo may be assumed to bey . | nown sampling instants
mutually independent.

When measuring the velocity of a turbulent flow field
using LDA, the simultaneously recorded sampling instants
prove to beunevenlyspaced. In point of fact, in a series of ~
LDA sampling instants the number of sampling instants p#fith 7. the kth mean sampling instant ang a deviation
distinct time interval is Poisson distributed while the samplingpon it. The Taylor series of observation procesgt; )}
intervals resemble realizations of an exponential white noideveloped about; and truncated at, say, theh order time
process. The propagation equation for the so-caletsson derivative is a linear approximation in terms of the Oth up to
sampling procesgt} is [4] and including thepth order time derivative of proceds(#)}.
Now, thepth order time derivative of proceds(t)} depends
upon the state process and the Oth up to and including the
for {At;} an exponential white noise process Witr(p . L)th order time ?SI'Y)at'Ve of prgces&(t)}. with co-
mean At, known as the sampling-interval process; efﬂqents CB’ T CA B respectively. Strglghtforward
[Ate), {R(B)Y, {n(tx)}, andz, are assumed to be mutuallymatr'x manipulation s_hows that these coeff|C|ent.s disappear
independent. for p < (n —m). This means that the expression for the

Assume for the sake of argument that a Poisson distributel$ order time derivative ofv(¢)} simplifies considerably
sequence of sampling instants is known in advance and pgevidedp < p = (n — m). In view of these findings, the
the ESLM describe some turbulent velocity field. Abovéollowing model for the observation process is proposed
observation equation relates observation pro¢ess (¢ )} to

th =kAt+6, =7 + 1

trer =t + Aty to=0

the output process and hence to the state process of the ESLM. ) ’ fff)) ®

. . o0s 9
Consequently, it suffices to know the system'’s state process at v () =C E —p AW x(ry) + n(m)
the sampling instant in order to know the observation process. p=0

Using the closed form expression for soluti¢n(t)} of the = C(#y) z(7) + nl7y)
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with {n(rx)} a zero mean discrete-time Gaussian white noig¢(¢)} coincident with discrete-time procegs(¢;)} at the
process with standard deviation,. The alternative model individual sampling instants. In phase 2, the reconstructed
for the fluid particle velocity measurements is incompleteontinuous-time process is sampled with some fixed sampling
without a propagation equation for evenly spaced state processiod.

{z(m)}. Fortunately, such an equation is readily obtained Of the polynomial interpolation techniques employed, the
from the differential equation fo{z(¢)}. Consequently, the step and linear interpolation techniques are the ones most
dynamic model for the observation process known as tfrequently used. According to them, procds&)} is
approximately equivalent discrete-time system (AEDS) for the

LDA velocity measurements is defined as Jstep(t) = f(tm);
_ f(trn ) - f(trn)
#(Tey1) = P(AL) 2(Tr) + 9(Tht1, ) Jin(t) = f(tm) + (t — tm) tnjil —tm
UObS(tk) :é(fk)a:('rk) + H(Tk) -t e [tm, tm+1).

The mean and variance of procesg .1, 7:) are evaluated Although generalization to higher order interpolation schemes
as is obvious, it should be realized that such high order schemes

do not necessarily yield better results. The reason is that

At A when high order polynomials are fitted to randomly positioned

E{g(Tht1, Th)} = / e "Bdu o s points, periodic sampling can result in measurements well out
0 A of their original range. Although the polynomial interpolation

Roy(rhs 1) —o? AvBBTAT© g, _techmque is mtumve_ly attractive anq easy to implement, there

is one drawback. It is namely possible to prove by means of

a counter example that step interpolation, and therefore inter-
Furthermore,{g(7x+1, 7x)}, {n(7%)}, and o are mutually polation in general, applied to an unevenly spaced stationary
independent. Seeing that the EDS as well as the AEDRcrete-time process results in a nonstationary continuous-
requires advance knowledge of the sampling instants, any détae process. Consequently, the theoretical justification for
processing based on one of these models is to be perfornusihg polynomial interpolation and resampling for the purpose

a posteriori. of spectral estimation is thin.
The problem of adjusting the unevenly spaced observation
IV. ESTIMATING THE POWER SPECTRUM process has, until now, been treated as an algebraic manipu-

lation problem. There may, however, be a way in which to

The LDA velocity measurements are known to be cons, it the dynamic nature of the ESLM in order to obtain
taminated by random disturbances which affect any spect‘rﬂ evenly spaced observation process. Supppse kAt is

estimate derived from these data. One way of dealing Withseq ence of evenly spaced sampling instants and assume,
additive stochastic measurement noise is to use a Kalman Flﬁﬁr the sake of argument, that and p are such that,, <
il m

[1] fc_>r noise cqmpensation. -For the qlesign Of. this filtgr we < Tpyq < tmy1. It is not difficult to verify by
require a describing stochastic dynamic model in the discrefge \ns of the analytical solution of the ESLM, that for process
time domain, i.e., either the EDS or the AEDS. As thergév(T )} we find
; ; ; : ; ; p+i
is a choice between discrete-time models, there is choice
between Kalman Filters: the equivalent discrete-time Kalman W(Tpis) =C O (1yas — o) 2(tm)
filter (EDKF) designed for the EDS, or the approximately Lar phs T ims S
equivalent discrete-time Kalman filter (AEDKF) designed for +Cy(rprys tm); <4
the AEDS. As for choosing between the two, the EDKF
is, theoretically, preferable but the AEDKF yields an evenlith {g(7,+;, t.n)} @ Gaussian discrete-time noise process for
spaced state estimator and is easier to implement. which

It is a fact that the LDA turbulent velocity measurements —
are unevenly spaced in time. The best known and numerically E{g(1p, tm)} = {/ AuB du} ;
most efficient spectral estimates use the FFT which demands 0
evenly spaced measurements. This means that these estimation
schemes can only be used in combination with the AEDKF,
as the state process of the AEDS is evenly spaced. However,
the applicability of the FFT-based spectral estimation schemes other words, the evenly spaced observation process
may be widened by adjusting the unevenly spaced measufetr,,;)} is a known function of discrete-time process
ments either throughesamplingor throughestimation {z(t,»)}. In practical situations, knowledge of state process

The resampling procedure breaks, roughly, down into twex(¢,,)} is almost always lacking. What is available though
phases. In phase 1, a continuous-time process is reconstrugteitt optimal estimator as produced by EDKF. This means,
from the unevenly spaced discrete-time process. The mdst by replacing procesgr(t,,)} with its optimal estimator
obvious reconstruction technique is thelynomial interpola- we obtain an (optimal) estimator for evenly spaced particle
tion technique. It yields, in general, a continuous-time processlocity process{v(r;)}.

Tp—tm T ’
Ry(Tp, Tp) =03 / AvBBYeA v dw
0
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Fig. 1. Time history of the particle velocity process.

V. EXAMPLE instants two time series of measurements are generated with

Although the development of the analysis methods reportgbe EDS; one conS|s_ts afioise free meas_urements, while
in this paper was instigated by the problems encountered whif$ other consists aﬁmsymeasgremen_ts, €., megsurements
estimating spectra on the basis of LDA measurement da"{’gf,e_‘:t?d by zero mean Gaussian white noise W|t_h standard
they are in fact applicable to a wide range of situations whefigviationo, = 0.1. A close-up view of the time history of
Poisson sampling schemes are prevalent. For the purpH&se tWwo time-series is available in Fig. 1; the solid graph

of demonstrating the analysis methods, consider the purEfPresents the noise free measurements. _

hypothetical ESLM determined by . In this paper, geveral analysis methods for the. continuous-
time spectral estimation problem have been outlined. Before

—0.986 ‘ 499 118 x 10% they are tested on 'the simulated noisy data, they are applied

to the simulated noise free measurements. In Fig. 2 three such

A= 0 0 1 ; estimates (scaled down with¢) derived from the noise free

0 —1.18 x 10* —217 measurement sequence are displayed agaip&t). Traces

1 and 3 have been derived from data adjusted by means of

step and linear interpolation respectively before they were

resampled atAt. Application of the estimation adjustment

technique forAt; = At resulted in the spectral estimate

represented by trace 2.

It would appear that trace no. 3 represents the best estimate
The Gaussian white noise proce§s(t)} is completely de- as it seems to lie closest t6,(w). However, trace 2 is
termined by its mearp = 0.5 and its standard deviationknown to represent thbestestimate the FFT algorithm can
o5, = 0.3. Furthermore, the mean and variance of the Gaussigmvide (used data is noise free), and it should therefore be
distributed initial state are selected in accordance with tiiee “de facto” benchmarkfor any other spectral estimate,
specifications of Section Il. Throughout this examplelch’s and notS,(w). Compared to trace 2, traces 1 and 3 display
Averaged Periodogram Methad combination with aanning unknown aberrations resulting from the employed adjustment
Window [5], is used for the actual power spectral densitychemes.
estimation. In accordance with this method, the data is dividedThe spectral estimates derived from the simulated noisy
into blocks of sizeNppr(= 2'4) with an overlap ofV,,..(= measurements are available in Fig. 3. Trace 1 is the nonscaled
213) points. estimate determined after data adjustment through linear inter-

For the purpose of generating a time series of Poisspolation and resampling akt; trace 3 represents the scaled
sampled measurements, a sequenceNof= 28 Poisson estimate obtained through application of aforementioned data
distributed sampling instants with mean sampling intervadjustment scheme to the EDKF-filtered data. For scaled trace
At = 27 gec is created. On the basis of the known sampling, the EDKF-filtered data has been adjusted by means of

B =

= oo

C=(1 | 0 0)



886 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 46, NO. 4, AUGUST 1997

or A T e e S T T T T

-100 r

[uB]

Magnitude

-300 UV RPN AP 1 - canl L
10 10 10 10 10 10

Fig. 2. Power spectral estimates.
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Fig. 3. Power spectral estimates.

estimationA¢; = At). Trace 4, also scaled, represents thigoth an exact and an approximate model have been developed
spectral estimate directly derived from AEDKF- filtered datgor such measurements. The approximate character of the latter
model was the price to be paid in return for an evenly spaced
VI. CONCLUSION state process. For both digital models the Kalman Filter exist,

In this paper, the problems associated with obtaining spetd can be used to reduce measurement noise levels.
tral estimations from LDA data have served as a vehicle for theThe paper discusses four different FFT-based spectral esti-
development of spectral analysis methods suitable for Poisgpation schemes of which two have been newly developed.
sampled measurements in general. In the course of the analy$isoretical considerations supported by simulation results
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indicate that the novel idea of adjusting the unevenly spaced and Poisson sampling scheme$ZEE Trans. Automat. Contr.yol.
i imati i i i AC-23, pp. 679-685, Aug. 1978.

measurements via estimation using the Kalman Filter ylleldﬁ A V. Oppenheim and R. W. Schafebigital Signal Processing. En-

the preferred method of analysis. Although the Kalman Filtef™ giewood Cliffs, NJ: Prentice-Hall, 1975.

for the approximate model produces an evenly spaced state

estimator, the simulations show an inferior reliability due to

as yet unexplained numeric sensitivity.
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