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Spectral Analysis Methods for
Poisson Sampled Measurements

Reinder Banning

Abstract— The velocity measurements for turbulent flow
regimes obtained with laser doppler anemometry are not only
affected by random noise but are also unevenly spaced in time.
The usual spectral estimators rely on evenly spaced data points.
It would appear then that the measurement data requires
adjustment before it can be passed on to these estimators. In
this paper, both an analysis method with a novel adjustment
scheme as well as an analysis method which does not rely on
the use of adjustment schemes, are presented.

Index Terms—Discrete Fourier transforms, Kalman filtering,
Poisson processes, sampled data systems, spectral analysis, sto-
chastic systems.

I. INTRODUCTION

T HE velocity of a fluid particle travelling along a stream-
line in a homogeneous isotropic turbulent flow may be

measured using the digital laser Doppler anemometry (LDA)
measurement technique. Unfortunately, LDA measurements
are affected by stochastic disturbances arising from laser-
beam imperfections and the use of electronic equipment, which
will find their way into the spectral estimation results. In
addition, these velocity measurements are sampled according
to a Poisson sampling scheme culminating in an unevenly
spaced time series.

The best known and numerically most efficient spectral
estimation tools rely upon the fast Fourier transform (FFT)
algorithm, which demands an evenly sampled time series.
Consequently, unevenly spaced measurement data can not be
processed by any of these tools. Traditionally, data adjustment
schemes are used for getting around this problem by creating
evenly spaced data points.

In this paper, a spectral analysis method is presented which
exploits a novel adjustment scheme relying upon the Kalman
Filter [1] used for disturbance attenuation. Furthermore, a
second analysis method is suggested which circumvents the
need for data adjustment altogether, and which interfaces
directly with the existing spectral estimation tools.

II. L AGRANGIAN MODELING

Consider a dynamic model in the form of a linear stochastic
differential equation for velocity of a generic fluid
particle travelling along a stream-line in a homogeneous
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isotropic turbulent flow [2]

d
d

for time-invariant coefficientsa andb. Furthermore, parameter
a of the drift term is assumed to be positive while
parameterb is allowed to take on any real value. The term

depends upondiffusion process which is, by
assumption, a stationary (i.e., with time invariant mean and
standard deviation as well as an autocovariance
depending upon only) Gaussian white (i.e., independent in
time and with constant mean and standard deviation) noise
process with mean and standard deviation . Because the
velocity of a typical fluid particle at initial time 0 is
unknown, we represent by a Gaussian stochastic
variable with mean and standard deviation which is
independent from .

Traditionally, the diffusion process driving this model is
a Gaussian white noise process with a flat power spectrum.
Consequently, the magnitude Bode plot of the particle ve-
locity’s power spectral density function orpower spectrum,
is displaying a single break-frequency, corresponding with
one change in rate of roll-off. However, from theoretical
considerations confirmed by experimental results, [3], more
than one change in rate of roll-off is known to occur. This
means that the power spectrum of containsat leastone
break-frequency. In view of these considerations we propose
to represent the diffusion process not by a stationary Gaussian
white noise process but by a stationary Gaussiancolored
noise process. Such a process is created by passing stationary
Gaussian white noise through a linear time-invariant dynamic
system as represented by the transfer function

with , and asymptotically stable poles. An overall
state-space model for the isotropic homogeneous turbulent
velocity field known as the extended stationary Langevin
model (ESLM) may then be obtained as [(A’, B’, C’) denotes
a state space realization of ]
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for initial state a Gaussian stochastic variable and
driving process a Gaussian white noise process such
that

The continuous-time power spectral density function
of stationary process may be expressed in terms of
matrix triplet (A, B, C) as

III. M ODELING MEASUREMENTS

The LDA measurement technique is a discrete-time mea-
surement technique with which the velocity of a fluid particle
travelling along a stream-line in a homogeneous isotropic
turbulent flow can be registered. Unfortunately, these velocity
measurements are affected by disturbances, which for reasons
of modeling convenience, are represented by an additive
Gaussian white noise process. The digitalobservationequation
for the ESLM is

with a zero mean Gaussian white noise process with
standard deviation . There is no reason to suspect an effect
from the LDA measurement technique on the velocity field,
implying that , , and may be assumed to be
mutually independent.

When measuring the velocity of a turbulent flow field
using LDA, the simultaneously recorded sampling instants
prove to beunevenlyspaced. In point of fact, in a series of
LDA sampling instants the number of sampling instants per
distinct time interval is Poisson distributed while the sampling
intervals resemble realizations of an exponential white noise
process. The propagation equation for the so-calledPoisson
sampling process is [4]

for an exponential white noise process with
mean , known as the sampling-interval process;

, and are assumed to be mutually
independent.

Assume for the sake of argument that a Poisson distributed
sequence of sampling instants is known in advance and let
the ESLM describe some turbulent velocity field. Above
observation equation relates observation process to
the output process and hence to the state process of the ESLM.
Consequently, it suffices to know the system’s state process at
the sampling instant in order to know the observation process.
Using the closed form expression for solution of the

ESLM, we find

The integral in this relation yields a discrete-time Gaussian
white noise process, denoted by , with a mean and
a variance determined as

because the driving process of the ESLM is a (Gaussian)
white noise process. After introducing notation for
the exponential matrix of , we proceed by combining
above dynamic relation with the ESLM’s observation equation
for the purpose of obtaining a dynamic model in the discrete-
time domain for the Poisson sampled measurements of fluid
particle velocity . The resulting model is of the form
[equivalent discrete-time system (EDS)]

with initial state as specified; , and
are mutually independent.

As an alternative to the above approach resulting in the EDS
as the model for the LDA velocity measurements, we will next
consider an approach based on the following factorization of
the known sampling instants

with the th mean sampling instant and a deviation
upon it. The Taylor series of observation process
developed about and truncated at, say, theth order time
derivative is a linear approximation in terms of the 0th up to
and including the th order time derivative of process .
Now, the th order time derivative of process depends
upon the state process and the 0th up to and including the
( )th order time derivative of process with co-
efficients respectively. Straightforward
matrix manipulation shows that these coefficients disappear
for . This means that the expression for the
th order time derivative of simplifies considerably

provided . In view of these findings, the
following model for the observation process is proposed
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with a zero mean discrete-time Gaussian white noise
process with standard deviation . The alternative model
for the fluid particle velocity measurements is incomplete
without a propagation equation for evenly spaced state process

. Fortunately, such an equation is readily obtained
from the differential equation for . Consequently, the
dynamic model for the observation process known as the
approximately equivalent discrete-time system (AEDS) for the
LDA velocity measurements is defined as

The mean and variance of process are evaluated
as

Furthermore, , , and are mutually
independent. Seeing that the EDS as well as the AEDS
requires advance knowledge of the sampling instants, any data
processing based on one of these models is to be performed
a posteriori.

IV. ESTIMATING THE POWER SPECTRUM

The LDA velocity measurements are known to be con-
taminated by random disturbances which affect any spectral
estimate derived from these data. One way of dealing with
additive stochastic measurement noise is to use a Kalman Filter
[1] for noise compensation. For the design of this filter we
require a describing stochastic dynamic model in the discrete-
time domain, i.e., either the EDS or the AEDS. As there
is a choice between discrete-time models, there is choice
between Kalman Filters: the equivalent discrete-time Kalman
filter (EDKF) designed for the EDS, or the approximately
equivalent discrete-time Kalman filter (AEDKF) designed for
the AEDS. As for choosing between the two, the EDKF
is, theoretically, preferable but the AEDKF yields an evenly
spaced state estimator and is easier to implement.

It is a fact that the LDA turbulent velocity measurements
are unevenly spaced in time. The best known and numerically
most efficient spectral estimates use the FFT which demands
evenly spaced measurements. This means that these estimation
schemes can only be used in combination with the AEDKF,
as the state process of the AEDS is evenly spaced. However,
the applicability of the FFT-based spectral estimation schemes
may be widened by adjusting the unevenly spaced measure-
ments either throughresamplingor throughestimation.

The resampling procedure breaks, roughly, down into two
phases. In phase 1, a continuous-time process is reconstructed
from the unevenly spaced discrete-time process. The most
obvious reconstruction technique is thepolynomial interpola-
tion technique. It yields, in general, a continuous-time process

coincident with discrete-time process at the
individual sampling instants. In phase 2, the reconstructed
continuous-time process is sampled with some fixed sampling
period.

Of the polynomial interpolation techniques employed, the
step and linear interpolation techniques are the ones most
frequently used. According to them, process is

Although generalization to higher order interpolation schemes
is obvious, it should be realized that such high order schemes
do not necessarily yield better results. The reason is that
when high order polynomials are fitted to randomly positioned
points, periodic sampling can result in measurements well out
of their original range. Although the polynomial interpolation
technique is intuitively attractive and easy to implement, there
is one drawback. It is namely possible to prove by means of
a counter example that step interpolation, and therefore inter-
polation in general, applied to an unevenly spaced stationary
discrete-time process results in a nonstationary continuous-
time process. Consequently, the theoretical justification for
using polynomial interpolation and resampling for the purpose
of spectral estimation is thin.

The problem of adjusting the unevenly spaced observation
process has, until now, been treated as an algebraic manipu-
lation problem. There may, however, be a way in which to
exploit the dynamic nature of the ESLM in order to obtain
an evenly spaced observation process. Suppose is
a sequence of evenly spaced sampling instants and assume,
for the sake of argument, that and are such that

. It is not difficult to verify by
means of the analytical solution of the ESLM, that for process

we find

with a Gaussian discrete-time noise process for
which

In other words, the evenly spaced observation process
is a known function of discrete-time process

. In practical situations, knowledge of state process
is almost always lacking. What is available though

is its optimal estimator as produced by EDKF. This means,
that by replacing process with its optimal estimator
we obtain an (optimal) estimator for evenly spaced particle
velocity process .
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Fig. 1. Time history of the particle velocity process.

V. EXAMPLE

Although the development of the analysis methods reported
in this paper was instigated by the problems encountered whilst
estimating spectra on the basis of LDA measurement data,
they are in fact applicable to a wide range of situations where
Poisson sampling schemes are prevalent. For the purpose
of demonstrating the analysis methods, consider the purely
hypothetical ESLM determined by

The Gaussian white noise process is completely de-
termined by its mean 0.5 and its standard deviation

0.3. Furthermore, the mean and variance of the Gaussian
distributed initial state are selected in accordance with the
specifications of Section II. Throughout this exampleWelch’s
Averaged Periodogram Methodin combination with aHanning
Window, [5], is used for the actual power spectral density
estimation. In accordance with this method, the data is divided
into blocks of size with an overlap of

points.
For the purpose of generating a time series of Poisson

sampled measurements, a sequence of Poisson
distributed sampling instants with mean sampling interval

is created. On the basis of the known sampling

instants two time series of measurements are generated with
the EDS; one consists ofnoise freemeasurements, while
the other consists ofnoisy measurements, i.e., measurements
affected by zero mean Gaussian white noise with standard
deviation 0.1. A close-up view of the time history of
these two time-series is available in Fig. 1; the solid graph
represents the noise free measurements.

In this paper, several analysis methods for the continuous-
time spectral estimation problem have been outlined. Before
they are tested on the simulated noisy data, they are applied
to the simulated noise free measurements. In Fig. 2 three such
estimates (scaled down with ) derived from the noise free
measurement sequence are displayed against . Traces
1 and 3 have been derived from data adjusted by means of
step and linear interpolation respectively before they were
resampled at . Application of the estimation adjustment
technique for resulted in the spectral estimate
represented by trace 2.

It would appear that trace no. 3 represents the best estimate
as it seems to lie closest to . However, trace 2 is
known to represent thebestestimate the FFT algorithm can
provide (used data is noise free), and it should therefore be
the “de facto” benchmarkfor any other spectral estimate,
and not . Compared to trace 2, traces 1 and 3 display
unknown aberrations resulting from the employed adjustment
schemes.

The spectral estimates derived from the simulated noisy
measurements are available in Fig. 3. Trace 1 is the nonscaled
estimate determined after data adjustment through linear inter-
polation and resampling at ; trace 3 represents the scaled
estimate obtained through application of aforementioned data
adjustment scheme to the EDKF-filtered data. For scaled trace
2, the EDKF-filtered data has been adjusted by means of
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Fig. 2. Power spectral estimates.

Fig. 3. Power spectral estimates.

estimation ). Trace 4, also scaled, represents the
spectral estimate directly derived from AEDKF- filtered data.

VI. CONCLUSION

In this paper, the problems associated with obtaining spec-
tral estimations from LDA data have served as a vehicle for the
development of spectral analysis methods suitable for Poisson
sampled measurements in general. In the course of the analysis

both an exact and an approximate model have been developed
for such measurements. The approximate character of the latter
model was the price to be paid in return for an evenly spaced
state process. For both digital models the Kalman Filter exist,
and can be used to reduce measurement noise levels.

The paper discusses four different FFT-based spectral esti-
mation schemes of which two have been newly developed.
Theoretical considerations supported by simulation results
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indicate that the novel idea of adjusting the unevenly spaced
measurements via estimation using the Kalman Filter yields
the preferred method of analysis. Although the Kalman Filter
for the approximate model produces an evenly spaced state
estimator, the simulations show an inferior reliability due to
as yet unexplained numeric sensitivity.
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