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[1] A common concern in hydrologic modeling is overparameterization of complex
models given limited and noisy data. This leads to problems of parameter nonuniqueness
and equifinality, which may negatively affect prediction uncertainties. A systematic
way of controlling model complexity is therefore needed. We compare three model
complexity control methods for hydrologic prediction, namely, cross validation (CV),
Akaike’s information criterion (AIC), and structural risk minimization (SRM). Results
show that simulation of water flow using non-physically-based models (polynomials in
this case) leads to increasingly better calibration fits as the model complexity (polynomial
order) increases. However, prediction uncertainty worsens for complex non-physically-
based models because of overfitting of noisy data. Incorporation of physically based
constraints into the model (e.g., storage-discharge relationship) effectively bounds
prediction uncertainty, even as the number of parameters increases. The conclusion is that
overparameterization and equifinality do not lead to a continued increase in prediction
uncertainty, as long as models are constrained by such physical principles. Complexity
control of hydrologic models reduces parameter equifinality and identifies the simplest
model that adequately explains the data, thereby providing a means of hydrologic
generalization and classification. SRM is a promising technique for this purpose, as it
(1) provides analytic upper bounds on prediction uncertainty, hence avoiding the
computational burden of CV, and (2) extends the applicability of classic methods such as
AIC to finite data. The main hurdle in applying SRM is the need for an a priori
estimation of the complexity of the hydrologic model, as measured by its Vapnik-
Chernovenkis (VC) dimension. Further research is needed in this area.
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1. Introduction

[2] Hydrologic prediction usually relies on incomplete
and uncertain process descriptions that have been deduced
from sparse and noisy data sets. A direct consequence is that
water management decisions based on those models are
subject to significant uncertainty. The uncertainty stems not
only from conceptual errors in the models we use to
simulate natural systems, but also from data estimation
errors when inferring model parameter values from limited
and noisy data. Two main modeling philosophies have been
developed to tackle these problems, namely the upward or
mechanistic approach, and the downward or data-driven
approach [Wagener et al., 2007]. Spatially distributed mod-
eling is a typical example of the upward approach to
construct a model that explicitly accounts for as much of
the small-scale physics and the natural heterogeneity as
computationally possible [Freeze and Harlan, 1969;
Loague and VanderKwaak, 2004]. The approach has been
criticized for resulting in models that are overly complex,
leading to problems of overparameterization and equifinal-
ity [Beven, 1993, 2006], which may manifest itself in large

prediction uncertainty [Van der Perk, 1997; Uhlenbrook et
al., 1999]. On the other end of the modeling spectrum, a
downward or data-driven approach has been advocated,
where complexity is added to the model only when it
improves description of the data, without using an a priori
defined model structure [Jakeman and Hornberger, 1993;
Young, 2003; Sivapalan et al., 2003; Fenicia et al., 2008].
The idea is to arrive at models that are complex enough to
explain the data, but not more complex than necessary, a
strategy often referred to as Occam’s razor or the principle
of parsimony. For example, simple models may suffice to
describe spatially integrated watershed response, despite
significant heterogeneity within the watershed [Savenije,
2001].
[3] A key question that then arises is how to decide when

the model has sufficient complexity. In computer science,
specifically in the field of pattern recognition, it was
recognized early on that some form of complexity control
is needed [Akaike, 1970]. Several methods have been
developed for this purpose, all of them relying on two
ingredients: (1) specification of two or more model struc-
tures of varying complexity, and (2) evaluation and com-
parison of the ability of the models to mimic observed data.
The a priori selection of various alternative model structures
embodies the assumptions and previous physical knowledge
about the hydrologic processes deemed to be important.
Each model is calibrated to observed data and its ability in
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fitting data is compared to other models. A problem is that
complex models are more flexible in fitting calibration data,
so this approach typically favors complex models. There-
fore, a better approach is to compare hydrologic models on
the basis of performance in a split calibration-validation test,
and select the model that gives the smallest prediction error
for the validation data [Klemeš, 1986; De Wit and Pebesma,
2001; Perrin et al., 2001]. In order to avoid problems with
arbitrarily dividing data into calibration and validation sets,
the split test can be repeated on different parts of the data
set, resulting in resampling procedures such as bootstrap-
ping and cross validation. A drawback is that for larger data
sets and complex models, this approach can become com-
putationally very intensive, since it involves solving many
smaller calibration (parameter optimization) subproblems.
[4] An alternative to (cross) validation is to rely on

parameter identifiability as a basis for model selection,
by selecting the most complex model that still allows
unique parameter values to be identified [Jakeman and
Hornberger, 1993]. Here, the obvious advantage is that the
selected model structure is guaranteed to have identifiable
parameters.
[5] Another alternative is to rely on statistical model

selection or model complexity control methods [Cherkassky
and Mulier, 2007]. These are based on statistical theory and
provide estimates of model prediction error by multiplying
the calibration error by a factor that penalizes increasingly
complex models. As such, an optimal model structure is
identified through a balance between the data fitting ability
of the model and its complexity. These statistical model
selection methods differ in the functional form and assump-
tions of the analytical expressions for the penalization
factor. Examples include Akaike’s information criterion
(AIC) [Akaike, 1970], and Bayes information criterion
(BIC) [Schwartz, 1978]. These methods have been applied
to model selection problems in rainfall time series modeling
[Gregory et al., 1992], groundwater modeling [Honjo and
Kashiwagi, 1999; Knotters and De Gooijer, 1999], and
flood frequency estimation [Mutua, 1994]. A common
assumption in the development of both AIC and BIC is
that an (infinitely) large data set is available for estimating
prediction error. However, in many situations (e.g., hydro-
logic prediction) one is faced with limited and noisy data
sets, in which case these methods do not strictly apply. An
alternative model complexity control method that has been
developed for use with finite data sets is structural risk
minimization (SRM) [Cherkassky and Mulier, 2007]. Here
an analytical upper bound (worst case) on prediction error is
used to select a model of optimal complexity. In hydrology,
SRM has been applied to model selection in rainfall-runoff
modeling [Dibike et al., 2001] and groundwater transport
modeling [Khalil et al., 2005], both studies using support
vector machines instead of physically based hydrologic
models.
[6] The purpose of this paper is to explore the usefulness

of several statistical model complexity control methods for
hydrologic prediction. In particular, we are interested in the
performance of SRM compared to more traditional methods
such as AIC, as it is based on assumptions that appear more
realistic in hydrologic applications, i.e., finite and noisy data
sets with unknown error distribution. We do this using
several case studies. First, the various model complexity

control methods considered in this paper are briefly dis-
cussed. This is followed by a short description of the case
studies examined here. Then we present results of our
comparison studies and discuss implications for hydrologic
model selection.

2. Methods

2.1. Problem Formulation

[7] We are concerned with making predictions of some
hydrological variable Y (e.g., river discharge, soil moisture
content, groundwater level) as a function of a number of
input variables X (e.g., rainfall, potential evaporation). The
problem is tackled using a combination of observation and
simulation. First, n data samples Z = {(xi,yi), i = 1. . .n} are
obtained by simultaneously measuring inputs X = {xi, i =
1. . .n} and outputs Y = {yi, i = 1. . .n}. Second, an
approximating function or model f (X, q) is introduced to
infer system behavior from available observations,

Y ¼ f X ; qð Þ þ ee ð1Þ

where q is a set of model parameters, and ee is an empirical
error between measured and simulated values, which
includes observation and model errors. The goal is then to
estimate values for the model parameters q such that model f
provides the best approximation of true system behavior,
which is represented by an unknown ‘‘target’’ function g.
The quality of this approximation can be quantified by
prediction risk or error Rp, which measures expected error
between true and approximate system behavior [Cherkassky
and Mulier, 2007]. Mathematically,

Rp ¼
Z

L g xð Þ; f x; qð Þ½ �p xð Þdx ð2Þ

where L is a general error or loss function describing the
discrepancy between g and f, and p(x) is the unknown
probability density function (pdf) of input values. Since
target function g is unknown, we estimate Rp on the basis of
observations Z = {(xi,yi), i = 1. . .n} and define empirical
error Re as

Re ¼
1

n

Xn
i¼1

L yi; f xi; qð Þ½ � ð3Þ

[8] Loss function L can take many forms depending on
the application and assumptions about the model error
structure. Under maximum likelihood estimation, and for
Gaussian errors ee that are independent and identically
distributed (i.i.d.), L becomes the squared loss function,
and empirical error Re is given by the mean squared error
(MSE) between observed and simulated values [Cherkassky
and Mulier, 2007].
[9] For large and accurate data sets, i.e., n ! 1 and

measurements yi closely follow true system behavior g, we
find that empirical error Re in (3) provides a good estimate
of true prediction error Rp in (2). However, for finite and
noisy data sets, it tends to underestimate true prediction
error. The reason for this is that model f can usually be made
to fit the data quite well by varying model parameter values,
resulting in small values for ee and Re. This is especially the
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case for complex models with many adjustable parameters.
When only limited data are available for estimating model
parameters, the model may not perform well on new data, as
it is only representative of a small subset of the entire data
population. This is even more so if the data are noisy. In
other words, for small noisy data sets, model selection
through minimization of (3) results in models that may
provide a poor approximation of true system behavior. In
the following section, we review methods for model selec-
tion when available data are sparse and noisy.

2.2. Model Complexity Control Methods

[10] Overconditioning of the model on a small and noisy
data set can be avoided by reducing the complexity (number
of parameters) of the model. For this reason, model selec-
tion is often referred to as model complexity control. In this
section, we briefly describe existing methods used for
model complexity control. These all rely on (1) specifying
a range of model structures to be considered, (2) estimating
prediction error Rp in equation (2) for each model structure,
(3) selecting the model structure with smallest value for Rp

as optimal, and (4) estimating parameters of the optimal
model structure by minimizing empirical error in equation
(3) using all the data. The main differences between the
various methods lie in the way that prediction error is
calculated, i.e., the second step. In general, we can distin-
guish between analytical and numerical methods for esti-
mating prediction error Rp in equation (2).
2.2.1. Numerical Methods
[11] A common numerical technique is k-fold cross

validation (CV), whereby the entire data set is split into k
learning (or calibration) and validation subsets, and predic-
tion error is quantified on the basis of performance of the
calibrated models on k validation subsets. The procedure is
repeated for various model structures, and the model struc-
ture that yields the smallest validation error, averaged over
all k subsets, is selected as optimal. The k-fold cross-
validation method is simple and robust, and does not rely
on any assumptions about the residuals, such as indepen-
dence and normality. The main disadvantage is that it is
computationally intensive. Cross validation can be consid-

ered to be a general form of the common practice of split
testing in hydrology, i.e., dividing the available data set into
two parts, one for calibration, and one for validation. The
advantage of cross validation is that it (1) avoids ad hoc
decisions on how to split the data and (2) makes use of all
available data. The algorithm for k-fold cross validation is
detailed by Cherkassky and Mulier [2007], including sev-
eral other methods for generating cross-validation data sets.
2.2.2. Analytical Methods
[12] Alternatively, one can derive analytical estimates of

prediction error on the basis of statistical theory. In general,
these estimates take the following form:

R̂p ¼ rRe ð4Þ

where r is a penalization factor [Cherkassky, 2002], r 	 1.
Alternatively, equation (4) can be formulated as the sum of
empirical error Re and a regularization term, as in Tikhonov
regularization and its variations. Penalization factor r
increases as a function of model complexity relative to size
of the data set, resulting in a trade-off (Figure 1a) between
(1) empirical fit to the data, as quantified by Re, and (2)
model complexity relative to data availability, as incorpo-
rated in r. Various analytical forms for penalization factor r
have been proposed, including Akaike’s information
criterion (AIC) [Akaike, 1970], and Bayes information
criterion (BIC) [Schwartz, 1978]. In the case of AIC, the
penalization factor can be written as,

rAIC ¼ 1þ p

1
 p
ð5Þ

where p = d/n, n is sample size, and d is degree of freedom
or number of parameters, a measure of model complexity.
Equation (5) leads to a form of AIC that is known as final
prediction error (FPE) [Akaike, 1970].
[13] A disadvantage of these classic analytical approaches

for model selection and penalization is that they are based
on an assumption of large sample size, or n ! 1. For this
reason they may overestimate model complexity in the case

Figure 1. (a) Conceptual diagram of the trade-off between empirical fit to data and penalization of
model complexity, with resulting effect on prediction risk or error according to (4), and (b) penalization
factor r as a function of p and sample size n, according to two statistical theories, i.e., AIC in (5) and
SRM in (6).
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of small sample sizes [De Ridder et al., 2005]. An alterna-
tive method that is also valid for finite sample sizes uses
structural risk minimization (SRM) [Cherkassky and Mulier,
2007]. SRM is rooted in statistical learning theory (SLT)
[Vapnik, 1998] and relies on the following expression for
penalization factor r [Cherkassky and Mulier, 2007],

rSRM ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
 p ln pþ ln n

2n

r" #
1

þ

ð6Þ

where p = h/n, and h is the Vapnik-Chervonenkis (VC)
dimension of the model as a measure of model complexity.
The VC dimension h of a model is related to its data-fitting
flexibility, with larger values for h indicative of more
complex models that can describe a larger number of
random data points. As an example, consider a first-order
polynomial with two parameters, slope and intercept. This
model can be fitted exactly through any two, but not three,
data points. Hence its VC dimension equals 2. In general,
VC dimension of models linear in the parameters, such as
polynomials, equals the number of parameters. However,
VC dimension of nonlinear models can be either greater or
smaller than the number of parameters. Therefore, in
general VC dimension h of a model is unknown and needs
to be determined through numerical experiments [Shao et
al., 2000]. Basically, such experiments empirically measure
the model’s ability or flexibility of describing randomly
generated data sets of increasing size.
[14] According to (4) and (6), the SRM estimate of

prediction error equals rSRMRe. Vapnik’s statistical learning
theory guarantees that this estimate provides an upper
bound on true prediction error with probability equal to 1

 4/

ffiffiffi
n

p
[Cherkassky and Mulier, 2007, chapter 4]. Hence,

in the limit of n !1, penalization factor rSRM converges to
1, and estimated prediction error converges to empirical
error with probability equal to 1. Figure 1b illustrates the
effects of model complexity h and sample size n on the
values of rSRM and rAIC. Penalization is small for large n and
for small values of p (h/n). Note that AIC penalizes complex
models less than SRM (rAIC � rSRM), since AIC assumes
infinite sample size.
[15] The goal of this paper is to compare performance of

three model complexity control methods for hydrologic
prediction, namely CV, AIC, and SRM. Table 1 gives an
overview of the assumptions on which the methods are
based. Generally speaking, CV is the most general and
flexible method as it makes no assumptions about the error
distribution in (1). On the other hand, AIC makes the
strongest assumptions about both sample size and error
distribution, and was developed for situations where the

true model is contained in the set of approximating func-
tions; that is, one of the models in the set describes the
system behavior without error. SRM falls in the middle of
these two extremes, as it has been especially designed for
model selection from limited and noisy data sets, which is a
more realistic situation in hydrologic applications. The
focus in our comparison study is on identifying model
structures that have a level of complexity that matches the
amount and quality of available data, and that lead to
identifiable parameters.

2.3. Case Studies

[16] In order to illustrate and compare various model
complexity control methods, we consider flow from a
measuring device for low flows, consisting of a tower with
many small holes at various threshold heights, as shown in
Figure 2 [Stomph et al., 2002]. This setup forms the basis
for generating synthetic data sets by simulating discharge Q
(output Y) as a function of water height hw (input X) in the
tower using the known physics and threshold locations, and
adding random noise. In this case, true system behavior is
given by a discharge-height relationship,

Q hwð Þ ¼ c
Xnh
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max 0; hw 
 tið Þ

p
ð7Þ

where summation is over nh holes (nh = 20), ti is height or
threshold of the ith hole, and c is a constant. Each term in
(7) represents a flow contribution from a single hole. This
problem was chosen for illustration purposes because (1) it
is of limited complexity, (2) the physics is exactly known,
and (3) it involves threshold behavior often observed in
hydrological processes.
[17] We consider several case studies to evaluate perfor-

mance of the three complexity control methods (Table 2).
First, we investigate how the type of approximating func-
tion or model f influences prediction errors and model
selection. Two different types of approximating functions
are used, namely polynomials of increasing order and
physically based models with increasing number of thresh-
old parameters ti in (7). Second, the effects of both data
quantity (in terms of sample size) and data quality (in terms
of signal-to-noise ratio (SNR)) are investigated. In each
case, synthetic data are generated as follows: n values for
water height hw are uniformly drawn between 0 and 30 cm,
and corresponding values for outflow Q are obtained using
true system behavior (7) perturbed by an additive noise
term, randomly drawn from a normal distribution N (0, s0

2).
Error variance s0

2 is obtained as a function of specified
signal-to-noise ratio, since SNR = s/s0 with s2 the variance

Table 1. Assumptions of Model Complexity Control Methodsa

AIC SRM CV

Sample size large any any
Noise distribution Gaussian, i.i.d. any, i.i.d. any
Needs estimate of error variance yes no no
Supported models linear (non)linear (non)linear
Assumes true model included in set of candidate models yes no no
Penalization method analytical analytical numerical

aAIC, Akaike’s information criterion; SRM, structural risk minimization; CV, cross validation; i.i.d., independent and identically distributed.
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of true discharges. Figure 2 shows an example of a synthetic
data set of water heights and discharges, including the
underlying true relation between the two variables.
[18] Parameter identification relies on minimizing empir-

ical error in (3) using the squared loss function L. For
polynomial models, this is done using linear least squares,
whereas nonlinear physically based models are calibrated
using a gradient-based nonlinear parameter optimization
algorithm. In order to obtain continuous first derivatives
we smooth out the original threshold-based function in (7)
using the Chen-Harker-Kanzow-Smale max function
[Kavetski and Kuczera, 2007],

max 0; hw 
 tið Þ 
 0:5 hw 
 ti þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hw 
 tið Þ2þm

q	 

ð8Þ

where m is a smoothing parameter, which is chosen to be
small enough to provide an excellent approximation to the
original function (here, m = 10
4). Model selection is
performed with three complexity control methods, namely
CV, AIC, and SRM. For AIC and SRM, we use the number
of model parameters, i.e., number of polynomial coeffi-
cients or number of threshold heights ti, as an estimate of
both degrees of freedom d in (5) and VC dimension h in (6).
Since for nonlinear models exact values for d and h are not
known [Cherkassky and Mulier, 2007], this is an approxi-
mation. Rigorous estimation of VC dimension of nonlinear

models can be done using the approach of Shao et al.
[2000]. Following Cherkassky et al. [1999], we compare
the methods using several performance indices: (1) predic-
tion error Rp (2) of the selected model: measures how well
the optimal model approximates true system behavior in (7);
(2) error estimation accuracy: measures how well true
prediction error Rp in (2) is estimated by eachmodel selection
method; (3) model complexity of the selected model: indi-
cates how complex the optimal model is, i.e., how many
parameters the model has; and (4) total parameter variance
of the selected model: measures parameter identifiability or
equifinality of the optimal model. Effects of sampling
variation are accounted for by repeating model selection
on 100 synthetic data sets, and reporting results as box plots
of the four performance indices.
[19] In order to assess performance of model complexity

control under more realistic conditions, where assumptions
of data independence and Gaussian errors may not hold, we
also consider a real-world case study using hydrologic data,
namely daily rainfall, potential evaporation, and streamflow
data from the Leaf River basin in Mississippi [Duan et al.,
2006]. We apply a nonlinear soil moisture accounting model
to transform rainfall and evaporation into effective rainfall,
which is further transformed into streamflow using a simple,
linear reservoir lumped rainfall-runoff model [Wagener et
al., 2001]. Complexity is introduced by allowing model

Figure 2. (a) Tower with holes at different threshold heights for measuring flow as a function of water
height and (b) example of a synthetic data set, along with the underlying true relationship (solid line)
between water height in and discharge from the tower.

Table 2. Different Case Studies in the Synthetic Flow Problem Depicted in Figure 2

Case Approximating Functions Sample Size, n
Signal-to-Noise

Ratio
Error

Distribution

1 polynomials 20 5 Gaussian
2 physically based models 20 5 Gaussian
3 physically based models 5 5 Gaussian
4 physically based models 20 1 Gaussian
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parameters to be variable in time. Model selection results
for this case are presented in section 3.5.

3. Results

3.1. Case 1: Polynomial Models

[20] The first case uses polynomials of increasing order to
approximate true system behavior in (7). This corresponds
to a case of no physical insight; that is, we assume no
knowledge about the underlying process of generating
outflow as a function of water height in the tower. The
system is treated as a black box relating inputs to outputs,
without any physical insight or physical meaning attached
to model parameters, i.e., polynomial coefficients. This
approach is typical in neural network applications.
[21] Figure 3 shows how well polynomials of increasing

order are able to approximate system behavior on the basis
of noisy data with sample size n = 20 and signal-to-noise
ratio SNR = 5. True prediction error in Figure 3a initially
decreases for polynomials of increasing order, but then
increases as polynomials become more complex. There is
an optimal model complexity where prediction error is
minimal: lower-order models underfit the data, whereas
higher-order models overfit the data. Hence, the danger of
overfitting is clearly present for polynomial models in
Figure 3a. Figures 3b–3d indicate how well different model

complexity control methods are able to estimate true predic-
tion error depicted in Figure 3a. Increasing prediction error
with increasing polynomial complexity is only accurately
reproduced by CV (Figure 3d), whereas SRM (Figure 3c)
and especially AIC (Figure 3b) underestimate both the
increasing trend and variation in prediction error for high-
order polynomials. An important consequence of overfitting
is that model parameters are not uniquely identifiable any-
more, resulting in parameter equifinality. This is illustrated in
Figure 4, where total variance of polynomial coefficients is
plotted for increasing polynomial order. It is clear that
parameter identifiability is optimal for 2 to 4 parameters
and becomes worse for more complex models. This parallels
trends in prediction error (Figure 3a).
[22] Model selection results for polynomial models are

shown in Figure 5. Application of SRM results in models
that generally have lower prediction error than either AIC or
CV (Figure 5a). This is particularly true when considering
the 95% percentile (upper whisker in box plots), which is
lower for SRM than for AIC or CV. The accuracy with
which prediction error of optimal models is estimated is
fairly similar for the three methods (Figure 5b). SRM also
selects polynomials with the smallest number of parameters
(Figure 5c), compared to AIC and CV, and consequently
yields the best parameter identifiability and lowest param-
eter variance in Figure 5d. Both AIC and CV select more

Figure 3. Prediction error as a function of polynomial model complexity: (a) true prediction error given
by (2) and (b–d) prediction error estimated with (4) using AIC, SRM, and CV, respectively (AIC,
Akaike’s information criterion; SRM, structural risk minimization; CV, leave-one-out cross validation).
Box plots summarize statistical results for 100 samples of size n = 20 and an SNR (signal-to-noise ratio)
equal to 5.
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complex models with greater prediction error and poorer
parameter identifiability. Note finally that variance or spread
of performance indices over 100 random samples is smallest
for SRM, indicating robustness of SRM, i.e., its insensitiv-
ity to random sample variations.

3.2. Case 2: Physically Based Models

[23] The next step is to evaluate whether the conclusions
of fitting with polynomials also hold when using physically
based models to predict outflow from the tower on the basis
of water height. In this case, we assume that the physical
relationship between discharge from a single hole as a
function of water height is known and given by an individ-
ual term in (7). However, the threshold heights are unknown
and need to be determined on the basis of limited noisy data
of discharge and water height. Model complexity can be
gradually increased by including more holes with different
threshold heights. Although the example is of limited
complexity, this situation mimics hydrologic problems
where large-scale behavior is estimated on the basis of
knowledge of local-scale flow processes. This differs from
the black box approach in the previous section.
[24] Figure 6 shows prediction errors for physically based

models with an increasing number of holes. For reference,
the synthetic data are based on a true model with 20 holes.
Prediction error decreases as the model becomes more
complex (more holes) and then flattens off indicating that

Figure 4. Parameter identifiability, expressed in terms of
total parameter variance of optimal parameter values, as a
function of polynomial model complexity (n = 20, SNR = 5).

Figure 5. Model selection results for polynomial models: (a) true prediction error, (b) accuracy of
estimated prediction error, (c) model complexity, and (d) parameter identifiability of optimal polynomial
models according to three model complexity control methods (n = 20, SNR = 5).
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no further improvement is possible (Figure 6a). As opposed
to polynomial models (Figure 3a), prediction error does not
increase with increasing model complexity. The physical
relationship between discharge and water height imposes a
smoothing constraint on the ‘‘wiggliness’’ of the approxi-
mating function, leading to a pronounced smoothing effect
not present when using polynomials. Hence, our results
suggest that with physically based models, overfitting does
not lead to increased prediction errors, and one may get
away with using overly complex models, as long as phys-
ical laws (mass balance, constitutive relations) are included.
Figure 6 also shows estimates of prediction error with the
three model complexity control methods. In accordance
with results for polynomials (Figure 3), CV provides the
best estimates, whereas AIC and SRM now overestimate
prediction error of complex models. Again, SRM penalizes
complex models more than does AIC.
[25] Model selection results for physically based models

are shown in Figure 7. Prediction error of selected models is
similar for all three methods, with SRM yielding models
with slightly greater prediction error (Figure 7a). The
accuracy with which prediction error of the selected model
is estimated is fairly similar to the previous case. (Figure 7b).
In addition, Figure 7c shows quite a large range in optimal
number of parameters (complexity), with SRM again

selecting the least complex models (3 parameters on
average), and CV selecting a relatively large range of
complex models. These results indicate that model perfor-
mance and prediction error are fairly insensitive to the
number of parameters used, confirming results in Figure 6a
that there seems to be no effect of overfitting on prediction
error. As opposed to results for polynomials, Figure 7
suggests that more complex models (AIC, CV) result in
slightly lower prediction error. Despite the robustness of
prediction error with regard to model complexity, we see in
Figure 7d that parameter identifiability is much worse for
complex models selected by CV, as opposed to simpler ones
obtained by SRM, and to a lesser extent, AIC. In other
words, overfitting or overparameterization of physically
based models does not lead to an increase in prediction
error, but causes poor parameter identifiability and large
parameter equifinality.

3.3. Case 3: Effect of Data Quantity (Sample Size)

[26] Next we investigate the effect of the amount of data,
i.e., sample size n, to infer underlying system behavior. The
analysis in the previous section using physically based
models is repeated here, but now sample size n is decreased
from 20 to 5. As before, model selection is performed with
three methods for a total of 100 random data sets.

Figure 6. Prediction error as a function of complexity of physically based models: (a) true prediction
error given by (2) and (b–d) prediction error estimated with (4) using AIC, SRM, and CV, respectively
(n = 20, SNR = 5).
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[27] Results for n = 5 are presented in Figure 8. Compar-
ison with results for a larger sample size n = 20 in Figure 7
allows an assessment of the effect of sample size on model
selection. First of all, prediction error of selected models
shows a similar trend as before, with SRM selecting models
with somewhat larger prediction error. Also note that
prediction error in absolute value is greater in Figure 8a
than in Figure 7a, which is to be expected when models
have to be inferred from a smaller amount of data. Similarly,
accuracy of estimated prediction error follows results in
Figure 7. Furthermore, Figure 8c clearly illustrates the effect
of sample size on optimal model complexity: when less
information is available about the underlying system be-
havior, less complex models are supported by the data, and
this is true for all three methods. In other words, model
complexity control reflects the intuitive notion that there
should be a balance between the amount of data available
and the complexity of the model that can be inferred from it.
Finally, note in Figure 8d that with less data the model
parameters do not necessarily become less identifiable, as
long as model complexity and number of parameters are
decreased to reflect the decrease in useful information. As
was observed for larger sample size, SRM again yields
models with identifiable parameters.

3.4. Case 4: Effect of Data Quality (Signal-to-Noise
Ratio)

[28] Apart from data quantity, model selection methods
should also account for the effect of data quality. Here, we
express quality of data in terms of signal-to-noise ratio
(SNR), and investigate its impact on performance of the
three model complexity control methods. The analysis from
case 2 was repeated with n = 20, but with SNR = 1 instead
of 5, indicating a case of decreased data quality.
[29] The results for SNR = 1 are presented in Figure 9.

Comparison with results for SNR = 5 in Figure 7, allows an
assessment of the effect of data quality on model selection.
Decreasing SNR has a similar effect as decreasing sample
size: in both cases prediction error of optimal models
increases. Furthermore, all three methods select less com-
plex models when SNR is lower and more noise is present
in the data. Analytical methods, especially SRM, are more
robust to sampling variation, as indicated by robust esti-
mates of optimal model complexity and parameter variance,
compared to a much greater sensitivity of CV to sampling
variation, as evidenced by box plot heights. Such sensitivity
may be due to the relatively flat shape of prediction errors
for physically based models (see Figure 6a). It also leads to
CV selecting much more complex models than the analyt-
ical methods. However, the benefit of a resulting decrease in

Figure 7. Model selection results for physical models: (a) true prediction error, (b) accuracy of
estimated prediction error, (c) model complexity, and (d) parameter identifiability of optimal physically
based models according to three model complexity control methods (n = 20, SNR = 5).
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prediction error (Figure 9a) is small relative to a significant
worsening of parameter identifiability (Figure 9d).

3.5. Case 5: Streamflow Prediction in Leaf River Basin

[30] Rainfall and streamflow data for this case are dis-
played in Figure 10. We focus on four nonconsecutive
streamflow ‘‘events,’’ two in winter and two in summer.
Simulation is done using a lumped rainfall-runoff model
with three parameters, as described in Table 3. Two addi-
tional models are considered: one whose parameters may
vary by season (6 parameters total), and one whose param-
eter values may vary by event (12 parameters total). Each
model is fitted to the data and both SRM and AIC are used
to compute prediction errors according to (4).
[31] Results for this case are summarized in Figure 11 and

Table 3. We conclude that temporally variable model
parameters, by season or by event, result in increasingly
better fits to the data, as shown by Re values in Table 3.
However, models with time-variable parameters exhibit
parameter nonuniqueness and equifinality, as evidenced by
parameter variances in Table 3. SRM prevents such over-
parameterization by selecting a model with constant param-
eters, whereas AIC selects a model that is too complex for
accurate parameter identification. These results confirm our
findings with the synthetic case studies above, and point to a
relative insensitivity of model selection methods to assump-

tions about data independence, which is clearly violated in
this case.

4. Discussion

[32] Next, we discuss some implications of our results for
application of model complexity control to hydrologic
prediction. Although our case studies are of limited com-
plexity, they provide necessary insights into advantages and
limitations of the different methods. Our results also point to
key issues for further research.

4.1. Effect of Physical Constraints

[33] Model selection was performed using both polyno-
mials and models based on physical principles. Comparison
of results for these two cases suggests the following. First,
models based on smooth physical laws, such as the mono-
tonically increasing head-discharge relationship in our case,
do not exhibit increased prediction errors as the model
complexity or number of parameters increases. This is in
contrast to flexible polynomial models, which are prone to
overfitting noisy data, resulting in increased prediction error
for complex polynomials. Hence, there is a clear benefit to
physically constraining the model structure for making
predictions. However, although overfitting or overparame-
terization of physically based models does not lead to an

Figure 8. Model selection results for physical models: (a) true prediction error, (b) accuracy of
estimated prediction error, (c) model complexity, and (d) parameter identifiability of optimal physically
based models according to three model complexity control methods (n = 5, SNR = 5).
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increase in prediction error, it causes poor parameter iden-
tifiability and large parameter equifinality. In addition, the
flatness in prediction error with increasing model complex-
ity constitutes in effect a form of equifinality in suitable
model structures, i.e., a wide range of model structures
perform similarly well, and one is not penalized for having a
very complex model. Model complexity control provides a

quantitative framework for resolving these equifinalities by
identifying a parsimonious model with identifiable param-
eters. Alternatively, if for physical reasons model complex-
ity is given, the amount of data needed for accurate
parameter identification can be estimated.
[34] A challenge remains in formulating physically based

models with flexible model structures that span a range of

Figure 9. Model selection results for physical models: (a) true prediction error, (b) accuracy of
estimated prediction error, (c) model complexity, and (d) parameter identifiability of optimal physically
based models according to three model complexity control methods (n = 20, SNR = 1).

Figure 10. Daily observed rainfall and resulting streamflow for four nonconsecutive ‘‘events’’ in Leaf
River basin.
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model complexities [Clark et al., 2008]. Most obviously
this can be done by a downward approach, where additional
detail and complexity is added in a stepwise manner
[Sivapalan et al., 2003]. Alternatively, one can follow an
upward approach and start from a complex model, perhaps
on the basis of small-scale physics, combined with some
form of regularization [Tonkin and Doherty, 2005]. Regu-
larization allows one to introduce additional constraints
representing a priori physical knowledge about the system.
Model complexity control can be used in this context to
identify an optimal value for the regularization parameter,
thereby determining optimal weight to be given to a priori
physical knowledge.

4.2. Effects of Data Quantity and Quality

[35] Our results indicate that model complexity control is
able to account for effects of data quantity and quality,
identifying models that have a level of complexity that
matches available information. The influence of these
effects can clearly be seen in estimated prediction error in
(4), which forms the basis for model selection. First, data
quality is accounted for in empirical error Re, which
quantifies how well a model can fit data - this fitting ability
clearly depends on the level of noise in the data. Second,
data quantity is explicitly included in the penalization factor,
as seen in (5) and (6), which penalizes complex models on
the basis of small sample sizes. Often in hydrology, data are
either accurate but sparse, as with point measurements, or
ample but less accurate, as with remote sensing. In each
case, data quality and quantity will have an effect on the
level of model complexity that can be supported.

[36] It should be emphasized that increased sample size
will mainly be beneficial if additional data contains inde-
pendent or orthogonal information about the underlying
system behavior. This is reflected in the need to provide
the model complexity control methods with n independent
data samples (see Table 1). Even though data independence
can often not be guaranteed in hydrology, our results for
Leaf River basin using rainfall-streamflow time series
suggest that model complexity control can still yield useful
results. Nevertheless, there is a need to develop and apply
methods, such as value-of-information analysis [e.g., Yokota
and Thompson, 2004], that allow identification of indepen-
dent data with high information content. Such an analysis in
combination with model complexity control could result in
a very powerful tool for integrated data and model identi-
fication.

4.3. Comparison of Model Complexity Control
Methods

[37] Comparing results of three model complexity control
methods, we can conclude the following. First, SRM
consistently selects the least complex models; that is, it is
the most conservative method since it is based on worst case
upper bounds on prediction error for small samples, as
opposed to AIC which assumes infinitely large sample size
and therefore tends to select more complex models. Being
conservative intuitively makes sense when data quantity or
quality is low, since it attaches less importance to few and
noisy data. Our results reflect this notion in that SRM yields
models that are better identifiable, thereby avoiding the
equifinality problem of complex overparameterized models.

Table 3. Model Selection Results for Leaf River Case Studya

Model Parameters Re n h p rSRM rAIC Rp SRM Rp AIC PVarb

Constant in time 1.49 139 3 0.02 1.64 1.04 2.45 1.56 1
Seasonally variable 1.41 139 6 0.04 1.91 1.09 2.70 1.54 32
Variable by event 1.22 139 12 0.09 2.43 1.19 2.97 1.45 70

aModel complexity h equals number of model parameters. There are three basic parameters: (1) maximum storage capacity in the basin, (2) a parameter
describing spatial variability of storage capacity, and (3) a linear reservoir coefficient related to residence time of effective rainfall in the basin. Number of
model parameters is doubled or tripled by considering time-variance of these parameters by season (�2) or by event (�4).

bVariable PVar indicates total parameter variance of each model, normalized relative to variance in the model with time-constant parameters.

Figure 11. Simulated and observed hydrographs for Leaf River basin using three levels of model
complexity: (a) parameters constant in time, (b) seasonally variable parameters, and (c) parameters
variable by event. Vertical arrows highlight discrepancies.
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Parsimonious models with unique parameters have some-
what larger prediction errors, but only marginally so. Our
numerical experiments confirm results from statistical learn-
ing theory (SLT) on which SRM is based. SLT theoretically
predicts the onset of equifinality by theorem A6.3 of Vapnik
[1998]. The relevance of this theoretical insight is that it
allows us to choose in advance how complex a model
should be to avoid equifinality, given available data. On
the other hand, if physics dictates model complexity, we can
predict the number of data points that need to be collected to
arrive at unique parameter values. The predictability of the
onset of equifinality as a function of model complexity and
data availability is an important advantage of SRM.
[38] Second, results show that CV is more sensitive to

sampling variation, whereas analytical methods (AIC and
SRM) are more robust. Analytical methods are also prefer-
able to CV in terms of computational demand. A potential
drawback of the analytical methods is that they require an
estimation of model complexity. For a model linear in its
parameters such an estimate can be based on the number of
model parameters. However, in the case of nonlinear models
estimating model complexity is less straightforward and
more empirical. For example, in SRM model complexity is
measured by the model’s Vapnik-Chernovenkis (VC) di-
mension, a measure of the model’s ‘‘wiggliness’’ or flexi-
bility to fit data points. In our case studies we estimated the
VC dimension of the nonlinear physically based models
using the number of model parameters. A more rigorous
approach would require the VC dimension to be estimated
empirically [Shao et al., 2000]. This is still an open research
field.
[39] Finally, it should be mentioned that there are also

methods that automatically identify the best model com-
plexity control method, i.e., a metaselection method, as
presented by De Luna and Skouras [2003]. The authors
demonstrated their approach for estimating order of time
series models, focusing on a comparison between AIC and
BIC performance.

5. Conclusions

[40] Model complexity control provides a systematic
approach to balance complexity of a hydrologic model with
quantity and quality of available information. There are
several advantages associated with such an approach to
hydrologic modeling, one being the reduction of parameter
equifinality, in the sense that the approach leads to models
with identifiable parameters on the basis of available data.
Performance of three model complexity control methods
was compared using a simple flow problem for which the
exact physics are known, and a more comprehensive
rainfall-runoff example. This allowed a systematic evalua-
tion of the effects of various assumptions that underlie these
methods. We reach the following conclusions in this paper:
[41] 1. Smoothness of physically based hydrologic

parameterizations (e.g., storage flux laws) effectively
bounds hydrologic prediction uncertainty, even when mod-
els become overparameterized and parameter values cannot
be identified from available data.
[42] 2. Model complexity control methods present a

formal and objective way of identifying the simplest model
supported by the data (Occam’s razor), as a function of
both quantity and quality of available data. Small and

noisy data sets support less complex models than large and
accurate data sets. Hence, model complexity control quan-
tifies an intuitive link between model complexity and data
availability.
[43] 3. A comparison of various model complexity

control methods shows that structural risk minimization
(SRM) is preferable to other methods, as it consistently
identifies parsimonious models with unique parameters,
even in cases where the assumption of data independence
is violated. Methods developed for application with large
data sets, such as AIC, tend to select models that are too
complex, and which suffer from parameter equifinality.
Cross validation is computationally intensive and sensitive
to sampling variation.
[44] On the basis of these preliminary results from

synthetic and practical case studies, we conclude that model
complexity control holds promise as a systematic, quanti-
tative, and statistically sound methodology for dealing with
issues of parameter and model equifinality in hydrology.
Future work should focus on applying analytical model
complexity control methods to complex hydrologic case
studies. A rigorous application of SRM in this context will
require an accurate estimation of the VC dimension as a
complexity measure of hydrologic models. A promising
research direction also lies in combining model complexity
control with value-of-information tools that identify orthog-
onal data with large information content.
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