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Original Article

Brain tumor enhancement prediction from pre-contrast 
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mapping and generative artificial intelligence
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Background: Gadolinium-based contrast agents (GBCAs) are usually employed for glioma diagnosis. 
However, GBCAs raise safety concerns, lead to patient discomfort and increase costs. Parametric maps offer 
a potential solution by enabling quantification of subtle tissue changes without GBCAs, but they are not 
commonly used in clinical practice due to the need for specifically targeted sequences. This work proposes to 
predict post-contrast T1-weighted enhancement without GBCAs from pre-contrast conventional weighted 
images through synthetic parametric maps computed with generative artificial intelligence (deep learning).
Methods: In this retrospective study, three datasets have been employed: (I) a proprietary dataset with 15 
glioma patients (hereafter, GLIOMA dataset); (II) relaxometry maps from 5 healthy volunteers; and (III) 
UPenn-GBM, a public dataset with 493 glioblastoma patients. A deep learning method for synthesizing 
parametric maps from only two conventional weighted images is proposed. Particularly, we synthesize 
longitudinal relaxation time (T1), transversal relaxation time (T2), and proton density (PD) maps. The deep 
learning method is trained in a supervised manner with the GLIOMA dataset, which comprises weighted 
images and parametric maps obtained with magnetic resonance image compilation (MAGiC). Thus, MAGiC 
maps were used as references for the training. For testing, a leave-one-out scheme is followed. Finally, 
the synthesized maps are employed to predict T1-weighted enhancement without GBCAs. Our results 
are compared with those obtained by MAGiC; specifically, both the maps obtained with MAGiC and the 
synthesized maps are used to distinguish between healthy and abnormal tissue (ABN) and, particularly, 
tissues with and without T1-weighted enhancement. The generalization capability of the method was also 
tested on two additional datasets (healthy volunteers and the UPenn-GBM).
Results: Parametric maps synthesized with deep learning obtained similar performance compared to 
MAGiC for discriminating normal from ABN (sensitivities: 88.37% vs. 89.35%) and tissue with and without 
T1-weighted enhancement (sensitivities: 93.26% vs. 87.29%) on the GLIOMA dataset. These values were 
comparable to those obtained on UPenn-GBM (sensitivities of 91.23% and 81.04% for each classification).
Conclusions: Our results suggest the feasibility to predict T1-weighted-enhanced tissues from pre-
contrast conventional weighted images using deep learning for the synthesis of parametric maps.
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Introduction

Malignant gliomas are the most common type of primary 
brain tumors in adults with an incidence of approximately 5 
per 100,000 people per year (1). Standard assessment with 
magnetic resonance imaging (MRI) includes T1-weighted 
(pre-T1w), T2-weighted (T2w), T2-weighted-fluid-
attenuated inversion recovery (T2w-FLAIR), and T1w after 
the injection of a contrast agent (post-T1w) (2). Gadolinium-
based contrast agents (GBCAs) are customary due to their 
ability to reveal the impairment in the blood-brain-barrier 
(BBB), associated with aggressive tumor behavior (3). Thus, 
pre-T1w and post-T1w are visually compared to discover 
extravasation of GBCA into the perivascular space (4).

This procedure has two downsides: 
(I) GBCAs are generally deemed safe, but up to 2.4% 

of patients suffer from mild adverse reactions and 
a lower rate from severe complications (5). Other 
concerns are possible deposition of GBCAs in the 
brain (6), and their presence in wastewater (7). In 
addition, the usage of GBCAs increases scan time 
and monetary cost.

(II) Usage of weighted images as opposed to quantitative 
diagnostic methods. However, the latter are 
crucial for distinguishing different post-treatment 
conditions and understanding subtle tumor changes 
(4,8,9). One example is the detection of tumor 
infiltration into the peritumoral edema, which is 
difficult to assess by visual inspection of weighted 
images (10).

Parametric maps, specifically, longitudinal relaxation 
time (T1), transversal relaxation time (T2), and proton 
density (PD), represent intrinsic tissue properties. They 
are more robust than weighted images against scanner  
imperfections (11) and facilitate quantification of subtle 
changes within the tissues (4,8,12,13). Hence, parametric 
maps (hereafter referred to as maps) could be key for 
predicting BBB damage without GBCAs, as shown by 
Nunez-Gonzalez et al. (13). This study differentiates between 
healthy and abnormal tissue (ABN) and, particularly, tissue 

with and without T1w-enhancement (T1e) using only pre-
contrast maps (13). However, maps are not commonly 
acquired in clinical practice due to their lengthy acquisitions. 
Nowadays, fast multiparametric mapping techniques, such 
as magnetic resonance (MR) fingerprinting (14) or magnetic 
resonance image compilation (MAGiC) (15), have taken 
the stage. These techniques, albeit faster, still have time 
limitations; moreover, these sequences are scarcely available 
worldwide.

Deep learning (DL) can boost parametric mapping by 
using only conventional and, therefore, widely available 
weighted images. With DL, maps can be computed in 
both pre-existing databases and in newly acquired datasets 
without additional scan time. Although various methods 
that estimate parametric maps from traditional relaxometry 
sequences with DL have been proposed (16,17), to the 
best of our knowledge only two previous works compute 
maps from conventional weighted images with DL (18,19). 
Moya-Sáez et al. (18) propose T1, T2, and PD mapping 
from a pre-T1w and a T2w; the method is validated on 
a small proprietary dataset of healthy volunteers. Qiu  
et al. (19) propose T1 and T2 mapping from three weighted 
images; the validation is performed with controls and 
multiple sclerosis patients. In both cases the maps were 
compared with those obtained with traditional sequences, 
but their diagnostic value was not clinically validated. Thus, 
the utility of synthesized maps for diagnostic purposes has 
not been so far analysed, and specifically, none of these 
works focused on T1e prediction in oncological patients. 
On the other hand, the synthesis of post-T1w images from 
pre-contrast weighted images has been recently proposed 
(20,21), but these approaches do not compute parametric 
maps, which impedes a quantitative assessment of the T1e.

In this pilot study, we perform a methodological 
feasibility analysis. It consists of predicting post-contrast 
T1e in glioma patients from pre-contrast conventional 
weighted images using DL-synthesized maps. Thus, 
prediction of post-contrast T1e without the usage of 
GBCAs alleviates the previously mentioned downside. 
In addition, computation of the maps with DL from 
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conventional weighted images avoids the need of specifically 
targeted sequences and paves the way for retrospective 
studies. We present this article in accordance with the 
TRIPOD+AI reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-721/rc).

The rest of the manuscript is organized as follows: in 
Section Methods we present the methodology for predicting 
post-contrast T1e from pre-contrast conventional weighted 
images through the DL computation of parametric maps. 
Thus, we first introduce the datasets employed in this 
study and the pre-processing steps. Next, we introduce 
different approaches for T1e assessment with and without 
GBCAs. We present the DL approach for the synthesis 
of the parametric maps and the data splitting for training, 
early-stopping validation, and test. In the last subsection we 
explain the experiments carried out for the validation of the 
proposed approach. In Section Results we show the results 
whereas in Section Discussion we discuss their implications. 
Finally, the main conclusions of this study are established in 
Section Conclusions. 

Methods

Figure 1 shows an overview of the proposed DL method 
and the experiments. Details about the datasets and number 
of selected participants are also included. 

Datasets

In this retrospective study, we employ three different 
datasets (see Figure 1A); one of them is used for both 
training and testing, and the other two are solely used 
for testing. Details about their acquisition parameters are 
shown in Table S1. 

Glioma patients (GLIOMA)
This dataset consists of 15 patients (mean age, 39.33± 
10.40 years; 6 females, 9 males) with different grades 
of gliomas, who were scanned with the approval of the 
Ethics Committee of the Erasmus MC, Rotterdam, The 
Netherlands (No. MEC-2018-070) and after signing a 
written informed consent form. The data acquisition was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The patients had undergone tumor 
resection before the acquisition and were scanned between 

2018 and 2020 with a 3T Sigma Premier (General Electric, 
Waukesha, WI, USA). The image modalities included are 
pre-T1w, T2w, T2w-FLAIR, post-T1w, and, also, pre-
contrast MAGiC1 for T1, T2, and PD parametric mapping. 
In one patient the T2w-FLAIR was not acquired due to a 
deviation from the protocol.

Healthy volunteers relaxometry (RMaps)
Five healthy volunteers (mean age, 34.4±12.18 years;  
2 females, 3 males) scanned with the approval of the Ethics 
Committee CEIm ÁREA DE SALUD VALLADOLID 
ESTE, Valladolid, Spain (No. PI-20-1885) and after signing 
a written informed consent form were included in this 
dataset. The dataset was collected in 2021 with a 3T Achieva 
(Philips, Best, The Netherlands). The protocol included 
relaxometry sequences for the estimation of T1, T2, and PD 
maps, and also pre-T1w and T2w images. The T1 map was 
estimated from a variable flip angle (VFA) sequence with 11 
different flip angles using NOVIFAST (12), and the T2 map 
was obtained from a multi-echo sequence with six different 
TEs using a least squares fit.

The University of Pennsylvania glioblastoma  
(UPenn-GBM)
UPenn-GBM is a public dataset of 611 patients diagnosed 
with de novo glioblastoma. It includes routine clinical pre-
operative MRI acquisitions from 2006 to 2018. For 41 of 
these patients a follow-up acquisition prior to a second 
resection is also available. Details about this dataset can 
be found in Bakas et al. (22). We selected 493 patients 
(mean age, 63.15±12.23 years; 197 females, 296 males) with 
homogeneous acquisition parameters. The acquisition of all 
the selected patients was performed with a 3T Magnetom 
Trio (Siemens Healthcare, Erlangen, Germany). This 
dataset includes four structural weighted images (pre-T1w, 
T2w, T2w-FLAIR, and post-T1w) resampled to a 1 mm3 
isotropic resolution and skull-stripped. 

Image processing and ROI definition

All of the weighted images were reoriented to match the 
orientation of the standard MNI152 (23) with FSL (24). 
After that, images were skull-stripped using HD-BET (25)  
followed by a linear registration to the pre-T1w using 
FLIRT (24). Finally, each weighted image was normalized 

 
1 Commercial implementation of the QRAPMASTER technique for quantitative imaging.

https://qims.amegroups.com/article/view/10.21037/qims-24-721/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-721/rc
https://cdn.amegroups.cn/static/public/QIMS-24-721-Supplementary.pdf
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Figure 1 Flow diagram. (A) Participants selection of each dataset, namely GLIOMA, UPenn-GBM, and RMaps, and training/early-
stopping validation/test sets splitting. (B) Pipeline of the proposed approach for training the DL method with the GLIOMA dataset. (C) 
Testing and experimentation employed for each dataset depends on the data available in each of them. CNN, convolutional neural network; 
T1, longitudinal relaxation time; T2, transversal relaxation time; PD, proton density; T1w, T1-weighted; T2w, T2-weigheted; T2w-FLAIR, 
T2-weighted-fluid-attenuated inversion recovery; post-T1w, post-contrast T1-weighted; DL, deep learning; MAGiC, magnetic resonance 
image compilation. 
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with its average intensity (excluding background).  
FAST (24) was used to segment the white matter (WM) and 
grey matter (GM) tissues. In addition, different regions of 
interest (ROIs) were defined for the subsequent analysis: T1e, 
non-enhancing T2w/T2w-FLAIR signal hyperintensity 
(T2h), ABN, which corresponds to the union of T1e and 
T2h, and normal white matter (nWM), which corresponds 
to the WM segmentation not included in ABN.

T1e assessment

Different methods have been proposed for automatic 
classification of voxels with and without T1e. We will use 
the two we now describe.

Classification method 1: HD-GLIO
HD-GLIO is a DL segmentation tool (26-28) which uses 
three pre-contrast (pre-T1w, T2w, T2w-FLAIR) and 
one post-contrast (post-T1w) weighted images as inputs. 
It segments voxels with T1e, and voxels with T2h. We 
should highlight that this tool was trained with annotations 
performed by experts. In this work, GLIOMA and UPenn-
GBM datasets were input to HD-GLIO for obtaining 
ground-truth segmentations.

Classification method 2: voxel-wise statistical 
prediction from pre-contrast maps
Nunez-Gonzalez et al. (13) recently proposed a method 
for voxel-wise classification of normal/ABN as well as 
tissue with/without T1e, based only on pre-contrast 
(i.e., without GBCAs) T1 and T2 maps obtained with 
MAGiC. Further details on this method can be found in  
Appendix 1. Following this methodology, in this work we 
considered two classifications: classification-I (C-I) ABN 
vs. nWM, and classification-II (C-II) T1e vs. the union 
of nWM and T2h. Thus, the T2h can be obtained as the 
difference between ABN and T1e. For each classification 
problem, we selected the metric that showed the best 
performance in Nunez-Gonzalez et al. (13) and its optimal 
operating point, i.e., normlog with threshold 8.44 for C-I, 
and normT1T2 with threshold 1,344 ms for C-II. 

DL computation of synthesized maps

The computation of synthesized maps is performed with 
a convolutional neural network (CNN) that extracts the 
quantitative T1, T2, and PD information embedded in the 
weighted images (see Figure 1B). The CNN was configured 

with two encoders—one per input (pre-T1w and T2w), 
and three decoders—one per desired map. The pipeline has 
three steps: (I) each weighted image is input to its encoder; 
(II) the outputs of the encoders are fused with a pixel-wise 
max function into a shared representation; (III) the shared 
representation is input to each decoder. The network 
processes the volumes slice-wise. 

The three encoders share the same architecture, which 
is inspired by the UNet (29) to exploit information at 
larger spatial scales. Skip connections were used between 
the down- and upsampling layers of the encoders to avoid 
the loss of details induced in the downsampling path. The 
three decoders also share the same architecture; in this case 
a fully-convolutional network is employed. More details 
about the architecture can be found in (18,30) and in the 
Figure S1.

Both encoders and decoders were trained simultaneously. 
Training was supervised with the loss function:

1 1 1
1 1 2 2DL MAGiC DL MAGiC DL MAGiCl l l

L T T T T PD PD= − + − + −  [1]

where the subindices DL and MAGiC refer to the DL-
synthesized and MAGiC maps, respectively. The l1-norm 
was chosen for robustness against misregistration of the 
input weighted images (more details in Appendix 1). 
The loss function was minimized using Adam (31) with a 
learning rate of 1e−4. The batchsize was empirically set to 4 
slices. The number of epochs was determined in execution 
time via early-stopping (10 epochs with a loss reduction less 
than 0.001 in the early-stopping validation set). Pre-training 
with synthetic data is performed following the steps detailed 
in Moya-Sáez et al. (18). We implemented our model with 
Tensorflow v.2.4.0.

Training, early-stopping validation and test sets

First, the DL method was trained following a leave-one-out 
scheme with GLIOMA; hence, one patient was left aside 
for testing and the remaining patients were randomly split 
into training (12 patients) and early-stopping validation 
(two patients). The patient without T2w-FLAIR was 
not included in any test set because HD-GLIO cannot 
be executed on it, but it was additionally included in 
the training/early-stopping validation sets as shown in  
Figure 1A. Thus, a total of 14 data splits were performed. 
Patients may exhibit T1e or not; we ensured the presence 
of a patient of each class in the early-stopping validation set. 
For the sake of completeness, Table S2 includes the specific 

https://cdn.amegroups.cn/static/public/QIMS-24-721-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-721-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-721-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-721-Supplementary.pdf
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patient indexes included in each split. 
Second, to assess the generalization capability of the 

CNN, we performed a new training with the complete 
GLIOMA dataset, i.e., no patient was left aside for testing. 
Specifically, we used one random split of GLIOMA in 
training (13 patients) and early-stopping validation (two 
patients) sets. Testing was carried out on two separate 
datasets (UPenn-GBM and RMaps). 

Validation of the proposed approach

Two kinds of experiments have been conducted on the test 
sets for the validation of the proposed approach. These 
experiments are labelled in Figure 1C as tissue quantification 
and prediction performance. The former is intended to 
evaluate similarity between the synthesized and the acquired 
maps. The latter evaluates the capability of synthesized 
maps for predicting ABN and T1e tissues. We stress that 
this validation does not correspond with the early-stopping 
validation described before, which is performed during 
network training on the early-stopping validation set. 

On the one hand, validation of the proposed approach 
was performed on GLIOMA using the test patient for 
each trained model in the leave-one-out process. As for the 
tissue quantification, MAGiC and synthesized maps were 
visually compared, and the percentage error was voxel-
wise computed as the difference between them normalized 
by the MAGiC map. The WM and GM segmentations 
for each test patient were applied to both types of maps. 
Then, boxplots of the voxel-wise percentage error between 
the synthesized and MAGiC maps for the WM and GM 
tissues were constructed. For the prediction performance 
experiment, statistical predictions were carried out with 
both MAGiC and our synthesized maps for GLIOMA, and 
their sensitivities and specificities were compared. These 
parameters were computed for each classification problem 
(C-I and C-II) performed with the metrics and thresholds 
reported in section “Classification method 2: voxel-wise 
statistical prediction from pre-contrast maps”. The ground-
truth segmentation for computing sensitivity and specificity 
was obtained with HD-GLIO from the weighted images (see  
Figure 1C). Statistical differences were calculated by means 
of a significance test. 

On the other hand, the dashed horizontal lines in Figure 1C 
depict the tests carried out on RMaps and UPenn-GBM 
datasets to assess the generalization capability. The tissue 
quantification experiment was also conducted on RMaps. 
In this case, the values of the parametric maps within the 

WM and GM segmentations were compared between our 
synthesized maps and the maps in RMaps by means of the 
voxel-wise difference between them normalized by their 
voxel-wise mean. As for the prediction performance, it was 
conducted on both datasets. For RMaps only specificity 
on the predictions was calculated since the dataset consists 
of healthy volunteers. Differences are also tested by a 
significance statistical test. For UPenn-GBM, predictions 
were performed on the synthesized maps and, afterwards, 
sensitivity and specificity were computed using HD-GLIO 
as the reference segmentation.

For the three databases, normality of the samples of 
sensitivity and specificity are tested with a Shapiro test. For 
normal data distributions, values are reported as means and 
standard deviation (SD). Otherwise, values are reported as 
median and interquartile range (IQR). As for statistical tests, 
either the paired t-test or Wilcoxon signed rank test are 
used according to the normality of the samples. P values are 
reported for a unilateral test (i.e., the alternative hypothesis 
is “the value obtained for our maps are greater than for the 
other method maps”). 

Results

DL-synthesized maps in GLIOMA dataset

Figure 2 shows, for a representative test patient, both the 
MAGIC maps and the synthesized maps. The voxel-wise 
percentage error between each pair of maps is also shown. 
An extended version of Figure 2 with all the GLIOMA 
patients was provided in Figure S2. A comparison of tissue 
values of the WM and GM between the synthesized and 
MAGiC maps is shown in Figure 3. 

T1e prediction in GLIOMA

Table 1 shows the sensitivity and specificity obtained for 
each classification (i.e., C-I and C-II defined in section 
“Classification method 2: voxel-wise statistical prediction 
from pre-contrast maps”) for both MAGiC and synthesized 
maps. As can be seen in that table, synthesized maps 
obtained similar performance compared to MAGiC for 
discriminating normal from ABN (C-I) with sensitivities: 
88.37% (IQR, 17.30%) vs. 89.35% (IQR, 8.93%) and 
slightly better discriminating tissue with and without T1e 
(C-II) with sensitivities: 93.26% (IQR, 14.05%) vs. 87.29% 
(IQR, 16.62%) and P=0.0015. Also for both maps, the 
segmented T1e and T2h regions obtained through the 

https://cdn.amegroups.cn/static/public/QIMS-24-721-Supplementary.pdf
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statistical prediction from both MAGiC and synthesized 
maps are shown in Figure 4 for a representative test 
patient. The segmentations obtained with HD-GLIO from 
weighted images are also shown as reference. An extended 
version of Figure 4 with all the GLIOMA patients was 
provided in Figure S3. 

Results on RMaps and UPenn-GBM

Boxplots of the WM and GM percentage error between 
the synthesized maps and those in RMaps are shown in  
Figure 5. On the other hand, the voxel-wise statistical 

prediction applied to the synthesized maps reported 
mean specificities of 95.83% (SD: 0.94%) and 98.83% 
(SD: 0.16%) for C-I and C-II, respectively, while for the 
relaxometry maps from RMaps the specificity lowered to 
82.08% (SD: 5.93%) for C-I and 83.36% (SD: 6.03%) 
for C-II. Significant differences were found in both cases  
(P value <0.01). 

Figure 6 shows a comparison between the segmentation 
obtained with the voxel-wise statistical prediction 
from DL-synthesized maps and the reference HD-
GLIO segmentation for UPenn-GBM. Sensitivities 
and specificities for the voxel-wise prediction with the 

Figure 2 A representative axial slice of MAGiC and corresponding synthesized parametric maps for a test patient of GLIOMA dataset, who 
presents T1w-enhanced tissues. The voxel-wise percentage error is also represented for each pair. (A) T1 map; (B) T2 map; and (C) PD 
map. T1, longitudinal relaxation time; T2, transversal relaxation time; PD, proton density; MAGiC, magnetic resonance image compilation; 
DL, deep learning. 
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synthesized maps are shown in Table 2. The metrics 
reported are sensitivities of 91.23% (IQR, 10.14%) and 
81.04% (IQR, 24.21%) and specificities of 90.24% (IQR, 
3.55%) and 91.49% (IQR, 6.14%) for C-I and C-II, 
respectively. These values are comparable to those reported 
in Table 1 for GLIOMA. 

Discussion

In this pilot study, we propose a method that enables 
the prediction of brain tumor T1e from pre-contrast 
conventional weighted images through the computation 
of synthesized maps. We validate the ability of these maps 

to predict ABN and T1e tissues without GBCAs and, 
also, their tissue quantification accuracy. Generalization 
capabilities of the proposed method were also tested with 
multi-site, multi-vendor acquisitions.

Results have shown that the DL-based parametric 
mapping from only two weighted images show tissue values 
similar to those obtained with relaxometry sequences and 
MAGiC. In addition, the performance of these synthesized 
maps to discriminate normal/ABN is comparable to the 
performance obtained with MAGiC maps and slightly 
better for tissue with or without T1e, both on the 
GLIOMA dataset. These results could be replicated by 
testing our method with RMaps and UPenn-GBM, which 
were two datasets unseen during the training process. The 
three datasets were collected in different centers and with 
3T scanners of multiple vendors. Neither inhomogeneity 
nor motion correction techniques were applied to the 
estimation of the maps of the RMaps dataset, which could 
affect their accuracy. This could have an impact on the 
better performance of the synthesized maps in the statistical 
predictions. In contrast, MAGiC maps were obtained with a 
commercial product which incorporates B1 inhomogeneities 
into the model for T1, T2, and PD mapping. In addition, 
its accuracy has been validated in various studies (32,33).

Interestingly, the statistical prediction shows a slight 
overestimation of the T1e region compared to HD-
GLIO, but there is also some coincidence with the follow-
up images shown in Figure 6. This region presents T1 
and T2 values higher than those of the nWM, resulting 
in the region being classified as T1e. Nevertheless, we 
hypothesize that these higher values could be explained by 
an altered interstitial fluid mobility and increased water 
content in the perivascular space (34), even when the BBB 

Table 1 Comparison of the statistical prediction performance with 
MAGiC and synthesized maps for test patients of GLIOMA dataset

Metric C-I: ABN vs. nWM C-II: T1e vs. non-T1e

Sensitivity, %

MAGiC 89.35 (8.93) 87.29 (16.62)

Synthesized 88.37 (17.30) 93.26 (14.05)

P value 0.4039 0.0015

Specificity, %

MAGiC 93.61 (2.14) 94.95 (2.88)

Synthesized 95.21 (1.13) 95.59 (1.81)

P value 0.0011 0.0054

Median across patients and interquartile range for each classification 
problem (C-I and C-II) are reported. Bold text represents significant 
differences (P value <0.05) between synthesized and MAGiC maps. 
ABN, abnormal tissue; nWM, normal white matter; T1e, T1w-
enhancement; MAGiC, magnetic resonance image compilation.

Figure 3 Boxplots of the voxel-wise percentage error between the synthesized and the MAGiC parametric maps within the WM and GM 
segmentations for the test patients of the GLIOMA dataset. T1, longitudinal relaxation time; T2, transversal relaxation time; PD, proton 
density; MAGiC, magnetic resonance image compilation; WM, white matter; GM, grey matter.
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Figure 4 A representative axial slice of the T1e and T2h segmentations overlaid on the pre-T1w images for a representative test patient 
of the GLIOMA dataset. (A) Ground-truth segmentation obtained with HD-GLIO from the four weighted images (pre-contrast T1w, 
T2w, T2w-FLAIR, and post-T1w). (B) Segmentations obtained through the statistical predictions from MAGiC parametric maps. (C) 
Segmentations obtained through the statistical predictions performed from synthesized maps. (D) Errors of B compared with A. (E) 
Errors of C compared to A. FN, false negative; FP, false positive; T1w, T1-weighted; T2w, T2-weigheted; T2w-FLAIR, T2-weighted-
fluid-attenuated inversion recovery; post-T1w, post-contrast T1-weighted; MAGiC, magnetic resonance image compilation; T1e, T1w-
enhancement; T2h, T2w/T2w-FLAIR signal hyperintensity; DL, deep learning.

Figure 5 Boxplots of the voxel-wise percentage error between the synthesized and the relaxometry maps of RMaps dataset within the WM 
and GM mask. T1, longitudinal relaxation time; T2, transversal relaxation time; PD, proton density; WM, white matter; GM, grey matter.
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is not completely disrupted for GBCA to pass through. 
Thus, this overestimated T1e region could represent a BBB 
vulnerability and, therefore, it might be an appropriate 
follow-up biomarker. This hypothesis agrees both with 
recently reported findings (8,35) and, apparently, with 
our results on the UPenn-GBM follow-up images (see  

Figure 6). However, further research is necessary to confirm 
this hypothesis. 

The prediction of the T1e from pre-contrast maps could 
bypass the injection of GBCAs, avoiding their related issues, 
as shown in Nunez-Gonzalez et al. (13). However, the 
acquisition of maps makes protocols considerably longer. 
MAGiC does not fully address this issue since its acquisition 
is still not less than 4 min for a resolution of 1 mm × 1 mm 
× 3 mm. Thus, computation of maps from conventional 
weighted images with DL would favor the spread of this 
clinical application and foster the usage of maps in the 
clinical practice. Moreover, this approach proves valuable 
for retrospective analysis, enabling the computation of 
maps for pre-existing and/or multicentre datasets, thereby 
empowering longitudinal or population studies.

If it is feasible to derive maps from the weighted 
images and subsequently predict T1e from these maps, 

Figure 6 A representative axial slice of the T1e and T2h segmentations overlaid on the pre-T1w images for different patients of UPenn-
GBM dataset. (A) Post-T1w image. (B) Reference segmentation obtained with HD-GLIO from the four weighted images (pre-contrast 
T1w, T2w, T2w-FLAIR, and post-T1w). (C) Segmentations obtained through the statistical predictions performed from synthesized maps. 
(D) Post-T1w image from the follow-up acquisition. Red label represents T2h, whereas the yellow label represents T1e. T1w, T1-weighted; 
T2w, T2-weigheted; T2w-FLAIR, T2-weighted-fluid-attenuated inversion recovery; post-T1w, post-contrast T1-weighted; T1e, T1w-
enhancement; T2h, T2w/T2w-FLAIR signal hyperintensity; DL, deep learning.

Table 2 Statistical prediction performance of synthesized maps 
for patients of UPenn-GBM dataset in terms of sensitivity and 
specificity

Metric C-I: ABN vs. nWM C-II: T1e vs. non T1e

Sensitivity, % 91.23 (10.14) 81.04 (24.21) 

Specificity, % 90.24 (3.55) 91.49 (6.14)

Median across patients and interquartile range for each 
classification problem (C-I and C-II) are reported. ABN, abnormal 
tissue; nWM, normal white matter; T1e, T1w-enhancement.
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it follows that predicting T1e directly from the weighted 
images should also be viable. However, we choose to use 
the maps as an intermediate step for several reasons: (I) 
gaining resilience to variations in scanners and acquisition 
parameters by extracting the absolute scale maps; (II) 
offering information closer to the pathophysiology; and 
(III) providing DL-based evidence of the findings reported 
in previous studies (8,13,35,36) which have shown that 
T1e tissues present higher pre-contrast T1 and T2 values 
compared with nWM.

This work has several limitations. Acquisition time 
limitations lead to a mismatch in spatial resolution between 
the weighted images and MAGiC maps of the GLIOMA 
dataset. Consequently, the co-registration of all modalities 
is needed, which might induce misregistration artifacts and 
partial volume effects. This can explain why most of the 
differences between the synthesized and MAGiC maps are 
located at the tissue edges (see Figure 2). Additionally, the 
network might be inducing some blurring in the synthesized 
maps, which could also explain these tissue edge differences. 
Moreover, the pre-T1w and T2w input images have varying 
acquisition parameters across datasets due to different 
institutional protocols. Although this study has shown 
comparable testing results on diverse datasets, these input 
parameter variations could potentially introduce errors in 
the maps.

To mitigate the impact of variation in acquisition 
parameters, future work aims to incorporate them as 
additional inputs to the network. This approach would 
enable training with more extensive and diverse datasets, 
potentially enhancing the model generalization capabilities. 
Furthermore, the extension of the approach to other clinical 
applications for diagnosing different pathologies is also 
planned (37).

Conclusions

In conclusion, in this study we showed a proof-of-concept 
of predicting T1e from pre-contrast conventional weighted 
images through the DL synthesis of parametric maps. The 
results suggest that these DL-synthesized maps might 
eventually have the potential to replace GBCAs for tumor 
T1e prediction, without compromising performance and 
with a reduced acquisition time.
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Supplementary

Appendix 1

Deep learning (DL) model architecture, loss function, and data splitting

The DL model architecture is shown in Figure S1. More details about the architecture can be found in (18,30).
The DL model was trained in a supervised manner with the loss function:

As can be seen, the loss function is composed of the sum of three terms, one per output parametric map [i.e., longitudinal 
relaxation time (T1), transversal relaxation time (T2), and proton density (PD) maps]. Each term consists of the l1 norm, also 
known as mean absolute error (MAE), between synthesized and the reference parametric maps. Note that in this case the 
reference parametric maps are the magnetic resonance image compilation (MAGiC) maps. MAE is defined as the mean of the 
absolute difference between both maps. 

Finally, Table S2 shows the patient indexes included in training, early-stopping validation and test sets for each split.

Voxel-wise statistical prediction of T1w-enhancement

Nunez-Gonzalez et al. (13) proposed a method for voxel-wise statistical prediction of normal/ABN tissue and tissue with and 
without T1e from only pre-contrast MAGiC parametric maps. In that study, the authors performed the voxel-wise prediction 
using a receiver operating characteristic curve (ROC) analysis. The authors considered three classification problems: 
classification-I (C-I) abnormal tissue (ABN) vs. normal white matter (nWM); classification-II (C-II) T1e vs. (nWM + T2h); 
and classification-III (C-III) T1e vs. T2h (only inside ABN). They also considered four voxel-wise metrics: (I) T1 values, (II) 
T2 values, (III) normT1T2 (i.e., the Euclidean norm of the T1 and T2 values), and (IV) normlog (i.e., the Euclidian norm of 
the logarithm of T1 and T2 values). For each classification problem the metric with the highest area under the curve (AUC) 
was selected. The thresholds for optimal classifications were calculated as the highest Youden’s index of the ROC curve. The 
selected metrics and thresholds were normlog with threshold 8.44 for C-I, normT1T2 with threshold 1,344 ms for C-II, and 
normT1T2 with threshold 1,512 ms for C-III. The authors showed that the ROC analysis including PD did not improve the 
AUC in any of the cases. Consequently, they excluded the PD values from the rest of the analysis. Accordingly, we perform 
the classifications by applying their selected thresholds to the aforementioned metrics inside the white matter plus ABN 
masks to discriminate between the different regions. 

Additional qualitative analysis

Figure S2 shows a representative slice of both MAGIC and synthesized maps for all patients of GLIOMA dataset. It can 
be noticed that most of the differences between both maps are located at the interfaces between tissues. This effect might 
be caused by partial volume effects and misregistration of the input weighted images. In general, PD maps present less 
differences than T1 and T2 maps for all patients. In patients 2 and 6 the T1 values in the resected regions are higher in the 
synthesized than in the MAGiC maps. We hypothesize this could be due to a poor estimation of the MAGiC maps in these 
two patients, given that these extremely low T1 values in the resected regions are not present across the other 12 patients. 

Figure S3 shows the segmented T1e and T2h regions obtained through the statistical prediction from both MAGiC and 
synthesized maps for all patients of GLIOMA dataset. It is worth noting that segmented T1e and T2h regions are similar in 
both maps for all patients and that both present an overestimation of the T1e with respect to HD-GLIO. We hypothesize 
this could happen due to an altered interstitial fluid mobility and increased water content in the perivascular space.
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Table S1 Details about the acquisition parameters for the different image modalities and each dataset

Pre-T1w T2w T2w-FLAIR Post-T1w MAGiC T1 map T2 map PD map

GLIOMA

Voxel size (mm2) 1.0×1.0 0.6×0.6 1.1×1.1 1.0×1.0 1.0×1.0

Slice thickness (mm) 1.0 3.0 1.6 1.0 3.0

Slice spacing (mm) – 3.0 – – 3.0

# Slices 352 49 224 352 49

FOV (mm2) 240×240 233×233 246×246 240×240 240×240

TE (ms) 3.3 97 89 3.3 6,114

TR (ms) 7.9 9,837 5,000 7.9 15.7

TI (ms) 450 – 1,588 450 11

Flip angle (°) 12 90 90 12 90

Scan time (min) ~5 ~4 ~4 ~5 ~5

UPenn-GBM

Voxel size (mm2) 0.98×0.98 0.9×0.9 0.94×0.94 0.98×0.98

Slice thickness (mm) 1.0 0.9 3.0 1.0

Slice spacing (mm) NA NA NA NA

# Slices 155 155 155 155

FOV (mm2) 240×240 240×240 240×240 240×240

TE (ms) 3.1 458 140 3.1

TR (ms) 1,760 3,200 9,420 1,760

TI (ms) 950 – 2,500 950

Flip angle (°) 15 120 170 15

RMaps

Voxel size (mm2) 1.25×1.25 1.02×1.36 1.5×1.5 1.5×1.5 1.5×1.5 

Slice thickness (mm) 1.2 3 1.5 1.5 1.5

Slice spacing (mm) – 3 – – –

# Slices 170 50 150 150 150

FOV (mm2) 240×240 260×195 240×240 240×240 240×240

TE (ms) 3 85 2 17, 46, 75, 104, 
133, 162

2

TR (ms) 6.44 4,000 18 1,000 50

TI (ms) 900 – – – –

Flip angle (°) 10 90 2, 3, 4, 5, 7, 9, 
11, 14, 17, 19, 

22

90 5

Scan time (min) ~4 2:30–4:30 ~17:00 ~18:00 ~4:00

T1w, T1-weighted; T2w-FLAIR, T2-weighted-fluid-attenuated inversion recovery; MAGiC, magnetic resonance image compilation; FOV, 
field of view; TR, repetition time; TE, echo time; TI, inversion time.
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Figure S1 DL model architecture. (A) Schematic representation of the DL model. (B) Architecture of the encoder modules. (C) Fusion 
stage. (D) Architecture of the decoder modules. DL, deep learning.
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Table S2 Indexes of patients selected for training, early-stopping validation and test of the GLIOMA dataset

Test Early-stopping validation Training

Test with GLIOMA (leave-one-out)

0 1, 6 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14

1 4, 11 0, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14

2 8, 11 0, 1, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14

3 14, 11 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13

4 14, 11 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13

5 1, 11 0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14

6 14, 10 0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13

7 14, 10 0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13

8 5, 6 0, 1, 2, 3, 4, 7, 9, 10, 11, 12, 13, 14

9 12, 11 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 14

10 1, 6 0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14

11 5, 6 0, 1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 14

13 12, 6 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14

14 8, 11 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13

Test with independent datasets

UPenn-GBM and RMaps 1, 6 0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14

Note that patients 6, 10, and 11 do not present T1e, and patient 12 was not included in any test set because the T2w-FLAIR was not 
available. T1e, T1-weighted-enhancement; T2w-FLAIR, T2-weighted-fluid-attenuated inversion recovery.
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Figure S2 A representative axial slice of MAGiC and corresponding synthesized maps for the test patients of leave-one-out cross-validation 
with GLIOMA dataset. The voxel-wise percentage error is also represented for each pair of maps. 
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Figure S3 A representative axial slice of the T1e and T2h segmentations overlaid on the pre-T1w images for all the test patients of leave-
one-out cross-validation with GLIOMA dataset. For each patient, the ground-truth segmentation obtained with HD-GLIO from the 
four weighted images, the segmentations obtained through the statistical predictions from MAGiC maps, and the segmentations obtained 
through the statistical predictions from synthesized maps are shown. MAGiC, magnetic resonance image compilation; T1e, T1w-
enhancement; T2h, T2w/T2w-FLAIR signal hyperintensity; T1w, T1-weighted; FLAIR, fluid-attenuated inversion recovery.


