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Summary

Although primarily valued for their suitability for oceanographic applications and soil moisture

estimation, microwave remote sensing observations are also sensitive to plant water content

(Mw). SinceMw depends on both plant water status and biomass, these observations have the

potential to be useful for a range of plant drought response studies. In this paper, we introduce

the principles behindmicrowave remote sensing observations to illustrate how they are sensitive

to plant water content and discuss the relationship between landscape-scaleMw and common

stand-scale metrics, including plant-scale relative water content, live fuel moisture content and

leaf water potential. Lastly, we discuss how various sensor types can be leveraged for specific

applications depending on the spatio-temporal resolution needed.

I. Introduction

Since the development of plant hydraulic theories (Cowan, 1965),
most research concerning the movement of water through vascular
plants has been performed at the stand scale or smaller. In recent
years, modelling plant hydraulics at larger scales has become
increasingly common, whether for predicting drought-driven tree
mortality (e.g., Tai et al., 2016), water and carbon fluxes (e.g.,
Bohrer et al., 2005), or both (Christoffersen et al., 2016). To ensure
their accuracy, such models must be carefully parametrized and
tested against observations. This has resulted in an increasing need
for large-scale observations of plant water status.

In situ measurements of variables relevant to plant hydraulics,
including leaf water potential (Ψl) and xylem water potential (Ψx),
remain sparse. Unlike forest inventory networks for biomass or the

FluxNet family of networks for eddy-covariance observations (Chu
et al., 2017), no standardized network exists for plant hydraulics.
Remotely sensed observations that can be used for plant hydraulic
(and other) applications would enable a range of new investiga-
tions.

Satellite observations at microwave frequencies are directly
sensitive to plant water content (Mw), here defined as the total mass
of water in the above-ground components of the plant per unit land
area. These observations therefore carry information relevant to
plant water stress, which could be useful for both plant hydraulic
and other studies. In this paper, we provide an overview of the
opportunities and pitfalls for using microwave observations for
ecological studies. In order to clarify what information can and
cannot be gleaned from microwave observations, Section II
describes the physical basis behind their sensitivity to Mw.
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Section III then clarifies the relationship between Mw and
commonly used metrics of plant drought status. Lastly, because
several of these relationships remain indirect, Section IV discusses
the role of co-sensitivity of microwave remote sensing to biomass
and water stress, and how the time and spatial scales of interest
determine the best choice of microwave observables.

Note that this paper is focused on microwave-frequency
observations. While optical (Zarco-Tejada et al., 2003) and
hyperspectral sensors (Kokaly et al., 2009) are also sensitive to
canopy water status, the utility of such data for plant hydraulic
studies is more limited because they cannot observe through cloud
cover, and primarily sense the top of the canopy only.

II. Microwave remote sensing of vegetation

Microwaves are electromagnetic (EM) waves with wavelengths
from 1mm to 1 m, or 0.3–300 GHz in terms of frequency. They
fall between the infrared and radiowaves parts of the EM spectrum.
Frequency ranges up to c. 14 GHz are most useful for sensingMw.
Within this range, longer wavelengths (lower frequencies) can pass
further through the canopy and soil, and are more sensitive to soil
moisture (Steele-Dunne et al., 2017). Microwave instruments can
either be passive (radiometer) or active (radar). The former observe
naturally emitted radiation from the land surface, and typically

have a coarse resolution (> 10 km). Radars transmit an EM wave
and measure the amount of backscatter. Spaceborne real aperture
radars (scatterometers) provide resolutions comparable to those
from radiometry, while synthetic aperture radars (SAR) can yield
dramatically higher resolutions (meter-scale).

Much of our understanding of microwave interactions with
vegetation comes from researchmotivated by soilmoisture retrieval
in which the vegetation is primarily viewed as a hindrance.
Vegetation is analyzed as a collection of constituents (i.e. leaves,
trunks, and fruits). Microwave interactions with vegetation are
dominated by absorption and scattering (and, for radiometry,
emission), both of which depend on the dielectric constant, volume
fraction, and arrangement of the vegetation constituents (Ulaby &
Jedlicka, 1984; Ulaby et al., 2014). The dielectric constant of a
material is a property that determines how it responds to an electric
field. For vegetation, it depends primarily on the fractional volume
composed of water (El-rayes & Ulaby, 1987). This sensitivity to
water is central to the value of microwave remote sensing for
ecology.

In radiometry, microwave emission from a vegetated surface is
expressed as brightness temperature (TB,p) at polarization p, the
temperature of an equivalent pure blackbodywith the same emitted
radiation. It is commonly described by three contributions: soil,
vegetation, and their interactions (Fig. 1a):

Active sensors (radar): 
scattering contributions in a

vegetation canopy 

Passive sensors (radiometers):
emission from a vegetated surface

Observations
from microwave
remote sensing

are sensitive
to vegetation
water content

and soil moisture

Water stress can
be detected using

radiometry and radar

Remote sensing
enables scaling up
from stand scale

Vegetation structure
influences microwave

observables

θ Incidence angle

(a)

(b)

1 2 3 4 5

1 2 3

Fig. 1 A cross-section of vegetation illustrating how it is typically treated in microwave remote sensing as a random distribution of idealized vegetation
components.Contributions toemission fromavegetatedcanopy (a) include (1) emission fromthe soil attenuatedby theoverlyingvegetation, (2) emission from
thevegetation itself, (3) emission fromthevegetation that is reflected fromthe soil andattenuatedby thevegetation. Scatteringcontributions fromavegetation
canopy (b) include (1) direct backscattering from soil, including two-way attenuation by canopy, (2) direct backscattering from plants, (3) plant/ground
scattering, (4) ground/plant scattering, (5) ground/plant/ground scattering (Ulaby et al., 2014).
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TB;p ¼ es;pTscþ ð1� xÞð1� cÞTv

þ ð1� xÞð1� es;pÞTvð1� cÞc ; Eqn 1

where es,p is the soil emissivity,Ts andTv are the soil and vegetation
temperatures, x is the single-scattering albedo and c is the
transmissivity. Radiometry has been widely used for soil moisture
retrieval due to the sensitivity of TB,p to es,p, which varies with soil
moisture (Njoku & Entekhabi, 1996). Most VOD retrieval
algorithms use brightness temperatures at two EM wave polariza-
tions to separate soil moisture and vegetation effects. The x
captures how much the EM wave is scattered as it passes through
vegetation, relative to how much vegetation attenuates the wave.
This is not an ecologically relevant quantity, though it can depend
somewhat on vegetation geometry. Many (though not all) retrieval
algorithms assume it varies onlywith land cover type. TheTs andTv

are either obtained from reanalysis or from thermal or high EM-
frequency microwave observations. Together with x, spatial
heterogeneity and uncertainty in Ts and Tv are important error
sources in radiometric retrieval algorithms (Lei et al., 2015).

Vegetation water dynamics are observable through their influ-
ence on the transmissivity c, which is a measure of how much the
vegetation attenuates the signal from the soil surface. Transmis-
sivity (for both active and passive) is given by:

c ¼ exp
�VOD

cosh

� �
; Eqn 2

where h is the incidence angle and the vegetation optical depth
VOD iswidely approximated as a linear function ofMw (Jackson&
Schmugge, 1991):

VOD ¼ bMw Eqn 3

In reality, VOD also depends on structure/geometry and
dielectric properties of vegetation (Kirdiashev et al., 1979). This
relationship has been verified for a number of vegetation types,
though only over crops and grasses (Jackson & Schmugge, 1991).
For a given wavelength, b is often assumed static and parametrized
as a function of land cover type only. This may induce some error,
but the factors affecting b are sufficiently complex and poorly
understood to make this an appropriate assumption (Van de
Griend & Wigneron, 2004). Note that because b depends on
wavelength, values of VOD from different sensors cannot be
directly compared.

Alternatively, for radar, backscatter from a vegetation canopy
consists of several contributions, illustrated in Fig. 1(b). Their
relative dominance depends on system characteristics (e.g., EM
frequency, polarization, incidence angle) as well as the vegetation
dielectric properties and geometry (Steele-Dunne et al., 2017). The
structure of the vegetation plays a larger role in radar than in
radiometry, though it is often difficult to parametrize. The most
widely used model for scattering from vegetated surfaces is the
Water Cloud Model (Attema & Ulaby, 1978), in which the
vegetation is characterized as a homogeneous cloud comprised of
uniformly distributed water droplets in a layer above the soil

surface. The total backscatter (r∘) is expressed as the combination
of contributions from the vegetation layer (r�

veg), and the soil (r
�
s ):

r� ¼ c2r�
s þ r�

veg Eqn 4

r�
veg ¼ ð1� c2ÞAcosh; Eqn 5

where c2 is the two-way attenuation through the vegetation, and A
is a canopy descriptor. The two terms in Eqn 4 correspond to the
attenuated backscatter from the soil and direct scattering from
vegetation, respectively, denoted by (1) and (2) in Fig. 1(b).
Multiple scattering between the soil and canopy, and within the
canopy is ignored (3–5 in Fig. 1b). The model assumes that
vegetation can be described by its height and the cloud density,
which is generally assumed to be proportional toMw. Recently, this
model has been used to produce global estimates of VOD from the
Advanced Scatterometer (ASCAT) data (Vreugdenhil et al., 2016).
More theoretical models also exist and are useful to demonstrate
feasibility or conduct sensitivity studies (e.g., Tsang&Kong, 1981;
Ulaby et al., 1990; Bracaglia et al., 1995). However, their
widespread use is hindered by the large set of input parameters
required to describe canopy properties that are seldommeasured by
ecologists. Alternatively, many studies using radar for vegetation
applications interpret only the raw backscatter instead of trying to
isolate the vegetation signal through c, particularly in densely
vegetated regions where the EM waves may not penetrate deeply
enough to be sensitive to soil moisture.

Radars and radiometers each have advantages and disadvantages
– while radars like SAR have higher spatial resolution, they are
sensitive to vegetation structure, whereas radiometers allow easy
retrieval of VOD, but are sensitive to temperature and x. Dew or
canopy interceptedwater are commonly neglected for either sensor.
For a given study, the choice ofmicrowave dataset is influenced not
just by sensor type but also by factors like record length, frequency,
orbital characteristics, data sharing policy etc.

III. Linking physiological and remote sensing
quantities

Since microwave observables (backscatter and VOD) can be
related to Mw, we describe the relationship between Mw and
various plant-related quantities used in stand-scale studies in this
section. Table 1 shows the mathematical relationships between
them. Definitions are separated into biomass and water status
components, since Mw is related to both. Indeed, both radar
(Santoro et al., 2015) and radiometry (Liu et al., 2015; Brandt
et al., 2018) have previously been used to estimate wall-to-wall
biomass maps, although the sensitivity of microwave measure-
ments to plant water status adds uncertainty to these estimates,
as further discussed in Section IV.

For both biomass and live fuel moisture content (LFMC) – a
commonly used quantity in fire studies– the relevant definitions are
identical across scales. Independent biomass maps can be obtained
from Light Detection and Ranging (LiDAR; Zolkos et al., 2013)
and ancillary information. Unfortunately, LiDAR measurements
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are not currently available at the same spatio-temporal coverage as
microwave observations, though the recently launched Global
EcosystemDynamics Investigation (GEDI) sensor (Dubayah et al.,
2014) will significantly increase their availability. With indepen-
dent biomass estimates, ecosystem-scale LFMC can be computed
from microwave-derivedMw.

Other water stress metrics are more difficult to scale-up. The
relative water content (RWC) – a quantity relevant to drought-
driven mortality estimation (Bartlett et al., 2012; Martinez-
Vilalta et al., 2018) – is generally defined relative to the mass
of water under turgid conditions (Mt). The Mt varies with
plant size and species and thus has no obvious equivalent at
the landscape-scale for microwave remote sensing. The Mw can
be exactly written as:

Mw ¼ RWC�Mt �Md

A
: Eqn 6

The second term is difficult to estimate with remote sensing. It is
conceptually related to Mw,max, the maximum observed Mw at a
location, but is not exactly the same becauseMt andMd changewith
time due to phenology and growth.Overall, to transformMw into a
metric related to water stress rather than water status, some
normalization is necessary – this could be either throughMw,max or
above-ground dry biomass per unit area (AGB) as in the calculation
of LFMC.

By far the most common measure of plant water status is the
water potential (Ψ) in a plant component – leaves (Ψl), xylem (Ψx),
or elsewhere. It is therefore natural to ask how Mw is related to
plant-averaged Ψ. As shown in Fig. 2, many studies have shown a
relationship between Ψx and RWC, although the exact functional
form depends on the study and species. A direct conversion from
microwave observables to Ψ thus remains out of reach. Neverthe-
less, the monotonicity of the curves in Fig. 2 suggests that a local
linearization of the Mw-Ψ relationship could be possible. Indeed,
when applied to a multi-year time series at a deciduous forest in

Missouri, the root-mean-square-error of a linearization was only
5% (see supplementary material in Konings & Gentine, 2017).
The relationship between Mw and Ψl was also tested by Momen
et al. (2017), who compared VOD retrieved from the Advanced
Microwave Scanning Radiometer AMSR-E to in situ measure-
ments of Ψl at three forested sites (both mixed and deciduous)
across North America. Despite large differences in scale between
the satellite footprint (259 25 km2) and in situ measurements at
just a few trees, VOD andΨl were moderately well-correlated at all
sites, and would be expected to be evenmore closely related if more
careful up-scaling were possible.

Note that the relative contributions of water potential in leaves
(Ψl) and xylem (Ψx) to microwave observables are poorly
understood because they depend on species, frequency, and water
content (microwaves pass further through canopies with less water
and at lower frequencies, see Section II). Despite these complex-
ities, as discussed above, microwave observables do carry informa-
tion about variations in Ψx and Ψl.

IV. Approaches for interpretingMw variations across
scales

The co-sensitivity of microwave observables to both AGB and
vegetation water status complicates the interpretation of their
spatial and temporal trends. Careful consideration of spatial and
temporal scales can facilitate the interpretation of microwave
observables. Depending on the application area, observations of
either high spatial resolution (promoting the use of SAR) or high
temporal resolution (often requiring radiometry or scatterometry)
may be more useful, leading to a natural choice of sensor for many
studies (Fig. 3). For example, wildfires are particularly sensitive to

Table 1 Stand-scale metrics used in plant physiology linked to landscape-
scale quantities obtainable from microwave observables.

Mf, freshmass of vegetation;Md, drymass of vegetation;Mt, turgidmass of
vegetation in its fully hydrated state; RWC, relativewater content;Ψx, xylem
water potential; f, non-linear function estimated by fitting parameters (see
Fig. 2);A, ground-area spanned by vegetation canopy; AGB, above-ground
dry biomass per area;Mw, plant water content; LFMC, live fuel moisture
content.

0

–1

–2

–3

–4

–5

Ψ
X
 (M

P
a)

0.2 0.4 0.6
RWC

0.8 1.0

Oaks
Douglas fir
Norway spruce
Coffeeberry

Fig. 2 Comparison of fitted models of relative water content (RWC) and
xylem water potential (Ψx) found in the literature. The line for oaks was
calculated using simulations from the finite difference ecosystem-scale tree
crown hydrodynamics model version 2 (FETCH2) by Mirfenderesgi et al.
(2016), theDouglas fir fit-linewas drawnbased on Barnard et al. (2011), the
Norway spruce fit-line was calculated based on Zweifel et al. (2000) and the
line for Coffeeberry (Frangula californica) was constructed using data from
Pratt & Jacobsen (2017).
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fine-scale spatial variations in fire fuels, so SAR backscatter may be
well-suited for their study (Saatchi et al., 2007). By contrast, studies
that aim to validate regional-scale land surface models – which
rarely resolve scales below tens of kilometers anyway – could use
radiometric VOD and exploit its higher temporal revisit.

Regardless of spatial scale, some timescales are difficult to
interpret. For example, variations inMw in deciduous forests across
days-to-weeks are influenced by both phenology (Tian et al., 2017)
and changes in RWC. Even if ancillary LAI data are known,
disentangling these is mathematically difficult without knowing
woody biomass dynamics. However, separation of timescales
between growth andwater-stress related physiological processes can
help. The role of water stress is isolatedwhen considering timescales
during which there is little variation in biomass. For example, at
daily-scale, biomass variations are negligible. If other contributions
can be accounted for (e.g., rain, soil moisture), variations in
microwave observables can therefore be interpreted as solely due to
water stress (Steele-Dunne et al., 2012). This approach was used to
investigate the dynamics of canopy water content in the tropics

using the RapidScat radar aboard the International Space Station,
whose orbit allows the calculation of an average diurnal cycle (van
Emmerik et al., 2017; Konings et al., 2017b). The slope of
midnight vs midday observations of VOD has also been used to
calculate ecosystem-scale isohydricity using radiometer-derived
VOD (Konings & Gentine, 2017), which influences the drought-
sensitivity of photosynthesis in North American grasslands (Kon-
ings et al., 2017a).

If variations in biomass are assumed small during the peak
growing season, this period could also be used to isolate day-to-day
variations in plant water status. For example, when Momen et al.
(2017) compared up-scaled ground-measurements ofΨl andVOD
at three North American forested sites during the growing season,
LAI variations played a relatively minor role – accounting also for
LAI instead of Ψl only led to only a small increase in the explained
VOD variance.

By contrast, no clear approach exists for removing the effect of
water stress from VOD. Various studies have used trends in
VOD to determine biomass trends (e.g., Liu et al., 2015; Brandt

RapidScat
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Fig. 3 Temporal and spatial scales relevant to several applications, compared to resolution of representative microwave sensors of different types. A sensor
can be used if its spatial and temporal resolutions are within or finer than the resolution scales relevant to a particular application. Horizontal bars around SAR
sensors indicate acquisition variability. While the left-most end of error bar indicates how often a given location could theoretically be observed, data rate
limitations means observations are only acquired at a subset of the time (often irregular) resulting in a range of revisit frequencies depending on geographic
location. Abbreviations are as follows: SAR, synthetic aperture radar; PALSAR, Phased Array type L-band Synthetic Aperture Radar; ASCAT, Advanced
Scatterometer; AMSR-E, AdvancedMicrowave Scanning Radiometer for Earth Observing System; SMAP, Soil Moisture Active Passive; SMOS, Soil Moisture
Ocean Salinity.
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et al., 2018). These studies generally compare a snapshot of
VOD to a static map of biomass. Once a regression between
VOD and AGB is established across space, trends in VOD are
assumed proportional to trends in AGB, thereby implicitly
assuming that if average water stress effects on VOD across space
are small (as indicated by the correlation quality), they must also
be small in time. However, the resulting global relative trends in
biomass are c. 0.6% per year or less (Liu et al., 2015), a value
smaller than or similar to relative trends in soil moisture (Dorigo
et al., 2012) – a possible proxy for Mw. Thus, VOD trends
induced by trends in LFMC may add significant uncertainty to
biomass trend analyses. Careful comparison of VOD only at
periods with similar water stress levels (such as the most saturated
conditions) could reduce this uncertainty.

V. Next steps

The strategies detailed above are useful for interpreting microwave
observables in the context of specific applications (Section IV). So
far, most applications of these observables have focused on simply
comparing the data to other remotely sensed variables (e.g., gross
primary productivity in Teubner et al. 2018 or a variety of canopy
size and meteorological indices in others, such as Konings et al.,
2017b and Liu et al., 2018). To derive further ecological and plant
physiological insights, new frameworks are needed that either
explicitly disentangle the quantities in Table 1 from Mw, or new
frameworks need to be developed for data assimilation of
microwave observables in ecological models. Doing so will also
require improved error characterization of the observations. For
this purpose, new validation campaigns that explicitly compare
microwave observables to physiological metrics (Section III) are
sorely needed, especially those that consider scaling challenges.
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