

| Caree         | r summary                                                                |
|---------------|--------------------------------------------------------------------------|
|               |                                                                          |
| 1982-1990     | MSc and PhD Applied Mathematics, University of Twente                    |
| 1991-2009     | TNO Netherlands Organization of Applied Scientific Research              |
| 2003-2012     | Full professor (0,4 fte) Applications of Integrated Driver Assistance,   |
|               | University of Twente                                                     |
| 2009- present | Full Professor of Transport Modelling and Chair Department Transport &   |
|               | Planning, Faculty of Civil Engineering and Geosciences at TU Delft       |
|               | Director TU Delft Transport Institute                                    |
|               |                                                                          |
|               |                                                                          |
|               | MAN21 Workshop, November 1st 2013, Chania, Greece Challenge the future 2 |
|               |                                                                          |













































| AICC target headway<br>(s) | perc. AICC (%) | maximal density<br>(veh/km) | maximal traffivor volume (veh/h |
|----------------------------|----------------|-----------------------------|---------------------------------|
| -                          | 0              | 51                          | 3365                            |
| 0.6                        | 40             | 59                          | 4073                            |
| 1.0                        | 40             | 56                          | 3873                            |
| 1.5                        | 40             | 51                          | 3381                            |
| 2.0                        | 40             | 44.5                        | 3060                            |
| 1.0                        | 20             | 55                          | 3613                            |





|     | Hur                            | nan car following                                                          |      |
|-----|--------------------------------|----------------------------------------------------------------------------|------|
|     | d_ref                          | $= c_1 + c_2 * v + c_3 * v^*;$                                             | [A2] |
|     | d_err                          | $= d(t-t_r) - d_ref;$                                                      | [A3] |
|     | a_ref_d                        | $= cd * d_err +$                                                           | [A4] |
|     |                                | $cv_p * v_dif_p(t-t_r) +$                                                  |      |
|     |                                | cv_pp * v_dif_pp(t-t,)                                                     |      |
| whe | re:                            |                                                                            |      |
|     | a_ref_d                        | = driver's intended acceleration for car-following [m/s <sup>2</sup> ]     |      |
|     | d_ref                          | = the desired distance headway as a function of speed [m]                  |      |
|     | $c_{1}^{}, c_{2}^{}, c_{3}^{}$ | = constants (set at 3, 0.25, and 0.02, respectively) $(3, 0.25, 0.25)$     | )    |
|     | d_err                          | = deviation from desired distance [m]                                      |      |
|     | d(t-t <sub>r</sub> )           | = distance headway at current time minus t <sub>r</sub> [m]                |      |
|     | v_dif_p(t-t <sub>r</sub> )     | = relative speed to predecessor [m/s] at current time minus t <sub>r</sub> |      |
|     | v_dif_pp(t-t,)                 | = rel. speed to pre-predecessor [m/s] at current time minus t <sub>r</sub> |      |
|     | cd                             | = constant factor for distance deviation $333$                             |      |
|     | cv_p                           | = constant factor for speed deviation predecessor $-1.5$                   |      |
|     | cv_pp                          | = constant factor for speed deviation pre-predecessor $\odot \mathcal{L}$  |      |
|     |                                |                                                                            |      |













| Pesulta                     |               |                   |                   |                   |                   |
|-----------------------------|---------------|-------------------|-------------------|-------------------|-------------------|
| Results                     |               |                   |                   |                   |                   |
|                             |               |                   |                   |                   |                   |
|                             |               |                   |                   |                   |                   |
|                             |               |                   |                   |                   |                   |
| Quantity                    | no AICC       | 20% AICC<br>(1.0) | 20% AICC<br>(1.5) | 40% AICC<br>(1.0) | 40% AICC<br>(1.5) |
| Average travel time (s)     | 33.46         | 33.67 (x)         | 34.27 (x)         | 34.91 (x)         | 39.20 (x)         |
| Stand. dev. travel time (s) | 3.70          | 3.64 (x)          | 3.66              | 3.58 (x)          | 6.55 (x)          |
| Average speed (km/h)        | 109.51        | 108.72 (x)        | 106.97 (x)        | 107.95 (x)        | 97.09 (x)         |
| Stand. dev. speed (km/h)    | 11.26         | 11.09 (x)         | 11.16             | 10.82 (x)         | 14.53 (x)         |
|                             |               |                   |                   |                   |                   |
|                             |               |                   |                   |                   |                   |
|                             | I21 Workshop, | November 1st 2    | 013, Chania, Gre  | ece Challenge t   | ne future 35      |
|                             |               |                   |                   |                   |                   |



























|                         | Travel time (min) | Delay (min) | Delay reduction |
|-------------------------|-------------------|-------------|-----------------|
| Free flow (110<br>km/h) | 3.4               | -           | -               |
| Reference               | 5.7               | 2.3         | -               |
| 500 m / 0.8 s (10%)     | 5.0               | 1.6         | 30%             |
| 500 m / 0.8 s (50%)     | 4.3               | 0.9         | 60%             |







































|           | N =   | = 1  | <i>N</i> = | 10   | N =   | 25   | N =   | 100 |
|-----------|-------|------|------------|------|-------|------|-------|-----|
| Parameter | mean  | std  | mean       | std  | mean  | std  | mean  | std |
| а         | 1.52  | 1.31 | 1.54       | 0.62 | 1.40  | 0.28 | 1.43  | 0.1 |
| b         | 2.55  | 3.71 | 0.79       | 0.74 | 0.95  | 0.41 | 0.78  | 0.1 |
| SO        | 14.53 | 9.25 | 13.06      | 5.68 | 13.57 | 3.78 | 12.47 | 1.3 |
| T         | 1.29  | 1.33 | 1.11       | 0.53 | 1.08  | 0.27 | 1.17  | 0.1 |
| VO        | 37.1  | 16.4 | 37.9       | 13.3 | 33.0  | 6.6  | 32.9  | 6.2 |























































