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To analyze the downstream effects of bypass transition strips on a laminar incom-
ingflow, a direct numerical simulation of the fully transient, explicit and compress-
ible Lattice Boltzmann equations is performed. Near wake analysis of a staggered
grid of cubic blocks as transition device is comparedwith a more conventional zig-
zag strip, to ensure transition to a fully developed conical boundary layer. The stag-
gered grid of blocks is more efficient in stopping the flow and creating large,
coherent, flow structures of the size of the blocks, which results in a stronger tran-
sition. However, the downstream merging of spanwise created structures is rela-
tively long resulting in higher correlated boundary layers. If the spanwise variation
of the zigzag strip is small, the streamwise vortices created merge quicker, resulting
in an earlier uncorrelated boundary layer. The self-noise created by zigzag strip is
also significantly less than the noise from the staggered grid of blocks and becomes
only dominant at high frequency compared to the predicted trailing edge noise.
© 2017 Institute of Noise Control Engineering.
Primary subject classification: 21.6.4; Secondary subject classification: 75.3
1 NOMENCLATURE
d
 Local boundary layer thickness

d0
 Incoming boundary layer thickness

dij
 Kronecker delta

dH
 Displacement thickness

n
 Viscosity

Φ
 Power spectrum or power spectral density

r
 Density

t
 Relaxation time parameter

θ
 Momentum thickness

o
 Weight functions

g
 Correlation coefficient

a
 Speed of sound

b
 Width, span

Ci
 Bhatnagar–Gross–Krook collision term

ci
 Discrete velocity vector

f
 Frequency

fi
 Movement of the distribution of particles function

H
 Shape factor

k
 Roughness height

l
 Plate length
M
 Mach number

p
 Pressure
Re
 Reynolds number

St
 Strouhal number

t
 Time

ui
 Velocity vector
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x
 Streamwise location

y
 Wall normal location
y+
 Viscous grid spacing

z
 Spanwise location
2 INTRODUCTION

To force the flow from a laminar state into a turbulent
state at a specific position of interest, a boundary layer
transition trip is generally used. As an additional effect,
boundary layer transition often prevents laminar separation
bubbles on airfoils from occurring, thereby reducing drag
and improving the airfoil performance1,2. During more re-
cent applications, transition strips were used to match tran-
sition locations and boundary layer growth so that similar
trailing edge flow characteristics were obtained when com-
paring, e.g., airfoil noise simulations with acoustical ex-
periments. Although passive bypass transition offers a
good solution to enforce transition, it is known that they
will introduce disturbances which remain coherent far
downstream, making it a challenge to have a fully coni-
cal turbulent boundary layer. In general, due to the large
introduced disturbances by a tripping device, questions
as: (1) which and what kind of flow structures are actu-
ally initiated by these passive devices, (2) how long do
these structures persist downstream and (3) how do they
develop into a fully developed turbulent boundary layer
would be remain of crucial interest3.

Though the flow topology arising from the so-called
bypass transition process4 is extensively addressed in the
past, several issues are left open. Both experimental5–10,
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devoting to the description of the transition process by
means of two-dimensional roughness strips, and numerical
studies11–13, describing the challenges with immersed bound-
ary (IB) methods to represent the trip, have been conducted
in the past. Previous attempts into the analysis of the flow
topology included oil film surface flow visualizations and
particle image velocimetry (PIV) behind a zigzag strip8,9.
The oil flow visualizations revealed backflow in small re-
gions directly downstream of the upstream pointing spike,
which are followed by clear oil stripes, indicating stream-
wise flow streaks. These streamwise streaks are confirmed
by the PIVanalysis as streamwise vortices and experience
maximum spatial energy growth after which they develop
into turbulence14. The spanwise vortical related structures
directly behind the trip break up slowly into individual
arches and start to develop into hairpin structures which
are typical for wall turbulent bounded flows9. These elon-
gated streaks of mostly low speed flow are a common fea-
ture in multiple bypass transition studies and unwanted
since they promote coherence in the flow. They are present
by either flows tripped by roughness as well as by free-
stream turbulence15,16. The far downstream effects of vari-
ous trips are also investigated by, e.g., Erm and Joubert10.
They showed that the influence of various trips far down-
stream of the trip disappears and that velocity statistics
return to their common values for a fully developed tur-
bulent boundary layer, which is a good effect for an un-
correlated boundary layer.

The motivation for the current research is to understand
the properties of simulated transition strips for future aero-
acoustic simulations. Particularly, the effect of boundary
layers generated by these strips on trailing edge noise is
interesting. The pressure and flow coherence downstream
of a transition strip can influence the evaluation of trailing
edge noisewhen the velocity statistics do not normalize in
a sufficient downstream length. The study will compare
different geometries and conclude on their effectiveness
to generate a physical correct and uncorrelated boundary
layer, focusing on the streamwise length it would take.
Furthermore, the trip self-noise will be measured and com-
pared with the prediction of the resulting trailing edge
noise. This way, contamination of trip self-noise on trailing
edge noise calculations can be predicted and better under-
stand for future studies.

In recent years, an efficient and highly parallelizable
approach for the simulation of fluid flows experiences
increased attention in industry, known as the Lattice
Boltzmann method (LBM)17–22. The LBM solves the
discrete Boltzmann equations in combination with a colli-
sion model to compute the flow of a Newtonian fluid. By
modeling the convection and collision processes of a lim-
ited number of particles, the flow is represented on a mac-
roscopic scale. The LBM methodology is used in the
Noise Control Engr. J. 65 (5), September-October 2017
present study to analyze the lowMach number fluid flow
around a zigzag trip and a staggered grid of cubic cubes.

3 METHODOLOGY

The commercial software PowerFLOW 5.0b is used to
compute the flow field. The software solves the discrete
Lattice Boltzmann (LB) equations for a finite number of
directions. For a detailed discussion, the reader can refer
to Succi23. The LB method determines the macroscopic
flow variables starting from the mesoscopic kinetic equa-
tion, i.e., the LB equation. The discretization used for this
particular application consists of 19 discrete velocities in
three dimensions (D3Q19), involving a third-order trun-
cation of the Chapman-Enskog expansion. It was shown
that this scheme accurately approximates the Navier-Stokes
equations for a perfect gas at low Mach number in isother-
mal conditions24. The distribution of particles is solved by
the mean of the LB equation on a Cartesian mesh, known
as a lattice. An explicit time integration and a collision
model are used. The LB equation can then be written as
follows:

gi xþ ciΔt; t þ Δtð Þ � gi x; tð Þ ¼ Ci x; tð Þ ; ð1Þ
where gi is the particle distribution function. It statistically
describes the particle motion at a position x with a discrete
velocity ci in the i direction at time t. ciΔt and Δt are space
and time increments, respectively. Ci (x, t) is the collision
term; the Bhatnagar–Gross–Krook (BGK) model24,25 is
adopted because of its simplicity:

Ci x; tð Þ ¼ �Δt
t

�
gi x; tð Þ � geqi x; tð Þ

�
; ð2Þ

where t is the relaxation time and geq is the local equilib-
rium distribution function. For small Mach number flow,
the equilibrium distribution of Maxwell-Boltzmann is con-
ventionally used24. It is approximated by a 2nd order ex-
pansion as:

geqi x; tð Þ ¼ roi 1þ ciu

c2s
þ ciuð Þ2

2c4s
þ uj j2

2c2s

" #
; ð3Þ

where oi is the fixed weight functions, dependent on the
velocity discretization model D3Q1924, and cs = 1/√3 is
the non-dimensional speed of sound in lattice units. The
gi function is related to the macroscopic quantities density
r and velocity u as:

r x; tð Þ ¼
X
i

gi x; tð Þ; ru x; tð Þ ¼
X
i

cigi x; tð Þ: ð4Þ

The dimensionless kinematic viscosity (n) is related to
the relaxation time following Chen24:
435Published by INCE/USA in conjunction with KSNVE



n ¼ c2s t� Δt
2

� �
: ð5Þ

Adirect simulation of the LBM relations is employed. A
variable resolution is allowed, where the grid size changes
by a factor of two for adjacent resolution regions. Due to
the explicit time-stepping characteristics of the LBM
scheme, the time-step size is increased with cell size in fac-
tors of two as well. Larger cells will therefore not be eval-
uated every time-step. This gives rise to the notation of
time-step equivalent number of cells, which is the number
of cells scaled to operation at the shortest time-step in addi-
tion to the total number of cells.

4 CASE SETUP

The flow topology around two transition strips, the
upper part of a l = 350 mm long and 0.0857l wide flat
plate, is simulated. The tripping, seen in Fig. 1, is applied
by either a staggered grid of blocks or zigzag strip of
2 mm thickness. The small cubic blocks of 2 mm each
are 6 mm located away from each cubic center. In total,
4 rows of blocks are placed in a staggered grid at 9% of
the flat plates chord. The second trip, a 9 times V-shaped
zigzag strip of 5.5 mm length is also applied at 9% of the
flat plate chord. Both trips (if considering every row of
blocks) have a similar frontal area exposed to the fluid flow.

The simulation domain is bounded by a no-slip bound-
ary condition at the location of the plate and by a friction-
less wall at a 0.1l distance in wall-normal direction, making
sure the distance does not interfere with the developed
boundary layer. At the inlet, a streamwise velocity of
45 m/s is prescribed to run simulations at a chord based
Reynolds number of 1.5� 105, the maximumwhich could
be reached within a turn-around time of 15 days for 0.1
Fig. 1—Schematic view of both bypass transition
devices; (left) the staggered grid
of cubes and (right) the zigzag strip.
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physical second of computational time on a system of
80 cores of Intel Xeon X5670 (hex-core) platform at
2.93 GHz. The outlet is modeled by fixing the static pres-
sure, while maintaining a free flow direction. The LBM
scheme is discretized over lattices of different sizes. The
finest lattices of 32 cells per millimeter are positioned near
the wall and at a larger area around the trip, including a
wake refinement making it a direct, wall resolved, sim-
ulation. The viscous grid spacing (x+ = y+ = z+) is directly
extracted from the downstream friction velocity and equals
0.4. The DNS simulation in Exa PowerFLOWallows us to
solve the boundary layer at a dense mesh, while outside the
boundary layer, the mesh coarsens. In total, seven volumes
of refinement (VRs) are used as indicated in Fig. 2, result-
ing in a total of 666 million voxels or 438 million fine
equivalent voxels.

The experimental Mach number is about 0.13, but in
the simulation, the Mach number has been increased to
0.31 in order to obtain a proper DNS resolution in all
the refinement regions. When converting the physical
quantities into dimensionless lattice quantities, the velocity
is increased by approximately a factor of three while keep-
ing the Reynolds number constant by increasing viscosity.
After the computations, the data is converted back to the
experimental values. The Courant–Friedrichs–Lewy (CFL)
stability number is intrinsically set to unity by the solver,
leading to a time step of 1.3 � 10�7 s, assuming a maxi-
mum velocity of 1.3 the freestream velocity. In physical
time, the simulations are run for 0.3 s, where the last 0.25 s
(i.e., 32 flow-passes) are used for recording statistics at a
frequency of 30 kHz. Spectra are obtained using a Hanning
window with 50% overlap, 22,000 frames with a FFTwin-
dow width of 5400, resulting in an optimal smoothing.

The physical quantities from the LBM solution like
velocities, pressures, and distances are made dimension-
less in the next section using the free-stream velocity
(u1 = 45 m/s) and the atmospheric pressure (p1) as well
as the undisturbed laminar boundary layer thickness, d0,
which will be determined at the location where the trip
starts (x0 = 0.09c). If the thickness is determined using a
Blasius profile, it results in:

d0 ¼ 5:0
xoffiffiffiffiffiffiffiffiffi
Rexo

p ; Rexo ¼ u1x0
n1

; ð6Þ

which results in a Reynolds number of 1.4� 104 and thick-
ness of d0 = 1.4 mm for the current setup. The undisturbed
Reynolds number of the laminar boundary layer, Reθ0, is
estimated to be 80 which is far below the thresholds of
a transitional and turbulent boundary layer given by Preston26

(i.e., Reθ0 = 162 and 320, respectively). This implies the
usage of an imposed tripping device to bypass the transi-
tion process to provide a large disturbance and an added
momentum loss.
Published by INCE/USA in conjunction with KSNVE



Fig. 2—Detailed view of the VR's near the block trip. Similar refinement regions are used for the
zigzag strip model.

Fig. 3—Streamwise colored by wall-normal height illustrating the mean flow topology of the
bypass transition behind the zigzag strip (top) and staggered grid of blocks (bottom).
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The optimum trip height can be compared against some
engineering tools for forcing a boundary layer available in
literature from both Braslow and Knox,2 and Gibbings27.
The minimum roughness height kcr is determined based
on the roughness height Reynolds number Rek, which
is obtained by extensive wind tunnel research. For two-
dimensional tripping devices, Braslow and Knox,2 and
Gibbings27 predicted a Reynolds number of Rek = 300
and 850, respectively, leading to a roughness height of
kcr = 0.7 mm and 2.0 mm, respectively. van Rooij and
Timmer1 suggested on the other hand that, when three-
dimensional trips are applied, the Reynolds number is
reduced to Rek = 200. This would imply a trip thickness
of 0.5 mm. The large discrepancy between the values is
illustrative for the differences in the results of aforemen-
tioned studies. It can be seen that the current test case
(Rek = 800) is slightly over-tripped, based on the other
studies presented before.

5 RESULTS AND DISCUSSION

5.1 Bypass Transition Process

The three-dimensionality of the mean flow is analyzed
using figures of streamlines around both bypass transitions
strips, colored by their wall normal height. The results in
Fig. 3 show a uniform flow before it is disrupted by the by-
pass transition strip. Clearly, for both trips, spanwise peri-
odicity and symmetry are found back in the figure by
means of compressed bundle of streamlines behind the
Fig. 4—Mean streamwise velocity behind the zigza
(bottom) in a plane parallel to the wall at
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trip. The staggered grid of blocks seems to disturb the in-
coming flow less; flow is either moved around blocks
(blue streamlines at the second and third row, see legend
Fig. 3 or flows over a block (red streamlines at the last
row) instead of stagnation appear at the entire frontal
surface of the zigzag strip. The vortices created by the
first rows are pushing the low-speed and back flow fluid
away from the wall resulting in the higher speed fluid
streaks over the last row. In the case of the zigzag strip,
the incoming laminar boundary layer encounters a larger
initial frontal area which covers the entire span. This
enhances awedge of continuous turbulence behind the trip,
resulting in larger friction forces. Because of these ad-
ditional disturbances in the flow, momentum drag is ad-
ded, after which transition occurs28. The streamlines
reach their highest point directly after the downstream
tip after which the high speed fluid is moved in the direc-
tion of the wall again. The overall drag is measured to be
four times larger with a zigzag strip when comparing
with the first row of blocks. The average drag coefficient
is similar though if all rows of blocks are taken into ac-
count, with the first row contributing the most.

The results for the different velocity components are
displayed in a wall-parallel plane in Figs. 4 and 5. For the
zigzag strip, streak-like structures are present directly be-
hind the trip, which extends at least 10d0. This is a com-
mon trend and observed in, for example, the study from
Elsinga and Westerweel9. One thing though to observe
in Fig. 4 is that, by applying the staggered grid of blocks
g strip (top) and staggered grid of blocks
y/d0 = 1.

Published by INCE/USA in conjunction with KSNVE



Fig. 5—Mean wall-normal (left) and spanwise (right) velocity behind the zigzag strip (top) and
staggered grid of blocks (bottom) in a plane parallel to the wall at y/d0 = 1.
as a bypass transition device, this results in a clearly less ef-
fective merging of the lower speed streaks. Visible streaks
are present up to 80d0.

For the staggered grid of blocks, back flow is observed
behind every single block which is made visible by the
negative streamwise velocity component in the figure. The
size of the backflow is a variable for each row of blocks,
where the largest backflow can be seen in the first row. This
backflow gradually decreases per row of block due to the
increased drag of the blocks, resulting in a lower convec-
tive velocity. Less energetic boundary layer profiles (see
Reynolds stresses in Figs. 6 and 7) hits the next row of
blocks while energy transfer takes place vertically in the
boundary layer. Similar conditions are found back in appli-
cations, e.g., energy extraction from a row of aligned wind
turbines. Numerical studies, such as the modeling of rows
of actuator disks, have been performed in the past29. Fur-
thermore, the flow moves towards the wall before a block
appears and away from the wall behind a block. This wall-
normal movement (denoted by negative velocities in Fig. 5)
is the strongest behind the second row of blocks, where it
appears as a long streak of upward moving fluid flow.
The interaction of the first row and second row also results
in flow moving away from the wall while the interaction
between the second and third row creates flow structures
being pushed towards the wall (see also Fig. 3). The span-
wise velocity component alters (positive and negative) as
expected around a single block, creating a diverging and
converging pattern around the staggered grid. Behind the
Noise Control Engr. J. 65 (5), September-October 2017
last row of blocks, the non-uniformity stays for about
20d0, which could indicate periodical rows of packages
of horseshoe vortices, to be confirmed in a later stage.

For the zigzag strip, uncorrelated flow features with mi-
nor streamwise, wall-normal and spanwise variations are
observed earlier than by using a staggered grid of blocks
(within 5d0). Directly behind the trip, the streaks are visible
and backflow is observed together with a flow going away
from the wall (as seen by the red streaks in the wall-normal
velocity plot from Fig. 5). This behavior starts behind a
downstream pointing tip of the zigzag strip. The upstream
pointing tip on the other hand shows a region with posi-
tive but relatively small streamwise velocity (u > 0) with
flow pointing towards the wall (v< 0). The spanwise com-
ponent (Fig. 5) is clearly smaller using a zigzag strip com-
pared to using a staggered grid of blocks. However, close
to the downstream pointing tip, an altering pattern is pres-
ent for the zigzag case. Positive oriented vortices (red and
pointing down) are canceled and merged with negative
orientated vortices (blue and pointing upwards) at the tip
at a downstream location of the trip, enhancing the mixing
which is useful for smaller and quicker recovery10. After
the initial region with streaks, a region follows where the
average flow regains its spanwise uniformity, merges and
further accelerates in streamwise direction and is slightly
directed towards the wall. This region covers approxi-
mately 10d0 (see Fig. 4), where after little variations are
seen for the streamwise direction. This is expected for a
fully developed turbulent boundary layer14,30.
439Published by INCE/USA in conjunction with KSNVE



Fig. 6—Reynolds shear stresses of streamwise, wall-normal direction in a streamwise–
wall-normal plane behind the zigzag strip (top) and staggered grid of blocks (bottom).
In Fig. 8, iso-surfaces of Λ2 colored by velocity mag-
nitude (low speed blue, high speed red) illustrate the in-
stantaneous flow topology around the bypass transition
process, with a limited domain width in streamwise di-
rection. The general trend due to the three-dimensional
nature of the trip shows a shear layer in which vortices roll
up into spanwise coherent structures. These spanwise struc-
tures break up into individual arches that remain aligned
according to the periodic nature of the trip. In both trip
cases, the arches are inclined at about 45 degrees with
the wall, which can be associated with increasing wall-
normal fluctuations, which were already observed in u'v'
fluctuations in the previous section. This roll-up and orien-
tation have been described by Ghaemi and Scarano31 be-
fore. Further downstream, the arches are merged with low
speed quasi streamwise vortices (blue and green structures),
resulting in the formation of hairpin like structures32. These
legs become stretched because of the acceleration of the
flow after the trip (Fig. 4) and rotate corresponding to their
Fig. 7—Reynolds normal stresses in spanwise direc
the zigzag strip (top) and staggered grid o
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spanwise and wall-normal variations. These hairpin-like
structures form packages after which they convect and dis-
sipate further downstream9,31.

A difference between the staggered grid of cubic blocks
and the zigzag strip is the spanwise merging of horseshoe
vortices. The staggered grid enhances the effect of streaks
of packages with hairpins, whereas the short spanwise
wavelength between the arches of the zigzag strip enhances
themerging process, so that, further downstream, no stream-
wise elongated streaks are present. This observation was
already confirmed using Figs. 4 and 5.

The Reynolds spanwise normal stresses (w'w') and
shear stresses (u'v') are presented in a streamwise–wall-
normal plane through the last row of blocks and a down-
stream pointing tip for the staggered grid of blocks and
zigzag strip respectively (see Figs. 6 and 7). The Reynolds
stresses presented are about 5 times higher downstream
than those in a general canonical developed turbulent
boundary layer presented by, e.g., Klebanoff et al.33, which
tion in a streamwise–wall-normal plane behind
f blocks (bottom).

Published by INCE/USA in conjunction with KSNVE
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Fig. 9—Line plots of the downstream
development of the boundary layer.
Mean streamwise velocity (top) and
Reynolds normal stresses (bottom),
separated by 10d0.

Fig. 8—Iso-surface of Λ2 colored by velocity magnitude illustrating the instantaneous flow topology of
the bypass transition behind the zigzag strip (top) and staggered grid of blocks (bottom).
are w'w' = 1.6 � 10�3 and u'v' =�0.8 � 10�3. However,
the order of magnitudes is similar to other more recent
studies behind turbulent transition9,34,35. This would imply
that at least the current measurement domain shown in the
figures (approximately 80d0) remains affected by trip.

Both shear stress plots (u'v') show the occurrence of a
shear layer emanating from the trailing edge of either a
block or zigzag strip. The trailing edge of the trip separates
the reversed flow near thewall from the higher speed streaks
in the outer flow. In the velocity plot, this introduced an in-
flection point which is a clear source of the generation of
turbulence. For the staggered grid of cubic blocks, the
thickness of the layer is influenced by the next row of
blocks as can been seen from Fig 6. The flow is com-
pressed and pushed upwards by the individual blocks, re-
sulting in a less thick shear layer compared to the results
from the zigzag strip.

The spanwise normal stress levels (w'w' in Fig. 7) are
larger close to the wall behind the separation compared
441Noise Control Engr. J. 65 (5), September-October 2017 Published by INCE/USA in conjunction with KSNVE
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Fig. 10—Development of shape factor
downstream the transition strip.
to the trends found in shear stress levels. Behind the zig-
zag strip, the spanwise normal stress levels attain higher
values compared to the other tripping mechanism. This
is an indication for enhanced mixing towards a homoge-
neous turbulent boundary layer. This result is also in agree-
ment with Fig. 5, where the breakup of spanwise structures
is superior for a zigzag strip compared to a staggered grid
of cubic blocks.

5.2 Downstream Development of the
Boundary Layer

The downstream development of the Reynolds stresses
suggests the proper transition towards a fully developed
boundary layer. To confirm this result, line plots at 10d0 till
80d0 are plotted in Fig 9, showing both mean streamwise
velocity and Reynolds normal stresses. The mean flow
seems to be heavily affected by both transition strips within
a 20d0 downstream distance. On the other hand, the normal
stresses seem to take at least 60d0 to recover the flow. The
zigzag strip shows a slightly larger boundary layer, as al-
ready concluded in Fig 6. In both bypass transitions, the
shear layer thickness increases downstream and remains
at approximately the same height, while the average flow
reattaches and a transition to the turbulent regime is ob-
served. The indication of high local shear flow indicates
the transport of energy from near the wall fluid towards
the higher momentum-fluid available in the flow. This
effectively results in re-energizing the boundary layers.

To further investigate the recovery of the boundary layer,
the shape factor at the same planes as before is extracted
and plotted in Fig. 10. While the staggered grid of blocks
attains slightly higher values close to the trip, both strips
convergence to a shape factor of H = 1.5. Clearly, the zig-
zag strip reaches this threshold earlier, at around 40d0,
while the staggered grid of blocks needs to double the down-
stream distance to convergence.

To further analyze the development of the boundary
layer, an instantaneous view of the spanwise vorticity is
plotted in Fig. 11. Spanwise vortices are present over the
entire computational domain, but the largest, locally bundled,
Fig. 11—Instantaneous spanwise vorticity behind
blocks (bottom) in a plane at mid-span.
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spanwise vortices are present until 10d0 downstream the zig-
zag strip, emphasizing the effective merging process of the
hairpin like vortices. The staggered grid of blocks on the
other hand only shows aminor increase in spanwise vortic-
ity directly downstream the last row of blocks (Fig. 8). It is
thought that the spanwisewavelength of both tripswill play
an important role in this merging effect, in order to speed
up the development of the boundary layer.

The visualization of the vortical structures as well as the
meanvelocity plots implies that the spanwise periodicity of
arches gradually disappears downstream. While vortical
structures as horseshoes, arches and low speed streaks keep
present in the flow, the initial structures from the tripping
bring in an important spanwise coherence to the flow. To
investigate the spanwise coherence, the auto spanwise cor-
relation of wall pressure fluctuations is analyzed down-
stream the trips (Fig. 12).

The resulting profiles for the staggered grid of blocks
show less of a decay compared to the zigzag trip results at
the three downstream locations behind the trip. The zigzag
strip on the other hand shows some dominating spanwise
oscillations corresponding to the strong streaks behind
the downstream pointing tips. The height of the correla-
tion peaks drops quickly when going downstream, while
the zigzag strip (top) and staggered grid of

Published by INCE/USA in conjunction with KSNVE
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stage of measurement domain.
a constant plateau around 0.0 is maintained at 40d0 span-
wise distance. The staggered grid of blocks however shows
a constant plateau around 0.075, which is strong evidence
that large spanwise coherence structures remain present
at downstream locations.

5.3 Acoustic Near-field Emission

Before investigating and comparing the direct acoustic
effects of both trips, it has to be confirmed that both the
downstream turbulent boundary layers have a similar en-
ergy spectrum. Therefore, in Fig. 13, the power spectral
density of wall pressure is plotted. The results are obtained
using a discrete fast Fourier transformation with a 50%
Hanningwindow, sampled at a frequency of 30 kHz. Goody
semi-empirical model36 is attached for further comparison,
and shows in general a good agreement with the obtained
wall pressure spectrum from the LBM simulation. The
match between both blocks and zigzag configuration is ex-
cellent, giving confidence of similar turbulent boundary
layer noise emissions in the computational domain.

The final step is to analyze the near acoustic field. Due
to the compressible nature of the LBM code, acoustics
can directly be obtained in the undisturbedmean flow field.
Pressure fluctuations have been sampled at a location of
0.1l above the centers of both trips and converted into
frequency domain. Results are found in Fig. 14. Interest-
ingly, a clear difference between the noise emission of
the blocks and zigzag strip is observed. While at low fre-
quencies, an increase of noise levels of about 5 dB for
the blocks is found, an increase over 20 dB is found for
higher frequencies.

Especially the high frequencies are of interest for this
particular study, as trip noise tends to become dominant
when the main noise source, e.g., trailing edge noise,
becomes very small22. To confirm this, the surface pressure
spectra discussed earlier in Fig. 13 are taken as input for the
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Fig. 12—Wall pressure spanwise cross-
correlation at different planes
behind the transition strip.
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analytical prediction of trailing edge noise, by making use
of the backscattering method of Moreau and Roger37. It
is found that, after od0/u1 = 0.8, the self-noise from the
staggered grid of blocks is becoming the dominant noise
source. Similarly, for the zigzag strip, aboveod0/u1 = 1.6,
the noise levels are contaminated by self-noise from the by-
pass transition strip.

This analysis therefore suggests that a zigzag strip out-
performs the staggered grid of blocks in terms of low trip
self-noise.

6 CONCLUSION

To force the flow from a laminar state into a turbulent
state at a specific position of interest, a boundary layer tran-
sition trip is generally used. During more recent appli-
cations, transition strips were used to match transition
locations and boundary layer growth so that similar trailing
edge flow characteristics were obtained when comparing,
e.g., airfoil noise simulations with acoustical experiments.
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Fig. 14—Noise levels at a distance of 0.1l
above the center of the trip.
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Though the flow topology arising from the so-called by-
pass transition process is extensively addressed in the past,
several issues are left open. The motivation for the current
research is to understand the properties of simulated transi-
tion strips for future aeroacoustic simulations. A staggered
grid of cubic blocks for transition was analyzed and com-
pared with a more conventional, zigzag strip using flow
results from the Lattice Boltzmann relation.

The velocity and pressure field was used to quantita-
tively visualize the flow topologyfield around both tripping
devices. The trips were shown to be successful to enforce
transition, but the observed transition scenario suggests
that a zigzag strip is more efficient as a bypass transition
process compared to the staggered grid of cubes since
the spanwise vortices are undulated more effectively from
the trip. This could be a result of a larger frontal area of
the trip as well as a smaller wavelength of the zigzag strip.
These spanwise instabilities enhance the development of
a canonical fully turbulent boundary layer. Visualizations
of the mean flow revealed periodic streamwise streaks be-
hind the transition strips, with the most distinctive streaks
being visible behind the staggered grid of cubes. In gen-
eral, a canonical fully turbulent boundary layer was expe-
rienced after 40d0 for a zigzag strip, while the staggered
grid of blocks needed at least 80d0 to convergence. This
is confirmed by analyses of shape factor, vorticity and
spanwise coherence. It was concluded that, in terms of
aerodynamics, the zigzag strip outperforms the staggered
grid of blocks.

Finally, near-field acoustics was analyzed by investigat-
ing the pressure fluctuations in its frequency domain. At
high frequencies, the staggered grid of blocks adds a pen-
alty of 20 dB self-noise on top of the zigzag strip struc-
ture, making the zigzag bypass transition more suitable
for, e.g., trailing edge noise prediction.
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