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Abstract 

Road traffic safety is a pressing global concern, with millions of yearly fatalities and 

injuries. This study aims to address the detection of abnormal driving behaviour. 

Traditional supervised approaches face limitations due to the need for labelled 

abnormal driving data. To overcome this challenge, semi-supervised machine learning 

models are explored and developed in this research.  

 

Machine learning is utilized for abnormal driving behaviour detection because it offers 

a data-driven approach that adapts to different scenarios and captures subtle patterns. 

Furthermore, its scalability allows for efficient analysis of large datasets, leading to 

accurate identification of abnormal driving behaviour and valuable insights for 

enhancing road safety measures. Most existing machine learning (ML) based abnormal 

driving detectors rely on (fully) supervised ML methods, which require substantial 

labelled data. However, in the real world, labels are only sometimes available, and 

labelling large amounts of data is tedious. Thus, there is a need to employ unsupervised 

or semi-supervised methods to make the detection process more feasible and efficient. 

Luckily, it is possible with the advent of deep neural networks, especially autoencoder-

based ones. This thesis develops and compares three ML methods: supervised (e.g. 

XGBoost and Random Forest), unsupervised ML (e.g. Isolation Forest and Robust 

Covariance), and semi-supervised ML (Hierarchical Extreme Learning Machines). 

Comparison results show that the semi-supervised deep learning model outperforms 

unsupervised methods exhibiting higher prediction accuracy and delivering acceptable 

results compared to the fully supervised models. 

 

Moreover, previous ML-based approaches predominantly utilize basic car motion 

features (such as velocity and acceleration) to label and predict abnormal driving 

behaviours. In contrast, this thesis introduces Surrogate Measures of Safety (SMOS) as 

features for ML models to identify abnormal driving behaviour.  

 

The results indicate that the supervised model performs best under the same conditions. 

However, relying on a large amount of labelled data in supervised models can pose 

challenges in real-life scenarios or when dealing with massive datasets. The study 

highlights the significance of Surrogate Measures of Safety (SMOS) and demonstrates 

the potential of HELM in effectively identifying abnormal driving behaviour. The 

introduction of SMOS significantly improves the performance of both unsupervised 

and semi-supervised models. The unsupervised model shows the most substantial 

improvement, increasing accuracy from less than 50% to over 90%. 

 

While the Isolation Forest and Robust Covariance models fail to detect abnormal 

driving behaviour without including SMOS, the semi-supervised HELM model exhibits 
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promising results even without SMOS. However, further research is necessary to 

address limitations and enhance the findings. While valuable, the current dataset used 

in this study may only encompass some types of abnormal driving behaviour. Future 

research should incorporate a more diverse dataset that covers a broader range of 

abnormal driving behaviours. The analysis should include multiple SMOS features, 

such as Post Encroachment Time (PET), to comprehensively understand abnormal 

driving behaviour and improve safety measures. 

 

Keywords: road traffic safety, abnormal driving behaviour, machine learning, 

unsupervised learning, semi-supervised learning, surrogate measures of safety (SMOS), 

hierarchical extreme learning machines (HELM). 
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1 Introduction 

1.1 Problem statement 

Road traffic safety has become a growing concern worldwide (Gerónimo et al., 2010). 

World Health Organization released data that approximately 1.35 million people died 

in car crashes in 2018 (World Health Organization, 2018). In addition, more than 30 

million people suffered non-fatal injuries, many disabled. Traffic accidents also caused 

considerable economic loss to individuals, their families, and nations. In many 

countries, the financial loss is as much as 3% of their gross domestic product (World 

Health Organization, 2018). In 92.9% of accidents, human is a contributing factor 

(Saiprasert & Pattara-Atikom, 2013). Therefore, it is necessary to understand how 

driver behaviour contributes to unsafe situations and alleviate the accidents caused by 

abnormal human driving behaviours. 

 

Driving behaviour is a broad concept that can function from many variables and factors, 

including driving performance, environmental awareness, willingness to take risks, and 

reasoning abilities(Mohammadnazar et al., 2021a). Driving style can substantially 

impact mobility, safety, energy consumption, and vehicle emissions (Mohammadnazar 

et al., 2021b). Abnormal driving behaviour is usually defined as actions that deviate 

from normal or safe driving. It involves engaging in behaviours that put oneself, 

passengers, and other road users at risk. Some examples of abnormal driving behaviour 

include(Academic et al.): 

Excessive Speeding: Driving well above the posted speed limits or too fast for the 

prevailing road conditions. 

Tailgating: Following other vehicles too closely leaves inadequate braking or 

manoeuvring space. 

Erratic Lane Changes: Abruptly changing lanes without signalling, cutting off other 

drivers, or weaving in and out of traffic. 

 

Abnormal driving can lead to severe traffic conflicts, e.g., crashes, collisions, and other 

small accidents. Crash frequency and severity are considered two important indicators 

that directly measure the safety performance of transportation systems. However, 

crashes are rare events. To address this issue, Surrogate Measures of Safety (SMOS) 

derived from traffic conflicts have become an increasingly popular solution. SMOS are 

indirect indicators or metrics used to assess and predict the safety performance of 

transportation systems, particularly roadways. Unlike direct measures that rely on 

observed crash data, surrogate safety measures use proxy variables correlated with 

safety outcomes. These measures are typically collected and analyzed to identify 

potential safety concerns and prioritize improvement efforts. 
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Monitoring abnormal driving behaviours in real-time is critical to improving driving 

safety, raising driver awareness of their driving patterns, and minimizing future road 

accidents. ML-based approaches have proven to be more effective in abnormal driving 

behaviour detection than traditional methods because of the ability to learn complex 

patterns, adapt to changing scenarios, handle large and diverse datasets, detect strange 

behaviours, and optimize the detection process (Sarker, 2021). These advantages have 

contributed to the increased adoption of ML in road safety applications and have the 

potential to enhance the effectiveness of abnormal driving behaviour detection systems 

significantly. Usually based on labelled data and supervised ML, these methods have 

shown superior performance to non-machine learning methods. It is also worth noting 

that most available studies employ only basic motion information, such as vehicle 

velocity, angle, and coordinates, while neglecting the utilization of complex Safety 

Measures of Safety (SMOS), such as two-dimensional Time- to-collision. 

 

To bridge the research gaps and address the limitations of existing methods, this thesis 

aims to explore and develop a novel approach for abnormal driving behaviour detection 

using a semi-supervised machine learning method. By leveraging the power of semi-

supervised machine learning and incorporating SMOS as crucial input features, the 

thesis intends to enhance the accuracy and effectiveness of abnormal driving behaviour 

detection. 

 

1.2 Aim of research 

Abnormal driving behaviour introduces significant uncertainty to traffic and poses a 

danger to drivers and the public. Accurately identifying and detecting abnormal driving 

behaviours are vital in ensuring traffic safety and alerting surrounding vehicles to 

potential hazards (Jia et al., 2020). Moreover, detecting and removing abnormal driving 

behaviour from naturalistic driving data are crucial prerequisites for developing human-

like driving models for automated vehicles using imitation learning. Abnormal driving 

behaviour often exhibits complex patterns that traditional rule-based systems may not 

easily capture. Machine Learning algorithms can learn and understand these intricate 

patterns through data-driven approaches. They can automatically extract relevant 

features from raw driving data, enabling the detection of subtle and non-linear 

relationships that traditional methods might overlook(Sarker, 2021). 

 

The primary objective of this research is to explore, develop, and compare unsupervised 

and semi-supervised machine learning models for identifying potential abnormal 

driving behaviour using open-sourced datasets. This study aims to provide meaningful 

insights into understanding and categorizing human driving behaviour by leveraging 

these datasets. The results of this research will serve as a foundation for developing 

human-like driving models for automated vehicles, utilizing empirical data as the basis 

for training and improving the models' capabilities. 
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By exploring and developing unsupervised and semi-supervised machine learning 

models, this research aims to address the limitations of traditional supervised 

approaches and overcome the scarcity of labelled abnormal driving data. Unsupervised 

learning algorithms will enable the detection of anomalous patterns and behaviours in 

the data without the need for pre-existing labels. On the other hand, semi-supervised 

learning approaches will leverage the limited labelled data available to guide the model 

in identifying potential abnormal driving behaviour instances. By comparing the 

performance of these models, this research aims to shed light on the effectiveness of 

different learning paradigms for detecting abnormal driving behaviour. 

 

Open-sourced datasets ensure the availability and diversity of the data used in this 

research. These datasets capture real-world driving scenarios, providing a more 

representative sample of the driving population. By analyzing and categorizing the 

driving behaviour within these datasets, this study aims to gain insights into the 

underlying patterns and characteristics of abnormal driving behaviour. This 

understanding will contribute to developing more accurate and robust models for 

abnormal driving behaviour detection and pave the way for creating advanced human-

like driving models for automated vehicles. 

 

In summary, this research strives to advance the field of abnormal driving behaviour 

detection by exploring, developing, and comparing unsupervised and semi-supervised 

machine learning models. Through the analysis of open-sourced datasets, the study 

aims to provide valuable insights into understanding and categorizing human driving 

behaviour, ultimately contributing to developing human-like driving models for 

automated vehicles. 

 

1.3 Societal impact 

Through a comprehensive understanding of machine learning techniques for abnormal 

driving behaviour detection, this research makes valuable contributions to various user 

groups: 

 

Drivers: The automatic identification of drivers' abnormal driving behaviours can 

significantly impact promoting safe driving practices. By alerting drivers to their bad 

driving habits, they can become more aware of their actions and take corrective 

measures to prevent potential car accidents. This technology is particularly beneficial 

for novice drivers as it helps them review their driving behaviour and improve their 

awareness of safe driving practices, enhancing overall road safety. 

 

Vehicle Manufacturers: The detection of abnormal driving behaviour has implications 

for manufacturers on multiple fronts. Firstly, it can enhance the effectiveness of Driver 
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Assistance Systems (DAS) technology, specifically designed to improve safety, driving 

experience, and travel comfort. By integrating abnormal driving behaviour detection 

into DAS systems, manufacturers can offer advanced features that alert drivers to 

potential risks and assist them in making safer driving decisions. Additionally, 

information about driver behaviour can be leveraged to optimize vehicle fuel 

consumption performance. By detecting and addressing abnormal driving behaviour, 

manufacturers can develop fuel consumption regulation systems that promote 

exemplary driving behaviour, leading to optimal fuel efficiency and reduced energy 

emissions. 

 

Authorities: Abnormal driving behaviour detection results can be valuable for road 

authorities and enforcement agencies. Road authorities can utilize this information to 

design or modify infrastructure requirements to enhance safety. For instance, if certain 

types of abnormal driving behaviour are more prevalent in specific areas or at particular 

intersections, authorities can make informed decisions regarding traffic signal 

placement, road signage, or lane configurations to mitigate potential risks. Additionally, 

enforcing authorities can use the detection results to enforce appropriate measures in 

cases of aggressive driving behaviour, such as conducting specialized training courses 

or revoking the driver's license for repeated aggressive driving. This proactive approach 

can improve overall road safety and discourage dangerous driving practices. 

 

In summary, the insights gained from this research in machine learning for abnormal 

driving behaviour detection have wide-ranging implications. They benefit individual 

drivers by promoting self-awareness and safe driving practices, provide opportunities 

for vehicle manufacturers to enhance Driver Assistance Systems and optimize fuel 

consumption, and empower authorities to design safer road infrastructure and enforce 

measures to deter dangerous driving behaviour. Ultimately, these advancements create 

a safer and more efficient driving environment for all road users. 

 

1.4 Scope of research 

This thesis's research scope is focused on analysing and detecting abnormal driving 

behaviours using available datasets containing detailed vehicle trajectories and motion 

data. These datasets are essential for studying and understanding abnormal driving 

behaviours and developing effective detection models. 

 

By utilising these datasets, the researchers can analyse the vehicle trajectories and 

extract relevant features that capture the characteristics of abnormal driving behaviours. 

These features include speed, acceleration, lane-changing patterns, distance to other 

vehicles, and other relevant parameters. 
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1.5 Thesis outline 

The structure of this thesis is organised as follows: 

 

Introduction: A brief overview of the research topic is presented in this chapter, 

highlighting the importance of detecting abnormal driving behaviours and the potential 

impact on traffic safety. It also outlines the research objectives and the significance of 

the study. 

 

Literature Review: The second chapter of the thesis reviews the existing literature on 

anomaly detection and abnormal driving behaviour detection in transportation. It 

summarises the research findings on these topics, including the detection features and 

methods used in previous studies. 

 

Research Gap and Questions: Based on the identified research gaps in the literature 

review section, the third section formulates two main research questions that align with 

the research direction of the thesis. These research questions serve as the guiding 

framework for the subsequent sections. 

 

Data: The fourth chapter focuses on data analysis, where a comprehensive exploration 

and analysis of the dataset are conducted. This analysis helps identify and characterise 

abnormal driving behaviours in the dataset. 

 

Methodology: The fifth chapter describes the methodology employed in the study. It 

introduces the five machine learning models utilised in the research and outlines the 

experimental processes, including feature ablation research, which investigates the 

impact of different features on detection performance. 

 

Results, Analysis and Discussion: The sixth chapter presents the results obtained from 

the experiments using the selected machine learning models. It compares the 

performance of different models and provides a detailed analysis of the findings. 

 

Conclusions and Recommendations: The seventh chapter discusses the conclusions 

drawn from the research results. It examines the implications of the findings, discusses 

the study's limitations, and suggests avenues for future research and improvements. 
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2 Literature review 

Abnormal driving behaviour detection belongs to the category of anomaly detection, so 

this chapter will first provide an overview of the overall research on anomaly detection. 

Secondly, previous research on detecting abnormal driving behaviour at the traffic level 

was summarized, focusing on introducing detection criteria (features) and methods. 

Research has found that most detection features are basic motion features, such as 

coordinates, velocity, and acceleration. Only a few studies have mentioned other traffic-

related features, such as surrogacy safety measures. In addition, most studies have used 

simple unsupervised machine learning methods, such as clustering analysis and K-

means, without comparing the differences in results between the three types of machine 

learning: unsupervised, supervised, and semi-supervised. 

 

2.1 Anomaly detection research overview 

Abnormal detection is prevalent in traffic driving behaviour. Not only within the 

transportation domain but across various fields, accurately identifying and detecting 

anomalies is crucial to ensure safety, optimize performance, and detect unusual patterns 

or behaviours that deviate from the norm. As industries become automated and 

connectivity technologies advance, many systems continue to generate massive 

amounts of data. Anomaly detection, the process of identifying unexpected items or 

events from data (shown in Figure 1), has become a field of interest for many 

researchers and practitioners and is now one of the main tasks in data mining and quality 

assurance (Blázquez-García et al., 2021). Hence, anomaly detection has found diverse 

applications in a variety of domains, including network intrusion analytics (Ageyev et 

al., 2021; Jin et al., 2020), medical diagnostics (Charfi & Ansari, 2018; Hajabdollahi et 

al., 2020), financial fraud protection (Liu, 2022; Singh et al., 2012), manufacturing 

quality control (Sharifzadeh et al., 2018), marketing and social media analytics (Chae 

et al., 2012), and more. Here is a nutshell: according to the financial fraud detection 

methodologies research (Singh et al., 2012), anomaly detection approaches can be 

categorized in terms of the type of data needed to train the model, i.e., 1) Supervised 

ML; 2) Unsupervised ML; and 3) Semi-supervised ML to detect financial fraud; As for 

manufacturing quality control, Sharifzadeh et al., (2018) propose an unsupervised 

thresholding strategy and a robust supervised abnormality detection strategy. A realistic 

test scenario with a complex surface geometry is used to assess the performance of the 

proposed detection algorithm; Convolutional Neural Networks (CNNs) are widely used 

to analyze abnormalities in medical imaging. Hajabdollahi et al. (2020) propose a 

bifurcated structure CNN with one branch performing classification and the other 

performing segmentation. 
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Figure 1 Anomaly detection 

 

2.2 Abnormal driving detection research 

This section reviews the existing state-of-the-art technologies for different types of 

abnormal driving detection and elaborates on the detection features and methods. 

2.2.1 Data collection methods 
Data used for studying driving style can be collected in several ways, such as driving 

simulators (Dörr et al., 2014), survey studies (Useche et al., 2019), video (You et al., 

2012), and studies based on vehicle motion information (Feng et al., 2018; Jia et al., 

2020a; R. et al., 2011). Table 2 provides an overview of the dataset involved in various 

studies regarding abnormal driving behaviour detection. 

 

Driving simulators 

Dörr et al. (2014) developed a driving simulator experiment to collect driver's data and 

identify the driving style. The navigation system sends a different signal value for dirt 

tracks, urban streets, rural roads, and motorways. Every road class has a different 

subsystem for tracing the driving style. So different parameters can be incorporated for 

every road class. The changeable parameters are the maximum lateral and longitudinal 

acceleration, the maximum deceleration, the cruising speed, the pedal changing times, 

and a coefficient of how the driver cuts the curves. For example, When the speed is 

above the speed limit, the driver is directly classified as sporty. The driver is classified 

as normal when the speed is below the minimum speed. The driver is classified as 

comfortable if the speed is between this minimum speed and a specified threshold. Yi 

et al. (2009) conducted experiments to detect and classify the driving behaviour within 

the PSAT (Powertrain et al.) environment, a vehicle simulation program developed by 

Argonne National Laboratory. They consider jerk, which is calculated as the derivative 

of the acceleration/deceleration or the second derivative of the velocity to measure the 

driver's aggressiveness. Han et al. (2019) obtained the time-series driving data (i.e. 
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speed, throttle opening, and acceleration) through a driving simulator to introduce a 

statistical-based approach to recognize driving behaviour considering driver behaviour 

uncertainty and develop the Euclidean distance-based decision method to determine the 

driving style of specific driver behaviour. Daza et al. (2011) designed several 

experiments in a realistic driving simulator to monitor driver drowsiness based on 

driver and driving data fusion. Percentage of Eye Closure (PERCLOS), defined as the 

percentage for 20 seconds for which eyes are at least 80% covered by eyelids, is used 

with a lateral position and steering wheel angle to monitor the drowsiness in drivers. 

 

Although driving simulators are safe, low-cost, and easy to set up, they only partially 

represent real-world conditions since it is hard to simulate real-world traffic conditions 

with all their complexity and variety. Also, drivers might lose spontaneity when they 

know their driving is monitored. 

 

Survey Studies 

The Driver Behaviour Questionnaire (DBQ) is a self-report measure of driving 

behaviour that has been widely used for over 20 years. In 1990, Reason et al. (1990) 

introduced the Driver Behaviour Questionnaire (DBQ), which consisted of 50 items 

describing a variety of errors and violations during driving. Respondents had to indicate 

how often each aberration occurred during the last year on a scale between 0 (never) to 

5 (nearly all the time). Rowe et al. (2015) found that ordinary and aggressive violations 

were more common in younger people and males in Driver Behaviour Questionnaire. 

In addition, ordinary violations were a significant independent correlate of crash 

involvement. Useche et al. (2019) added a new part to the original Driver Behaviour 

Questionnaire, asking about job-related features and road safety indicators. Same as 

Driving Simulators, the Survey Study is also not fully representative of real-world 

conditions, and the question may influence the answer of the respondents. 

 

Video 

You et al. (2012) developed the CafeSafe app for Android phones, which fuses 

information from the front and back cameras and other embedded sensors to detect and 

alert drivers to dangerous driving conditions in and outside the car. The front camera 

tracks the driver’s head pose, direction, eyes, and blinking rate to infer drowsiness and 

distraction. Blinks greater than 500 milliseconds are deemed as indicating micro-sleep. 

Wei et al. (2013) proposed a drowsy driving detection based on the driver’s 

physiological signals, such as eye activity measures, the inclination of the driver’s head, 

sagging posture, response characteristics, decline in gripping force on the steering 

wheel and lane-keeping characteristics. Algorithms based on video information require 

installing a camera device/smartphone in the car, and the pre-deployed infrastructure 

will bring about cost and privacy issues to influence the natural reaction of drivers. 

 

Vehicle motion information 
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Other studies (Arvin et al., 2021; Jia et al., 2020a; mohammadnazar et al., 2021) used 

traceable driving information, including vehicle position, speed, and acceleration. The 

development of connected vehicles (CVs) and location-based services (LBS) provide 

unprecedented access to information about a driver's location, manoeuvre, speed, and 

travel time in real-world driving conditions. LBS data are categorized into two groups 

based on their location acquisition mechanism: 1) data collection via user-end hardware, 

e.g., smartphones and GPS receivers; 2) data collection via onboard sensors and 

vehicle-to-infrastructure (V2I) communication. Data from advanced sensors that can 

transmit and receive Basic Safety Messages (BSMs), which contain information about 

a vehicle's position, heading, speed, and other information about its state and predicted 

path, is ideal for tracking traffic conditions and driver behaviour. 

 

High-quality vehicle data is becoming available with the widespread deployment of 

data collection technologies mentioned above, and the transportation field has entered 

the era of big data. Furthermore, due to the high dimensionality of the data, traditional 

statistical methods might not be appropriate in this context. Since the deep learning 

algorithm has unique adaptability to the time series data, the performance of identifying 

and predicting data is better than other methods. 

 

Table 1 Dataset overview 

Dataset source Pros Cons 

Driving simulators 
Safe, low-cost, and easy 

to set up 

Cannot fully representative of 

real-world conditions 

Survey Studies Low-cost 
Cannot fully representative of 

real-world conditions 

Video Easy to set up Cost and privacy issues 

Vehicle motion 

information 

High dimensionality of 

the data 
High technical requirements 

 

2.2.2 Abnormal driving behaviour 
Various works have been conducted on abnormal driving behaviours (Chen et al., 2015; 

Hu et al., 2017; Huang et al., 2019; Kim et al., 2016). According to Chen et al., six 

abnormal driving behaviours are defined (Figure 2), and Kim et al. predefined seven 

abnormal driving behaviours. The above two definitions of abnormal driving behaviour 

represent different understandings of driving behaviour between the East and the West 

(shown in Table 2), led by the United States and South Korea, illustrated in Table 1. 

The Western driving culture emphasises whether the vehicle's location complies with 

regulations, while the Eastern driving culture places more emphasis on controlling 

speed. The different classifications may have a lot to do with the East and West 

population density. For example, eastern countries such as China, Japan, and South 

Korea have higher population density and higher numbers of vehicles. 
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Due to the previous review, this thesis's definition of abnormal driving behaviours will 

combine location and speed. The abnormal driving behaviours focused on are (1) 

Sudden start, (2) Emergency braking, (3) Rapid Lane changing, (4) Close Lane 

changing, and (5) Oppositional conflict. 

 

Table 2 Different definition of Abnormal Driving Behaviour by Chen et al., 2015; 

Kim et al., 2016 

U.S. NHTSA Korea MOLIT 

Weaving Sudden start 

Swerving Speeding 

Sideslipping Long-standing speeding 

Fast U-turn Sudden braking 

Turning with a wide radius Sudden overtaking 

Sudden braking. Sudden changing lanes 

 Sudden turning 

 

 

Figure 2 Abnormal driving behaviour(Chen et al., 2015) 

 

2.2.3 Traditional featuress used in ML-based methods 
With the advancement of machine learning (ML) and artificial intelligence techniques, 

ML-based abnormal detection methods have rapidly risen and delivered super 

performance. To make ML models work, features must be provided and fed into the 

model. Various traditional indicators have been adopted as input features. 

 

Plank et al. (2015) collect lateral vehicle position, vehicle steering angle and speed-

related data from the car simulator and use the SVM to classify the two driving states 

as normal and drunken. 

 

Lim & Yang (2016) use vehicular data considered, including velocity, lateral and 

longitudinal acceleration, steering angle, gas pedal angle, etc., for estimating 

drowsiness, high workload, and drivers' cognitive and visual distraction using the 

convolutional neural network model. 
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In another study performed in 2010 (Dai et al., 2010), acceleration and orientation data 

collected from smartphone sensors were used to differentiate between aggressive and 

non-aggressive driving. In 2012, images extracted from vehicle cameras were used for 

detecting abnormal driving by identifying dangerous events like a sudden lane change, 

brake, sudden acceleration, or sudden deceleration. 

 

Later, the LSTM-CNN-based prediction model was used for abnormal driving detection 

from vehicular data, such as GPS, throttle position, acceleration etc. (Jia et al., 2020b). 

 

Different types of driving behaviour abnormality have been detected by Dhar et al. 

(2014), such as the lane position maintenance problem, which includes drifting, 

swerving, abrupt U-turn, etc., and speed control problems, including sudden 

acceleration, sudden deceleration, braking, abrupt stopping, etc. 

 

Table 3 provides a comprehensive overview and summary of the various features 

described in the literature review. 

 

Table 3 Traditional features overview 

Problem 

Considered 
Author Indicators 

Drunken Driving 

Detection 

Planek et 

al., (2015) 
Vehicle lateral position/Steering angle/Velocity 

Distracted 

Driving Detection 

Lim & 

Yang, 

(2016) 

Velocity/Lateral and longitudinal 

acceleration/Steering angle/Gas pedal angle 

Aggressive 

Driving Detection 

Dai et al., 

(2010) 
Acceleration/Orientation 

Abnormal 

Driving Detection 

Jia et al., 

(2020) 
GPS/Throttle position/ Acceleration 

Driver State 

Recognition 

Dhar et al., 

(2014) 
Acceleration/Deceleration/Braking 

 

2.2.4 Surrogate measures of safety used in ML-based methods 
In addition to the coordinates, velocity, vehicle angles and other traditional features, 

surrogate measures of safety are also used in ML-based methods to detect abnormal 

driving behaviour. 

 

Rong Chen & Rini Sherony (2016) used Time to Collision (TTC) to detect abnormal 

driving behaviour and verify the effectiveness of Forward Collision Warning (FCW) in 

their study. Time to collision (TTC) is one of the most widely used SSMs introduced 

by Hayward (1972) and has been used in different studies to evaluate the risk of a rear-

end collision. If two vehicles continue along the same path at their present speed, the 
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collision time is calculated as follows: 

 

𝑇𝑇𝐶 = {

𝑠0 − 𝑙

𝑣 − 𝑣0
，𝑣 > 𝑣0

∞,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where 𝑠0 is the space headway between the following and leading vehicles, 𝑙 is the 

length of the leading vehicle, 𝑣0  and 𝑣 are the initial velocity of the leading and 

following vehicles, respectively. If the TTC value is less than a threshold, the car-

following scenario is considered to be unsafe. 

2.2.5 Machine learning model 
Recently, there have been some studies on abnormal driving behaviour using clustering 

and shallow learning algorithm, which can only classify drivers’ driving styles without 

identifying specific types of abnormal behaviour (Bejani & Ghatee, 2018; Suzdaleva & 

Nagy, 2018). Deep learning has recently received significant attention in academic and 

industrial circles as a new state-of-the-art machine learning approach. It uses a multiple-

layer architecture and is pre-trained for extracting inherent features from vast amounts 

of unlabeled data. The available methods used in previous abnormal driving behaviour 

research can be grouped into supervised and unsupervised methods. 

 

Supervised 

For supervised machine learning to succeed, input and output data must be labelled 

during the training phase. Before the training and testing phases of the model, a data 

scientist labels this training data. The model can classify and predict new datasets by 

learning the relationship between inputs and outputs. It is called supervised machine 

learning because at least part of this approach requires human oversight. The vast 

majority of available data is unlabelled, raw data. Labelled data is generally required to 

be ready for supervised learning accurately. Naturally, this process can be resource-

intensive, as large arrays of accurately labelled training data are needed. Figure 3 is a 

schematic diagram of the supervised model operation. 

 



20 

 

 
Figure 3 Example of how supervised learning works 

(https://neurospace.io/blog/2020/08/what-is-supervised-learning) 

 

Arvin et al. (2021) applied a 1D-Convolutional Neural Network (1D-CNN), Long 

Short-Term Memory (LSTM), and 1DCNN-LSTM to capture the local dependency and 

volatility in time-series data. Jia et al. (2020) built a long short-term memory network 

and convolutional neural network (LSTM-CNN) model based on the advantages of 

LSTM in processing time series data and CNN in processing matrix data. The extreme 

acceleration and deceleration points are detected through the statistical analysis of 

actual vehicle driving data, and the driving behaviour recognition data set is established. 

By using the data set to train the model, the LSTM-CNN can achieve a better result. A 

lightweight 1D Convolutional Neural Network with high efficiency and low 

computational complexity was suggested to classify the driver behaviour in the study 

of Shahverdy et al. (2021). Moving at high speed, braking, rapidly changing the speed, 

and quick steering are the activities that the study concerned. Ryan et al. (2021) 

simulated an end-to-end model of Autonomous vehicles (AV) by using Convolutional 

Neural Networks (CNN) to compare human and AV driving behaviour. 

 

Unsupervised 

As the name suggests, unsupervised machine learning is more hands-off than 

supervised machine learning. Unsupervised machine learning is training models on raw 

and unlabeled training data. It’s also often an approach used in the early exploratory 

phase to better understand the datasets. Figure 4 is an example of an unsupervised 

model. 

 

https://neurospace.io/blog/2020/08/what-is-supervised-learning


21 

 

 

Figure 4 Example of Unsupervised Learning 

(https://neurospace.io/blog/2020/10/what-is-unsupervised-learning/) 

 

Mohammadnazar et al. (2021) developed a framework to quantify instantaneous 

driving behaviour and classify driving styles in different spatial contexts using 

unsupervised machine learning methods. To quantify driving style, the concept of 

temporal driving volatility, as a surrogate safety measure of unsafe driving behaviour, 

was utilized and applied in this study. K-means and K-medoid methods are applied for 

grouping drivers in aggressive, normal, and calm clusters. Feng et al. (2018) proposed 

a novel technique to robustly classify driving style using the Support Vector Clustering 

approach, which attempts to differentiate the variations in individuals’ driving patterns 

and provides an objective driver classification. Four input signals (vehicle speed, engine 

speed, pedal position, and headway distance) and four typical statistical features (mean, 

standard deviation, maximum and minimum values) were identified as the feature 

parameters. 

 

Semi-supervised 

Semi-supervised machine learning is an approach that falls between supervised and 

unsupervised learning. In semi-supervised learning, the training data consists of 

labelled examples (data points with assigned labels) and unlabeled examples (data 

points without assigned labels). Figure 5 shows an example of one of the semi-

supervised models. 

 

https://neurospace.io/blog/2020/10/what-is-unsupervised-learning/
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Figure 5 Example of Semi-supervised Learning 

(https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-

semisupervised-learning) 

 

Semi-supervised models have been widely used in anomaly detection, especially for 

network safety: Lin & Chiang (2022) introduces SNetAD, a novel semi-supervised 

approach for anomaly detection in large network logs. Bilal Hussain et al. addresses the 

challenges posed by increasing network complexity and the underutilization of big data 

in mobile networks by proposing a semi-supervised statistical-based anomaly detection 

technique. 

 

However, it is rarely applied in the field of transportation. Oikawa et al. investigate the 

effectiveness of an Online Sequential Extreme Learning Machine (OS-ELM) for 

detecting anomaly driving behaviour using sensor data, comparing its performance with 

Hidden Markov Model (HMM) and Long Short-Term Memory (LSTM) methods, and 

demonstrates that the OS-ELM-based detector achieves comparable or better accuracy 

in anomaly detection with faster sequential learning speed. An Online Sequential 

Extreme Learning Machine (OS-ELM) is a semi-supervised model. 

 

Table 4 summarizes the machine learning models and their accuracy in different 

literature. 

  

Table 4 Overview of Machine Learning Applied for Abnormal Driving Detection 

Problem 

Considered 
Author Algorithms used 

Classification 

Accuracy 

Driver State 

Estimation 

Eren et al., 

(2012) 

Optimal path detection 

algorithm, Bayesian 
93.3% 

https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning
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classifier 

Aggressive 

Driving 

Detection 

Karaduman et 

al., (2013) 
SVM, k-means clustering Unspecified 

Aggressive 

Driving 

Detection 

Van Ly et al., 

(2013) 
SVM, k-means clustering Around 60% 

Aggressive 

Driving 

Detection 

Castignani et 

al., (2015) 

PCA, SVM, k-means 

clustering 
90% 

Driving 

Behavior 

Profiling 

Ferreira et al., 

(2017) 

Artificial Neural 

Network, Random Forest 
Unspecified 

Abnormal 

Driving 

Detection 

Jia et al., (2020) 
Statistical analysis, 

LSTM-CNN 
95% 

Abnormal 

Driving 

Detection 

Hiroki Oikawa 

et al., (2020) 

Online Sequential 

Extreme Learning 

Machine (OS-ELM) 

 

 

2.3 Conclusion 

This chapter comprehensively overviews data collection methods, including video 

recordings, surveys, and driving simulators. It highlights the advantages and limitations 

of each method in capturing driving behaviour data for anomaly detection purposes. 

Additionally, the chapter summarises the classifications of abnormal driving behaviours, 

shedding light on the various types of driving anomalies identified and studied. 

Furthermore, it examines the features employed in machine learning-based anomaly 

detection approaches, emphasising basic motion information while often neglecting the 

potential of other significant factors, such as Surrogate Measures of Safety (SMOS). 

Lastly, the chapter explores the application of different machine learning models in 

anomaly detection for driving behaviour, noting the widespread use of unsupervised 

and supervised models while highlighting the comparatively limited utilisation of semi-

supervised models in this domain. 
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3 Research Gap and Research Questions 

3.1 Research gaps 

From the literature review chapter, the research gaps can be summarized from two 

aspects: detection methods and detection features: 

 

Most anomaly detection methods use shallow machine learning, such as clustering and 

K-means, with only a small portion using deep learning methods. In addition, 

unsupervised and supervised methods are often used in different types of machine 

learning, while semi-supervised methods are often overlooked. At the same time, more 

is needed to compare the results of different types of machine learning. 

 

In traditional methods (clustering, K-means, etc., mentioned in the previous point), the 

input features include basic motion features but ignore SMOS. So, in this thesis, 

whether SMOS also help with machine learning methods needs to be explored. 

 

3.2 Research Questions 

Following the identified research gaps, the two main research questions of this study 

are raised: 

 

How can abnormal driving behaviour be accurately and effectively detected? 

 

To answer it, three sub-questions are developed: 

 

1.1 What are abnormal driving behaviours? What types of abnormal driving behaviours 

are present in this dataset? 

 

1.2 What are the results of machine learning methods for detecting abnormal driving 

behaviour? 

 

1.3 What are the differences in the performance of unsupervised, supervised, and semi-

supervised machine learning? 

 

1.4 What are the important features regarding abnormal behaviour detection? 

 

1.5 Will SMOS help to improve the model performance? 

 

1.6 What are the changes in the results of different machine learning models after the 

introduction of SMOS? 
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1.7 Can the model still detect abnormal driving behaviour without using SMOS? 

 

Sub-question 1.1 aims to identify and define abnormal driving behaviours and explore 

the specific types observed in the dataset used in the study. It seeks to understand the 

range of abnormal driving behaviours that must be detected.  

 

Sub-question 1.2 evaluates the performance and effectiveness of different machine 

learning methods in detecting abnormal driving behaviour. 

 

Sub-question 1.3 compares and contrasts the performance of different machine learning 

approaches in detecting abnormal driving behaviour, specifically unsupervised, 

supervised, and semi-supervised methods. It investigates the strengths and limitations 

of each approach and examines how they differ in terms of accuracy, efficiency, and 

the need for labelled training data. 

 

Sub-question 1.4 and 1.5 explores the potential benefits of utilizing SMOS (Surrogate 

Measures of Safety) as a feature in the abnormal behaviour detection model. It 

investigates whether including SMOS as a feature enhances the model's performance 

in accurately identifying abnormal driving behaviour. 

 

Sub-question 1.6 and 1.7 examines the impact of incorporating SMOS as a feature on 

the outcomes of various machine learning models. It compares the performance of 

different models (e.g., Random Forest, Isolation Forest and HELM) with and without 

the inclusion of SMOS, assessing any improvements or changes in accuracy or other 

performance metrics. 
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4 Data 

In this chapter, sub-question 1.1 will be answered. First, a comprehensive dataset 

description is illustrated, and then abnormal driving behaviours at different locations 

are identified. 

4.1 Dataset requirements 

The selection of a good data set that suits the purpose of research requires the definition 

of criteria. In general, look for data sets that meet the following conditions: 

 

Useable: The dataset should be available as open-source data. 

 

Contain the needed elements: The dataset should have basic motion information such 

as velocity, acceleration, location (coordinate), timestamp, etc. 

 

Have two dimensions: Only having longitudinal or latitudinal data makes detecting 

abnormal behaviour challenging and sometimes impossible. Thus, a 2D dataset is 

necessary. 

 

Have huge metadata: Since there may be invalid data, the dataset size should be large 

enough. Also, data need to be separated into training, validating, and testing subsets. 

 

Abnormal driving behaviour: The dataset should contain at least some abnormal 

driving behaviour for further research. 

4.2 Dataset description 

Three candidate datasets are already studied by previous research, so it is necessary to 

find abnormal driving behaviour from these datasets: 

 

One of the candidate datasets is The Safety Pilot Model Deployment Data (SPMD), 

which contains the corresponding vehicle data by the US Department of Transportation 

Security participating in Ann Arbour, Michigan. Containing information from 2836 

vehicles equipped with V2V technology and 30 roadside equipment (RSE) covering 

more than 73 lane miles on public streets, the SPMD is one of the most extensive real-

world data collection programs ever undertaken in the field (Bezzina & Sayer, 2014). 

 

Another dataset candidate is the second Strategic Highway Research Program (SHRP2), 

which contains more than 4 petabytes of information, known as the most 

comprehensive driving study. The data collection was performed from 2010 to 2013 

and contained high-quality, high-resolution data from six states. The data contains 

information about 3500 drivers with more than 50 million miles travelled (Hankey 
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Miguel et al., 2016). 

 

Thirdly, CitySim is a video-based trajectory dataset generated from drone recordings 

focusing on traffic safety in the United States. It contains vehicle trajectory data 

extracted from 12 different drone videos recorded over 1140 minutes. This textbook 

covers six types of road geometry: freeway segments, weaving segments, 

merge/diverge segments on expressways, signalized intersections, stop-controlled 

intersections, and intersections without signs or signals (Zheng et al., 2022). 

 

Based on the above conditions, this thesis selects CitySim as the dataset for research. 

Because there is a certain amount of abnormal driving behaviour in this dataset, the 

collected information is easier to calculate the required features for this thesis. 

 

The CitySim dataset trajectories are provided as Comma Separated Value (CSV) files. 

Each row represents a waypoint that belongs to a vehicle trajectory in a single frame. 

Each waypoint contains the position information of seven vehicle key points: centre 

point, head, tail, and four bounding box vertices, as depicted in Figure 6. The dataset 

used in this study provides position information in multiple formats, including pixels, 

feet, and GPS coordinates. Additionally, it includes data on speed, heading (measured 

concerning both the global north and the image X-axis), and the vehicle lane number. 

It is important to note that the accuracy of the dataset is within a range of approximately 

10 centimetres, indicating a high level of precision in the recorded measurements. 

 

However, only the above features cannot meet the data support the model requires. 

Further calculations in this thesis add additional features such as acceleration, lateral 

acceleration, the distance between two vehicles, and Time-to-collision (TTC) to the 

original dataset. 

 
Figure 6 Vehicle bounding box feature description 

 

Table 5 provides an example of the raw data available in the dataset. It includes the 

following features and their corresponding values: 
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➢ frameNum: The frame number is 0. 

➢ carId: The car identifier is 582. 

➢ carCenterX: The x-coordinate of the car's center position is 462.4 feet. 

➢ carCenterY: The y-coordinate of the car's center position is 184.8 feet. 

➢ headX: The x-coordinate of the car's head position is 469.6 feet. 

➢ headY: The y-coordinate of the car's head position is 184.8 feet. 

➢ tailX: The x-coordinate of the car's tail position is 455.3 feet. 

➢ tailY: The y-coordinate of the car's tail position is 184.8 feet. 

➢ Speed: The car's speed at this data point is 39.5 miles per hour. 

➢ Heading: The car's heading direction is 180.7 degrees. 

➢ laneId: The car is located in lane number 10. 

 

Table 5 Example of dataset 

Feautres Unit Value 

frameNum / 0 

carId / 582 

carCenterX Ft 462.4 

carCenterY Ft 184.8 

headX Ft 469.6 

headY Ft 184.8 

tailX Ft 455.3 

tailY Ft 184.8 

Speed mph 39.5 

Heading degree 180.7 

laneId / 10 

 

4.2 Abnormal driving behaviour in the dataset 

According to the classification and definition of abnormal driving behaviour in the 

literature review (seen in 2.2.2), the abnormal driving behaviour in this dataset is 

illustrated as follows in this section. Each abnormal driving behaviour corresponds to 

one or two indicators for judgment, which need to be measured or calculated in different 

locations. Figure 7 shows the relationships among behaviour, indicators and location. 
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Figure 7 Relationship between behaviour, indicators and location (drawn by Zhang lanxin) 

 

4.2.1 Signalized Intersection 

The first location selected is a signalized intersection near Alafaya University in Florida, 

as seen in Figure 8. Due to the existence of traffic lights, sudden start and emergency 

braking will probably occur at this place. 

 

 
Figure 8 Alafaya University Signalized Intersection 

 

The data collection information is shown in Table 6, and there are, in total, 414,976 data 

instances involved in the analysis for this selected signalized intersections. 

 

Table 6 Data collection information at Alafaya 

Location 
Location 

Type 

Drone 

Height 

(m) 

FPS 
Recording 

Resolution 

Recording 

Length (min) 

University 

Alafaya 

Signalized 

Intersection 
120 30 3840 x 2160 120 

 



30 

 

For all vehicle trip data, much acceleration data correspond to each speed, which means 

that the acceleration data at each speed can be statistically analysed, and the extreme 

acceleration and deceleration points at each speed can be calculated. The acceleration 

changes sharply when the driver performs abnormal operations (such as sudden braking 

and accelerating). Figure 9 shows the specific manifestation of rapid acceleration and 

emergency braking in real life. Therefore, the abnormal driving behaviour of the driver 

can be segmented by detecting the extreme points of acceleration. A certain proportion 

of extreme acceleration points can be selected by statistically analysing all the 

acceleration points at the same speed in all trips. At a given speed, most acceleration 

points are caused by normal driving operations, while abnormal driving behaviours 

cause a small number. Therefore, a proportion should be set to separate extreme 

acceleration points from normal ones. If the ratio is too high, then most of the 

acceleration points will be considered normal, resulting in some abnormal behaviours 

that cannot be detected. On the contrary, many normal operations will be recognised as 

abnormal. Therefore, through repeated experiments and related research (Jia et al., 2020; 

Wang et al., 2015), it is reasonable to set the proportion to 16% since, for a bell-shaped 

normal speed distribution, 68% of the mass will be within one standard deviation, see 

in Figure 10. 

 

 

Figure 9 Rapid acceleration and Emergency braking (Jia et al., 2020) 
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Figure 10 Extreme acceleration and deceleration points distribution at different 

speeds (red=normal/orange=abnormal) 

4.2.2 Expressway 

Expressway A is selected as another analysis case for abnormal lane-changing 

behaviours. The weaving segment of Expressway A (seen in Figure 11) exhibits many 

critical safety events such as cut-ins, merges, and other lane-changing behaviours. In 

this section, rapid lane-changing and close lane-changing are introduced. 

 

 
Figure 11 Expressway A 

 

The data collection information is shown in Table 7; there are 260,690 data at 

Expressway A. 

 

Table 7 Data collection information at Expressway A 

Location 
Location 

Type 

Drone 

Height 

(m) 

FPS 
Recording 

Resolution 

Recording 

Length (min) 
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Expressway 

A 

Weaving 

Segment 
120 30 5120 x 2880 120 

 

A lane-changing vehicle which cuts in from a source to a target lane may cause a 

significant conflict with the following vehicle on the target lane. It is one of the driving 

behaviours that cause rear-end crashes. Since the studying areas of Expressway A are 

within weaving segments, it is unsurprising that there are lane change behaviours here. 

 

Table 8 Lane changing behaviour at Expressway A 

ExpresswayA 
No lane 

changing 
Once Twice 

Three 

times 

Four 

times 
Total 

Lane-changing 325 97 118 47 5 592 

 

Figure 12 Proportional distribution of lane changing times 

Based on the given proportions, we can analyze the distribution of lane-changing 

behaviours in the dataset: 

 

➢ No lane changing: Approximately 54.9% of the instances in the dataset did not 

involve any lane changing, which indicates that most observed driving behaviours 

did not include lane changes. 

➢ Once: Around 16.4% of the instances involved a single-lane change, suggesting 

many driving instances included a single-lane change during the observed period. 

➢ Twice: Approximately 19.9% of the instances involved two lane changes, 

indicating a relatively higher frequency of instances where two lane changes 

occurred during the observed period. 

➢ Three times: Roughly 7.9% of the instances involved three-lane changes, which 

suggests a lower frequency of instances with three-lane changes. 

➢ Four times: Only around 0.8% of the instances involved four-lane changes, which 

indicates a very low occurrence of instances with four-lane changes. 
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Figure 12 shows the proportional distribution of lane-changing times using a pip chart. 

The analysis reveals that most instances in the dataset did not involve lane changes, 

followed by instances with a single lane change. Instances with multiple lane changes 

(two or three) were less frequent, and instances with four-lane changes were the least 

common. 

 

Rapid Lane Changing 

For the vehicles with lane-changing behaviour, the lateral acceleration is analysed to 

see whether the vehicles are rapid lane-changing. Figure 13 shows the specific 

manifestation of rapid lane-changing behaviour in real life. 

 

 

Figure 13 Rapid lane changing (Jia et al., 2020) 

 

The following Table 9 and Figure 14 are the analysis of lateral acceleration for the 

vehicles that have lane-changing behaviour. 

 

Table 9 Lateral acceleration 

Expressway A Mean Std Min Max 

 Lateral Acceleration(m/s2) 0.00 1.30 -6.59 6.42 
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Figure 14 Lateral Acceleration Distribution 

 

Most vehicles with lane change behaviour have an acceleration of about 0 m/s ², which 

means they change lanes at a constant speed. However, the acceleration of some 

vehicles is an outlier seen in Figure 15. According to the normal distribution, a value 

greater than 1.3m/s ² and less than -1.3m/s ² will be the filter condition for outliers. 

 

 

Figure 15 Extreme lateral acceleration and deceleration points distribution at 

different speeds (red=normal/orange=abnormal) 
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Close lane changing 

Hazards can also arise when a vehicle changes lanes and gets too close to other vehicles. 

In this situation, abnormal driving behaviour is detected by the distance between two 

vehicles with lane-changing behaviour. Figure 16 shows the specific manifestation of 

close lane-changing behaviour in real life. 

 

 

Figure 16 Close Lane changing (Zheng et al., 2022) 

 

Figure 17 shows the distance between all vehicles on other roads and the lane-changing 

vehicles when any vehicle on the road changes lanes. 

 
Figure 17 Distance distribution in Expressway A 

 

In this thesis, when the distance between two cars during lane-changing is less than 0.5 

meters, it is considered severe abnormal driving behaviour. In contrast, when the 

distance is less than 1.0 meters but greater than 0.5 meters, it is considered weak 

abnormal driving behaviour, as seen in Figure 16. 
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Figure 18 Extreme distance points distribution at different CarID (green<0.5m/0.5

≤red≤1.0m/blue>1.0m) 

4.2.3 Non-signalized Intersection 

One observable measure that allows for consistency between observers and locations is 

post-encroachment time (PET). The McCulloch Seminole intersection (see in Figure 

19) is non-signalized, and the yellow areas in the figure below are the range where 

conflicts are likely to occur at this intersection. 

 

 
Figure 19 McCulloch Seminole Non-Signalized Intersection 

 

The data collection information is shown in Table 10, and there are 335,660 data at 

Non-signalized Intersection. 
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Table 10 Data collection information at University McCulloch 

Location Location Type 

Drone 

Height 

(m) 

FPS 
Recording 

Resolution 

Recording 

Length (min) 

University 

McCulloch 

Control-Free 

Intersection 
120 30 3840 x 2160 60 

 

However, despite the abundance of data available at non-signalized intersections, it is 

worth noting that only two conflicts occurred within the four areas above, as seen in 

Table 11. 

Table 11 Post Encroachment Time 

CarID Conflict Zone Post Encroachment Time (PET) 

233-267 Lane9-Lane3 1.6s 

105-111 Lane9-Lane3 1.87s 

 

4.3 Conclusion 

This chapter provides an overview of the dataset and a summary of different abnormal 

driving behaviours observed at various locations. The specific characteristics of 

abnormal driving behaviours at signalized intersections, unsignalized intersections, and 

expressways are described. The identified abnormal driving behaviours in the dataset 

include rapid acceleration, emergency brake, close lane-changing, and rapid lane-

changing. 

 

After the analysis above, the dataset used in this thesis contains three types of abnormal 

driving behaviours, as shown in Table 12. 

Table 12 Abnormal driving behaviour summary in this thesis 

Emergency brake/Sudden start Normal Abnormal 

Rapid lane changing Normal Abnormal 

Close lane changing Normal Weak abnormal Severe abnormal 
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5 Methodology 

In the previous chapter, the dataset was labelled as either normal or abnormal, which 

served as the annotation task for the subsequent machine learning analysis (e.g. 

unsupervised and semi-supervised). Labelling was conducted to assign the appropriate 

classification to each data instance, providing the necessary groundwork for the 

machine learning algorithms used in the following stages. This chapter describes the 

research methodology and experiment setup in detail, including an introduction to the 

model, experimental design and experimental procedure. 

5.1 ML models 

5.1.1 Supervised ML 

Supervised anomaly detection algorithms aim to incorporate application-specific 

knowledge into the detection process. This thesis will introduce two supervised 

machine learning models to detect abnormal driving behaviour. 

 

XGBoost 

The first supervised machine learning model is a scalable end-to-end tree boosting 

system called XGBoost, used widely by data scientists to achieve state-of-the-art results 

on many machine learning challenges. XGBoost was mainly designed for speed and 

performance using gradient-boosted decision trees. It represents a way for machine 

boosting, or in other words, applying to boost to machines, initially done by Chen & 

Guestrin (2016) and further taken up by many developers. 

 

The XGBoost algorithm optimises an objective function by iteratively adding weak 

learners (decision trees) to the ensemble. The objective function consists of two 

components: a loss function that measures the model's prediction error and a 

regularisation term that controls the complexity of the model. The formula for the 

XGBoost objective function can be expressed as Objective Function = Loss Function 

+ Regularization Term. The general form of the objective function for XGBoost is: 

 

∑[𝐿(𝑦𝑖 + 𝑦�̅�) + Ω(𝑓𝑘)] + 𝛾 ∗ 𝐾 

 

where: 

𝐿(𝑦𝑖 + 𝑦�̅�) is the loss function that measures the prediction error between the true label 

𝑦𝑖and the predicted value 𝑦�̅�. 

Ω(𝑓𝑘) represents the regularization term that penalizes complex models by adding up 

the scores (or weights) of the individual trees in the ensemble. It helps to control 

overfitting and improve generalization. 

𝛾 is a regularization parameter that determines the strength of the regularization term. 
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𝐾 is the number of trees in the ensemble. 

Here is how the XGBoost is used in this thesis with the dataset: 

➢ Data Preparation: Prepare the dataset with labelled driving behaviour samples. 

Each sample should have features (e.g., velocity, acceleration) and corresponding 

labels ("Abnormal" or "Normal"). 

➢ Feature Engineering: Extract relevant features from the dataset that can help 

differentiate between Abnormal and Normal driving behaviours.  

➢ Training and Test Sets: Separate the data into training and test sets. XGBoost will 

be trained on the training set, and its performance will be evaluated on the test set. 

➢ Model Training: Train an XGBoost model on the training set. Specify the 

objective function as binary logistic regression, suitable for binary classification 

tasks. The XGBoost library provides parameters to control various aspects of the 

model, such as the number of trees, maximum depth of trees, and learning rate. 

➢ Model Evaluation: Evaluate the trained XGBoost model on the test set. Calculate 

evaluation metrics such as accuracy, precision, recall, and F1-score to assess the 

model's performance in classifying spam and non-spam emails. 

➢ Fine-tuning: Adjust the model's hyperparameters, such as the learning rate, 

maximum depth, or regularization parameters, through cross-validation or grid 

search to improve the model's performance. 

➢ Model Deployment: Deploy the trained XGBoost model in another dataset to 

classify driving behaviours as Abnormal or Normal in real-time. 

 

Random Forest 

Another supervised machine learning model cited in this thesis is Random Forest. The 

random forest algorithm proposed by (Breiman, 2001) combines several randomized 

decision trees and aggregates their predictions by averaging. Growing an ensemble of 

trees and letting them vote for the most popular class has significantly improved 

classification accuracy. To grow these ensembles, random vectors are often generated 

that govern each tree's growth in the choir.  

 

For the 𝑘th tree, a random vector Θ𝑘 is generated, independent of the past random 

vectors Θ1 ,..., Θ𝑘−1  but with the same distribution, and a tree is grown using the 

training set and Θ𝑘, resulting in a classifier ℎ(𝑥, Θ𝑘) where 𝑥 is an input vector. The 

random split selection Θ  consists of a number of independent random integers 

between 1 and K. The nature and dimensionality Θ  depend on its use in tree 

construction. After generating many trees, they vote for the most popular class, and this 

procedure is called random forests. 

 

A simplified example to illustrate the principles of Random Forest for a binary 

classification task with the dataset in this thesis: 

 

➢ Data Preparation: In this thesis, we want to detect whether the driving behaviour 
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is normal based on various features such as velocity, acceleration, coordinate, and 

distance. The dataset contains labelled samples, indicating whether each driving 

behaviour is abnormal. 

➢ Ensemble Construction: 

a. Random Sampling: Randomly select a subset of behaviours from the dataset 

(with replacement) to create multiple bootstrap samples. 

b. Feature Randomness: Randomly select a subset of features from the available 

features (velocity, acceleration, coordinate, distance) for each decision tree in 

the ensemble. 

➢ Decision Tree Training: For each bootstrap sample, construct a decision tree using 

the selected subset of features and the corresponding subset of behaviours. Split 

the behaviour data based on different feature values to maximize information gain 

or minimize impurity (e.g., Gini impurity, entropy). The splitting process continues 

recursively until reaching a stopping criterion, such as a maximum tree depth or 

the minimum number of samples per leaf. 

➢ Ensemble Aggregation: For a new behaviour, each decision tree in the ensemble 

independently predicts whether the behaviour is abnormal or not based on the 

selected features. The final prediction is determined by majority voting: the class 

that receives the most votes across all decision trees is assigned the final predicted 

class for the behaviour. 

 

5.1.2 Unsupervised ML 

With unsupervised learning, machine learning models do not possess example input-

output pairs that allow them to learn a function that maps the input features to outputs. 

Instead, they learn by finding structure within the input features. In unsupervised 

learning, "structure" refers to patterns, relationships, or regularities within the input 

features of the data. It involves identifying inherent dependencies or similarities among 

the data points without using labelled output information. By identifying structure, 

unsupervised learning models can uncover hidden patterns or groupings in the data, 

providing a deeper understanding of its inherent properties. Isolation Forest and Robust 

Covariance are introduced as the two supervised machine learning models. 

 

Isolation Forest 

To look for anomalies, Isolation Forest (Lesouple et al., 2021) generates random 

isolation trees to isolate each data point. The number of branches required to isolate 

each point is computed for each tree. The mean of this number of branches defines the 

expected path length, which is used to isolate a point of interest. The expected path 

length is generally small for anomalies (contrary to nominal data) since anomalies are 

far from the majority of nominal data. 

 

In statistics, the deviation can be assessed by the Z-score. The generalization of the Z-

score for a point 𝑥𝑖  in the case of a 𝑝 -dimensional multi-variate probability 
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distribution with some mean 𝜇  and covariance matrix Σ  is known as Mahalanobis 

distance 𝑑𝑖, which is given by: 

 

𝑑𝑖 = √(𝑥𝑖 − 𝜇)𝑇Σ−1(𝑥𝑖 − 𝜇) 

 

Here is a simplified example to illustrate the Isolation Forest algorithm for anomaly 

detection: 

➢ Data Preparation: The dataset comprises various features such as velocity, 

acceleration, coordinate and distance. 

➢ Isolation Forest Construction: 

a. Random Subsampling: Randomly select a subset of instances from the dataset. 

b. Random Feature Split: Randomly select a feature and a split value to partition 

the selected instances. The split value can be any value within the range of the 

selected feature. 

c. Recursive Partitioning: Recursively split the instances based on the selected 

feature and split value. Continue this process until each instance is isolated in a 

separate leaf node or a predefined stopping criterion is met (e.g., maximum tree 

depth). 

➢ Path Length Calculation: Measure the average path length required to isolate 

each instance in an isolation tree. The path length is the number of edges traversed 

from the root to reach a particular instance. Anomalies are expected to have shorter 

average path lengths compared to normal instances. 

➢ Anomaly Score Calculation: Calculate an anomaly score for each instance based 

on the average path length across all isolation trees. Instances with shorter average 

path lengths (fewer splits required for isolation) are assigned higher anomaly 

scores, indicating a higher likelihood of being an anomaly. 

➢ Anomaly Detection: Identify instances with anomaly scores above the threshold 

as anomalies. These instances represent abnormal driving behaviours. 

 

Robust Covariance 

The Robust Covariance technique assumes that normal data points have a Gaussian 

distribution, and accordingly estimates the shape of the joint distribution (i.e., estimates 

the mean and covariance of the multivariate Gaussian distribution) (Nikita Butakov, 

2020). It is based on the fact that outliers lead to an increase of the values (entries) in 

Σ , making the spread of the data apparently larger. Consequently, |Σ|(the determinant) 

will also be larger, which would theoretically decrease by removing extreme events. 

Rousseeuw and Van Driessen (Peter J.Rousseeuw & Driessen Van Katrien, 1999) 

developed a computationally efficient algorithm that can yield robust covariance 

estimates. The method is based on the assumption that at least ℎ out of the 𝑛 samples 

are “normal” (ℎ is a hyperparameter). The algorithm starts with 𝑘 random samples 

with (𝑝 + 1) points. For each 𝑘 sample, 𝜇, 𝛴, and |𝛴| are estimated, the distances 
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are calculated and sorted in increasing order, and the ℎ smallest distances are used to 

update the estimates. In their original publication, the subroutine of computing 

distances and updating the estimates of 𝜇, 𝛴, and |𝛴| is called a “C-step” and two 

such steps are sufficient to find good candidates (for 𝜇 and 𝛴) among the k random 

samples. In the next step, a subset of size m with the lowest |𝛴| (the best candidates) 

is considered for computation until convergence, and the one estimate whose |𝛴| is 

minimal is returned as output. 

5.1.3 Semi-supervised 

Semi-supervised machine learning is an approach that falls between supervised and 

unsupervised learning. In semi-supervised learning, the training data consists of 

labelled examples (data points with assigned labels) and unlabeled examples (data 

points without assigned labels). Labelled data collection can be challenging and time-

consuming, requiring expert annotation or manual labelling. Semi-supervised learning 

allows us to make the most of the available labelled data by combining it with more 

unlabeled data, which is typically easier and cheaper. It helps overcome the limited 

labelled data limitation and enhances the learning process. 

 

Hierarchical Extreme Learning Machines (HELM) 

Here, a newly proposed algorithm, the H-ELM algorithm proposed by Tang et al. (2016), 

is introduced. It is an extension of the ELM algorithm that can be performed with high-

speed training, good generalization and universal approximation/classification 

capability. 

The HELM is a feed-forward neural network with multiple hidden layers. It consists of 

two main steps: unsupervised feature representation and supervised feature 

classification (L. Chen et al., 2018). In the first step, the HELM aims to learn a sparse 

encoder in an unsupervised manner, which converts the raw input into higher-level 

representation. The encoder possesses multiple hidden layers and is trained layer by 

layer. Given a training set with 𝑁  samples, say (𝑋𝑖, 𝑌𝑖)(𝑋𝑖 ∈ 𝑅𝑛, 𝑌𝑖 ∈ 𝑅𝑡, 𝑖 =

1,2,3, … , 𝑁), where 𝑋𝑖 and 𝑌𝑖 denote the feature representation and the target of the 

𝑖th sample, respectively. Suppose the encoder consists of 𝐾 hidden layers, each with 

𝐿𝑖(1 ≤ 𝑖 ≤ 𝐾) neurons. The output 𝑂 = [𝑜1, 𝑜2, … , 𝑜𝑁]𝑇 can be expressed as: 

 

∑ 𝛽𝑖𝑔(𝑊𝑖 ∙ 𝑥𝑗 + 𝑏𝑗)
𝐾

𝑖=1
= 𝑜𝑗 , 𝑗 = 1,2, … , 𝑁 

 

where g(x) is the activation function, 𝛽𝑖 is the output weight, 𝑊𝑖 is the input weight 

and 𝑏𝑗 is the 𝑗th bias of the first hidden layer. Ideally, there should be: 

 

∑ ‖𝑜𝑗 − 𝑌𝑗‖ = 0
𝑁

𝑗=1
 

 

that is, there exists 𝛽𝑖, 𝑊𝑖 and 𝑏𝑖 such that 
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∑ 𝛽𝑖𝑔(𝑊𝑖 ∙ 𝑥𝑗 + 𝑏𝑗) = 𝑌𝑗 , 𝑗 = 1,2, … , 𝑁 

 

which can be represented by matrixes as 

 

𝐻𝛽 = 𝑌 

 

where 𝐻 is the output of the hidden layer node, 𝛽 is the output weight, and 𝑌 is the 

desired output. 

 

𝐻(𝑊1, 𝑊2, … , 𝑊𝐾, 𝑏1, 𝑏2, … , 𝑏𝐾, 𝑥1, 𝑥2, … , 𝑥𝑁) = [

𝑔1(𝑋1) ⋯ 𝑔𝐾1
(𝑋1)

⋮ ⋱ ⋮
𝑔1(𝑋𝑁) ⋯ 𝑔𝐾1

(𝑋𝑁)
] 

 

To train the single hidden layer ELM neural network is equivalent to obtaining �̂� such 

that 

 

‖𝐻�̂� − 𝑇‖ = min
𝛽

‖𝐻𝛽 − 𝑇‖ 

 

When choosing the mean square error (MSE) as the measure, this formula is equivalent 

to minimizing the following loss function: 

 

𝐿𝑜𝑠𝑠 = ∑ (∑ 𝛽𝑖𝑔(𝑊𝑖 ∙ 𝑥𝑗 + 𝑏𝑖) − 𝑌𝑗

𝐾

𝑖=1
)2

𝑁

𝑗=1
 

 

The ELM allows the weights β and the deviation between the hidden layer and the 

inputs to have random values that can be sampled from any distribution. This means 

that the learning step only determines the optimal weight 𝛽 between the hidden layer 

and the output.  

 

The drawback of the pure ELM is that its shallow architecture cannot effectively handle 

data contents, even with many hidden nodes. HELM, which hierarchically stacks multi-

layers of ELM, is one of the most successful attempts to create a deeper structure based 

on the ELM principles. Therefore, HELM is introduced. In this study, hierarchical ELM 

layers were first trained using only normal data without any anomalies. The ELMs can 

capture the most critical input data features by minimising the reconstruction loss. Then 

the captured features are transferred to the one-class classifier, which is further trained 

to obtain a threshold using a validation dataset unseen during training. The validation 

dataset also only contains normal data samples. The model framework related to this 

thesis is shown in Figure 20. 
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Figure 20 HELM Framework (Drawn by Zhang Lanxin) 

 

Input Layer: The HELM's input layer consists of nodes representing each behaviour's 

features. Each node corresponds to a specific feature. 

 

First Hidden Layer: The first hidden layer captures low-level features. It consists of 

randomly initialised hidden nodes. Each hidden node connects to the input layer and 

performs computations using the ELM algorithm. 

 

Second Hidden Layer: The outputs from the first hidden layer serve as inputs to the 

second hidden layer. This layer captures more complex features and representations 

built on low-level features. Again, randomly initialised hidden nodes are used. 

 

Output Layer: The output layer categorises the behaviours into the respective 

classification. It takes the outputs of the second hidden layer as inputs and performs the 

final classification using a suitable activation function. 

 

5.2 Ablation Study Regarding Features 

In this section, a comparative experiment on features is designed. This experiment 

mainly compares the results of inputting different feature condition models under the 

same model. 

5.2.1 Features Overview 
In the literature review, some studies have applied simple Surrogate measures of safety, 

such as time-to-collision. However, there are two significant shortcomings of the 
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conventional TTC: (1) the scenario is regarded as safe when the speed of the following 

vehicle is less than or equal to that of the leading vehicle, even though the relative 

distance could be minimal (Kuang et al., 2015); and (2) the vehicle pair is assumed in 

the same lane, and only the longitudinal movements are calculated (Xing et al., 2019). 

To address these limitations of TTC, a new TTC is proposed in this thesis, called two-

dimensional TTC: 

 

2𝐷𝑇𝑇𝐶 = {

𝐷𝑇𝐶

|𝑣𝑖 − 𝑣𝑗|
, 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑇𝐶 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑤𝑖𝑡ℎ (𝑣𝑖 − 𝑣𝑗)

𝑖𝑛𝑓, 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑇𝐶 𝑖𝑠 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑤𝑖𝑡ℎ (𝑣𝑖 − 𝑣𝑗)

 

 

 

Figure 21 2DTTC scenario (Xing et al., 2019) 

 

In general, only encounters with a minimum TTC of less than 1 s are considered critical 

and trained observers appear to operate consistently in applying this threshold value 

(Van Der Horst & Hogema). 

 

5.2.2 Experiment Design 
This experiment consists of three feature settings. In set one, the features inherent in 

the dataset are input: coordinates, velocity, and vehicle angle. Set two adds further 

calculated acceleration and distance to set one. Sett three inputs time-to-collision 

additionally. 
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Table 13 Input features in different settings 

Features Setting Features Input 

1 coordinates/velocity/angle 

2 coordinates/velocity/angle/acceleration/distance 

3 coordinates/velocity/angle/2D time-to-collision 

 

The results of set one are used as a baseline. Further, the results of set two are used to 

determine whether the model results become better when introducing new features. Set 

3 verifies that SMOS has a significant impact on the model. 

 

Here is the process of the experiment: 

Experiment Setup 

➢ Dataset: Prepare a dataset containing samples of normal and abnormal driving 

behaviour. 

➢ Data Preprocessing: Preprocess the dataset to ensure data quality and consistency. 

➢ Split Dataset: Divide the dataset into training and testing sets. 

 

Set One 

➢ Input Features: Use coordinates, velocity, and vehicle angle. 

➢ Model Training: Train the machine learning models (e.g., Random Forest, 

XGBoost, Robust Covariance, Isolation Forest, HELM) using the training set. 

➢ Model Evaluation: Evaluate the performance of each model using the testing set. 

Calculate accuracy, precision, recall, F1-score, false positive rate (FPR), and true 

positive rate (TPR). 

 

Set Two 

➢ Input Features: Add calculated features of acceleration and distance to the features 

used in Set One. 

➢ Model Training: Retrain the machine learning models using the extended feature 

and training sets. 

➢ Model Evaluation: Evaluate the updated models using the testing set and calculate 

the performance metrics. 

 

Set Three 

➢ Input Features: Include the additional feature of 2D time-to-collision and the 

features used in Set Two. 

➢ Model Training: Retrain the machine learning models with the expanded feature 

set and the training set. 

➢ Model Evaluation: Evaluate the updated models using the testing set and calculate 

the performance metrics. 

 

Performance Comparison 
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➢ Analyze and compare the performance metrics (accuracy, precision, recall, F1-

score, FPR, TPR) for each set and each machine learning model. 

➢ Identify patterns or trends in the models' performance by adding new features in 

each set. 

➢ Summarize the findings and discuss the effectiveness of the different sets and 

models in detecting abnormal driving behaviour. 

 

5.3 Model performance measures 

Various metrics will be adopted to evaluate the overall performance of the selected 

model, and the discrimination evaluation of the optimal model can be defined based on 

the confusion matrix (M & M.N, 2015), as shown in Table 14. 

 

Table 14 Confusion Matrix and the Corresponding Array Representation 

 Actual Positive Class Actual Negative Class 

Predicted Positive Class True-positive (TP) False-negative (FN) 

Predicted Negative Class False positive (FP) True-negative (TN) 

 

One class is called positive, and the other is called negative in binary classification. 

Positive classes represent events the model tests for, and negative classes represent 

other possibilities. For example, the positive class in abnormal driving behaviour 

detection might be "abnormal." and contrast with the negative class. True-positive (TP) 

and True-negative (TN) denote the number of positive and negative instances that are 

correctly classified. In this research, TP represents the number of correctly detected 

anomalies, and TN represents the number of correctly detected normally. Meanwhile, 

False-positive (FP) and False-negative (FN) denote the number of misclassified 

positive and negative instances, which means the number of incorrectly detected 

anomalies/normal. Then, accuracy, precision and recall were calculated based on the 

four terms. 

 

Accuracy refers to the proportion of true results among the total number of cases 

examined. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Precision is utilized to gauge the accurate prediction of positive patterns among the total 

predicted patterns in a positive class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Another beneficial measure is recall, which answers a different question: what 

proportion of actual Positives is correctly classified? 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

The F-score is a way of combining the precision and recall of the model, and it is 

defined as the harmonic mean of the model’s precision and recall. 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Finally, the Receiver Operating Characteristic-Area Under the Curve (ROC AUC) is 

introduced to evaluate the model, which determines areas where the evaluated model is 

classified better within normal and anomaly situations. This curve plots two parameters: 

True Positive Rate and False Positive Rate. 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

5.4 Conclusion 

This section introduced this thesis's five machine learning models: XGBoost, Random 

Forest, Isolation Forest, Robust Covariance, and Hierarchical Extreme Learning 

Machines (HELM). In addition, a detailed description of the experimental process is 

explained in this chapter. The feature ablation study compares the results obtained by 

changing different feature conditions in the model. Finally, various metrics were 

introduced and will be employed in the next chapter to compare the performance of 

different models in detecting abnormal driving behaviour. These metrics included 

accuracy, precision, recall, and F1-score, which will evaluate each model's 

effectiveness. 
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6 Results, analysis and discussion 

This chapter will address sub-questions 1.2, 1.3, 1.4, 1.5, and 1.6. Regarding sub-

question 1.2 and 1.3, the unsupervised and supervised machine learning models as the 

baseline will be briefly introduced. In contrast, the semi-supervised machine learning 

model will be elaborated as the innovation point of this research. Then, the results of 

different types of models will be presented and compared in detail in the next chapter. 

For sub-question 1.4, 1.5, and 1.6, the same machine learning models will be used, and 

only change the input conditions to compare the results of different models under 

different conditions. 

 

6.1 Comparison result for ML models 

This section presents three figures representing the results of supervised learning, 

unsupervised learning, and semi-supervised learning models for abnormal driving 

behaviour detection. These figures are in the form of matrix plots, commonly used to 

visualize the outcomes of machine learning algorithms. By examining these figures, the 

performance of different models in detecting abnormal driving behaviours can be 

illustrated. 

 

Figure 22 illustrates the results of the supervised learning model. This model is trained 

using labelled data to learn the patterns and features of abnormal driving behaviours. 

The matrix plot displays the predicted outcomes for different driving behaviours, 

providing insights into the model's accuracy and false positive rates in detecting 

abnormal behaviours. 

 

 

Figure 22 Supervised machine learning result 

 

Figure 23 showcases the results of the unsupervised learning model. This model 

leverages unlabeled data to discover internal structures and patterns within the data, 
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enabling the detection of abnormal driving behaviours. The matrix plot demonstrates 

the model's results for driving behaviours and observes whether the model can 

effectively differentiate abnormal behaviours from normal ones. 

 

 

Figure 23 Unsupervised machine learning result 

 

Figure 24 presents the results of the semi-supervised learning model. This model 

utilizes both limited labelled data and abundant unlabeled data to enhance the detection 

performance of abnormal driving behaviours. The matrix plot illustrates the model's 

predictions for abnormal driving behaviours, enabling a comparison of its performance 

with the supervised and unsupervised models. 

 

The semi-supervised learning model can also distinguish the severity levels of different 

abnormal driving behaviours, also seen in Figure 24. This means that it not only detects 

whether a driving behaviour is abnormal but also provides insights into the degree of 

severity associated with each detected abnormal behaviour. 

 

 

Figure 24 Semi-supervised machine learning result 

Table 15 Comparison with different models 

Model Accuracy Precision Recall F1-Score FPR TPR 
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XGBoost 1.000 1.000 1.000 1.000 0.000 1.000 

Random Forest 1.000 1.000 1.000 1.000 0.000 1.000 

Robust Covariance 0.3337 0.7628 0.1779 0.3735 0.1745 0.1779 

Isolation Forest 0.5789 0.8766 0.5185 0.4680 0.2303 0.5185 

HELM 0.9471 0.9349 1.0000 0.8766 0.2196 1.0000 

 

Table 15 is a summary of the results of the five models mentioned above. 

 

The XGBoost model demonstrates perfect performance across all metrics, achieving 

100% accuracy, precision, recall, and F1-score. It correctly identifies all positive 

instances without false positives (FPR = 0) and achieves a true positive rate (TPR) 1.000. 

 

Like XGBoost, the Random Forest model achieves excellent performance, with perfect 

accuracy, precision, recall, and F1-score scores. It also has a false positive rate (FPR) 

of 0 and a true positive rate (TPR) 1.000. 

 

In supervised learning, the models learn from labelled data, which means they are 

trained using input-output pairs where the correct output (label) is provided for each 

input. However, it is important to note that the labelled data might not capture all 

possible variations of abnormal behaviour. There could be abnormal behaviour that 

does not follow the predefined rules or patterns captured by the labelled data. In such 

cases, supervised learning may not achieve 100% accuracy in detecting all types of 

abnormal behaviour. 

 

The Robust Covariance model performs relatively poorly compared to XGBoost and 

Random Forest. It has a low accuracy of 0.3337 and lower precision, recall, and F1-

score values. The false positive rate (FPR) is 0.1745, indicating a relatively high rate of 

false positives, while the true positive rate (TPR) is 0.1779. 

 

The Isolation Forest model exhibits moderate performance. It achieves an accuracy of 

0.5789 and relatively higher precision and recall values than Robust Covariance. 

However, the F1-score is lower at 0.4680. The false positive rate (FPR) is 0.2303, 

indicating a higher rate of false positives, while the true positive rate (TPR) is 0.5185. 

 

The HELM model demonstrates high performance but is slightly lower than XGBoost 

and Random Forest. It achieves an accuracy of 0.9471, with high precision and recall 

values. The F1-score is 0.8766, indicating a good balance between precision and recall. 

The false positive rate (FPR) is 0.2196, while the true positive rate (TPR) is 1.0000. 

 

Below is a detailed analysis of the results of HELM: 

Accuracy: The accuracy of the HELM model is 0.9471, which means it correctly 

classifies approximately 94.71% of the instances in the dataset. It measures overall 
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correctness and indicates the model's ability to make accurate predictions. 

 

Precision: The precision of the HELM model is 0.9349, indicating that out of all the 

instances predicted as abnormal driving behaviour, 93.49% are true positives. Precision 

measures the proportion of correctly predicted positive instances out of all predicted 

positives, providing insight into the model's ability to avoid false positives. 

 

Recall (True Positive Rate): The recall of the HELM model is 1.0000, meaning it 

identifies all instances of abnormal driving behaviour in the dataset. It measures the 

proportion of true positive instances correctly identified by the model out of all actual 

positives. In other words, the model has a high ability to detect abnormal driving 

behaviour. 

 

F1-Score: The F1-score of the HELM model is 0.8766, which is the harmonic mean of 

precision and recall. It provides a balanced measure of the model's performance, 

considering precision and recall. A higher F1 score indicates a better balance between 

the two metrics. 

 

False Positive Rate (FPR): The false positive rate of the HELM model is 0.2196, 

which represents the proportion of instances that are incorrectly classified as abnormal 

driving behaviour out of all actual negative instances. A lower FPR indicates a lower 

rate of false alarms or false positives. 

 

At the same time, it must be addressed that due to the operational characteristics of the 

supervised model (which requires early labelling of all input data), it can save time in 

real-life or ultra-large datasets. In addition, in the dataset, varying degrees of abnormal 

driving behaviour were calibrated (see data section), and only the semi-supervised 

model had the potential to identify it. Based on the above viewpoint, the semi-

supervised model is the most suitable for detecting abnormal driving behaviour in real 

life. 

 

6.2 Result for Ablation Study Regarding Features 

As mentioned in the previous section, the supervised model must label all input data 

independent of the input feature conditions. Therefore, this experiment only compares 

the results of unsupervised and semi-supervised models. 
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Figure 25 Robust Covariance performance under Set 1,2, and 3 

 
Figure 26 Isolation Forest performance under Set 1,2, and 3 

 
Figure 27 HELM performance under Set 1,2, and 3 

Table 16 Comparison results under different set 

 SET Accuracy Precision Recall 
F1-

Score 
FPR TPR 

Robust 

Covariance 

1 0.3337 0.7628 0.1779 0.3735 0.1745 0.1779 

2 0.3348 0.7702 0.1767 0.3762 0.1663 0.1767 

3 0.9570 0.9487 0.9973 0.9028 0.1701 0.9973 

Isolation 

Forest 

1 0.5789 0.8766 0.5185 0.4680 0.2303 0.5185 

2 0.4387 0.8673 0.3080 0.4219 0.1487 0.3080 

3 0.9615 0.9517 1.0000 0.9131 0.1600 1.0000 

HELM 

1 0.9471 0.9349 1.0000 0.8766 0.2196 1.0000 

2 0.9614 0.9561 0.9949 0.9144 0.1440 0.9949 

3 0.9958 0.9963 0.9983 0.9913 0.0118 0.9983 
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Table 17 Input features in different sets 

Feature settings Features Input 

1 coordinates/velocity/angle 

2 coordinates/velocity/angle/acceleration/distance 

3 coordinates/velocity/angle/2D time-to-collision 

 

Set 1: Features Input - coordinates/velocity/angle 

➢ Robust Covariance: The model achieved an accuracy of 1.0, but the precision, 

recall, and F1-score are relatively low. This indicates that while the model correctly 

classified some instances, it struggled to identify abnormal driving behaviour 

accurately. 

➢ Isolation Forest: The model achieved an accuracy of 1.0 and showed improved 

precision, recall, and F1-score compared to Robust Covariance. It performed better 

in identifying abnormal driving behaviour based on the given features. 

➢ HELM: The model achieved an accuracy of 0.9471, with high precision, recall, 

and F1 score. It demonstrated strong performance in detecting abnormal driving 

behaviour in Set 1. 

 

Set 2: Features Input - coordinates/velocity/angle/acceleration/distance 

➢ Robust Covariance: The model's accuracy slightly increased compared to Set 1, 

but the precision, recall, and F1-score remained low. 

➢ Isolation Forest: The model's accuracy decreased compared to Set 1, and there was 

a decline in precision, recall, and F1-score. It struggled to detect abnormal driving 

behaviour with additional features effectively. 

➢ HELM: The model's accuracy improved to 0.9614, with high precision, recall, and 

F1 score. It demonstrated better performance in identifying abnormal driving 

behaviour compared to the other models in Set 2. 

 

Set 3: Features Input - coordinates/velocity/angle/2D time-to-collision 

➢ Robust Covariance: The model's accuracy remained the same as in Set 1, but the 

precision, recall, and F1-score improved significantly. It better detected abnormal 

driving behaviour when 2D time-to-collision was considered. 

➢ Isolation Forest: The model's accuracy increased compared to Set 2, and the 

precision, recall, and F1-score also improved. It demonstrated improved 

performance with the inclusion of 2D time-to-collision. 

➢ HELM: The model's accuracy improved to 0.9958, with near-perfect precision, 

recall, and F1-score. It exhibited exceptional performance in identifying abnormal 

driving behaviour when considering 2D time-to-collision. 

 

Based on the analysis, all three models performed better as more features were added 

to each feature set. However, HELM consistently outperformed the other models across 

all scenarios, indicating its effectiveness in detecting abnormal driving behaviour. 
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Additionally, including 2D time-to-collision as a feature improved the performance of 

all models, particularly in Setting 3. 

 

6.3 Conclusion 

Therefore, in this section, sub-question 1.2, 1.3, 1.4, 1.5, and 1.6 can be answered: 

What are the results of machine learning methods for detecting abnormal driving 

behavior? 

 

Figure 28 Supervised machine learning result 

 

 

Figure 29 Unsupervised machine learning result 

 



56 

 

 

Figure 30 Semi-supervised machine learning result 

Table 18 Comparison with different models 

Model Accuracy Precision Recall F1-Score FPR TPR 

XGBoost 1.000 1.000 1.000 1.000 0.000 1.000 

Random Forest 1.000 1.000 1.000 1.000 0.000 1.000 

Robust Covariance 0.3337 0.7628 0.1779 0.3735 0.1745 0.1779 

Isolation Forest 0.5789 0.8766 0.5185 0.4680 0.2303 0.5185 

HELM 0.9471 0.9349 1.0000 0.8766 0.2196 1.0000 

 

What are the differences in the performance of unsupervised, supervised, and semi-

supervised machine learning?  

This chapter first compares the results of different types of machine learning. It was 

found that under the same conditions (i.e., without changing any input features), the 

supervised model performs best. However, the need for a large amount of labelled data 

in supervised models will increase workloads in real life or when facing massive 

datasets. 

 

Will SMOS help to improve the performance? 

They are incorporating the 2D time-to-collision as a feature enhanced performance for 

all models, particularly in Setting 3. These findings emphasize the significance of 

Surrogate Measures of Safety (SMOS) and highlight the potential of HELM in 

effectively identifying abnormal driving behaviour. 

 

What are the changes in the results of different types of machine learning models after 

the introduction of SMOS?  

Due to the operational characteristics of the supervised model, changing the input 

features has no practical significance. Therefore, this issue is only discussed for 

unsupervised and semi-supervised models. After the introduction of SMOS, the 

performance results of both unsupervised and semi-supervised models have been 

improved. The unsupervised model has the greatest change in results, with accuracy 

ranging from less than 50% to over 90%. 
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Can the model still detect abnormal driving behaviour without using SMOS? 

Based on the result above, the Isolation Forest and Robust Covariance models did not 

detect abnormal driving behaviour without Safety Measures of Safety (SMOS). On the 

other hand, the semi-supervised HELM (Hierarchical Extreme Learning Machines) 

model showed promising results even without including SMOS. 
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7 Conclusions and recommendations 

7.1 Conclusions 

Differences in the performance of unsupervised, supervised, and semi-supervised 

machine learning were investigated in this study, shedding light on their respective 

strengths and limitations. When evaluating the models under the same conditions, the 

supervised model consistently outperformed the others in accuracy. However, the 

practical challenges associated with acquiring and labelling a large amount of training 

data hinder the widespread adoption of supervised learning approaches, especially in 

real-life scenarios or when dealing with massive datasets. 

 

To address these challenges, semi-supervised learning emerged as a promising 

alternative. By leveraging a combination of labelled and unlabeled data, semi-

supervised models can achieve competitive performance while reducing the 

dependency on fully labelled datasets， which makes them well-suited for real-world 

applications and scenarios where labelled data may be limited. 

 

In this research study, integrating Surrogate Measures of Safety (SMOS), particularly 

incorporating the 2D time-to-collision as a feature, emerged as a pivotal factor in 

augmenting the performance of the machine learning models. Notably, the inclusion of 

SMOS yielded substantial improvements in the performance of all models, 

encompassing both unsupervised and semi-supervised approaches. These compelling 

findings underscore the significance of SMOS in enhancing the efficacy of abnormal 

driving behaviour detection across diverse machine-learning models. 

The questions raised in this thesis have been resolved, and the following are the answers 

to the research questions. 

 

The comparative analysis reveals that the supervised model better detects abnormal 

driving behaviour. However, the practical constraints arising from the requirement of 

labelled data render the semi-supervised approach more viable in real-world scenarios 

and when confronted with large-scale datasets. Notably, integrating Surrogate 

Measures of Safety (SMOS) catalyzes further augmenting the performance of all 

models, thereby underscoring its pivotal role in effectively identifying and 

characterizing abnormal driving behaviour. These findings highlight the significance of 

semi-supervised learning and the utility of SMOS in advancing the field of abnormal 

driving behaviour detection. 

 

7.2 Reflection 

This thesis aims to fill a significant gap in the existing literature on the feature and 
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model aspects of the problem. The previous studies have predominantly overlooked the 

utilization of Surrogate Measures of Safety (SMOS) as input features, instead focusing 

on basic motion data such as velocity, angle, and acceleration. However, this thesis 

takes a novel approach by incorporating SMOS into the analysis and demonstrates its 

substantial impact on enhancing the model's accuracy. By introducing SMOS as input 

features, the thesis showcases the potential for improved performance in detecting 

abnormal driving behaviour. 

 

Moreover, the thesis highlights a disparity in adopting detection methods for abnormal 

driving behaviour. Previous studies have primarily relied on clustering analysis and 

shallow machine learning techniques, with limited exploration of semi-supervised 

models. In contrast, this thesis introduces the Hierarchical Extreme Learning Machines 

(HELM) as the primary model for abnormal driving behaviour classification. Through 

empirical analysis, the thesis concludes that HELM offers promising capabilities in 

accurately classifying abnormal driving behaviour. 

 

However, it is important to note that the dataset used in this thesis encompasses only 

three types of abnormal driving behaviours. For example, at unsignalized intersections, 

abnormal driving behaviour is not detected with opposite conflicting. Consequently, the 

thesis cannot present the complete range of SMOS values (such as Post encroachment 

time etc.), limiting the comprehensive display of all the SMOS features. 

 

This thesis significantly contributes to the existing literature by emphasizing the 

importance of incorporating SMOS as input features and leveraging HELM for accurate 

abnormal driving behaviour detection by addressing these gaps. Nonetheless, future 

studies should consider expanding the dataset to encompass a broader spectrum of 

abnormal driving behaviours and associated SMOS to enhance the understanding and 

detection of such behaviours. 

 

7.3 Recommendation 

Firstly, as highlighted in the reflection section of the thesis, it is important to 

acknowledge that the dataset used in this study may need to be considered better while 

being the best available at the current stage. Although it provides valuable insights into 

abnormal driving behaviour, it is limited regarding the types of abnormal driving 

behaviour included. To further improve the content and analysis of (SMOS), future 

research must incorporate a more extensive and diverse dataset that encompasses a wide 

range of abnormal driving behaviours. This will enhance the generalizability of the 

findings and enable a more comprehensive exploration of SMOS concerning different 

types of driving behaviour. 

 

In addition, this thesis primarily focuses on investigating the Time to Collision (TTC) 
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as one example of SMOS, neglecting the calculation and analysis of other important 

SMOS features such as Post Encroachment Time (PET) and various others. While the 

findings related to TTC are valuable, it is essential to recognise that SMOS 

encompasses a wide range of measures that provide valuable insights into driving 

behaviour and safety. Therefore, future directions should emphasise including multiple 

SMOS features in the analysis to capture a more comprehensive understanding of 

abnormal driving behaviour. 

 

By incorporating a more diverse dataset and including additional SMOS features 

beyond TTC, future research in this domain will significantly contribute to the field of 

abnormal driving behaviour detection. This will enable researchers to delve deeper into 

analysing various SMOS metrics, improving our understanding of their significance 

and impact on identifying and classifying abnormal driving behaviour. Additionally, it 

will provide valuable insights into developing more robust and accurate models for 

detecting abnormal driving behaviour and improving overall road safety. 

 

Besides refining the dataset, future research should also emphasise the need for more 

precise and accurate data annotation processes. Improving the quality of data labelling 

will enhance reliability. 
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