Dependently Typed Languages in Statix

Version of April 12, 2023

Jonathan Brouwer

Dependently Typed Languages in Statix

THESIS

submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

 in

COMPUTER SCIENCE

by

Jonathan Brouwer born in Sneek, the Netherlands

Programming Languages Group Department of Software Technology Faculty EEMCS, Delft University of Technology Delft, the Netherlands www.ewi.tudelft.nl

© 2023 Jonathan Brouwer.

The source code for this thesis can be found online: https://github.com/JonathanBrouwer/master-thesis

Dependently Typed Languages in Statix

Author: Jonathan Brouwer Student id: 4956761

Abstract

Static type systems can greatly enhance the quality of programs, but implementing a type checker for them is challenging and error-prone. The Statix meta-language (part of the Spoofax language workbench) aims to make this task easier by automatically deriving a type checker from a declarative specification of the type system. However, so far Statix has not been used to implement a type system with dependent types, an expressive class of type systems which require evaluation of terms during type checking.

In this thesis, we present a specification of a simple dependently typed language in Statix, and discuss how to extend it with several common features such as inductive data types, universes, and inference of implicit arguments. While we encountered some challenges in the implementation, our conclusion is that Statix is already usable as a tool for implementing dependent types.

Thesis Committee:

Chair: Committee Member: University Supervisor: Prof. Dr. A. van Deursen, Faculty EEMCS, TU DelftDr. J.G.H. Cockx, Faculty EEMCS, TU DelftA.S. Zwaan, Faculty EEMCS, TU Delft

Contents

Contents				
1	Introduction	1		
2	Background: Spoofax	3		
	2.1 SDF3	3		
	2.2 Statix	4		
	2.3 Scope graphs	4		
3	Background: Dependent Types	7		
	3.1 What are Dependent Types?	7		
	3.2 The Calculus of Constructions	7		
4	Calculus of Constructions in Statix	9		
	4.1 The Language	9		
	4.2 Scope Graphs	10		
	4.3 Beta Reductions	11		
	4.4 Beta Equality	12		
	4.5 Type Checking	13		
	4.6 An example	14		
	4.7 Discussion of a Recursive Approach	15		
5	Avoiding Variable Capturing	18		
	5.1 In depth: Why does this happen?	18		
	5.2 Alternative Solutions	19		
	5.3 Using Scopes to Distinguish Names	20		
	5.4 Improving the Readability of Types	21		
6	Extending the language	22		
	6.1 Booleans	22		
	6.2 Postulate	24		

	6.3Type Assertions246.4Extensibility of the Approach24
7	Term Inference207.1 Different Algorithms for Inference217.2 Inference in Statix217.3 Implementing AFOU227.4 Analysis of the Approximation21
8	Inductive Data Types38.1Introduction to Inductive Data Types38.2Type-checking Data Type Declarations38.3Type-checking Eliminators38.4Positivity Checking3
9	Universes 36 9.1 Universes 36 9.2 Implementing Universes in the Calculus of Constructions 36 9.3 Implementing Universes with Inductive Data Types 37
10	Back-end 38 10.1 Interpreter 31 10.2 Compiler 32
11	Semantic Code Completion 41 11.1 Setup required 41 11.2 Quality of suggestions 41
	A comparison with conventional implementations4312.1 Defining the AST4312.2 Defining Environments4312.3 Defining Type Checking4412.4 Defining Beta Reduction4412.5 Comparison44A comparison with implementations in logical frameworks4413.1 Defining Symbols44
	13.1 Defining Symbols 4 13.2 Reduction Rules 4 13.3 Defining Let Bindings 4 13.4 Comparison 5
14	Ergonomics of Spoofax 57 14.1 Statix 57 14.2 Spoofax 57

15 Related Work 15.1 Other languages implemented in Statix	
16 Conclusion 16.1 Future Work	55 . 56
Bibliography	59

Introduction

While we keep building more and more complex programming languages, their type checkers are still often written in general purpose languages. This takes a lot of effort, and it is easy to make mistakes. Instead of writing the type checker in a general purpose language, in this thesis we will systematically derive a type checker from a high-level, declarative specification. A declarative specification defines what the semantics of the language are, rather than specifying the imperative steps to type check the language. This allows for a cleaner implementation that is easy to extend and maintain.

In this thesis we will specifically focus on dependently typed languages, which differ from other languages because they allow types to be parameterized by values [1]. This allows types to express properties of values that cannot be expressed in a simple type system, such as the length of a list or the well-formedness of a binary search tree. This expressiveness also makes dependent type systems more complicated to type check, since deciding equality of types requires evaluation of the terms they are parameterized by [2].

We will write the declarative specification in the Spoofax language workbench, which is a collection of tools that can derive a parser and type checker from a high level specification of the language [3]. When working with the Spoofax workbench, the Statix meta-language can be used for the specification of static semantics [4]. It is a declarative language that uses inference rules and scope graphs [5] to define static semantics. Statix aims to cover a broad range of languages and type systems. However, no attempts have been made yet to express a dependently typed language in Statix until now.

Contributions

The primary contribution of this thesis is to investigate how well Statix is fit for the task of defining a dependently-typed language. The goal is not only to show that Statix can implement it, but also that the implementation is more concise than in a general purpose language (**Research Question 1**). We will start by implementing the Calculus of Constructions [2], a lambda calculus with dependent types, as this is one of the most simple dependently typed languages (chapter 4).

However, this language is not very practical to write actual complex programs in, so

to improve this situation we will extend the language with typical features of dependently typed languages. We will provide the following additional contributions:

- **RQ2**: We show the language is easily extendable, by extending it with booleans among other features (chapter 6).
- **RQ3:** We show how to add inference of implicit arguments to the implementation (chapter 7).
- **RQ4:** We show how to add support for inductive datatypes to the implementation (chapter 8).
- **RQ5**: We show how to add support for universes to the implementation (chapter 9).

These contributions are important for two reasons. Firstly from the perspective of a Spoofax researcher, developing a language with a complex type system in Statix tests the boundaries of what Statix can do, and how Statix could be further improved to support these use-cases better. On the other hand, from the perspective of a researcher in dependent type systems, if we can show that Statix provides a good way to quickly implement a dependently typed language, then Spoofax could help with rapid prototyping of dependently typed languages.

Discussions

Furthermore, the thesis contains some discussions about the contributions:

- We discuss how well semantic code completion, which is an editor service provided by Spoofax that completes holes in expressions, works for our language (chapter 11).
- We compare our implementation with an implementation of the same language in Haskell (chapter 12) and LambdaPi (chapter 13).
- We discuss how Spoofax can be improved to better support implementing dependently typed languages (chapter 14).
- We discuss related work (chapter 15) and future work (chapter 16).

Before explaining these contributions, we provide background information on Spoofax and Statix (chapter 3) and the Calculus of Constructions (chapter 2).

The source code for this thesis can be found online https://github.com/JonathanBrouwer/master-thesis.

Background: Spoofax

This chapter will explain the concepts behind the Spoofax Language Workbench. Readers already familiar with Spoofax are recommended to only skim through this chapter.

The Spoofax Language Workbench [3] is a platform to develop domain-specific and general-purpose programming languages. Each aspect of the language is defined in one the meta-languages, each with its own purpose. From these specifications Spoofax generates a parser, type checker and other useful tools. The meta-languages that are used in this thesis are discussed in the sections below:

2.1 SDF3

The meta-language SDF3 is used to define the syntax of the language [6], which is then parsed using Spoofax's SGLR parser [7].

Syntax definitions The syntax of a language is defined through rules of the form A.C = a with A being a *Non-Terminal*, C being the name of a constructor and a a list of symbols. To remove ambiguity, one can specify a relative priority for each constructor. For example, below is the syntax of a simple language:

```
context-free sorts
Expr
context-free syntax
Expr.Add = Expr "+" Expr
Expr.Mul = Expr "*" Expr
Expr.X = "x"
context-free priorities
Expr.X > Expr.Mul > Expr.Add
```

ATerm format Using the Syntax, Spoofax will generate a parser. This parser takes in a program in textual format, and outputs ATerms. ATerms are a way of encoding an abstract syntax tree [8]. For example, for the program $\mathbf{x} + \mathbf{x} * \mathbf{x}$ the following ATerm is produced:

Add(X(), Mul(X(), X()))

2.2 Statix

Now that the syntax has been determined, we move on to the static semantics. Statix is a declarative language for describing the static semantics of a language [4]. Using these rules, Statix automatically derives a type checker. The two basic constraints that can be used in the rules are equality constraints t1 == t2 and inequality constraints t1 != t2. An equality constraint is states that two terms are equal or can be unified. An inequality constraint states that two terms are not equal.

The constraints are generated by predicates. A predicate defines a relation on terms and scopes. It is of the form $p(t_1, ..., t_n) := c_1, ..., c_n$. Each constraint $c_1...c_n$ is another predicate or an equality constraint. Below is an example that uses these mechanics to check that an expression does not contain any Muls. Note that noMuls is not defined for the Mul constructor, so it will fail if it encounters one.

```
noMuls(Add(e1, e2)) :- noMuls(e1), noMuls(e2).
noMuls(X()).
```

Statix also has functional predicates, these define a one-to-one relationship between input terms and the output term. For example below we use this to associate a type with each expression.

```
typeOfExpr(X()) = INT().
typeOfExpr(Add(e1, e2)) = INT() :-
   typeOfExpr(e1) == INT(),
   typeOfExpr(e2) == INT().
```

In Statix, the language designer writes down the declarative semantics. The Statix solver decides the order in which constraints are considered, the language designer has no control over that.

2.3 Scope $Graphs^1$

Statix also has scope graphs. Scope graphs are used to represent a programs' name and type information [4, 10]. A scope graph is a graph that consists of the following components:

• *Scopes* represent "a region in a program that behaves uniformly with respect to name resolution". These scopes are modeled as nodes in the graph. Its graph representation is shown in Figure 2.1a.

¹Note: This section is adapted from "Composable Type System Specification using Heterogeneous Scope Graphs". [9, sect. 4.1.2]

- Labeled, directed edges model visibility relations between scopes. For example, $\#1 \xrightarrow{P} \#2$ indicates that the graph contains an edge from #1 to #2 with label P. Its graph representation can be seen in Figure 2.1b.
- Declarations model a datum (a piece of information, like the type of a variable) under a relation symbol in a scope. Its textual notation is $\#1 \xrightarrow{rel} d$, meaning datum d is declared in scope #1 under relation rel. Its pictorial equivalent is shown in Figure 2.1c.

Figure 2.1: Scope Graph notation

Information can be retrieved from scope graphs using *queries*. A query from a scope traverses the scope graph to find datums that match certain conditions. The result of a query is a list of (path, datum) tuples. A query has several parameters:

- The relation to query. Only datums declared under this relation will be returned by the query.
- Path well-formedness condition: a regular expression of labels that specifies which paths are well-formed. Only datums that are reached through a path whose edge labels are in the language described by the regular expression are included in the query result.
- A match predicate, taking a single datum as input. Only datums that satisfy this predicate will be included in the query result. Its default value is **true**, meaning that all datums under the specified relation that satisfy the path well-formedness condition are returned.

Example

To get a better understanding of scope graphs, we consider an example in a non-dependent language.

```
int x = 5;
int y = x + 3;
return x + y;
```

Remember that you can think of scopes as a type-checking environment. During type checking, the following steps happen:

1. 5 is type-checked in the root scope s0.

- 2. The definition of x creates a new scope s1 that contains the type of x, which is used to type-check the rest of the program.
- 3. x + 3 is type-checked in the new scope s1, the x is resolved to the declaration in s1.
- 4. The definition of y creates a new scope s2 that contains the type of y, which is used to type-check the rest of the program.
- 5. x + y is type-checked in the new scope s2, to resolve x we need to follow a P edge.

Background: Dependent Types

This chapter will explain the concepts behind dependent types. Readers already familiar with dependent types are recommended to only skim through this chapter.

3.1 What are Dependent Types?

A dependent type system is a type system in which types may depend on values. This means it is possible to have a type such as Vec n, which is a vector of exactly length n. Note that the value of n does not have to be known at compile time, it is therefore more powerful than functions that can be polymorphic over a value.

The biggest advantage of dependent types is that they increase the expressiveness of a type system, for example:

append : (A : Type) \rightarrow (n : Nat) \rightarrow Vec A n \rightarrow Vec A n \rightarrow Vec A (n + n)

A Vec A n is a list with elements of type A that is exactly length n (an integer, which is a value!). This append function appends two Vecs of equal length, returning a Vec of length n + n. This is an example of a type-level expression.

In dependent type systems we can use the Curry-Howard Correspondence to prove properties of our code [11]. Under this correspondence, types correspond to propositions and a term of a type correspond to a proof of a proposition. Thus if our type system is type-sound¹, that is, we cannot create a term of an empty type, then we can use our type systems to prove things. The type checker will then verify that our proofs are correct.

3.2 The Calculus of Constructions

The lambda cube is a framework to categorize programming languages based on whether terms and types can depend on each other [1]. Specifically, it categorizes languages on

¹The type system we will define in chapter 4 is not type-sound, we will fix this by introducing universes in chapter 9.

three axes: 2

1. Terms can depend on types. This corresponds to type-polymorphic (generic) functions. For example, it allows us to define the polymorphic identity function:

id : (T : Type) -> T -> T

- 2. Types can depend on types. This corresponds to type-polymorphic (generic) datatypes. For example, it allows to the define the List T type, a list with items of type T.
- 3. Types can depend on terms. This corresponds to dependent types.

The *Calculus of Constructions* is the language that has all three of these features. Now that we have explained the concepts behind Spoofax and dependent types, we will further explain the Calculus of Constructions and implement it in Spoofax in chapter 4. Then in the chapters after that, we will extend the language with more features.

²Note that the "Terms can depend on terms" axis is missing, this is because a language where terms cannot depend on terms cannot compute anything and is thus pretty useless.

Calculus of Constructions in Statix

In this section, we will describe how to implement a dependently typed language in Statix. In section 4.1 we will describe the syntax of the language, then in section 4.2 we will describe how scope graphs are used to type check the language. Section 4.3 describes the dynamic semantics of the language, and finally 4.5 how to type check the language. This chapter is the main contribution of this thesis.

4.1 The Language

The base language that has been implemented is the Calculus of Constructions [2]. We chose this language as it is the core language of many dependently typed languages [12][13], so it is representative of dependently typed languages as a whole.

One extra feature has been added that is not present in the pure Calculus of Constructions: let bindings. Let bindings could be desugared by substituting, but this may grow the program size exponentially, so having them in the language is useful. The concrete syntax (written in SDF3 [6]) of the language is available in figure 4.1.

```
Expr.Type = "Type"
Expr.Var = ID
Expr.FnType = ID ":" Expr "->" Expr {right}
Expr.FnConstruct = "\\" ID ":" Expr "." Expr
Expr.FnDestruct = Expr Expr {left}
Expr.Let = "let" ID "=" Expr ";" Expr
```

Figure 4.1: The concrete syntax for the base language. FnConstruct is a lambda function, FnDestruct is application of a lambda function.

There is only one sort: Expr. The syntax definition does not have a separate sort for types, as types may be arbitrary expressions in a dependently typed language. The following constructors exist:

• Type is the Type of Types.

- Var is a variable, it uses the lexical sort ID, which is defined as
 [a-zA-Z_][a-zA-ZO-9_]*.
- FnType is the type of a function. It assigns a name to its first argument to allow the return type of the function to depend on the argument type. It is right associative, meaning A -> B -> C is interpreted as A -> (B -> C).
- FnConstruct creates an anonymous function (lambda function).
- FnDestruct applies a function to an argument. It is left associative, meaning a b c is interpreted as (a b) c.
- Let is a let binding. It introduces a substitutable variable.

An example program is the following, which defines a polymorphic identity function (an identity function that is generic over its type) and applies it to a function:

let f = \T: Type. \x: T. x; f (T: Type -> Type) (\y: Type. y)

The type that the function is generic over needs to be explicitly specified. In most languages, generics are inferred, this inference will also be possible in this language after implementing inference in chapter 7.

4.2 Scope Graphs

To type check the base language, we need an environment to store information about the names that are in scope at each point in the program. There are two different types of names that we may want to store, names that do not have a known value (only a type), which are names created by function arguments and dependent function types, and names that do have a known value, which are names created by let bindings.¹

In Statix, all this information can be stored in a *scope graph* [5], as explained in chapter 2. We only use a single type of edge, called P (parent) edges. We also only have a single relation, called name. The relation associates a NameEntry with each name in the scope graph. The NameEntry can be either a NType, which stores the type of a name, or a NSubst, which stores a name that has been substituted with a value.² The Statix definition of these concepts is given below:

```
constructors
   NType : Expr -> NameEntry
   NSubst : scope * Expr -> NameEntry
relations
   name : ID -> NameEntry
```

¹In non-dependent languages there is no such distinction, but because we may need *the value* of a binding to compare types, this is needed in dependently typed languages.

²As a performance optimization, we could store the type of the substitution on the NSubst as well, this avoids the need to possibly type check the value again in the future.

Next, we will introduce some Statix predicates that can be used to interact with these scope graphs:

```
sPutType : scope * ID * Expr -> scope
sPutSubst : scope * ID * (scope * Expr) -> scope
sGetName : scope * ID -> NameEntry
sEmpty : -> scope
```

The sPutType and sPutSubst predicates generate a new scope given a parent scope and a type or a substitution respectively. These return a scope that represent an environment that has been extended with the new name. To query the scope graph, we use sGetName, which will return the closest NameEntry with a matching name. Finally, sEmpty returns a fresh empty scope.

We define a *scoped expression*, as a pair of a scope and an expression. The scope acts as the environment of the expression, containing all of the context needed to evaluate the expression.

4.3 Beta Reductions

A unique requirement for dependently typed languages is beta reduction during type checking, since types may require evaluation to compare. Beta reduction is the process of reduction a term to its beta normal form, which is the state where no further beta reductions are possible [14]. It works by matching a term of the form (x. b) e. and substituting x in b with e. Beta reduction applies this rule everywhere in the term, whereas beta headreduction only applies this rule at the outermost expression of the term, and produces a term in beta-head normal form, which means the outermost constructor is the same as the outermost constructor of the normal form.

We implemented beta-head reduction using a Krivine abstract machine [15]. The machine can head evaluate lambda expressions with a call-by-name semantics. This is a strategy under which the leftmost, outermost beta-redex is always reduced first [14]. It works by keeping a stack of all arguments that have not been applied yet. This turned out to be the more natural way of expressing this compared to recursive evaluation relation, which is an alternative we will discuss in section 4.7.

In conventional dependently typed languages, variables are often represented using de Bruijn indices. De Bruijn representation [14, Section 6.1] uses the distance from a binder to identify a variable. In this representation, alpha equivalence is the same as syntactic equivalence, which can simplify the manipulation of terms. However, we chose to use names rather than de Bruijn indices, because scope graphs work based on names. Using de Bruijn indices would also prevent us from using editor services that rely on .ref annotations (which are Spoofax annotations that declare one name as being a use of another name that is a definition).

We need to define multiple predicates that will be used later for type checking. First, the primary predicate is **betaReduceHead**, that takes a scoped expression and a stack of applications, and returns a head-normal expression. The scope acts as the environment from [15], using NSubst to store substitutions. All rules for **betaReduceHead** are given in

figure 4.2. We use the syntax $\langle s_1 | e_1 \rangle \overline{p} \underset{\beta h}{\Rightarrow} \langle s_2 | e_2 \rangle$ to express betaReduceHead((s1, e1), e1)ps == (s2, e2). The \overline{p} in this definition is the argument stack of the Krivine machine. The argument stack is a stack of scoped expressions, which are the arguments that are not yet paired with a matching function. Figure 4.2 contains the rules necessary for beta head reduction of the language. One predicate that is used for this is the **rebuild** predicate, which takes a scoped expression and the stack of arguments (of the Krivine machine state) and converts it to an expression by adding **FnDestructs**. Its signature is:

rebuild : (scope * Expr) * list((scope * Expr)) -> (scope * Expr)

Additionally, we define **betaReduce** which fully beta reduces a term. It works by first calling betaReduceHead and then matching on the outermost constructor, calling betaReduce on the sub-expressions of the outermost constructor recursively.

Beta head-reduction rules

$$\begin{split} & \frac{\langle s_{1} \mid e_{1} \rangle \, \overline{p} \underset{\beta h}{\Rightarrow} \langle s_{2} \mid e_{2} \rangle}{\langle s_{1} \mid Type() \rangle \, [] \underset{\beta h}{\Rightarrow} \langle s \mid Type() \rangle} & \frac{\langle sPutSubst(s, x, (s, e)) \mid b \rangle \, \overline{p} \underset{\beta h}{\Rightarrow} \langle s' \mid b' \rangle}{\langle s \mid Let(x, e, b) \rangle \, \overline{p} \underset{\beta h}{\Rightarrow} \langle s' \mid b' \rangle} \\ & \frac{sGetName(s, x) = NSubst(s_{e}, e) & \langle s_{e} \mid e \rangle \, \overline{p} \underset{\beta h}{\Rightarrow} \langle s_{e'} \mid e' \rangle}{\langle s \mid Var(x) \rangle \, \overline{p} \underset{\beta h}{\Rightarrow} \langle s_{e'} \mid e' \rangle} \\ & \frac{sGetName(s, x) = NType(t)}{\langle s \mid Var(x) \rangle \, \overline{p} \underset{\beta h}{\Rightarrow} rebuild(s, Var(x), \overline{p})} & \overline{\langle s \mid FnType(x, a, b) \rangle \, [] \underset{\beta h}{\Rightarrow} \langle s \mid FnType(x, a, b) \rangle} \\ & \overline{\langle s \mid FnConstruct(x, a, b) \rangle \, [] \underset{\beta h}{\Rightarrow} \langle s' \mid e' \rangle} & \frac{\langle s \mid f \rangle \, (a :: \overline{p}) \underset{\beta h}{\Rightarrow} \langle s' \mid e' \rangle}{\langle s \mid FnDestruct(f, a) \rangle \, \overline{p} \underset{\beta h}{\Rightarrow} \langle s' \mid e' \rangle} \end{split}$$

Figure 4.2: Rules for beta head reducing the Calculus of Constructions

Beta Equality 4.4

We need to define expectBetaEq, which asserts that two scoped expressions are equal under beta reduction. This rule first beta reduces the heads of both sides, and then compares them. If the head is not the same, the rule fails. Otherwise, it recurses on the sub-expressions. One special case is when comparing two FnConstructs. Here we need to take into account alpha equality: two expressions which only differ in the names that they use should be considered equal. We implement this by substituting in the body of the functions, replacing their argument names with a unique placeholder.

This substitution is called AlphaEqVars : ID * ID -> Expr. The combination of the ID on the left and right hand is used to identify the variables.³ Currently this approach has problems with variable capture here: multiple variables with the same name that are asserted to be alpha equal can introduce the same AlphaEqVars into the scope. This is solved in chapter 5. In figure 4.3 we show how AlphaEqVars is used to determine alpha-equality e1 = e2 of terms. We can then define beta-equality e1 = e2 by first beta-reducing terms and then using the alpha-equality relation.

Alpha equality rules

$$\label{eq:spectral_alpha} \begin{split} \overline{\mathsf{AlphaEqVars}(x_1,x_2) \underset{\alpha}{=} \mathsf{AlphaEqVars}(x_1,x_2)} \\ & \langle s_1 \mid a_1 \rangle \underset{\alpha}{=} \langle s_2 \mid a_2 \rangle \\ s_1' = \mathsf{sPutSubst}(s_1,x_1,(\mathsf{sEmpty}(),\mathsf{AlphaEqVars}(x_1,x_2))) \\ s_2' = \mathsf{sPutSubst}(s_2,x_2,(\mathsf{sEmpty}(),\mathsf{AlphaEqVars}(x_1,x_2))) \\ & \langle s_1' \mid b_1 \rangle \underset{\alpha}{=} \langle s_2' \mid b_2 \rangle \\ \hline & \langle s_1 \mid \mathsf{FnType}(x_1,a_1,b_1) \rangle \underset{\alpha}{=} \langle s_2 \mid \mathsf{FnType}(x_1,a_2,b_2) \rangle \\ & \langle s_1 \mid a_1 \rangle \underset{\alpha}{=} \langle s_2 \mid a_2 \rangle \\ s_1' = \mathsf{sPutSubst}(s_1,x_1,(\mathsf{sEmpty}(),\mathsf{AlphaEqVars}(x_1,x_2))) \\ & s_2' = \mathsf{sPutSubst}(s_2,x_2,(\mathsf{sEmpty}(),\mathsf{AlphaEqVars}(x_1,x_2))) \\ & \langle s_1' \mid b_1 \rangle \underset{\alpha}{=} \langle s_2' \mid b_2 \rangle \\ \hline & \langle s_1 \mid \mathsf{FnConstruct}(x_1,a_1,b_1) \rangle \underset{\alpha}{=} \langle s_2 \mid \mathsf{FnConstruct}(x_1,a_2,b_2) \rangle \end{split}$$

Figure 4.3: Rules for alpha equality in the Calculus of Constructions

4.5 Type Checking

We will define a Statix predicate typeOfExpr that takes a scope and an expression and type checks the expression in the scope. It returns the type of the expression.

typeOfExpr : scope * Expr -> Expr

 $\langle s_1 \mid e_1 \rangle \underset{\alpha}{=} \langle s_2 \mid e_2 \rangle$

³Technically we only need the left or the right hand side here, but we use both since we can use them to get better error messages.

We can then start defining type checking rules for the language. We introduce a number of judgements for typing and equality together with their counterparts in Statix.

- 1. $\langle s \mid e \rangle : t$ is the same as typeOfExpr(s, e) == t.
- 2. $\langle s_1 | e_1 \rangle = \langle s_2 | e_2 \rangle$ is the same as expectBetaEq((s1, e1), (s2, e2)).
- 3. $\langle s_1 | e_1 \rangle \overline{p} \underset{\beta h}{\Rightarrow} \langle s_2 | e_2 \rangle$ is the same as betaReduceHead((s1, e1), ps) == (s2, e2) (The same as in section 4.3).
- 4. $\langle s_1 | e_1 \rangle \Rightarrow_{\mathcal{R}} e_2$ is the same as betaReduce((s1, e1)) == e2.
- 5. $(\mathsf{sEmpty} | e)$ is the same as e (empty scopes can be left out).

One thing to note is that some rules use **betaReduce**. The goal of this beta reduce is to make the term into a term that does not need an environment (by substituting all let bindings). A full beta reduce is not necessary, merely substituting all the values in the environment would be enough, but this is merely a performance optimization.

The inference rules in figures 4.2, 4.3, and 4.4 can be directly translated to Statix rules. For example, the rule for Let bindings in figure 4.4 is expressed like this in Statix:

```
typeOfExpr (s, Let(x, e, b)) = bt :-
    typeOfExpr (s, e) == et,
    typeOfExpr (sPutSubst (s, x, (s, e)), b) == bt.
```

Each premise in the inference rule is a premise in the Statix code, and the conclusion of the inference rule is the declaration of the Statix rule.

4.6 An example

In this section we will give an example of how to type check a program. The program we will type check is:

let T = Type; (\v: Type. v) T

The process that happens during type-checking is shown in figure 4.5.

- 1. First, we type-check the outermost expression Let in an empty scope s_0 . That rule states we have to type-check the let-bound value using the same scope, then it creates a NSubst declaration in a new scope s_1 , with which it type checks the body (which is here abbreviated as b_0).
- 2. To type-check the FnDestruct in the let body, we apply the corresponding rule. This requires type checking the given function, checking if the argument type matches, then substituting the argument in the return type creating scope s_2 and returning this. The only non-trivial step is type-checking the function.

Figure 4.4: Rules for type checking the Calculus of Constructions

3. To type check the function, we type check the argument and assert that it is a type. Then we type check the body with the argument in scope, creating scope s_3 , and finally we construct the type.

4.7 Discussion of a Recursive Approach

An alternative for a Krivine machine, which keeps a stack of arguments it has encountered, is a recursive relation. This beta-reduces a FnDestruct by doing a nested beta-reduction of the function first, and substituting the argument into the body afterwards, as is shown in figure 4.6. These rules were successfully implemented in Statix.

Although these rules look cleaner, they are more complicated to implement, requiring a separate relation to check if f is a FnConstruct or something else. For the calculus of constructions this still works quite well, but when adding inductive datatypes (chapter 8) the rules required become a lot more complex than those for a Krivine machine. The primary problem is that eliminators can take an arbitrary of arguments depending on the datatype that all need to be available to choose the right eliminating function. Therefore we chose to use the Krivine machine instead. Type checking let

 $b_0 = \mathsf{FnDestruct}(b_1, \mathsf{Var}("T")))$

$$\frac{\langle s_0 \mid \mathsf{Type}() \rangle : \mathsf{Type}()}{\langle s_0 \mid \mathsf{Let}("T", \mathsf{Type}(), b_0) \rangle : \mathsf{Type}()}$$

Type checking let body

$$b_1 = \mathsf{FnConstruct}("v", \mathsf{Type}(), \mathsf{Var}("v"))$$

$$\langle s_1 | b_1 \rangle : \mathsf{FnType}("v", \mathsf{Type}(), \mathsf{Type}()) \\ \langle s_1 | \mathsf{FnType}("v", \mathsf{Type}(), \mathsf{Type}()) \rangle [] \underset{\beta h}{\Rightarrow} \langle s_1 | \mathsf{FnType}("v", \mathsf{Type}(), \mathsf{Type}()) \rangle \\ \langle s_1 | \mathsf{Var}("T") \rangle : \mathsf{Type}() \qquad \mathsf{Type}() \underset{\beta}{=} \mathsf{Type}() \qquad \langle s_2 | \mathsf{Type}() \rangle \underset{\beta}{\Rightarrow} \mathsf{Type}()$$

 $\langle s_1 | \mathsf{FnDestruct}(b_1, \mathsf{Var}("T"))) \rangle : \mathsf{Type}()$

Type checking function

$$\begin{array}{l} \langle s_1 \mid \mathsf{Type}() \rangle : \mathsf{Type}() & \mathsf{Type}() \stackrel{=}{_{\beta}} \mathsf{Type}() \\ \langle s_1 \mid \mathsf{Type}() \rangle \stackrel{\Rightarrow}{_{\beta}} \mathsf{Type}() & \langle s_3 \mid \mathsf{Var}("v") \rangle : \mathsf{Type}() \end{array}$$

 $\langle s_1 \mid \mathsf{FnConstruct}("v",\mathsf{Type}(),\mathsf{Var}("v")) \rangle : \mathsf{FnType}("v",\mathsf{Type}(),\mathsf{Type}())$

Corresponding Scope Graph

Figure 4.5: Type checking example

We now have an implementation of the Calculus of Constructions in Spoofax. This implementation still has the issue of variable capture, which we will discuss and solve on chapter 5. Next, from chapter 6 onward we will show how to extend the language.

Figure 4.6: A substitution-based approach for beta reduction

Avoiding Variable Capturing

We have now implemented the Calculus of Constructions in Statix. The implementation has one big problem, that is variable capture. Variable capture is the phenomenon of free variables in a term becoming bound when a naive substitution happens [14]. This chapter will explore several ways of solving this.

An example term where this problem occurs is the following: What is the type of this expression (a polymorphic identity function)?

T : Type. T : T. T

The implementation so far would tell you it is $T : Type \rightarrow T : T \rightarrow T$. Given the scoping rules of the language, that is equivalent to $T : Type \rightarrow x : T \rightarrow x$. Note that x is not a type, so this does not even type check. The correct answer would be $T : Type \rightarrow x : T \rightarrow T$. There is no way of expressing this type without renaming a variable.

5.1 In depth: Why does this happen?

In this section, we will step through the steps that happen during the type checking of the term above, to explain why the incorrect type signature is returned. To find the type, the following is evaluated:

```
typeOfExpr(_, FnConstruct("T", Type(),
        FnConstruct("T", Var("T"), Var("T")))
)
```

This first handles the outer **FnConstruct**, it creates a new node in the scope graph, and then type checks the body with this scope.

```
typeOfExpr(s1, FnConstruct("T", Var("T"), Var("T")))
```

T : Type()

The same thing happens, the body of the FnConstruct is type-checked with a new scope. Note that Var("T") in the type of the second T is ambiguous, does it refer to the first or second node?

typeOfExpr(s2, Var("T"))
T : Type()
T : Var("T")

Finally, we need to find the type of Var("T") in s2. This finds the lexically closest definition of T (the one in s2), which is correct. But the type of T is T, which does NOT refer to the lexically closest T, but instead to the T in s1. This situation, in which a type can contain a reference to a variable that is shadowed, is the problem. We need to find a way to make sure that shadowing like this can never happen.

5.2 Alternative Solutions

Now that the problem is clear, we will explore several attempts at a solution that failed, before settling on the final solution in section 5.3.

De Bruijn Indices

Almost all compilers that typecheck dependently typed languages use de Bruijn representation for variables [13]. Using de Bruijn indices in statix is possible, but sacrifices a lot. Many editor services (renaming, go to definition) require .ref annotations (which specify which other name a certain name refers to) to be set on names, and this is not possible if the names are no longer a part of the AST and the scope graph.

Uniquifying names

Another solution that was attempted was having a pre-analysis transformation that gives each variable a unique name. This doesn't work for a variety of reasons. This doesn't actually solve the problem. Names can be duplicated during beta reduction of terms, so we still don't have the guarantee that each variable has a unique name. Furthermore, unless we keep track of error messages

Capture-avoiding substitution

Anytime that we introduce a new name in a type, we could check if the name already exists in the environment, and if it does, choose a different unique name. This approach is called capture-avoiding substitution by renaming [16]. This is possible but tedious to implement in Statix. It requires a new relation to traverse through the type and rename. This is also an inefficient solution, as many traversals of the type are needed. This was successfully implemented, but we chose against using it since we found a better solution.

5.3 Using Scopes to Distinguish Names

The solution we found to work best in the end is to change the definition of ID. To be precise, at the grammar level we have two sorts, RID is a "Raw ID", being just a string. ID will have two constructors, one being Syn, a syntactical ID, referring to the lexically closest match. The second one is ScopedName, which is defined below.

```
context-free sorts ID
lexical sorts RID
context-free syntax
   ID.Syn = RID
signature constructors
   ScopedName : scope * RID -> ID
```

The ScopedName constructor takes a scope and a raw ID. The scope is used to uniquely identify the name. The main idea is that whenever we encounter a syntactical name during type checking, we replace it with a scoped name, so it unambiguous. The scope graph will never have a syntactical name in it. However, when querying the scope graph for a syntactical name, we return the lexically closest name.

The example revisited

In this section, we will step through the steps that happen during the type checking of the term above, with name collisions solved. To find the type, the following is evaluated, note that the names are now wrapped in a Syn constructor:

The name in the **FnConstruct** is replaced with a scoped name. The scope of the name is the scope that the name is first defined in. We then type check the body with this scope.

```
typeOfExpr(s1, FnConstruct(Syn("T"), Var(Syn("T")), Var(Syn("T"))))
ScopedName(s1, T) : Type()
```

The same thing happens, the body of the FnConstruct is typechecked with a new scope. Note that the type of the new T now specifies which T it means, so it is no longer ambiguous.

typeOfExpr(s2, Var(Syn("T")))

Finally, we need to find the type of T. This finds the lexically closest definition of T (the one in s2), as defined earlier. The type of this T is ScopedName(s1, T), which explicitly defined which T it is. A name can now never shadow another name, since each scope uniquely identifies a name. The final type of the expression is now:

```
FnType(ScopedName(s1, T), Type(),
    FnType(ScopedName(s2, T), Var(ScopedName(s1, T)),
        Var(ScopedName(s1, T))))
```

5.4 Improving the Readability of Types

Because the expression above, with ScopedNames, is not particularly readable, we add a new post-analysis Stratego pass (an AST transformation that runs directly after typechecking) that converts the ScopedNames to ticked names. For example, the above would be transformed to:

FnType(T, Type(), FnType(T', Var(T)), Var(T)))

Ticks are added to names where necessary. We do this by following these rules:

- 1. When we encounter a ScopedName in a definition, we keep adding ticks to the name until we find a name that has not been used before.
- 2. We define a dynamic rule Rename :: string -> string and we store the new name we generated using this rule.
- 3. When we encounter a ScopedName in a variable, use the Rename rule to find what the name was transformed to.

We have now solved the problem of variable capture. In chapter 6, we explain how to extend the language further, by extending it with booleans. Then, from chapter 7 onward we use this method to extend the language with various features.

Extending the language

In this chapter, we will add booleans, postulates and type asserts to the language. The goal of this is to show that this language is easy to extend, and to add some features that make testing the language easier.

It is important that our implementation is easily extensible since real-world dependently typed languages have complex features such as inductive data types and term inference, that make the language a lot easier to use. We will first show how to add support for these relatively simple features, and then use the same techniques to add support for more complex features in the following chapters.

6.1 Booleans

This section describes how to add Booleans to the language. We will add the type of booleans Bool, true, false and if. The if expression is not dependent, it expects both branches to have the same type. An example of a program with booleans:

let and = $\x:$ Bool. $\y:$ Bool. if x then y else false end

The constructors for the language are:

```
BoolType : Expr
BoolFalse : Expr
BoolTrue : Expr
BoolIf : Expr * Expr * Expr -> Expr
```

Then, the rules for beta reducing the language are in figure 6.1. There is one particularly interesting case, that is how to beta-reduce if statements. Converting this rule to Statix is not entirely trivial, since you need to choose which rule to apply based on what c evaluates to. A new rule is needed, which has 3 cases. One for if c evaluates to true, one for if c evaluates to false, and finally a third case for other cases (such as when c is a variable that does not have a substitution). These rules are stated below: (Remember that rebuild is the rule introduced in chapter 4, which takes a scoped expression and a list of arguments and converts it to an expression by adding FnDestructs).

```
betaReduceHead((s, BoolIf(c, b1, b2)), ps) =
   betaReduceHeadIf(s, betaReduceHead((s, c), []), c, b1, b2, ps).
betaReduceHeadIf(s, (_, BoolTrue()), _, b1, _, ps) =
   betaReduceHead((s, b1), ps).
betaReduceHeadIf(s, (_, BoolFalse()), _, _, b2, ps) =
   betaReduceHead((s, b2), ps).
betaReduceHeadIf(s, _, c, b1, b2, ps) =
   rebuild((s, BoolIf(c, b1, b2)), ps).
```

$$\overline{\langle s \mid \text{BoolTrue}() \rangle [] \underset{\beta h}{\Rightarrow} \langle s \mid \text{BoolTrue}() \rangle } \qquad \overline{\langle s \mid \text{BoolTrue}() \rangle [] \underset{\beta h}{\Rightarrow} \langle s \mid \text{BoolTrue}() \rangle }$$

$$\overline{\langle s \mid \text{BoolTrue}() \rangle [] \underset{\beta h}{\Rightarrow} \langle s \mid \text{BoolTrue}() \rangle }$$

$$\overline{\langle s \mid c \rangle [] \underset{\beta h}{\Rightarrow} \langle s' \mid \text{BoolTrue}() \rangle } \qquad \langle s \mid c \rangle [] \underset{\beta h}{\Rightarrow} \langle s' \mid \text{BoolFalse}() \rangle$$

$$\overline{\langle s \mid b1 \rangle \overline{p} \underset{\beta h}{\Rightarrow} \langle s'' \mid b1' \rangle } \qquad \overline{\langle s \mid b2 \rangle \overline{p} \underset{\beta h}{\Rightarrow} \langle s'' \mid b2' \rangle }$$

$$\overline{\langle s \mid BoolIf(c, b1, b2) \rangle \overline{p} \underset{\beta h}{\Rightarrow} \langle s \mid b1' \rangle } \qquad \overline{\langle s \mid c \rangle [] \underset{\beta h}{\Rightarrow} \langle s' \mid b2' \rangle }$$

$$\overline{\langle s \mid BoolIf(c, b1, b2) \rangle \overline{p} \underset{\beta h}{\Rightarrow} \langle s \mid b1' \rangle } \qquad \overline{\langle s \mid c \rangle }$$

$$\overline{\langle s \mid BoolIf(c, b1, b2) \rangle \overline{p} \underset{\beta h}{\Rightarrow} \langle s \mid b1' \rangle } \qquad \overline{\langle s \mid c \rangle }$$

$$\overline{\langle s \mid BoolIf(c, b1, b2) \rangle \overline{p} \underset{\beta h}{\Rightarrow} \langle s \mid b1' \rangle } \qquad \overline{\langle s \mid c \rangle }$$

$$\overline{\langle s \mid BoolIf(c, b1, b2) \rangle \overline{p} \underset{\beta h}{\Rightarrow} \operatorname{rebuild}((s, BoolIf(c', b1, b2)), \overline{p}) }$$

Figure 6.1: Rules for beta head reducing booleans

Next, the rules for type-checking booleans are in figure 6.2, which are relatively simple. The if expression checks that both branches have the same type, as it is a non-dependent if statement.

$\overline{\langle s \mid BoolType() \rangle : Type()}$	$\overline{\langle s \mid BoolTrue() \rangle : BoolType()}$		
		$t_c \mathop{=}\limits_{eta} BoolTyp$	
	$\langle s \mid b1 \rangle : t_{b1}$	$\langle s \mid b2 \rangle : t_{b2}$	$t_{b1} \stackrel{=}{_{\beta}} t_{b2}$
$\overline{\langle s \mid BoolFalse() angle : BoolType()}$	$BoolFalse()\rangle : BoolType() \qquad \qquad \langle s \mid BoolIf(c, b1, b2) \rangle : t_{b1}$		

Figure 6.2: Rules for type checking booleans

6.2 Postulate

Next we will add **Postulate** to the language. A postulate declares that there is a variable with a certain type, without specifying a value. Through the view of the Curry-Howard correspondence, this is equivalent to an axiom. At the current stage, this is useful for testing the language. For an example of a test with postulates, we assert that this program evaluates to Bool:

postulate T : Type; if true then Bool else T end

The following rules are used to implement the feature, which translate cleanly to Statix:

$$\frac{\langle s \mid b \rangle \, \overline{p} \underset{\beta h}{\Rightarrow} \langle s' \mid b' \rangle}{\langle s \mid \mathsf{Postulate}(n,t,b) \rangle \, \overline{p} \underset{\beta h}{\Rightarrow} \langle s' \mid b' \rangle} \qquad \qquad \frac{\langle s \mid t \rangle : t_t \qquad t_t \underset{\beta}{=} \mathsf{Type}()}{\langle s \mid t \rangle \underset{\beta}{\Rightarrow} t' \qquad \langle \mathsf{sPutType}(s,n,t') \mid b \rangle : t_b}$$

Figure 6.3: Rules for postulates

6.3 Type Assertions

Finally, we will add TypeAssert to the language. This is another feature that is useful for testing. It takes an expression, and it asserts that the expression has a certain type. For example, we can do the following:

postulate T : Type; true : if true then Bool else T end

Implementing this feature is also straight-forward, we add the following two rules, which translate cleanly to Statix:

	$\langle s \mid t \rangle: tt$	tt = Type()	
$\langle s \mid b angle \; a \stackrel{\Rightarrow}{\Rightarrow} \langle s' \mid b' angle$	$\langle s \mid b \rangle : bt$	$bt _{\!$	
$\overline{\langle s \mid TypeAssert(b,t) \rangle \ a \underset{\beta h}{\Rightarrow} \langle s' \mid b' \rangle}$	$\langle s \mid TypeAss$	$\langle s \mid TypeAssert(b,t) \rangle : bt$	

Figure 6.4: Rules for type assertions

6.4 Extensibility of the Approach

Now that a few features have been implemented, we can discuss how easy the language is to extend. From the three examples above and the following chapters we can conclude that extending the language in a clean way is possible. To extend the language, we used the following approach:

- 1. Define the parsing rules for the new feature.
- 2. Create a new file, tp_[feature].stx and import this file in the main type_check.stx file.
- 3. In the new file, define a case for the betaReduceHead rule for the constructors that were added. Also define cases for expectBetaEq and betaReduce if necessary. This is only necessary if the new constructors are not always eliminated by betaReduceHead.
- 4. In the new file, define a case for the typeOfExpr rule for the constructors that were added.

This allows each feature to be isolated to its own file. If we decide that we don't like a feature after all, we can remove it simply by unimporting the file. This problem is similar to the expression problem [17, 18], where we want to extend datatypes and their associated behaviour, which Statix solves partially. Statix does not fulfill the requirement that files can be individually recompiled.

In the following chapters, we're going to be extending the language further with these more interesting features using the approach defined above:

- Inference (chapter 7).
- Inductive Datatypes (chapter 8).
- Universes (chapter 9).

Term Inference

Inference is an important feature of dependent programming languages, that allows redundant parts of programs to be left out. This reduces the annotation burden in comparison with explicitly typed languages. For example, it allows you to infer the argument type of a function, if it can be inferred by the usage of the function, like in this example where the type of the argument of the polymorphic identity function can be inferred, since we pass it **true** which is a boolean:

let id = (\T : Type. \x: T. x); id _ true

The syntax we chose is that if we want a value to be inferred, we replace it with an underscore. Other languages such as Agda allow for *implicit arguments*, which are arguments that can be left out, which will then be inferred [19, 20]. This is just syntactic sugar over the *placeholders* we implement.

Furthermore, we call the inference algorithm *term inference* rather than *type inference*, because it can infer values other than types. For example, it can infer that the placeholder in this example must be **true**:

```
postulate f: Bool -> Type;
postulate g: f true -> Type;
\x: f _. g x
```

7.1 Different Algorithms for Inference

There are a lot of different algorithms for inference [21], some algorithms can solve more inference problems than others. One algorithm for unification is first-order unification (FOU), where if at any point during type checking we assert that $e_1 = e_2$ and either e_1 or e_2 is a free metavariable, we set the the value free metavariable to be equal to the value of the non-free metavariable. There are some situations in which this approach fails to infer a term, but in most real-world scenarios it works very well. For example, it can infer both programs in the introduction of this chapter, but it fails to infer the following program:

```
let f = _;
\x : Type.
\g: (f x) -> Bool.
g true
```

We know that f is a function from Type -> Type, but it fails to infer the value of f. Because of the way that g is used, the type checker asserts that fx = Bool. Since x β is declared as a function argument and it is completely free, this means that for any x, f x = Bool. But the rule above is not powerful enough to derive this, so it fails.

A more powerful algorithm that could solve this is *higher-order pattern unification* as defined by Miller [22], which is implemented in Agda [19]. Implementing this in Statix is theoretically possible¹, but would be quite difficult to do in practice.

7.2 Inference in Statix

We would like to avoid implementing an algorithm at all, instead using Statix' built-in firstorder unification to do the type inference for us. Implementing an inference algorithm in Statix is theoretically possible but this would not be a clean implementation (since Statix is a domain specific language that is not meant to implement these algorithms), and the goal is to use Statix in a way that is clean and declarative, not to do optimal inference.

However, we cannot immediately use Statix' built-in first-order unification (which acts in the meta language, Statix) to implement first-order unification in the object language. Ideally when implementing beta equality when we encounter $e_1 = e_2$ we would check if e_1

is a free variable, but Statix does not allow for querying whether variables are free. The reason that Statix does not allow this is that it is non-trivial to guarantee confluence if this feature is added to the language.

Instead, we will be implementing a novel, less powerful form of first-order unification. This will work by explicitly denoting which variables *could be* free, and explicitly handling these cases in a way that approximates first-order unification. We will name this algorithm *approximated first-order unification (AFOU)*.

7.3 Implementing AFOU

First, we introduce a new constructor Infer : Expr -> Expr, which denotes the variables which could be free. The constructor is introduced when we encounter a placeholder.

```
typeOfExpr(s, Var(Syn("_"))) = (Infer(q), qt) :-
  (_, qt) == typeOfExpr(sEmpty(), q).
```

Note that the type of typeOfExpr has changed, it now returns two expressions, the first being the same expression that was passed in except with placeholders replaced with Infer constructors, and the second being the type.

¹Since Statix is turing-complete

```
typeOfExpr : scope * Expr -> Expr * Expr
```

Next when we type-check an **Infer** expression we just type-check the meta-variable inside. This will wait until the value of the meta-variable is known before type-checking, which is the behavior we want.

```
typeOfExpr_(s, Infer(q)) = (Infer(q), t) :-
    typeOfExpr_(s, q) == (_, t).
```

When beta reducing we deliberately keep the Infer expression intact, since we want to keep the information that it is an expression that might have to be inferred during beta equality checks.

betaReduce_((_, Infer(e))) = Infer(e).

Finally, the difficult part of handling inference in beta equality. There are four different cases that involve Infer expressions in beta equality, these are:

1. A value e1 on the left, an infer expression on the right. In this case we simply want to set the metavariable equal to e1. For example:

```
expectBetaEq((s1, e1@Type(_)), (_, Infer(e2))) :- e1 == e2.
expectBetaEq((s1, e1@BoolTrue()), (_, Infer(e2))) :- e1 == e2.
expectBetaEq((s1, e1@BoolFalse()), (_, Infer(e2))) :- e1 == e2.
expectBetaEq((s1, e1@BoolType()), (_, Infer(e2))) :- e1 == e2.
```

2. A complex expression e1 on the left, an infer expression on the right. In this case, we know what top-level constructor of the metavariable should be, but not necessarily the entire constructor (there might be infers in e1). We introduce new Infer expressions on the left, and call expectBetaEq recursively. A simple example for BoolIf is below:

```
expectBetaEq((s1, e1@BoolIf(c1, t1, b1)), (_, Infer(e2))) :-
e2 == BoolIf(Infer(c2), Infer(t2), Infer(b2)),
expectBetaEq((s1, e1), (sEmpty(), e2)).
```

FnType and FnConstruct work similarly, but we don't only have sub-expressions but also a name to consider. Sadly, this is the first case where we have to approximate.

```
expectBetaEq((s1, e1@FnConstruct(arg_name1, arg_type1, body1)),
    (_, Infer(e2))) :-
    e2 == FnConstruct(arg_name1, Infer(arg_type2), Infer(body2)),
    expectBetaEq_((s1, e1), (sEmpty(), e2)).
```

Ideally, we would generate a new name if e^2 is a unresolved metavariable, otherwise using the already generated name. We can't query whether e^2 is free, so as a bestattempt we always assume that e^2 is free and generate a new name, this will fail in some cases. We will discuss this in the next section.
3. An infer expression on the left, any expression on the right. We should not duplicate the previous two rules, instead, we can just swap the two expressions and re-use the rules above.

```
expectBetaEq((_, Infer(e1)), (s2, e2)) :-
        expectBetaEq((s2, e2), (_, Infer(e1))).
```

4. An infer expression on both sides. Here, more approximation is required. In normal first-order unification, we would see if either side is known, and possible apply one of the rules above depending on the result. This is not possible, so we're going to do something that approximates first-order unification: just set both sides to be equal. This is an approximation because this might fail if both sides are equal under beta equality but not identical. This approximation is analyzed in section 7.4.

```
expectBetaEq((_, Infer(e1)), (_, Infer(e2))) :-
    e1 == e2.
```

7.4 Analysis of the Approximation

The only difference between AFOU and FOU is case 2 (for functions) and case 4.

In case 2, we force the name of the function constructors to be equal. Ideally, we would generate a fresh name for the variable if and only if no name has been generated for it yet, but there is no way to tell whether this is the case so we use this approximation.

In case 4, instead of asserting that both sides are equal under beta equality, we assert that both sides are identical. Both sides being identical implies that they are beta-equal, so this approximation is sound, meaning there is no program that AFOU can infer but FOU cannot.

The approximations are not complete: There are situations where AFOU fails to infer a program that FOU can infer. However, these programs are surprisingly uncommon considering how rough the approximations are. Inference may fail when we attempt to infer function values, and two functions are inferred that are beta-equal, and they are beta-equal but not identical. An example of a program where these approximation fails is:

```
postulate f : (A : Type -> _: A -> _: A -> A);
postulate u : X : Bool -> Bool;
postulate v : Y : Bool -> Bool;
f _ u v
```

We could solve this problem in two ways:

1. We could always beta-reduce terms completely to their normal form, then terms that are beta-equal are also identical up to alpha equality. This would solve the problem in case 4, but the problem of case 2 would remain. Furthermore, doing all this beta reduction is terrible for the performance of the type checker: Beta-reducing terms may take an arbitrary amount of time, though it is guaranteed to terminate since the Calculus of Constructions is strongly normalizing [2].

2. Ideally, we want a declarative definition of the problem. To do this, we need to be able to declare that two terms that are not identical are equal, which is possible under *equational unification* [23, Section 2.1]. If this system was added to Statix, this would make implementing more powerful inference algorithms cleanly possible. This idea is explored further in chapter 13.

We have now shown how to add inference to the implementation. Next, we will add Inductive Datatypes (chapter 8) and Universes (chapter 9) to the implementation.

Inductive Data Types

8.1 Introduction to Inductive Data Types

Another useful feature is support for inductive data types. Inductive data types declare types that are defined by a list of constructors that produce the type. An example of a simple inductive datatype is the Nat type:

```
data Nat : -> Type where
    zero : Nat,
    suc : Nat -> Nat;
```

The data type has two constructors: **zero** represents the natural number zero, **suc** takes a natural number and represents the successor of that number. For example, **suc** (**suc zero**) represents 2.

We will design data types to have the same features as in Agda:

- 1. Data types may be recursive, that is the data type may take itself as one of the constructor arguments. This can be seen in the definition of Nat above.
- 2. Data types may have *parameters*, which are datatypes that are polymorphic over a certain value, that is required to be the same for all constructors, such as:

```
data Maybe (T : Type) : -> Type where
None : Maybe T,
Some : T -> Maybe T;
```

3. Data types may have *indices*, which are datatypes that are polymorphic over a certain value, that may vary from constructor to constructor, such as:

```
data Eq : (e1: Bool) (e2 : Bool) -> Type where
  refl : e : Bool -> Eq e e;
```

4. We can also combine parameters and indices, for example to create the polymorphic Eq type, which represents a proof that two values are equal. Note that the type of

parameters and indices may depend on the value earlier parameters and indices. For example, e1 and e2 have type T.

data Eq (T : Type) : (e1 : T) (e2 : T) -> Type where refl : e : T -> Eq e e;

5. Data types must be strictly positive. This ensures that we cannot make non-terminating programs¹. For example, the following data type is forbidden, because it refers to itself in a negative position. We will explain exactly how this check works in section 8.4.

```
data Bad : -> Type where
    bad : (Bad -> Bool) -> Bad;
```

A difference between Agda and our implementation is that Agda has pattern matching as a native construct, whereas we chose to use eliminators as described in Inductive families [24]. An eliminator is a function that can be used to case match on a data type. For example, the eliminator of the Nat type above is:

elim Nat : P: (v: Nat -> Type) -> P Z -> (x: Nat -> P x -> P (S x)) -> n: Nat -> P n

The general type of an eliminator for a data type N is:

```
params
-> P: (indices -> v: N params indices -> Type)
-> methods
-> indices
-> v: N params indices
-> P indices v
```

The meaning of all the arguments is:

- **params** are the parameters of the data type we want to eliminate, since these are constant among all constructors those should be specified at the start.
- P is the type that this eliminator will return. It may depend on the value v that is eliminated.
- methods is for each of the constructors of the datatype, a function that eliminates it. To eliminate a constructor of the form C : args -> N params indices it requires a function args -> P indices (C params args). For recursive datatypes, a previous case is generated, such as the P x in the eliminator of Nat above.
- indices are the indices of the value that is to be eliminated.
- v is the value that is to be eliminated.
- Finally, P indices v is the result of the elimination.

 $^{^{1}}$ After we add support for universes in chapter 9

8.2 Type-checking Data Type Declarations

In this section we will explain how to type check data type declarations using Statix. The definition of type_check for an inductive data type N is, conceptually:

- 1. Create a new scope s1 whose parent is the scope the declaration was in s0.
- 2. Declare N : Params -> Indices -> Type in s1.
- 3. We use a new scope-graph relation datatype : ID -> Expr and declare N : DataType(name, params, indices, constructors) in s1 so that we can access information about the data type later.
- 4. Create a chain of scopes starting in s1 that will contain a scope for each parameter. We will type-check each next parameter using the previous parameters scope, so that parameters can depend on previous parameters. Call the end of this chain s2.
- 5. Create a chain of scopes starting in s2 that will contain a scope for each index. We will type-check each next index using the previous index' scope, so that one index can depend on parameters and previous indices. Call the end of this chain s3. The scope s3 is not used in the rest of this process (since constructors cannot refer to indices), but creating this chain is required to check the types of the indices.
- 6. Create a new scope s4 with s1 as the parent. Then type-check each constructor with s2 as scope (so that the constructors can depend on parameters, but cannot depend on indices), and declare the constructor in s4. We must also ensure that each constructor returns the datatype it belongs to, with matching parameters, though the indices may of course vary.
- 7. Type-check the rest of the program with scope s4.

For example, figure 8.1 shows the scopes that were created during the type checking of the following inductive datatype:

data Eq (T : Type) : (e1 : T) (e2 : T) -> Type where refl : e : T -> Eq e e;

8.3 Type-checking Eliminators

This section discusses how to type check eliminators. The type of an eliminator was already discussed in section 8.1. When we type check an elim N expression, the following happens:

- 1. Query the scope to find the data type declaration that we created in point 3 of section 8.2. This gives us access to the parameters, indices and constructors of the data type that is being eliminated.
- 2. Using some tedious but conceptually simple Statix rules, create the type discussed in section 8.1. This ends up being around 100 lines of Statix code.

Figure 8.1: The scope graph generated by the Eq data type.

The second part that needs to be defined is beta reducing an eliminator. During this process, the following happens:

- 1. Query the scope to find the data type declaration that we created in point 3 of section 8.2. This gives us access to the parameters, indices and constructors of the data type that is being eliminated. (Same as during type checking)
- 2. Try to split the arguments applied to the eliminator into the groups defined in section 8.1. If this fails (because there are not enough arguments), the eliminator cannot be reduced.
- 3. Beta head reduce v, if this does not result in one of the constructors of the datatype at the head then the eliminator cannot be reduced.
- 4. Apply the relevant function that eliminates the constructor to the arguments of the datatype. Generate recursive calls to the eliminator for recursive datatypes.

This is all that needs to happen to define inductive data types. Next, we will add positivity checking.

8.4 Positivity Checking

When defining a recursive data type, we would like our datatype to be *strictly positive*, meaning that it can only be recursive on positive positions. If this check would not exist,

we would be able to create non-terminating functions using the datatype. Since under the Curry Howard correspondence this allows to prove false, this is undesirable.

To show how this is can go wrong, consider the following example:

```
data False : Set where
data Bad : Set where
bad : (Bad → False) → Bad;
self-app : Bad → False
self-app (bad f) = f (bad f)
absurd : False
absurd = self-app (bad self-app)
```

Under the curry-howard correspondence, Bad states that Bad is true if and only if Bad implies false. Since such a statement is inconsistent, we can use it to prove False. To prevent such statements, we don't allow inductive datatypes to refer to themselves negatively, checking this is called *positivity checking*. This solution is not complete (it rejects valid data types), but it is the solution most often used in practice, such as in Agda [19], Lean [13] and Coq [20].

The exact condition that is checked is that if a constructor has a function as its argument, then the argument type (A in the example below) can not refer to the declared data type.

data Bad : Set where bad : (Bad -> Bad) -> Bad -- A B C

The implementation is simply an extra check during the type checking of data type declarations, which is straight-forward to implement in Statix.

We have now shown how to add inductive datatypes to the implementation. Next, we will add Universes (chapter 9) to the implementation.

Universes

Our language so far has the property that the type of Type is Type, this is called *type in type*. This allows for *Girard's paradox*, which means that the logic created by this language is inconsistent: we can prove false [25].

9.1 Universes

The solution to this problem is to introduce universes into the language. We now have the following hierarchy of types:

true : Bool : Type 0 : Type 1 : Type 2 : ...

In the rest of this chapter we will show how universes have been implemented. It turns out to be relatively easy to add this feature to the language, only requiring a few changes.

9.2 Implementing Universes in the Calculus of Constructions

The Type constructor has to be changed to Type : int -> Expr, taking the universe of the type as an argument. We then need to update all occurrences of Type in figure 4.4. Figure 9.1 contains all the rules that require a change.

The three rules that were changed are:

- 1. The rule for type-checking a Type expression. The universe of Type u is u + 1.
- 2. The rule for type-checking FnType. The universe of FnType is the maximum of the universe of the argument and return type.
- 3. A trivial change to the rule for type-checking FnConstruct, which ignores the universe of its argument type.

 $\langle s \mid e \rangle : t$

Type checking rules with universes

$$\begin{split} \frac{\langle s \mid a \rangle : t_a & t_a \stackrel{=}{_{\beta}} \mathsf{Type}(u_a) & \langle s \mid a \rangle \stackrel{\rightarrow}{_{\beta}} a' \\ \frac{\langle \mathsf{sPutType}(s, x, a') \mid b \rangle : t_b & t_b \stackrel{=}{_{\beta}} \mathsf{Type}(u_b) \\ \hline \langle s \mid \mathsf{FnType}(x, a, b) \rangle : \mathsf{Type}(\mathsf{max}(u_a, u_b)) \\ \frac{\langle s \mid a \rangle : t_a & t_a \stackrel{=}{_{\beta}} \mathsf{Type}(u_a) & \langle s \mid a \rangle \stackrel{\rightarrow}{_{\beta}} a' \\ \frac{\langle \mathsf{sPutType}(s, x, a') \mid b \rangle : t_b}{\hline \langle s \mid \mathsf{FnConstruct}(x, a, b) \rangle : \mathsf{FnType}(x, a', t_b)} \end{split}$$

Figure 9.1: Rules for type checking the Calculus of Constructions with universes

9.3 Implementing Universes with Inductive Data Types

We change data type declarations such that the universe the datatype lives in is now explicit. For example, the Nat type now looks like this, explicitly stating that the type of Nat is Type 0.

```
data Nat : -> Type 0 where
    zero : Nat,
    suc : Nat -> Nat;
```

We need to make the following changes to the type-checking algorithm:

- 1. In point 2 of type-checking data type declarations in section 8.2, we need to return Type u instead of Type, where u is the declared universe level.
- 2. For all constructors, we need to check that the universe of the constructor arguments is smaller than or equal to u. This ensures that the datatype does actually live in the universe u.

We have now finished the type checker of the language. Next, we will discuss how to implement the back-end of the language.

Back-end

We have now fully built the front-end (parser and type checker) of our language. However, the language also needs a back-end to be usable. A back-end can be either an interpreter or a compiler, we will explore both options in this chapter.

10.1 Interpreter

It is valuable to define an interpreter for our language, because it is a way to run a program without relying on another language to compile to. For a dependently typed language specifically, it is easy to develop an interpreter, as we already needed to define the dynamic semantics of our language for type checking anyways.

However, this big advantage is also a disadvantage: Dynamic semantics would usually be defined in Stratego. We need to find a way to re-use the definition from Statix, since we don't want to repeat the definition of the dynamic semantics.

Implementation

Luckily, Statix exposes an API to Stratego that can run a Statix predicate on a term: **stx-evaluate**. Using this strategy, the actual implementation of our interpreter in Stratego is just one line: Match an expression **e** and run the functional predicate **interpret** from the **main.stx** file on it.

```
interpret : e -> <stx-evaluate(|"main", "main!interpret")> [e]
```

Then, in the main.stx file we define interpret to be beta reducing the expression in an empty scope.

interpret(e) = betaReduce((sEmpty(), e)).

These two lines are the only required changes to implement an interpreter¹. This shows that it is very straight-forward to implement an interpreter.

¹Other than changing the project config to define a button in the Spoofax UI that when pressed runs the interpret strategy on a given term

Discussion of defining in Statix versus Stratego

We defined the dynamic semantics in Statix, which comes with some advantages and disadvantages over defining it in Stratego.

An advantage of implementing the dynamic semantics in Statix instead of Stratego is that we can use scope graphs as a part of our dynamic semantics rules. As discussed in chapter 4, scope graphs are a natural way to store the environment of the language during evaluation. When dynamic semantics is defined in Stratego, a different representation of the environment would be needed.

A disadvantage is that Stratego is a domain specific language for transformations, and it has some features that would make the definitions of beta reductions shorter. For example, to define **betaReduce** in terms of **betaReduceHead** we need to match the constructor and apply **betaReduceHead** recursively. Stratego has the **topdown** traversal strategy that does the same thing without needing to be explicitly defined on all constructors.

Another disadvantage is that Stratego is specifically optimized for these transformations, for example as discussed in "Optimising First-Class Pattern Match Compilation" [26]. Therefore, the resulting interpreter will be slower when implemented in Statix.

10.2 Compiler

An alternative to writing an interpreter is writing a compiler to another language. In order to explore this avenue, we wrote a compiler to Clojure, a dynamically typed dialect of Lisp that runs on the JVM [27]. The advantage of a compiling to such a high-level language is that the actual compilation steps are relatively straight-forward, but it still shows that we can write a compiler for a dependently typed language in Spoofax.

The compiler is created while keeping in mind the Agda to Scheme compiler, available at https://github.com/jespercockx/agda2scheme. This is also a compiler from a dependently typed language (Agda) to a LISP (Scheme). We make some of the same choices as this compiler, as these choices have been proven to work.

Calculus of Constructions

Both languages support first-class functions, so we can map most constructs of our language directly onto constructs of Clojure. Therefore, most of our compiler rules look like the example below, where the constructors are compiled recursively using the compile-expr strategy, ignoring the specified types. The constructors starting with C are constructors from Clojure.

```
compile-expr : FnConstruct(x, _, b) ->
   CFn(<compile-id> x, <compile-expr> b)
```

Types require a bit more attention. Since our language has no way to match on types, types can actually be completely eliminated during compilation. The easiest way to do this is to compile all types to an arbitrary value (we chose the string "TYPE"), since the value is irrelevant anyways. A more efficient solution could be to implement type erasure [14,

Section 23.6], where type-level functions are completely removed. We decided against this as the goal of this section is to show that we can compile the language with ease, not to write an efficient compiler. This optimization was also not implemented in the Agda to Scheme compiler.

Inductive Data Types

Finally, inductive data types are a bit more challenging, as Clojure does not have an equivalent to sum types on which we can match. Instead, we compile inductive datatypes to a pair (constructor, list of constructor arguments). An eliminator can then be compiled to a function from this pair, that matches on which constructor the datatype has, and calls the corresponding argument of the eliminator function. This is the same approach that the Agda to Scheme compiler takes.

We did not end up implementing this, data types are not supported by the current implementation of the compiler. However, we see no reason why this couldn't be implemented identically to the Agda to Scheme compiler.

The implementation of the language is now complete, both the type checker and the back-end. We will now discuss editor services (chapter 11) and compare the implementation with implementations in Haskell (chapter 12) and LambdaPi (chapter 13).

Semantic Code Completion

When a language is implemented in Spoofax, we give a declarative definition of the language. Spoofax then generates the parser, type checker and compiler for us. An additional benefit of these declarative definitions is that Spoofax can use them to generate editor services, such as *go to definition, renaming* and *semantic code completion*.

We explored how semantic code completion presented by Pelsmaeker et al. [28] applies to dependently typed languages. Code completion is an editor service in IDEs that proposes code fragments for the user to insert at the caret position in their code. We chose to explore code completion specifically because deciding if a fragment is relevant to propose requires reasoning about the types of the fragments, which may be more difficult in the case of dependent types. We will show that Spoofax can use the declarative definition correctly and that it has no problem with semantic code completion for dependently typed languages.

11.1 Setup required

To set up editor services, we followed the steps of the "How to Enable Semantic Code Completion" guide of the Spoofax documentation [29]. To be precise, we followed the following steps:

- 1. Add tego-runtime {} and code-completion {} to the spoofax.cfg file, to enable code completion.
- 2. Add the following rules to the main.str2 file, to pre-process and post-process the AST for code completion.

```
rules
downgrade-placeholders = downgrade-placeholders-MyLang
upgrade-placeholders = upgrade-placeholders-MyLang
is-inj = is-MyLang-inj-cons
pp-partial = pp-partial-MyLang-string
pre-analyze = explicate-injections-MyLang
post-analyze = implicate-injections-MyLang
```

3. For each rule define a predicate that accepts a placeholder where a syntactic sort is permitted. For our language, those are the following:

```
expectBetaEq((_, Expr-Plhdr()), _).
expectBetaEq(_, (_, Expr-Plhdr())).
betaReduceHead((_, Expr-Plhdr())) = _
betaReduce((_, Expr-Plhdr())) = _.
typeOfExpr(_, Expr-Plhdr()) = _.
programOk(Start-Plhdr()).
```

11.2 Quality of suggestions

In order to get suggestions, we can now insert a placeholder [[Expr]] and press ctrl + space in the editor to get semantic suggestions.

It works well, only showing completions that are semantically relevant. For example, given the following code it only suggests expressions that can be booleans:

let f = \b: Bool. b; f [[Expr]]

Requesting suggestions from spoofax for this placeholder gives the following suggestions:

- [[Expr]] [[Expr]]
- let [[ID]] = [[Expr]]; [[Expr]]
- true
- false
- if [[Expr]] then [[Expr]] else [[Expr]] end

Note that **f** and **Type** are not suggested, since they cannot have type **Bool**. Function application (the [[Expr]] [[Expr]] suggestion) is suggested since functions can return booleans, similar to let bindings. We have tried quite a few cases and we conclude that semantic code completion works well for dependently typed languages.

We have now discussed semantic code completion. Next, we will compare the implementation with one in Haskell (chapter 12) and LambdaPi (chapter 13).

A comparison with conventional implementations

In this chapter, we implement the language defined in chapter 4 in Haskell, and then compare the implementation with the implementation in Statix. We want the design of the implementation in Haskell to be representative of conventional implementations of dependently typed languages, so we can use it to compare the Statix implementation with them.

12.1 Defining the AST

To implement the calculus of constructions in Haskell, we first define the inductive datatype **Expr**. We chose to define the language using de Bruijn indices, since this is the convention when implementing dependently typed languages, and the goal of this implementation in Haskell is to compare the Statix implementation with conventional ones.

```
data Expr =
   Type
   Let Expr Expr
   Var Int
   FnType Expr Expr
   FnConstruct Expr Expr
   FnDestruct Expr Expr
```

There is a constructor for each constructor in our language. The difference with the implementation in Spoofax is that the Let, FnType, and FnConstruct no longer store an identifier, instead they introduce a new binding into their body, which are accessible by their de Bruijn indices.

12.2 Defining Environments

Next, we need to decide how we want to store the environment. We still need to store both function arguments and substitutions, which we called NType and NSubst in chapter 4.

We will use the same names, and store the environment as a list, with the head of the list representing de Bruijn index 0. Finally, we define the type of a scoped expression SExpr, as a tuple of an environment and an expression.

```
data EnvEntry = NType Expr | NSubst SExpr
type Env = [EnvEntry]
type SExpr = (Env, Expr)
```

The way these environments are defined is isomorphic to the way we defined the way we use scope graphs in section 4.2. Nodes in the scope graph have at most one parent, and each node stores one entry, which is exactly the structure of a list. For example, the following scope graph and list have the same meaning:

The nodes in scope graphs may have multiple children, but we never query the children of a node. We only follow the edges, we don't go in the opposite direction. Similarly, part of a list may be shared, but this is fine in Haskell, since values are immutable.

Finally, we define the two functions sPutSubst and sPutType to mimic the Statix relations with the same name.

```
sPutSubst :: Env -> SExpr -> Env
sPutSubst env v = NSubst v : env
sPutType :: Env -> Expr -> Env
sPutType env v = NType v : env
```

12.3 Defining Type Checking

Next we need to define type checking. We define a function tc:

```
tc :: SExpr -> Either String Expr
```

The function returns a String in case of an error, or a Expr which is the type of the expression. This is different than in Statix, where errors are automatically created during type checking by Statix. We use the power of the Either String monad to our advantage, so we can define our function using *do blocks*. For example, compare the implementation of Let in figure 4.4 (repeated below for convenience) with the implementation in Haskell:

```
tc (s, Let e b) = do
    _ <- tc (s, e)
    bt <- tc (sPutSubst s (s, e), b)
    pure (shift (-1) 0 bt)</pre>
```

$$\frac{\langle s \mid e \rangle : t_e \qquad \langle \mathsf{sPutSubst}(s, x, (s, e)) \mid b \rangle : t_b}{\langle s \mid \mathsf{Let}(x, e, b) \rangle : t_b}$$

We are using do blocks to pass errors through the type checking function. The only significant difference with the inference rule is that we need to shift the resulting type by one, since the binding of the let-bound variable does not exist at the type level. This shifting is required for variables too, other than this the inference rules are converted directly to cases of the Haskell function.

12.4 Defining Beta Reduction

During type checking evaluation may be needed, so we need to define beta reduction. Remember that in Statix, beta head reduction is a relation with the signature:

```
betaReduceHead :
    (scope * Expr) * list((scope * Expr)) -> (scope * Expr)
```

In Haskell, a slightly different structure was used. We defined two functions, one returning a Maybe SExpr and the other checking if the result Nothing, in which case it returns the original expression (unreduced). This structure could also be implemented in Statix, but Haskell makes it a bit easier for us by providing the Maybe type and functions on it.

brh :: SExpr -> SExpr brh e = fromMaybe e (brh_ e []) brh_ :: SExpr -> [SExpr] -> Maybe SExpr

Now we can define beta head reduction as cases of brh_, returning Nothing if the expression cannot be reduced, in which case brh will take the original expression. The cases correspond directly to the cases of figure 4.2.

12.5 Comparison

The base implementations of the language are quite similar. One difference is the way the definitions are spread. In Statix, one could put each language construct in a separate file, keeping the definitions for that construct together. In the Haskell implementation this is not easily possible¹, since function definitions can not be split over a file.

Another advantage that Statix has is that it has first-order inference built-in, which makes implementing a basic form of inference as described in chapter 7 way easier. However, if we want a more complex form of inference then an implementation in Haskell would be better, since it is a more expressive language and it has more libraries available.

¹We could still define a function that then calls the actual implementation in the separate files, but this is still inferior to the Statix implementation.

Finally, creating the language in Spoofax automatically gives us editor services such as code highlighting and semantic autocompletion, as discussed in chapter 11. Implementing these in Haskell would require some work.

A comparison with implementations in logical frameworks

In chapter 7 we discussed how to implement inference algorithms, and we concluded in section 7.4 that adding equational unification to Statix would make inference algorithms easier to implement. In this chapter we explore this further, by implementing our dependently typed language in a logical framework.

A logical framework is a language that provides a means to define a type system. There exist several *logical frameworks*, designed specifically for implementing and experimenting with dependent type theories, such as ALF [30], Twelf [31], Dedukti [32], Elf [33] and Andromeda [34]. Since these tools are designed specifically for the task, implementing the type system takes less effort in them compared to Spoofax, but for other tasks such as defining a parser or editor services they are not as well equipped.

In this chapter we will be implementing the language defined in chapter 4 in lambdapi, a proof assistant based on the $\lambda\Pi$ -calculus modulo rewriting [32].

13.1 Defining Symbols

We will define a symbol in the meta language (lambdapi) for each construct in the object language. The result is visible in figure 13.1. We will leave Let out of the language for now, it will be discussed separately in section 13.3.

First, TmSort : TYPE is the meta-language type of a type in the object language. So in any place where we say A : TmSort, this means A is a type in the object language. Next, $TmType : (a : TmSort) \rightarrow TYPE$ is the meta-language type of a term of type a in the object language. So if we have x : TmType Bool then x is a boolean in the object language.

Now we will define a symbol for each construct in the language we are defining.

1. Type is a type.

```
constant symbol TmSort : TYPE;
symbol TmType : II (a : TmSort), TYPE;
constant symbol Type : TmSort;
constant symbol FnType :
  \Pi (A : TmSort),
  \Pi (B : TmType A \rightarrow TmSort),
TmSort;
symbol FnConstruct :
  \Pi (A : TmSort),
  \Pi (B : TmType A \rightarrow TmSort),
  \Pi (f : \Pi (x : TmType A), TmType (B x)),
  TmType (FnType A B);
symbol FnDestruct :
  \Pi (A : TmSort),
  \Pi (B : TmType A \rightarrow TmSort),
  Π (f : TmType (FnType A B)),
  \Pi (a : TmType A),
  TmType (B a);
```

Figure 13.1: Symbols of the Calculus of Constructions

- 2. FnType is a type, but it takes two arguments: A is the argument type and B is the return type, which is allowed to depend on a value of the argument type.
- 3. FnConstruct takes three arguments: A is the argument type, B is the return type (allowed to depend on A again), and f is a function in the meta language of type x : A -> B x.
- FnDestruct takes four arguments: A is the argument type, B is the return type (allowed to depend on A again), a term of type A → B and an argument of type A.

Note that these constructors can only represent type-correct terms, *intrinsically typed* terms. This is useful because it means the meta language does the type checking for us. The disadvantage is that it requires extra information: We need to give B for FnConstruct and A and B for FnDestruct, which is information we don't have to provide to type-check terms in Statix. These could easily be automatically generated by a type checker but are tedious to specify manually. It seems like it should be possible to infer these, but lambdapi fails to do so. Further research is required to find out why lambdapi does not infer these.

13.2 Reduction Rules

We now define the *reduction rules*, which define how to reduce the language. A rule $a \hookrightarrow b$ states that **a** reduces to **b**. We reduce the constructs in our language to constructors in

lambdapi, this is called *embedding* the language. Lambdapi can then evaluate the rules using its own semantics, not requiring any additional rules similar to the ones in figure 4.2. It is also possible to define the rules in 4.2 using reduction rules, but this way of defining reduction rules is much simpler. The reduction rules are given in figure 13.2. Each of the constructs is reduced to the corresponding construct in the meta language.

```
rule TmType Type \hookrightarrow TmSort;
rule TmType (FnType $A $B) \hookrightarrow \Pi (x : TmType $A), TmType ($B x);
rule FnConstruct _ _ $f \hookrightarrow $f;
rule FnDestruct _ _ $f $a \hookrightarrow $f $a;
```

Figure 13.2: Reduction Rules for the Calculus of Constructions

13.3 Defining Let Bindings

Let bindings require substitution, which is not possible to encode in lambdapi. We can encode a less powerful version of let bindings, which are not substituted but evaluated via functions. The definition of this is given in figure 13.3. The body of the let binding is allowed to depend on a value of type A, but it is not aware of the exact value v of the let binding.

```
symbol Let :
    Π (A : TmSort),
    Π (B : TmType A → TmSort),
    Π (v : TmType A),
    Π (b : TmType A → TmType (B v)),
    TmType (B v);
rule Let _ _ $v $b ↔ $b $v;
```

Figure 13.3: Definition of less powerful Let in LambdaPi

One program which would not type-check with this approach is the following. It fails to compile since it cannot know that b is a boolean, which is required by the definition of f¹.

```
let T = Bool;
\f: Bool -> Bool;
\b: T. f b
```

We could solve this problem by not defining our program as an embedding, instead defining it using the reduction rules in figure 4.2. This results in a definition very close to the one in Statix, except that instead of a beta reduction relation we use the reductions built-in to the language, which solves the problem.

¹Assuming we introduce booleans into the language, there are examples that don't require booleans but they are a bit more difficult to understand

13.4 Comparison

In this chapter we've defined the calculus of constructions by embedding it into LambdaPi. This is a declarative definition, similarly to Statix and unlike Haskell. However, since we are embedding the language into LambdaPi, the dynamic semantics of the language are now defined in terms of the dynamic semantics of LambdaPi. This means that the features our language can have are limited by the features of LambdaPi, this means it was impossible to define Let bindings the way we wanted to.

The static semantics of the language are defined by the way we create our terms. This is quite flexible, though less flexible than Statix since for example we have no control over the scoping rules (such as shadowing) of the language, which would be controlled by scope graphs in Statix.

The conclusion is that embedding a language in LambdaPi is primarily useful if we want to verify the implementation of our language is correct, which is one of the primary use cases of LambdaPi. Using it as a compiler for the language is not the intention behind LambdaPi, which is clear from the limitations we've mentioned above. We believe this comparison was still insightful, as it shows how compact an implementation in Statix could be if Statix would have equational unification.

We've now discussed equational unification using lambdapi, which is a feature that we suggest could improve Statix. Other possible improvements are discussed in chapter 14.

Ergonomics of Spoofax

Now that we've implemented a feature-rich dependently typed language in Statix, this chapter discusses the experience, and recommends some changes to Statix and Spoofax which might improve the experience.

14.1 Statix

Statix is a simple language, not supporting too many complex features. This works well in some ways, but having some more features available could improve the experience drastically. Some features that would've helped this project create better code are:

- 1. Allow specifying reduction rules, and then implement equality under reduction in Statix. This feature was discussed extensively in chapter 13. This would require extensive changes to the core language of Statix, so this is challenging to implement.
- 2. Nested constraints: Defining a constraint that can use the metavariables of a parent constraint. This works similar to nested function definitions. For example, for type checking datatypes:

```
typeOfExpr_(s, DataTypeDecl(n, ps, is, ue, cs, b)) = ... :-
isStrictlyPositive : (scope * Expr)
isStrictlyPositive(s, FnType(...)) = ...
```

The definition of isStrictlyPositive can then use all the metavariables of DataTypeDecl without having to explicitly pass them. This feature could be desugared by moving the relation to the global scope and explicitly passing the metavariables of the parent constraint when it is used.

3. Generic constraints. For example, we created two separate relations for reversing lists of different types, making these one generic function would have been better. This was the only case where this feature would have been useful for this thesis, but it may be more useful for other work. This could be implemented by monomorphization or by changing the core language.

14.2 Spoofax

Next we will describe our experience with Spoofax as a whole.

- 1. Spoofax is still slow, even though its performance has improved over the past years. On a high-end computer¹, we took the following measurements.
 - Full build (non-incremental) takes 55 seconds
 - Incremental build changing only one Statix file takes 5 seconds
 - Running all 171 tests takes 18 seconds

While these numbers are not unworkably high, they are still magnitudes higher than the implementation in Haskell (chapter 12) and other general-purpose languages. Improving these numbers would make the experience better.

- 2. The SPT testing DSL works very well, it makes writing integration tests very easy. However, support for unit tests is still lacking. The way to create unit tests for the type checker is using Statix tests, allowing assertions on specific relations. But these tests are not integrated with SPT tests (they don't even reside in the test folder) and there is no way to run all Statix tests, to ensure no regressions happened. Ideally there would be one button that runs all SPT and Statix tests.
- 3. Debugging Statix is still quite tedious. When we have a constraint that does not do what we expect it to do (ie. we have a failing Statix test), one either has to stare at its definition until they figure out the problem, or start unfolding the definitions of the constraints into the Statix test, finding out which part of the definition is misbehaving and repeating the unfolding. Having support for a debugger would help tremendously with this.

The way that this debugger could work is that you could start by entering a certain constraint typeCheck(...), the debugger would then show the current value of each metavariable in scope, and each constraint that is yet to be expanded. Since there is no fixed evaluation order in Statix, we could even allow the programmer to choose which constraint is evaluated next, which then generates more constraints.

¹Intel i7 6700k @ 4.2GHz, 16 GB Ram @ 2133MHz, Arch Linux @ Jan 2023, Spoofax 3 v0.19.2

Related Work

We now discuss some work that is related to the topics in this thesis. This thesis implements a dependently typed language in Statix. We compare this implementation with implementations of other languages in Statix, and with implementations of other dependently typed languages.

15.1 Other languages implemented in Statix

In this thesis, we implemented a dependently typed language in Statix. In the following work, other languages are implemented in Statix:

Scopes as Types The implementation in this paper requires performing substitutions in types immediately, as types don't have a corresponding scope to store substitutions. Van Antwerpen et al. [4, 10, sect 2.5] present an implementation of System F in Statix that does lazy substitutions, by using scopes as types. Each type is represented by a scope, and these scopes have edges to other scopes in case of quantifications and substitutions. Our Statix implementation does lazy substitutions in the expressions of our language, but not in the types. This is a minor compromise since types tend to stay quite small, but it is still a compromise. Further research is needed to see if this approach could also apply to dependently typed languages, where types can contain arbitrary terms.

Correct by Construction Language Implementations Arjen Rouvoet [35] describes how to create a declarative specification of a language in Statix, and then to use a dependently typed language to integrate the specification of well-typing in the representation of the program that is being interpreted or transformed. The work from this thesis and ours could be combined, by using our dependently typed language implemented in Statix, to do this verification, as another Statix DSL. This could make the presented approach integrate better with the ecosystem of Spoofax.

15.2 Other dependently typed languages

We already implemented the calculus of constructions in Haskell (chapter 12) and LambdaPi (chapter 13), and compared the implementation in Statix with these implementations.

Below are some more implementations dependently typed languages, we discuss what make these languages unique and if these languages could be implemented in Statix:

Bidirectional Typing In chapter 12 we compared the implementation in Statix with an implementation in Haskell. The pi-forall language [36] is a language with a similar complexity to the language presented in this thesis. In principle, the implementations are very similar. For example, the type checking rules of pi-forall are similar to the type checking rules presented in figure 4.4 from this paper. The primary difference is that they use a bidirectional type system [37] to do some inference, whereas this paper uses Statix' unification. Another difference is that pi-forall does not use de Bruijn indices but instead uses the Unbound library in Haskell.

Agda Agda is one of the most used dependently typed languages [19]. It is implemented in Haskell, with full editor support for Emacs, VS Code, Atom and Vim. Interacting with the language is often done by giving commands to a language server, for example one can press Ctrl+C Ctrl+A to do automatic proof search. These commands give feedback in a separate view in the editor.

Other dependently typed languages such as Lean and Coq have similar views to interact with the language. In general, when working with dependently typed languages there is a lot of these kinds of interactions between the IDE and the developer. Spoofax currently does not have support for defining shortcuts or adding these views to Eclipse, but there are no fundamental issues that would prevent this from being implemented.

Conclusion

This thesis presents an implementation of a dependently typed language in Statix. Our aim was to answer the following research questions:

RQ1: Can the Calculus of Constructions be implemented in Statix? As we demonstrated in chapter 4, the Calculus of Constructions can be implemented concisely in Statix, by storing substitutions in the scope graph. We defined the beta-reduction, beta-equality and type checking rules and then converted them to Statix code. Beta reduction was defined using a Krivine machine. In chapter 5 we solved the variable capture problem which the naive implementation from chapter 4 suffered from, by using scoped names.

RQ2: Is the implementation is easily extendable? We showed in chapter 6 that the implementation is easily extendable, by extending it with booleans, postulate, and type assertions. We define a four step process that can be used to extend the language, which we also use to answer the remaining research questions.

RQ3: Can we add inference to the implementation? In chapter 7 we discuss how to add inference to the implementation. If we want to keep the implementation clean and concise, we need to compromise on how powerful the inference algorithm is, by defining an approximated version of first-order inference. We implemented this algorithm in a concise way. In chapter 13 we explore how we could define the language in a language supporting equational unification, adding this to Statix would allows for a more powerful inference algorithm to be cleanly implemented.

RQ4: Can we add support for inductive data types to the implementation? Chapter 8 adds support for inductive data types with parameters and indices. We give steps for type-checking data type declarations. Additionally, we give each data type an eliminator and show how to type-check and beta reduce eliminators. Finally, we show that positivity checking can be implemented concisely.

RQ5: Can we add support for universes to the implementation? In chapter 9 we showed that we can add universes to the language. This can be done easily and concisely.

16.1 Future Work

While the language as implemented currently is fully usable, there are still some open questions.

Adding more features to the language

In this thesis we created a language that already has a lot of features: Inductive datatypes, universes, and a basic inference algorithm. In chapter 6 we also specified the general steps that are needed to extend the language with new constructs. However, in comparison with languages such as Agda a lot of features are still missing, among which are:

- Support for universe polymorphism [19, Universe Levels], which allow functions and inductive data types to be polymorphic over a certain universe level. For example, this allows to define a List data type that can be both a list of values and a list of types without defining it twice. Agda has quite a rather involved definition of equality between universe levels, which may be difficult to implement in Statix, but at least a simple version of universe polymorphism should be possible to implement in Statix.
- Another feature of Agda is dependent pattern matching, as described by Coquand [38]. Dependent pattern matching is complex because it requires interleaved type checking and desugaring, which is problematic since desugaring is usually done in Stratego, while type checking is done in Statix. The solution may be to do the desugaring in Statix instead, but at some point this is not ideal, since Statix is not meant for this. More research is needed on a good solution for this problem.
- Inference in our language is currently implemented by explicitly specifying a placeholder _ where inference is required. In Agda we can specify an implicit argument, which is automatically inferred unless explicitly provided. It can be tricky to determine when an implicit argument has to be inserted, since this may require some type information [39]. More research is needed on whether the solution from this paper can be implemented in Statix.
- Instance Arguments are a special kind of implicit arguments, that are solved by the instance resolution algorithm of Agda [19, Instance Arguments]. They can be used similarly to type class constraints, in order to restrict the data types over which a term is polymorphic, for example requiring the terms to have an implementation of equality. The instance resolution algorithm should be possible to implementing by traversing the scope graph (since it is linear), and checking whether each let binding is a possible solution similar to the Agda implementation.

- Agda has holes, which allows the user of the language to build proofs interactively. One of these interactions is proof search, when triggered Agda will try to find a term that fits the expected type of a hole. The interactive part of this was discussed in chapter 15, this is not yet supported by Spoofax. After support for this is added, a proof search algorithm could be implemented in Stratego, such as the structurally recursive unification algorithm described by McBride [40]. The holes system that was introduced for semantic code completion (chapter 11) could be re-used for this purpose. Running the algorithm may require running type checking code, so here we encounter the interleaving problem again. More research is needed on whether proof search can be implemented in Spoofax.
- Agda allows for compile-time irrelevance annotations, which are a marker stating that the value of a certain variable is irrelevant, only that the type is non-empty matters [19, Irrelevance]. This can simplify some proofs, since all values of this type are considered equal. We see no reason why this couldn't be implemented in Statix.
- Agda allows function arguments to be marked as erased, meaning that the value will be erased at runtime. This is different than irrelevance annotations, as the value is still available at compile time. An even stronger version of this feature is implementing a quantitive type system, such as in Idris 2 [41], which combines linear and dependent types. Implementing this in Spoofax should be possible, but it may be quite a bit of work as it is a complex type system.
- Agda has mixfix operators, which allows to define custom operators such as a && b [19, Mixfix Operators]. This requires parsing to happen in multiple stages, where the first stage finds the mixfix operator definitions and the second stage parses expressions using them [42]. This results in quite a complex parser, implementing these multiple stages in Spoofax using SDF3 is not possible without fundamental changes to the way that Spoofax works. One solution would be using an *adaptive parsing algorithm*, which allows modification of the grammar during parsing. More research is needed to explore the possibilities of solving this problem.
- Another thing that could be explored is creating a module system for a dependently typed language in Spoofax. At the time of writing, Agda has a module system which is quite powerful (including parameterized modules), but the implementation is quite naive by substituting the modules into the code when imported [19, Modules]. Spoofax's scope graphs allow to create a module system with ease, simply by adding extra *import* edges between scopes. Future research is needed on if Agda's module system could be implemented using scope graphs.
- Currently the language in the paper does not allow for recursive functions. Agda allows for functions that are structurally recursive (as well as mutually structurally recursive), and uses termination checking to enforce this property. We see no reason why this couldn't be cleanly implemented in Statix, similar to the implementation of positivity checking in chapter 8.

Implementing other complex type systems in Statix

In this paper we have shown that a dependent type system can be implemented in Statix, one of the goals being to show the power of Statix. To further show this goal, more different kinds of type systems could be implemented in Statix:

- There has not yet been an implementation of a sub-structural type system in Spoofax. A sub-structural type system is a type system that places restrictions on how often variables can be used. Now that languages with sub-structural type systems, such as Rust, are becoming popular, we should see if the goal of Statix to cover a broad range of type systems, still holds true for these.
- Effect systems are a formal system that describe the side effects of a program. These allow programmers to specify what side effects a function has, which can then be verified by a type checker. Researching whether an effect system could be cleanly specified in Statix may lead to more insights on the limits of Statix.
- As mentioned above, implementing a quantitive type system, such as in Idris 2 [41], would be an interesting extension to this thesis.

Bibliography

- [1] Henk Barendregt. Introduction to generalized type systems. *Journal of Functional Programming*, 1(2):125–154, 1991.
- Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Computation, 76(2–3):95–120, Feb 1988.
- [3] Lennart Kats and Eelco Visser. The spoofax language workbench. ACM SIGPLAN Notices, 45:237–238, 10 2010.
- [4] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes as types. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1– 30, 2018.
- [5] Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name resolution. In Jan Vitek, editor, Programming Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes in Computer Science, pages 205–231. Springer, 2015.
- [6] Luís Eduardo de Souza Amorim and Eelco Visser. Multi-purpose syntax definition with sdf3. In Software Engineering and Formal Methods: 18th International Conference, SEFM 2020, Amsterdam, The Netherlands, September 14–18, 2020, Proceedings, page 1–23, Berlin, Heidelberg, 2020. Springer-Verlag.
- [7] Eelco Visser. Scannerless generalized-LR parsing. Technical Report P9707, Programming Research Group, University of Amsterdam, July 1997.
- [8] H. Jong, P. Olivier, Copyright Stichting, Mathematisch Centrum, Paul Klint, and Pieter Olivier. Efficient annotated terms. Software: Practice and Experience, 30, 03 2000.
- [9] Aron Zwaan. Composable type system specification using heterogeneous scope graphs. Master's thesis, Delft University of Technology, January 2021.

- [10] Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name resolution. In Jan Vitek, editor, Programming Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes in Computer Science, pages 205–231. Springer, 2015.
- [11] Curry-howard correspondence. https://www.cs.cornell.edu/courses/cs3110/ 2021sp/textbook/adv/curry-howard.html, June 2021.
- [12] CNRS Inria and contributors. Core language of coq.
- [13] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp, editors, *Automated Deduction - CADE-25*, pages 378–388, Cham, 2015. Springer International Publishing.
- [14] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 1 edition, February 2002.
- [15] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher Order Symbol. Comput., 20(3):199–207, sep 2007.
- [16] G.D. Plotkin. Call-by-name, call-by-value and the -calculus. Theoretical Computer Science, 1(2):125–159, 1975.
- [17] Philip Wadler. https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt, Nov 1998.
- [18] Manuel Leduc, Thomas Degueule, Eric Van Wyk, and Benoît Combemale. The software language extension problem. Software and Systems Modeling, 19(2):263–267, 2020.
- [19] Agda. Agda documentation. https://agda.readthedocs.io/en/v2.6.3/, 2023.
- [20] Coq. Coq documentation. https://coq.inria.fr/refman/index.html, 2023.
- [21] Adam Michael Gundry. Type inference, Haskell and dependent types. PhD thesis, University of Strathclyde, Glasgow, UK, 2013. British Library, EThOS.
- [22] Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple unification. In Peter Schroeder-Heister, editor, Extensions of Logic Programming, International Workshop, Tübingen, FRG, December 8-10, 1989, Proceedings, volume 475 of Lecture Notes in Computer Science, pages 253–281. Springer, 1989.
- [23] Jörg H. Siekmann. Unification theory. In ECAI, pages 365–400, 1986.
- [24] Peter Dybjer. Inductive families. Formal Aspects of Computing, 6:440–465, 01 1994.

- [25] J.Y. Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur. 1972.
- [26] Toine Hartman. Optimising first-class pattern match compilation. Master's thesis, Delft University of Technology, 2 2022.
- [27] Rich Hickey. The clojure programming language. In Proceedings of the 2008 Symposium on Dynamic Languages, DLS '08, New York, NY, USA, 2008. Association for Computing Machinery.
- [28] Daniel A. A. Pelsmaeker, Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser. Language-parametric static semantic code completion. *Proceedings of the ACM* on Programming Languages, 6(OOPSLA1), apr 2022.
- [29] Metaborg. How to enable semantic code completion spoofax 3. https://spoofax. dev/spoofax-pie/develop/guide/static-semantics/code-completion/. Accessed: 2023-01-27.
- [30] Lena Magnusson and Bengt Nordström. The alf proof editor and its proof engine. In Henk Barendregt and Tobias Nipkow, editors, *Types for Proofs and Programs*, *International Workshop TYPES 93, Nijmegen, The Netherlands, May 24-28, 1993*, *Selected Papers*, volume 806 of *Lecture Notes in Computer Science*, pages 213–237. Springer, 1993.
- [31] Frank Pfenning and Carsten Schürmann. System description: Twelf a meta-logical framework for deductive systems. In Automated Deduction - CADE-16, 16th International Conference on Automated Deduction, Trento, Italy, July 7-10, 1999, Proceedings, volume 1632 of Lecture Notes in Computer Science, pages 202–206. Springer, 1999.
- [32] Mathieu Boespflug, Quentin Carbonneaux, and Olivier Hermant. The lm-calculus modulo as a universal proof language. In David Pichardie and Tjark Weber, editors, *Proceedings of the Second International Workshop on Proof Exchange for Theorem Proving, PxTP 2012, Manchester, UK, June 30, 2012*, volume 878 of CEUR Workshop *Proceedings*, pages 28–43. CEUR-WS.org, 2012.
- [33] Frank Pfenning. Logic programming in the LF logical framework, page 149–182. Cambridge University Press, 1991.
- [34] Andrej Bauer, Philipp G. Haselwarter, and Anja Petkovic. Equality checking for general type theories in andromeda 2. In Anna Maria Bigatti, Jacques Carette, James H. Davenport, Michael Joswig, and Timo de Wolff, editors, Mathematical Software ICMS 2020 7th International Conference, Braunschweig, Germany, July 13-16, 2020, Proceedings, volume 12097 of Lecture Notes in Computer Science, pages 253–259. Springer, 2020.
- [35] Arjen Rouvoet. Correct by Construction Language Implementations. PhD thesis, Delft University of Technology, 2021.

- [36] Stephanie Weirich. Implementing dependent types in pi-forall, 2022.
- [37] Jana Dunfield and Neel Krishnaswami. Bidirectional typing. ACM Comput. Surv., 54(5), may 2021.
- [38] Thierry Coquand. Pattern matching with dependent types. 1992.
- [39] András Kovács. Elaboration with first-class implicit function types. Proc. ACM Program. Lang., 4(ICFP), aug 2020.
- [40] Conor McBride. First-order unification by structural recursion. Journal of Functional Programming, 13(6):1061–1075, 2003.
- [41] Edwin C. Brady. Idris 2: Quantitative type theory in practice. In Anders Møller and Manu Sridharan, editors, 35th European Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
- [42] Nils Anders Danielsson and Ulf Norell. Parsing mixfix operators. In Sven-Bodo Scholz and Olaf Chitil, editors, *Implementation and Application of Functional Languages* - 20th International Symposium, IFL 2008, Hatfield, UK, September 10-12, 2008. Revised Selected Papers, volume 5836 of Lecture Notes in Computer Science, pages 80–99. Springer, 2008.