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 

Abstract— This paper, deals with application of the Secant-

Bootstrap Method (SBM) to solve the Closed-form forward 

kinematics of a new three degree-of-freedom (DOF) parallel 

manipulator with inextensible limbs and base-mounted actuators. 

The manipulator has higher resolution and precision than the 

existing three DOF mechanisms with extensible limbs. This 

methodology has been utilized to achieve approximate solutions 

for nonlinear equations of kinematic of Tip-Tilt-Piston (T.T.P) 

Parallel Manipulator. The SBM is a novel methodology which 

moderate disadvantage of the traditional numerical techniques. 

The excellent agreement of the Secant-Homotopy Continuation 

solutions with the traditional numerical methods such as the 

Newton–Raphson method could be established without 

aberration. SBM for the forward kinematic of T.T.P Parallel 

Manipulator leads to 16 solutions that are eight pairs of reflected 

configurations with respect to the base plane. 

 
Index Term—  Forward Kinematic, Tip-Tilt-Piston, Parallel 

Manipulator, Secant-Bootstrap Method. 

 

I. INTRODUCTION 

Forward kinematics of a parallel manipulator is much more 

difficult than its inverse kinematics; whereas, for a serial 

manipulator, the opposite is true. Parallel mechanisms are 

most suitable for applications in which the requirements for 

precision, rigidity, load-to-weight ratio, and load distribution 

are more important than the need for a large workspace 

[1].The Stewart-Gough platform [2] is probably the first six 

degree-of-freedom (DOF) parallel mechanism which has been 

studied in the literature. Several researchers have analyzed the 

forward kinematic of parallel mechanism [3-8] and it also has 

growing applications to robotics. 

The forward kinematics of serial manipulators is 

straightforward while their inverse kinematics is quite 

complicated requiring the solution of a system of nonlinear 

equations. In contrast, the inverse kinematics of parallel 

manipulators is relatively straightforward and the forward 

kinematics is challenging [9]. 

In the process of solving the kinematics problem of a robot, 

some troublesome simultaneous equations will be generated, 

especially simultaneous non-linear equations [10]. To date, we 

already have many different methods that can deal with 

 
 

simultaneous non-linear equations, such as the Newton–

Raphson method [11-12] homotopy continuation method [13-

15], secant-bootstrap method [16-17] as advanced model of 

homotopy continuation method.  

Homotopy continuation method was used by kinematicians in 

the 1960s for solving mechanism synthesis problems. The 

latest development had been made by Morgan [18-19], Garcia 

[20] and Allgower [21]. Wu [11-14] presented some 

techniques by combining Newton’s and homotopy methods to 

avoid divergence in solving nonlinear equations. The 

homotopy continuation method was known as early as in the 

1930s. This method was used by kinematicians in the 1960s 

was used by kinematicians in the 1960s for solving 

mechanism synthesis problems. Also, Wu [14] applied the 

homotopy continuation method to search all the roots of the 

inverse kinematics problem of a robot and obtained more, but 

not all, convergence answers than the Newton–Raphson 

method. Recently this method applied for kinematics problem 

of robot manipulators [21]. In Ref.[16] by Wu, the traditional 

Newton–Raphson method has been modified by the secant 

theory, and the homotopy continuation technique has been 

applied to a new secant-bootstrap  formula. 

In this paper secant-bootstrap method has been considered to 

solve the nonlinear equations in forward kinematic analysis of 

Tip-Tilt-Piston (T.T.P) Parallel Manipulator. 

For this sake, the paper has been organized as follows: 

In Section 2, we describe secant-homotopy continuation 

method; we will study the properties of the Kinematics model 

of Tip-Tilt-Piston Parallel Manipulator in section 3.Also we 

applied a numerical example in Section 4. Eventually, the last 

section contains one of the most significant findings of the 

paper. 

 

II. DESCRIPTION OF SECANT-BOOTSTRAP METHOD 

WhenWhen dealing with any numerical problem, e.g., the 

Newton–Raphson method, there are two troublesome 

questions. One is that good initial guesses are not easy to 

detect and another is related to whether the method we use 

will converge to useful solutions [16-17]. The secant-bootstrap 

method can eliminate these shortcomings.  As we know, there 

are two kinds of nonlinear equations: they are nonlinear 

equations and simultaneous nonlinear equations, shown as 
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Eqs. (1) and (2), respectively:  
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The Newton–Raphson iteration forms of these equations are 
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If the derivative ( )f x  or 




f

x
is difficult or not available, 

these iteration forms will be not used. Then we can apply the 

secant theory 
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Substituting Eqs.(5) and (6) into Eqs.(3) and (4) to yield 
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The above two equations will become infinite when 

1( ) ( ) n nf x f x or is an even function or the determinate of 

coefficient in Eq. (8) becomes or approaches zero. So, we 

have to apply the homotopy continuation technique to improve 

this defect. 

Given a set of equations in variables 1 2, ,..., nx x x . We modify 

the equations by omitting some of the terms and adding new 

ones until we have a new system of equations, the solutions to 

which may be easily known. We then deform the coefficients 

of the new system into the coefficients of the original system 

by a series of small increments to obtain the solutions. This is 

called the homotopy continuation technique. 

If we wish to find the solutions of Eqs. (1) and (2), we can 

choose a new simple start system called an auxiliary 

homotopy function 

 

( ) 0G X  (9) 

 

The auxiliary homotopy function G(X) must be known or 

controllable and easy to solve. Then, we define the homotopy 

continuation function as 

 

( , ) ( ) (1 ) ( ) 0   H X F X G Xt t t  (10) 

 

Where t is an arbitrary parameter and varies from 0 to 1, 

i.e., [0,1]t . Therefore, we have the following two boundary 

conditions: 

 

( ,0) ( )H X G X  

( ,1) ( )H X F X  

(11) 

 

This is the famous Bootstrap method. 

Our goal in this study is to solve the H(X, t) = 0 instead of 

F(X) = 0 by varying the parameter t from 0 to 1 and thus avoid 

divergence. Hence, we rewrite Eqs. (7) and (8) as 
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And 
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Where the divergence occurs at 
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III. KINEMATICS MODEL OF TIP-TILT-PISTON PARALLEL 

MANIPULATOR 

Solving the forward kinematics of the manipulator involves 

finding the location (position and orientation) of the moving 

platform, given the 1l , 2l and 3l  lengths. The mechanism 

described here is a three DOF parallel alignment manipulator 

with three inextensible limbs and base-mounted actuators. Fig. 

1 shows the details of the manipulator. The picture of a 

manipulator prototype is shown in Fig. 2. 

The three inextensible limbs 1 1R P , 2 2R P ,and 3 3R P are 

connected to the output moving  platform through spherical 

joints 1P , 2P and 3P .he lower ends of the limbs are connected 

to links 1 1R T , 2 2R T , and 3 3R T through revolute joints at 1R , 2R

, and 3R .Slider Links 1 1R T , 2 2R T , and 3 3R T are connected to 

the fixed base through base-mounted prismatic actuators 1 1N T

, 2 2N T , and 3 3N T , respectively. 

The manipulator has three degrees of freedom. Tip, tilt, and 

piston motions of the moving platform (output link) can be 

obtained by using the prismatic actuators to vary the 1 1O R ,

2 2O R  and 3 3O R  lengths. Note that the prismatic actuators can 

be inside or outside of the 1 2 3R R R  triangle formed by the 

lower ends of the limbs. 

 

 
Fig. 1.  The new manipulator with base-mounted actuators and inextensible 

limbs [1]. 

 

 

 
Fig. 2.  The new manipulator prototype [1]. 

 

The manipulator has symmetrical structure as the angle 

between the lines iON  and 1( 1,2,3) iON i is equal to 120 

degrees. As shown in Fig. 1, i  be the angle from vector iOR

to vector i iR P . Also i  be the angle from the positive X-axis 

to vector iOR . Angle i  can be found (in radians) from 

 

/ 2 ( 1)2 / 3  i i    (16) 

 

The X and Y coordinates of point iR in the fixed reference 

frame XYZ can be found from the following relationships 

 

, cos( )R i i iX l   (17) 

, sin( )R i i iY l   (18) 

 

The coordinates of point iP  in the fixed reference frame 

XYZ are 

 

, ,cos( )cos( ) P i i i R iX r X   (19) 

, ,sin( )cos( ) P i i i R iY r Y   (20) 

, sin( )P i iZ r   (21) 
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Referring to Fig. 1, we can write 
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Substituting from Eqs. (16)-(18) into Eqs. (19), (20); and 

substituting the resulting expressions for ,P iX and ,P iX as well 

as Eq. (21) into Eq. (22) and simplifying, we obtain 
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The Eq. (22) has been obtained as follows 
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Now each of Eqs. (25)-(27) is a nonlinear equation in three 

variables 1 2 3, ,     .  

IV. NUMERICAL SAMPLE  

We can solve this system of nonlinear equations by the 

secant-bootstrap method. To obtain the result of these 

equations, the geometric parameters of the manipulator are                                                                                                                                                                                                                                                                                                             

[1]: 

 

1 2 31.49 0.18 1.66

1 1.5 0.866

  
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Substituting the values of the geometric parameters from 

Eq. (28) into Eqs.(25)–(27), upon some simplification, yields: 
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Thus, we can write the bootstrap function as follows 
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We solve Eqs. (30)-(34) by the Newton–Raphson method 

and change the secant-homotopy parameter t from 0 to 1 

(dt=0.0001) and choose the initial guesses of unknown 

parameters as 1,0 2,0 3,0( , , ) (1,1,1)   . 

The result of these equations with change the auxiliary 

homotopy functions ( , 1,2,3)iG i   are in 16 solutions in the 

complex domain that out of the 16 solution only 8 ones are 

real are given in Table I.  

 
             TABLE I 

THE AUXILIARY HOMOTOPY FUNCTIONS AND 8 REAL SOLUTIONS 

Solution 
1 2 3( , , )G G G  Results 1 2 3( , , )    

1 
1 2 3( , , )    (-128.8783,-46.4725,-143.4239) 

2 
1 2 3( , , )      (128.8783,-46.4725,-143.4239) 

3 
1 2 3( , , )    (169.4349,-50.2868,138.7920) 

4 
1 2 3( , , )     (-169.4349, 50.2868,138.7920) 

5 
1 2 3( , , )    (-133.2253,144.6233,-137.3381) 

6 
1 2 3( , , )     (133.2253,-144.6233, 137.3381) 

7 
1 2 3( , , )    (-129.8439,-45.4474,182.2319) 

8 
1 2 3( , , )     (129.8439,45.4475,-182.2319) 

 

The eight real solutions yield the values shown in Table I 

for angles 1 , 2 and 3 (in degrees) and the coordinates of 

points 1 2 3, ,P P P  and G . As mentioned earlier, triangle 1 2 3P P P  

is equilateral. Therefore, the XYZ coordinates of point G  in 

Tables II, III are calculated using the following relationships: 
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,1 ,2 ,3

( ) / 3

( ) / 3

( ) / 3

  

  

  

G P P P

G P P P

G P P P

X X X X

Y Y Y Y

Z Z Z Z

 

(35) 
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The comparison of these results and the results reported by Tahmasebi [1] are in excellent agreement. 

 
TABLE II 

FIRST FOUR REAL SOLUTIONS OF THE FORWARD KINEMATICS SAMPLE PROBLEM 

Solution 1 1[1] 2 2[1] 3 3[1] 4 4[1] 

1  129.844 129.177 -129.844 -129.177 133.237 133.433 -133.237 -133.433 

2  45.447 46.699 -45.447 -46.699 -144.630 -144.448 144.630 144.448 

3  142.232 143.342 -142.232 -143.342 137.34 137.425 -137.3484 -137.425 

,1PX  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

,1PY  0.8493 0.8628 0.8493 0.8628 0.8051 0.8070 0.8051 0.8070 

,1PZ  0.7678 0.7752 -0.7678 -0.7752 0.7286 0.7262 -0.7286 -0.7262 

,2PX  -0.7635 -0.7521 -0.7635 -0.7521 0.5503 0.5465 0.5503 0.5465 

,2PY  -0.4408 -0.4342 -0.4408 -0.4342 0.3177 0.3155 0.3177 0.3155 

,2PZ  0.7126 0.7278 -0.7126 -0.7278 -0.5789 -0.5814 0.5789 0.5814 

,3PX  0.5722 0.7422 0.5722 0.7422 0.8007 0.7992 0.8007 0.7992 

,3PY  -0.3304 -0.4285 -0.3304 -0.4285 -0.4623 -0.4614 -0.4623 -0.4614 

,3PZ  -0.0389 0.5970 0.0389 0.5970 0.6776 0.6765 -0.6776 -0.6765 

GX  -0.0638 -0.0033 -0.0638 -0.0033 0.4503 0.4486 0.4503 0.4486 

GY  0.0261 0.0000 0.0261 0.0000 0.2202 0.2203 0.2202 0.2203 

GZ  0.4805 0.7000 -0.4805 -0.7000 0.2758 0.2738 -0.2758 -0.2738 

 
TABLE III 

 LAST FOUR REAL SOLUTIONS OF THE FORWARD KINEMATICS SAMPLE PROBLEM 

Solution 5 5[1] 6 6[1] 7 7[1] 8 8[1] 

1  128.885 130.038 -128.885 -130.038 169.435 169.757 -169.435 -169.757 

2  46.473 45.7923 -46.473 -45.7923 -50.286 -50.508 50.286 -50.508 

3  176.827 177.769 -176.827 -177.769 -138.792 -138.706 138.792 138.706 

,1PX  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

,1PY  0.8623 0.8512 0.8623 0.8512 0.5072 0.5104 0.5072 0.5104 

,1PZ  -0.7784 0.7656 -0.7784 -0.7656 0.1833 0.1778 -0.1833 -0.1778 

,2PX  -0.7523 -0.7620 -0.7523 -0.7620 -0.7092 -0.7089 -0.7092 -0.7089 

,2PY  -0.4343 -0.4399 -0.4343 -0.4399 -0.4094 -0.4093 -0.4094 -0.4093 

,2PZ  -0.7250 0.7168 0.7250 -0.7168 -0.7693 -0.7717 0.7693 0.7717 

,3PX  0.7422 0.5716 0.7422 0.5716 0.7861 0.7863 0.7861 0.7863 

,3PY  -0.4285 -0.3300 -0.4285 -0.3300 -0.4538 -0.4539 -0.4538 -0.4539 

,3PZ  0.5959 0.0389 -0.5959 -0.0389 -0.6588 -0.6599 0.6588 0.6599 

GX  -0.0034 -0.0635 -0.0034 -0.0635 0.0256 0.0258 0.0256 0.0258 

GY  -0.0002 0.0271 -0.0002 0.0271 -0.1187 -0.1176 -0.1187 -0.1176 

GZ  0.6998 0.5071 -0.6998 -0.5071 -0.4150 -0.4179 0.4150 0.4179 

         

V. CONCLUSION 

The Secant-Bootstrap Method has been utilized for the 

forward kinematic problem of a novel Tip-Tilt-Piston (T.T.P) 

Parallel Manipulator in this paper. The forward kinematic  

analysis shown that the 16 solutions are eight pairs of 

reflected configurations with respect to the plane passing 

through the lower ends of the manipulator’s three limbs .It has 

been proved that convergence speed this methodology is fast 

and also the SHCM algorithm is very simple. It has been 

demonstrated that the Secant-Bootstrap Method could lead to 

all roots of the system of nonlinear equations and obtained the 

result more efficiently by this new method. 
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