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NOTATION

List of Abbreviations
ADN Active Distribution Network
ANM Active Network Management
A3C Asynchronous Advantage Actor-Critic
BESS Battery Energy Storage System
BC Behavior Cloning
CPO Constrained Policy Optimization
DDPG Deep Deterministic Policy Gradient
DERs Distributed Energy Resources
DNN Deep Neural Network
DN Distribution Network
DRL Deep Reinforcement Learning
DSO Distribution System Operator
DPG Deterministic Policy Gradient
EMS Energy Management System
ESS Energy Storage System
EV Electric Vehicle
GAN Generative Adversarial Network
GMC Gaussian Mixture Models-Copula
IL Imitation Learning
IRL Imitation Reinforcement Learning
LP Linear Programming
MDP Markov Decision Process
MILP Mixed Integer Linear Programming
MINL Mixed Integer Nonlinear
MINLP Mixed Integer Nonlinear Programming
MIP Mixed Integer Programming
MIP-DQN  Mixed Integer Programming-Deep Q-Network
MIP-DRL  Mixed Integer Programming-Deep Reinforcement Learning
NLP Non-linear Programming
OESS Optimal energy system scheduling
PG Policy Gradient
PPO Proximal Policy Optimization
PV Photovoltaic
ReLU Rectified Linear Unit
RL Reinforcement Learning
SAC Soft Actor Critic
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SUMMARY

The integration of distributed energy resources (DERs) and the increasing penetration
of renewable energy generation have significantly increased the complexity and uncer-
tainty of modern distribution networks. These developments necessitate advanced dis-
patch algorithms capable of handling the variability and operational constraints inher-
ent in such systems. This thesis focuses on developing model-free deep reinforcement
learning (DRL) algorithms to ensure reliable, safe, cost-effective operation in distribu-
tion networks (DNs). The research questions addressed in this thesis explore various
challenges associated with the enforcement of operational constraints, learning effi-
ciency, and computational cost reduction in DRL-based optimal operation of DNs.

First, the enforcement of power balance constraints is critical for maintaining system
stability and reliability. Standard model-free DRL approaches often struggle with setting
the strictly enforcement for system constraints. To address this, a DRL algorithm, MIP-
DQN, was developed to strictly enforce all operational constraints in the action space,
ensuring feasible dispatch in real-time operation. By leveraging optimization advances
for deep neural networks (DNNs) that allow their representation as mixed-integer pro-
gramming (MIP) formulations, this algorithm ensures that constraints are met even dur-
ing online execution. Comparative performance evaluations with state-of-the-art DRL
algorithms demonstrated the effectiveness of MIP-DQN in maintaining the power bal-
ance constraint.

Second, addressing sequential constraints in DRL-based optimal DNs operation re-
quires dynamic adaptation to the timing and order of actions to ensure safe and reliable
operations. Building on previous work, a Mixed-Integer Programming Deep Reinforce-
ment Learning (MIP-DRL) framework was developed. This versatile framework enables
various standard actor-critic DRL algorithms to enforce operational constraints strictly.
By utilizing the robust constraint-enforcing ability of MIP, the MIP-DRL framework guar-
antees zero-constraint violations during online execution, extending the feasibility of
real-time applications of DRL.

Third, the integration of operational constraints with prior knowledge into DRL frame-
works improves solution feasibility and reduces problem complexity. This thesis intro-
duced the DistFlow Safe Reinforcement Learning (DF-SRL) algorithm, which incorpo-
rates expert knowledge to accurately map the relationship between agent actions and
voltage magnitude variations in DNs. The DF-SRL algorithm overlays a safety layer on
top of the DRL policy to recalibrate potentially unsafe actions, ensuring strict enforce-
ment of voltage magnitude constraints during both training and application phases.

Fourth, ensuring a safe and efficient algorithm to learn is crucial for practical imple-
mentation. A Safe Imitation Reinforcement Learning Framework combining Twin De-
layed Deep Deterministic Policy Gradient (TD3) and imitation learning (IL) is proposed.
This framework enhances performance and training efficiency while rigorously enforc-
ing operational constraints. The offline training phase employs a dual-gradient strategy

xiii



Xiv SUMMARY

using both behavior cloning (BC) policy and the critic network to stabilize training and
expedite learning. A safe layer scrutinizes actions recommended by the trained TD3BC
algorithm, filtering out unsafe actions and ensuring operational feasibility in scenarios
not covered by expert data.

Finally, reducing computational costs and accelerating the training process are es-
sential for the practical deployment of DRL algorithms in DNs operation. The RL-ADN
library was introduced as an open-source tool specifically tailored for DRL-based op-
timal ESSs operation in distribution networks. RL-ADN provides extensive customiza-
tion capabilities, integrating a novel data augmentation module using Gaussian Mixture
Models-Copula (GMC) and the Tensor Power Flow (TPF) solver, significantly reducing
computation time for power flow calculations. This library sets a new standard in DRL-
based ESSs dispatch, enhancing both flexibility and efficiency in developing effective
DRL applications for energy distribution networks.

In summary, this thesis addresses key challenges in enforcing operational constraints,
enhancing learning efficiency, and reducing computational costs in DRL-based optimal
DNs operation. The developed algorithms and frameworks significantly advance the re-
liability, safety, and practicality of DRL applications in modern power systems, paving
the way for more effective and accurate distribution network operation and manage-
ment.



SAMENVATTING

De integratie van gedistribueerde energiebronnen (DER’s) en de toenemende penetratie
van hernieuwbare energieopwekking hebben de complexiteit en onzekerheid van mo-
derne distributienetwerken aanzienlijk vergroot. Deze ontwikkelingen vereisen geavan-
ceerde dispatch-algoritmen die in staat zijn om de variabiliteit en operationele beper-
kingen van dergelijke systemen te beheersen. Dit proefschrift richt zich op de ontwik-
keling van modelvrije deep reinforcement learning (DRL)-algoritmen om een betrouw-
bare, veilige en kosteneffectieve werking van distributienetwerken (DN’s) te waarborgen.
De onderzoeksvragen in dit proefschrift behandelen verschillende uitdagingen met be-
trekking tot het afdwingen van operationele beperkingen, leerefficiéntie en het vermin-
deren van computationele kosten bij DRL-gebaseerde optimale werking van DN’s.

Ten eerste is de handhaving van vermogensbalansbeperkingen essentieel voor het
behouden van stabiliteit en betrouwbaarheid van het systeem. Standaard modelvrije
DRL-benaderingen hebben vaak moeite om operationele beperkingen strikt af te dwin-
gen. Om dit aan te pakken, is het DRL-algoritme MIP-DQN ontwikkeld, dat alle ope-
rationele beperkingen strikt afdwingt in de actieruimte, waardoor haalbare dispatch in
real-time wordt gewaarborgd. Door optimalisatievoortuitgang voor deep neural net-
works (DNN'’s) te benutten, waarmee deze als mixed-integer linear programming (MILP)
formuleringen kunnen worden weergegeven, zorgt dit algoritme ervoor dat beperkin-
gen zelfs tijdens online uitvoering worden nageleefd. Vergelijkende prestatietests met
state-of-the-art DRL-algoritmen hebben de effectiviteit van MIP-DQN aangetoond bij
het handhaven van de vermogensbalansbeperking.

Ten tweede verbetert de integratie van operationele beperkingen en bestaande ken-
nis in DRL-frameworks de haalbaarheid van oplossingen en vermindert het de com-
plexiteit van het probleem. Dit proefschrift introduceerde het DistFlow Safe Reinfor-
cement Learning (DF-SRL)-algoritme, dat gebruik maakt van deskundige kennis om de
relatie tussen de acties van de agent en spanningsvariaties in DN’s nauwkeurig in kaart te
brengen. Het DF-SRL-algoritme voegt een veiligheidslaag toe bovenop het DRL-beleid
om potentieel onveilige acties te hercalibreren, waardoor spanningsbeperkingen strikt
worden nageleefd tijdens zowel de trainings- als toepassingsfasen.

Ten derde vereist het aanpakken van sequentiéle beperkingen in DRL-gebaseerde
optimale DN’s-werking dynamische aanpassing aan de timing en volgorde van acties
om veilige en betrouwbare operaties te waarborgen. Voortbouwend op eerder werk werd
een Mixed-Integer Programming Deep Reinforcement Learning (MIP-DRL)-framework
ontwikkeld. Dit veelzijdige framework stelt verschillende standaard actor-critic DRL-
algoritmen in staat om operationele beperkingen strikt af te dwingen. Door gebruik te
maken van het robuuste vermogen van MIP om beperkingen af te dwingen, garandeert
het MIP-DRL-framework nul schendingen van beperkingen tijdens online uitvoering,
waardoor de toepasbaarheid van DRL in real-time toepassingen wordt uitgebreid.

Ten vierde is het waarborgen van een veilig en efficiént algoritme essentieel voor
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praktische implementatie. Een Safe Imitation Reinforcement Learning-framework dat
Twin Delayed Deep Deterministic Policy Gradient (TD3) en imitatie learning (IL) com-
bineert, is voorgesteld. Dit framework verbetert de prestaties en trainingsefficiéntie, ter-
wijl operationele beperkingen strikt worden gehandhaafd. De offline trainingsfase ge-
bruikt een dual-gradientstrategie met zowel een behavior cloning (BC) beleid als een
critic-netwerk om de training te stabiliseren en het leerproces te versnellen. Een vei-
ligheidslaag controleert de door TD3BC aanbevolen acties, filtert onveilige acties uit en
garandeert operationele haalbaarheid in scenario’s die niet door deskundige gegevens
worden gedekt.

Ten slotte zijn het verminderen van computationele kosten en het versnellen van
hetleerproces essentieel voor de praktische implementatie van DRL-algoritmen in DN’s.
De RL-ADN-bibliotheek werd geintroduceerd als een open-source tool specifiek ontwor-
penvoor DRL-gebaseerde optimale ESS-operatie in distributienetwerken. RL-ADN biedt
uitgebreide aanpassingsmogelijkheden en integreert een innovatieve data augmentatie-
module met Gaussian Mixture Models-Copula (GMC) en de Tensor Power Flow (TPF)-
oplosser, waardoor de rekentijd voor load flow-berekeningen aanzienlijk wordt vermin-
derd. Deze bibliotheek zet een nieuwe standaard in DRL gebaseerde ESS-dispatch en
verbetert de flexibiliteit en efficiéntie bij het ontwikkelen van effectieve DRL toepassin-
gen voor energiedistributienetwerken.

Kortom, dit proefschrift behandelt belangrijke uitdagingen bij het afdwingen van
operationele beperkingen, het verbeteren van leerefficiéntie en het verminderen van
computationele kosten bij DRL-gebaseerde optimale werking van DN’s. De ontwikkelde
algoritmen en frameworks dragen aanzienlijk bij aan de betrouwbaarheid, veiligheid en
praktische toepasbaarheid van DRL-toepassingen in moderne energiesystemen en be-
reiden de weg voor effectievere en nauwkeurigere operationele planning en beheer van
distributienetwerken.



INTRODUCTION

This introductory section provides a comprehensive overview of the research background,
questions, and methodologies employed in this thesis. Energy systems are transitioning
from fossil-based to renewable sources to combat climate change and ensure sustainable
energy futures. This shift positions electricity as the dominant energy source in energy sec-
tors. However, the integration of renewable sources introduces significant complexity and
uncertainty, particularly in systems with high levels of distributed energy resources (DERS)
penetration. This complexity necessitates advanced scheduling algorithms to maintain
grid stability and ensure reliable operations. This thesis aims to develop model-free deep
reinforcement learning (DRL) algorithms to address optimal distribution network oper-
ational challenges. This chapter introduces the research questions that steer the project
and the approaches and contributions made by the study. To aid readers in navigating
this thesis, the final segment of this chapter outlines the structure and discusses the con-
tent of each subsequent chapter comprehensively.



2 1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

The global transition towards renewable energy is a cornerstone of efforts to mitigate
climate change and reduce the environmental impact of traditional energy systems [1].
With the 2015 Paris Agreement and subsequent international climate goals, there is a
clear global commitment to accelerate the adoption of renewable energy sources like
wind, solar, and energy storage systems (ESSs) [2]. These distributed energy resources
(DERs) offer opportunity to create a more flexible, resilient, and sustainable energy sys-
tem, crucial for meeting ambitious global climate targets and ensuring long-term envi-
ronmental sustainability [3].

However, the rapid increase in DER integration, particularly intermittent resources
such as solar photovoltaics (PV) and wind turbines, presents significant challenges for
the operational management of distribution networks [4]. Without proper management,
the variability in generation from renewable energy sources can lead to voltage fluctu-
ations, frequency instability, and even power outages in severe cases [5]. Optimal dis-
tribution networks (DNs) operation plays a pivotal role in ensuring that electricity in-
frastructure can reliably integrate large shares of renewable energy. As countries work
towards increasing the share of renewable energy in their overall energy mix, the chal-
lenges associated with managing variable power generation, storage, and demand also
grow more complex [6]. DNs optimal operation refers to the optimization of energy
generation, storage, and consumption in a way that meets both operational constraints
and sustainability objectives, such as reducing carbon emissions and minimizing system
cost. The importance of performing optimal DNs grows even more critical as renewable
energy penetration increases [7]. Traditional power systems were designed around cen-
tralized, predictable energy sources like coal, gas, and nuclear power, usually connected
at high voltage levels. These sources provide stable and controllable outputs, making
it easier to schedule and balance the grid. In contrast, renewable energy sources are
distributed and decentralized, with outputs that fluctuate based on weather conditions
and other external factors [8]. This presents new challenges for maintaining grid sta-
bility and reliability. With higher penetration levels of renewables, DNs must be able to
dynamically adjust to the variability in both generation and consumption. For instance,
solar generation peaks during the day, while wind power may fluctuate depending on
weather conditions. At the same time, demand patterns also vary, making it increasingly
difficult to ensure that supply matches demand in real-time. The optimal DNs opera-
tion requires rapid, informed decisions that balance these factors, ensuring the system
remains reliable while maximizing the use of renewable energy.

From a sustainability perspective, optimal DNs operation helps achieve several key
objectives:

* Maximizing Renewable Energy Utilization: By optimally scheduling when and how
much energy to generate, store, and consume, optimal DNs operation ensures that
renewable energy resources are utilized as efficiently as possible. This reduces re-
liance on fossil fuels and lowers the carbon intensity of energy generation.

° Minimizing Curtailment: Renewable energy sources, especially solar and wind,
can sometimes produce more power than the grid can handle. Without effective
scheduling, this excess power may be wasted or curtailed. Optimal DNs operation
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mitigates this issue by optimally dispatching excess energy to storage systems or
redirecting it to other uses, thereby enhancing system flexibility.

* Reducing Greenhouse Gas Emissions: By improving the efficiency of energy gen-
eration and reducing the need for conventional power plants to ramp up during
peak periods, optimal DNs operation directly contributes to lowering the overall
carbon footprint of energy systems.

* Supporting Grid Resilience: As more renewable energy is integrated into the grid,
the ability to maintain stable and reliable operations becomes more difficult. Op-
timal DNs operation contributes to grid stability by optimizing the use of energy
storage and demand response to absorb fluctuations in renewable generation.

Without effective optimal DNs operation, renewable energy sources may not be fully
exploited, and their potential to contribute to climate goals would be diminished. More-
over, poor scheduling could lead to increased reliance on backup generation from fossil
fuels, negating the environmental benefits of renewables. Therefore, optimal DNs oper-
ation is not just a technical necessity but a key enabler of the transition to a sustainable,
low-carbon energy system.

1.1.1. TRADITIONAL APPROACHES AND LIMITATIONS

Traditionally, model-based approaches have been used to address the optimal DNs op-
eration problem. These methods rely on precise mathematical models to represent the
operational constraints of the system, formulating the problem as linear, nonlinear, or
dynamic programming tasks [9]. However, these approaches face significant limitations,
particularly in real-time applications. The need for accurate models, coupled with the
computational complexity of solving large-scale problems, makes these methods less
effective as the complexity of the DNs increases [10]. Moreover, model-based methods
typically handle uncertainty through probabilistic models or representative scenarios,
leading to stochastic or robust optimization formulations [11]. While these approaches
can produce good solutions under controlled conditions, they often struggle with scala-
bility and require simplifications that reduce their effectiveness in dynamic, real-world
environments. The computational burden associated with these methods further limits
their practicality for real-time decision-making.

1.1.2. THE EMERGENCE OF REINFORCEMENT LEARNING APPROACHES
To overcome the limitations of model-based methods, model-free approaches, particu-
larly those based on reinforcement learning (RL) have gained prominence [12]. RL al-
gorithms model the decision-making process as a Markov Decision Process (MDP), en-
abling agents to learn the dynamics of the system through interaction with the environ-
ment [13]. This interaction allows RL to capture the inherent uncertainty and complexity
of DN, especially those influenced by renewable energy sources, whose variability poses
significant challenges to traditional optimization methods.

Model-free RL methods emerged as a solution to overcome the limitations of model-
based approaches, which rely on precise mathematical formulations of the system dy-
namics and operational constraints. In contrast, model-free RL methods are trained in
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simulators and then applied to real world systems [14]. The RL agent explores the sim-
ulator, gradually improving its policy by trial and error, using rewards as an indicator of
performance. This approach is particularly useful for DNs operational problems, where
uncertainties, such as the variability of solar and wind power generation, make it difficult
to rely solely on predefined models.

One of the foundational approaches is value-based methods, such as Q-learning and
SARSA, which focus on estimating the value of state-action pairs. The goal is to learn
the value function that represents the expected cumulative reward from any given state-
action pair [15]. Over time, these methods have been enhanced by both linear and non-
linear function approximations, which led to the development of more sophisticated al-
gorithms such as Deep Q-Networks (DQN) [16]. DQN leverages deep neural networks
(DNNs) to approximate the value function in high-dimensional state spaces, making it
particularly suitable for complex, large-scale problems. DQN and its variants, such as
Double DQN [17], Dueling DQN [18], and Rainbow DQN [19], address issues like over-
estimation bias and instability, which are common in value-based methods. Techniques
like prioritized experience replay and distributional learning have also been integrated
to improve the performance and robustness of these algorithms [20]. Despite these ad-
vancements, value-based methods still face challenges when applied to the optimal op-
eration of DNs with continuous action spaces (e.g., battery charging/discharging levels
or distributed generation outputs), where exhaustive action space exploration becomes
computationally prohibitive.

To address the limitations of value-based methods in continuous action spaces, pol-
icy based methods have gained attention. These methods focus directly on optimizing
the policy function that maps states to actions, instead of estimating value functions.
The Policy Gradient (PG) method is one of the foundational approaches, which updates
the policy in the direction that maximizes the expected cumulative reward [21]. How-
ever, PG methods can suffer from high variance and instability. Advanced policy-based
methods like Trust Region Policy Optimization (TRPO) and Proximal Policy Optimiza-
tion (PPO) have been developed to address these issues by ensuring stable updates and
preventing the policy from making large, untrustworthy jumps [22]. These methods are
especially well-suited for DNs operation problems, where small changes in policy can
lead to large swings in system performance due to the interconnected nature of distribu-
tion networks. The Actor-Critic framework, including algorithms like Advantage Actor-
Critic (A2C) and Asynchronous Advantage Actor-Critic (A3C), combines the strengths of
value-based and policy-based approaches. In this framework, the actor selects actions
based on the current policy, while the critic evaluates the chosen actions by estimating
the value function. This combination allows for more efficient learning and greater sta-
bility, making it a strong candidate for solving optimal DNs operational problems where
both optimal decision-making and long-term evaluation are critical.

For problems with continuous action spaces, Deterministic Policy Gradient (DPG)
methods have become highly effective. These methods, such as Deep Deterministic Pol-
icy Gradient (DDPG), extend policy gradient approaches to continuous spaces by using
a deterministic policy function rather than a stochastic one [23]. DDPG can handle high-
dimensional action spaces without requiring the agent to sample across the entire action
space making it a powerful tool for DNs operation problems involving decisions such as
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energy storage dispatch or renewable generation control. Enhanced versions of DDPG,
like Twin Delayed DDPG (TD3) [24] and Distributed Distributional DDPG (D4PG), ad-
dress common issues such as overestimation bias by introducing techniques like the de-
layed policy update and distributional learning. These enhancements are particularly
important for ensuring that the learned policies are not only optimal but also safe and
reliable, which is critical in optimal DNs operation where operational constraints must
be respected.

1.1.3. CHALLENGES
DRL algorithms have been successfully applied to various DNs operations; tasks, includ-
ing home energy management, microgrid operation [25], and DNs control [26]. These
applications demonstrate the ability of DRL to handle uncertainty and complexity by
learning directly from historical data and simulations [27].

Despite its potential, applying DRL to the optimal operation of DNs introduces sev-
eral critical challenges, which can be broadly categorized as follows:

* Constraint Enforcement: Ensuring that DRL-based solutions respect real-world
operational constraints, such as power balance and voltage magnitude limits, is
essential to avoid system failures.

» Data Efficiency and Uncertainty: DRL requires vast amounts of historical and sim-
ulated data for training. However, generating and accessing this data, especially
for rare events or corner cases, is challenging.

° Computational Efficiency: The computational cost of training DRL agents for large-
scale, real-time systems is prohibitive, often requiring substantial time and com-
puting resources.

1.2. RESEARCH OBJECTIVE AND QUESTIONS

This thesis focuses on developing model-free DRL algorithms, aiming to ensure reliable,
safe, cost-effective, and sustainable operations.The specific challenges and correspond-
ing research questions are elaborated in this section.

1.2.1. ENFORCING DISTRIBUTION NETWORKS OPERATIONAL CONSTRAINTS
USING DRL

The operation of distribution networks (DNs) is governed by a set of strict operational

constraints to avoid voltage magnitude problems and congestion issues. Failure to ad-

here to these constraints can lead to severe operational risks, system failures, or even

cascading outages. Thus, ensuring safety is paramount, and it is typically achieved by

enforcing these operational constraints during the dispatch process [28].

In the context of the optimal DNs operation problem formulated as a Markov Deci-
sion Process (MDP), maintaining safety means that any decision or action taken by an
RL agent must respect these operational constraints, particularly the power balance be-
tween supply and demand. The power balance constraint ensures that, at every time
step, the total energy generated and stored must match the energy consumed plus any
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system losses. However, due to the inherent stochasticity and complexity of real-world
power systems, maintaining this balance can be challenging when relying on data-driven
approaches like RL, which do not explicitly enforce such constraints in their formulation.

Traditional DRL algorithms, while capable of optimizing system performance in terms
of minimizing costs or maximizing efficiency, often lack formal safety guarantees [29].
These algorithms are designed to maximize rewards based on learned experiences with-
out being directly aware of physical constraints, such as power balance, ramping limits,
and grid reliability requirements. To address this, practitioners often introduce penalty
terms in the reward function to incentivize the agent to avoid actions that violate these
constraints. For example, when a DRL agent’s action results in power imbalance, a penalty
is applied to the reward function to discourage the agent from repeating such actions.
However, this approach does not explicitly prevent the agent from making unsafe deci-
sions, especially under extreme conditions such as high variability in renewable genera-
tion or sudden load changes.

Our research [30] demonstrates that while penalty-based methods can guide the learn-
ing process to reduce operational costs, they are insufficient in ensuring the feasibility
of actions, particularly in scenarios involving extreme system conditions. In these cases,
the DRL agent may still violate critical constraints, leading to power imbalances and po-
tential operational instability. For instance, when the system is under stress due to sud-
den spikes in demand or generation variability, penalty terms alone may not be sufficient
to prevent the agent from selecting actions that cause power imbalances, as the penalties
may not accurately reflect the severity of constraint violations under these conditions.

Therefore, ensuring safety in the optimal DNs operation formulated MDP requires
more than just penalizing constraint violations; it necessitates a framework where oper-
ating constraints—such as power balance, ramping limits, and capacity restrictions—are
rigorously enforced throughout the learning process. Thus, our first research question
is formulated as follows: Research Question 1: How to enforce distribution networks
operational constraints using DRL?

1.2.2. LEVERAGING DOMAIN KNOWLEDGE TO ENSURE SAFETY, INCREASE
PERFORMANCE, AND ENHANCE COMPUTATIONAL EFFICIENCY IN DRL
FOR OPTIMAL DNS OPERATION
Despite the advancements in model-free RL algorithms, DRL applications in distribution
networks (DNs) often remain constrained by their model-free nature. Typically, model-
free DRL requires a considerable amount of time and numerous interactions with the
environment to learn even basic operational strategies. This reliance on extensive envi-
ronment interaction often results in long training times and substantial computational
costs, which limit the practical applicability of DRL in real-time DN operations.

In practice, however, there exists a wealth of domain knowledge that can aid this
process by enhancing both the safety and efficiency of DRL. Domain knowledge—such
as insights into power system behavior, known operational constraints, and grid relia-
bility requirements—can be incorporated into the RL framework to guide the learning
process and reduce the agent’s dependence on raw environment interactions. By em-
bedding relevant domain knowledge into the DRL framework, it is possible to not only
accelerate learning but also improve the overall safety and performance of the algorithm
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when applied to complex DNs operational problems.

The objective of this research question is to investigate methods for integrating do-
main knowledge within DRL algorithms to optimize the operation of DNs, specifically
focusing on:

* Enhancing Safety: Ensuring that the agent’s actions consistently respect critical
operational constraints, thereby maintaining system reliability.

* Increasing Performance: Improving the decision-making capabilities of the agent
to achieve efficient and cost-effective DNs operations.

* Enhancing Computational Efficiency: Reducing the amount of environment inter-
action needed during training, which in turn minimizes computational cost and
expedites convergence.

This leads us to our second research question: Research Question 2: How can do-
main knowledge be leveraged to ensure safety, increase performance, and enhance
computational efficiency in DRL for optimal DNs operation?

1.2.3. REDUCING COMPUTATIONAL COST AND ACCELERATING TRAINING

FOR DRL BASED OPTIMAL DNS OPERATIONAL PROBLEMS

To train an effective DRL agent capable of optimally operation a DN, it is essential not
only to develop advanced DRL algorithms but also to have a well-designed training en-
vironment. Currently, existing environments, such as PowerGridWorld and Grid20OB, ex-
hibit limitations that restrict their applicability for diverse DN operational challenges.
Specifically, these environments often lack sufficient customizability, computational ef-
ficiency, and data augmentation capabilities, which are critical for training robust DRL
agents.

Firstly, customizability is a crucial requirement in environment design. DNs opera-
tional problems encompass various objective functions, decision variables, and unique
problem characteristics. Existing environments are typically tailored to specific, limited
operational scenarios and often lack the flexibility to adapt to different DN configura-
tions and objectives. This restricts the training environment’s ability to simulate a wide
range of realistic scenarios, hindering the generalizability of the trained agents.

Secondly, computational efficiency poses a significant challenge in DRL for DN op-
erations. Interactions between the agent and the environment often involve extensive
power flow calculations, which are integral to the learning process but can be computa-
tionally intensive. Training an agent to convergence requires millions of environment in-
teractions, resulting in a bottleneck due to the repeated need for time-consuming power
flow computations. Existing environments, built on standard iterative power flow cal-
culation methods such as Newton-Raphson, exacerbate this issue, as they are not opti-
mized for high-frequency interaction with DRL algorithms.

Finally, data augmentation is vital for enhancing the diversity of training data. Lever-
aging DRL to develop optimal dispatch strategies relies on training with diverse histor-
ical data, particularly in scenarios with variable renewable generation, fluctuating load
profiles, and changing price signals. However, historical data specific to DN configu-
rations is often scarce, limiting the scope and performance of the trained agents. Data
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Figure 1.1: Framework diagram for the thesis

augmentation techniques can help bridge this gap by synthetically expanding the train-
ing dataset, thereby improving the robustness and effectiveness of DRL agents under
varying conditions.

Based on these challenges, our third research question is formulated as follows: Re-
search Question 3: How to design a standardized, customizable, and data-augmented
environment to reduce computational cost and accelerate DRL training for optimal
DN operational problems?

1.3. CONTRIBUTIONS AND THESIS OUTLINE

This thesis makes several significant contributions to the field of DRL-based optimal
DNs operation by addressing the critical challenges of enforcing operational constraints,
ensuring safety, and improving computational efficiency. The framework of this thesis is
shown in Fig. 1.1 and contributions are summarized as follows:

Chapter 1 introduces the research problem, objectives, and research questions that
set the stage for the subsequent chapters. This chapter outlines the complexity of the
optimal DNs operation problems due to the massive integration of renewable-based re-
sources and the inherent uncertainty of the system.

Chapter 2 addresses Research Question 1: How to enforce distribution network opera-
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tional constraints using DRL? Ensuring power balance and adhering to operational con-
straints is essential for maintaining system stability and reliability. Traditional model-
based approaches face limitations due to their dependence on accurate models and high
computational complexity, while DRL algorithms, despite their potential, often struggle
to enforce these constraints directly. To address this, we proposed the MIP-DQN frame-
work, which leverages recent advances in optimization to represent Deep Neural Net-
works (DNNs) as mixed-integer linear programming (MIP) formulations. This enables
the DRL algorithm to strictly enforce all operational constraints in the action space, en-
suring feasible, real-time scheduling. By testing the MIP-DQN algorithm against state-
of-the-art DRL algorithms such as DDPG, PPO, SAC, and TD3, we demonstrate its ef-
fectiveness in generating feasible and optimal schedules that satisfy power balance con-
straints.

Chapter 3 further investigates Research Question 1 by introducing the MIP-DRL frame-
work. This framework extends the applicability of DRL algorithms to more complex
and safety-critical DN operations by ensuring strict adherence to operational constraints
during real-time execution in distribution networks. MIP-DRL incorporates additional
network constraints, enhancing the algorithm’s ability to handle complex distribution
network scenarios safely and reliably.

Chapter 4 focuses on Research Question 2: How to leverage domain knowledge to
ensure safety, increase performance, and enhance computational efficiency in DRL for op-
timal DN operation? Integrating operational constraints into DRL while leveraging prior
domain knowledge helps reduce problem complexity and improve solution feasibility.
In this chapter, we introduce the DistFlow Safe Reinforcement Learning (DF-SRL) algo-
rithm, which incorporates expert insights to establish a robust relationship between the
agent’s actions and voltage magnitude variations in distribution networks. This algo-
rithm overlays a safety layer atop the DRL policy, recalibrating potentially unsafe actions
to conform to safe operational parameters. DF-SRL thus ensures that voltage magnitude
constraints are strictly enforced during both training and deployment.

Chapter 5 further investigatesResearch Question 2, addressing the challenge of de-
signing a safe and efficient DRL framework for DN operations. To achieve this, we pro-
posed a Safe Imitation Reinforcement Learning (IRL) Framework that combines Twin
Delayed Deep Deterministic Policy Gradient (TD3) and Inverse Reinforcement Learning
(IRL). This framework not only enhances training efficiency but also rigorously enforces
operational constraints. During offline training, a dual-gradient strategy is employed,
utilizing both the behavior cloning (BC) policy and the critic network. This approach
stabilizes the training process and expedites learning, addressing the computational and
exploration challenges associated with traditional TD3. Additionally, a safety layer fil-
ters out unsafe actions recommended by the trained TD3BC algorithm, redirecting them
into safer alternatives to ensure operational feasibility in scenarios not covered by expert
data.

Chapter 6 addresses Research Question 3: How to design a standardized, customiz-
able, and data-augmented environment to reduce computational cost and accelerate DRL
training for optimal DN operational problems? Training DRL agents in distribution net-
works is computationally intensive, often requiring extensive power flow calculations
and diverse data. This chapter introduces RL-ADN, an open-source library for DRL-
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based optimal ESS dispatch in distribution networks. RL-ADN provides flexibility in
environment design by supporting a broad range of DN configurations and objectives,
extending to the modeling of DN topologies, integration of ESSs, and customization of
research objectives. It also includes a novel data augmentation module based on Gaus-
sian Mixture Models-Copula (GMC), enhancing training data diversity and improving
DRL agent performance. To address computational challenges, RL-ADN incorporates
the TPF solver, which reduces power flow calculation time by tenfold without sacrificing
accuracy [31]. Additionally, RL-ADN offers four state-of-the-art DRL algorithms and a
model-based approach with perfect forecasts as a baseline. RL-ADN thus sets a new
standard in DRL-based ESS dispatch with its innovative features, flexibility, and effi-
ciency, facilitating more effective and accurate DRL applications in energy distribution
networks..

Finally, Chapter 7 concludes the thesis by summarizing the key findings and propos-
ing future research directions. This chapter highlights the contributions made in this
thesis and suggests potential areas for further exploration to advance the field of DRL-
based energy system optimization.



OPTIMAL ENERGY SYSTEM
SCHEDULING USING A
CONSTRAINT-AWARE
REINFORCEMENT LEARNING
ALGORITHM

The massive integration of renewable-based distributed energy resources (DERs) inher-
ently increases the energy system’s complexity, especially when it comes to defining its op-
erational schedule. Deep reinforcement learning (DRL) algorithms arise as a promising
solution due to their data-driven and model-free features. However, current DRL algo-
rithms fail to enforce rigorous operational constraints (e.g., power balance, ramping up or
down constraints) limiting their implementation in real systems. This chapter proposed a
DRL algorithm namely, MIP-DQN, designed to enforce all operational constraints in the
action space, ensuring the feasibility of the defined schedules in real-time distributed en-
ergy system operation. This is done by leveraging recent optimization advances for deep
neural networks (DNNs) that allow their representation as a MIP formulation, enabling
further consideration of any action space constraints. Comprehensive numerical simula-
tions show that the proposed algorithm outperforms existing state-of-the-art DRL algo-
rithms, obtaining a lower error when compared with the optimal global solution (upper
boundary) obtained after solving a mathematical programming formulation with perfect
forecast information; while strictly enforcing all operational constraints (even in unseen
test days).

Parts of this chapter have been published in the International Journal of Electrical Power & Energy Systems
with the title: Optimal Energy System Scheduling Using A Constraint-Aware Reinforcement Learning Algorithm.
doi:10.1016/j.ijepes.2023.109230 [32].
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2.1. INTRODUCTION

To reduce the impact of the energy sector on the environment, distributed energy re-
sources (DERs) are being integrated into our energy systems. Such DERs, in the form
of renewable-based systems (e.g., PV systems and wind turbines) and small-scale en-
ergy storage systems (ESSs), provide more flexibility, enabling a more efficient operation.
Nevertheless, these DERs also increase the energy system’s complexity, especially when
it comes to defining its operational schedule. Moreover, due to their weather-dependent
nature, renewable-based DERs inherently increase the energy system’s levels of uncer-
tainty, requiring scheduling algorithms capable of providing fast and good-quality, but
feasible, solutions [33]. In the technical literature, two main approaches are available to
deal with the optimal scheduling of energy systems; namely, model-based and model-
free approach. A detailed literature review is presented next.

2.1.1. LITERATURE REVIEW

In general, model-based approaches rely on precise models to build complex mathemat-
ical formulations to consider the energy system’s operational constraints. Depending on
how these constraints are modeled, the derived mathematical formulations can be clas-
sified as linear, nonlinear programming, or dynamic programming problems [34]. In this
regard, in [35], a mixed-integer nonlinear programming (MINLP) formulation is used to
determine the optimal operation of an unbalanced three-phase energy system. In order
to reduce the complexity of the proposed formulations, linearizations and simplifica-
tions are introduced. Similar work has been done in [36]. Nevertheless, the model-based
nature of these methods requires considerable precision of the built mathematical mod-
els, which limits their performance, especially if uncertainty is to be considered.

Generally, in model-based approaches, uncertainty is modeled either by using a prob-
ability distribution function or by leveraging a set of representative scenarios, leading to
stochastic or robust mathematical formulations, such as the ones presented in [37, 38,
39]. Other approaches, such as the one in [40], leverage a rolling time horizon approach
to eliminate the forecast error when defining the DERs optimal energy scheduling. To
guarantee the feasibility of the defined schedule under various operational scenarios,
in [41], an adjustable two-stage robust optimization framework is proposed, solving si-
multaneously a day-ahead scheduling and real-time regulation problem of an integrated
energy system. In [42], a chance-constrained programming model is proposed to sched-
ule an active distribution network incorporating office buildings. Nevertheless, mod-
eling the probability distribution of uncertain data is challenging, while using a large
number of scenarios may cause a computational burden. Therefore, although capable
of providing good quality solutions, existing model-based approaches are not adequate
for handling the increased uncertainty level of renewable-based energy systems, as their
performance and efficiency mainly depend on the accuracy of the used models and their
approximations. Moreover, the computational complexity of these methods increases
dramatically with the system size, imposing scalability and convergence challenges.

To overcome this, model-free approaches have been introduced as an alternative
solution. The most promising approach is based on the use of reinforcement learning
(RL) [43], modeling the decision-making problem as a Markov Decision Process (MDP).
One of the most interesting features of RL algorithms is that they can learn any system’s
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dynamics by interaction, providing good-quality solutions guided by a reward value used
as a performance indicator [44]. Recently, deep reinforcement learning (DRL) algorithms
have shown good performance when solving MDPs in energy systems tasks [45], ranging
from, home energy management [46], microgrid dispatch [47], and electricity network
operation [48]. Other applications include, for instance, a standarized DRL approaches
for demand response in smart buildings [49], and learning to solve fast optimal power
flow problems using DRL algorithms, specifically the proximal policy optimization (PPO)
algorithm and imitation learning [50]. In [51], a performance comparison of the soft
actor-critic (SAC) algorithm with a rule-based control method on the surrogate simula-
tion model developed by [52], is presented. In [26], the voltage regulation problem of a
distribution network is first modeled as a partial-observable MDP, and then multi-agent
DRL algorithms are leveraged to execute the optimal solutions. In [53], a DRL approach-
based proactive operation framework is proposed to model the stochastic behavior and
uncertainty of solar energy for residential buildings. In [54], a DRL algorithm is devel-
oped to solve a stochastic energy management problem considering power flow con-
straints, resulting in an optimal policy that minimizes total operational cost (although
operational constraints are disregarded).

Different from the energy-related MDPs presented above, the operational schedule
of DERs within an energy system must enforce a rigorous set of operational constraints
to ensure areliable and safe operation, e.g., generation and consumption must always be
balanced during real-time operation, ramping-up and down constraints, etc. Neverthe-
less, current DRL algorithms lack of safety guarantees [55], as these constraints cannot
be directly imposed in the algorithm’s formulation. Different strategies to indirectly en-
force operational constraints have been proposed to overcome this. In [56], a DG unit
is set as a slack bus with unlimited generation capacity, avoiding unbalance by the out-
puts of the generators controlled by DRL agents. In [57], a penalty term is added to the
reward function to guide the learning process aiming to reduce operating costs while
enforcing power balance. A similar penalty approach has been used to enforce voltage
magnitude constraints in case the electricity network operation is considered. For in-
stance, [58] modeled the dispatch of PV inverters as an MDP, and built a decentralized
dispatch framework penalizing RL agents when actions lead to voltage violations. In re-
search [59], an on-policy RL algorithm with eligibility traces is developed to dispatch the
energy storage system to minimize the cost and regulate voltage magnitudes. A similar
work is presented in [60]. In [61], a service assistant restoration problem is modeled as
MDP. Then, imitation learning is employed as expert demonstrations enabling a deep
deterministic policy gradient (DDPG) agent learn a safe policy for online implementa-
tion. In [62], a double auction market-based coordination framework is proposed to
schedule the energy trading between multi-energy microgrids. Multi-agent twin delayed
deep deterministic algorithm (TD3) is used to solve the formulated problem, while a
large penalty is imposed on the reward function to reduce the energy unbalance. In [63],
the soft-actor critic (SAC) algorithm is leveraged to control a virtual power plant to pro-
vide frequency regulation services, penalizing any frequency deviation. Nevertheless,
although these strategies may enforce operational constraints during training, they are
either based on nonpractical assumptions or fail to guarantee the feasibility of the de-
fined operating schedule in real-time, especially in cases of large peak consumption or
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renewable-based generation [30].

Strategies based on safe RL have also been proposed to directly enforce operational
constraints, exploiting results from different research areas, such as robot manipula-
tion [64, 65]. In recent years, considerable attention has been given to combining ver-
ification techniques with reinforcement learning (RL) to enforce safety constraints ex-
plicitly, a sub-field often referred to as Shielded Reinforcement Learning (Shielded RL)
[66, 67, 68]. Shielded RL typically introduces a "shield" layer between the RL agent and
the environment, employing formal verification or optimization techniques to prevent
unsafe actions proactively, thus guaranteeing constraint satisfaction during exploration
and execution [66]. In [67], the shielding framework is extend to multi-agent settings,
emphasizing scalability and formal safety guarantees in complex interaction scenarios.
In [69], the Worst-Case Soft Actor Critic algorithm utilized a distributional safety critic
and Conditional Value-at-Risk constraints to optimize policies under worst-case scenar-
ios, thus providing stronger safety assurances in continuous action domains. In [70],
an action projection layer is implemented, correcting the action defined by the DRL al-
gorithm via a projection operator. Unfortunately, this projection operator degrades the
DRL algorithm’s performance, as shown in [71]. In [72], safe DDPG is used for real-time
automatic control of a smart hub, while a safety net is used to estimate the feasibility
of decided actions. A similar strategy is proposed in [73], in which the action proposed
by the DRL algorithm is used as starting point to solve a mathematical programming
formulation, ensuring constraints compliance. In [74], a constrained policy gradient ap-
proach is proposed, updating the parameters of the DNN model in the direction that
minimizes the power unbalance. In [75], the same approach is used to solve an EVs
coordination problem. This policy optimization approach allows the DRL algorithm to
provide a probabilistic notion of safety.

Nevertheless, feasibility is paramount in energy systems operation, and it should be
certifiable. In this regard, enforcing operational constraints during the online schedul-
ing stage is a critical challenge for DRL algorithms and it must be addressed to enable
their wide adoption in real systems. A summary of the discussed research literature is
presented in Table 2.1. The openness and free online availability of the algorithms dis-
cussed here are also highlighted in Table 2.1.

2.1.2. CONTRIBUTIONS

To overcome the above-discussed limitations, this paper proposes a DRL algorithm, MIP-
DQN, to define the optimal schedule of a renewable-based energy system, capable of
strictly enforcing all the operational constraints in the action space, ensuring the feasi-
bility of the defined scheduled in real-time operation. To do this, we used recent op-
timization advances for DNNs that allow their representation as a mixed-integer linear
(MIP) formulation, enabling further consideration of any action space constraints. Such
approaches have been also employed in the context of feature visualization and adver-
sarial machine learning [76]. The performance of the proposed algorithm has been com-
pared with other state-of-the-art DRL algorithms available in the literature, including
DDPG [23], PPO [22], SAC [77], and TD3 [24] algorithms, to show its effectiveness. A
comparison with the optimal global solution is also presented, obtained by solving the
energy system scheduling problem as a mathematical programming formulation con-
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sidering full knowledge of future information (i.e., consumption, dynamic prices, and
renewable-based generation). The main contributions of this paper are as follows:

* A value-based DRL algorithm to solve the energy system scheduling problem is
proposed, capable of dealing with continuous action spaces. Different from other
actor-critic DRL algorithms (e.g., DDPG, PPO, and TD3), we make use of the action-
value function approximated using a DNN, while discarding the policy model learn-
ing used during exploration.

* An innovative online execution approach that guarantees that the proposed DRL
algorithm strictly meets all operational conditions in the action space (e.g., the
power balance constraint), even in unseen test data, is also proposed. This is
done by leveraging new optimization results from DNNs that allow their represen-
tation as a MIP formulation, enabling further consideration of any action space
constraints.

The rest of this paper is organized as follows. In Section 2.2, the optimal energy sys-
tem scheduling problem is formulated. Then, in Section 2.3, the formulated problem
is modeled as MDP while the proposed MIP-DQN algorithm is illustrated and used to
solve the optimal energy system scheduling problem in Section 2.4. Simulation tests are
presented, analyzed and discussed in Section 2.5, while conclusions are presented in
Section 2.6.

2.2. MATHEMATICAL PROGRAMMING FORMULATION OF THE EN-
ERGY SYSTEMS SCHEDULING PROBLEM

The structure of the considered energy system is shown in Fig. 2.1, including various
DERs, such as solar photovoltaic (PV), ESSs, DGs, and loads, while a connection to the
utility grid is leveraged to address a demand surplus or shortage problem. For tractable
analysis, we assume the day-ahead market where the electricity price of each hour is re-
vealed beforehand. For the energy system in Fig. 2.1, the optimal energy system schedul-
ing problem can be modeled by the nonlinear programming (NLP) formulation described
by (2.1)-(2.11). The objective function in (2.1) aims at minimizing the operating cost for
the whole time horizon 9, comprising the operating cost of the DG units, as presented
in (2.2), and the cost of buying/selling electricity from/to the main network, as in (2.3).
Given the output power of DG units Pl.cft, the operating cost can be estimated by using a
quadratic function as in (2.2). The transaction cost between the energy system and the
network is settled according to Time-of-Use (ToU) prices, in which it is assumed that
selling prices are lower than the purchasing prices. In (2.3), p; is the ToU price at time
slot ¢, while Pﬁv refers to the exported/imported power transaction to/from the network.

min { Yy [cft(.)+cf(.)]m}, @1

G pB h
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2
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Table 2.1: Summary of research literature for DRL algorithms and constraint enforcing approaches.

Work Research Problem Constraint Enforcing Advantages Disadvantages Open-access
[52] Residential building energy schedule Yes
[46] Microgrid operation Constraints disregarded Simple Not realistic Yes
[53] Residential buildings energy schedule No
[25] Microgrid operation No
[26] Voltage regulation Yes
[50] Optimal power flow No
[54] Energy dispatch No
[78] Energy dispatch Penalty function Easy to implement No constraint guarantee No
[30] Optimal energy system scheduling Yes
[58] PV-inverter voltage regulation No
[59] Battery schedule and voltage regulation No
[62] Energy trading between microgrids No
[61] Restoration services Imitation _mmH.E:m and Accelerating training speed No constraint guarantee No
penalty function Improve the performance

[56] Energy Management Unlimited slack bus Simple Not realistic Yes
(0] Energy management Safe _m.w\mw e Performance deterioration

. . Gaussian process Guarantee the feasibility No

72] Energy hub trading Not fully model-free
Safe layer

[73] Microgrid operation Action projection
Tw: Distribution network operation Constrained policy optimization  Probabilistic guarantee feasibility Zw constraint mcmamsﬁ.m N No
[75] EV management Higher computation time
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Figure 2.1: Illustration of the considered energy system structure composed of various DERs, such as solar
photovoltaic (PV), ESSs, DGs, and loads.

Subject to:

Y P+ Y Pu+PY+ Y P} =3 P, Vied (2.4
€9 mevV JjeB ke

P¢< PG <P} ViegVieT (2.5)
Py, ~ P}, <RU; Vie4gNred (2.6)
Py —P{, | <RD; ViegVied (2.7)
-PB<pB <P} VieBNteT (2.8)
socﬁt = soc}?H +nBP£tAt/E}3 VjieBNteT (2.9)
S0C® < s0Ct, <50C] VieBVtedT (2.10)
~PC<pN <P Vied (2.11)

Expression (2.4) defines the power balance constraint. Expression (2.5) defines the
DG units generation power limits while (2.6) and (2.7) enforce the DG unit’s ramping up
and down constraints, respectively. Energy storage systems (ESSs) are modeled using
(2.8)-(2.10). In this model, the operation cost of ESSs is not considered, while ESSs are
allowed to schedule their discharge and charge power in advance. Expression (2.8) de-
fines the charging and discharging power limits, while expression (2.9) models the state
of charge (SOC) as a function of the charging and discharging power. Expression in (2.10)
limits the energy stored in the ESSs, avoiding the impacts caused by over-charging and
over-discharging. Finally, the main network export/import power limit is modeled by
the expression in (2.11). Notice that to solve the mathematical formulation described
by (2.1)-(2.11), full knowledge of future information (e.g., renewable-based generation,
consumption and dynamic prices) is required, for instance, provided via a forecasting
algorithm. The proposed DRL algorithm is able to provide good-quality solutions with
only current information, as shown later. Next, the MDP formulation of the optimal
scheduling problem is presented.
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2.3. MDP FORMULATION & VALUE-BASED DRL

The above-presented decision-making problem can be modelled as a finite MDBP, repre-
sented by a 5-tuple (¢, o/, 27, Z,Y), where .¥ represents the set of system states, </ the
set of actions, &2 the state transition probability function, Z the reward function, and y
a discount factor. In this formulation, the energy system operator can be modeled as an
RL agent. The state information provides an important basis for the operator to dispatch
units. We define a state at time ¢ as s; = (P}, PL,P%,SOC)), s; € &#, while the ac-
tions, defining the scheduling of the DG units and the ESSs, as a; = (Pft,Pf), ared.
Notice that the RL agent does not directly control the transaction between the energy
system and the main network (i.e., Pﬁv ). Instead, after any action is executed, power
is exported/imported from the main network to maintain the power balance. Never-
theless, a maximum power capacity constraint exists and must be enforced i.e., (2.11).
Notice that if the maximum export/import limits are defined to be a low value (as done
in this paper), in most cases, the power balance constraint will not be automatically met.

Given the state s; and action a; at time step f, the energy system transit to the next
state s;+1 defined by the next transition probability function

P(Sei1, Rl Sy, Ap) = Pri{Si1 = Sev1, Re =14 | Se = 84, Ap = ayd, (2.12)

which models the energy system’s dynamics. In model-based algorithms, the uncer-
tainty is predicted by a determined value or sampling from a prior probability distribu-
tion. In contrast, DRL algorithms are a model-free approach, capable of learning such
dynamics from interactions. To guide learning, a reward r; must be provided by the en-
vironment in order for the RL agent to quantify the goodness of any action taken. In the
energy system scheduling problem, the reward function % (s, a;) should guide the RL
agent to take actions that minimize the total operating cost, while enforcing the power
balance constraint. This can be done by using the reward function

Y (Cft + Cf)

i€ed

RSy, ap)=r;=—01 —092APNVteT, (2.13)

in which AP; corresponds to the power unbalance at time-step ¢, defined as,

AP = ZPiG,t"' ZPr‘Z,t"'PiV"'ZPﬁt_ Zplé,t

€9 meV NEZ] ke&

. (2.14)

In (2.13), 01 and o, are used to control the order of magnitude and the trade-off between
the operating cost minimization and the penalty incurred in case of power unbalance.
The procedure used to solve the proposed MDP using value-based RL algorithms is pre-
sented next.

2.3.1. DRL VALUE-BASED ALGORITHMS

Define Q(S;, A;) as the action-value function that estimates the expected cumulative
reward given that action a; is taken at state s; and following policy () after that. The
action-value function Q(S;, A;) can be expressed recursively as [13],

Qn (S, A) =Ex [re +YQr(Se1, A+ )ISt = 81, Ar = ay] . (2.15)
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Bellman’s principle of optimality states that the optimal action-value function for an
MDP has the recursive expression

Q;(StrA[) =g [ry +v mﬁ)fz{ Q;(St+1) ar1)ISe =81, Ar=az |, (2.16)

ar+1€

which solution can be obtained by using a Temporal Difference (TD) algorithm [79],
which solves the following update rule iteratively.

Q81 A = QS A)+a |ri+y max Q(ses, @) = Q(st,At)] : (2.17)
t+1

in which Q(-) corresponds to a function approximator used to represent Q; (-) and a €

(0,1] is a learning rate. Once a good quality representation of Q;:(-) is obtained via Q(-),

at time step ¢ and state s;, optimal actions a; can be sampled from the optimal policy,

i.e., a; ~7n*(s;), obtained as

(S = mg@(st =5;,0). (2.18)

For continuous state and action spaces, the optimal action-value function Q; (-) can be
approximated using a DNN i.e., Q(-) = Qp(-) with parameters 6, leading to an algorithm
known as deep Q-networks (DQNs) [16]. In this case, the iterative procedure shown in
(2.17) can be seen as a regression problem whose objective is to estimate the DNN'’s pa-
rameters 0 via stochastic gradient ascent. In DQNs, the Qg is updated using the value
Tt + Y MaX ey Qguarger(Sy, @), where Qprarget i a target Q-function'. Under this value def-
inition, parameters 6 can be obtained minimizing a loss function over mini-batches B
of past data {(s;, a;, ¢, sHl)}'l.i '1. In this case, the loss definition used to train the DQN is
based on the mean squared Bellman error, defined as’

|B| 2
mein Zl (rt,i + ¥ Qgrarget (stﬂ,i, argmax Qy (st+1,is a)) - Qo (St+1,i» at,i)) . (2.19)

i=
Notice that in continuous action spaces, the procedure used in (2.18) to sample actions
from the action-value function Qg is not feasible since an exhaustive action enumera-
tion (i.e., the Max-Q problem) is not possible. Moreover, in (2.18) actions constraints
are completely disregarded. To overcome this, we combine value-based DRL algorithms
with mixed-integer programming, as explained next.

2.4. PROPOSED MIP-DQN ALGORITHM

The proposed DRL algorithm is named MIP-DQN and is defined through two main pro-
cedures: training and deployment (or online execution). The main objective of the train-
ing procedure is to estimate the parameters 8 of the DNN used to approximate the action-
value function Qg; whereas during deployment, the obtained function Qg is used to
take actions to directly operate assets within the energy system. Both procedures are
explained in detail below.

lie., a copy of model Qp which parameters are updated less frequently. This procedure helps to stabilize

learning within the DRL algorithm. For a more detailed explanation, see [80].
2For a more detailed derivation of the loss function in (2.1 9), see [80].




2. OPTIMAL ENERGY SYSTEM SCHEDULING USING A CONSTRAINT-AWARE
20 REINFORCEMENT LEARNING ALGORITHM

Algorithm 1: Training procedure for MIP-DQN

Define the maximum training epochs T, episode length L. Initialize parameters
of functions Qg, Qgtarget, and 7,,; Initialize reply buffer R. ;
fort=1to T do
Sample an initial state so from the initial distribution
for/=1to Ldo
Sample an action with exploration noise a; ~ 7, (sy) +€, € ~ A (0,0) and
observe reward r; and new state s;,1. ;
Store transition tuple (s, a;, 74, S¢+1) in R.;

Sample a random mini-batch of | B| transitions (s, as, 1¢, S¢+1) from R.;
Update the Q-function parameters by using (2.19).;
Update the execution policy function parameters by using
® =+ Vo Leep Qo (5,70(5)).
Update the target-Q function parameters:

ptarget _ -9 o (1- T)Qtarget

2.4.1. TRAINING PROCEDURE

The training process developed for the MIP-DQN algorithm is described in Algorithm 1.
This process starts by randomly initializing the parameters of the DNN functions Qy,
Qgurget. Then, interactions with a model of the energy system take place. In traditional
valued-based RL algorithms, exploration is done by sampling actions from the current
estimate of the action-value function Qy. However, and as explained before, sampling
actions from Qy following (2.18) is not a feasible procedure in continuous action spaces.
Instead, we propose to use a parameterized deterministic optimal policy 7, which is
approximated using a DNN model and randomly initialized. Similar to other work [80],
the policy function 7, the action-value functions Qg and Qyuarget, will be jointly approx-
imated.

Within one epoch, for each time step t, a transition tuple of the form (s;, a;, ¢, St+1) is
collected and store in a replay buffer R. Then, a subset B of these samples is selected and
used to update the parameters of functions Qg, Qgtarget and 7, as shown in Algorithm 1.
This procedure is iteratively done until a maximum number of epochs is reached.

Different from other DRL algorithms, such as DDPG and PPO, after training, we make
use of the action-value function Qg and discard the approximated policy 4. Moreover,
it is critical to notice that the power balance constraint is only enforced via the penalty
added to the reward function in (2.13). Thus, it is expected that at the end of the training
procedure, such equality constraint is not strictly met. The procedure used to enforce
constraints is developed for the deployment or online execution, as explained next.

2.4.2. DEPLOYMENT (ONLINE EXECUTION) PROCEDURE

After convergence of the training procedure, the action-value function Qg, with fixed
parameters 0, can be used to take actions to control different energy resources. To do
this, the problem stated in (2.18) must be solved. In this case, as function Qy represents
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Figure 2.2: Layer structure of the DNN used to approximate the action-value function Q(s, a). We denoted this
DNN model as Qg (s, a) in Algorithm 1.

a DNN, in order to solve (2.18), we leverage recent optimization results for DNNs. Thus,
proposing a transformation of the DNN model Qy into a MIP formulation.

MIP FOR DEEP NEURAL NETWORKS

Let the DNN Qg (s, @) in Fig. 2.2 consists of K + 1 layers, listed from 0 to K. Layer 0 is the
input of the DNN, while the last layer, K refers to the outputs of the DNN. Each layer
k€1{0,1,..., K} have Uy units, which is denoted by u; , the j;, unit of the layer k. Let xF
refers to the output vector of layer k, then x;? is the output of unit u;j g, (j =1,2,...,Ug).
Aslayer 0 is the input of the DNN, then x? is j;; input value for the DNN. For each layer

k <1, the unit u; ; computes the output vector xF below:
ik = (W pRt) (2.20)

where WK1 and b¥~! are matrices of weights and biases that compose the set of pa-
rameters 6 = {W, b} and h(-) is the activation function, which in this case corresponds to
the Rectified Linear Unit (ReLU) function, described as: for a real vector y, ReLU(y) :=
max{0, y}.

Based on the above definitions, the DNN of Fig. 2.2, with fixed parameters 6, can
be modeled as a valid MIP problem by modeling the ReLU function using binary con-
straints. Thus, using a binary activation variable z}“ for each unit u ko the MIP formula-
tion of a DNN can be expressed as [76]:

{Z ZC"xk+ZZd" ’“} (2:21)

xj‘s z Vk
Subject to:
Zf’“:f lkjlxl’? 1+lf)'C 1= ;C s}c
xk, sf 0
;ICE{O 1} pVk V], (2.22)
k1. k<
Y o
J J

I <x)<ub}, jel, (2.23)
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lb}‘ < xk < ub*

— — Yk, Vj. (2.24)
by < 5 < ubj } !

In the above formulation, weights wl{‘]‘.l and biases b;.‘ are fixed (constant) parame-

ters; while the same holds for the objective function costs c* and d*. The ReLU function
output for each unit is defined by (2.22), while (2.23) and (2.24) define lower and upper
bounds for the x and s variables: for the input layer (k = 0), these bounds have physical
meaning (same limits of the Qp inputs i.e., s and a), while for k = 1, these bounds can
be defined based on the fixed parameters 0 [81]. Finally, notice that in order for the MIP
formulation to be equivalent to the DNN, ReLU activation functions must be used, as
explained in [76].

ENFORCING CONSTRAINTS IN ONLINE EXECUTION
For an arbitrary state s;, the optimal action a; can be obtained by solving the MIP in
(2.21)—(2.24) derived from Qp. In this case, as the decision variables are the actions a;
(see (2.18)), the power balance constraint in (2.4) as well as the ramp-up and ramp-down
constraints in (2.6) and (2.7), respectively; can also be added to the MIP formulation de-
scribed by (2.21)-(2.24). As a result, the optimal actions obtained by solving this MIP
strictly enforce all operational constraints in the action space. This problem can be rep-
resented as,
max {(2.21)}

aed,x}‘,s}‘,z}“,Vk (2.25)

s.t. (2.22) —(2.24),(2.4),(2.6), (2.7).

To better understand the MIP formulation stated in (2.25), Fig. 2.3 shows a reinterpreta-
tion of the power balance constraint in (2.4) as a hyperplane that define the feasibility
region (for a three dimensional space) of the action space. Notice that such hyperplane
may have different parameters for different time steps. Thus, if the hyperplane that en-
forces the power balance constraint is added to the MIP formulation that represents the
DNN Qg, the solution of such mathematical problem will ensure minimum operating
cost (via the maximization of Q) and enforce all action space constraints, as exempli-
fied in Fig. 2.4. In this case, this re-interpretation of the DNN as a MIP formulation of-
fers enough flexibility to enforce equality constraints (as well as other constraints over
the action space) for the energy system scheduling problem, such as the power balance.
Algorithm 2 shows the step-by-step procedure used during the online execution of the
proposed MIP-DQN algorithm.

2.5. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results and discussions are presented. A comparison with DRL
algorithms available in the literature, including PPO, SAC, DDPG and TD3 algorithms, is
also presented.
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Figure 2.3: Action space (grey) and feasible action space (red) illustration. Actions aj, az, a3 refer to generic
actions in a three-dimensional action space «f. For each time step ¢, the power balance constraint in (2.4) can
be seen as the hyperplane a; + a + a3 = d that defines the feasible actions space.

hf(.)“\\ h_"/ﬁ(-)
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Figure 2.4: Visualization of the constraint space whose boundaries are formed by the hyperplanes hj? (-) defined

by the ReLU activation functions derived from the deconstructed DNN Qp(s,-) as a MIP formulation, for a
specific state s and actions a; and ay. The grey are shows the increasing value (from darker to lighter) of VQy.
The red point exemplifies the optimal solution of max ¢ Qg(s,-) if constraint a; + ap = d is disregarded. If
such a constraint is added to the MIP formulation, the solution represented with the blue point will be reached.

2.5.1. CASE STUDY AND SIMULATIONS SETUP

To test the developed MIP-DQN algorithm, an energy system consisting of three DG
units and an ESS is defined. The DG unit’s parameters are shown in Table 2.2, while for
the ESS, the charging/discharging limits, nominal capacity, and energy efficiency (n5)
are set to 100 kW, 500 kW, and 0.90, respectively. We assume that the network’s maximum
export/import limit is defined as 30 kW. To encourage the use of renewable energies, we
set selling prices as half of the current electricity prices, i.e., f =0.5.

One-year demand consumption and PV generation data are used as the original data-
set, sampled in hour resolution. Fig. 2.5 shows the mean and standard deviation of the
demand consumption and PV generation during summer and winter for a period of 24h,
defined as the length of one episode (T = 24). The original dataset is divided into two
additional datasets: training and testing. The training dataset contains the first three
weeks of each month, while the testing dataset contains the remaining data. This allows
the DRL algorithm to learn any seasonal and weekly behavior available in the PV gen-
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Algorithm 2: Online Execution for the MIP-DQN Algorithm

Extract trained parameters 6 from Qp;

Formulate the Q-function network Qg as a MIP formulation according to
(2.21)-(2.24). Add all action space constraints i.e., (2.4), (2.6) and (2.7).

Extract initial state sy based on real-time data;

fort=1to T do
L For state s;, get optimal action by solving (2.25) using commercial MIP

solvers;

Table 2.2: DG units information

Units  al$/kW2]  bI$/KW] c[$] PCkw] D kW] RUKW] RDIKW]

DG, 0.0034 3 30 10 150 100 100
DG, 0.001 10 40 50 375 100 100
DGs 0.001 15 70 100 500 200 200

eration and demand consumption data [30]. During training, the EES’s initial SOC was
randomly set. To implement our MIP-DQN algorithm, PyTorch and the OMLT (see [81])
have been used. Default settings were used for all the implemented DRL algorithms,
as shown in Table 2.3. All implemented algorithms are openly available in [82]. Hyper-
parameters o1 and o> are defined as 0.01 and 20, respectively, as default values. Each
test is run with five random seeds to eliminate randomness from code implementation.

Table 2.3: Parameters for DRL algorithms

Algorithm Batch size |B| Learningrate Buffer size R Y Network dimension ~ Optimizer
DDPG 256 le-4 5e4 0.995 (64,64,64) Adam
SAC 256 le-4 5e4 0.995 (64,64,64) Adam
TD3 256 le-4 5e4 0.995 (64,64,64) Adam
PPO 256 le-4 - 0.995 (64,64,64) Adam
MIP-DQN 256 le-4 5e4 0.995 (64,64,64) Adam

2.5.2. VALIDATION AND ALGORITHMS FOR COMPARISON

In the research literature, DRL algorithms are usually compared with simple rule-based
or MPC-based algorithms (considering the impacts of any forecasting error) [83]. Never-
theless, this procedure does not allow us to estimate the optimality gap between current
DRL algorithms and the optimal global solution with a perfect forecast of the stochastic
variables (i.e., generation and demand consumption). In this case, this optimal global
solution with full knowledge should be regarded as an upper boundary, as none algo-
rithm would perform better. Based on this, to validate and fairly compare the perfor-
mance of the proposed MIP-DQN algorithm, besides comparing the optimal DERs sched-
ule defined by several state-of-the-art DRL algorithms (DDPG, PPO, TD3), we compared
with the optimal solution obtained considering perfect forecast for the next 24 hours. In
this case, the optimal solution is found by solving the nonlinear mathematical program-
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Figure 2.5: Mean and standard deviation of the demand consumption and PV generation.

ming formulation in Sec. 2.2, implemented using Pyomo [34]. Notice that different from
the optimal global solution, all the tested DRL algorithms can make decisions only us-
ing current information. Finally, to evaluate the DRL algorithms’ performance, the total
operating cost, as in (2.1), and the power unbalance, as in (2.14), are used as metrics.

2.5.3. PERFORMANCE ON THE TRAINING SET

Figure 2.6 shows the average reward, operating cost, and power unbalance for the devel-
oped MIP-DQN algorithm and other DRL algorithms during the training process. As can
be seen in Figure 2.6, the average reward increases rapidly after 100 episodes of training,
while the operating cost and the power unbalance significantly decrease. This behavior
during training is typical of DRL algorithms as the DNN’s parameters are randomly ini-
tialized, leading initially to random actions causing high power unbalance. Throughout
the training, and due to the introduction of the penalty terms used in the reward defini-
tion in (2.13), the DNN’s parameters are updated, leading to higher quality actions, re-
ducing power unbalance, and showing a lower operating cost. All algorithms converged
before 400 episodes. After the last training episode, the power unbalance (presented
by the average with 95% confident interval) of DDPG, SAC, PPO, and TD3 are 64.8 +99
kW, 807 £ 121 kW, 65 + 18 kW, 304 + 104 kW, respectively; while a power unbalance of
12 + 15 kW was observed for the proposed MIP-DQN algorithm. This result shows how
the proposed MIP-DQN algorithm outperformed other DRL algorithms during the train-
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ing process. Nevertheless, and as expected, none of the tested DRL algorithms (includ-
ing the proposed MIP-DQN) can strictly enforce the power balance; if such algorithms
are used in real-time operation, they might lead to unfeasible operation. Next, we show
how our proposed algorithm can overcome this during online execution, even in unseen
data.
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Figure 2.6: Mean and 95% confident interval for the reward, operating cost and power unbalance for the de-
veloped MIP-DQN algorithm, as well as for other DRL algorithms, during training. As expected, none of these
DRL algorithms can enforce the power balance constraint.

2.5.4. PERFORMANCE ON THE TEST SET

After training, the DNN’s parameters of all the DRL algorithms are fixed as shown in Al-
gorithm 2. A performance comparison is now made on the test set. Recall that the data
on the test set is not used during training; therefore, it has not been seen by any of the
DRL algorithms. To compare results on the test set, Fig. 2.7 shows the cumulative operat-
ing cost and power unbalance (which can be seen as a cumulative error) for 10 different
days using the proposed MIP-DQN algorithm, as well as other DRL algorithms. The opti-
mal global solution obtained by solving the NLP formulation and considering the perfect
forecast is also presented. As can be seen in Fig. 2.7, during online operation and for all
10 test days, the proposed MIP-DQN algorithm strictly meets the power balance con-
straint, while other DRL algorithms fail to deal with such equality constraint. Notice in
Fig. 2.7 how DRL algorithms such as DDPG and TD3 reach a cumulative power unbal-
ance near 0.14 MW at the end of the test period. As a result of such high unbalances, an
operating cost of 53.3% higher than the optimal global solution is also observed. In con-
trast, the proposed MIP-DQN algorithm achieves an operating cost of 94 k$, i.e., 17.6%
higher than the optimal solution.

To test the performance with a higher number of test days, Table 2.4 presents the
average cumulative error (with respect to the solution obtained by solving the NLP for-
mulation with perfect forecast), the average power unbalances, and total average com-
putational time (over 30 test days) of the proposed MIP-DQN algorithm as well as other
DRL algorithms. As can be seen, the proposed MIP-DQN algorithm has the lowest av-
erage error, 13.7%; while strictly meeting the power balance (and other) constraint. In
contrast, algorithms such as PPO showed poor performance reaching an error of 52.4%.
As expected, the total computational time required to execute the proposed MIP-DQN
algorithm is higher than other DRL algorithms. This increase in the computational time
is a result of the MIP formulation required to be solved in order to enforce the equal-
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Figure 2.7: Cumulative costs and power unbalance for 10 days in the test set. The proposed MIP-DQN algo-
rithm is able to strictly meet the power balance constraint while other DRL algorithms fail to do so.

Table 2.4: Performance comparison of different DRL algorithms in a new test set of 30 days.

Algorithms Error AP [MW] Computational time [s]
MIP-DQN 13.7+0.3% 0.0 17
DDPG 47.3+1.9% 0.14+0.021 4.3
TD3 31.5+£0.7% 0.06+0.011 4.9
PPO 52.4+0.3%  0.15+0.007 4.3

ity constraint (see (2.25)). Nevertheless, for this case, the proposed MIP-DQN algorithm
can still be used for real-time operation as it only requires less than 20 s for execution.
In this case, it is important to highlight that the computation time of the proposed MIP-
DQN algorithm is impacted by the size of the formulated MIP problem, which is only
determined by the size of the used Q-network (layers, units of each layer, etc.) and not
by the size of the energy system (microgrid) considered. Previous research has shown
that (small) neural networks can generalize well in real environments [61], supporting
the applicability of DRL models in real systems.

2.5.5. DISPATCH DECISIONS COMPARISON

Until now, the general performance of the proposed MIP-DQN algorithm has been pre-
sented, highlighting its capability of strictly enforcing the power balance constraint, even
in unseen operational days. Next, a comparison in terms of the scheduling of the DG
units and the ESSs is introduced. To do this, Fig. 2.8 displays the output power of all
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the DG units, ESSs and the imported/exported power from the network for: the pro-
posed MIP-DQN algorithm (Fig. 2.8b), and the optimal solution obtained after solving
the NLP formulation considering perfect forecast (Fig. 2.8¢). Notice in Fig. 2.8 that when
the electricity price is high, and the net power is low, the proposed MIP-DQN algorithm
dispatches the ESSs in charging mode, and a similar dispatch decision is observed in the
optimal global solution. Notice also that, when compared with the optimal solution, the
proposed MIP-DQN algorithm dispatched 3;;, DG during the peak hour, which can be
considered a sub-optimal decision as the operating cost of such DG is higher than the
others. This difference in this dispatch decision can be due to the estimated Q-function,
which might not be good enough to represent the true action-value function. In this
sense, as the proposed MIP-DQN algorithm chooses actions that maximize its Q-value
estimation, the largest Q-value might not represent the best action for this specific state-
action pair. Nevertheless, even in executing a sub-optimal decision, the proposed MIP-
DQN algorithm is able to meet the power balance constraint, guaranteeing operational
feasibility. Finally, although differences in the dispatch decisions made by the proposed
MIP-DQN algorithm and the optimal solution can be observed, it is important to high-
light that the optimal global solution is obtained considering the perfect forecast of the
future generation and demand consumption for the next 24 hours, while the proposed
MIP-DQN algorithm provides dispatch decisions in an hourly basis, without knowledge
of the future values of the stochastic variables.

2.5.6. SENSITIVITY ANALYSIS

To better understand the impact of hyperparameter o, in the reward function in (2.13),
Fig. 2.9 shows the average operating cost and power unbalance (during training) for the
proposed MIP-DQN algorithm for o, = 20,50,100. As can be seen in Fig. 2.9, and as
expected, higher values of o, accelerate the convergence of the proposed MIP-DQN al-
gorithm to rapidly reduce power unbalance, while having no apparent impact on the
convergence of the operating cost. On the other hand, lower values of o, seem to ac-
celerate the convergence of the operating cost leaving behind the convergence of the
power unbalance. In general, for the test performed, it was observed that the proposed
MIP-DQN algorithm could converge in less than 200 episodes.

2.5.7. COMPARISON WITH SAFE DDPG ALGORITHM

A comparison with current safe DRL algorithms is also performed. In this case, the
proposed MIP-DQN algorithm is compared with a Safe DDPG algorithm, as presented
in [85]. Fig. 2.10 shows the average reward (Fig 2.10a), operating cost (Fig. 2.10b), and
power unbalance (Fig. 2.10c¢) for the two algorithms being compared. In this case, and as
expected, both algorithms fail to enforce the power unbalance constraint strictly during
training. At the beginning of the training stage, the Safe DDPG algorithm shows a lower
operating cost and power unbalance, and higher reward, when compared to the MIP-
DQN algorithm. This is mainly due to the trained linear safe layer of the Safe DDPG,
which projects the exploration action to a safer one, while the MIP-DQN algorithm is
free to explore the action space regardless of the feasibility of the decided action. Never-
theless, along with the training, the Safe DDPG algorithm fails to learn to reduce further
or eliminate power unbalance, while our proposed MIP-DQN algorithm reduces the un-
balance sharply. This behavior is mainly due to the reward shaping of the MIP-DQN
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Figure 2.8: Operational schedule of all DG units and ESSs defined by the proposed MIP-DQN algorithm and
the optimal global solution obtained by solving the NLP formulation considering perfect forecast.

algorithm, which can learn to avoid the penalty due to the power unbalance during the
training. It is important to highlight that the performance of the Safe DDPG algorithm
depends on the quality of the trained safe layer that project the original action of the
DDPG algorithm to a feasible one. In this case, as the safe layer is a linear function,
its generalization capabilities may not be enough to learn the complex nonlinear energy
system dynamic. Thus, even after projection, the action can not fully meet the power un-
balance constraint. Moreover, as the safe layer modified the action during exploration, it
also harms the performance of the trained RL algorithm as shown in Fig. 2.10. Compared
to the Safe DDPG algorithm, the proposed MIP-DQN algorithm learns to eliminate the
unbalance in a small value after training and guarantees the feasibility during the execu-
tion (Fig. 2.7).
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different values of g.
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2.5.8. LARGER CASE STUDY
To test the performance of the proposed MIP-DQN algorithm on an energy system with
multiple ESSs, an environment with three ESSs and three DG generators is designed. For
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this new environment, Fig. 2.11 shows the average operating cost and power unbalance
of the proposed MIP-DQN algorithm as well as other state-of-the-art DRL algorithms,
during the training process. As can be seen in Fig. 2.11, the operating cost and power
unbalance are significantly reduced. In this case, all tested DRL algorithms converged at
around 400 episodes. The power unbalances (presented by the average with 95% con-
fident interval) of the DDPG, SAC, PPO and TD3 algorithms are 97 + 125 kW, 533 + 208
kW, 45 + 19 kW, 462 + 98 kW, respectively. In contrast, a power unbalance of 17 + 22 kW
was observed for the proposed MIP-DQN algorithm. Similar to the results presented in
Sec. 2.5.3 for the smaller case study (see Fig. 2.6), none of the tested DRL algorithms can
strictly enforce the power balance during training. Most of the observed power balance
violations happen during peak load days, consistent with previous results [30]. Never-
theless, the proposed MIP-DQN algorithm is able to enforce power unbalance during the
online execution, even on peak load days, as shown next. Additionally, compared to the
result of simulations in Sec. 2.5.3, no performance degeneration is observed, proving the
scalability of the proposed MIP-DQN algorithm.
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Figure 2.11: Mean and 95% confident interval for the operating cost and power unbalance for the developed
MIP-DQN algorithm, as well as for other DRL algorithms, during training.

Fig.2.12 shows the scheduling decisions from the MIP-DQN algorithm for all three
ESSs (Fig.2.12b) and DG generators (Fig.2.12¢), and SOC changes (Fig.2.12d) in a typical
day with extreme peak load. Notice that the power balance is strictly enforced during
the peak load day. For instance, at 19h, the load is extremely high, and the MIP-DQN
algorithm dispatches all the ESSs in discharging mode. This avoided importing electric-
ity from the main grid as the electricity price was high at that particular time. These
results showed that the proposed MIP-DQN algorithm learned to schedule feasible deci-
sions for multiple ESSs in extreme peak situations. Notice also that, at hours 3 and 4, the
proposed MIP-DQN algorithm dispatches the 2;;, DG, instead of fully using the 1,; DG,
which can be considered as a sub-optimal decision because the operating cost of 2,, DG
is higher than that of 1;; DG. A similar result was observed in Fig. 2.8. Nevertheless, even
in executing a sub-optimal decision, the proposed MIP-DQN algorithm is able to meet
the power balance constraint, guaranteeing operational feasibility. Thus, the proposed
MIP-DQN algorithm can provide feasible dispatch decisions hourly for multiple ESSs,
displaying prominent scalability features.
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Figure 2.12: Operational schedule of all ESSs and DG units defined by the proposed MIP-DQN algorithm for a
larger case study composed of three ESSs and three DG units.

2.5.9. DISCUSSION

The penetration of renewable-based DERs energies significantly increases the uncer-
tainty and complexity of the operation of energy systems. Existing model-based ap-
proaches may not perform well when defining the operational schedule of DERs in real
time due to their poor accuracy and high computational time requirements. Due to this,
current efforts are put into leveraging RL algorithms’ model-free and data-driven na-
ture. After offline training, RL algorithms can provide near-optimal solutions in real-
time. Nevertheless, the most critical challenge to enabling RL algorithms deployment in
real energy systems scheduling frameworks is their lack of constraint enforcing guaran-
tee. Even though several safe RL algorithms have tackled this problem, these approaches
fail to meet the required security levels of energy systems operation [86]. In general,
model-based optimization approaches can guarantee the feasibility of the defined DERs
schedule by setting hard constraints in the mathematical formulation, which is impos-
sible to do in current RL algorithms.

To overcome the problem mentioned above, inspired by recent advances in deep
learning and optimization research areas, we first bring constraint enforcement in RL al-
gorithms combining deep learning and optimization theory. We developed a DRL algo-
rithm, namely MIP-DQN, that can theoretically guarantee the feasibility of the decided
solution and get the optimal solution during the online scheduling stage. To do this,
we redesigned the training and online-scheduling procedure. The proposed MIP-DQN
algorithm uses a trained Q-network to approximate the state-action values function. Ex-
ploration and exploitation are executed based on a trained policy network to update the
Q-network parameters. After training, the Q-network is assumed to approximate the
optimal Q-values. Then, the trained Q-network is extracted and formulated as MIP for-
mulation, which can be used to impose hard constraints in the action space, ensuring
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the feasibility of the defined schedule. In this case, the power balance constraint is used
as an example to show the effectiveness of the proposed approach. Results showed that
MIP-DQN strictly meets the power balance constraint, showing a lower error when com-
pared with other DRL algorithms and the optimal global solution.

The essence of the proposed MIP-DQN algorithm is using a trained Q-network as
a surrogate function for the optimal operational decisions. As above-mentioned, the
optimality is defined by the Q-network modeled as a MIP formulation. Thus, the ap-
proximation quality of the Q network determines the proposed algorithm’s performance.
In Fig 2.8, we showed that the proposed MIP-DQN could be considered a good quality
operational schedule, albeit sub-optimal. Thus, efforts to reduce the error when com-
pared with the optimal global solution must be centered on increasing the quality of
the approximation of the Q-values via the used deep neural network. Additionally, the
proposed MIP-DQN algorithm still needs to integrate a penalty term into the reward
function to explore the right direction during the training process. This introduces extra
hyperparameters that also impact the approximation performance of the obtained Q-
function. An alternative exploration approach that can be used is to model the DNN as
a MIP formulation in each iteration step; nevertheless, this would imply higher training
time.



MIP-DRL: A CONSTRAINT
ENFORCEMENT DEEP
REINFORCEMENT LEARNING
FRAMEWORK FOR OPTIMAL
ENERGY STORAGE SYSTEM
DISPATCH

The optimal dispatch of energy storage systems (ESSs) within distribution networks poses
significant challenges, primarily due to uncertainties stemming from dynamic pricing,
fluctuating demand, and the variability inherent in renewable energy sources. By ex-
ploiting the generalization capabilities of deep neural networks (DNNs), deep reinforce-
ment learning (DRL) algorithms can learn good-quality control models that adaptively
respond to distribution networks’ stochastic nature. Nevertheless, the practical deploy-
ment of DRL algorithms is often hampered by their limited capacity for satisfying op-
erational constraints in real-time, a crucial requirement for ensuring the reliability and
feasibility of control actions during online operations. This paper introduces an innova-
tive framework, named Mixed-Integer Programming Deep Reinforcement Learning (MIP-
DRL), designed to overcome these limitations. The MIP-DRL framework can rigorously
enforce operational constraints for optimal dispatch of ESSs throughout the online ex-
ecution. The framework involves training an action-value function with DNNs, which
is subsequently represented in a mixed integer programming (MIP) formulation. This

Parts of this chapter have been published in IEEE Journal of Modern Power Systems and Clean Energy with
the title: A Mix-Integer Programming Based Deep Reinforcement Learning Framework for Optimal Dispatch of
Energy Storage System in Distribution Networks, doi: 10.35833/MPCE.2024.000391. [37].
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unique combination allows for the seamless integration of operational constraints into
the decision-making process. We validate the effectiveness of the MIP-DRL framework
through comprehensive numerical simulations, demonstrating its superior capability to
enforce all operational constraints and achieve high-quality dispatch decisions. Our re-
sults show the framework'’s advantage over existing DRL algorithms.
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3.1. INTRODUCTION

The proliferation of distributed energy resources (DERs) poses various challenges in the
control and operation of electrical distribution networks [88]. Voltage issues can be seen
in networks with high photovoltaic (PV) penetration and peak load scenarios. To over-
come this, energy storage systems (ESSs) are increasingly being deployed, offering an-
cillary services to the distribution system operators (DSOs), such as voltage magnitude
regulation. These ancillary services can be provided by exploiting ESSs’ flexibility in re-
sponse to a dynamic price throughout the day, which can be obtained by solving an
optimal ESSs scheduling problem. From the ESSs operator’s view, the defined ESSs dis-
patch should minimize operational costs while ensuring voltage magnitude constraints
of the distribution network. Nevertheless, such a scheduling problem is inherently chal-
lenging due to the stochastic and uncertain nature of the dynamic prices, the demand
consumption, and the renewable-based generation (e.g. from PV systems) [89].

Traditional research in optimal ESSs dispatch has predominantly focused on devel-
oping accurate models and approximated formulations that make the problem amenable
for commercial solvers (e.g. [90]), collectively known as model-based approaches. Nev-
ertheless, these model-based approaches struggle with real-time solution quality due
to the increased complexity and uncertainty introduced by DERs [91]. Model-free ap-
proaches have been proposed as an alternative to overcome the shortcomings men-
tioned above. These approaches model the optimal ESSs scheduling problem as a Markov
Decision Process (MDP) and leverage reinforcement learning (RL) algorithms to define
optimal sequential decisions [92, 93]. By exploiting the good generalization capabilities
of deep neural networks (DNN), DRL algorithms can perform sequential interpretations
of data, learning good-quality control models that can adaptively respond to the stochas-
tic nature of an environment [94].

Implementing DRL algorithms in a real system typically follows a two-stage process:
first, an off-line initial training utilizing a simulator, and second, an online deployment
of the trained algorithm into the real system [95]. This approach allows refining and
rigorously testing DRL algorithms before their exposure to the realistic system. As for
the optimal ESSs’ dispatch problem, ensuring the feasibility and safety during the on-
line execution of the DRL algorithms emerges as the most crucial aspect of their de-
ployment [96]. Nevertheless, after training, standard DRL algorithms cannot provide the
feasibility for defined actions during online operation, impeding the implementation of
DRL algorithms in ESSs dispatch problems.

Several approaches have been developed to improve the constraint enforcement ca-
pabilities of DRL algorithms [28]. The enforcement of soft constraints is currently the
most widely used approach. In this approach, a large and fixed penalty term is incorpo-
rated into the reward function when training the parameters of the control policy [97].
This allows the DRL algorithm to avoid actions that lead to unfeasible operations. Al-
though these strategies may enforce operational restrictions during training, they can-
not guarantee the feasibility of the defined operating schedule in real time, especially
during peak periods of consumption and renewable generation [30]. Instead, safe DRL
algorithms are implemented to directly handle constraints in distribution network oper-
ations without adding penalty terms in the reward function. In [98], a safe DRL algorithm
was introduced to define a fast-charging strategy for lithium-ion batteries to enhance
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the efficiency of EV charging without compromising battery safety. Utilizing the SAC-
Lagrange DRL within a cyber-physical system framework; the strategy optimizes charg-
ing speeds by leveraging an electro-thermal model, outperforming existing DDPG-based
and SAC-based DRL methods in terms of optimality. To ensure that the updated policy
stays within a feasible set, in [99, 100], a cumulative constraint violation index is kept
below a predetermined threshold. This approach was also used in [74, 75], in which the
constraint violation index is designed to reflect the voltage and current magnitude vio-
lation level due to the ESSs dispatch defined. Nevertheless, enforcing constraints via cu-
mulative indexes can only provide a probabilistic notion of safety, failing to enforce volt-
age and current magnitude constraints in real time due to their instantaneous nature.
Alternatively, a projection operator can be developed to project actions defined by the
DRL algorithm into a feasible set [101]. For instance, the projection operator proposed
in [102] uses the action defined by the DRL algorithm as a starting point to solve a math-
ematical programming formulation, thus ensuring compliance with the constraints. A
similar approach was implemented in [103] to regulate the distribution networks’ volt-
age magnitude via the control of smart transformers. However, implementing such pro-
jection operators can degrade the performance of the DRL algorithm, as shown in [104].

A summary of the different constraint-enforcing approaches used by RL algorithms
in a variety of operational problems is presented in Table 3.1. The optimal dispatch
of ESSs requires meeting strict operational constraints so safety and feasibility can be
guaranteed, especially during online operations. Although the safe DRL algorithms pre-
sented in Table 3.1 notably enhanced constraint enforcement capabilities and mitigated
the violations significantly during the training, a significant challenge persists: these
algorithms cannot provide control decisions with a theoretical guarantee of constraint
enforcement in the online execution phase. This limitation poses a substantial barrier
to the widespread implementation of DRL algorithms for optimal ESSs dispatch. En-
suring action feasibility in real-time applications is paramount, not only for the relia-
bility of the ESSs operation but also for the broader adoption and trust in DRL solu-
tions within this field. In our previous work [105], a value-based safe DRL algorithm
is proposed to address the energy management problem with strict enforcement of the
constraint of power balance equality. The work integrates optimization techniques with
DRL theory, representing train Q-function networks in deep Q-learning as a MIP for-
mulation. Leveraging this innovative approach, we now broaden the scope of our re-
search to conceptualize and develop a more versatile and comprehensive framework
that strictly enables state-of-the-art (SOTA) actor-critic DRL algorithms to enforce op-
erational constraints. This framework is called Mixed-Integer Programming Deep Rein-
forcement Learning (MIP-DRL). Distinct from our earlier contribution, MIP-DRL is not
confined to a specific algorithm but is envisioned as a general framework that can em-
power many standard actor-critic DRL algorithms to enforce operational constraints.
Our contributions are systematically structured to highlight the innovation and appli-
cability of the MIP-DRL framework, as follows:

* We present the MIP-DRL framework to enforce operational constraints with strict
adherence during online operations. Utilizing the robust constraint-enforcing abil-
ity of MIP, the framework ensures compliance with operational constraints, guar-
anteeing zero-constraint violations during the online execution phase. This inno-
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Table 3.1: Summary ofliterature in safe DRL algorithms and constraint enforcing approaches in energy systems

operation.

Work Research Problem Constraint Enforcing Open-access
[106]  Microgrid operation No

26] Voltage regulation Yes
[50] Optimal power flow . No
[54] Energy dispatch Penalty function No
[57] Energy dispatch No
[30] Optimal energy system scheduling Yes
[107]  Home energy management Primal-dual DDPG No
[108]  EVin Microgrid Primal-dual SAC No
[109]  Microgrid energy management Constrained policy optimization =~ No
[110]  Cooling system control Gaussian process No
[98] EV charge/discharge operation Lagrange-SAC No
[111]  Distribution network operation Safe layer No
[112]  Voltage regulation Safe layer Yes
[105]  Micro-grid operation Q-network formulated MIP Yes
[70] Energy management Safe layer

. . Gaussian process No
[72] Energy hub trading Safe layer

[73] Microgrid operation Action projection

[74] Distribution network operation . . .

. Constrained policy optimization =~ No
[75] EV management

vation extends the theoretical underpinnings of the DRL applicability and enables
the feasibility of its real-time applications.

* The MIP-DRL framework broadens its utility across diverse DRL algorithms that
employ DNNs for Q-function approximation. We implemented and tested the pro-
posed framework with SOTA standard actor-critic algorithms such as DDPG, TD3,
and SAC, demonstrating the capability to enforce operational constraints strictly.

* Demonstrating its practical efficacy, the MIP-DRL framework is used to address
the complex challenge of optimal ESSs dispatch problem in distribution networks.
The results illustrate the performance superiority of the MIP-DRL framework over
existing standard (safe) DRL algorithms to improve performance and ensure ac-
tion feasibility, even in unseen scenarios (data).

3.2. MATHEMATICAL FORMULATION

The optimal scheduling of ESSs in a distribution network can be modeled using the non-
linear programming (NLP) formulation given by (3.1)-(3.11). The objective function in
(3.1) aims to minimize the total operational cost over the time horizon 9, comprising
the cost of importing power from the main grid. The operational cost p, at time slot ¢ is
settled according to the day-ahead market prices p; in EUR/kWh.

Pt Z (Prli?l,t'i_Prl?l,t_Pr[r)zYt)At
meN

min (3.1)

PE YmeBNeT | teq

Subject to:
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The steady-state operation of the distribution network is modeled by the load flow
sweep method as is shown in (3.2)-(3.5) in terms of the active P,,,,; power, reactive
power Qpp,r and current magnitude I,,,,,; of lines, and the voltage magnitude V,, ; of
nodes [113]. Equation in (3.6) models the dynamics of the ESSs’ SOC on the set 28, while
(3.7) enforces the SOC limits. Hereafter, it is assumed that the ESS m € 98 is connected to
node m, thus, 8 < 4. Finally, (3.8) enforces the ESSs discharge/charge operation limits,
(3.9) and (3.10) enforce the voltage magnitude and line current limits, respectively, while
(3.11) enforces that only one node is connected to the substation. Notice that to solve
the above-presented NLP formulation, all long-term operational data (e.g., expected PV
generation and consumption) must be collected to properly define the ESSs’ dispatch
decisions, while the power flow formulation must also be considered to enforce the volt-
age and current magnitude limits.

In the formulated problem, we assumed that only PV panels and ESSs are installed
in the distribution networks. The active power flexibility provided by ESSs dispatches
is used to provide economic benefits and ensure safe voltage magnitude levels for the
distribution network. It should be mentioned that the complexity of ESSs model can be
increased, including a detailed physical dynamic model e.g., efficiency curves, temper-
ature, and degradation. However, since this work aims to assess the performance of the
proposed MIP-DRL framework, then ESSs dynamics are simplified by using the linear
model [59].
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3.3. ESSS SCHEDULING PROBLEM MDP FORMULATION

The above-presented mathematical formulation can be modeled as a finite MDBP, rep-
resented by a 5-tuple (¥, o/, 22, &,7), where ¥ represents a state space, &/ an action
space, 22 the state transition probability function, £ the reward function, and y a dis-
count factor. The decision as to which action a; is chosen in a particular state s; is gov-
erned by a policy 7(a;|s;). In a standard RL algorithm, an RL agent employs the policy
7 (a;ls;) to interact with the formulated MDP defining a trajectory of states, actions, and
rewards: T = (so, a9, S1,a1,---). Here, the RL agent’s goal is to estimate a policy that max-
imizes the expected discounted return J(r) = E;~; [Z}io r! rt], in which J is the length
of the control horizon.

Different from the standard RL approach, in a constrained MDP, the RL agent aims
to estimate a policy 7 confined in a feasible set I1¢ = {7 : J¢,(m) <0, i=1,...,k}. Here,
Jc,; () denotes a cost-based constraint function induced by the constraint violation func-
tions C; ;(-), i = 1,---, k. Based on these definitions, a constrained MDP can be formu-
lated as the constrained optimization problem:

m;lX](ﬂ) =Er-n (3.12)

T
ZYtrt
=0
s.t. Jg;(m) =0,Vi=1,...,k.

Here, Jc, (7) is defined as J¢, (n) = E;~5 [Z‘?; Oy’Ci, :]- A more detailed MDP description
of the ESSs optimal scheduling problem is presented below.

The state s; denotes the operating status information of the network, which the agent
can observe. The state at ¢ is defined by s; = [P%,tlmew’ Pt SOC%IImQ@, t], where P%,[ =
PP . — PPV, corresponds to the nodal net power. These features can be divided into en-
dogenous and exogenous features. The former includes the PV generation Pf;‘,/t and con-
sumption Pz, ;» day-ahead price p, and current time step ¢, which are independent of the
operated actions, while the latter includes the ESSs' SOC SOCJ, ,, which depends on the
agent’s action and previous state s;_1.

The action at time ¢ is defined as a; = [P',B;l'tlma@], in which a; € o/, while & is a
continuous space. Notice that a; refers to the charging/discharging dispatch for the m,
ESS connected to node m in the distribution network.

Given the state s; and action a; at time step ¢, the system transit to the next state s;+1
defined by the next transition probability

P(St11, RelSe, Ap) =Pr{Ses1 = Se41, Re =11 | St = 81, Ar = Ay} (3.13)

This transition probability function £ models the endogenous distribution network and
ESSs dynamics, determined by the physical model of the electrical network and ESSs,
and the exogenous uncertainty caused by the PV generation, demand consumption, and
the day-ahead price dynamics. In practice, building an accurate mathematical model for
such a transition function is not possible. Nevertheless, model-free RL algorithms do not
require prior knowledge of function &2 as it can be implicitly learned by interacting with
the environment.

RL algorithms can learn representative operation strategies from interactions with
the environment. To achieve this goal, the environment must provide a reward r; to
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quantify the goodness of any action taken during the interaction process. In this case,
the raw reward is defined as the negative of the operational cost for the operation of the
distribution network, modeled defined as:

Ri(spa)=re=—p¢| Y. (Ph,+Po —PHV)| At (3.14)
meN

3.3.1. OPERATIONAL CONSTRAINTS

DRL algorithms optimize operational costs while adhering to the operational constraints
of ESSs and the distribution network. These constraints include the ESSs’ maximum dis-
charge/charge capacities (3.8), maintaining the SOC within specified limits (3.7), and
ensuring voltage magnitude (3.9) remain within boundaries. While constraints on ac-
tion spaces (3.7 and 3.8) are straightforward to enforce through action boundaries, volt-
age magnitude current constraints (3.9) require addressing the physical dynamics of the
distribution network. To manage these limits, constraint violation functions C, ; are
integrated into the reward function (3.14) as penalties, converting the constrained opti-
mization problem (3.12) into an unconstrained one, redefined as:

Y (o +Ph—PY) | At-0 , (3.15)

meN

Y Conyt(Vimye)
meaB

't =—=pP¢

where o balances operational costs against penalties for constraint violations. The con-
straint violation function C,, ; in (3.15) can be modeled using different functions (e.g.,
L, functions). Here, as in [59], Cy, ; is defined as

V-v
Cmyt =min{0,(T— —|Vo = Vin,e|

},Vme,%. (3.16)

Nevertheless, it is critical to notice that enforcing operational constraints by only
adding a penalty term into the reward function during the training can lead to infeasible
operational states during the online execution, as observed in [30]. To address this, we
propose the MIP-DRL framework, leveraging constraint-enforcing capabilities of MIP to
ensure feasible solutions during online execution.

3.4. CONSTRAINT ENFORCEMENT MIP-DRL FRAMEWORK

The proposed MIP-DRL framework is defined through two main procedures: (i) Train-
ing, where the action-value function is approximated, and (ii) Deployment, executed
during online decision-making. Both of these procedures are explained in detail below.

3.4.1. STEP-BY-STEP TRAINING

The step-by-step training for the MIP-DRL framework integrates concepts from actor-
critic DRL algorithms—DDPG [23], TD3 [24], and SAC [77]—within a unified training
procedure. Fig. 3.1 illustrates the interaction of the actor 7, (-) (also known as policy)
and critic Qg () (also known as action-value function) models with the environment (dis-
tribution network). Initially, the actor 7, (-) and critic Qg (-) models’ parameters are ran-
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domly initialized. Training progresses through interaction with the environment: ac-
tions a; are sampled from the actor model, prompting the environment to transition to
new states and generate rewards (Fig. 3.1 (a)). These state transitions and rewards inform
the storage of transition tuples (s;, as, 14, S¢+1) in a replay buffer R. Subsequently, subsets
of these tuples are used to iteratively update the actor and critic models, enhancing the
policy’s performance and the accuracy of the action-value function estimation (Fig. 3.1
(b)).

Explore policy

v [ i
- ! Environment
(Q-function g lw
Qo(*) ne ! St System System Battery

Measurements Parameters Dispatch

it Mmoo | |

Power Flow
Solver

Replay __lsi.arri sul
Buffer

Reward

—
Qu(s,a)

(a) (b)

Figure 3.1: Training procedure of the proposed MIP-DRL framework. The training procedure of the MIP-DRL
follows actor-critic approaches, while detail network structure can be determined by the algorithm used in
the framework: (a) Interaction with the environment is done by sampling actions from a policy model 7, (s).
Information collected from the environment in the form of tuples (s¢, a¢, ¢, Sr+1) are stored in a replay buffer
R and later used to update the parameters of the policy 7, (s) (or actor) and action-value function Qy (s, a) (or
critic) model. (b) Environment (distribution network) composed of a power flow solver. After implementing
the current actions a; (ESSs dispatch schedule), the environment provides the reward r; as in (3.15) and the
state transition to define s;41 via (simulated) network measurements. (c) Policy model 7, (s), which defines
the action a;, and the action-value function Qg (s, a), which assess the quality of the defined action a; for state
St.

In general, the main objective of actor-critic algorithms is to approximate a good pol-
icy network 7, () while the action-value function is used during exploration to improve
the quality of the policy network. After training, the action-value function Qg(-) is dis-
carded. Different from this procedure, the developed MIP-DRL framework follows the
actor-expert definition [114], which aims to get an optimal action based on the optimal
action-value function Qg. Thus, during training, the policy network 7, () is only used to
explore and exploit new states and actions to improve the quality of action-value func-
tion Qg (+), while the policy network =, is discarded. Once a good quality representation
of Q; (-) is obtained via Q(+), at time step ¢ and state s, optimal actions a, can be sampled
from the optimal policy, i.e., a; ~ 7*(s;), obtained as

7*(Sy) =maxQ(S; = s;, a). (3.17)
acs/

As aresult, the training procedure developed for the MIP-DDPG, MIP-TD3, and MIP-
SAC algorithms resembles the training procedure of their standard DRL algorithms coun-
terparts. Nevertheless, actions defined using only such action function Qy(-) cannot
strictly enforce operational constraints during the online execution. To overcome this,
the proposed framework leverages the MIP formulation of the trained Q-function Qg (s, a)
to enforce operational constraints during online execution, as explained next.
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3.4.2. ENFORCING CONSTRAINTS IN ONLINE EXECUTION
The trained action-value function, Qg (:), obtained from MIP-DRL algorithms with fixed
parameters 6 can be transformed into a MIP model, facilitating operational constraint
enforcement during online execution. This transformation enables the incorporation of
system constraints directly into the action decision process, as detailed in our previous
work [105].

Based on the definitions in our prior work [105], the action-value function Qy(-) ob-
tained from trained MIP-DRL algorithms with fixed parameters 8, can be modeled as a
valid MIP problem expressed as [76],

{Z Y cfxf+ Z Z djz k} (3.18)

xf,s}‘,z}c,Vk
Subject to:
le-r o k=1 k-1 k-1_ k_ .k
Dy Wi X; +b] iTS;
x].c,s;.CzO
zb€{0,1} pVk,Vj, (3.19)

1)< x§<ubf, jel, (3.20)
lbk<x <ub£ '
lb s < Vk,Vj. (3.21)

Each layer k € {0,1,..., K} in DNN formulated Q-funtion has Uy units, denoted by u; x,
with j being the unit index in layer k. We denote the output vector of layer k as x¥,

where x}c is the output of unit u;x, (j = 1,2,...,Ux). Weights wl(f]‘.l and biases b;? are
fixed (constant) parameters; the same holds for the objective function costs c}c and d}“ .
The activation function output for each unit is defined by (3.19), while (3.20) and (3.21)
define lower and upper bounds for the x and s variables: for the input layer (k = 0), the
inputs x0 corresponds to the same inputs of the Q-function Qg (-), i.e. state s; and action
a;, while the defined bounds have physical meaning (same limits of the Qg inputs). For
k = 1, the bounds are defined based on the fixed parameters, as explained in 8 [105].
Then, the max-Q problem for Q-function Qy in (3.17) is equivalent to (3.18)—(3.21)
formulation [76]. In this case, as the decision variables are the actions a; (corresponding
to the charging/discharging schedule of the ESSs), the voltage magnitude constraints
in (3.9), as well as the ESSs SOC dynamics and the discharge/charge operation limits,
in (3.7) and (3.8), respectively; can all be added on top of (3.18)-(3.21). As a result, the
optimal actions obtained by solving this MIP formulation strictly enforce all the actions
and environment’s operational constraints'. This integrated MIP problem can be repre-

1A general mathematical proof of optimality for the proposed MIP-DRL framework is presented in our previous
work in [105].
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Figure 3.2: Visualization of the linear space (within the blue line) whose boundaries are formed by the hyper-
planes h;‘ (-) defined by the Rectified Linear Unit (ReLU) activation functions derived from the deconstructed

DNN Qg(s,-) as a MIP formulation. The blue point represents the optimal solution of the problem in (3.17),
which defines the optimal action 4. Notice also that a also corresponds to the solution of the MIP problem in
(3.18)—(3.21). The linear space (within the dashed grey line) represents the hyperplanes defined by constraints
(3.7), (3.8) and (3.9). Solving the MIP formulation by considering constraints (3.7), (3.8) and (3.9), solution a*
is obtained. Solution a* corresponds to the optimal solution of (3.17) that enforces operational constraints
(3.7), (3.8) and (3.9).

sented as

max ckxk+ dkzk
aedx ,s ,z Vk{kz‘bjzl 16211 Z_:1 i (3.22)

s.t. (3.19)-(3.21),(3.7),(3.8),(3.9).

To better understand the above-stated MIP formulation, Fig. 3.2 shows a visual rep-
resentation of the MIP formulation in (3.18)—(3.21). Such formulation defines the linear
space within the blue line whose boundaries are formed by the hyperplanes h;?(-), de-
fined by the activation functions derived from the deconstructed DNN Qy(s,-) [115]. In
Fig. 3.2, the blue point represents the optimal solution of the problem in (3.17), denoted
as 4. Notice that 4 also corresponds to the solution of the MIP problem in (3.18)—(3.21).
Similarly, the set of constraints (3.7), (3.8) and (3.9) forms the linear space represented
within the dashed grey line. Therefore, solving the MIP formulation in (3.22) provides so-
lution a*, which represents the optimal solution of problem (3.17) that simultaneously
enforces the operational constraints defined by (3.7), (3.8) and (3.9).

The online execution phase (Algorithm 3) operationalizes this MIP representation,
incorporating not only the structure of Qg (s, @) but also system-specific constraints (e.g.,
voltage magnitude constraints). By solving the MIP problem (3.22), we obtain actions
a; that maximize the expected reward while strictly adhering to operational constraints,
thus ensuring the feasibility and optimality of the decisions made by the proposed MIP-
DRL framework.
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Algorithm 3: Online Execution for all the proposed MIP-DRL Algorithms

Extract trained parameters 6 from Qp;
Formulate the action-value function Qg as a MIP formulation according to
(3.18)-(3.21). Add on the operational constraints i.e., (3.7), (3.8), (3.9).
Extract initial state sy based on real-time data;
forr=1to T do
L For state s;, get optimal action by solving (3.22) using commercial MIP
solvers;

3.5. SIMULATION RESULTS AND DISCUSSIONS

3.5.1. SIMULATION SETUP

ENVIRONMENT DATA AND FRAMEWORK IMPLEMENTATION

To demonstrate the effectiveness of the proposed MIP-DRL framework, a modified 34-
node IEEE test distribution network is used, as is shown in Fig. 3.3. ESSs are placed at
nodes 12, 16, 27, 30 and 34 due to their higher chance of over- and undervoltage issues.
The training data used corresponds to historical Dutch market day-ahead prices, while
load and PV generation measurements with a 15-minute resolution are provided by a
distribution network operator. The original one year dataset is divided into two addi-
tional datasets: training and testing. The training dataset contains the first three weeks
of each month, while the testing dataset contains the remaining data. This allows the
DRL algorithm to learn any seasonal and weekly behavior available in the PV generation
and load consumption data [59].

Table 3.2 summarizes the key parameters used for the MIP-DDPG, MIP-TD3, and
MIP-SAC algorithms. This includes the discount factor, optimizer type, learning rate,
batch size, and replay buffer size for each algorithm. Additionally, specific parameters
for the entropy in the MIP-SAC algorithm, the reward function, and the operational lim-
its for ESSs listed. The voltage magnitude limits are defined as V = 1.05 and V = 0.95
p-u. PyTorch and OMLT (see [81]) packages have been used to implement our MIP-DRL
framework. Default settings shown in Table 3.2 were used for all the implemented DRL
algorithms. The formulated MIP-DRL algorithms are solved with Gurobi [116].

VALIDATION AND BENCHMARKS FOR COMPARISON

To demonstrate the superior performance of our proposed MIP-DRL algorithms (MIP-
DDPG, MIP-TD3, and MIP-SAC), we compare their scheduling outcomes with those of
standard DRL algorithms (DDPG, TD3, SAC) and a safe DRL algorithm, Safe DDPG °.
Our comparison utilizes two key metrics: operational cost in EUR, which reflects the
economic efficiency of the schedules, and the number of voltage magnitude violations,
indicating the algorithms’ ability to enforce constraints during online execution. Fur-
thermore, we have also compared them with the optimal global solution obtained, con-
sidering a perfect forecast for the next 24 hours. This optimal solution is obtained by
solving the NLP formulation in Sec. 3.2, implemented using Pyomo and IPOPT solver.

2The hyperparameters for DDPG, TD3, and SAC are aligned with those of the MIP-DRL algorithms. For Safe
DDPG, we adopt a linear safe layer and follow the default parameter settings as described in [85].
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Table 3.2: Summary - Parameters for DRL algorithms and the MDP

¥=0.995
Optimizer = Adam
Learning rate=6e — 4
Batch size =512
Replay buffer size(1) = 4e5
¥=0.995
Optimizer = Adam
Learning rate=6e — 4
Batch size =512
Replay buffer size = 4e5
¥=0.995
Optimizer = Adam
Learning rate=6e — 4
Batch size = 512, Replay Buffer = 4e5
Entropy=fixed
Reward o =400

P’ = 100kW, PP = —100kW,
SOC” =0.8,S0C" = 0.2,n8 1n® = 0.98

MIP-DDPG Alg.

MIP-TD3 Alg.
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Figure 3.3: Modified IEEE-34 Node bus test system with distributed PV generation and ESSs. The ESSs are
placed at the end of each feeder to increase the number of voltage magnitude issues experienced.

3.5.2. PERFORMANCE OF MIP-DRL ALGORITHMS ON THE TRAINING SET

Figure 3.4 displays the average total reward, operational cost, and the number of volt-
age magnitude violations during the training process for the developed MIP-DRL algo-
rithms (MIP-TD3, MIP-DDPG, MIP-SAC). Results shown in Fig. 3.4 are obtained as an
average of over five algorithm executions. The average total reward increases rapidly
during the training, while simultaneously, the number of voltage magnitude violations
decreases. This is a typical training trajectory of penalty-based DRL algorithms. At the
beginning of the training process, the DNN’s parameters are randomly initialized, and
as a consequence, the actions defined cause a high number of voltage magnitude vi-
olations. Throughout the training, introducing a large magnitude penalty term in the
reward definition in (3.14) leads to updating the DNN’s parameters, resulting in higher
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quality actions, primarily learning to reduce voltage magnitude violations, and, later on,
improving the general performance. All three MIP-DRL algorithms converged at around
1000 episodes. The total reward of MIP-TD3 and MIP-DDPG converged at 2.01 £ 0.02,
and 1.94 +0.02, respectively. Compared to MIP-TD3 and MIP-DDPG, that of MIP-SAC
converged to a low value, at 1.57 £0.01, indicating that MIP-SAC has a lower quality
of actions. Notice that for MIP-DDPG and MIP-TD3, the operation cost significantly
increases during the training process, while SAC does not improve after 400 episodes
(Fig. 3.4). After the last training episode, the number of voltage magnitude violations of
the MIP-TD3 algorithm is around 1. In contrast, a higher number of violations for the
MIP-DDPG and MIP-SAC algorithms was observed at around 2. This result shows that
DRL algorithms can effectively learn from interactions, reducing the number of voltage
magnitude violations while minimizing the total operation cost by learning to dispatch
the ESSs correctly. However, these trained policies cannot strictly enforce voltage mag-
nitude constraints. If such algorithms are used directly in online execution phase, they
might lead to infeasible operation, causing voltage violations.

3.5.3. CONSTRAINT ENFORCEMENT CAPABILITIES AND PERFORMANCE
Figure 3.5 displays the voltage magnitude of the nodes in which the ESSs are connected
and the ESSs’ SOC during a typical day in the test dataset. The results showed in Fig. 3.5
are obtained after using the dispatch decisions provided by the MIP-DDPG, MIP-TD3
and MIP-SAC algorithms. Fig. 3.5(a) shows the voltage magnitude of the nodes in which
the ESSs are connected, but in this case, disregarding their operation (i.e., ESSs are nei-
ther charging nor discharging), while Fig. 3.5(b) shows the day-ahead electricity price of
that test day. As can be seen in Fig. 3.5(a), if the ESSs’ operation is disregarded, the volt-
age magnitude at node 27 faces undervoltage problems between 14:00-16:00 and 18:00-
20:30. Thus, a proper dispatch of the available ESSs must enforce that such voltage mag-
nitude constraints are met. This is the case when executing the dispatch decisions pro-
vided by the developed algorithms, as shown in Fig. 3.5(c) for the MIP-DDPG algorithm,
in Fig. 3.5(e) for the MIP-TD3 algorithm and in Fig. 3.5(g) for the MIP-SAC algorithm.
As all the developed MIP-DRL algorithms dispatch the ESS connected at node 27 in dis-
charging mode during the above-mentioned periods, all undervoltage issues are solved.
In terms of dispatch decisions, and as seen in Fig. 3.5(d), (f) and (h), all the developed
MIP-DRL algorithms learn to first discharge all ESSs to the minimum SOC during the
period between 00:00 and 06:00. Then, all ESSs are dispatched in charging mode during
the period between 10:00 and 17:00, when the price is low, to then operate in discharg-
ing mode during the period between 16:00-22:00. This operational schedule during the
peak consumption period reduces the amount of power the external grid provides while
simultaneously solving the undervoltage issues. Compared to the MIP-DDPG algorithm,
the MIP-TD3 and MIP-SAC algorithms provide more conservative dispatch decisions,
leading to higher operational costs. The operational cost resulting from the dispatch
defined by the MIP-DDPG algorithm is 13.87 k€, 3.1% lower and 7.5% lower, than the
dispatch defined by MIP-TD3 and MIP-SAC algorithms, respectively.

3.5.4. PERFORMANCE COMPARISON WITH BENCHMARKS
Figure 3.6 further displays the charge/discharge decisions and SOC changes of the ESS
connected to node 27 and defined by the MIP-DDPG, Safe DDPG, and standard DDPG
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Figure 3.4: (a) Average total reward as in (3.15). (b) Operational cost or first term of reward in (3.15). (c)
Cumulative penalty for voltage magnitude violations or second term of reward in (3.15), all during training.

algorithms, as well as the optimal solution provided by solving the NLP formulation con-
sidering the perfect forecast. Compared with the decisions defined by the NLP formula-
tion, the dispatched decisions provided by the MIP-DDPG algorithm (Fig. 3.6(c))) shown
a similar operation pattern, especially in the afternoon when the price changes dynam-
ically (see Fig. 3.5(b)). As expected, when the electricity price is low, between 10:00-
14:30, the MIP-DDPG algorithm dispatches the ESS in charging mode, while between
17:00 to 22:00, when the electricity price is high, the ESS is dispatched in discharging
mode. In this sense, both algorithms, standard DDPG and Safe DDPG, captured and




3. MIP-DRL: A CONSTRAINT ENFORCEMENT DEEP REINFORCEMENT LEARNING

50 FRAMEWORK FOR OPTIMAL ENERGY STORAGE SYSTEM DISPATCH
(a) No ESSs Dispatch (b) Price
T e 55 === Price __’:' ".
3 —— Bus 16 P
= —— Bus 3 §50 ! =
o 102F—=gisT ! |
E —— Bus34 | E 45 i ‘,‘
R =) | {25
S — i s P S L] m40 - \
= 098 . 3 i Y
S M Ty i - 1 235 i u
8 e [ ™| & \_ i \
=} "\I"l -M 30 A - —-'-‘\-—--‘ - &
<096 & - NIy ;
I ol I = e i e s e \ ]
e 25 Rl
S © O O & S O & & & & S O O & O 9 @ T eI
F & & \@“ & & E & S mh.v“ S & & & &S
(c) MIP-DDPG (d) MIP-DDPG
0.7 Battery 27 SOC
— 1.04 — Battery 16 SOC p&‘
= 0.6~ Battery 30 SOC n
&10n " — Battery 12 50C [r r]f LLH
o 1 I
E 0. Battery 34 SOC [J L’-l
=1
} - : FP N
= A 04 Ir
" 7
g " il %
_o' ..
= 0.96 rl:!{ rrﬁ LH
0.2
S ) S S S LS PSS
@'Q S’P m“'g nb"@ n‘b"Q \@ \";'QQ [CRCC '&'Q r{)}'Q q?g RN N N R SR U SREN N O  Ze o
(¢) MIP-TD3 (f) MIP-TD3
L Bus o — Battdry 27 SOC [I]_|
= L0 = ey 0.6 === Biiigiy 16 SOC T
= — Bus3 — Battéry 30 SOC |
?10 —— Busl 0.5| — Batay 1250C 8
'g ] — Bus3 [ —— Battery 34 SOC
X =
) Q 0.4
= e} T F
o "
R A |
S 3
£ 0
ot SRR
0.2 I
NN S S S
NN P FFEF TSP
() MIP-SAC (h) MIP-SAC
— Batidry 27 SOC
== Bus 27 Nl
= o4 v 0.6 Riiry 16 50C [rrLLLle
ERK Bus 16
2 — Bus 3 — Battéry 30 SOC JJ] 'll,
— Batiery 12 S0C
o — Bus12
= 1020 B:; 051 Batiery 34 SOC
E - ,JJ“‘LLH
53 =
%! 1.0 Q 0.4 JJ.:"""'I
I 30
LA e—
% 008 ” ‘_,.r‘J f\}:l
= 77 e o M
G [ U SR B gt 0.3 % o
>
i ~ S ST W
T, e 02 = sy L
NN o S S & LSS
IS “@Q & \G.“Q \ﬂ;@ RO ,\99 ’\9;9 ’»D'.QQ S FE &G & P

Figure 3.5: (a): Voltage magnitude for nodes in which the ESSs are connected, disregarding their operation.
(b): Price in €/ MWh. Voltage magnitude ((c), (e) (g)) in which the ESSs are connected and SOC of ESSs ((d), (f),
(h)), after executing the dispatch decisions provided by the MIP-DDPG, MIP-TD3, and MIP-SAC algorithms,
respectively.

exploited such arbitrage opportunities. Although the proposed MIP-DDPG algorithm
failed to capture such behavior for this specific ESS, the decisions defined for the remain-
ing ESSs ensured a maximization of profits without voltage magnitude violations. In this
case, the cost of the dispatch decisions defined by the standard DDPG and safe DDPG
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Figure 3.6: Dispatch decisions obtained by solving the NLP formulation (with perfect forecast) (a), and the
ones provided by the MIP-DDPG (b), DDPG (c) and Safe DDPG (d) algorithms for the ESS connected to node
27.

algorithms are 22.3% and 27.3% higher, respectively, than the ones defined by their MIP
counterpart. This shows that the standard DDPG and the Safe DDPG algorithm failed to
fully leverage (and coordinate) all ESSs connected to the distribution network.

Figure 3.7 displays the voltage magnitude of node 27 in which an ESS is connected.
The voltage magnitude shown is obtained after executing the ESSs dispatch decisions
provided by MIP-DDPG, DDPG, and Safe DDPG algorithms, as well as the optimal solu-
tion provided by solving the NLP formulation and the operation without ESS dispatch.
Without ESSs dispatch, node 27 suffers serious undervoltage conditions between 14:30-
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Figure 3.7: Voltage magnitude for node 27 after executing the dispatch decisions provided by the MIP-DDPG,
Safe DDPG, and standard DDPG algorithms, as well as the optimal solution provided by solving the NLP for-
mulation and the operation without ESS dispatch.

15:30 and 17:30-21:00 due to overloading. As expected, decisions defined by the MIP-
DDPG algorithm strictly enforced the voltage magnitude constraints due to the feasi-
bility guarantee feature of the proposed algorithm. In contrast, although the dispatch
decisions defined by the standard DDPG and Safe DDPG algorithms can significantly al-
leviate the under-voltage condition, they fail to enforce voltage magnitude constraints in
several time slots, such as between 18:30-19:30 and 20:00-21:00. These results indicate
that the constraint enforcement capabilities of both these algorithms are not capable
of handling complex stochastic environments (such a distribution network), and even
the projection layer deployed by the Safe DDPG algorithm fails to map the relationship
between actions and constraints accurately, ultimately deploying unfeasible actions.

Comparing the optimal solution obtained by solving the NLP formulation (shown
in Fig. 3.6), with the solution provided by the proposed MIP-DRL algorithms, it can be
seen that the MIP-DRL algorithms dispatched the ESSs following a more conservative
approach (see charging/discharging behavior in Fig. 3.5(d)). The MIP-DRL algorithms
generally avoid charging all ESSs to the maximum SOC when the electricity price is low.
This can be considered a sub-optimal decision. In this case, the operational cost re-
sulting from the dispatch defined by the MIP-DDPG, MIP-TD3 and MIP-SAC are 9.5%,
12.9%, and 18.4% higher, respectively, than the dispatch defined by the NLP formula-
tion. The difference in this dispatch decision can be due to the estimated action-value
function, which might not be good enough to represent the true action-value function.
As the proposed MIP-DRL algorithms choose actions that maximize its Q-value estima-
tion, the largest Q-value might not represent the best action for this specific state-action
pair. Nevertheless, even in executing a sub-optimal decision, the proposed MIP-DRL al-
gorithms enforce all voltage magnitude constraints, guaranteeing operational feasibility.
On the other hand, the safe layer-based DRL algorithm i.e., Safe DDPG algorithm fails to
enforce voltage magnitude constraints strictly, as the safety layer cannot track the dy-
namics of complex environments.
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Table 3.3: Performance comparison of different DRL algorithms in an unseen test set of 30 days.

Operation Voltage Magn. Exec.

Algorithms Cost Error [%]  Violations [-]  Time [s]
MIP-TD3 13.2+0.5% 0 57+6.7
MIP-DDPG 10.4+0.7% 0 43+5.1
MIP-SAC 19.3+1.5% 0 57+6.3
TD3 28.5+0.4% 33+2 16+0.1
DDPG 34.3+0.7% 45+11 16+0.1
SAC 32.2+0.5% 44+17 16+0.1
Safe-DDPG 39.7+0.8% 41+1 37+0.1

3.5.5. ERROR ASSESSMENT AND COMPUTATIONAL PERFORMANCE

Table 3.3 presents the average total error (with respect to the solution obtained by solving
the NLP formulation with perfect forecast) for the operational cost, the average number
of voltage magnitude violations, and the total average computational time of the pro-
posed MIP-DRL algorithms as well as benchmark DRL algorithms, over 30 (unseen) test
days. As can be seen in Table 3.3, the proposed MIP-TD3, MIP-DDPG, and MIP-SAC algo-
rithms can strictly enforce the voltage constraints. Among all these MIP-DRL algorithms,
MIP-DDPG has the lowest average error, 10.4%. In contrast, their standard counterparts,
such as DDPG, showed poor performance reaching an error of 34.3%, and violating the
voltage magnitude constraint in around 45 time steps. As expected, the computational
time required to execute the proposed MIP-DRL algorithms is higher than standard DRL
algorithms. This increase in the computational time results from the MIP formulation
needed to be solved to enforce all the operational constraints (see (3.22)). Nevertheless,
for this case, the proposed MIP-DRL algorithms can still be used for real-time operation
as it only requires less than 60 seconds for one day (96 time-steps) execution.

3.5.6. SCALABILITY ANALYSIS

Table 3.4: Performance and Computational Effort of MIP-DDPG on Different Network Sizes

Training Exec. Voltage Magn. Operation Cost

Nodes 1y e[h] Timels] Violations Error (%)
34 4 43151 0 10.4£0.7
69 47 49+6.9 0 10.1+£0.9
123 6.5 53+3.4 0 11.3+0.7

Table 3.4 presents the performance and computational effort of the MIP-DDPG al-
gorithm on different sizes of distribution networks. Table 3.4 includes the training time,
execution time, number of voltage magnitude violations, and operation cost error for
networks with 34, 69, and 123 nodes. The training time increases with the size of the
distribution network, as expected. For instance, training on a 34-node network takes 4
hours, while training on a 123-node network takes 6.5 hours. This increase is primarily
due to the time required to solve the power flow equations during the training process.
As the network size grows, the complexity of solving these equations increases, lead-
ing to longer training times. The operation cost error, remains consistent across differ-
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ent network sizes, with errors ranging from 10.1% to 11.3%. This suggests that the size
of the distribution network does not significantly impact the performance of the MIP-
DDPG algorithm. Moreover, MIP-DDPG successfully enforces voltage constraints across
all tested network sizes, as evidenced by the absence of voltage magnitude violations.
Finally, the execution time does not increase significantly with the network size as is
shown in Table 3.4. The execution time for the 34-node network is 43 seconds, while for
the 123-node network, it is 53 seconds. This is because the execution time is primarily
influenced by the size of the Q-network used in the MIP formulation rather than the size
of the distribution network. Once the Q-network is trained, the execution phase involves
solving the MIP, which is not directly dependent on the distribution network size but on
the complexity of the Q-network.

3.6. DISCUSSION

We have successfully combined deep learning and optimization theory to bring con-
straint enforcement to DRL algorithms. By using the trained Q-network as the surro-
gate function of the optimal operational decisions, we have guaranteed the optimality
of the action from the Q-network through the formulated MIP. Moreover, by integrat-
ing the voltage constraints into the formulated MIP, the feasibility of the action is en-
forced. However, the performance of MIP-DRL algorithms is determined by the approx-
imation quality of the Q-network, obtained after the training process is performed. Dur-
ing this training process, the Q-iteration faces the exploration vs. exploitation dilemma,
which can impact the approximation quality. For instance, the MIP-DDPG algorithm
outperforms the MIP-TD3 algorithm, while the MIP-SAC algorithm performs poorly in
the framework. This discrepancy may be caused by the divergence between the explo-
ration policies leading to different exploration efficiencies and Q-networks update rules.
The conservative performance of the MIP-SAC algorithm might be caused by the soft Q
updating rule, which introduces more assumptions, impacting the estimation for accu-
rate approximation.

Formulating a trained Q-network as a MIP problem introduces extra computation
time due to the maximization of the Q-value function. In this case, such a MIP formu-
lation is considered to be an NP-Complete problem. The worst-case computation time
grows exponentially with the number of integer variables, which is proportional to the
total number of ReLU activation functions used. However, the computation time can
be greatly reduced by various techniques like improved branch-and-bound, and cus-
tomized ReLU function algorithms, developed in recent years [116]. Previous research
results show that only 0.8 seconds are needed for solving a MIP formulated by a network
with 300 ReLU units with an excellent CPU [117]. In our experiments, the proposed MIP-
DRL algorithms required less than 60 seconds for execution, supporting the applicability
of DRL algorithms in real systems. In summary, the proposed MIP-DRL algorithms can
provide good quality dispatch decisions while strictly enforcing all voltage magnitude
constraints, leading to high-quality feasible decisions. Compared to standard DRL algo-
rithms, this superiority is achieved by directly transforming the Q-network (after train-
ing) as a MIP formulation, used to define the optimal solution instead of leveraging an
approximated policy; while operational constraints are added on top of the obtained
MIP formulation, guaranteeing feasibility.



DISTFLOW SAFE REINFORCEMENT
LEARNING ALGORITHM FOR
VOLTAGE MAGNITUDE
REGULATION IN DISTRIBUTION
NETWORKS

The integration of distributed energy resources (DER) has escalated the challenge of volt-
age magnitude regulation in distribution networks. Model-based approaches, which rely
on complex sequential mathematical formulations, can not meet real-time demand. Deep
reinforcement learning (DRL) offers an alternative by utilizing offline training with distri-
bution network simulators and then execution without online computation. However,
DRL algorithms fail to enforce voltage magnitude constraints during training and test-
ing, potentially leading to serious operational violations. To tackle these challenges, we
introduce a novel safe reinforcement learning algorithm, the DistFlow Safe Reinforce-
ment Learning (DF-SRL), designed specifically for real-time voltage magnitude regula-
tion in distribution networks. The DF-SRL algorithm incorporates a DistFlow lineariza-
tion to construct an expert knowledge-based safety layer. Subsequently, DF-SRL overlays
this safety layer on top of the agent’s policy, recalibrating unsafe actions to safe domains
through a quadratic programming formulation. Simulation results show the proposed
DF-SRL consistently ensures voltage magnitude constraints during the training and real-
time operation (test) phases, achieving faster convergence and higher performance, setting
it apart from (safe) DRL benchmarks.

Parts of this chapter have been published in IEEE Journal of Modern Power Systems and Clean Energy with
the title: DistFlow Safe Reinforcement Learning Algorithm for Voltage Magnitude Regulation in Distribution
Networks, doi: 10.35833/MPCE.2024.000253. [118].
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4.1. INTRODUCTION

Distribution networks have experienced a notable increase in distributed energy resources
(DER) integration, including residential PV systems, energy storage systems (ESSs), and
plug-in electric vehicles (EV) [119]. This rise in DERs contributes to sustainability efforts
and poses operational challenges to distribution system operators (DSOs). Among these
challenges, voltage magnitude regulation has surfaced as a predominant concern [120].
Aggregators, who control various DERs, have stepped in to offer a solution. By providing
significant flexibility to DSOs, aggregators enable the strategic procurement and deploy-
ment of this flexibility, thereby facilitating efficient voltage regulation [121].

Implementing voltage magnitude regulation adopts one of two approaches: model-
based and model-free approaches. Model-based approaches manage voltage magnitude
regulation by solving mathematical formulations defined via an objective function and
a set of operational constraints [122]. However, the intricacy of these model-based ap-
proaches increases with the complexity of distribution networks and sequential regula-
tion slots because they necessitate complete network and DER information. Therefore,
solving such formulations can be computationally intensive and thus can not meet real-
time demand [123]. Conversely, model-free deep reinforcement learning (DRL), repre-
sents an alternative approach that does not require online computation by leveraging
an offline training procedure and distribution network simulators [124]. Nevertheless,
a significant drawback of such DRL algorithms is their inability to ensure action feasi-
bility and, thus, safety [125, 126]. To address this, some studies have formulated the
voltage magnitude constraint as a soft constraint, i.e., a fixed [127] or trainable penalty
term [107], added to the reward function and used to guide the DRL algorithm during
training. For instance, the RL algorithm proposed in [128] follows this approach, devel-
oped to define the ESSs schedule to minimize operational costs while respecting voltage
magnitude limits. Nevertheless, this approach fails to enforce such constraints strictly
during training and real-time operation.

Several safe DRL approaches have recently been developed to enforce operational
constraints in control systems [129]. In [108], a constraint Soft Actor-Critic (SAC) algo-
rithm was developed for EV charging in residential microgrids to cater to the increas-
ing prominence of EVs. Using a constrained MDP formulation and a ladder electricity
pricing scheme, this approach showed promising results in reducing action space di-
mensionality and ensuring safe EV charging. Another study [107] implemented primal-
dual optimization within a safe RL framework, showing superior performance in terms
of energy cost minimization and constraint adherence. In [98], a safe DRL algorithm
was introduced to define a fast-charging strategy for lithium-ion BES to enhance the ef-
ficiency of EV charging without compromising BES safety. Utilizing the SAC-Lagrange
DRL within a cyber-physical system framework; the strategy optimizes charging speeds
by leveraging an electro-thermal model, outperforming existing DDPG-based and SAC-
based DRL methods in terms of optimality.

To ensure that the updated policy stays within a feasible set, in [99, 100], a cumula-
tive constraint violation index is kept below a predetermined threshold. This approach
was also used in [74, 75], in which the constraint violation index is designed to reflect the
voltage and current magnitude violation level due to the ESSs dispatch defined. Never-
theless, this constrained policy was initially developed to handle cumulative or chance
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constraints after training [100]. On the contrary, voltage magnitude violation issues in
distribution networks are state-wise constraints, which do not rely on historical trajec-
tories or random variables but hinge on the current state of the environment [130]. Con-
sequently, applying constrained policy optimization methods to voltage regulation is-
sues can not offer a probabilistic sense of safety. In [105], the trained DRL algorithm
is formulated as a mixed-integer programming (MIP) formulation and voltage magni-
tude constraints are added to the MIP. By solving this extended MIP, the actions from the
DRL algorithm are projected to safe action spaces strictly enforcing constraints. Never-
theless, this approach can not meet the real-time operation requirements if the formu-
lated MIP becomes too large. In [131], the stability of distribution network controlled
by DRL algorithms is guaranteed if the system adheres to specific Lipschitz constraints.
However, formulating such Lipschitz sets for distribution networks is quite changeable.
In [132], a constrained-SAC algorithm is proposed to address Volt-Var control challenges.
constrained-SAC combines the maximum-entropy framework, the method of multiplier,
adevice-decoupled neural network structure, and an ordinal encoding scheme to achieve
scalability, sample efficiency, and constraint satisfaction. However, the algorithm can
only be applied to discrete-action problems.

Safe layer-based DRL algorithms are suitable to handle the state-wise constraints
(i.e., voltage magnitude), which formulate a policy-independent safe layer to project ac-
tions defined by DRL algorithms into a feasible set. In [133], a DNN-assisted projection-
based DRL method is proposed for the safe control of distribution networks. This ap-
proach leverages a pre-trained DNN to accelerate the projection calculations, enabling
the rapid identification of safe actions. However, a critical limitation of this method is
the reliability of the safe actions produced by the DNN, since the DNN is trained on
historical data, the quality and representativeness of this data are paramount. Alterna-
tively, a linear safe layer is trained by the data collected from a random policy with the
environment [85]. In [70], a safety layer is built upon DRL algorithms to filter out unsafe
actions before the execution, while voltage magnitude is enforced by solving projection.
A similar approach was implemented in [103] to regulate the distribution networks’ volt-
age magnitude via controlling smart transformers. Yet, these approaches mainly rely on
training a linear safety layer to first capture the sensitivity between station-action pair
and constraint violations, and then filter out unsafe actions before they are executed.
Therefore, the safety guarantee performance for these approaches is highly dependent
on the quality of the trained linear safe layer. Given the complex relationships between
system dynamics and multi-dimension constraints involved in voltage regulation prob-
lems, training such a linear safety layer often proves to be a significant challenge [85].
Consequently, the trained safety layer can rarely provide a safety guarantee for the volt-
age magnitude regulation problem in the distribution network, leading to sub-optimal
performance and violations.

Drawing on the pivotal insights [134, 135, 136] that integrating expert knowledge can
significantly enhance safety and agent performance, we introduce the DistFlow Safe Re-
inforcement Learning (DF-SRL) algorithm. This is the first effort to tackle state-wise volt-
age regulation issues in distribution networks by applying DRL strategies, augmented
with an expert-knowledge-based safety layer. This innovation addresses existing gaps in
voltage regulation research through several key contributions:
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* The proposed DF-SRL algorithm incorporates a DistFlow linearization to devise a
safety layer, leveraging expert knowledge insights to accurately map the relation-
ship between the agent’s actions and voltage magnitude variations in distribution
networks.

* The DRL algorithm overlays the safe layer on top of the DRL policy to recalibrate
potentially unsafe actions to conform to safe parameters by optimizing the prox-
imity of these actions in Euclidean space.

 The error of the safe layer introduced by linearization is corrected by the slack pa-
rameter, and a detailed sensitivity and scalability analysis is conducted.

* The proposed DF-SRL algorithm ensures the practicality and real-time viability of
actions and guarantees safety constraints during both the training and application
phases.

4.2. VOLTAGE MAGNITUDE REGULATION PROBLEM

Voltage fluctuations in distribution networks are predominantly due to variations in ac-
tive power, such as from overload conditions or high inflows from photovoltaic (PV) sys-
tems [137]. These fluctuations are more directly linked to active power changes, affect-
ing voltage magnitude significantly. By focusing on active power, aggregators can uti-
lize DERs like battery storage and controllable loads more effectively. This aligns with
operational strategies that maximize the impact of available resources while ensuring
compliance with safety and reliability standards.

The voltage magnitude regulation framework is depicted in Fig. 4.1. Each network
node is associated with an aggregator that oversees a group of consumers with DERs.
These aggregators are empowered to fully control the DERs of their designated con-
sumers, playing a pivotal role in the dynamic management of the distribution network.
Aggregators collect consumer data, build baseline electrical consumption profiles, and
share the active power flexibility with the DSO control center. Subsequently, the DSO
control center deploys a voltage magnitude regulation algorithm to determine the re-
quired active power flexibility each aggregator must provide.

In this paper, we focus on developing an RL-based algorithm to assist the DSO con-
trol center in accurately determining the required flexibility provision of each aggregator
to achieve voltage magnitude regulation.

4.2.1. MATHEMATICAL PROGRAMMING FORMULATION

In general, the voltage magnitude regulation problem can be modeled using the non-
linear programming (NLP) formulation given by (4.1)-(4.9). The objective function in
(4.1) aims to minimize the use of flexible active power pﬁ” provided by all aggregators
within the set m € ./, aiming to regulate the voltage magnitude over the time horizon 9.
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Figure 4.1: Voltage magnitude regulation framework for DSO and aggregators. These aggregators oversee
groups of consumers equipped with distributed energy resources (DERs) such as residential PV systems, bat-
tery energy storage systems (BESS), and plug-in electric vehicles (EVs).
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The distribution network is formulated based on the power flow formulation shown
in (4.2)-(4.5), according to the active power p,n,;, reactive power ¢, and current mag-
nitude i,,,,; of lines, and the voltage magnitude v, ; of nodes. The expression in (4.6)
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enforces the used flexible active power within the boundaries that each aggregator pro-
vides, while (4.7) and (4.8) enforce the voltage magnitude and line current limits, respec-
tively. Finally, (4.9) enforces that only one node is connected to the substation.

4.2.2. CMDP FORMULATION

The voltage magnitude regulation problem can be modeled as a case of constrained
Markov decision processes (CMDP), represented by a 6-tuple (¥, </, 22, %,y,6). Here,
& represents a state space encompassing the power system’s observable states, of de-
notes an action space representing the possible control actions, £ is the state transition
probability function capturing the system’s dynamics, % is the reward function guiding
the optimization, v is a discount factor reflecting the importance of future rewards, and
% constitutes a set of immediate-constraint functions ensuring operational safety and
feasibility. The decision as to which action a; is chosen in a certain state s; is governed
by a policy 7 (a;|s;). The agent employs the policy to interact with the formulated CMDP
and define a trajectory of states, actions, and rewards: T = (So, 4o, S1, @1,---). This tra-
jectory not only aims to maximize the cumulative reward but also adheres to the system
constraints, thereby balancing the objectives of operational efficiency and safety.

STATE
The state at time ¢ encapsulates the distribution network’s current operational status,
providing a comprehensive view of the system’s dynamics, and it is defined by:

St = (P%,p Um’t’Bfn t)ﬁfn'[|m€ﬂ)) (410)

where plY = pb - plV,— pEY, corresponds to the nodal net active power, capturing the
balance between demand, photovoltaic generation, and electric vehicle consumption at
each node m. v, ; represents the voltage at each node m before control; pfn , and ﬁfn, ;

are flexibility boundary can be provided by aggregator connected to m;;, node'.

ACTION

The action space «f consists of the set of all possible active power adjustments at each
node m, defined as «f = {a; | a; = pfm,Bﬁ” <pb, < ﬁfm,Vm €N}

REWARD

The DSO seeks to regulate voltage magnitude into defined boundaries while minimiz-
ing the use of total active power flexibility provided by aggregators. Thus, the reward
function r; is defined as the negative of the total used flexible active power, as next:

re=— Y IpE (4.11)
meN
This formulation incentivizes the minimization of the total active power flexibility
utilized, thereby promoting energy efficiency and cost-effectiveness in voltage regula-
tion. Given the state s; and action a; at time step ¢, the system transit to the next state
st+1 defined by the transition probability function that can be expressed as:

I Flexibility for voltage regulation at each aggregator can vary over day and time slots [138].
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P(Sei1, RSty Ap) =Pr{Sev1 = See1, Ry =11 1 Se = 51, Ar = ag}. (4.12)

The RL agent’s goal is to find a policy that maximizes the cumulative discounted re-
turn J(r) = E;eyg [ZtT:o y'r¢] while ensuring no constraint is violated during the explo-
ration and exploitation processes. The penalty term induced by the constraint violations
C,: (1) denotes the voltage magnitude violation of the m;j;, node at step ¢, which is de-
fined as:

V-V

Cm,t:max{0,|vo—vm,t|— },Vmeﬂ. (4.13)
Here, vy represents the voltage magnitude at the reference or slack node, which is
typically considered constant and known. This formulation ensures that C,, ; represents
a positive penalty term when the voltage magnitude at node m deviates outside the ac-
ceptable range defined by v and 7, and is zero otherwise.
The voltage magnitude regulation problem formulated as a CMDP can then be ex-
pressed using the next constrained optimization formulation:

g
ZYtrr
t=0

s.t. Cpy, (M) =0,Yme N, VieT

max=Ee-n (4.14)

In this formulation, C,, ; serves as a constraint in the CMDBP, ensuring that the policy
7 leads to actions that maintain the voltage magnitude within the specified limits. It is
indirectly influenced by the policy through its impact on the state s; and the action a;.

4.3. PROPOSED DISTFLOW SAFE RL ALGORITHM

The proposed algorithm is defined through a parameterized policy network, denoted
by 7, (-). This policy network selects actions based on the current state, performing ex-
ploration and exploitation. To enhance safety and ensure that voltage magnitude con-
straints are met during the exploration, we introduce a safety layer on top of the policy
network 7, (-). A safety layer is designed based on the parameters and topology of the
distribution network, enabling a projection of the original action proposed by the RL
algorithm onto a safe domain. A more detailed explanation is provided next.

4.3.1. DEEP DETERMINISTIC RL ALGORITHMS

Traditional value-based DRL algorithms fail to solve the voltage magnitude regulation
problem due to the continuous nature of the state and action spaces [44]. Alternatively,
Deep Deterministic Policy-based DRL algorithms, such as DDPG [23], and TD3 [24], are
capable of handling continuous actions by simultaneously maintaining a policy (actor)
7, (S), used to sample actions, and a trained Q-function (critic) Qg (sy, a;), used to guide
the update direction of the policy network. The TD3 algorithm is an improved version of
the DDPG algorithm, which uses two Q-networks and delayed critic network improve-
ment to reduce the overestimation bias of the critic network in DDPG. In general, the
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TD3 algorithm updates the actor-network as

Vo Y (miniQp, (s m) (4.15)
w—w ] mngei SHTw (S}, .

s;eB\I=L

while the critic update iteration is defined as

2
min ) |r;+ er,gl}g{Qegarget (St+1) T (Se+1))} — Qp; (8¢, at)) (4.16)
SEB = !

Although the TD3 algorithm effectively handles continuous action space problems,
it can not enforce constraints during the training and testing. To solve the CMDP formu-
lation using the TD3 algorithm, the constraint violation functions C,, ; should be added
as penalty term to the reward function in (4.11), defined as

> Cms

meN

B
re=— Y lpm -0
meN

) (4.17)

where o is used to balance the weights between the total required flexibility and the
penalty incurred by the voltage magnitude violations. The constrained optimization
problem is reformulated into an unconstrained one in this procedure. However, directly
applying penalty terms to the reward function cannot guarantee the feasibility strictly,
leading to infeasible operations and poor performance [139]. To overcome this, we in-
troduce a linear safety layer on the top of the TD3 algorithm to ensure the feasibility of
committed actions during the training and testing procedures, as explained in the next
section.

4.3.2. LINEAR POWER FLOW FORMULATION

Given the topology of a distribution network, the incidence matrix My can be defined
by:

My=F—-T = [mp, M] (4.18)

where,
1 fO)=itePieN
(Flg,i :{ !

otherwise

(4.19)
1 tW)=jlefl,jeN

[ﬂm={ / /

0 otherwise.

where my is the column corresponding to the slack node, and [Fl,; and [T],,; are the
connection matrix.

Given the diagonal matrix D(ry,,) and D(x,,,), as functions of the resistant vector
rmn and the reactance vector x5, the relationship between the voltage magnitude of
nodes, defined by vector v,,, and the net active and reactive power injection, defined by
vectors p¥, g respectively, can be expressed as

Mv2, = M1+ 2(D(Fyuu) BTPL, + D(Xmn) BT g + Cc? (4.20)
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where 1, ¢ is the unit vector, and matrix B and C, are defined as

B=(1-TF")™" (4.21)

C = 2(D('mn) BD(rmn) + D Xmn) BDXmn)) — D (Fimn” + Xmn”) (4.22)

The linear power flow formulation presented in (4.20) involves an approximation
that neglects the quadratic term ¢, which represents the line losses in the distribu-
tion network. This simplification is based on the findings in [140], where it is argued
that in most practical scenarios, especially in distribution networks, the line losses can
be considered relatively small compared to the other terms in the power flow equa-
tions. Thus, the quadratic term c% in (4.20) is neglected, turning the expression linear
in v2,. This linear expression can further be used to derive a direct relationship be-
tween the action a vector, corresponding to the dispatch decision of the aggregators,

ie, a=[py,..0mpPly ) and v, as next
2 _ar2 N N
Mv” = Mvyl | +2[D(Fyun) BT (py, — @) + D(Xn) BT q,,,]. (4.23)

4.3.3. SAFETY LAYER FORMULATION

The relationship expressed in (4.20) is utilized to establish a linear mathematical pro-
gramming formulation to project potentially unsafe actions, defined by the RL algo-
rithm, into a secure operational region. The primary objective of this formulation is
to find the nearest safe action 4 that minimizes the Euclidean distance from the origi-
nal potentially unsafe action a. Thereby, ensuring minimal deviation from the intended
control strategy while strictly adhering to operational and safety constraints. The safe
action projection is achieved by solving the optimization problem:

1
d=argmin—|a— al?. (4.24)
a2
Subject to:
(2,119 +2M (D) BT(pY — &) + D(Xpn) BTqN)) < 7% —€ (4.25)
(2,112 +2M (D) BT(pY — @) + D(Xpn) BTqN)) = 1* + ¢ (4.26)

The slack parameter € is introduced to manage the relaxation conditions for the volt-
age magnitude limits, which compensates for the inaccuracies introduced by the lin-
ear model approximation of real voltage magnitudes. By incorporating €, we allow for a
buffer in the operational constraints that accommodates potential deviations between
the predicted and actual voltage magnitudes. This ensures that the projected actions
remain within safe operational boundaries, even when the linear relationship underes-
timates or overestimates the effects of control actions on the voltage levels.

4.3.4. PROPOSED DF-SRL ALGORITHM

The proposed safety layer can project action a; to safe domains d; during the training
and online execution process. The proposed DF-SRL algorithm will update the actor and
critic networks based on the collected safe trajectories (sy, d, 1+, S¢+1) in the replay buffer
R. Therefore, DF-SRL redefined the actor-network iteration rule by:
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while the critic update iteration in (4.16) is redefined as

2
min ) (7, +y min{Qpuareet (5141, @)} — Qg (s,,at)) . (4.28)
0 seB i=1,2 i

Note that the developed DF-SRL algorithm to integrating the safe layer is specifically
designed to be compatible with off-policy model-free algorithms. The off-policy nature
of the DF-SRL algorithm allows it to learn from experiences generated by a behavior pol-
icy that differs from the target policy trying to learn. This characteristic is crucial for the
integration of the safety layer, as it allows the algorithm to handle the mismatched distri-
bution between the original actions, a;, and the safe actions, d;, without impairing the
update performance. Consequently, the safety layer can project potentially unsafe ac-
tions into a safe domain, ensuring operational feasibility while maintaining the integrity
of the learning process. The DF-SRL algorithm maintains its model-free nature by not
explicitly learning the state transition function of the constructed MDP [141].

In addition to the integration of the safety layer, DF-SRL introduces significant nov-
elty in the policy iteration and interaction process. More than just filtering actions, the
safety layer actively changes the nature of the interaction data that is fed back into the
learning process of the RL agent. By modifying the actions before they are executed (and
thus the resulting state transitions and rewards), the safety layer ensures that the data
used for training is not only rich in terms of learning opportunities but also aligned with
operational safety requirements. This leads to an improvement in both the performance
and safety of the learned policy.

Algorithm 1 presents the step-by-step procedure of the proposed DF-SRL algorithm,
while Fig. 4.2 illustrates the interaction of the actor and critic models with the environ-
ment during the training process. The training process begins by randomly initializing
the parameters of the DNN functions Qy and Qgtarget, as well as defining the parameters
of the safety layer i.e., D(ry;,), D(Xmn), B, T, M. For each training epoch, at each time
step t, the policy 7, receives the state s, and samples an action a;. The safety layer
then assesses whether the action a; falls within the safe domain. The projection model
is activated to project actions to a safe action, denoted as d;, only if action a; could
lead to voltage magnitude violations. Next, a transition tuple (s, dy, 1¢, S¢+1) is compiled
and stored in a replay buffer R. A subset B of these samples is subsequently selected
and used to update the parameters of the functions Qg, Qguarget, and m,, as detailed in
Algorithm 1. This iterative procedure continues until the maximum number of epochs
is reached, ensuring that the RL agent can efficiently explore the action space without
breaching voltage magnitude limits, thereby ensuring operational feasibility.

4.4, SIMULATION RESULTS AND DISCUSSIONS
4.4.1. SIMULATIONS SETUP, DATA AND IMPLEMENTATION
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Algorithm 4: Proposed DF-SRL Algorithm

Define the maximum training epochs T, epoch length L.
Initialize parameters of functions Qg, Qgtareet, and 7,,; Initialize reply buffer R. ;
Define the parameters of the safety layer: D(ry;,), D (Xmn), B, T, M.;
fort=1to T do
Sample an initial state sy from the initial distribution for / =1 to L do
Sample an action with exploration noise a; ~ 7, (s;) + €, € ~ A (0,0);
if notv < v <7 then
| Projecting a; to safe action a, by solving (4.24) s.t. (4.25)—(4.26).

else a = a;

Interact with the distribution network and observe the reward r; and the
new state Sy41.;

Store the transition tuple (s, s, 7+, St+1) in R.;

Sample a random mini-batch of | B| transitions (sy, d, 14, $;+1) from R.;
Update the Q-function parameters by using (4.28).;

Update the execution policy function parameters by using (4.27).
Update the target-Q function parameters using:

gtarget — 10+ a- T)gtarget

DATA AND DISTRIBUTION NETWORK CASE

To validate the effectiveness of our proposed DF-SRL algorithm, we construct an envi-
ronment based on a CIGRE LV distribution residential sub-network shown in Fig. 4.3.
In this network, each node is associated with an aggregator, and the DSO interacts with
them to regulate voltage magnitude based on the availability of flexibility at each node.
The training data of PVs, plug-in EVs, and typical residential load follows research [142],
with a 15-min resolution. The voltage magnitude limit is set as v = 1.05 p.u. and v =
0.95 p.u.. For the present case study, we assumed that the maximal flexibility provided
by the aggregator is 50 kW during the operation [142].

BASELINE METHODS

To evaluate the performance of the proposed DF-SRL algorithm, we conduct a compara-
tive analysis with several DRL benchmark algorithms, including the state-of-the-art DRL
algorithms: DDPG, PPO, TD3, and SAC, as well as a centralized model-based approach,
i.e., an NLP formulation. The parameters for different DRL algorithms and cases are
summarized in Table 4.1. TD3, DDPG and Safe DDPG algorithms are trained with the
same hyperparameters as DF-SRL. Specifically, linear safe layer training for safe DDPG
follows the default implementation in [85]. All implemented algorithms and their (hy-
per)parameters are available online’. Note that while all the DRL benchmark algorithms
can make decisions only using current information and achieve online operation, the so-

2Here: https://github.com/ShengrenHou/DF-SRL  and  here: https://github.com/
distributionnetworksTUDelft/DF-SRL
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Figure 4.2: Architecture of the proposed DF-SRL algorithm displaying the interaction between the actor and
n critic networks, the safety layer and the interaction process with the environment (the distribution network
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Figure 4.3: Modified CIGRE LV residential network. The aggregator is assumed to coordinate the flexibility
each node provides to regulate voltage magnitude.

lution obtained by the NLP formulation requires complete information of the foreseen
control period. To train and assess the performance of the DRL benchmark algorithms,
we employ validation metrics based on the negative value of total used active power,
as denoted in (4.11), and the voltage magnitude violation penalty as specified in (4.13),
counted as the cost of the voltage magnitude violation. These metrics effectively gauge
the operational efficiency and constraint adherence of each algorithm.

4.4.2. PERFORMANCE ON THE TRAINING SET

Figure 4.4 presents a comparative analysis of the average total reward, the used active
power, and the cumulative voltage magnitude violations during the training process for
the developed DF-SRL and the benchmark DRL algorithms. Results shown in Fig. 4.4
are obtained as an average of over five algorithm executions. The average total reward
increases rapidly during the training, while voltage magnitude violations decrease sig-
nificantly at the beginning. As depicted in Fig. 4.4(b), it is noteworthy that the nega-
tive of total used active power for DDPG and TD3 algorithms (with soft penalty) eventu-
ally converges around -1.7 MW, while that of SAC and Safe DDPG are -2.4 and -4.3 MW
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Table 4.1: Summary - Parameters for DRL algorithms and aggregators

Y =0.995
Optimizer = Adam
Learning rate = 6e — 4
Batch size = 512, Replay Buffer = 4e5
Y =0.995
Optimizer = Adam
Learning rate = 6e—4
Batch size = 512, Replay Buffer = 4e5
Entropy=fixed
Y =0.995
Optimizer = Adam
Learning rate = 6e — 4
Batch size = 4096
Reward o =400
Aggregator PP =50kW, pB = —50kW
Voltage limit v=1.050v=0.95

DF-SRL Alg.

SAC Alg.

PPO Alg.

respectively. Compared to these benchmarks, the DF-SRL figure is significantly lower,
at approximately -0.5 MW. Figure 4.4(c) reveals another stark contrast between DF-SRL
and the DRL benchmark algorithms (with soft-penalty) and Safe DDPG. Throughout the
training process, the DF-SRL consistently enforced the constraints without any voltage
magnitude violations, whereas the DRL benchmark algorithms experienced failures in
satisfying the constraints after reaching convergence at 1000 episodes. This disparity
can be attributed to the safe layer in DF-SRL, which adjusts unsafe actions during train-
ing. In comparison, the DRL benchmark algorithms initially grapple with low-quality
actions due to the random initialization of the DNN’s parameters, leading to many ini-
tial violations. Then, based on the guidance of the penalty term of the reward function,
the DDPG, TD3, and PPO algorithms decrease the number of voltage magnitude viola-
tions to a small value after about 200 episodes. Conversely, the SAC algorithm exhibits
slower training efficiency, achieving smaller violation values only at the end of training
(1000 episodes). This behavior can be due to the complex exploration policy used by the
SAC algorithm. The Safe DDPG algorithm maintained relatively smaller violation values
at the beginning compared to other algorithms (e.g., TD3) with a soft penalty. Never-
theless, it fails to enforce violations caused by the poor quality of the safe layer, trained
based on the data collected from random policy-environment interaction. Moreover,
the unfeasible safe layer also led the action project in the wrong direction, impacting the
data quality in the replay buffer, causing a worse performance compared to the standard
counterpart (DDPG), as is shown in Fig 4.4(b).
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Figure 4.4: (a) Average total reward as in (4.17). (b) the summation of negative used active power or first term
of reward in (4.17). (¢) Cumulative penalty for voltage magnitude violations or second term of reward in (4.17),
all during training.

4.4.3. PERFORMANCE AND CONSTRAINT ENFORCEMENT CAPABILITIES ON

TESTING SET
Figure 4.5 displays the voltage magnitude results during a typical day in the test dataset.
In the specific scenario of nodes 11, 16, 17, and 18 of the network operating under se-
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Figure 4.5: Voltage magnitude before and after regulation by the DF-SRL, Safe DDPG and TD3 algorithms,
and the NLP formulation. As TD3 performs best among all DRL algorithms, we use the TD3 algorithm as a
benchmark.

vere undervoltage during the afternoon and night, the proposed DF-SRL algorithm ef-
fectively maintained the voltage magnitude within the technical limits throughout the
entire operation period. Notably, the Safe DDPG algorithm failed to maintain the voltage
magnitude within the technical limits between 8:00-9:00 pm. This is due to the inherent
limitations of the trained linear safe layer, which performs poorly in the distribution net-
work environment with complex dynamics and multiple constraints involved. Similarly,
DRL benchmarks, for instance, TD3, trained with a soft penalty, can not provide cer-
tified feasibility after convergence. Furthermore, the operational cost associated with
DF-SRLs regulation was 0.76 MW, a significant reduction of 17.7% compared to the TD3
and Safe DDPG counterparts. This reduction can be attributed to the high-quality train-
ing data provided by the expert knowledge-based safety layer in DF-SRL. Compared with
the optimal solution obtained by solving the NLP formulation with a perfect forecast, the
DF-SRL demonstrates a modest error rate of 10.6%.

Table 4.2 presents the average total error in operational cost, the average number
of voltage magnitude violations (including over and under voltage violations), and the
average total computational time for the proposed DF-SRL and (Safe) DRL benchmark
algorithms assessed over 30 unseen test days. As illustrated in Table 4.2, the DF-SRL
consistently upholds voltage magnitude constraints while achieving a marked reduction
in average error relative to the solution obtained by the NLP formulation with perfect
forecast. In general, the DF-SRL algorithms perform best of all the algorithms with the
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Table 4.2: Performance comparison of different DRL algorithms in an unseen test set of 30 days.

Operation Voltage Magn.  Comp.

Algorithms Cost Error [%]  Violations [-] Time [s]
DF-SRL 11.6+£0.0% 0 29+2.4
Safe DDPG 67.1+5.5% 19+2 25+0.7
DDPG 37.2+1.2% 15+4 15.7+0.2
TD3 35.9+1.5% 14+4 15.7+0.2
SAC 56.1+3.4% 23+4 16+0.1
PPO 44.3+1.1% 12+1 15.4+0.6

lowest average error of 11.6%. In contrast, the TD3 algorithm underperforms with an
error rate of 35.9%, violating voltage magnitude constraints around 14 time steps. Other
DRL algorithms, such as the DDPG, PPO, and SAC algorithms, register higher errors at
37.2%, 44.3%, and 56.1%, respectively. With a trained linear safe layer, the Safe DDPG
algorithm fails to enforce voltage magnitude constraints while performing worse than
the standard DDPG algorithm. This is because the trained safe layer in the Safe DDPG
algorithm can not accurately track the relationship between state, action, and multiple
constraints. As anticipated, due to the safety layer’s computation, the proposed DF-SRL
algorithm requires more computational resources compared with other DRL algorithms.
Despite this, the DF-SRL algorithm, as proposed, remains a viable option for real-time
operation as it takes less than 29 seconds for one day (96 time-steps) execution.

4.4.4. SENSITIVITY ANALYSIS

The DF-SRL algorithm capitalizes on the linear relationship between the voltage magni-
tude and the actions. Nevertheless, the power flow formulation can introduce errors
due to the approximation assumptions. The safety layer formulation introduced the
slack parameter € to overcome this. Primarily, € should be determined by the upper er-
ror boundary for the DistFlow model compared to the actual voltage magnitude. As the
final value used for € influences the feasibility and optimality of the actions defined by
the DF-SRL algorithm, this section presents an in-depth sensitivity analysis of the slack
parameter €.

Figure 4.6 illustrates the convergence performance of the DF-SRL algorithm for dif-
ferent values of the slack parameter €. At € = 0.001, the DF-SRL algorithm performance
is markedly diminished after convergence. In this case, the total active power provided
by the aggregators is relatively low compared to when € takes the values of 0.002 or 0.005.
Additionally, it fails to ensure the feasibility of the decided solutions during training,
whereas, with € set at 0.002 or 0.005, the DF-SRL algorithm successfully enforces all
operational constraints. In general, a low value of € can make the safe solution of the
linear projection model infeasible. Consequently, the resolved safe solution may cause
voltage magnitude violations during training, leading to sub-optimal performance af-
ter projection. If the DF-SRL algorithm is executed with € set at 0.002 or 0.005, sig-
nificant performance improvements in optimality and feasibility are observed, as illus-
trated in Fig 4.6(a, b). Furthermore, the optimality score experienced a modest increase,
at around 5%, when ¢ was reduced from 0.005 to 0.002. This can be attributed to the
fact that a higher € constrains the solution space in the action projection model, sub-
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Figure 4.6: (a) Total flexible active power, and (b) number of voltage magnitude violations; of the proposed
DEF-SRL algorithms with € = (0.001,0.002,0.005), respectively.

sequently affecting the solution quality during training. The calibration of the slack pa-
rameter € is intrinsically linked to the linear error inherent in the safe layer, which is
pivotal for the DF-SRL algorithm’s efficacy. As such, ¢ is not a Lagrangian multiplier as-
sociated with a dynamic constraint penalty, but rather a static safety buffer calibrated
based on empirical voltage approximation errors. This calibration ensures that the re-
laxations provided by e comprehensively cover the linearization errors, thus maintaining
the integrity of the safety layer across varying operational scenarios.

In the following section, we conduct a detailed scalability analysis to further explore
the range of errors induced by the linearization process, providing a quantitative foun-
dation to refine the selection of € across different network sizes [140].

4.5. SCALABILITY ANALYSIS

The scalability of the proposed DF-SRL algorithm is fundamentally determined by the
effectiveness of the DistFlow linearization process. This linearization approximation
is essential for mapping the actions from the DRL to safe operational domains. Sub-
stantial linearization errors can cause inaccuracies within the safety layer, misguiding
action projection, compromising policy iterations, and ultimately degrading the algo-
rithm’s overall efficacy.
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Figure 4.7: Voltage magnitude error of DistFlow on 18, 34, 69, 124 nodes distribution networks. We collect
voltage magnitudes from all nodes within networks of 18, 34, 69, and 124 nodes and calculate the deviations
between the DistFlow approximations and actual voltage magnitudes in one year’s data.

Figure 4.7 presents the observed voltage magnitude errors for different network sizes.
The voltage magnitude error in the 18-node distribution network ranged from 0.00089
to 0.00163. In the 34-node network, errors ranged from 0.00082 to 0.00175. The 69-
node network experienced an error range of 0.0011 to 0.00172, and the 124-node net-
work saw variability from 0.00073 to 0.00188. Although the largest network exhibited a
broader range of error, the maximum error did not exceed 0.002, suggesting that setting
an error threshold of € = 0.002 effectively accommodates the inaccuracies induced by the
linearization across all tested networks. The results demonstrate the robustness of the
DistFlow model, which forms a solid foundation for the safety layer, facilitating its appli-
cation across diverse distribution network configurations. This generalizability ensures
that with precise data on the network’s parameters and topology, the safety layer can be
tailored to maintain its accuracy and relevance, regardless of the specific characteristics
of the network.



SAFE IMITATION LEARNING-BASED
OPTIMAL ENERGY STORAGE
SYSTEMS DISPATCH IN
DISTRIBUTION NETWORKS

The integration of distributed energy resources (DER) has escalated the challenge of volt-
age magnitude regulation in distribution networks. Traditional model-based approaches,
which rely on complex sequential mathematical formulations, struggle to meet real-time
operational demands. Deep reinforcement learning (DRL) offers a promising alternative
by enabling offline training with distribution network simulators, followed by real-time
execution. However, DRL algorithms tend to converge to local optima due to limited ex-
ploration efficiency. Additionally, DRL algorithms can not enforce voltage magnitude con-
straints, leading to potential operational violations when implemented in the distribution
network operation. This study addresses these challenges by proposing a novel safe imi-
tation reinforcement learning (IRL) framework that combines IRL and a designed safety
layer, aiming to optimize the operation of Energy Storage Systems (ESSs) in active distri-
bution networks. The proposed safe IRL framework comprises two phases: offline training
and online execution. During the offline phase, optimal state-action pairs are collected
using an NLP solver, guiding the IRL policy iteration. In the online phase, the trained IRL
policy’s decisions are adjusted by the safety layer to maintain safety and constraint com-
pliance. Simulation results demonstrate the efficacy of Safe IRL in balancing operational
efficiency and safety, eliminating voltage violations, and maintaining low operation cost
errors across various network sizes, while meeting real-time execution requirements.

Parts of this chapter have been submitted to IEEE Journal of Modern Power Systems and Clean Energy with
the title: Safe Imitation Learning-based Optimal Energy Storage Systems Dispatch in Distribution Networks.
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5.1. INTRODUCTION

The penetration of renewable energies has pressed emerging challenges to distribution
network operators (DSOs) due to the lag in distribution network upgrades, particularly
evident in the Netherlands, where the severity of voltage magnitude problems has esca-
lated [143]. This bottleneck in infrastructure modernization has significantly promoted
energy investors to deploy energy storage systems (ESSs) into distribution networks,
offering a viable pathway to mitigate voltage magnitude instabilities and enhance the
resilience of the distribution network [144]. In this context, optimizing ESSs dispatch
is crucial to ensure voltage regulation while also aiming to minimize operational costs
amidst the constraints of an aging network [145].

However, fluctuating prices, varying electricity demands, and uncertainty in renew-
able generation bring significant challenges in defining the dynamic and sequential opti-
mal operation decisions. Traditional model-based approaches, which rely on predefined
forecasts or complex probability functions to manage uncertainties, often struggle with
real-time decision-making [146]. As these methods require extensive computational re-
sources, they can be inefficient in adapting to the fast-paced and variable nature of the
optimal ESSs dispatch problem [147].

Deep Reinforcement Learning (DRL) emerges as a promising alternative to tradi-
tional model-based approaches, offering a model-free solution that excels in fast-paced,
sequential decision-making scenarios [148]. DRL has been successfully applied in di-
verse fields such as game playing, robotics control, and industrial systems, where it
transforms operational sequences into Markov Decision Processes (MDPs) [149]. In the
context of energy systems tasks, DRL has demonstrated the potential to optimize com-
plex tasks, such as voltage control [150] and energy management [151], by enabling the
DRL algorithms to learn directly from interactions with the built energy system simula-
tor. This capability allows DRL to handle the complexities and uncertainties inherent in
distribution networks more effectively [152]. One of the primary challenges associated
with DRL algorithms is low exploration efficiency. The agent requires substantial time to
learn due to the need for extensive exploration of the action space [153]. This inefficiency
is particularly problematic in scenarios with high-dimensional action spaces, such as
controlling multiple ESSs in a distribution network [32]. This low exploration efficiency
consequently leads DRL algorithms to converge prematurely to suboptimal solutions, as
fully exploring all possible actions becomes increasingly difficult. For instance, previous
research [32] has shown that DRL algorithms often focus on leveraging only a single ESS
that is highly sensitive to voltage magnitude fluctuations, while neglecting the potential
flexibility offered by other ESSs. This behavior results in suboptimal performance and
prevents the system from fully utilizing the flexibility of multiple ESSs [154].

Imitation Learning (IL) offers a complementary approach that can enhance the data
efficiency of DRL algorithms [155]. IL is a strategy where the learning agent aims to
mimic the behavior of an expert by learning from optimal state-action pairs [156]. In
the context of ESSs dispatch, expert decisions can be derived from solving daily sce-
narios using commercial solvers, which derive optimal state-action pairs under various
scenarios. These pairs provide a high-quality dataset that the RL agent can use to learn
desired behaviors without needing to engage in inefficient online exploration [157]. By
incorporating IL, the learning process of DRL algorithms is significantly accelerated, as
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the RL agent starts with a base of optimal actions in different states, thereby reduc-
ing the exploration space and focusing on refining strategies that have already proven
to be effective. For instance, [158] integrated expert demonstrations into the training
phase of DRL for real-time dispatch of generation units. Results showed DRL algorithms
can achieve faster convergence and improve 2.2% performance compared to the model-
based solution in real-time dispatch tasks. The work in [159] applied a Mixed-Integer
Linear Programming (MILP)-based IL approach to Heating, Ventilation, and Air Condi-
tioning (HVAC) control. By using IL, a control policy can be trained by imitating the op-
timal MILP-based decisions, enabling efficient real-time HVAC control without the need
for solving complex optimization problems in real-time. In [160], IL is leveraged to ac-
celerate DRL algorithms training for building HVAC control. Results demonstrated DRL
algorithms could achieve better control efficiency and effectiveness in managing build-
ing HVAC systems. In [161], an IL-based approach is proposed for online optimal power
scheduling of microgrids. The IL-based controller can rapidly adjust power schedul-
ing in real-time, ensuring optimal operation of microgrids under varying conditions by
learning from optimal scheduling policies derived from offline optimization models.

Previous studies have shown that IL or an offline trained IL followed by online DRL
fine-tuning can improve the training efficiency and the performance of dispatch poli-
cies. However, this combination presents several challenges. First, purely imitation
learning-based approaches are highly sensitive to the training dataset, leading to poor
generalizability and potentially suboptimal behavior in scenarios that were not part of
the training data [155]. Second, although online fine-tuning can mitigate this problem, it
may also cause a performance collapse due to the state-action distribution shift, where
the DRL agent’s exploration leads to actions and states that deviate significantly from
those seen during the imitation learning phase [162]. Third, both of these previous ap-
proaches struggle to guarantee the feasibility of the decisions or enforce operational
constraints, as they do not explicitly account for feasibility during the imitation learn-
ing process [163]. In light of these challenges, our contributions are threefold:

* We introduce a framework that combines the strengths of DRL algorithms and
IL to enhance the training efficiency and dispatch performance of trained algo-
rithms. Moreover, the framework can rigorously enforce operational constraints
in distribution networks during the dispatch. This innovative approach addresses
the limitations previously identified in these areas.

* During the offline training phase, we employ a dual-gradient strategy utilizing
both the IL policy and the critic network. This approach stabilizes the training
process and expedites learning, effectively overcoming standard DRL algorithms’
computational and exploration challenges.

» To guarantee the feasibility of dispatch decisions, the safe layer proposed in our
previous paper [118] is extended to the framework during the online operation.
This layer filters out unsafe actions, redirecting them into safer alternatives, thus
ensuring the operational feasibility of decisions in scenarios not covered by expert
data.
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5.2. MATHEMATICAL FORMULATION

The optimal scheduling of ESSs within a distribution network is formulated as a non-
linear programming (NLP) problem, given by (5.1)-(5.7). The objective function in (5.1)
aims to minimize the total operational cost over the time horizon 7, which includes the
costs of importing power from the main grid, dictated by day-ahead market prices p; in

EUR/kWh.
min { pe Y. (Ph,+PE, —PhV)At } (5.1)
PB YmeBNteT | {eq meN
Subject to:
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Z Qnm,t_ Z (an,t"'anI;znn,t)"'an,t:Qr%,t

nme¥ mne<

VmeN,VteT (5.3)

Vr%l,t - Vr?,t =2(RmnPmn,t + XmnQmn,t) +
(Re,, + X2 )15, Ymne N YVied (5.4)

Ve o =Po Qs Vm,ne N ,¥VteT (5.5)
B .PB A
) ’ Tneme™l - if pB >0
SOCy, =SOCp 1 +1  p5 A% o
nB'—,B, lfpm,t<0
m,d—m
VmeRB,NYueI (5.6)
——B
soc? <soch ,<soc,, VmeBNteT (5.7)
PB <pE <P, VmeBNteT (5.8)
VE<VE, <V Vme N NteT (59)
0< 12, < Tonn Vmne LNted (5.10)
Py, =Qp =0 Vme N\{1},VteT (5.11)

The distribution network is modeled using the power flow formulation shown in
(5.2)-(5.5) in terms of the active P, ; power, reactive power Q;,,,; and current mag-
nitude I,,,,; of lines, and the voltage magnitude V,,, ; of nodes. Equation in (5.6) models
the dynamics of the ESSs’ SOC on the set 8, while (5.7) enforces the SOC limits. Here-
after, it is assumed that the ESS m € 2 is connected to node m, thus, 28 < 4. Finally,
(5.8) enforces the ESSs discharge/charge operation limits, (5.9) and (5.10) enforce the
voltage magnitude and line current limits, respectively, while (5.11) enforces that only
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one node is connected to the substation. Notice that to solve the above-presented NLP
formulation, all long-term operational data (e.g., expected PV generation and consump-
tion) must be collected to properly define the ESSs’ dispatch decisions, while the power
flow formulation must also be considered to enforce the voltage and current magnitude
limits.

5.3. MDP FORMULATION

The above sequential-decision problem can be modeled as a constrained Markov deci-
sion process (CMDP), characterized by the tuple (¥, «/,2?,%,Y,¢). Here, ¥ denotes
the state space which includes observable states of the system, < represents the action
space of possible control actions, &2 is the state transition probability capturing system
dynamics, Z is the reward function guiding the policy iteration, y is a discount factor
reflecting the importance of future rewards, and % is a set of constraint functions en-
suring operational safety and feasibility. The decision-making follows a policy 7 (a;|s;)
that selects actions a; € of based on the current state s; € .#, deriving the system along
a trajectory of states, actions, and rewards: T = (sg, 4o, $1, a1, --). The selected actions
aimed at maximizing a cumulative reward while adhering to system constraints.

The state at time ¢, denoted s;, encapsulates the current operational status of the dis-
tribution network and it is defined by the vector: s; = [P, ;, Vin,tlme.x» 01, SOCE, Imes, 1,
where P} . = PD  — PPV represents the net power at node m, incoperating both con-
sumption P , and PV generation P}V, V,,; is the voltage magnitude at node m. ¢ is
used to indicate which step the agent is in during the whole trajectory. SOCE% \mea is
the ESS connected to m,j, node.

The action a; at time ¢ involves the dispatch decisions for charging or discharging
ESSs, represented by a; = [Pffml mea], where f is a continuous space reflecting the pos-
sible charge/discharge power. The transition to the next state s;,; based on the current
state s; and action a; is captured by:

P(St11, RelSe, Ar) =Pr{Se1 = Se41, Re =11 | S¢ = 81, Ar = Ay} . (5.12)

The transition function p(-) incorporates both the deterministic dynamics of the dis-
tribution network and the stochastic nature of demand, PV generation, and market prices.
The reward function is designed to reflect the operational cost, defined negatively as:

Ri(spa)=re=—p¢| Y, (P2, +PE , —PhV)| At (5.13)

meN

To ensure safety and operational feasibility, several constraints are integrated. ESS
charging and discharging must not exceed predefined limits (5.8). Voltage and current
magnitudes must comply with network standards (5.9), (5.10). While constraints on
actions and SOC are enforced directly in the policy 7, network constraints are managed
indirectly. To handle this, a penalty term is added to the reward function for violations:

At-o Z Cm,t(Vm,t)

me%B

, (5.14)

p[ S (P2, +PE,PIY)
mewN
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where p is a penalty coefficient, and C,, ; is a penalty function for voltage violations,
defined to prioritize operational constraints within the learning process.

Cm,¢ in (5.14) can be modeled using different functions (e.g., L, functions). Here, as
in [59], Cp,, is defined as

V-v
Com,t =min{0,(T— —|Vo = Vin,e|

},Vme,%. (5.15)

While the CMDP framework supports the integration of operational constraints, di-
rectly applying DRL to optimize ESS scheduling in distribution networks introduces sig-
nificant challenges. DRL algorithms face high computational demands and often achieve
suboptimal policy convergence, struggling to consistently adhere to operational con-
straints in complex ESSs dispatch problems [105]. Furthermore, after training, DRL
agents may fail to enforce these constraints reliably, especially in scenarios that were
underrepresented during training. To tackle these issues, we introduce a safe imitation
learning framework, which is detailed in the subsequent section.

5.4. THE PROPOSED FRAMEWORK

[ (a) Offline Training ]

Training

NLP Slover - Trained IRL
Policy

Dataset/
Scenario

\

Expert Dat\a/COIIection

[ (b) Online Operation ]

State in )
St Action a;

of ESS

Online
Operation

Figure 5.1: Overall workflow of the proposed framework. The framework is composed of offline and online
phases. The offline training is performed once, while the online operation is conducted at each time step ¢.

The proposed framework comprises two main phases: offline training and online
execution. Initially, during the offline training phase, an expert policy formulated by an
NLP solver collects optimal state-action pairs, or expert data. This data is used to guide
the IRL policy iteration. In the online execution phase, the trained IRL policy deter-
mines charge/discharge decisions based on the current state. These decisions are then
adjusted by the safety layer to ensure strict adherence to operational constraints. This
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dual-phase approach aims to balance the need for operational efficiency with the essen-
tial requirements of safety and constraint compliance.

5.4.1. OFFLINE TRAINING VIA IMITATION LEARNING

EXPERT DEMONSTRATION DATA COLLECTION

The expert demonstration data is crucial for training our IRL framework. Optimal state-
action sequences are generated by solving the NLP problem formulated in Section 5.2,
capturing a variety of historical scenarios including daily trajectories of renewable gen-
eration, load consumption, and price dynamics. This expert policy identifies sequences
that minimize operational costs while complying with voltage magnitude constraints,
thereby providing a robust dataset for training proposed IRL algorithm.

IMITATION RL ALGORITHMS

Reinforcement Learning (RL) emerges as a preeminent strategy for devising policies un-
der uncertainty. Traditional value-based DRL algorithms, such as DQN [16] fail to ad-
dress the continuous state and action problems. In contrast, Deep Deterministic Policy
Gradient (DDPG) algorithm [23] and it's enhanced counterpart, TD3 [24], are capable of
handling continuous actions by simultaneously maintaining a policy (actor) ,, (s;), used
to sample actions, and a trained Q-function (critic) Qg (sy, a;), used to guide the update
direction of the policy network. The TD3 algorithm updates the actor-network by

1 .
w <—w+Vwﬁs§B gg{Qei (St;ﬂw(st))})r (5.16)

while the critic update iteration is defined as

2
min )_ |r;+ Y min{Qptarget (141, e (S¢+1))} — Qo (St at)) (5.17)
0 s€B i=1,2 i

Training the TD3 algorithm to achieve convergence demands extensive interactions
between the agents and their environment, a challenge amplified by large state and ac-
tion spaces. This intensive requirement stems from the necessity for the algorithm to
learn from zero. To solve these challenges, the IL approach, specifically behavior cloning
(BQC), is introduced. BC leverage expert demonstrations to directly map states and ac-
tions, thereby significantly enhancing learning efficiency in terms of sample complex-
ity and trading efficiency. Given a dataset of state-action pairs D* = (s*,a*) obtained
from expert demonstrations, where s* represents the states observed by the expert and
a* represents the corresponding actions taken by the expert policy, the goal of BC is to
learn a policy 7, (s) that can generate actions closely approximating the expert’s actions
for any given state s.

The learning process of policy 7, (s) involves adjusting w to minimize the difference
between the actions predicted by the policy and the expert actions in the dataset. The
parameter update for BC is defined as:

1
w*=argmin— ) |nw(s*)—a*|2, (5.18)
© |B|(s*,a*)eD*
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where w* represents the optimized policy parameters, B is the batch size, (s*, a*) are the
state-action pairs from the expert demonstrations, and 7, (s) is the policy parameterized
by w.

BC aims to train a policy that can accurately replicate the expert’s decision-making
process across a wide range of states, thereby leveraging the expert’s knowledge to achieve
efficient learning especially in environments where exploring through trial and error (as
in traditional RL approaches) might be inefficient or infeasible. However, the main draw-
back of BCis that if the learner makes a mistake during execution, it may end up in a state
completely distinct from the demonstration dataset, which will consequentially lead to
error cascading.

The TD3BC algorithm represents an innovative approach to overcoming the chal-
lenges associated with BC, particularly the issue of error cascading when a learner en-
counters states not covered by the demonstration dataset. TD3BC merges the robustness
of DRL with the efficiency of BC for offline training phases.

The TD3BC algorithm integrates the update mechanisms of both TD3 and BC, for-
mulated as:

1 1
w«—w—avw (ATDE;%TD-FABCEO%)BC), (5.19)

where: Zrp is the TD loss component, represented by
2
ZLrp = (rt + erzlirg Qgt_arget (St+1, oy (S£4+1)) — Qp, (54, dr)) (5.20)

Zpc is the BCloss component, represented by |7, (s*) — a* 12, Arp and Apc are the weight-
ing coefficients for the TD and BC loss components, respectively, a is the learning rate,
B is the batch of transitions sampled from the expert dataset D*.

TD3BC innovatively combines the gradients from both the conventional TD loss,
used in TD3 for updating the policy and value networks, and an expert loss derived from
BC. This dual-gradient approach allows the algorithm to not only learn from the expert
demonstrations but also refine its policy via interacting with the environment, as in clas-
sical RL, thereby addressing the limitations of each approach when used in isolation.

Despite the TD3BC algorithm’s ability to enhance performance and accelerate train-
ing, it faces a significant limitation during the online execution phase: it cannot inher-
ently enforce constraints. This limitation stems from the fact that the TD3BC algorithm
is trained exclusively on demonstration data, which inherently satisfies operational con-
straints through the resolution of an NLP problem. Consequently, the algorithm, while
effective in replicating demonstrated behaviors, lacks an intrinsic understanding of the
safety constraints. This gap in awareness can lead to situations where the actions chosen
by the TD3BC-trained agent, when faced with scenarios not covered in the training data,
diverge from safe operational bounds, potentially causing serious violations of system
constraints.

To address this critical issue and ensure the feasibility and safety of actions during
online execution, we propose the integration of a linear safe layer on top of the TD3BC
algorithm. This safety layer is designed to function as a regulatory mechanism, adjust-
ing the actions suggested by the TD3BC model to ensure they remain within predefined
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safety and operational constraints. It acts as a vital check, correcting for the algorithm’s
lack of direct constraint recognition and ensuring that all actions are compatible with
the system’s safety requirements.

The next section will explain in detail the formulation and operational mechanism
of the safe layer, illustrating its role in maintaining both optimized performance and
stringent adherence to operational safety constraints.

5.4.2. ONLINE EXECUTION WITH SAFE LAYER

The safety layer, introduced in our previous work, leverages a linear approximation of
power flow equations to project potentially unsafe actions into a safe operational do-
main. This projection ensures compliance with system constraints during real-time op-
eration.

SAFE LAYER FORMULATION

Building on the linear power flow model detailed in [140], the safety layer adjusts actions

based on a simplified relationship between node voltages and power injections. This lin-

ear expression can further be used to derive a direct relationship between the action a ﬂ
vector, corresponding to the dispatch decision of the batteries, i.e. a = [ p‘ﬁ o pf;l, P pf/”’ A

and vZ,, as next

Mv? = MV21) | + 2[D(rmn) (1- TFT) " T(pN - @)+
-1
D(xmn) (1- TF') Tql). (5.21)

v2, is vector of squared voltage magnitudes at each node, M denotes Matrix relating

node voltages to the power injections in the network, vg refers squared voltage magni-
tude at the source node or substation, 1« is vector of ones, the size of which matches
the number of lines in the network, D(r;,,), D(X,) are diagonal matrices containing
line resistances and reactances, respectively, T, F are matrices representing the network
topology, specifically the connections between nodes.

The primary focus is on maintaining voltage levels within permissible bounds by
modifying the control actions suggested by the RL algorithm. The linear relationship is
used to form a mathematical programming problem that finds the closest safe action,
minimizing deviations from the initially suggested action while ensuring operational
safety:

1
a=argmin—|a-— al?. (5.22)
a 2
Subject to:

W21, +2M D) (1- TFT) " T(pY - @)+
DXmn) (1-TFT) ' TqN) <% ¢ (5.23)

W21, +2M " [D(rn) (1- TFT) " T(pY - )+
D) 1- TFT) ' Tl 2 1% +¢  (5.24)
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Algorithm 5: Online Execution for Safe TD3BC Framework

Initialize safety layer parameters: D(ry,5), D (Xmn), B, T, M. Load trained TD3BC
model. for each operational timestep t do
Acquire action a; from policy 7, (s;). if action a; risks constraint violation
then
| Adjust a, to d; using safety layer optimization.
Implement action d; in the system.

In the above formulation, @ corresponds to the projected (or safe) action vector. Ad-
ditionally, due to the error introduced in the linear formulation, a small value € is added
to control the relaxation condition of voltage magnitude limits, following the previous
research [118].

ONLINE EXECUTION PROCEDURE

The procedure for online execution is illustrated in Algorithm 5. The trained TD3BC
model proposes initial actions based on received states. These actions are then adjusted
by the safety layer if they risk violating operational constraints. The algorithm ensures
that all actions are safe and reliable before implementation in the distribution network.

5.5. SIMULATION RESULTS

To evaluate the performance of the proposed Safe TD3BC algorithm, we conduct a com-
parative analysis with several representative (safe) DRL benchmark algorithms, includ-
ing TD3 algorithm, Safe TD3 algorithm and TD3BC algorithm. In addition, a centralized
model-based approach, an NLP formulation [142] with perfect forecast information is
counted as the global optimality. We first evaluate the performance of the proposed
Safe TD3BC algorithm in a 34-node distribution network and then scalability analysis
is conducted in diverse sizes of distribution network cases (18-node, 69-node, and 124-
node). All these distribution network environments are provided in the open-sourced
package [164]. The parameters for different DRL algorithms and cases are summarized
in Table 5.1. TD3, Safe TD3 algorithms are trained with the same hyperparameters as safe
TD3BC algorithms. The parameters of the implemented safe layer follow our previous
research [118]. Note that while all the DRL benchmark algorithms can make decisions
only using current information and achieve online operation, the solution obtained by
the NLP formulation requires complete information of the foreseen control period. To
train and assess the performance of the DRL benchmark algorithms, we employ valida-
tion metrics based on the negative value of total used active power, as denoted in (5.13),
and the voltage magnitude violation penalty as specified in (5.14), counted as the cost
of the voltage magnitude violation. These metrics effectively gauge the operational effi-
ciency and constraint adherence of each algorithm.

5.5.1. PERFORMANCE ON TRAINING SET
Table 5.2 presents the performance and training time of Safe TD3BC and benchmark
algorithms applied to a simulated 34-node distribution network. The key metrics evalu-
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Table 5.1: Summary - Parameters for DRL algorithms and the environment

¥ =0.995
Optimizer adopts Adam
Learning rate is 6e —4
Batch size is 512
Replay bulffer size is 4e5
y=0.995
Optimizer adopts Adam
Learning rate is 6e — 4
Batch size is 512, Replay Buffer is 4e5
ABc=0.5,Arp=0.5
¥ =0.995
Optimizer adopts Adam
Learning rate is 6e — 4
Batch size is 512, Replay Buffer is 4e5
Apc =05, Arp =05
Reward o =400
P’ = 150kW, PP = —150kW,
S0C” =0.8,S0CE =0.2,n% /75 = 0.98

TD3, Safe TD3

TD3BC

Safe TD3BC

ESSs

Table 5.2: Performance and training time of algorithms on simulated 34-node distribution network.

Algorithms  Training Time [A] Converged Violations [-]
Reward [-]
TD3 4.3 1.7+0.1 -0.9+0.1
Safe TD3 17.1 2.4+0.3 -1.6+0.8
TD3BC 0.9 4.9+0.5 -7.7£1.5
Safe TD3BC 0.9 4.5+0.1 0

ated are training time (in hours), converged reward, and violations. A higher converged
reward indicates better algorithmic performance, while negative values in the violations
column signify undesirable constraint breaches.

The TD3 algorithm achieves a moderate converged reward of 1.7 + 0.1, with some
violations recorded at -0.9 + 0.1. In contrast, the Safe TD3 algorithm improves the per-
formance with a higher converged reward of 2.4 + 0.3. However, this improvement comes
at the cost of increased violations (-1.6 + 0.8), suggesting that while the Safe TD3 algo-
rithm optimizes the reward better than the TD3 algorithm, it struggles to adhere to con-
straints effectively. The TD3BC algorithm emerges as the top performer in terms of the
converged reward, achieving the highest value of 4.9 + 0.5. TD3BC effectively harnesses
the potential of offline data, enabling the algorithm to quickly adapt to profitable strate-
gies collected in past operations. Consequently, the TD3BC algorithm shows a marked
improvement in performance metrics, capitalizing on the accumulated knowledge em-
bedded in the dataset to optimize actions more efficiently than TD3 and Safe TD3 algo-
rithms. Nevertheless, the TD3BC algorithm caused the most severe violations recorded
at-7.7 £ 1.5, indicating that the algorithm does not sufficiently enforce safety constraints.
This high performance coupled with significant violations highlights a critical failure




5. SAFE IMITATION LEARNING-BASED OPTIMAL ENERGY STORAGE SYSTEMS DISPATCH IN
84 DISTRIBUTION NETWORKS

of the TD3BC algorithm to maintain safe operations. In contrast, the Safe TD3BC al-
gorithm presents a more balanced approach, combining high performance with strict
constraint enforcement. The Safe TD3BC algorithm achieves a converged reward of 4.5
+0.1, slightly lower than TD3BC without any voltage magnitude violations. These results
suggest that the Safe TD3BC algorithm effectively optimizes performance while strictly
enforcing safety constraints, making it a robust choice for applications requiring high
reliability and safety.

5.5.2. DISPATCH DECISION COMPARISION ON TESTING DATASET

(a) No ESSs Dispatch (b) Price
= Pric - pr—

— Bw12 1 Price i i (!
T Bus 12 FAd i
3 Bus16 _ . ! i =
2 — Bus27 z i 4 ; Y
o 102 e B30 W H \ [ \
Y e H i i
E \
5 10 = i o 1
£ 2 I 1 _
: P = Y | ;
g 098 e T Lt 2 i et Pt
& [ vty Dt\, AM}_’H’( £ H L 7
=2 | 30 lj [ T
> 096 g e n Yo -

S NI N N NI N S S ® S & & & S & & SIS & S
9 & & NN N B P @ R N R N A S
() TD3 (d) TD3
— B2 J"l — Battery 1250C
L6 06 ! Battery 16 SOC

e ol g SEES
M. e 9

NS Ford

T e L e

Voltage Magnitude [p.u.]

Voltage Magnitude [p.u.]

: : ;

o o5
Fomn
Bt
_r—'__'_‘

Mgt

S & & & & > & O S & N N N NN NI N\ N NI N S
N R R WS N B RN DA R R N P
(h) TD3BC

TR P
i i f h g
z.. flLIb i I

s i 1@;&
i 1
] e L] Ty

Voltage Magnitude [p.u.]

Voltage Magnitude [p.u.]

Figure 5.2: (a): Voltage magnitude for nodes in which the ESSs are connected, disregarding their operation.
(b): Price in €/ MWh. Voltage magnitude ((c), () (g)) in which the ESSs are connected and SOC of ESSs ((d), (f),
(h)), after executing the dispatch decisions.
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Fig. 5.2 displays the voltage magnitude of the nodes in which the ESSs are connected
and the SOC of each ESS during a typical day in the test dataset. Results shown in Fig. 5.2
are obtained after using the dispatch decisions provided by the TD3, Safe TD3, TD3BC,
and Safe TD3BC algorithms. Fig. 5.2(a) shows the voltage magnitude of the nodes in
which the ESSs are connected, but in this case, disregarding their operation (i.e., ESSs
are neither charging nor discharging), while Fig. 5.2(b) shows the day-ahead electricity
price of that test day.

The TD3 algorithm optimizes ESSs operations by responding to price signals, as shown
in Fig. 5.2(d). This enables it to define charging and discharging decisions of ESSs to
maximize profit margins. However, the TD3 algorithm does not fully leverage the poten-
tial flexibility of all ESSs. For instance, the TD3 algorithm primarily dispatches the ESS
connected to Bus 16, largely ignoring the flexibility offered by ESSs connected with other
nodes. Additionally, the TD3 algorithm fails to leverage the evening price peaks, indicat-
ing convergence to a local optimum. In contrast, the TD3BC algorithm demonstrates a
more aggressive strategy, as shown in Fig. 5.2(h). It exploits ESSs flexibility to a greater
extent by scheduling ESSs operations aggressively to capitalize on favorable price peri-
ods. The TD3BC algorithm maximizes economic gains but at the cost of frequent voltage
violations, especially notable during low price periods such as between 02:00 and 04:00,
12:00 and 14:00, causing serious voltage magnitude drops for node 27.

The Safe TD3BC algorithm eliminates the risk of voltage magnitude violations while
fully leveraging the flexibility provided by ESSs connected to all nodes. The safety layer
actively adjusts the decisions of the TD3BC algorithm, projecting potentially unsafe ac-
tions into safe domains. These modifications, which follow the principle of minimizing
the Euclidean distance to the original actions, are designed to prevent safety breaches
while maintaining the integrity of operational goals. Fig. 5.2(j) shows how the Safe
TD3BC algorithm manages the SOCs effectively without causing voltage magnitude vio-
lations, as evident from the stable voltage magnitude in Fig. 5.2(i). While the safety layer
introduces some trade-offs in terms of reduced economic performance due to neces-
sary adjustments to ensure safety, the overall impact is profoundly positive. Safe TD3BC
substantially enhances system reliability, effectively eliminating voltage magnitude vio-
lations without significantly compromising on economic benefits.

Fig. 5.3 displays the detailed charge and discharge patterns for the TD3BC and Safe
TD3BC algorithms across nodes 12, 16, 27, 30, and 34 between 12:00 and 16:00. The
TD3BC algorithm, depicted in the left column of Fig. 5.3, demonstrates a clear strategy
of aggressive charging and discharging. For instance, at node 12, The TD3BC algorithm
charges the ESSs up to 0.15 MW at 13:15, significantly increasing the SOC. Similar pat-
terns are observed at nodes 16, 27, 30, and 34, where the TD3BC algorithm aims to cap-
italize on this price period. However, this aggressive strategy leads to serious voltage
violations. The aggressive charging caused a significant voltage drop in node 27, leading
to voltage violations. In contrast, the Safe TD3BC algorithm, shown in the right column
of Fig. 5.3, incorporates a safety layer that modifies the charge and discharge decisions
to avoid voltage magnitude violations. The Safe TD3BC algorithm still engages in charg-
ing and discharging to maximize operational benefits but also guarantee the feasibility
of voltage magnitude constraints. Instead of fully charging at 13:15, the Safe TD3BC al-
gorithm maintains a more moderated charging pattern, ensuring the SOC gradually in-
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Figure 5.3: ESSs dispatch patterns between 12:00-16:00, conducted by the TD3BC and SafeTD3BC algorithms.
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creases without causing voltage magnitude violations. This pattern also modified the
decision at 13:00, where the Safe TD3BC algorithm adjusts the charging strategy to pre-
vent the issues observed with the TD3BC algorithm. Across all nodes, the Safe TD3BC
algorithm consistently ensures that the SOC increases in a controlled manner. This care-
ful adjustment of charging and discharging schedules highlights the capability of the
Safe TD3BC algorithm to balance economic benefits with strict adherence to safety con-
straints.

5.5.3. SCALABILITY ANALYSIS

Table 5.3: Scalability Analysis of Algorithms on Different Network Sizes

. Exper Data Trainin Exec. Operation Cost Voltage Magn.
Nodes  Algorithm Collectl;on Time [h] Time [hf]% Time [s] pError (%) Violatioﬁs cou%lts [-]
TD3 - 4 15+0.1 33.2+1.1 14+2
18 Safe TD3 - 12 20+1 15.7+0.8 6+1
TD3BC 0.5 0.7 15+0.1 3+0.5 45+11
Safe TD3BC 0.5 0.7 20+0.7 7+0.4 0
TD3 - 4 15+0.1 35.9+0.9 19+4
34 Safe TD3 - 17 25+1 19.8+1.4 257
TD3BC 1.7 0.9 15+0.1 6+2.5 98+25
Safe TD3BC 1.7 0.9 22+0.5 10+0.1 0
TD3 - 4.9 15+0.1 28.5+0.4 35.1+2
69 Safe TD3 - 25 37+2 39.9+5.6 277+87
TD3BC 2.5 1.5 15+0.1 6.9+0.3 286+35
Safe TD3BC 2.5 1.5 28+0.5 9.5+0.5 0
TD3 - 9 15 +0.1 49.8+0.4 33+£2
124 Safe TD3 - 43 75+13 105+10.1 958+109
TD3BC 9 2.9 15+0.1 11.5+0.7 705+15
Safe TD3BC 9 2.9 36+1 15.9+2.2 0

Table 5.3 provides a comprehensive overview of the scalability and performance of
four different algorithms (TD3, Safe TD3, TD3BC, and Safe TD3BC) across various net-
work sizes (18, 34, 69, 124 nodes). TD3BC and Safe TD3BC algorithms show better per-
formance compared to TD3 and Safe TD3 algorithms, primarily due to their use of expert
data. For smaller networks (18 nodes), the TD3BC algorithm achieves an operation cost
error of 3 + 0.5%, significantly lower than the performance of the TD3 algorithm, 33.2 +
1.1%. However, the TD3BC algorithm fails to enforce safety constraints, resulting in 45
+ 11 violations for the 18-node network. As network size increases, operation cost er-
ror of the TD3BC algorithm rises to 11.5 + 0.7% for the 124-node network, along with a
substantial increase in violations (705 + 15).

In contrast, the Safe TD3BC algorithm consistently maintains low operation cost er-
rors and zero violations across all network sizes. For instance, the Safe TD3BC algorithm
has an operation cost error of 7 + 0.4% for 18 nodes network and 15.9 + 2.2% for 124
nodes network, without any voltage magnitude violations. This demonstrates the ability
of the Safe TD3BC algorithm to balance performance and safety effectively.

TD3 and Safe TD3 algorithms, although not requiring expert data, struggle with con-
straint enforcement. The TD3 algorithm shows a high number of violations across all
network sizes, with 14 + 2 violations for 18 nodes network and 33 + 2 for 124 nodes net-
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work. The Safe TD3 algorithm performs worse than the TD3 algorithm in larger net-
works, showing 277 + 87 violations for 69 nodes and 958 + 109 for 124 nodes. This indi-
cates that Safe TD3 is not effective in enforcing safety constraints of larger networks.

All algorithms meet real-time requirements, with execution times remaining rela-
tively stable across different network sizes. TD3 and TD3BC algorithms maintain execu-
tion times of approximately 15 seconds, while Safe TD3 and Safe TD3BC algorithms have
slightly higher execution times due to the additional computations required for enforc-
ing safety constraints. For example, the Safe TD3 algorithm requires 75 + 13 seconds for
a 124-node network, while the Safe TD3BC algorithm requires 36 + 1 seconds. The lower
execution time of the Safe TD3BC algorithm compared to the Safe TD3 algorithm can
be attributed to two factors: fewer activation of the safe layer in Safe TD3BC and easier
projection of actions, as most actions in Safe TD3BC lie within the boundary.

The preparation of expert data can be time-consuming, as it involves repeatedly solv-
ing large-scale optimization problems. This is an offline process and does not impact
real-time performance. TD3BC and Safe TD3BC algorithms require less than 3 hours to
collect expert data for smaller networks, but this increases to 9 hours for the 124-node
network. Training times vary significantly across algorithms and network sizes. Safe
TD3 consistently requires more training time than TD3 due to the computational effort
involved in ensuring safety constraints. For instance, the Safe TD3 algorithm requires 43
hours to train on a 124-node network, compared to 9 hours for TD3 algorithm. TD3BC
and Safe TD3BC algorithms have shorter training times, with the Safe TD3BC algorithm
maintaining a training time of 2.9 hours even for the largest network. The extended train-
ing time for the Safe TD3 algorithm is primarily due to the frequent activation of the safe
layer during environment interactions, which consumes substantial computational re-
sources.

5.6. DISCUSSION

DRL algorithms are designed to optimize decision-making based on the rewards ob-
tained through interactions with the environment. A critical component of their learn-
ing process is the exploration of the action space to discover strategies that maximize
long-term rewards. However, our findings suggest that standard DRL algorithms often
struggle with efficient exploration, particularly in complex operational contexts such as
the dispatch of ESSs in distribution networks. One of the key issues observed is that the
TD3 algorithm tends to fully dispatch the ESS connected to the node experiencing volt-
age magnitude issues, while neglecting the dispatch of other ESSs. This behavior leads
the algorithm to converge to local optima, rather than exploring more globally optimal
strategies. The underlying reason is that DRL algorithms inherently lack mechanisms to
sufficiently diversify their exploration, especially in environments characterized by high-
dimensional continuous action spaces or intricate reward structures. As a result, once
the algorithm identifies a reasonably effective solution, it tends to exploit this solution
excessively, foregoing further exploration of potentially superior alternatives [163].
Moreover, while introducing a soft penalty component into the reward structure to
enforce operational constraints can help mitigate unsafe actions, it often comes at the
cost of overall performance. DRL algorithms must be sensitive to these penalties to avoid
violating constraints, which inadvertently shifts the learning focus toward avoiding dan-
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gerous actions rather than improving overall performance. This heightened sensitivity to
penalties amplifies the significance of actions that frequently lead to violations, causing
the algorithm to overemphasize the avoidance of those specific actions. Consequently,
the DRL agent may ignore other aspects of the action space that could contribute to
better performance, ultimately leading to premature convergence to a local optimum.
While the soft penalty approach increases safety, it does so by reducing the algorithm’s
ability to explore and optimize across other dimensions of the action space, thereby lim-
iting the potential for achieving higher performance.

The TD3BC algorithm integrates BC to accelerate the learning process and improve
the action quality by guiding the policy towards historically expert actions. This method
effectively harnesses the potential of offline data, enabling the algorithm to quickly adapt
to profitable strategies collected in past operations. Consequently, the TD3BC algorithm
shows a marked improvement in performance metrics, capitalizing on the accumulated
knowledge embedded in the dataset to optimize actions more efficiently than its stan-
dard counterpart. Nevertheless, the TD3BC algorithm introduces significant risks re-
lated to safety compliance, primarily due to its unawareness of the safety constraints.
The expert training dataset cannot encompass all possible real-world scenarios, and
when the real-world conditions deviate from the training scenarios, the model may fail
to recognize or avoid actions that could lead to operational hazards, such as voltage mag-
nitude violations. This limitation highlights a critical weakness in the TD3BC algorithm:
while it can improve performance, it cannot ensure safety under unforeseen conditions.

To address this shortcoming, we propose the Safe TD3BC algorithm, which builds
upon the strengths of imitation learning while incorporating mechanisms to guaran-
tee safety. The Safe TD3BC framework not only retains the performance improvements
of TD3BC by efficiently dispatching all ESSs, but also introduces a layer of safety that
ensures compliance with operational constraints, even in scenarios not covered by the
training data. By filtering unsafe actions and providing safer alternatives, the Safe TD3BC
algorithm significantly enhances both the performance and safety of ESS dispatch, thus
overcoming the limitations of the original TD3BC approach.







RL-ADN: A HIGH-PERFORMANCE
DEEP REINFORCEMENT LEARNING
ENVIRONMENT FOR OPTIMAL
ENERGY STORAGE SYSTEMS
DISPATCH

Deep Reinforcement Learning (DRL) presents a promising avenue for optimizing Energy
Storage Systems (ESSs) dispatch in distribution networks. This paper introduces RL-ADN,
an innovative open-source library specifically designed for solving the optimal ESSs dis-
patch in active distribution networks. RL-ADN offers unparalleled flexibility in model-
ing distribution networks, and ESSs, accommodating a wide range of research goals. A
standout feature of RL-ADN is its data augmentation module, based on Gaussian Mix-
ture Model and Copula (GMC) functions, which elevates the performance ceiling of DRL
agents. Additionally, RL-ADN incorporates the Laurent power flow solver, significantly
reducing the computational burden of power flow calculations during training without
sacrificing accuracy. The effectiveness of RL-ADN is demonstrated using in different sizes
of distribution networks, showing marked performance improvements in the adaptabil-
ity of DRL algorithms for ESS dispatch tasks. This enhancement is particularly beneficial
from the increased diversity of training scenarios. Furthermore, RL-ADN achieves a ten-
fold increase in computational efficiency during training, making it highly suitable for
large-scale network applications. The library sets a new benchmark in DRL-based ESSs
dispatch in distribution networks and it is poised to advance DRL applications in distribu-
tion network operations significantly. RL-ADN is available at: https: // github. com/

Parts of this chapter have been accepted by Energy and Al with the title: RL-ADN: A High-Performance Deep
Reinforcement Learning Environment for Optimal Energy Storage Systems Dispatch in Active Distribution Net-
works [164].
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6.1. INTRODUCTION

6.1.1. MOTIVATION

Energy Storage Systems (ESSs) play a pivotal role in modern distribution networks, of-
fering enhanced flexibility essential for addressing uncertainties brought by Distributed
Energy Resources (DERs) integration [165]. Optimizing ESS dispatch strategies is cru-
cial for distribution system operators (DSOs) to fully harness this flexibility [166]. How-
ever, the dynamic and sequential nature of optimal operation decisions, responding to
fluctuating prices and varying electricity demands, poses a significant challenge. Tra-
ditional model-based approaches often struggle with real-time decision-making due to
their reliance on predefined forecasts or complex probability functions to manage un-
certainties [167]. Deep Reinforcement Learning (DRL) emerges as a potent model-free
solution for such fast-paced, sequential decision-making scenarios, with successful ap-
plications in diverse fields like game-playing [168], robotics control [169], industry con-
trol [170]. Applied to distribution energy systems, DRL transforms these operational
challenges into a Markov Decision Process (MDP), exhibiting impressive results in vari-
ous energy tasks [171, 172]. DRLs strength lies in its adaptability and capability for real-
time decision-making, trained in simulators and then applied to real-world scenarios.
This necessitates robust and accurate simulation environments to prevent duplication
and provide benchmark frameworks for the development of efficient DRL algorithms.

Therefore, we introduce RL-ADN, an open-source library specifically tailored for DRL-
based optimal ESSs operation in distribution networks. It meets diverse research needs
while providing customization options for research tasks, ensuring both flexibility and
standardization.

6.1.2. RELATED WORK

The RL field has grown significantly, thanks in part to open-source universal simulation
environments and benchmark frameworks, like GYM for game-playing [168]. However,
this trend is less pronounced in energy system research groups. The absence of such
resources hampers the development and integration of DRL algorithms in energy sys-
tem operation areas. Table 6.1 offers a comparative analysis of functionalities in open-
sourced energy system environments. Many existing environments address specific chal-
lenges but are often too tailored for broader application [30]. For instance, a microgrid
environment is developed to test the performance of DRL algorithms in [30]. The task of
formulated MDP is to minimize the power unbalance and operational cost by dispatch-
ing distributed generators and ESSs. In the research [26], a distribution network envi-
ronment is open-sourced to facilitate solving active voltage control problems based on
multi-agent RL algorithms. AndesGYM [173] developed an environment for frequency
control problems in power systems, which leverages the modeling capability of ADNES
and Gym environment. The task is set to minimize the deviations of the frequency value
in a given time scope. Consequently, these environments do not lend themselves eas-
ily to customization or alterations essential for different or broader research objectives.
This specificity leads to fragmentation in the research community, as studies operate in
isolation without a standardized benchmark or a universally adaptable toolset.

CityLearn [52] provides an environment for simulating DRL algorithms in charge of
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operating building energy systems, in either a centralized (single-agent) or decentralized
(multi-agent) way. Focusing on exploring the dynamics inside the building, it ignored
the grid-level dynamic. GridLearn [174] is further developed to investigate mitigating
over-voltages in the distribution network level by demand response in the buildings.
Both two packages simplified the original MDP tasks, by discrete continuous decisions
into discrete actions and ignoring the power flow calculation in the distribution net-
works. PowerGridWorld [175] is a framework for researchers to customize multi-agent
environments of power networks, which could integrate existing RL libraries like RL-
LIb and OPEN-AI BASELINES. PowerGridWorld could work in two ways to implement
the multi-agent feature: centralized training and distributional execution, distributional
training, and execution. In the environment, OPENDSS is used as an interface to exe-
cute the power network operation. Gird2OP [176] is developed to support training an
intelligent agent to run a transmission network and has served as a benchmark envi-
ronment for a series of L2ZRPN competitions. Grid20P provided the flexibility for grid
modifications, observations, and actions. However, both PowerGridWorld and Grid20OP
necessitate extensive power flow calculations during offline training, typically a bottle-
neck in DRL training, since RL agents need to explore the environments to converge, re-
quiring a large amount of interaction. The mentioned electricity network environments
are mainly built based on standard iterative methods, i.e., Newton-Raphson method,
which is time-consuming, rendering them unsuitable for integration with DRL algo-
rithms training. GYM-ANM [177] is an open-source environment for solving operation
problems in distribution networks, with the primary purpose of using RL algorithms to
reduce energy loss (including generation curtailment storage, and transmission losses)
under the operation violation constraints. GYM-ANM provides flexibility for customiz-
ing energy components, research tasks, network topology, etc. Specifically, it uses a cus-
tomized simplified power flow simulator to encapsulate the dynamics of a distributional
network, which can accelerate the training speed of RL agents significantly. However,
the limitations of GYM-ANM are also obvious, as the implemented power flow calcu-
lation algorithm can not precisely track the dynamic of physical distribution networks,
impeding the transition from simulation to reality for the trained RL agents. Therefore,
an advanced power flow calculation algorithm remains a significant imperative to avoid
being hindered by the extensive computational demands as well as to reflect the dynam-
ics of physical distribution networks accurately.

Moreover, the key to leveraging DRL for optimal dispatch strategies lies in training
with diverse historical data, particularly in environments with uncertain renewable gen-
eration, load consumption, and price profiles. The broader the training scenarios, the
higher performance ceiling of DRL agents [178, 164]. However, collecting diverse data
for specific distribution networks remains challenging, limiting the practical integration
of DRL algorithms.

6.1.3. CONTRIBUTIONS

This paper presents RL-ADN, an open-source library for DRL-based optimal ESSs dis-
patch in active distribution networks. RL-ADN accommodates a wide range of research
objectives (i.e., different optimization objectives functions such as congestion manage-
ment and optimal dispatch) while offering unprecedented customization capabilities.
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Table 6.1: Summary of literature in environments of distribution network operation. The content of the table
strictly aligns with the novelty we include: power flow integration, data augmentation, benchmark optimality,

and flexibility assessment.

Work Research Task Power Flow Integration Data Augmentation Flexibility and Customization Capabilities
[30] Optimal energy system scheduling x x x
[26] Voltage regulation v x x
CityLearn [52] Building Energy Management x x v
GridLearn [174] Building Energy Management x x v
PowerGridWorld [175]  Power Network Operation v x v
Grid20P [176] Transmission Network Configuration v X v
GYM-ANM [177 Distribution Network Operation v x v
[105] Microgrid operation x x X
[179] EV energy management x x x
[180] Microgrid Control v x x
[181] Microgrid operation v x v
[182] Economic dispatch x x x
[183] Power system emergency control v X v
[184] Voltage Control v X X
RL-ADN Optimal ESSs dispatch in distribution network v’ v v
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This flexibility extends to the modeling of distribution network topologies and the inte-
gration of various types of ESSs, thereby allowing for the creation of tailored MDPs. RL-
ADN incorporates a novel data augmentation module using a Gaussian Mixture Models-
Copula (GMC) approach, enhancing the diversity of training scenarios and thereby the
performance of DRL algorithms. Additionally, it introduces the Laurent power flow solver,
drastically reducing computation time for power flow calculations tenfold, without sac-
rificing accuracy [185, 31]. RL-ADN also provides four state-of-the-art (SOTA) DRL al-
gorithms and a model-based approach with perfect forecasts as a standard baseline for
comparison. In summary, RL-ADN sets a new standard in DRL-based ESS dispatch with
its innovative features, flexibility, and efficiency. It paves the way for more effective and
accurate DRL applications in energy distribution networks, representing a significant
advancement in the field.

6.2. BACKGROUND

6.2.1. OPTIMAL ESS DISPATCH TASKS IN DISTRIBUTION NETWORKS

ESSs dispatch tasks are inherently sequential decision-making problems. The aim is to
minimize operational costs while adhering to constraints that ensure the safe and effi-
cient operation of the distribution network. Such constraints might include maintain-
ing specific voltage magnitude and current levels, state of charge (SOC) operation con-
straints, etc. This involves responding to market prices, network conditions, and renew-
able stochastic generation. The ESSs dispatch problem is typically cast as optimization
problems with a general mathematical optimization formulation defined by (6.1)-(6.3):

Minimize:
f(x) where x is the decision variable. (6.1)

Subject to:
gx)<y (Grid-level constraints) (6.2)
b(x)<z (Energy storage system constraints) (6.3)

The objective function f(x) varies based on different tasks, ranging from minimizing
operation cost based on dynamic pricing to regulating voltage magnitude or integrating
multiple goals [59]. The effective dispatch of ESSs is crucial, considering the uncertain-
ties in renewable generation, load consumption, and price fluctuations. The constraints
are categorized into grid-level (6.2) and ESS-level (6.3) based on the specific require-
ments of the tasks. Some tasks may prioritize network reliability and incorporate more
stringent constraints on voltage magnitude and current levels, while others may focus
solely on profit maximization. This flexibility in formulation allows for a wide array of
approaches, each tailored to meet the specific needs and priorities of different energy
optimization tasks.

6.2.2. MDP FORMULATION AND REINFORCEMENT LEARNING

In RL-ADN, these sequential decision-making problems can be reformulated as a MDP,
defined by the tuple (¥, of,2?,,y), where ¥ denotes the state space, of represents
the action space, & is the state transition probability function, £ signifies the reward
function, and y stands for the discount factor.
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Figure 6.1: Architecture of policy-based DRL algorithms. (a) Deep Deterministic Policy Gradient (DDPG), (b)
Twin Delayed DDPG (TD3), (c) Proximal Policy Optimization (PPO), (d) Soft Actor-Critic (SAC).

A policy, n(als;), determines the selection of action a; for a given state s;. The
agent’s objective is to ascertain a policy that maximizes the expected discounted cu-
mulative return, represented as J (1) = E;- [Zf’;oytrt], in which 9 is the length of the
control horizon.

The formulated MDP possesses a continuous action space, making it unsuitable for
direct solutions using value-based DRL algorithms [13]. Policy-based DRL algorithms
are often employed to address continuous action spaces, as they directly tackle such con-
tinuous action domain problems. The architectures of state-of-the-art (SOTA) policy-
based DRL algorithms such as DDPG [23], TD3 [24], SAC [77], and PPO [22] are depicted
in Fig. 6.1.

* DDPG and TD3: Both are deterministic algorithms that maintain a policy for ac-
tion sampling and Q-networks, Qy (s;, a;), to guide policy network updates. Specif-
ically, TD3, as an enhancement of DDPG, incorporates dual Q-networks and em-
ploys delayed updates, mitigating the Q-network’s overestimation bias inherent in
DDPG.

* PPO: As an on-policy algorithm, PPO addresses policy optimization challenges in
RL. PPO curtails extensive policy updates by adopting a clipped objective function,
ensuring minimal deviation of the new policy from the previous one. A value func-
tion Vi (s) is leveraged to guide the policy iteration. This mechanism circumvents
the necessity of learning rate adjustments and achieves superior sample efficiency
compared to conventional policy gradient techniques [22].

* SAC: SAC is an off-policy actor-critic framework that integrates the maximum en-
tropy reinforcement learning paradigm. By supplementing the typical reward with
an entropy component, SAC promotes exploration, thereby achieving a harmo-
nious balance between exploration and exploitation. This algorithm utilizes a soft
value function, dual Q-functions, and a policy network. With iterative updates,
SAC strives to formulate a stochastic policy that is both optimal and exploratory,
ensuring robustness and efficiency across diverse tasks.
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Building on the policy gradient theorem, both the policy, n(a,|s;), and its associated
critic networks, Qg (s, a;) or V(s), can be updated. It is worth noting that the update
methods can vary depending on the specific algorithm. A comprehensive discussion of
these algorithms is available in [12].

By interacting with the artificial environment, the DRL agent seeks to define the op-
timal ESSs dispatch in active distribution networks. The two-phase approach, offline
training followed by online deployment, equips the agent to address the stochastic na-
ture in optimal ESSs dispatch tasks. In the offline training phase, the DRL agent gleans
insights from the interaction and executes self-learning, refining its decision-making.
During the subsequent online deployment, it leverages these insights to navigate com-
plexities, ensuring more robust and adaptive solutions. The environment’s partially ob-
servable nature, often due to communication constraints, necessitates meticulous state
selection from the full observation set. Overly complex states will decrease the signal-to-
noise ratio, while overly simplistic states could overlook essential dynamics. Both sce-
narios can undermine the learning efficacy and policy performance. To provide flexibil-
ity in designing state spaces, RL-ADN facilitates the easy customization of state spaces,
a topic further explored in the subsequent sections.

6.3. RL-ADN FRAMEWORK

6.3.1. OVERVIEW

The architecture of the RL-ADN environment, depicted in Fig. 6.2, consists of three lay-
ers: Data Source, Configuration, and Interaction Loop. Primary data feed into Configura-
tion Layer to build DRL environments, integrating components like Data Manager, Dis-
tribution Network Simulator, and ESSs Models. These components are integrated into
the environment within the Interaction Loop, while a DRL algorithm, chosen to control
the agent, is initialized simultaneously'. Then, the DRL agent interacts with the envi-
ronment in search of the optimal policy. The proposed RL-ADN framework’s versatility
allows for modeling highly tailored tasks, with modifications to components yielding
unique MDPs for distinct ESSs dispatch tasks.

6.3.2. DATA SOURCE LAYER

The Data Source Layer provides primary data for building the framework and training
the DRL agent. Data are categorized into time-series data, distribution network data,
and ESSs parameter data. Time-series data include load profiles, price profiles, and re-
newable generation profiles in a standard format. These data are processed by the Data
Manager for training or can be selected for further augmentation. Distribution network
data comprise node and line data, with nodes specifying slack and PQ bus locations,
and lines detailing topology and characteristics like resistance and reactance which are
stored in CSV format. This data is crucial for building the distribution network simula-
tor. ESSs parameter data, detailing capacity, charge/discharge limits, and degeneration
costs, are used to construct the ESSs model. The framework includes standard 25, 34, 69,
and 123 node distribution network data, along with corresponding time-series data and

1State-of-the-art policy-based algorithms such as DDPG, SAC, TD3, and PPO are incorporated into the frame-
work.



6.3. RL-ADN FRAMEWORK

99

Data Source Layer

Time Series Data

1. Time Series Load Data
2. Time Series Price Data

Distribution
Network Data

1. IEEE Format Node Data
2. IEEE Format Line Data

Battery Parameter
Data

Characteristics of Battery

3. Time Series Renewable
Generation Data

Conﬁguraﬁion Layer v

PandaPower GridTensor v

Data Manager ESSs Model

Simulator of the
Distribution Network
(with Laurent power flow)

Simulator of the
Distribution Network

i

- 7
Data Augmentation

Interaction Loop Layer

Agent Environment

a

select _a() —\_. ﬁbuild_state()—m —
step() — %

update_net()

T

Figure 6.2: Framework of the RL-ADN package. Configuration data for the distribution network and the
ESSs are selected from data sources. Subsequently, corresponding time-series data undergo preprocessing.
Through Configuration Layer, the environment is constituted of the distribution network, ESSs, and data man-

ager.
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ESSs data from previous research [105]. Users can use this data for training or customize
their own model following the provided standard format.

6.3.3. CONFIGURATION LAYER

DATA MANAGER

The Data Manager plays a crucial role in managing time-series data, such as active and
reactive power demand ( pft, qft), electricity price (p;), and renewable power generation
( pf o qlB ,) for specific epochs (J7, £ € ). Previous research approaches to data manage-
ment have been case-specific and labor-intensive, adding complexity and potential data
quality issues. RL-ADN adopts a streamlined approach, standardizing various data pre-
processing tasks, and ensuring data integrity and efficient handling. The workflow of the
Data Manager is detailed in Appendix B.1.
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DATA AUGMENTATION

In RL-ADN, Data Augmentation module plays a pivotal role in enhancing the robust-
ness and generalizability of the trained policy by artificially expanding the diversity of
the historical time-series data. With data augmentation, RL-ADN exposes the model to
a broader set of scenarios, promoting adaptability and performance in varied and un-
foreseen situations. The Data Augmentation module is designed to generate synthetic
time-series data, capturing the stochastic nature of load in the power system and re-
flecting realistic operational conditions. The Data Augmentation module interacts with
the Data Manager to retrieve the necessary preprocessed data and then applies its aug-
mentation algorithms to produce an augmented dataset. The output is a synthetic yet
realistic dataset that reflects the variability and unpredictability inherent in distribution
network systems. This enriched dataset is crucial for training RL agents, providing them
with a diverse range of scenarios to learn from and ultimately resulting in a more adapt-
able and robust decision-making policy. The workflow of Data Augmentation module is
described in Appendix B.2.

DISTRIBUTION NETWORK SIMULATOR

For a distribution network, node-set A and the line set £ define the topology. Each
of the node i € A and lines [; ; € &£ specify its attributes. A specific subset 9,98 c A
describes ESSs connected to the distribution network nodes. Importantly, the number
of ESSs delineates the resulting state space . and action space <.

The main function of the Distribution Network Simulator is to calculate power flow,
when a new scenario is fed into the environment, performing as the main part of the
state transition function for the formulated MDP task. Based on the provided distribu-
tion network configuration data, we offer two modules, PandaPower and GridTensor
to create the Distribution Network Simulator. PandaPower provides the traditional it-
erative methods while GridTensor [185] integrates a fast Laurent power flow for calcu-
lating the distribution network state presented by the voltage magnitudes, currents and
power flowing in the lines.

6.3.4. INTERACTION LOOP LAYER
For each time step ¢ in an episode, the agent obtains the current state s; and determines
an action a; to be executed in the environment. Once a; is received, the environment
will execute step function to execute power flow, and update the status of ESSs and the
distribution network, which is counted as the consequence of the action at the current
time step ¢. Then, based on these resultant observations, the reward r; is calculated by
the designed reward calculation block. Next, the Data Manager in the environment sam-
ples external time-series data of the next time step ¢ + 1, including demand, renewable
energy generation, and price, emulating the stochastic fluctuations of the environment.
These external variables are combined with updated internal observations, performing
as the resultant transition of the environment.

Users can freely design the build-state block, facilitating an in-depth exploration
of how different states influence the performance of algorithms on various tasks. In a
similar vein, the cal-reward block can be tailored according to different optimal tasks.
For the convenience of our users, our framework provides a default state pattern and
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reward calculation.

6.3.5. MDP DESIGN

STATE SPACE DESIGN

State space design is vital as it directly impacts the efficacy of the agent’s learning pro-
cess. The chosen state space . should be concise yet descriptive enough to facilitate
effective policy learning.

In the RL-ADN framework, the environment collect a comprehensive range of mea-
surements at each timestep ¢. Using all these measurements to represent the state s; in
the MDP is plausible but fraught with challenges. Such an approach might not be prac-
tical in real-world distribution networks due to potential data unavailability. Moreover,
by including all measurements, the state space could become noise-prone, making state
exploration more intricate and possibly hindering agent performance.

Thus, feature engineering is pivotal in designing state s;. The RL-ADN framework
offers the flexibility to tailor state space. The get-obs block fetches available measure-
ments, while the build-state block lets users customize states. Generally, the state
s encompasses both endogenous and exogenous features. Exogenous features capture
external dynamics, like uncertainties in renewable energies, consumption, and pricing,
within an episode. Meanwhile, endogenous features track internal dynamics governed
by distribution network rules and energy component behaviors, e.g., power flow and
ESS’s SOC update rules. Moreover, some ancillary information, such as the current time-
step in a trajectory, has proven crucial in MDP state representation [59].

ACTION SPACE DESIGN

Focusing the optimal ESS dispatch tasks, the action a; at time ¢ is denoted as a; =
[pi’tl me), symbolizing the charging or discharging directives for the m;; ESS con-
nected to node m in the distribution network.

TRANSITION FUNCTION

In a MDB the transition function encapsulates the dynamics that govern the system’s
progression from one state to another. The transition mechanism is bifurcated into two
essential components. The first is endogenous distribution network and energy compo-
nent dynamics. These are calculated based on physical laws, i.e., power flow calculation,
SOC update rules, rooted in the network’s topology, the variations in active and reactive
power at different nodes, and the parameter of ESSs models. The second is exogenous
variable evolution, which involves modeling the temporal fluctuations in renewable en-
ergy generation, market prices, and load demand, leveraging daily historical data. The
transition probability function 22 is mathematically represented as:

P(See1, RelSe, Ag) =Pr{Sev1 = Sev1, Ry =11 1 Se = 51, Ap = ag}. (6.4)

Traditionally, constructing a precise mathematical representation of &2 has been chal-
lenging due to the inherent complexities and uncertainties in both endogenous and ex-
ogenous variables. Reinforcement Learning (RL) offers a way around this by learning the
ambiguous model through interaction.
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REWARD FUNCTION

The reward function serves as a critical component for guiding the agent’s learning pro-
cess. The environment offers a reward signal r; to the agent, quantifying the quality of
each action taken. The design of this reward function is inherently tied to the specific
objectives of the task at hand . Our framework incorporates a cal-reward block that
allows researchers to easily customize the reward signal for various optimal ESS dispatch
challenges.

6.3.6. DATA AUGMENTATION MODEL
The RL-ADN framework incorporates Gaussian mixture models (GMM) and Copula func-
tions for data augmentation [186, 187]. The GMM is a probabilistic model that assumes
data originates from a blend of multiple Gaussian distributions, each characterized by
unique means and covariances. This model can adeptly capture the complex and multi-
modal nature of time series data in distribution networks, which often exhibit intricate
patterns due to fluctuating load demands and renewable energy generation. Comple-
menting the GMM, Copula functions are utilized to encapsulate the time-correlation
structure between multiple time-step data in a defined period, independent of their
marginal distributions. This dual approach ensures a comprehensive and realistic aug-
mentation of time-series data in distribution network operations. In our framework,
three augmentation methods are provided GMM, t-Copula, and Gaussian Copula [178].
The integration of GMM and Copula functions (GMC) in the RL-ADN framework
marks a significant advancement in creating robust and reliable environments for train-
ing reinforcement learning agents. This approach adeptly handles the complexities and
uncertainties inherent in power distribution networks, enhancing the training data’s qual-
ity and the resulting policies’ effectiveness.

6.3.7. LAURENT POWER FLOW

Conventional power flow calculations often rely on iterative methods like the Newton-
Raphson algorithm. This becomes a computational bottleneck, especially in the context
of training DRL agents, which requires numerous evaluations of power flow. In the pro-
posed framework, we address the computational bottleneck associated with traditional
power flow calculations, by incorporating a Laurent power flow algorithm [185]. This
efficiency approach is achieved by linearizing the power flow equations using a Laurent
series expansion, which simplifies the nodal current calculations in the distribution net-
work. By doing so, we facilitate frequent power flow evaluations necessary for training
RL agents, without the computational burden.

The Laurent power flow method we employ considers both constant power and con-
stant impedance loads, integrating the ZIP load model directly into the power flow anal-
ysis. This approach allows for the inclusion of various types of loads and renewable en-
ergy sources without the need for iterative approximation methods typically used in tra-
ditional power flow analysis. As a result, our algorithm achieves rapid convergence and
permits a more streamlined and scalable RL training process. The elimination of itera-
tive computation not only expedites the power flow assessment but also enhances the

2The default reward functions are presented in Section 4.1.
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RL agent’s ability to quickly adapt and learn, thereby improving the overall efficiency and
effectiveness of the framework.

6.4. BENCHMARK SCHEME AND EXPERIMENTS

6.4.1. OPTIMAL ESSS DISPATCH TASK AND MDPS

RL-ADN framework introduces a foundational optimal ESSs dispatch case while the math-
ematical formulation of the case is shown in Appendix B.1. This default case aims to
minimize the operational costs for DSOs while ensuring compliance with the distribu-
tion network and ESSs operation constraints. The template case offers researchers and
practitioners a springboard, enabling them to design bespoke benchmarks tailored to
unique ESSs dispatch challenges.

In the provided case, a modified 34-node IEEE test distribution network is leveraged
to build the Distribution Network Simulator, as illustrated in Fig. 6.3. Strategic place-
ment of the ESSs on nodes 12, 16, 27, 30 and 34 which have over- and under-voltage
issues. The objective remains to minimize the operational cost, while upholding voltage
magnitude constraints. Consequently, the state, and reward functions are constructed as
below: the state s; is described as s; = [Pn’\{y men,p t,SOCﬁyAmggg], incorporating both
endogenous and exogenous features. The design of o/ adheres to the optimal goal and
multiple constraints:

* Charge and Discharge Bounds: ESSs have inherent physical limitations. The ac-
tion a; is confined within a range, considering these physical constraints.

e State-of-Charge (SOC) Dependency: Actions must respect the current SOC of each
ESS. The ‘step’ function ensures this by adjusting the charge/discharge commands
based on SOC levels.

* Voltage Magnitude Regulation: ESS actions should maintain voltage within pre-
defined limits. Direct enforcement is infeasible; hence, we employ soft constraints
via penalty rewards for voltage violations.

Thus, the reward function is defined as the combination of energy arbitrage profits
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and the penalty of the voltage magnitude violations in the distribution network. Mathe-
matically, this is expressed as:

Tt =Pt Z (Pg;,t) At-o Z Cimn,t(Vin,t) | » (6.5)
meN meaB
where C, ; is constraint violation functions [167]:
. V-V
cm,t=mm{o,(T——|V0—Vm,t| },Vme%. (6.6)

where o is a trade-off parameter between energy arbitrage and voltage stability.

6.4.2. BENCH-MARKING APPROACH

To assess performance, we formulate the optimal ESS dispatch problem as a model-
based optimization problem, with ESS dispatch decisions as the primary variables. His-
torical data — including renewable generation, load consumption, and market prices —
are treated as perfect forecasts and inputted into the optimization model. Solving this
model yields a globally optimal solution, serving as a benchmark for evaluating DRL-
derived strategies. Following previous research [30], we can assess the efficiency of DRL
algorithms by defining performance bound:

Cprr — Copt

Performance Bound = (6.7)

Copt
Where Cppg;, is the operational cost of the dispatch strategy derived from DRL agents,
while Cyp; is that derived from the global optimal solution. The closer the DRL decisions
align with this benchmark, the higher the efficacy of the RL agents. We incorporate SOTA
DRL algorithms capable of handling continuous action spaces, such as DDPG, PPO, SAC,
and TD3, as our benchmark DRL algorithms.

Following prior research [87], our simulation dataset comprises electricity market
prices from the Netherlands, augmented with consumption and PV generation data at
a 15-minute resolution. Hyperparameter settings for the utilized DRL algorithms are
detailed in Table 6.2. We compare the performance of these DRL algorithms against
global optimal solutions obtained by formulating Nonlinear Programming (NLP) prob-
lems, solved using the Pyomo package [84].

6.5. RESULTS

6.5.1. PERFORMANCE OF DRL ALGORITHMS ON TEMPLATE OPTIMAL DIS-
PATCH TASK
Fig. 6.4 displays the average total reward, operational cost, and the number of voltage
magnitude violations during the training process for DDPG, SAC, TD3, and PPO algo-
rithms. Results shown in Fig. 6.4 are obtained as an average of over five random seeds.
The average total reward increases rapidly during the training, while simultaneously, the
number of voltage magnitude violations decreases. This is a typical training trajectory
of DRL algorithms solving optimal dispatch formulated MDP tasks, especially for those
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Table 6.2: Summary - Parameters for DRL algorithms and the MDP

¥ =0.995
Optimizer = Adam
Learning rate=6e — 4
Batch size = 4096
GAE parameter(A) = 0.99
Y =0.995
Optimizer = Adam
Learning rate=6e — 4
Batch size =512
Replay buffer size = 4e5
y=0.995
Optimizer = Adam
Learning rate=6e — 4
Batch size =512
Entropy=auto
Reward o =400
PP =50kW, pB = —50kW,

SOC” =0.8,S0CE = 0.2,
Voltage limit v=1.05v=0.95

PPO Alg.

DDPG, TD3 Alg.

SAC Alg.

ESSs

using penalty as a reward. At the beginning of the training process, the DNN’s param-
eters are randomly initialized, and as a consequence, the actions defined usually are
random discharge/charge decisions, causing a high number of voltage magnitude vio-
lations, thus introducing a huge magnitude penalty term in reward (6.5). Such a reward
acts as an indicator to guide updating the DNN’s parameters, resulting in higher quality
actions, primarily learning to reduce voltage magnitude violations. Then, after reduc-
ing the violations, DRL algorithms learn to improve the actions toward increasing and
minimizing the operational costs. All these DRL algorithms converged at around 1000
episodes. The total reward of these algorithms converged at 7.5 + 0.02. Notice that even
converged, the operational cost shown in Fig. 6.4(b) will not remain the same because
the different daily load and price profiles are sampled during the training. After the last
training episode, the penalty voltage magnitude violation penalty for these DRL algo-
rithms was reduced to a value of no more than 1 as is shown in Fig. 6.4(c). This result
shows that DRL algorithms can effectively learn from interactions, reducing the number
of voltage magnitude violations while minimizing the operational costs by learning to
dispatch the ESSs correctly.

Fig. 6.5 shows the dispatch decisions and SOC changes of the ESS, connected to node
16 in a typical daily operation. These decisions are defined by DDPG, TD3, PPO, and
SAC, as well as the global optimality benchmark solution provided by solving the NLP
formulation considering the perfect forecast. Decisions provided by all DRL algorithms
all responded to the dynamic prices during the day. On this day, PPO and SAC perform
better than DDPG and TD3. Between 1:00-5:00, when the electricity price is low, PPO and
SAC dispatch the ESS in charging mode, which is similar to the decisions from the NLP
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Figure 6.4: (a) Average total reward as in (6.5). (b) Operational cost or first term of reward in (6.5). (¢) Cumula-
tive penalty for voltage magnitude violations or second term of reward in (6.5), all during training.

solver. However, DDPG and TD3 fail to learn to act efficiently with the low prices in these
timeslots. During the afternoon, all DRL algorithms charge ESSs between low-price slots
while discharging between high-price time slots (see Fig. 6.5(b) and (c)). However, Both
DRL algorithms fail to capture the price fluctuations perfectly, compared to the decisions
from NLP with full observation of the future. For instance, DDPG performs best among
all DRL algorithms between 14:00 and 20:00 but fails to capture the price fluctuations
well in the morning. PPO generally performs well during the whole day’s operation but
defines conservative decisions from 6:00 to 14:00.
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Figure 6.5: Dispatch decisions obtained by DRL algorithms and NLP for the ESS connected to node 16
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Compared to the solution provided by NLP, all DRL algorithms converge to a local op-
timum after training in the current historical dataset. This performance can be caused
by the limited scenarios in the training dataset, which hinder the implication of DRL al-
gorithms in the realistic optimal dispatch operation. In the next section, we show how
the performance of DRL algorithms is significantly influenced by using the data aug-
mentation model incorporated in the RL-ADN framework.

6.5.2. IMPACTS OF DATA AUGMENTATION ON PERFORMANCE OF DRL AL-
GORITHMS

The original data and results generated by the GMC model are depicted in Fig. 6.6. The
GMC model captured the original patterns of peaks and valleys and diverse scenarios
between different nodes in the testing distribution network. For instance, in the origi-
nal data, the daily consumption profiles at around noon are diverse, where some nodes
equipped with ESSs have negative load consumption (discharged), while others show
peaks of daily consumption. The developed GMC model replicates such diversity.
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Figure 6.6: Distribution of the original and generated data.

Fig. 6.7 shows the original and generated data distribution shape. Both original and
generated data have along tail distribution. The shape of the GMC augmentation model’s
distribution matches the original data’s shape. Therefore, the generated data profiles can
enhance the scenario diversity without losing the original distribution and time correla-
tion in the original dataset.

Table 6.3 presents the average reward, voltage magnitude violation penalty, and per-
formance bounds for DRL algorithms on a separate 30-day test dataset. These algo-
rithms, trained on primary datasets of 1 month, 3 months, and 1 year, were further aug-
mented to 1 year and 5 years to examine the effects of data augmentation within the
RL-ADN framework. Consistency in training parameters was maintained across 1000
episodes, and the results include 95% confidence intervals.

Initially, the performance of DRL algorithms using 1-month data was suboptimal.
For example, the PPO algorithm’s highest performance bound was below 70% (69.1%).
However, post-augmentation, there was a significant improvement: PPO’s performance
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Table 6.3: Mean and 95% confidence bounds for reward, violation penalty and performance bound.

Primary Dataset Augmented Dataset Reward [-] Violation Penalty [-] Performance bound [%)]
No augmentation DDPG (3.40+0.86)  DDPG (0.0+0.0) DDPG (51.1+6.7)
PPO (5.91+0.91) PPO (-0.002+0.001) PPO (69.1+4.8)
SAC (4.825+0.62) SAC (0.0£0.0) SAC (62.5+4.1)
TD3 (3.49+0.88) TD3 (0.0+0.0) TD3 (52.4£7.0)
augment 1 year DDPG (9.55+0.88) DDPG (-1.05+-0.77) DDPG (82.8+1.1)
One month PPO (11.625+0.92) PPO (-0.039+-0.01) PPO (84.0+1.0)
SAC (9.95+0.63) SAC (-0.25+-0.01) SAC (83.4+0.5)
TD3 (10.565+0.91)  TD3 (-0.09+-0.01) TD3 (83.9£0.9)
augment 5 year DDPG (7.37+0.92) DDPG (-0.32+-0.22) DDPG (76.35+4.31)
PPO (12.59+0.88) (PPO-2.10+-0.69) PPO (85.9+1.07)
SAC (8.25+0.69) SAC (-0.18+-0.09) SAC (79.58+1.93)
TD3 (8.02+£0.91) TD3 (-0.96+-0.41) TD3 (78.82+2.67)
No augmentation DDPG (8.54+0.99)  DDPG (0.0+0.0) DDPG (80.4+2.3)
PPO (6.73+0.97) PPO (0.0+0.0) PPO (73.5+4.2)
SAC (6.92+0.72) SAC (0.0£0.0) SAC (74.3£3.1)
TD3 (8.60+0.92) TD3 (0.0+0.0) TD3 (80.6+2.1)
augment 1 year DDPG (9.38+0.99) DDPG (0.0+0.0) DDPG (82.5+1.4)
Three Month PPO (9.68+0.94) PPO (0.0+0.0) PPO (83.0£1.0)
SAC (7.78+0.55) SAC (0.0£0.0) SAC (78.0£1.9)
TD3 (9.24+0.92) TD3 (0.0+0.0) TD3 (82.2+1.4)
augment 5 year DDPG (9.24+0.89) DDPG (0.0+0.0) DDPG (82.19+1.4)
PPO (8.72+0.97) PPO (0.0+0.0) PPO (81.01£3.1)
SAC (6.02+0.71) SAC (0.0£0.0) SAC (69.71+3.75)
TD3 (8.45+0.95) TD3 (0.0+0.0) TD3 (80.20+3.32)
One year No augmentation DDPG (7.061+0.93) DDPG (-0.01+0.0) DDPG (75.0+3.7)

PPO (8.173+1.02)
SAC (7.302+0.84)
TD3 (7.325+1.03)

PPO (0.0+0.0)
SAC (0.0£0.0)
TD3 (0.0+0.0)

PPO (79.3+2.8)
SAC (76.1£3.2)
TD3 (76.2+3.8)

augment 5 year

DDPG (7.58+0.79)
PPO (8.91+0.87)
SAC (8.47+0.86)
TD3 (7.99+0.99)

DDPG (0.0+0.0)
PPO (0.0+0.0)
SAC (0.0£0.0)
TD3 (0.0+0.0)

DDPG (77.20£2.76)
PPO (81.44+1.71)
SAC (80.26£2.12)
TD3 (78.72+2.90)
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Figure 6.7: Original and GMC generated load profiles. The color of the profiles corresponds to the sum of daily
consumption.

increased to 84.0% and 85.9% with 1-year and 5-year data augmentation, respectively.
When trained on 3-month primary data, DRL algorithms demonstrated good perfor-
mance, which was further enhanced with data augmentation. For instance, TD3 im-
proved from 80.6% to 82.2% with 1-year augmentation. Similarly, algorithms trained on
one-year primary data showed good performance with minimal test set violations, and
augmentation yielded incremental performance gains, as seen with PPO’s increase from
79.3% to 81.44%. These results underscore the significance of data augmentation in en-
hancing the adaptation of DRL algorithms to varied market conditions, particularly for
algorithms like DDPG and TD3. In scenarios with limited original datasets, the data aug-
mentation module in the RL-ADN framework can substantially raise the performance
ceiling of DRL algorithms.

However, a concerning observation was the increase in voltage magnitude violations
in the 1-month data set trained algorithms post-augmentation, particularly notable with
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the 5-year augmentation. This could be attributed to the augmented data increasing
scenario diversity but not altering the data distribution, as illustrated in Fig. 6.7. In such
cases, while DRL algorithms perform better within the existing data distribution, they
may incur violations in extreme scenarios not encountered during training. Notably,
algorithms trained on more diverse datasets (three-month and one-year) exhibited bet-
ter control over voltage violations. This is likely because these datasets encompassed
the extreme scenarios present in the test sets. Yet, when comparing performance, algo-
rithms trained on the one-year dataset displayed a lower performance ceiling than those
trained on the three-month dataset. This suggests that while the one-year data provides
a more diverse training environment, leading to potentially better generalization, it also
presents a slower learning curve due to its complexity.

Generally, results indicate that in scenarios with limited original datasets, the data
augmentation module in the RL-ADN framework can substantially raise the performance
ceiling of DRL algorithms. Moreover, the distribution of data and the diversity of scenar-
ios significantly impact the performance of DRL algorithms. Scenario diversity raises
the performance ceiling, while data distribution affects the training difficulty and per-
formance in extreme scenarios. While augmentation improves overall performance, it
introduces complexities like increased violation penalties, especially when the primary
dataset has a limited data distribution.

6.5.3. ENHANCEMENT OF COMPUTATION EFFICIENCY
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Figure 6.8: Training time for DRL algorithms with Laurent power flow and Panda power. The 34-node distribu-
tion network is used as a benchmark.

The performance comparison between Laurent power flow and PandaPower power
flow was conducted across multiple scale distribution networks with node sizes: 25, 34,
69, and 123. The summarized results in Table 6.4 indicate a distinct computational ad-
vantage for the Laurent power flow method over PandaPower. First, Laurent power flow
consistently maintained its efficiency, taking less than 1 ms across all node sizes. This is
in stark contrast to PandaPower, which requires approximately 28 to 37 ms. In the small-
est node size (25 nodes), Laurent is about 47 times faster than PandaPower when solving
one-time power flow. As the node size grows to 123, the efficiency margin increases, with
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Figure 6.9: Voltage magnitude calculated by Laurent power flow and Panda power. The 34-node distribution
network is used as a benchmark.

Table 6.4: Average calculation time comparison between Laurent power flow and PandaPower power flow for
different scale distribution networks

Distribution Networks Power Floslva[l:rl;i]m Plgr‘::.:rSteps [ms] | Power FIOWP;‘;S]*‘PO;S: Steps [ms]
25 Nodes | 0.59 2.81 | 28.08 30.30
34 Nodes | 0.61 2.830 | 29.42 30.502
69 Nodes | 0.88 2.9 | 28.72 31.46
123 Nodes | 0.97 3.43 | 37.22 38.51

Laurent being nearly 38 times faster.

For executing one-time environment iteration, Laurent’s time ranges from 2.8 to 3.4
ms, while PandaPower’s duration extends from 30 to 38 ms. This indicates that, on aver-
age, Laurent is about ten times faster than PandaPower in processing environment steps,
regardless of the node size. Overall, the Laurent power flow displays a significant compu-
tational edge, particularly as the node size expands. This relative efficiency is pivotal in
training DRL algorithms in large-scale distribution networks. The ability of the Laurent
power flow to consistently outpace PandaPower across different node sizes underscores
its scalability, making it a more versatile choice for varied applications.

The comparison between Laurent power flow and PandaPower flow algorithms across
different DRL algorithms showcases significant time differences in training for the same
number of episodes as shown in Fig. 6.8. A clear trend emerges from the data: the Lau-
rent power flow consistently outperforms PandaPower in terms of computational effi-
ciency. For the SAC algorithm, the Laurent power flow is approximately 4.4 times faster
than the PandaPower flow. Similarly, for DDPG, the Laurent method shows a speedup
of around 5.2 times. The TD3 algorithm with the Laurent technology is about 4.8 times
faster. The most pronounced difference is observed in the PPO algorithm, where Lau-
rent power flow is significantly faster, clocking at approximately 9.1 times the speed of
PandaPower. PPO requires 2200 minutes for training, making it the least efficient in this
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scenario. This is because PPO is an off-policy algorithm, which can not fully make use of
the past experiences in the replay buffer, resulting in the lowest data efficiency and train-
ing speed. On the other hand, DDPG emerges as the fastest, closely followed by TD3 and
then SAC.

In conclusion, the Laurent power flow demonstrates a clear computational advan-
tage across all tested algorithms. While the choice of algorithm also affects the training
time, with PPO consistently taking the longest, the underlying power flow technology
plays a crucial role in determining the overall efficiency. These findings can guide re-
searchers and practitioners in making informed decisions when it comes to selecting
the most efficient combination of power flow technology and reinforcement learning
algorithm.

Fig. 6.9 displays the voltage magnitude results of a 34-node distribution network
from Laurent power flow and PandaPower flow, respectively. The voltage magnitude re-
sults from both algorithms remain almost the same magnitude, with an average error of
no more than 0.0001%. Such a high precision from Laurent power flow can track the real
voltage dynamics accurately, regrading of the load changes. Moreover, the integration
of Laurent power flow with the developed environment can significantly save the time
cost for a large magnitude power flow iteration during the training. Thus, our framework
can accelerate notably training speed of DRL algorithms, without losing simulation pre-
cision.

6.6. DISCUSSION

The RL-ADN environment offers enhanced flexibility and customization, surpassing ex-
isting frameworks like CityLearn and GYM-ANM, which exhibit limited adaptability in
modeling complex distribution networks. CityLearn focuses on building-level energy
management, simplifying grid-level dynamics, while GYM-ANM lacks precision for com-
plex network modeling. These limitations restrict the effectiveness of RL agents in real-
world deployment. In contrast, RL-ADN provides extensive customization options, al-
lowing researchers to model complex network topologies, integrate diverse ESSs, and
design tailored MDPs. This flexibility helps bridge the sim-to-real gap, as demonstrated
by RL-ADN'’s ability to adapt to complex pricing and load conditions more effectively
than traditional frameworks.

The proposed RL-ADN environment includes a data augmentation module based
on a GMC approach, significantly enhancing training scenario diversity and improving
DRL performance. Unlike other frameworks that converge to local optima due to lim-
ited data, RL-ADN enables agents to learn from a broader range of scenarios, resulting
in more effective policies. This addresses a key limitation of frameworks like PowerGrid-
World and Grid20P, where limited data diversity restricts real-world applicability.

Existing environments, such as those using PandaPower, face high computational
demands, reducing efficiency for DRL training. PandaPower-based solutions can take
tens of milliseconds for each power flow iteration, becoming a bottleneck during train-
ing. RL-ADN integrates the Tensor Power Flow solver, which achieves a tenfold increase
in speed compared to PandaPower, greatly accelerating DRL training without sacrificing
accuracy. Fig. 6.9 shows that Tensor Power Flow results closely match those results from
PandaPower, ensuring realistic and efficient training.
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While RL-ADN demonstrates significant advancements, there are limitations to its
current implementation. One key challenge is the gap between simulation and reality,
as building an accurate distribution network simulator is difficult [188]. This can lead
to discrepancies when deploying RL agents trained in simulation to real-world environ-
ments. Another limitation is the potential difficulty in extending RL-ADN to integrated
energy systems, such as transportation or hydrogen networks [189]. These systems in-
troduce additional layers of complexity and require further development to handle their
unique dynamics and computational requirements. Future work will focus on address-
ing these limitations by enhancing the accuracy of the distribution network simulations
and extending the framework to integrated energy systems, including transportation
and hydrogen, to improve the applicability and robustness of RL-ADN in diverse real-
world conditions.

Overall, RL-ADN sets a new benchmark in applying DRL to dispatch ESSs tasks in
distribution networks, offering a comprehensive solution that addresses the limitations
of existing environments.
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7.1. RESEARCH CONTRIBUTIONS TO RESEARCH QUESTIONS

The research questions proposed in Chapter 1 have been addressed through a combi-
nation of theoretical analysis and experimental validation. The main contributions and
conclusions related to each research question are summarized as follows:

7.1.1. ENFORCING DISTRIBUTION NETWORK OPERATIONAL CONSTRAINTS
USING DRL (Q1):
Chapter 2 introduced the MIP-DQN algorithm, a value-based Deep Reinforcement Learn-
ing (DRL) approach that integrates Mixed-Integer Linear Programming (MIP) to enforce
power balance constraints in the operation of distributed energy resources (DERs). The
proposed MIP-DQN algorithm ensures that all operational constraints, particularly power
balance, are strictly enforced during online execution, thereby ensuring the feasibility of
the dispatch schedule. The essence of the MIP-DQN algorithm lies in using a trained
Q-network as a surrogate function for optimal operational decisions. This network is
reformulated as a MIP to strictly enforce power balance constraints during real-time
operation. The results demonstrated that MIP-DQN could achieve near-optimal solu-
tions with a minimal error margin of 13.7% when compared with the optimal solution
obtained using perfect forecasts. However, it was observed that the quality of the Q-
network approximation directly impacts the performance of the algorithm, indicating a
need for further improvements in training strategies and hyperparameter tuning. The
MIP-DQN algorithm offers a robust solution to enforcing power balance constraints in
real-time operations by combining deep learning with optimization techniques. Future
work should focus on enhancing the Q-network’s approximation quality and exploring
alternative exploration strategies to improve the algorithm’s overall performance.
Chapter 3 further developed the MIP-DRL framework, which extends the capabili-
ties of standard actor-critic DRL algorithms by transforming the Q-network into a MIP
formulation. This framework ensures strict enforcement of operational constraints, par-
ticularly in the dispatch of energy storage systems (ESSs) in distribution networks. A
key insight from this work is the impact of the exploration-exploitation dilemma on the
performance of different DRL algorithms within the MIP-DRL framework. For instance,
the MIP-DDPG algorithm outperformed the MIP-TD3 algorithm, while the MIP-SAC al-
gorithm performed conservatively due to its soft Q-updating rule. These findings sug-
gest that the choice of exploration policy and Q-network update rules are critical factors
influencing the effectiveness of the MIP-DRL framework. The MIP-DRL framework sig-
nificantly enhances the enforcement of operational constraints in DRL algorithms by
leveraging MIP formulations. However, the performance is closely tied to the quality of
the Q-network and the chosen exploration strategy. Future work should focus on opti-
mizing these aspects to further improve the applicability of the framework in complex
energy systems.

7.1.2. LEVERAGING DOMAIN KNOWLEDGE FOR SAFETY, PERFORMANCE, AND
COMPUTATIONAL EFFICIENCY (Q2):

Chapter 4 focused on enforcing voltage magnitude constraints within distribution net-
works using the DistFlow Safe Reinforcement Learning (DF-SRL) algorithm. The DF-SRL



7.1. RESEARCH CONTRIBUTIONS TO RESEARCH QUESTIONS 117

algorithm incorporates expert knowledge into a safety layer that recalibrates potentially
unsafe actions during both training and operational phases. This approach ensures that
voltage magnitude constraints are strictly enforced, even under severe conditions such
as extreme loading scenarios.

The sensitivity analysis conducted on the slack parameter € revealed critical role of
DF-SRL in balancing optimality and feasibility. An optimal value of € = 0.002 was found
to provide the best trade-off, ensuring that voltage constraints were met without com-
promising performance. Additionally, the scalability of the DF-SRL algorithm was val-
idated across various network sizes, demonstrating its robustness and applicability to
large-scale distribution networks.

Chapter 5 further introduced a Safe Imitation Reinforcement Learning Framework
that combines Twin Delayed Deep Deterministic Policy Gradient (TD3) with Inverse Re-
inforcement Learning (IRL). This framework addresses the challenge of ensuring safety
and efficiency in DRL by incorporating a safe layer that filters unsafe actions during the
learning process.

The framework demonstrated significant improvements in training efficiency and
operational performance by leveraging expert data to guide the policy during training.
However, it was observed that TD3BC, while effective in improving performance, strug-
gled with ensuring safety in scenarios not covered by the training data, leading to poten-
tial operational hazards. The integration of the safe layer addressed this issue by ensur-
ing that all actions complied with operational constraints, even in unseen scenarios.

The Safe Imitation Learning framework effectively enhances DRL algorithms by bal-
ancing performance improvements with rigorous safety enforcement. However, ensur-
ing robustness against real-world scenarios that differ from the training data remains
a challenge. Future research could focus on developing more adaptive safe layers and
exploring hybrid learning approaches to further improve the framework’s safety and ef-
ficiency.

7.1.3. REDUCING COMPUTATIONAL COST AND ACCELERATING TRAINING

IN DRL ALGORITHMS (Q3):
Chapter 6 introduced RL-ADN, an open-source library designed to reduce computa-
tional costs and accelerate the training of DRL algorithms for optimal ESSs dispatch in
distribution networks. RL-ADN integrates the Laurent power flow solver and Gaussian
mixture models for data augmentation, significantly improving the training efficiency
and performance of DRL algorithms.

A key innovation in RL-ADN is its ability to generate diverse training scenarios using
advanced data augmentation techniques, thereby enhancing the performance ceiling of
DRL algorithms. Additionally, the integration of the Laurent power flow solver provides
a substantial reduction in computation time, making RL-ADN highly suitable for large-
scale energy system applications.

Conclusion: RL-ADN represents a significant advancement in the development and
deployment of DRL algorithms for energy systems. Its modular design, coupled with
powerful computational techniques, offers a flexible and efficient platform for training
DRL models. Future work could explore further enhancements to the data augmenta-
tion module and the integration of more sophisticated power flow solvers to continue
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improving the capabilities of RL-ADN.

7.2. DISCUSSION AND RESEARCH RECOMMENDATIONS

The findings of this thesis suggest several avenues for future research to further enhance
the applicability and performance of DRL algorithms in energy system operations. The
detailed recommendations are as follows:

e IMPROVING SCALABILITY AND EFFICIENCY:

The scalability of MIP-based DRL frameworks remains a challenge due to the compu-
tational complexity of solving MIP formulations in large-scale systems. Future research
should focus on developing more efficient optimization algorithms or approximation
methods to reduce computation time while maintaining constraint enforcement.

e HYBRID APPROACHES FOR ENHANCED EXPLORATION:

Combining model-based predictions with model-free DRL could lead to more efficient
exploration strategies, potentially improving convergence rates and overall performance
in complex environments. Research into hybrid DRL frameworks could yield significant
advancements in this area.

* REAL-WORLD DEPLOYMENT AND ROBUSTNESS:

The transition from simulation to real-world deployment of DRL algorithms presents
numerous challenges, particularly in ensuring robustness against unforeseen events and
variations in real-time data. Future work should focus on developing adaptive learning
mechanisms that allow DRL algorithms to continuously update and refine their models
based on real-world feedback.

e ADVANCED SAFE LAYERS FOR SEQUENTIAL DECISION-MAKING:

While current safe layer-based DRL algorithms effectively manage state-wise constraints,
they often struggle with sequential decision-making processes. Research into devel-
oping more advanced safe layers that account for the cumulative and interdependent
effects of sequential decisions could significantly improve the performance of DRL in
complex operational settings.

* MULTI-AGENT DRL SYSTEMS:

The application of DRL in multi-agent systems, where multiple DERs and ESSs oper-
ate cooperatively, is an emerging area of interest. Future research could explore coordi-
nation mechanisms that ensure global optimality and stability across the entire energy
system, leveraging the collective intelligence of multi-agent DRL frameworks.
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APPENDIX

A. PROOF OF MIP-DQN

A sketch of a mathematical proof that ensures that the proposed MIP-DQN model pro-
vides the optimal solution while strictly enforcing linear constraints is presented below.
To do this, we first assume the feasibility to the problem presented in Sec. 2.2 and also
present (and adapt notation to match this paper) the Corollary 19, from [190] as,

Corollary 19: If the input (s, a) of the Q-network is a polytope and the DNN is a
rectifier network (i.e., ReLU activation functions are used), then the mapping from input
(s, a) to the output Q(s, a) of such a Q-network is mixed-integer representable.

The proof of Corollary 19 is available in [190]. Note that this corollary implies that for
any rectifier DNN, a mixed-integer formulation exists as long as the input is bounded.
The Q-network used in the proposed MIP-DQN algorithm is a DNN with a rectifier acti-
vation function while the input (s, a) are bounded as these correspond to the state and
action variables as presented in Sec. 2.3. We denote the optimal solution to this MIP
formulation as (s*, a*) whose optimal objective function value is Q(s*, a*).

Now, the extended MIP formulation obtained by adding on top of the MIP repre-
sentation of the Q(s, a) an equality constraint (in this case, (2.4)) is also a feasible MIP
representation. This is a consequence of the fact that such a mixed-integer represen-
tation of Q(s, a) is composed of a set of linear regions whose unions form a bounded
polyhedron (or polytope) (see Theorem 20 in [190]), which we denote this here as .¥ (see
arepresentation in Fig 2.4). The addition of (2.4) to .%*, which is also a linear constraint,
does not modify its nature of a bounded polyhedron (or polytope).

By exhaustion, two cases are distinguished: In the first case, the extended bounded
polyhedron S = LU is empty, rendering the solution of the MIP unfeasible, i.e.,
equality constraint in (2.4) cannot be met. This is not possible as we assumed feasibility
for the optimization problem. In the second case, . "is not empty, in which an optimal
solution exits and is feasible. If this is the case, and denoting such optimal solution as
(s', a'), such solution meets the following condition: Q(s/, a’) < Q(s*,a*). This condition
simply implies that s,a), by meeting the equality constraintin (2.4), will atleast have a
g-value that is in the limit the same as the optimal solution Q(s*, a*). This proves the fact
that by solving the extended MIP formulation, a feasible and optimal solution that meets
the equality constraint (2.4) is obtained. Nevertheless, it is important to highlight that
optimality here relates to the good quality solution provided by the trained Q-network.

B. WORKFLOWS FOR MODULES IN RL-ADN

B.1. DATA MANAGER WORKFLOW
GeneralPowerDataManager modular, is a unified data manager. Designed for automa-
tion, this class standardizes various data preprocessing tasks, as follows:
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* Loads time-indexed data directly from standard CSV files.

* Classifies columns pertaining to active and reactive power, renewable energy gen-
eration, and electricity pricing, autonomously.

 Cleans and checks the data, filling in missing values, ensuring data continuity and
integrity.

* Segregates the dataset into distinct training and test sets based on temporal delin-
eation.

 Offers utility methods, such as select-timeslot-data and select-day-data,
enabling precise data extraction tailored to the RL training needs.

When the GeneralPowerDataManager class is initialized, it undergoes a series of
operations: it verifies the data’s integrity, replaces any NaN values, and partitions the
dataset into training and testing parts as required. These preliminary tasks ensure that
data quality is maintained and provide ease of access and utilization for subsequent RL
training processes.

B.2. DATA AUGMENTATION WORKFLOW
The augmentation process involves several sophisticated statistical techniques, outlined
as follows:

* The ActivePowerDataManager class, a subclass of the GeneralPowerDataManager,
preprocesses the input data, fills missing values through interpolation, and re-
structures the data into an appropriate format for augmentation.

* A Gaussian Mixture Model (GMM) is fitted to the marginal distribution of historical
active power data for each node and time step, capturing the underlying distribu-
tion of power consumption.

* The Bayesian Information Criterion (BIC) is employed to select the optimal num-
ber of components for each GMM, ensuring that the model complexity is balanced
against the goodness of fit.

* A Copula-based approach is then applied, which models the dependency struc-
ture between different nodes and time steps, allowing for the generation of syn-
thetic data points that maintain the correlation observed in historical data.

* The augment_data method leverages the GMM and Copula to produce new data
samples, which are then transformed from the probabilistic space back to the
power data scale.

The TimeSeriesDataAugmentor modular interacts with the data manager to re-
trieve the necessary preprocessed data, and then applies its augmentation algorithms
to produce an augmented dataset. The output is a synthetic yet realistic dataset that
reflects the variability and unpredictability inherent in power systems. This enriched
dataset is crucial for training RL agents, providing them with a diverse range of scenarios
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to learn from and ultimately resulting in a more adaptable and robust decision-making
policy.

Upon completion of the augmentation process, the synthetic data is saved to a CSV
file, facilitating easy integration into the training pipeline. This automated and sophis-
ticated data augmentation procedure enhances the RL-ADN framework’s capability to
train more effective and resilient RL agents for the distribution network ESSs operations.
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